]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Revert "Constify code about X509_VERIFY_PARAM"
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* ====================================================================
11 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
12 * ECC cipher suite support in OpenSSL originally developed by
13 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
14 */
15 /* ====================================================================
16 * Copyright 2005 Nokia. All rights reserved.
17 *
18 * The portions of the attached software ("Contribution") is developed by
19 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
20 * license.
21 *
22 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
23 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
24 * support (see RFC 4279) to OpenSSL.
25 *
26 * No patent licenses or other rights except those expressly stated in
27 * the OpenSSL open source license shall be deemed granted or received
28 * expressly, by implication, estoppel, or otherwise.
29 *
30 * No assurances are provided by Nokia that the Contribution does not
31 * infringe the patent or other intellectual property rights of any third
32 * party or that the license provides you with all the necessary rights
33 * to make use of the Contribution.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
36 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
37 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
38 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
39 * OTHERWISE.
40 */
41
42 #include <assert.h>
43 #include <stdio.h>
44 #include "ssl_locl.h"
45 #include <openssl/objects.h>
46 #include <openssl/lhash.h>
47 #include <openssl/x509v3.h>
48 #include <openssl/rand.h>
49 #include <openssl/ocsp.h>
50 #include <openssl/dh.h>
51 #include <openssl/engine.h>
52 #include <openssl/async.h>
53 #include <openssl/ct.h>
54
55 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
56
57 SSL3_ENC_METHOD ssl3_undef_enc_method = {
58 /*
59 * evil casts, but these functions are only called if there's a library
60 * bug
61 */
62 (int (*)(SSL *, SSL3_RECORD *, unsigned int, int))ssl_undefined_function,
63 (int (*)(SSL *, SSL3_RECORD *, unsigned char *, int))ssl_undefined_function,
64 ssl_undefined_function,
65 (int (*)(SSL *, unsigned char *, unsigned char *, int))
66 ssl_undefined_function,
67 (int (*)(SSL *, int))ssl_undefined_function,
68 (int (*)(SSL *, const char *, int, unsigned char *))
69 ssl_undefined_function,
70 0, /* finish_mac_length */
71 NULL, /* client_finished_label */
72 0, /* client_finished_label_len */
73 NULL, /* server_finished_label */
74 0, /* server_finished_label_len */
75 (int (*)(int))ssl_undefined_function,
76 (int (*)(SSL *, unsigned char *, size_t, const char *,
77 size_t, const unsigned char *, size_t,
78 int use_context))ssl_undefined_function,
79 };
80
81 struct ssl_async_args {
82 SSL *s;
83 void *buf;
84 int num;
85 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
86 union {
87 int (*func_read) (SSL *, void *, int);
88 int (*func_write) (SSL *, const void *, int);
89 int (*func_other) (SSL *);
90 } f;
91 };
92
93 static const struct {
94 uint8_t mtype;
95 uint8_t ord;
96 int nid;
97 } dane_mds[] = {
98 {
99 DANETLS_MATCHING_FULL, 0, NID_undef
100 },
101 {
102 DANETLS_MATCHING_2256, 1, NID_sha256
103 },
104 {
105 DANETLS_MATCHING_2512, 2, NID_sha512
106 },
107 };
108
109 static int dane_ctx_enable(struct dane_ctx_st *dctx)
110 {
111 const EVP_MD **mdevp;
112 uint8_t *mdord;
113 uint8_t mdmax = DANETLS_MATCHING_LAST;
114 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
115 size_t i;
116
117 if (dctx->mdevp != NULL)
118 return 1;
119
120 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
121 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
122
123 if (mdord == NULL || mdevp == NULL) {
124 OPENSSL_free(mdord);
125 OPENSSL_free(mdevp);
126 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
127 return 0;
128 }
129
130 /* Install default entries */
131 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
132 const EVP_MD *md;
133
134 if (dane_mds[i].nid == NID_undef ||
135 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
136 continue;
137 mdevp[dane_mds[i].mtype] = md;
138 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
139 }
140
141 dctx->mdevp = mdevp;
142 dctx->mdord = mdord;
143 dctx->mdmax = mdmax;
144
145 return 1;
146 }
147
148 static void dane_ctx_final(struct dane_ctx_st *dctx)
149 {
150 OPENSSL_free(dctx->mdevp);
151 dctx->mdevp = NULL;
152
153 OPENSSL_free(dctx->mdord);
154 dctx->mdord = NULL;
155 dctx->mdmax = 0;
156 }
157
158 static void tlsa_free(danetls_record *t)
159 {
160 if (t == NULL)
161 return;
162 OPENSSL_free(t->data);
163 EVP_PKEY_free(t->spki);
164 OPENSSL_free(t);
165 }
166
167 static void dane_final(SSL_DANE *dane)
168 {
169 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
170 dane->trecs = NULL;
171
172 sk_X509_pop_free(dane->certs, X509_free);
173 dane->certs = NULL;
174
175 X509_free(dane->mcert);
176 dane->mcert = NULL;
177 dane->mtlsa = NULL;
178 dane->mdpth = -1;
179 dane->pdpth = -1;
180 }
181
182 /*
183 * dane_copy - Copy dane configuration, sans verification state.
184 */
185 static int ssl_dane_dup(SSL *to, SSL *from)
186 {
187 int num;
188 int i;
189
190 if (!DANETLS_ENABLED(&from->dane))
191 return 1;
192
193 dane_final(&to->dane);
194 to->dane.flags = from->dane.flags;
195 to->dane.dctx = &to->ctx->dane;
196 to->dane.trecs = sk_danetls_record_new_null();
197
198 if (to->dane.trecs == NULL) {
199 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
200 return 0;
201 }
202
203 num = sk_danetls_record_num(from->dane.trecs);
204 for (i = 0; i < num; ++i) {
205 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
206
207 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
208 t->data, t->dlen) <= 0)
209 return 0;
210 }
211 return 1;
212 }
213
214 static int dane_mtype_set(struct dane_ctx_st *dctx,
215 const EVP_MD *md, uint8_t mtype, uint8_t ord)
216 {
217 int i;
218
219 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
220 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
221 return 0;
222 }
223
224 if (mtype > dctx->mdmax) {
225 const EVP_MD **mdevp;
226 uint8_t *mdord;
227 int n = ((int)mtype) + 1;
228
229 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
230 if (mdevp == NULL) {
231 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
232 return -1;
233 }
234 dctx->mdevp = mdevp;
235
236 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
237 if (mdord == NULL) {
238 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
239 return -1;
240 }
241 dctx->mdord = mdord;
242
243 /* Zero-fill any gaps */
244 for (i = dctx->mdmax + 1; i < mtype; ++i) {
245 mdevp[i] = NULL;
246 mdord[i] = 0;
247 }
248
249 dctx->mdmax = mtype;
250 }
251
252 dctx->mdevp[mtype] = md;
253 /* Coerce ordinal of disabled matching types to 0 */
254 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
255
256 return 1;
257 }
258
259 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
260 {
261 if (mtype > dane->dctx->mdmax)
262 return NULL;
263 return dane->dctx->mdevp[mtype];
264 }
265
266 static int dane_tlsa_add(SSL_DANE *dane,
267 uint8_t usage,
268 uint8_t selector,
269 uint8_t mtype, unsigned char *data, size_t dlen)
270 {
271 danetls_record *t;
272 const EVP_MD *md = NULL;
273 int ilen = (int)dlen;
274 int i;
275 int num;
276
277 if (dane->trecs == NULL) {
278 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
279 return -1;
280 }
281
282 if (ilen < 0 || dlen != (size_t)ilen) {
283 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
284 return 0;
285 }
286
287 if (usage > DANETLS_USAGE_LAST) {
288 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
289 return 0;
290 }
291
292 if (selector > DANETLS_SELECTOR_LAST) {
293 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
294 return 0;
295 }
296
297 if (mtype != DANETLS_MATCHING_FULL) {
298 md = tlsa_md_get(dane, mtype);
299 if (md == NULL) {
300 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
301 return 0;
302 }
303 }
304
305 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
306 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
307 return 0;
308 }
309 if (!data) {
310 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
311 return 0;
312 }
313
314 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
315 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
316 return -1;
317 }
318
319 t->usage = usage;
320 t->selector = selector;
321 t->mtype = mtype;
322 t->data = OPENSSL_malloc(ilen);
323 if (t->data == NULL) {
324 tlsa_free(t);
325 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
326 return -1;
327 }
328 memcpy(t->data, data, ilen);
329 t->dlen = ilen;
330
331 /* Validate and cache full certificate or public key */
332 if (mtype == DANETLS_MATCHING_FULL) {
333 const unsigned char *p = data;
334 X509 *cert = NULL;
335 EVP_PKEY *pkey = NULL;
336
337 switch (selector) {
338 case DANETLS_SELECTOR_CERT:
339 if (!d2i_X509(&cert, &p, dlen) || p < data ||
340 dlen != (size_t)(p - data)) {
341 tlsa_free(t);
342 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
343 return 0;
344 }
345 if (X509_get0_pubkey(cert) == NULL) {
346 tlsa_free(t);
347 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
348 return 0;
349 }
350
351 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
352 X509_free(cert);
353 break;
354 }
355
356 /*
357 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
358 * records that contain full certificates of trust-anchors that are
359 * not present in the wire chain. For usage PKIX-TA(0), we augment
360 * the chain with untrusted Full(0) certificates from DNS, in case
361 * they are missing from the chain.
362 */
363 if ((dane->certs == NULL &&
364 (dane->certs = sk_X509_new_null()) == NULL) ||
365 !sk_X509_push(dane->certs, cert)) {
366 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
367 X509_free(cert);
368 tlsa_free(t);
369 return -1;
370 }
371 break;
372
373 case DANETLS_SELECTOR_SPKI:
374 if (!d2i_PUBKEY(&pkey, &p, dlen) || p < data ||
375 dlen != (size_t)(p - data)) {
376 tlsa_free(t);
377 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
378 return 0;
379 }
380
381 /*
382 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
383 * records that contain full bare keys of trust-anchors that are
384 * not present in the wire chain.
385 */
386 if (usage == DANETLS_USAGE_DANE_TA)
387 t->spki = pkey;
388 else
389 EVP_PKEY_free(pkey);
390 break;
391 }
392 }
393
394 /*-
395 * Find the right insertion point for the new record.
396 *
397 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
398 * they can be processed first, as they require no chain building, and no
399 * expiration or hostname checks. Because DANE-EE(3) is numerically
400 * largest, this is accomplished via descending sort by "usage".
401 *
402 * We also sort in descending order by matching ordinal to simplify
403 * the implementation of digest agility in the verification code.
404 *
405 * The choice of order for the selector is not significant, so we
406 * use the same descending order for consistency.
407 */
408 num = sk_danetls_record_num(dane->trecs);
409 for (i = 0; i < num; ++i) {
410 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
411
412 if (rec->usage > usage)
413 continue;
414 if (rec->usage < usage)
415 break;
416 if (rec->selector > selector)
417 continue;
418 if (rec->selector < selector)
419 break;
420 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
421 continue;
422 break;
423 }
424
425 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
426 tlsa_free(t);
427 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
428 return -1;
429 }
430 dane->umask |= DANETLS_USAGE_BIT(usage);
431
432 return 1;
433 }
434
435 static void clear_ciphers(SSL *s)
436 {
437 /* clear the current cipher */
438 ssl_clear_cipher_ctx(s);
439 ssl_clear_hash_ctx(&s->read_hash);
440 ssl_clear_hash_ctx(&s->write_hash);
441 }
442
443 int SSL_clear(SSL *s)
444 {
445 if (s->method == NULL) {
446 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
447 return (0);
448 }
449
450 if (ssl_clear_bad_session(s)) {
451 SSL_SESSION_free(s->session);
452 s->session = NULL;
453 }
454
455 s->error = 0;
456 s->hit = 0;
457 s->shutdown = 0;
458
459 if (s->renegotiate) {
460 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
461 return 0;
462 }
463
464 ossl_statem_clear(s);
465
466 s->version = s->method->version;
467 s->client_version = s->version;
468 s->rwstate = SSL_NOTHING;
469
470 BUF_MEM_free(s->init_buf);
471 s->init_buf = NULL;
472 clear_ciphers(s);
473 s->first_packet = 0;
474
475 /* Reset DANE verification result state */
476 s->dane.mdpth = -1;
477 s->dane.pdpth = -1;
478 X509_free(s->dane.mcert);
479 s->dane.mcert = NULL;
480 s->dane.mtlsa = NULL;
481
482 /* Clear the verification result peername */
483 X509_VERIFY_PARAM_move_peername(s->param, NULL);
484
485 /*
486 * Check to see if we were changed into a different method, if so, revert
487 * back if we are not doing session-id reuse.
488 */
489 if (!ossl_statem_get_in_handshake(s) && (s->session == NULL)
490 && (s->method != s->ctx->method)) {
491 s->method->ssl_free(s);
492 s->method = s->ctx->method;
493 if (!s->method->ssl_new(s))
494 return (0);
495 } else
496 s->method->ssl_clear(s);
497
498 RECORD_LAYER_clear(&s->rlayer);
499
500 return (1);
501 }
502
503 /** Used to change an SSL_CTXs default SSL method type */
504 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
505 {
506 STACK_OF(SSL_CIPHER) *sk;
507
508 ctx->method = meth;
509
510 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
511 &(ctx->cipher_list_by_id),
512 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
513 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
514 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
515 return (0);
516 }
517 return (1);
518 }
519
520 SSL *SSL_new(SSL_CTX *ctx)
521 {
522 SSL *s;
523
524 if (ctx == NULL) {
525 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
526 return (NULL);
527 }
528 if (ctx->method == NULL) {
529 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
530 return (NULL);
531 }
532
533 s = OPENSSL_zalloc(sizeof(*s));
534 if (s == NULL)
535 goto err;
536
537 s->lock = CRYPTO_THREAD_lock_new();
538 if (s->lock == NULL) {
539 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
540 OPENSSL_free(s);
541 return NULL;
542 }
543
544 RECORD_LAYER_init(&s->rlayer, s);
545
546 s->options = ctx->options;
547 s->dane.flags = ctx->dane.flags;
548 s->min_proto_version = ctx->min_proto_version;
549 s->max_proto_version = ctx->max_proto_version;
550 s->mode = ctx->mode;
551 s->max_cert_list = ctx->max_cert_list;
552 s->references = 1;
553
554 /*
555 * Earlier library versions used to copy the pointer to the CERT, not
556 * its contents; only when setting new parameters for the per-SSL
557 * copy, ssl_cert_new would be called (and the direct reference to
558 * the per-SSL_CTX settings would be lost, but those still were
559 * indirectly accessed for various purposes, and for that reason they
560 * used to be known as s->ctx->default_cert). Now we don't look at the
561 * SSL_CTX's CERT after having duplicated it once.
562 */
563 s->cert = ssl_cert_dup(ctx->cert);
564 if (s->cert == NULL)
565 goto err;
566
567 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
568 s->msg_callback = ctx->msg_callback;
569 s->msg_callback_arg = ctx->msg_callback_arg;
570 s->verify_mode = ctx->verify_mode;
571 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
572 s->sid_ctx_length = ctx->sid_ctx_length;
573 OPENSSL_assert(s->sid_ctx_length <= sizeof s->sid_ctx);
574 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
575 s->verify_callback = ctx->default_verify_callback;
576 s->generate_session_id = ctx->generate_session_id;
577
578 s->param = X509_VERIFY_PARAM_new();
579 if (s->param == NULL)
580 goto err;
581 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
582 s->quiet_shutdown = ctx->quiet_shutdown;
583 s->max_send_fragment = ctx->max_send_fragment;
584 s->split_send_fragment = ctx->split_send_fragment;
585 s->max_pipelines = ctx->max_pipelines;
586 if (s->max_pipelines > 1)
587 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
588 if (ctx->default_read_buf_len > 0)
589 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
590
591 SSL_CTX_up_ref(ctx);
592 s->ctx = ctx;
593 s->tlsext_debug_cb = 0;
594 s->tlsext_debug_arg = NULL;
595 s->tlsext_ticket_expected = 0;
596 s->tlsext_status_type = ctx->tlsext_status_type;
597 s->tlsext_status_expected = 0;
598 s->tlsext_ocsp_ids = NULL;
599 s->tlsext_ocsp_exts = NULL;
600 s->tlsext_ocsp_resp = NULL;
601 s->tlsext_ocsp_resplen = -1;
602 SSL_CTX_up_ref(ctx);
603 s->initial_ctx = ctx;
604 #ifndef OPENSSL_NO_EC
605 if (ctx->tlsext_ecpointformatlist) {
606 s->tlsext_ecpointformatlist =
607 OPENSSL_memdup(ctx->tlsext_ecpointformatlist,
608 ctx->tlsext_ecpointformatlist_length);
609 if (!s->tlsext_ecpointformatlist)
610 goto err;
611 s->tlsext_ecpointformatlist_length =
612 ctx->tlsext_ecpointformatlist_length;
613 }
614 if (ctx->tlsext_ellipticcurvelist) {
615 s->tlsext_ellipticcurvelist =
616 OPENSSL_memdup(ctx->tlsext_ellipticcurvelist,
617 ctx->tlsext_ellipticcurvelist_length);
618 if (!s->tlsext_ellipticcurvelist)
619 goto err;
620 s->tlsext_ellipticcurvelist_length =
621 ctx->tlsext_ellipticcurvelist_length;
622 }
623 #endif
624 #ifndef OPENSSL_NO_NEXTPROTONEG
625 s->next_proto_negotiated = NULL;
626 #endif
627
628 if (s->ctx->alpn_client_proto_list) {
629 s->alpn_client_proto_list =
630 OPENSSL_malloc(s->ctx->alpn_client_proto_list_len);
631 if (s->alpn_client_proto_list == NULL)
632 goto err;
633 memcpy(s->alpn_client_proto_list, s->ctx->alpn_client_proto_list,
634 s->ctx->alpn_client_proto_list_len);
635 s->alpn_client_proto_list_len = s->ctx->alpn_client_proto_list_len;
636 }
637
638 s->verified_chain = NULL;
639 s->verify_result = X509_V_OK;
640
641 s->default_passwd_callback = ctx->default_passwd_callback;
642 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
643
644 s->method = ctx->method;
645
646 if (!s->method->ssl_new(s))
647 goto err;
648
649 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
650
651 if (!SSL_clear(s))
652 goto err;
653
654 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
655 goto err;
656
657 #ifndef OPENSSL_NO_PSK
658 s->psk_client_callback = ctx->psk_client_callback;
659 s->psk_server_callback = ctx->psk_server_callback;
660 #endif
661
662 s->job = NULL;
663
664 #ifndef OPENSSL_NO_CT
665 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
666 ctx->ct_validation_callback_arg))
667 goto err;
668 #endif
669
670 return s;
671 err:
672 SSL_free(s);
673 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
674 return NULL;
675 }
676
677 int SSL_is_dtls(const SSL *s)
678 {
679 return SSL_IS_DTLS(s) ? 1 : 0;
680 }
681
682 int SSL_up_ref(SSL *s)
683 {
684 int i;
685
686 if (CRYPTO_atomic_add(&s->references, 1, &i, s->lock) <= 0)
687 return 0;
688
689 REF_PRINT_COUNT("SSL", s);
690 REF_ASSERT_ISNT(i < 2);
691 return ((i > 1) ? 1 : 0);
692 }
693
694 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
695 unsigned int sid_ctx_len)
696 {
697 if (sid_ctx_len > sizeof ctx->sid_ctx) {
698 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
699 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
700 return 0;
701 }
702 ctx->sid_ctx_length = sid_ctx_len;
703 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
704
705 return 1;
706 }
707
708 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
709 unsigned int sid_ctx_len)
710 {
711 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
712 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
713 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
714 return 0;
715 }
716 ssl->sid_ctx_length = sid_ctx_len;
717 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
718
719 return 1;
720 }
721
722 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
723 {
724 CRYPTO_THREAD_write_lock(ctx->lock);
725 ctx->generate_session_id = cb;
726 CRYPTO_THREAD_unlock(ctx->lock);
727 return 1;
728 }
729
730 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
731 {
732 CRYPTO_THREAD_write_lock(ssl->lock);
733 ssl->generate_session_id = cb;
734 CRYPTO_THREAD_unlock(ssl->lock);
735 return 1;
736 }
737
738 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
739 unsigned int id_len)
740 {
741 /*
742 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
743 * we can "construct" a session to give us the desired check - ie. to
744 * find if there's a session in the hash table that would conflict with
745 * any new session built out of this id/id_len and the ssl_version in use
746 * by this SSL.
747 */
748 SSL_SESSION r, *p;
749
750 if (id_len > sizeof r.session_id)
751 return 0;
752
753 r.ssl_version = ssl->version;
754 r.session_id_length = id_len;
755 memcpy(r.session_id, id, id_len);
756
757 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
758 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
759 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
760 return (p != NULL);
761 }
762
763 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
764 {
765 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
766 }
767
768 int SSL_set_purpose(SSL *s, int purpose)
769 {
770 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
771 }
772
773 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
774 {
775 return X509_VERIFY_PARAM_set_trust(s->param, trust);
776 }
777
778 int SSL_set_trust(SSL *s, int trust)
779 {
780 return X509_VERIFY_PARAM_set_trust(s->param, trust);
781 }
782
783 int SSL_set1_host(SSL *s, const char *hostname)
784 {
785 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
786 }
787
788 int SSL_add1_host(SSL *s, const char *hostname)
789 {
790 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
791 }
792
793 void SSL_set_hostflags(SSL *s, unsigned int flags)
794 {
795 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
796 }
797
798 const char *SSL_get0_peername(SSL *s)
799 {
800 return X509_VERIFY_PARAM_get0_peername(s->param);
801 }
802
803 int SSL_CTX_dane_enable(SSL_CTX *ctx)
804 {
805 return dane_ctx_enable(&ctx->dane);
806 }
807
808 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
809 {
810 unsigned long orig = ctx->dane.flags;
811
812 ctx->dane.flags |= flags;
813 return orig;
814 }
815
816 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
817 {
818 unsigned long orig = ctx->dane.flags;
819
820 ctx->dane.flags &= ~flags;
821 return orig;
822 }
823
824 int SSL_dane_enable(SSL *s, const char *basedomain)
825 {
826 SSL_DANE *dane = &s->dane;
827
828 if (s->ctx->dane.mdmax == 0) {
829 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
830 return 0;
831 }
832 if (dane->trecs != NULL) {
833 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
834 return 0;
835 }
836
837 /*
838 * Default SNI name. This rejects empty names, while set1_host below
839 * accepts them and disables host name checks. To avoid side-effects with
840 * invalid input, set the SNI name first.
841 */
842 if (s->tlsext_hostname == NULL) {
843 if (!SSL_set_tlsext_host_name(s, basedomain)) {
844 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
845 return -1;
846 }
847 }
848
849 /* Primary RFC6125 reference identifier */
850 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
851 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
852 return -1;
853 }
854
855 dane->mdpth = -1;
856 dane->pdpth = -1;
857 dane->dctx = &s->ctx->dane;
858 dane->trecs = sk_danetls_record_new_null();
859
860 if (dane->trecs == NULL) {
861 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
862 return -1;
863 }
864 return 1;
865 }
866
867 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
868 {
869 unsigned long orig = ssl->dane.flags;
870
871 ssl->dane.flags |= flags;
872 return orig;
873 }
874
875 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
876 {
877 unsigned long orig = ssl->dane.flags;
878
879 ssl->dane.flags &= ~flags;
880 return orig;
881 }
882
883 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
884 {
885 SSL_DANE *dane = &s->dane;
886
887 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
888 return -1;
889 if (dane->mtlsa) {
890 if (mcert)
891 *mcert = dane->mcert;
892 if (mspki)
893 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
894 }
895 return dane->mdpth;
896 }
897
898 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
899 uint8_t *mtype, unsigned const char **data, size_t *dlen)
900 {
901 SSL_DANE *dane = &s->dane;
902
903 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
904 return -1;
905 if (dane->mtlsa) {
906 if (usage)
907 *usage = dane->mtlsa->usage;
908 if (selector)
909 *selector = dane->mtlsa->selector;
910 if (mtype)
911 *mtype = dane->mtlsa->mtype;
912 if (data)
913 *data = dane->mtlsa->data;
914 if (dlen)
915 *dlen = dane->mtlsa->dlen;
916 }
917 return dane->mdpth;
918 }
919
920 SSL_DANE *SSL_get0_dane(SSL *s)
921 {
922 return &s->dane;
923 }
924
925 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
926 uint8_t mtype, unsigned char *data, size_t dlen)
927 {
928 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
929 }
930
931 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
932 uint8_t ord)
933 {
934 return dane_mtype_set(&ctx->dane, md, mtype, ord);
935 }
936
937 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
938 {
939 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
940 }
941
942 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
943 {
944 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
945 }
946
947 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
948 {
949 return ctx->param;
950 }
951
952 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
953 {
954 return ssl->param;
955 }
956
957 void SSL_certs_clear(SSL *s)
958 {
959 ssl_cert_clear_certs(s->cert);
960 }
961
962 void SSL_free(SSL *s)
963 {
964 int i;
965
966 if (s == NULL)
967 return;
968
969 CRYPTO_atomic_add(&s->references, -1, &i, s->lock);
970 REF_PRINT_COUNT("SSL", s);
971 if (i > 0)
972 return;
973 REF_ASSERT_ISNT(i < 0);
974
975 X509_VERIFY_PARAM_free(s->param);
976 dane_final(&s->dane);
977 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
978
979 ssl_free_wbio_buffer(s);
980
981 BIO_free_all(s->wbio);
982 BIO_free_all(s->rbio);
983
984 BUF_MEM_free(s->init_buf);
985
986 /* add extra stuff */
987 sk_SSL_CIPHER_free(s->cipher_list);
988 sk_SSL_CIPHER_free(s->cipher_list_by_id);
989
990 /* Make the next call work :-) */
991 if (s->session != NULL) {
992 ssl_clear_bad_session(s);
993 SSL_SESSION_free(s->session);
994 }
995
996 clear_ciphers(s);
997
998 ssl_cert_free(s->cert);
999 /* Free up if allocated */
1000
1001 OPENSSL_free(s->tlsext_hostname);
1002 SSL_CTX_free(s->initial_ctx);
1003 #ifndef OPENSSL_NO_EC
1004 OPENSSL_free(s->tlsext_ecpointformatlist);
1005 OPENSSL_free(s->tlsext_ellipticcurvelist);
1006 #endif /* OPENSSL_NO_EC */
1007 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free);
1008 #ifndef OPENSSL_NO_OCSP
1009 sk_OCSP_RESPID_pop_free(s->tlsext_ocsp_ids, OCSP_RESPID_free);
1010 #endif
1011 #ifndef OPENSSL_NO_CT
1012 SCT_LIST_free(s->scts);
1013 OPENSSL_free(s->tlsext_scts);
1014 #endif
1015 OPENSSL_free(s->tlsext_ocsp_resp);
1016 OPENSSL_free(s->alpn_client_proto_list);
1017
1018 sk_X509_NAME_pop_free(s->client_CA, X509_NAME_free);
1019
1020 sk_X509_pop_free(s->verified_chain, X509_free);
1021
1022 if (s->method != NULL)
1023 s->method->ssl_free(s);
1024
1025 RECORD_LAYER_release(&s->rlayer);
1026
1027 SSL_CTX_free(s->ctx);
1028
1029 ASYNC_WAIT_CTX_free(s->waitctx);
1030
1031 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1032 OPENSSL_free(s->next_proto_negotiated);
1033 #endif
1034
1035 #ifndef OPENSSL_NO_SRTP
1036 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1037 #endif
1038
1039 CRYPTO_THREAD_lock_free(s->lock);
1040
1041 OPENSSL_free(s);
1042 }
1043
1044 void SSL_set0_rbio(SSL *s, BIO *rbio)
1045 {
1046 BIO_free_all(s->rbio);
1047 s->rbio = rbio;
1048 }
1049
1050 void SSL_set0_wbio(SSL *s, BIO *wbio)
1051 {
1052 /*
1053 * If the output buffering BIO is still in place, remove it
1054 */
1055 if (s->bbio != NULL)
1056 s->wbio = BIO_pop(s->wbio);
1057
1058 BIO_free_all(s->wbio);
1059 s->wbio = wbio;
1060
1061 /* Re-attach |bbio| to the new |wbio|. */
1062 if (s->bbio != NULL)
1063 s->wbio = BIO_push(s->bbio, s->wbio);
1064 }
1065
1066 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1067 {
1068 /*
1069 * For historical reasons, this function has many different cases in
1070 * ownership handling.
1071 */
1072
1073 /* If nothing has changed, do nothing */
1074 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1075 return;
1076
1077 /*
1078 * If the two arguments are equal then one fewer reference is granted by the
1079 * caller than we want to take
1080 */
1081 if (rbio != NULL && rbio == wbio)
1082 BIO_up_ref(rbio);
1083
1084 /*
1085 * If only the wbio is changed only adopt one reference.
1086 */
1087 if (rbio == SSL_get_rbio(s)) {
1088 SSL_set0_wbio(s, wbio);
1089 return;
1090 }
1091 /*
1092 * There is an asymmetry here for historical reasons. If only the rbio is
1093 * changed AND the rbio and wbio were originally different, then we only
1094 * adopt one reference.
1095 */
1096 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1097 SSL_set0_rbio(s, rbio);
1098 return;
1099 }
1100
1101 /* Otherwise, adopt both references. */
1102 SSL_set0_rbio(s, rbio);
1103 SSL_set0_wbio(s, wbio);
1104 }
1105
1106 BIO *SSL_get_rbio(const SSL *s)
1107 {
1108 return s->rbio;
1109 }
1110
1111 BIO *SSL_get_wbio(const SSL *s)
1112 {
1113 if (s->bbio != NULL) {
1114 /*
1115 * If |bbio| is active, the true caller-configured BIO is its
1116 * |next_bio|.
1117 */
1118 return BIO_next(s->bbio);
1119 }
1120 return s->wbio;
1121 }
1122
1123 int SSL_get_fd(const SSL *s)
1124 {
1125 return SSL_get_rfd(s);
1126 }
1127
1128 int SSL_get_rfd(const SSL *s)
1129 {
1130 int ret = -1;
1131 BIO *b, *r;
1132
1133 b = SSL_get_rbio(s);
1134 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1135 if (r != NULL)
1136 BIO_get_fd(r, &ret);
1137 return (ret);
1138 }
1139
1140 int SSL_get_wfd(const SSL *s)
1141 {
1142 int ret = -1;
1143 BIO *b, *r;
1144
1145 b = SSL_get_wbio(s);
1146 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1147 if (r != NULL)
1148 BIO_get_fd(r, &ret);
1149 return (ret);
1150 }
1151
1152 #ifndef OPENSSL_NO_SOCK
1153 int SSL_set_fd(SSL *s, int fd)
1154 {
1155 int ret = 0;
1156 BIO *bio = NULL;
1157
1158 bio = BIO_new(BIO_s_socket());
1159
1160 if (bio == NULL) {
1161 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1162 goto err;
1163 }
1164 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1165 SSL_set_bio(s, bio, bio);
1166 ret = 1;
1167 err:
1168 return (ret);
1169 }
1170
1171 int SSL_set_wfd(SSL *s, int fd)
1172 {
1173 BIO *rbio = SSL_get_rbio(s);
1174
1175 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1176 || (int)BIO_get_fd(rbio, NULL) != fd) {
1177 BIO *bio = BIO_new(BIO_s_socket());
1178
1179 if (bio == NULL) {
1180 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1181 return 0;
1182 }
1183 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1184 SSL_set0_wbio(s, bio);
1185 } else {
1186 BIO_up_ref(rbio);
1187 SSL_set0_wbio(s, rbio);
1188 }
1189 return 1;
1190 }
1191
1192 int SSL_set_rfd(SSL *s, int fd)
1193 {
1194 BIO *wbio = SSL_get_wbio(s);
1195
1196 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1197 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1198 BIO *bio = BIO_new(BIO_s_socket());
1199
1200 if (bio == NULL) {
1201 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1202 return 0;
1203 }
1204 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1205 SSL_set0_rbio(s, bio);
1206 } else {
1207 BIO_up_ref(wbio);
1208 SSL_set0_rbio(s, wbio);
1209 }
1210
1211 return 1;
1212 }
1213 #endif
1214
1215 /* return length of latest Finished message we sent, copy to 'buf' */
1216 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1217 {
1218 size_t ret = 0;
1219
1220 if (s->s3 != NULL) {
1221 ret = s->s3->tmp.finish_md_len;
1222 if (count > ret)
1223 count = ret;
1224 memcpy(buf, s->s3->tmp.finish_md, count);
1225 }
1226 return ret;
1227 }
1228
1229 /* return length of latest Finished message we expected, copy to 'buf' */
1230 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1231 {
1232 size_t ret = 0;
1233
1234 if (s->s3 != NULL) {
1235 ret = s->s3->tmp.peer_finish_md_len;
1236 if (count > ret)
1237 count = ret;
1238 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1239 }
1240 return ret;
1241 }
1242
1243 int SSL_get_verify_mode(const SSL *s)
1244 {
1245 return (s->verify_mode);
1246 }
1247
1248 int SSL_get_verify_depth(const SSL *s)
1249 {
1250 return X509_VERIFY_PARAM_get_depth(s->param);
1251 }
1252
1253 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1254 return (s->verify_callback);
1255 }
1256
1257 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1258 {
1259 return (ctx->verify_mode);
1260 }
1261
1262 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1263 {
1264 return X509_VERIFY_PARAM_get_depth(ctx->param);
1265 }
1266
1267 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1268 return (ctx->default_verify_callback);
1269 }
1270
1271 void SSL_set_verify(SSL *s, int mode,
1272 int (*callback) (int ok, X509_STORE_CTX *ctx))
1273 {
1274 s->verify_mode = mode;
1275 if (callback != NULL)
1276 s->verify_callback = callback;
1277 }
1278
1279 void SSL_set_verify_depth(SSL *s, int depth)
1280 {
1281 X509_VERIFY_PARAM_set_depth(s->param, depth);
1282 }
1283
1284 void SSL_set_read_ahead(SSL *s, int yes)
1285 {
1286 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1287 }
1288
1289 int SSL_get_read_ahead(const SSL *s)
1290 {
1291 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1292 }
1293
1294 int SSL_pending(const SSL *s)
1295 {
1296 /*
1297 * SSL_pending cannot work properly if read-ahead is enabled
1298 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1299 * impossible to fix since SSL_pending cannot report errors that may be
1300 * observed while scanning the new data. (Note that SSL_pending() is
1301 * often used as a boolean value, so we'd better not return -1.)
1302 */
1303 return (s->method->ssl_pending(s));
1304 }
1305
1306 int SSL_has_pending(const SSL *s)
1307 {
1308 /*
1309 * Similar to SSL_pending() but returns a 1 to indicate that we have
1310 * unprocessed data available or 0 otherwise (as opposed to the number of
1311 * bytes available). Unlike SSL_pending() this will take into account
1312 * read_ahead data. A 1 return simply indicates that we have unprocessed
1313 * data. That data may not result in any application data, or we may fail
1314 * to parse the records for some reason.
1315 */
1316 if (SSL_pending(s))
1317 return 1;
1318
1319 return RECORD_LAYER_read_pending(&s->rlayer);
1320 }
1321
1322 X509 *SSL_get_peer_certificate(const SSL *s)
1323 {
1324 X509 *r;
1325
1326 if ((s == NULL) || (s->session == NULL))
1327 r = NULL;
1328 else
1329 r = s->session->peer;
1330
1331 if (r == NULL)
1332 return (r);
1333
1334 X509_up_ref(r);
1335
1336 return (r);
1337 }
1338
1339 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1340 {
1341 STACK_OF(X509) *r;
1342
1343 if ((s == NULL) || (s->session == NULL))
1344 r = NULL;
1345 else
1346 r = s->session->peer_chain;
1347
1348 /*
1349 * If we are a client, cert_chain includes the peer's own certificate; if
1350 * we are a server, it does not.
1351 */
1352
1353 return (r);
1354 }
1355
1356 /*
1357 * Now in theory, since the calling process own 't' it should be safe to
1358 * modify. We need to be able to read f without being hassled
1359 */
1360 int SSL_copy_session_id(SSL *t, const SSL *f)
1361 {
1362 int i;
1363 /* Do we need to to SSL locking? */
1364 if (!SSL_set_session(t, SSL_get_session(f))) {
1365 return 0;
1366 }
1367
1368 /*
1369 * what if we are setup for one protocol version but want to talk another
1370 */
1371 if (t->method != f->method) {
1372 t->method->ssl_free(t);
1373 t->method = f->method;
1374 if (t->method->ssl_new(t) == 0)
1375 return 0;
1376 }
1377
1378 CRYPTO_atomic_add(&f->cert->references, 1, &i, f->cert->lock);
1379 ssl_cert_free(t->cert);
1380 t->cert = f->cert;
1381 if (!SSL_set_session_id_context(t, f->sid_ctx, f->sid_ctx_length)) {
1382 return 0;
1383 }
1384
1385 return 1;
1386 }
1387
1388 /* Fix this so it checks all the valid key/cert options */
1389 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1390 {
1391 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1392 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1393 return (0);
1394 }
1395 if (ctx->cert->key->privatekey == NULL) {
1396 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1397 return (0);
1398 }
1399 return (X509_check_private_key
1400 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1401 }
1402
1403 /* Fix this function so that it takes an optional type parameter */
1404 int SSL_check_private_key(const SSL *ssl)
1405 {
1406 if (ssl == NULL) {
1407 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1408 return (0);
1409 }
1410 if (ssl->cert->key->x509 == NULL) {
1411 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1412 return (0);
1413 }
1414 if (ssl->cert->key->privatekey == NULL) {
1415 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1416 return (0);
1417 }
1418 return (X509_check_private_key(ssl->cert->key->x509,
1419 ssl->cert->key->privatekey));
1420 }
1421
1422 int SSL_waiting_for_async(SSL *s)
1423 {
1424 if (s->job)
1425 return 1;
1426
1427 return 0;
1428 }
1429
1430 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1431 {
1432 ASYNC_WAIT_CTX *ctx = s->waitctx;
1433
1434 if (ctx == NULL)
1435 return 0;
1436 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1437 }
1438
1439 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1440 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1441 {
1442 ASYNC_WAIT_CTX *ctx = s->waitctx;
1443
1444 if (ctx == NULL)
1445 return 0;
1446 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1447 numdelfds);
1448 }
1449
1450 int SSL_accept(SSL *s)
1451 {
1452 if (s->handshake_func == NULL) {
1453 /* Not properly initialized yet */
1454 SSL_set_accept_state(s);
1455 }
1456
1457 return SSL_do_handshake(s);
1458 }
1459
1460 int SSL_connect(SSL *s)
1461 {
1462 if (s->handshake_func == NULL) {
1463 /* Not properly initialized yet */
1464 SSL_set_connect_state(s);
1465 }
1466
1467 return SSL_do_handshake(s);
1468 }
1469
1470 long SSL_get_default_timeout(const SSL *s)
1471 {
1472 return (s->method->get_timeout());
1473 }
1474
1475 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1476 int (*func) (void *))
1477 {
1478 int ret;
1479 if (s->waitctx == NULL) {
1480 s->waitctx = ASYNC_WAIT_CTX_new();
1481 if (s->waitctx == NULL)
1482 return -1;
1483 }
1484 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1485 sizeof(struct ssl_async_args))) {
1486 case ASYNC_ERR:
1487 s->rwstate = SSL_NOTHING;
1488 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1489 return -1;
1490 case ASYNC_PAUSE:
1491 s->rwstate = SSL_ASYNC_PAUSED;
1492 return -1;
1493 case ASYNC_NO_JOBS:
1494 s->rwstate = SSL_ASYNC_NO_JOBS;
1495 return -1;
1496 case ASYNC_FINISH:
1497 s->job = NULL;
1498 return ret;
1499 default:
1500 s->rwstate = SSL_NOTHING;
1501 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1502 /* Shouldn't happen */
1503 return -1;
1504 }
1505 }
1506
1507 static int ssl_io_intern(void *vargs)
1508 {
1509 struct ssl_async_args *args;
1510 SSL *s;
1511 void *buf;
1512 int num;
1513
1514 args = (struct ssl_async_args *)vargs;
1515 s = args->s;
1516 buf = args->buf;
1517 num = args->num;
1518 switch (args->type) {
1519 case READFUNC:
1520 return args->f.func_read(s, buf, num);
1521 case WRITEFUNC:
1522 return args->f.func_write(s, buf, num);
1523 case OTHERFUNC:
1524 return args->f.func_other(s);
1525 }
1526 return -1;
1527 }
1528
1529 int SSL_read(SSL *s, void *buf, int num)
1530 {
1531 if (s->handshake_func == NULL) {
1532 SSLerr(SSL_F_SSL_READ, SSL_R_UNINITIALIZED);
1533 return -1;
1534 }
1535
1536 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1537 s->rwstate = SSL_NOTHING;
1538 return (0);
1539 }
1540
1541 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1542 struct ssl_async_args args;
1543
1544 args.s = s;
1545 args.buf = buf;
1546 args.num = num;
1547 args.type = READFUNC;
1548 args.f.func_read = s->method->ssl_read;
1549
1550 return ssl_start_async_job(s, &args, ssl_io_intern);
1551 } else {
1552 return s->method->ssl_read(s, buf, num);
1553 }
1554 }
1555
1556 int SSL_peek(SSL *s, void *buf, int num)
1557 {
1558 if (s->handshake_func == NULL) {
1559 SSLerr(SSL_F_SSL_PEEK, SSL_R_UNINITIALIZED);
1560 return -1;
1561 }
1562
1563 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1564 return (0);
1565 }
1566 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1567 struct ssl_async_args args;
1568
1569 args.s = s;
1570 args.buf = buf;
1571 args.num = num;
1572 args.type = READFUNC;
1573 args.f.func_read = s->method->ssl_peek;
1574
1575 return ssl_start_async_job(s, &args, ssl_io_intern);
1576 } else {
1577 return s->method->ssl_peek(s, buf, num);
1578 }
1579 }
1580
1581 int SSL_write(SSL *s, const void *buf, int num)
1582 {
1583 if (s->handshake_func == NULL) {
1584 SSLerr(SSL_F_SSL_WRITE, SSL_R_UNINITIALIZED);
1585 return -1;
1586 }
1587
1588 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1589 s->rwstate = SSL_NOTHING;
1590 SSLerr(SSL_F_SSL_WRITE, SSL_R_PROTOCOL_IS_SHUTDOWN);
1591 return (-1);
1592 }
1593
1594 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1595 struct ssl_async_args args;
1596
1597 args.s = s;
1598 args.buf = (void *)buf;
1599 args.num = num;
1600 args.type = WRITEFUNC;
1601 args.f.func_write = s->method->ssl_write;
1602
1603 return ssl_start_async_job(s, &args, ssl_io_intern);
1604 } else {
1605 return s->method->ssl_write(s, buf, num);
1606 }
1607 }
1608
1609 int SSL_shutdown(SSL *s)
1610 {
1611 /*
1612 * Note that this function behaves differently from what one might
1613 * expect. Return values are 0 for no success (yet), 1 for success; but
1614 * calling it once is usually not enough, even if blocking I/O is used
1615 * (see ssl3_shutdown).
1616 */
1617
1618 if (s->handshake_func == NULL) {
1619 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1620 return -1;
1621 }
1622
1623 if (!SSL_in_init(s)) {
1624 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1625 struct ssl_async_args args;
1626
1627 args.s = s;
1628 args.type = OTHERFUNC;
1629 args.f.func_other = s->method->ssl_shutdown;
1630
1631 return ssl_start_async_job(s, &args, ssl_io_intern);
1632 } else {
1633 return s->method->ssl_shutdown(s);
1634 }
1635 } else {
1636 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1637 return -1;
1638 }
1639 }
1640
1641 int SSL_renegotiate(SSL *s)
1642 {
1643 if (s->renegotiate == 0)
1644 s->renegotiate = 1;
1645
1646 s->new_session = 1;
1647
1648 return (s->method->ssl_renegotiate(s));
1649 }
1650
1651 int SSL_renegotiate_abbreviated(SSL *s)
1652 {
1653 if (s->renegotiate == 0)
1654 s->renegotiate = 1;
1655
1656 s->new_session = 0;
1657
1658 return (s->method->ssl_renegotiate(s));
1659 }
1660
1661 int SSL_renegotiate_pending(SSL *s)
1662 {
1663 /*
1664 * becomes true when negotiation is requested; false again once a
1665 * handshake has finished
1666 */
1667 return (s->renegotiate != 0);
1668 }
1669
1670 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
1671 {
1672 long l;
1673
1674 switch (cmd) {
1675 case SSL_CTRL_GET_READ_AHEAD:
1676 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
1677 case SSL_CTRL_SET_READ_AHEAD:
1678 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
1679 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
1680 return (l);
1681
1682 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1683 s->msg_callback_arg = parg;
1684 return 1;
1685
1686 case SSL_CTRL_MODE:
1687 return (s->mode |= larg);
1688 case SSL_CTRL_CLEAR_MODE:
1689 return (s->mode &= ~larg);
1690 case SSL_CTRL_GET_MAX_CERT_LIST:
1691 return (s->max_cert_list);
1692 case SSL_CTRL_SET_MAX_CERT_LIST:
1693 l = s->max_cert_list;
1694 s->max_cert_list = larg;
1695 return (l);
1696 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1697 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1698 return 0;
1699 s->max_send_fragment = larg;
1700 if (s->max_send_fragment < s->split_send_fragment)
1701 s->split_send_fragment = s->max_send_fragment;
1702 return 1;
1703 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
1704 if ((unsigned int)larg > s->max_send_fragment || larg == 0)
1705 return 0;
1706 s->split_send_fragment = larg;
1707 return 1;
1708 case SSL_CTRL_SET_MAX_PIPELINES:
1709 if (larg < 1 || larg > SSL_MAX_PIPELINES)
1710 return 0;
1711 s->max_pipelines = larg;
1712 if (larg > 1)
1713 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
1714 return 1;
1715 case SSL_CTRL_GET_RI_SUPPORT:
1716 if (s->s3)
1717 return s->s3->send_connection_binding;
1718 else
1719 return 0;
1720 case SSL_CTRL_CERT_FLAGS:
1721 return (s->cert->cert_flags |= larg);
1722 case SSL_CTRL_CLEAR_CERT_FLAGS:
1723 return (s->cert->cert_flags &= ~larg);
1724
1725 case SSL_CTRL_GET_RAW_CIPHERLIST:
1726 if (parg) {
1727 if (s->s3->tmp.ciphers_raw == NULL)
1728 return 0;
1729 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
1730 return (int)s->s3->tmp.ciphers_rawlen;
1731 } else {
1732 return TLS_CIPHER_LEN;
1733 }
1734 case SSL_CTRL_GET_EXTMS_SUPPORT:
1735 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
1736 return -1;
1737 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
1738 return 1;
1739 else
1740 return 0;
1741 case SSL_CTRL_SET_MIN_PROTO_VERSION:
1742 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
1743 &s->min_proto_version);
1744 case SSL_CTRL_SET_MAX_PROTO_VERSION:
1745 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
1746 &s->max_proto_version);
1747 default:
1748 return (s->method->ssl_ctrl(s, cmd, larg, parg));
1749 }
1750 }
1751
1752 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
1753 {
1754 switch (cmd) {
1755 case SSL_CTRL_SET_MSG_CALLBACK:
1756 s->msg_callback = (void (*)
1757 (int write_p, int version, int content_type,
1758 const void *buf, size_t len, SSL *ssl,
1759 void *arg))(fp);
1760 return 1;
1761
1762 default:
1763 return (s->method->ssl_callback_ctrl(s, cmd, fp));
1764 }
1765 }
1766
1767 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
1768 {
1769 return ctx->sessions;
1770 }
1771
1772 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
1773 {
1774 long l;
1775 /* For some cases with ctx == NULL perform syntax checks */
1776 if (ctx == NULL) {
1777 switch (cmd) {
1778 #ifndef OPENSSL_NO_EC
1779 case SSL_CTRL_SET_CURVES_LIST:
1780 return tls1_set_curves_list(NULL, NULL, parg);
1781 #endif
1782 case SSL_CTRL_SET_SIGALGS_LIST:
1783 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
1784 return tls1_set_sigalgs_list(NULL, parg, 0);
1785 default:
1786 return 0;
1787 }
1788 }
1789
1790 switch (cmd) {
1791 case SSL_CTRL_GET_READ_AHEAD:
1792 return (ctx->read_ahead);
1793 case SSL_CTRL_SET_READ_AHEAD:
1794 l = ctx->read_ahead;
1795 ctx->read_ahead = larg;
1796 return (l);
1797
1798 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1799 ctx->msg_callback_arg = parg;
1800 return 1;
1801
1802 case SSL_CTRL_GET_MAX_CERT_LIST:
1803 return (ctx->max_cert_list);
1804 case SSL_CTRL_SET_MAX_CERT_LIST:
1805 l = ctx->max_cert_list;
1806 ctx->max_cert_list = larg;
1807 return (l);
1808
1809 case SSL_CTRL_SET_SESS_CACHE_SIZE:
1810 l = ctx->session_cache_size;
1811 ctx->session_cache_size = larg;
1812 return (l);
1813 case SSL_CTRL_GET_SESS_CACHE_SIZE:
1814 return (ctx->session_cache_size);
1815 case SSL_CTRL_SET_SESS_CACHE_MODE:
1816 l = ctx->session_cache_mode;
1817 ctx->session_cache_mode = larg;
1818 return (l);
1819 case SSL_CTRL_GET_SESS_CACHE_MODE:
1820 return (ctx->session_cache_mode);
1821
1822 case SSL_CTRL_SESS_NUMBER:
1823 return (lh_SSL_SESSION_num_items(ctx->sessions));
1824 case SSL_CTRL_SESS_CONNECT:
1825 return (ctx->stats.sess_connect);
1826 case SSL_CTRL_SESS_CONNECT_GOOD:
1827 return (ctx->stats.sess_connect_good);
1828 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
1829 return (ctx->stats.sess_connect_renegotiate);
1830 case SSL_CTRL_SESS_ACCEPT:
1831 return (ctx->stats.sess_accept);
1832 case SSL_CTRL_SESS_ACCEPT_GOOD:
1833 return (ctx->stats.sess_accept_good);
1834 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
1835 return (ctx->stats.sess_accept_renegotiate);
1836 case SSL_CTRL_SESS_HIT:
1837 return (ctx->stats.sess_hit);
1838 case SSL_CTRL_SESS_CB_HIT:
1839 return (ctx->stats.sess_cb_hit);
1840 case SSL_CTRL_SESS_MISSES:
1841 return (ctx->stats.sess_miss);
1842 case SSL_CTRL_SESS_TIMEOUTS:
1843 return (ctx->stats.sess_timeout);
1844 case SSL_CTRL_SESS_CACHE_FULL:
1845 return (ctx->stats.sess_cache_full);
1846 case SSL_CTRL_MODE:
1847 return (ctx->mode |= larg);
1848 case SSL_CTRL_CLEAR_MODE:
1849 return (ctx->mode &= ~larg);
1850 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1851 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1852 return 0;
1853 ctx->max_send_fragment = larg;
1854 if (ctx->max_send_fragment < ctx->split_send_fragment)
1855 ctx->split_send_fragment = ctx->max_send_fragment;
1856 return 1;
1857 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
1858 if ((unsigned int)larg > ctx->max_send_fragment || larg == 0)
1859 return 0;
1860 ctx->split_send_fragment = larg;
1861 return 1;
1862 case SSL_CTRL_SET_MAX_PIPELINES:
1863 if (larg < 1 || larg > SSL_MAX_PIPELINES)
1864 return 0;
1865 ctx->max_pipelines = larg;
1866 return 1;
1867 case SSL_CTRL_CERT_FLAGS:
1868 return (ctx->cert->cert_flags |= larg);
1869 case SSL_CTRL_CLEAR_CERT_FLAGS:
1870 return (ctx->cert->cert_flags &= ~larg);
1871 case SSL_CTRL_SET_MIN_PROTO_VERSION:
1872 return ssl_set_version_bound(ctx->method->version, (int)larg,
1873 &ctx->min_proto_version);
1874 case SSL_CTRL_SET_MAX_PROTO_VERSION:
1875 return ssl_set_version_bound(ctx->method->version, (int)larg,
1876 &ctx->max_proto_version);
1877 default:
1878 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
1879 }
1880 }
1881
1882 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
1883 {
1884 switch (cmd) {
1885 case SSL_CTRL_SET_MSG_CALLBACK:
1886 ctx->msg_callback = (void (*)
1887 (int write_p, int version, int content_type,
1888 const void *buf, size_t len, SSL *ssl,
1889 void *arg))(fp);
1890 return 1;
1891
1892 default:
1893 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
1894 }
1895 }
1896
1897 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
1898 {
1899 if (a->id > b->id)
1900 return 1;
1901 if (a->id < b->id)
1902 return -1;
1903 return 0;
1904 }
1905
1906 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
1907 const SSL_CIPHER *const *bp)
1908 {
1909 if ((*ap)->id > (*bp)->id)
1910 return 1;
1911 if ((*ap)->id < (*bp)->id)
1912 return -1;
1913 return 0;
1914 }
1915
1916 /** return a STACK of the ciphers available for the SSL and in order of
1917 * preference */
1918 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
1919 {
1920 if (s != NULL) {
1921 if (s->cipher_list != NULL) {
1922 return (s->cipher_list);
1923 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
1924 return (s->ctx->cipher_list);
1925 }
1926 }
1927 return (NULL);
1928 }
1929
1930 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
1931 {
1932 if ((s == NULL) || (s->session == NULL) || !s->server)
1933 return NULL;
1934 return s->session->ciphers;
1935 }
1936
1937 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
1938 {
1939 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
1940 int i;
1941 ciphers = SSL_get_ciphers(s);
1942 if (!ciphers)
1943 return NULL;
1944 ssl_set_client_disabled(s);
1945 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
1946 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
1947 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED)) {
1948 if (!sk)
1949 sk = sk_SSL_CIPHER_new_null();
1950 if (!sk)
1951 return NULL;
1952 if (!sk_SSL_CIPHER_push(sk, c)) {
1953 sk_SSL_CIPHER_free(sk);
1954 return NULL;
1955 }
1956 }
1957 }
1958 return sk;
1959 }
1960
1961 /** return a STACK of the ciphers available for the SSL and in order of
1962 * algorithm id */
1963 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
1964 {
1965 if (s != NULL) {
1966 if (s->cipher_list_by_id != NULL) {
1967 return (s->cipher_list_by_id);
1968 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
1969 return (s->ctx->cipher_list_by_id);
1970 }
1971 }
1972 return (NULL);
1973 }
1974
1975 /** The old interface to get the same thing as SSL_get_ciphers() */
1976 const char *SSL_get_cipher_list(const SSL *s, int n)
1977 {
1978 const SSL_CIPHER *c;
1979 STACK_OF(SSL_CIPHER) *sk;
1980
1981 if (s == NULL)
1982 return (NULL);
1983 sk = SSL_get_ciphers(s);
1984 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
1985 return (NULL);
1986 c = sk_SSL_CIPHER_value(sk, n);
1987 if (c == NULL)
1988 return (NULL);
1989 return (c->name);
1990 }
1991
1992 /** return a STACK of the ciphers available for the SSL_CTX and in order of
1993 * preference */
1994 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
1995 {
1996 if (ctx != NULL)
1997 return ctx->cipher_list;
1998 return NULL;
1999 }
2000
2001 /** specify the ciphers to be used by default by the SSL_CTX */
2002 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2003 {
2004 STACK_OF(SSL_CIPHER) *sk;
2005
2006 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
2007 &ctx->cipher_list_by_id, str, ctx->cert);
2008 /*
2009 * ssl_create_cipher_list may return an empty stack if it was unable to
2010 * find a cipher matching the given rule string (for example if the rule
2011 * string specifies a cipher which has been disabled). This is not an
2012 * error as far as ssl_create_cipher_list is concerned, and hence
2013 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2014 */
2015 if (sk == NULL)
2016 return 0;
2017 else if (sk_SSL_CIPHER_num(sk) == 0) {
2018 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2019 return 0;
2020 }
2021 return 1;
2022 }
2023
2024 /** specify the ciphers to be used by the SSL */
2025 int SSL_set_cipher_list(SSL *s, const char *str)
2026 {
2027 STACK_OF(SSL_CIPHER) *sk;
2028
2029 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
2030 &s->cipher_list_by_id, str, s->cert);
2031 /* see comment in SSL_CTX_set_cipher_list */
2032 if (sk == NULL)
2033 return 0;
2034 else if (sk_SSL_CIPHER_num(sk) == 0) {
2035 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2036 return 0;
2037 }
2038 return 1;
2039 }
2040
2041 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
2042 {
2043 char *p;
2044 STACK_OF(SSL_CIPHER) *sk;
2045 const SSL_CIPHER *c;
2046 int i;
2047
2048 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
2049 return (NULL);
2050
2051 p = buf;
2052 sk = s->session->ciphers;
2053
2054 if (sk_SSL_CIPHER_num(sk) == 0)
2055 return NULL;
2056
2057 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2058 int n;
2059
2060 c = sk_SSL_CIPHER_value(sk, i);
2061 n = strlen(c->name);
2062 if (n + 1 > len) {
2063 if (p != buf)
2064 --p;
2065 *p = '\0';
2066 return buf;
2067 }
2068 memcpy(p, c->name, n + 1);
2069 p += n;
2070 *(p++) = ':';
2071 len -= n + 1;
2072 }
2073 p[-1] = '\0';
2074 return (buf);
2075 }
2076
2077 /** return a servername extension value if provided in Client Hello, or NULL.
2078 * So far, only host_name types are defined (RFC 3546).
2079 */
2080
2081 const char *SSL_get_servername(const SSL *s, const int type)
2082 {
2083 if (type != TLSEXT_NAMETYPE_host_name)
2084 return NULL;
2085
2086 return s->session && !s->tlsext_hostname ?
2087 s->session->tlsext_hostname : s->tlsext_hostname;
2088 }
2089
2090 int SSL_get_servername_type(const SSL *s)
2091 {
2092 if (s->session
2093 && (!s->tlsext_hostname ? s->session->
2094 tlsext_hostname : s->tlsext_hostname))
2095 return TLSEXT_NAMETYPE_host_name;
2096 return -1;
2097 }
2098
2099 /*
2100 * SSL_select_next_proto implements the standard protocol selection. It is
2101 * expected that this function is called from the callback set by
2102 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2103 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2104 * not included in the length. A byte string of length 0 is invalid. No byte
2105 * string may be truncated. The current, but experimental algorithm for
2106 * selecting the protocol is: 1) If the server doesn't support NPN then this
2107 * is indicated to the callback. In this case, the client application has to
2108 * abort the connection or have a default application level protocol. 2) If
2109 * the server supports NPN, but advertises an empty list then the client
2110 * selects the first protocol in its list, but indicates via the API that this
2111 * fallback case was enacted. 3) Otherwise, the client finds the first
2112 * protocol in the server's list that it supports and selects this protocol.
2113 * This is because it's assumed that the server has better information about
2114 * which protocol a client should use. 4) If the client doesn't support any
2115 * of the server's advertised protocols, then this is treated the same as
2116 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2117 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2118 */
2119 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2120 const unsigned char *server,
2121 unsigned int server_len,
2122 const unsigned char *client, unsigned int client_len)
2123 {
2124 unsigned int i, j;
2125 const unsigned char *result;
2126 int status = OPENSSL_NPN_UNSUPPORTED;
2127
2128 /*
2129 * For each protocol in server preference order, see if we support it.
2130 */
2131 for (i = 0; i < server_len;) {
2132 for (j = 0; j < client_len;) {
2133 if (server[i] == client[j] &&
2134 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2135 /* We found a match */
2136 result = &server[i];
2137 status = OPENSSL_NPN_NEGOTIATED;
2138 goto found;
2139 }
2140 j += client[j];
2141 j++;
2142 }
2143 i += server[i];
2144 i++;
2145 }
2146
2147 /* There's no overlap between our protocols and the server's list. */
2148 result = client;
2149 status = OPENSSL_NPN_NO_OVERLAP;
2150
2151 found:
2152 *out = (unsigned char *)result + 1;
2153 *outlen = result[0];
2154 return status;
2155 }
2156
2157 #ifndef OPENSSL_NO_NEXTPROTONEG
2158 /*
2159 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2160 * client's requested protocol for this connection and returns 0. If the
2161 * client didn't request any protocol, then *data is set to NULL. Note that
2162 * the client can request any protocol it chooses. The value returned from
2163 * this function need not be a member of the list of supported protocols
2164 * provided by the callback.
2165 */
2166 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2167 unsigned *len)
2168 {
2169 *data = s->next_proto_negotiated;
2170 if (!*data) {
2171 *len = 0;
2172 } else {
2173 *len = s->next_proto_negotiated_len;
2174 }
2175 }
2176
2177 /*
2178 * SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when
2179 * a TLS server needs a list of supported protocols for Next Protocol
2180 * Negotiation. The returned list must be in wire format. The list is
2181 * returned by setting |out| to point to it and |outlen| to its length. This
2182 * memory will not be modified, but one should assume that the SSL* keeps a
2183 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2184 * wishes to advertise. Otherwise, no such extension will be included in the
2185 * ServerHello.
2186 */
2187 void SSL_CTX_set_next_protos_advertised_cb(SSL_CTX *ctx,
2188 int (*cb) (SSL *ssl,
2189 const unsigned char
2190 **out,
2191 unsigned int *outlen,
2192 void *arg), void *arg)
2193 {
2194 ctx->next_protos_advertised_cb = cb;
2195 ctx->next_protos_advertised_cb_arg = arg;
2196 }
2197
2198 /*
2199 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2200 * client needs to select a protocol from the server's provided list. |out|
2201 * must be set to point to the selected protocol (which may be within |in|).
2202 * The length of the protocol name must be written into |outlen|. The
2203 * server's advertised protocols are provided in |in| and |inlen|. The
2204 * callback can assume that |in| is syntactically valid. The client must
2205 * select a protocol. It is fatal to the connection if this callback returns
2206 * a value other than SSL_TLSEXT_ERR_OK.
2207 */
2208 void SSL_CTX_set_next_proto_select_cb(SSL_CTX *ctx,
2209 int (*cb) (SSL *s, unsigned char **out,
2210 unsigned char *outlen,
2211 const unsigned char *in,
2212 unsigned int inlen,
2213 void *arg), void *arg)
2214 {
2215 ctx->next_proto_select_cb = cb;
2216 ctx->next_proto_select_cb_arg = arg;
2217 }
2218 #endif
2219
2220 /*
2221 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2222 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2223 * length-prefixed strings). Returns 0 on success.
2224 */
2225 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2226 unsigned int protos_len)
2227 {
2228 OPENSSL_free(ctx->alpn_client_proto_list);
2229 ctx->alpn_client_proto_list = OPENSSL_memdup(protos, protos_len);
2230 if (ctx->alpn_client_proto_list == NULL) {
2231 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2232 return 1;
2233 }
2234 ctx->alpn_client_proto_list_len = protos_len;
2235
2236 return 0;
2237 }
2238
2239 /*
2240 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2241 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2242 * length-prefixed strings). Returns 0 on success.
2243 */
2244 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2245 unsigned int protos_len)
2246 {
2247 OPENSSL_free(ssl->alpn_client_proto_list);
2248 ssl->alpn_client_proto_list = OPENSSL_memdup(protos, protos_len);
2249 if (ssl->alpn_client_proto_list == NULL) {
2250 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2251 return 1;
2252 }
2253 ssl->alpn_client_proto_list_len = protos_len;
2254
2255 return 0;
2256 }
2257
2258 /*
2259 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2260 * called during ClientHello processing in order to select an ALPN protocol
2261 * from the client's list of offered protocols.
2262 */
2263 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2264 int (*cb) (SSL *ssl,
2265 const unsigned char **out,
2266 unsigned char *outlen,
2267 const unsigned char *in,
2268 unsigned int inlen,
2269 void *arg), void *arg)
2270 {
2271 ctx->alpn_select_cb = cb;
2272 ctx->alpn_select_cb_arg = arg;
2273 }
2274
2275 /*
2276 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from
2277 * |ssl|. On return it sets |*data| to point to |*len| bytes of protocol name
2278 * (not including the leading length-prefix byte). If the server didn't
2279 * respond with a negotiated protocol then |*len| will be zero.
2280 */
2281 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2282 unsigned int *len)
2283 {
2284 *data = NULL;
2285 if (ssl->s3)
2286 *data = ssl->s3->alpn_selected;
2287 if (*data == NULL)
2288 *len = 0;
2289 else
2290 *len = ssl->s3->alpn_selected_len;
2291 }
2292
2293 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2294 const char *label, size_t llen,
2295 const unsigned char *p, size_t plen,
2296 int use_context)
2297 {
2298 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2299 return -1;
2300
2301 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2302 llen, p, plen,
2303 use_context);
2304 }
2305
2306 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2307 {
2308 unsigned long l;
2309
2310 l = (unsigned long)
2311 ((unsigned int)a->session_id[0]) |
2312 ((unsigned int)a->session_id[1] << 8L) |
2313 ((unsigned long)a->session_id[2] << 16L) |
2314 ((unsigned long)a->session_id[3] << 24L);
2315 return (l);
2316 }
2317
2318 /*
2319 * NB: If this function (or indeed the hash function which uses a sort of
2320 * coarser function than this one) is changed, ensure
2321 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2322 * being able to construct an SSL_SESSION that will collide with any existing
2323 * session with a matching session ID.
2324 */
2325 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2326 {
2327 if (a->ssl_version != b->ssl_version)
2328 return (1);
2329 if (a->session_id_length != b->session_id_length)
2330 return (1);
2331 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2332 }
2333
2334 /*
2335 * These wrapper functions should remain rather than redeclaring
2336 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2337 * variable. The reason is that the functions aren't static, they're exposed
2338 * via ssl.h.
2339 */
2340
2341 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2342 {
2343 SSL_CTX *ret = NULL;
2344
2345 if (meth == NULL) {
2346 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2347 return (NULL);
2348 }
2349
2350 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
2351 return NULL;
2352
2353 if (FIPS_mode() && (meth->version < TLS1_VERSION)) {
2354 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_AT_LEAST_TLS_1_0_NEEDED_IN_FIPS_MODE);
2355 return NULL;
2356 }
2357
2358 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2359 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2360 goto err;
2361 }
2362 ret = OPENSSL_zalloc(sizeof(*ret));
2363 if (ret == NULL)
2364 goto err;
2365
2366 ret->method = meth;
2367 ret->min_proto_version = 0;
2368 ret->max_proto_version = 0;
2369 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2370 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2371 /* We take the system default. */
2372 ret->session_timeout = meth->get_timeout();
2373 ret->references = 1;
2374 ret->lock = CRYPTO_THREAD_lock_new();
2375 if (ret->lock == NULL) {
2376 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2377 OPENSSL_free(ret);
2378 return NULL;
2379 }
2380 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2381 ret->verify_mode = SSL_VERIFY_NONE;
2382 if ((ret->cert = ssl_cert_new()) == NULL)
2383 goto err;
2384
2385 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2386 if (ret->sessions == NULL)
2387 goto err;
2388 ret->cert_store = X509_STORE_new();
2389 if (ret->cert_store == NULL)
2390 goto err;
2391 #ifndef OPENSSL_NO_CT
2392 ret->ctlog_store = CTLOG_STORE_new();
2393 if (ret->ctlog_store == NULL)
2394 goto err;
2395 #endif
2396 if (!ssl_create_cipher_list(ret->method,
2397 &ret->cipher_list, &ret->cipher_list_by_id,
2398 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2399 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2400 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2401 goto err2;
2402 }
2403
2404 ret->param = X509_VERIFY_PARAM_new();
2405 if (ret->param == NULL)
2406 goto err;
2407
2408 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2409 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2410 goto err2;
2411 }
2412 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2413 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2414 goto err2;
2415 }
2416
2417 if ((ret->client_CA = sk_X509_NAME_new_null()) == NULL)
2418 goto err;
2419
2420 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
2421 goto err;
2422
2423 /* No compression for DTLS */
2424 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2425 ret->comp_methods = SSL_COMP_get_compression_methods();
2426
2427 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2428 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2429
2430 /* Setup RFC5077 ticket keys */
2431 if ((RAND_bytes(ret->tlsext_tick_key_name,
2432 sizeof(ret->tlsext_tick_key_name)) <= 0)
2433 || (RAND_bytes(ret->tlsext_tick_hmac_key,
2434 sizeof(ret->tlsext_tick_hmac_key)) <= 0)
2435 || (RAND_bytes(ret->tlsext_tick_aes_key,
2436 sizeof(ret->tlsext_tick_aes_key)) <= 0))
2437 ret->options |= SSL_OP_NO_TICKET;
2438
2439 #ifndef OPENSSL_NO_SRP
2440 if (!SSL_CTX_SRP_CTX_init(ret))
2441 goto err;
2442 #endif
2443 #ifndef OPENSSL_NO_ENGINE
2444 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2445 # define eng_strx(x) #x
2446 # define eng_str(x) eng_strx(x)
2447 /* Use specific client engine automatically... ignore errors */
2448 {
2449 ENGINE *eng;
2450 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2451 if (!eng) {
2452 ERR_clear_error();
2453 ENGINE_load_builtin_engines();
2454 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2455 }
2456 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2457 ERR_clear_error();
2458 }
2459 # endif
2460 #endif
2461 /*
2462 * Default is to connect to non-RI servers. When RI is more widely
2463 * deployed might change this.
2464 */
2465 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2466 /*
2467 * Disable compression by default to prevent CRIME. Applications can
2468 * re-enable compression by configuring
2469 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2470 * or by using the SSL_CONF library.
2471 */
2472 ret->options |= SSL_OP_NO_COMPRESSION;
2473
2474 ret->tlsext_status_type = -1;
2475
2476 return ret;
2477 err:
2478 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2479 err2:
2480 SSL_CTX_free(ret);
2481 return NULL;
2482 }
2483
2484 int SSL_CTX_up_ref(SSL_CTX *ctx)
2485 {
2486 int i;
2487
2488 if (CRYPTO_atomic_add(&ctx->references, 1, &i, ctx->lock) <= 0)
2489 return 0;
2490
2491 REF_PRINT_COUNT("SSL_CTX", ctx);
2492 REF_ASSERT_ISNT(i < 2);
2493 return ((i > 1) ? 1 : 0);
2494 }
2495
2496 void SSL_CTX_free(SSL_CTX *a)
2497 {
2498 int i;
2499
2500 if (a == NULL)
2501 return;
2502
2503 CRYPTO_atomic_add(&a->references, -1, &i, a->lock);
2504 REF_PRINT_COUNT("SSL_CTX", a);
2505 if (i > 0)
2506 return;
2507 REF_ASSERT_ISNT(i < 0);
2508
2509 X509_VERIFY_PARAM_free(a->param);
2510 dane_ctx_final(&a->dane);
2511
2512 /*
2513 * Free internal session cache. However: the remove_cb() may reference
2514 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2515 * after the sessions were flushed.
2516 * As the ex_data handling routines might also touch the session cache,
2517 * the most secure solution seems to be: empty (flush) the cache, then
2518 * free ex_data, then finally free the cache.
2519 * (See ticket [openssl.org #212].)
2520 */
2521 if (a->sessions != NULL)
2522 SSL_CTX_flush_sessions(a, 0);
2523
2524 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2525 lh_SSL_SESSION_free(a->sessions);
2526 X509_STORE_free(a->cert_store);
2527 #ifndef OPENSSL_NO_CT
2528 CTLOG_STORE_free(a->ctlog_store);
2529 #endif
2530 sk_SSL_CIPHER_free(a->cipher_list);
2531 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2532 ssl_cert_free(a->cert);
2533 sk_X509_NAME_pop_free(a->client_CA, X509_NAME_free);
2534 sk_X509_pop_free(a->extra_certs, X509_free);
2535 a->comp_methods = NULL;
2536 #ifndef OPENSSL_NO_SRTP
2537 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2538 #endif
2539 #ifndef OPENSSL_NO_SRP
2540 SSL_CTX_SRP_CTX_free(a);
2541 #endif
2542 #ifndef OPENSSL_NO_ENGINE
2543 ENGINE_finish(a->client_cert_engine);
2544 #endif
2545
2546 #ifndef OPENSSL_NO_EC
2547 OPENSSL_free(a->tlsext_ecpointformatlist);
2548 OPENSSL_free(a->tlsext_ellipticcurvelist);
2549 #endif
2550 OPENSSL_free(a->alpn_client_proto_list);
2551
2552 CRYPTO_THREAD_lock_free(a->lock);
2553
2554 OPENSSL_free(a);
2555 }
2556
2557 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2558 {
2559 ctx->default_passwd_callback = cb;
2560 }
2561
2562 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2563 {
2564 ctx->default_passwd_callback_userdata = u;
2565 }
2566
2567 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
2568 {
2569 return ctx->default_passwd_callback;
2570 }
2571
2572 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
2573 {
2574 return ctx->default_passwd_callback_userdata;
2575 }
2576
2577 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2578 {
2579 s->default_passwd_callback = cb;
2580 }
2581
2582 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2583 {
2584 s->default_passwd_callback_userdata = u;
2585 }
2586
2587 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
2588 {
2589 return s->default_passwd_callback;
2590 }
2591
2592 void *SSL_get_default_passwd_cb_userdata(SSL *s)
2593 {
2594 return s->default_passwd_callback_userdata;
2595 }
2596
2597 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
2598 int (*cb) (X509_STORE_CTX *, void *),
2599 void *arg)
2600 {
2601 ctx->app_verify_callback = cb;
2602 ctx->app_verify_arg = arg;
2603 }
2604
2605 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
2606 int (*cb) (int, X509_STORE_CTX *))
2607 {
2608 ctx->verify_mode = mode;
2609 ctx->default_verify_callback = cb;
2610 }
2611
2612 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
2613 {
2614 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2615 }
2616
2617 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
2618 {
2619 ssl_cert_set_cert_cb(c->cert, cb, arg);
2620 }
2621
2622 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
2623 {
2624 ssl_cert_set_cert_cb(s->cert, cb, arg);
2625 }
2626
2627 void ssl_set_masks(SSL *s)
2628 {
2629 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_GOST)
2630 CERT_PKEY *cpk;
2631 #endif
2632 CERT *c = s->cert;
2633 uint32_t *pvalid = s->s3->tmp.valid_flags;
2634 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
2635 unsigned long mask_k, mask_a;
2636 #ifndef OPENSSL_NO_EC
2637 int have_ecc_cert, ecdsa_ok;
2638 X509 *x = NULL;
2639 #endif
2640 if (c == NULL)
2641 return;
2642
2643 #ifndef OPENSSL_NO_DH
2644 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
2645 #else
2646 dh_tmp = 0;
2647 #endif
2648
2649 rsa_enc = pvalid[SSL_PKEY_RSA_ENC] & CERT_PKEY_VALID;
2650 rsa_sign = pvalid[SSL_PKEY_RSA_SIGN] & CERT_PKEY_SIGN;
2651 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_SIGN;
2652 #ifndef OPENSSL_NO_EC
2653 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
2654 #endif
2655 mask_k = 0;
2656 mask_a = 0;
2657
2658 #ifdef CIPHER_DEBUG
2659 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
2660 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
2661 #endif
2662
2663 #ifndef OPENSSL_NO_GOST
2664 cpk = &(c->pkeys[SSL_PKEY_GOST12_512]);
2665 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2666 mask_k |= SSL_kGOST;
2667 mask_a |= SSL_aGOST12;
2668 }
2669 cpk = &(c->pkeys[SSL_PKEY_GOST12_256]);
2670 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2671 mask_k |= SSL_kGOST;
2672 mask_a |= SSL_aGOST12;
2673 }
2674 cpk = &(c->pkeys[SSL_PKEY_GOST01]);
2675 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2676 mask_k |= SSL_kGOST;
2677 mask_a |= SSL_aGOST01;
2678 }
2679 #endif
2680
2681 if (rsa_enc)
2682 mask_k |= SSL_kRSA;
2683
2684 if (dh_tmp)
2685 mask_k |= SSL_kDHE;
2686
2687 if (rsa_enc || rsa_sign) {
2688 mask_a |= SSL_aRSA;
2689 }
2690
2691 if (dsa_sign) {
2692 mask_a |= SSL_aDSS;
2693 }
2694
2695 mask_a |= SSL_aNULL;
2696
2697 /*
2698 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
2699 * depending on the key usage extension.
2700 */
2701 #ifndef OPENSSL_NO_EC
2702 if (have_ecc_cert) {
2703 uint32_t ex_kusage;
2704 cpk = &c->pkeys[SSL_PKEY_ECC];
2705 x = cpk->x509;
2706 ex_kusage = X509_get_key_usage(x);
2707 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
2708 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
2709 ecdsa_ok = 0;
2710 if (ecdsa_ok)
2711 mask_a |= SSL_aECDSA;
2712 }
2713 #endif
2714
2715 #ifndef OPENSSL_NO_EC
2716 mask_k |= SSL_kECDHE;
2717 #endif
2718
2719 #ifndef OPENSSL_NO_PSK
2720 mask_k |= SSL_kPSK;
2721 mask_a |= SSL_aPSK;
2722 if (mask_k & SSL_kRSA)
2723 mask_k |= SSL_kRSAPSK;
2724 if (mask_k & SSL_kDHE)
2725 mask_k |= SSL_kDHEPSK;
2726 if (mask_k & SSL_kECDHE)
2727 mask_k |= SSL_kECDHEPSK;
2728 #endif
2729
2730 s->s3->tmp.mask_k = mask_k;
2731 s->s3->tmp.mask_a = mask_a;
2732 }
2733
2734 #ifndef OPENSSL_NO_EC
2735
2736 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
2737 {
2738 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
2739 /* key usage, if present, must allow signing */
2740 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
2741 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
2742 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
2743 return 0;
2744 }
2745 }
2746 return 1; /* all checks are ok */
2747 }
2748
2749 #endif
2750
2751 static int ssl_get_server_cert_index(const SSL *s)
2752 {
2753 int idx;
2754 idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
2755 if (idx == SSL_PKEY_RSA_ENC && !s->cert->pkeys[SSL_PKEY_RSA_ENC].x509)
2756 idx = SSL_PKEY_RSA_SIGN;
2757 if (idx == SSL_PKEY_GOST_EC) {
2758 if (s->cert->pkeys[SSL_PKEY_GOST12_512].x509)
2759 idx = SSL_PKEY_GOST12_512;
2760 else if (s->cert->pkeys[SSL_PKEY_GOST12_256].x509)
2761 idx = SSL_PKEY_GOST12_256;
2762 else if (s->cert->pkeys[SSL_PKEY_GOST01].x509)
2763 idx = SSL_PKEY_GOST01;
2764 else
2765 idx = -1;
2766 }
2767 if (idx == -1)
2768 SSLerr(SSL_F_SSL_GET_SERVER_CERT_INDEX, ERR_R_INTERNAL_ERROR);
2769 return idx;
2770 }
2771
2772 CERT_PKEY *ssl_get_server_send_pkey(SSL *s)
2773 {
2774 CERT *c;
2775 int i;
2776
2777 c = s->cert;
2778 if (!s->s3 || !s->s3->tmp.new_cipher)
2779 return NULL;
2780 ssl_set_masks(s);
2781
2782 i = ssl_get_server_cert_index(s);
2783
2784 /* This may or may not be an error. */
2785 if (i < 0)
2786 return NULL;
2787
2788 /* May be NULL. */
2789 return &c->pkeys[i];
2790 }
2791
2792 EVP_PKEY *ssl_get_sign_pkey(SSL *s, const SSL_CIPHER *cipher,
2793 const EVP_MD **pmd)
2794 {
2795 unsigned long alg_a;
2796 CERT *c;
2797 int idx = -1;
2798
2799 alg_a = cipher->algorithm_auth;
2800 c = s->cert;
2801
2802 if ((alg_a & SSL_aDSS) && (c->pkeys[SSL_PKEY_DSA_SIGN].privatekey != NULL))
2803 idx = SSL_PKEY_DSA_SIGN;
2804 else if (alg_a & SSL_aRSA) {
2805 if (c->pkeys[SSL_PKEY_RSA_SIGN].privatekey != NULL)
2806 idx = SSL_PKEY_RSA_SIGN;
2807 else if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey != NULL)
2808 idx = SSL_PKEY_RSA_ENC;
2809 } else if ((alg_a & SSL_aECDSA) &&
2810 (c->pkeys[SSL_PKEY_ECC].privatekey != NULL))
2811 idx = SSL_PKEY_ECC;
2812 if (idx == -1) {
2813 SSLerr(SSL_F_SSL_GET_SIGN_PKEY, ERR_R_INTERNAL_ERROR);
2814 return (NULL);
2815 }
2816 if (pmd)
2817 *pmd = s->s3->tmp.md[idx];
2818 return c->pkeys[idx].privatekey;
2819 }
2820
2821 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
2822 size_t *serverinfo_length)
2823 {
2824 CERT *c = NULL;
2825 int i = 0;
2826 *serverinfo_length = 0;
2827
2828 c = s->cert;
2829 i = ssl_get_server_cert_index(s);
2830
2831 if (i == -1)
2832 return 0;
2833 if (c->pkeys[i].serverinfo == NULL)
2834 return 0;
2835
2836 *serverinfo = c->pkeys[i].serverinfo;
2837 *serverinfo_length = c->pkeys[i].serverinfo_length;
2838 return 1;
2839 }
2840
2841 void ssl_update_cache(SSL *s, int mode)
2842 {
2843 int i;
2844
2845 /*
2846 * If the session_id_length is 0, we are not supposed to cache it, and it
2847 * would be rather hard to do anyway :-)
2848 */
2849 if (s->session->session_id_length == 0)
2850 return;
2851
2852 i = s->session_ctx->session_cache_mode;
2853 if ((i & mode) && (!s->hit)
2854 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
2855 || SSL_CTX_add_session(s->session_ctx, s->session))
2856 && (s->session_ctx->new_session_cb != NULL)) {
2857 SSL_SESSION_up_ref(s->session);
2858 if (!s->session_ctx->new_session_cb(s, s->session))
2859 SSL_SESSION_free(s->session);
2860 }
2861
2862 /* auto flush every 255 connections */
2863 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
2864 if ((((mode & SSL_SESS_CACHE_CLIENT)
2865 ? s->session_ctx->stats.sess_connect_good
2866 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
2867 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
2868 }
2869 }
2870 }
2871
2872 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
2873 {
2874 return ctx->method;
2875 }
2876
2877 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
2878 {
2879 return (s->method);
2880 }
2881
2882 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
2883 {
2884 int ret = 1;
2885
2886 if (s->method != meth) {
2887 const SSL_METHOD *sm = s->method;
2888 int (*hf) (SSL *) = s->handshake_func;
2889
2890 if (sm->version == meth->version)
2891 s->method = meth;
2892 else {
2893 sm->ssl_free(s);
2894 s->method = meth;
2895 ret = s->method->ssl_new(s);
2896 }
2897
2898 if (hf == sm->ssl_connect)
2899 s->handshake_func = meth->ssl_connect;
2900 else if (hf == sm->ssl_accept)
2901 s->handshake_func = meth->ssl_accept;
2902 }
2903 return (ret);
2904 }
2905
2906 int SSL_get_error(const SSL *s, int i)
2907 {
2908 int reason;
2909 unsigned long l;
2910 BIO *bio;
2911
2912 if (i > 0)
2913 return (SSL_ERROR_NONE);
2914
2915 /*
2916 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
2917 * where we do encode the error
2918 */
2919 if ((l = ERR_peek_error()) != 0) {
2920 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
2921 return (SSL_ERROR_SYSCALL);
2922 else
2923 return (SSL_ERROR_SSL);
2924 }
2925
2926 if (i < 0) {
2927 if (SSL_want_read(s)) {
2928 bio = SSL_get_rbio(s);
2929 if (BIO_should_read(bio))
2930 return (SSL_ERROR_WANT_READ);
2931 else if (BIO_should_write(bio))
2932 /*
2933 * This one doesn't make too much sense ... We never try to write
2934 * to the rbio, and an application program where rbio and wbio
2935 * are separate couldn't even know what it should wait for.
2936 * However if we ever set s->rwstate incorrectly (so that we have
2937 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
2938 * wbio *are* the same, this test works around that bug; so it
2939 * might be safer to keep it.
2940 */
2941 return (SSL_ERROR_WANT_WRITE);
2942 else if (BIO_should_io_special(bio)) {
2943 reason = BIO_get_retry_reason(bio);
2944 if (reason == BIO_RR_CONNECT)
2945 return (SSL_ERROR_WANT_CONNECT);
2946 else if (reason == BIO_RR_ACCEPT)
2947 return (SSL_ERROR_WANT_ACCEPT);
2948 else
2949 return (SSL_ERROR_SYSCALL); /* unknown */
2950 }
2951 }
2952
2953 if (SSL_want_write(s)) {
2954 /*
2955 * Access wbio directly - in order to use the buffered bio if
2956 * present
2957 */
2958 bio = s->wbio;
2959 if (BIO_should_write(bio))
2960 return (SSL_ERROR_WANT_WRITE);
2961 else if (BIO_should_read(bio))
2962 /*
2963 * See above (SSL_want_read(s) with BIO_should_write(bio))
2964 */
2965 return (SSL_ERROR_WANT_READ);
2966 else if (BIO_should_io_special(bio)) {
2967 reason = BIO_get_retry_reason(bio);
2968 if (reason == BIO_RR_CONNECT)
2969 return (SSL_ERROR_WANT_CONNECT);
2970 else if (reason == BIO_RR_ACCEPT)
2971 return (SSL_ERROR_WANT_ACCEPT);
2972 else
2973 return (SSL_ERROR_SYSCALL);
2974 }
2975 }
2976 if (SSL_want_x509_lookup(s)) {
2977 return (SSL_ERROR_WANT_X509_LOOKUP);
2978 }
2979 if (SSL_want_async(s)) {
2980 return SSL_ERROR_WANT_ASYNC;
2981 }
2982 if (SSL_want_async_job(s)) {
2983 return SSL_ERROR_WANT_ASYNC_JOB;
2984 }
2985 }
2986
2987 if (i == 0) {
2988 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
2989 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
2990 return (SSL_ERROR_ZERO_RETURN);
2991 }
2992 return (SSL_ERROR_SYSCALL);
2993 }
2994
2995 static int ssl_do_handshake_intern(void *vargs)
2996 {
2997 struct ssl_async_args *args;
2998 SSL *s;
2999
3000 args = (struct ssl_async_args *)vargs;
3001 s = args->s;
3002
3003 return s->handshake_func(s);
3004 }
3005
3006 int SSL_do_handshake(SSL *s)
3007 {
3008 int ret = 1;
3009
3010 if (s->handshake_func == NULL) {
3011 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3012 return -1;
3013 }
3014
3015 s->method->ssl_renegotiate_check(s);
3016
3017 if (SSL_in_init(s) || SSL_in_before(s)) {
3018 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3019 struct ssl_async_args args;
3020
3021 args.s = s;
3022
3023 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3024 } else {
3025 ret = s->handshake_func(s);
3026 }
3027 }
3028 return ret;
3029 }
3030
3031 void SSL_set_accept_state(SSL *s)
3032 {
3033 s->server = 1;
3034 s->shutdown = 0;
3035 ossl_statem_clear(s);
3036 s->handshake_func = s->method->ssl_accept;
3037 clear_ciphers(s);
3038 }
3039
3040 void SSL_set_connect_state(SSL *s)
3041 {
3042 s->server = 0;
3043 s->shutdown = 0;
3044 ossl_statem_clear(s);
3045 s->handshake_func = s->method->ssl_connect;
3046 clear_ciphers(s);
3047 }
3048
3049 int ssl_undefined_function(SSL *s)
3050 {
3051 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3052 return (0);
3053 }
3054
3055 int ssl_undefined_void_function(void)
3056 {
3057 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3058 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3059 return (0);
3060 }
3061
3062 int ssl_undefined_const_function(const SSL *s)
3063 {
3064 return (0);
3065 }
3066
3067 const SSL_METHOD *ssl_bad_method(int ver)
3068 {
3069 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3070 return (NULL);
3071 }
3072
3073 const char *ssl_protocol_to_string(int version)
3074 {
3075 if (version == TLS1_2_VERSION)
3076 return "TLSv1.2";
3077 else if (version == TLS1_1_VERSION)
3078 return "TLSv1.1";
3079 else if (version == TLS1_VERSION)
3080 return "TLSv1";
3081 else if (version == SSL3_VERSION)
3082 return "SSLv3";
3083 else if (version == DTLS1_BAD_VER)
3084 return "DTLSv0.9";
3085 else if (version == DTLS1_VERSION)
3086 return "DTLSv1";
3087 else if (version == DTLS1_2_VERSION)
3088 return "DTLSv1.2";
3089 else
3090 return ("unknown");
3091 }
3092
3093 const char *SSL_get_version(const SSL *s)
3094 {
3095 return ssl_protocol_to_string(s->version);
3096 }
3097
3098 SSL *SSL_dup(SSL *s)
3099 {
3100 STACK_OF(X509_NAME) *sk;
3101 X509_NAME *xn;
3102 SSL *ret;
3103 int i;
3104
3105 /* If we're not quiescent, just up_ref! */
3106 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3107 CRYPTO_atomic_add(&s->references, 1, &i, s->lock);
3108 return s;
3109 }
3110
3111 /*
3112 * Otherwise, copy configuration state, and session if set.
3113 */
3114 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3115 return (NULL);
3116
3117 if (s->session != NULL) {
3118 /*
3119 * Arranges to share the same session via up_ref. This "copies"
3120 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3121 */
3122 if (!SSL_copy_session_id(ret, s))
3123 goto err;
3124 } else {
3125 /*
3126 * No session has been established yet, so we have to expect that
3127 * s->cert or ret->cert will be changed later -- they should not both
3128 * point to the same object, and thus we can't use
3129 * SSL_copy_session_id.
3130 */
3131 if (!SSL_set_ssl_method(ret, s->method))
3132 goto err;
3133
3134 if (s->cert != NULL) {
3135 ssl_cert_free(ret->cert);
3136 ret->cert = ssl_cert_dup(s->cert);
3137 if (ret->cert == NULL)
3138 goto err;
3139 }
3140
3141 if (!SSL_set_session_id_context(ret, s->sid_ctx, s->sid_ctx_length))
3142 goto err;
3143 }
3144
3145 if (!ssl_dane_dup(ret, s))
3146 goto err;
3147 ret->version = s->version;
3148 ret->options = s->options;
3149 ret->mode = s->mode;
3150 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3151 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3152 ret->msg_callback = s->msg_callback;
3153 ret->msg_callback_arg = s->msg_callback_arg;
3154 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3155 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3156 ret->generate_session_id = s->generate_session_id;
3157
3158 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3159
3160 /* copy app data, a little dangerous perhaps */
3161 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3162 goto err;
3163
3164 /* setup rbio, and wbio */
3165 if (s->rbio != NULL) {
3166 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3167 goto err;
3168 }
3169 if (s->wbio != NULL) {
3170 if (s->wbio != s->rbio) {
3171 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3172 goto err;
3173 } else {
3174 BIO_up_ref(ret->rbio);
3175 ret->wbio = ret->rbio;
3176 }
3177 }
3178
3179 ret->server = s->server;
3180 if (s->handshake_func) {
3181 if (s->server)
3182 SSL_set_accept_state(ret);
3183 else
3184 SSL_set_connect_state(ret);
3185 }
3186 ret->shutdown = s->shutdown;
3187 ret->hit = s->hit;
3188
3189 ret->default_passwd_callback = s->default_passwd_callback;
3190 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3191
3192 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3193
3194 /* dup the cipher_list and cipher_list_by_id stacks */
3195 if (s->cipher_list != NULL) {
3196 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3197 goto err;
3198 }
3199 if (s->cipher_list_by_id != NULL)
3200 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3201 == NULL)
3202 goto err;
3203
3204 /* Dup the client_CA list */
3205 if (s->client_CA != NULL) {
3206 if ((sk = sk_X509_NAME_dup(s->client_CA)) == NULL)
3207 goto err;
3208 ret->client_CA = sk;
3209 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3210 xn = sk_X509_NAME_value(sk, i);
3211 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3212 X509_NAME_free(xn);
3213 goto err;
3214 }
3215 }
3216 }
3217 return ret;
3218
3219 err:
3220 SSL_free(ret);
3221 return NULL;
3222 }
3223
3224 void ssl_clear_cipher_ctx(SSL *s)
3225 {
3226 if (s->enc_read_ctx != NULL) {
3227 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3228 s->enc_read_ctx = NULL;
3229 }
3230 if (s->enc_write_ctx != NULL) {
3231 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3232 s->enc_write_ctx = NULL;
3233 }
3234 #ifndef OPENSSL_NO_COMP
3235 COMP_CTX_free(s->expand);
3236 s->expand = NULL;
3237 COMP_CTX_free(s->compress);
3238 s->compress = NULL;
3239 #endif
3240 }
3241
3242 X509 *SSL_get_certificate(const SSL *s)
3243 {
3244 if (s->cert != NULL)
3245 return (s->cert->key->x509);
3246 else
3247 return (NULL);
3248 }
3249
3250 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3251 {
3252 if (s->cert != NULL)
3253 return (s->cert->key->privatekey);
3254 else
3255 return (NULL);
3256 }
3257
3258 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3259 {
3260 if (ctx->cert != NULL)
3261 return ctx->cert->key->x509;
3262 else
3263 return NULL;
3264 }
3265
3266 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3267 {
3268 if (ctx->cert != NULL)
3269 return ctx->cert->key->privatekey;
3270 else
3271 return NULL;
3272 }
3273
3274 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3275 {
3276 if ((s->session != NULL) && (s->session->cipher != NULL))
3277 return (s->session->cipher);
3278 return (NULL);
3279 }
3280
3281 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3282 {
3283 #ifndef OPENSSL_NO_COMP
3284 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3285 #else
3286 return NULL;
3287 #endif
3288 }
3289
3290 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3291 {
3292 #ifndef OPENSSL_NO_COMP
3293 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3294 #else
3295 return NULL;
3296 #endif
3297 }
3298
3299 int ssl_init_wbio_buffer(SSL *s)
3300 {
3301 BIO *bbio;
3302
3303 if (s->bbio != NULL) {
3304 /* Already buffered. */
3305 return 1;
3306 }
3307
3308 bbio = BIO_new(BIO_f_buffer());
3309 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
3310 BIO_free(bbio);
3311 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3312 return 0;
3313 }
3314 s->bbio = bbio;
3315 s->wbio = BIO_push(bbio, s->wbio);
3316
3317 return 1;
3318 }
3319
3320 void ssl_free_wbio_buffer(SSL *s)
3321 {
3322 /* callers ensure s is never null */
3323 if (s->bbio == NULL)
3324 return;
3325
3326 s->wbio = BIO_pop(s->wbio);
3327 assert(s->wbio != NULL);
3328 BIO_free(s->bbio);
3329 s->bbio = NULL;
3330 }
3331
3332 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3333 {
3334 ctx->quiet_shutdown = mode;
3335 }
3336
3337 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3338 {
3339 return (ctx->quiet_shutdown);
3340 }
3341
3342 void SSL_set_quiet_shutdown(SSL *s, int mode)
3343 {
3344 s->quiet_shutdown = mode;
3345 }
3346
3347 int SSL_get_quiet_shutdown(const SSL *s)
3348 {
3349 return (s->quiet_shutdown);
3350 }
3351
3352 void SSL_set_shutdown(SSL *s, int mode)
3353 {
3354 s->shutdown = mode;
3355 }
3356
3357 int SSL_get_shutdown(const SSL *s)
3358 {
3359 return s->shutdown;
3360 }
3361
3362 int SSL_version(const SSL *s)
3363 {
3364 return s->version;
3365 }
3366
3367 int SSL_client_version(const SSL *s)
3368 {
3369 return s->client_version;
3370 }
3371
3372 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3373 {
3374 return ssl->ctx;
3375 }
3376
3377 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3378 {
3379 CERT *new_cert;
3380 if (ssl->ctx == ctx)
3381 return ssl->ctx;
3382 if (ctx == NULL)
3383 ctx = ssl->initial_ctx;
3384 new_cert = ssl_cert_dup(ctx->cert);
3385 if (new_cert == NULL) {
3386 return NULL;
3387 }
3388 ssl_cert_free(ssl->cert);
3389 ssl->cert = new_cert;
3390
3391 /*
3392 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3393 * so setter APIs must prevent invalid lengths from entering the system.
3394 */
3395 OPENSSL_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
3396
3397 /*
3398 * If the session ID context matches that of the parent SSL_CTX,
3399 * inherit it from the new SSL_CTX as well. If however the context does
3400 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3401 * leave it unchanged.
3402 */
3403 if ((ssl->ctx != NULL) &&
3404 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3405 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3406 ssl->sid_ctx_length = ctx->sid_ctx_length;
3407 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3408 }
3409
3410 SSL_CTX_up_ref(ctx);
3411 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3412 ssl->ctx = ctx;
3413
3414 return ssl->ctx;
3415 }
3416
3417 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3418 {
3419 return (X509_STORE_set_default_paths(ctx->cert_store));
3420 }
3421
3422 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3423 {
3424 X509_LOOKUP *lookup;
3425
3426 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3427 if (lookup == NULL)
3428 return 0;
3429 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3430
3431 /* Clear any errors if the default directory does not exist */
3432 ERR_clear_error();
3433
3434 return 1;
3435 }
3436
3437 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3438 {
3439 X509_LOOKUP *lookup;
3440
3441 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3442 if (lookup == NULL)
3443 return 0;
3444
3445 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3446
3447 /* Clear any errors if the default file does not exist */
3448 ERR_clear_error();
3449
3450 return 1;
3451 }
3452
3453 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3454 const char *CApath)
3455 {
3456 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3457 }
3458
3459 void SSL_set_info_callback(SSL *ssl,
3460 void (*cb) (const SSL *ssl, int type, int val))
3461 {
3462 ssl->info_callback = cb;
3463 }
3464
3465 /*
3466 * One compiler (Diab DCC) doesn't like argument names in returned function
3467 * pointer.
3468 */
3469 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3470 int /* type */ ,
3471 int /* val */ ) {
3472 return ssl->info_callback;
3473 }
3474
3475 void SSL_set_verify_result(SSL *ssl, long arg)
3476 {
3477 ssl->verify_result = arg;
3478 }
3479
3480 long SSL_get_verify_result(const SSL *ssl)
3481 {
3482 return (ssl->verify_result);
3483 }
3484
3485 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3486 {
3487 if (outlen == 0)
3488 return sizeof(ssl->s3->client_random);
3489 if (outlen > sizeof(ssl->s3->client_random))
3490 outlen = sizeof(ssl->s3->client_random);
3491 memcpy(out, ssl->s3->client_random, outlen);
3492 return outlen;
3493 }
3494
3495 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3496 {
3497 if (outlen == 0)
3498 return sizeof(ssl->s3->server_random);
3499 if (outlen > sizeof(ssl->s3->server_random))
3500 outlen = sizeof(ssl->s3->server_random);
3501 memcpy(out, ssl->s3->server_random, outlen);
3502 return outlen;
3503 }
3504
3505 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3506 unsigned char *out, size_t outlen)
3507 {
3508 if (session->master_key_length < 0) {
3509 /* Should never happen */
3510 return 0;
3511 }
3512 if (outlen == 0)
3513 return session->master_key_length;
3514 if (outlen > (size_t)session->master_key_length)
3515 outlen = session->master_key_length;
3516 memcpy(out, session->master_key, outlen);
3517 return outlen;
3518 }
3519
3520 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3521 {
3522 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3523 }
3524
3525 void *SSL_get_ex_data(const SSL *s, int idx)
3526 {
3527 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3528 }
3529
3530 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3531 {
3532 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3533 }
3534
3535 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3536 {
3537 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3538 }
3539
3540 int ssl_ok(SSL *s)
3541 {
3542 return (1);
3543 }
3544
3545 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3546 {
3547 return (ctx->cert_store);
3548 }
3549
3550 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3551 {
3552 X509_STORE_free(ctx->cert_store);
3553 ctx->cert_store = store;
3554 }
3555
3556 int SSL_want(const SSL *s)
3557 {
3558 return (s->rwstate);
3559 }
3560
3561 /**
3562 * \brief Set the callback for generating temporary DH keys.
3563 * \param ctx the SSL context.
3564 * \param dh the callback
3565 */
3566
3567 #ifndef OPENSSL_NO_DH
3568 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3569 DH *(*dh) (SSL *ssl, int is_export,
3570 int keylength))
3571 {
3572 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3573 }
3574
3575 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3576 int keylength))
3577 {
3578 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3579 }
3580 #endif
3581
3582 #ifndef OPENSSL_NO_PSK
3583 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3584 {
3585 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3586 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3587 return 0;
3588 }
3589 OPENSSL_free(ctx->cert->psk_identity_hint);
3590 if (identity_hint != NULL) {
3591 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3592 if (ctx->cert->psk_identity_hint == NULL)
3593 return 0;
3594 } else
3595 ctx->cert->psk_identity_hint = NULL;
3596 return 1;
3597 }
3598
3599 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3600 {
3601 if (s == NULL)
3602 return 0;
3603
3604 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3605 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3606 return 0;
3607 }
3608 OPENSSL_free(s->cert->psk_identity_hint);
3609 if (identity_hint != NULL) {
3610 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3611 if (s->cert->psk_identity_hint == NULL)
3612 return 0;
3613 } else
3614 s->cert->psk_identity_hint = NULL;
3615 return 1;
3616 }
3617
3618 const char *SSL_get_psk_identity_hint(const SSL *s)
3619 {
3620 if (s == NULL || s->session == NULL)
3621 return NULL;
3622 return (s->session->psk_identity_hint);
3623 }
3624
3625 const char *SSL_get_psk_identity(const SSL *s)
3626 {
3627 if (s == NULL || s->session == NULL)
3628 return NULL;
3629 return (s->session->psk_identity);
3630 }
3631
3632 void SSL_set_psk_client_callback(SSL *s,
3633 unsigned int (*cb) (SSL *ssl,
3634 const char *hint,
3635 char *identity,
3636 unsigned int
3637 max_identity_len,
3638 unsigned char *psk,
3639 unsigned int max_psk_len))
3640 {
3641 s->psk_client_callback = cb;
3642 }
3643
3644 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx,
3645 unsigned int (*cb) (SSL *ssl,
3646 const char *hint,
3647 char *identity,
3648 unsigned int
3649 max_identity_len,
3650 unsigned char *psk,
3651 unsigned int
3652 max_psk_len))
3653 {
3654 ctx->psk_client_callback = cb;
3655 }
3656
3657 void SSL_set_psk_server_callback(SSL *s,
3658 unsigned int (*cb) (SSL *ssl,
3659 const char *identity,
3660 unsigned char *psk,
3661 unsigned int max_psk_len))
3662 {
3663 s->psk_server_callback = cb;
3664 }
3665
3666 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx,
3667 unsigned int (*cb) (SSL *ssl,
3668 const char *identity,
3669 unsigned char *psk,
3670 unsigned int
3671 max_psk_len))
3672 {
3673 ctx->psk_server_callback = cb;
3674 }
3675 #endif
3676
3677 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
3678 void (*cb) (int write_p, int version,
3679 int content_type, const void *buf,
3680 size_t len, SSL *ssl, void *arg))
3681 {
3682 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3683 }
3684
3685 void SSL_set_msg_callback(SSL *ssl,
3686 void (*cb) (int write_p, int version,
3687 int content_type, const void *buf,
3688 size_t len, SSL *ssl, void *arg))
3689 {
3690 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3691 }
3692
3693 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
3694 int (*cb) (SSL *ssl,
3695 int
3696 is_forward_secure))
3697 {
3698 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3699 (void (*)(void))cb);
3700 }
3701
3702 void SSL_set_not_resumable_session_callback(SSL *ssl,
3703 int (*cb) (SSL *ssl,
3704 int is_forward_secure))
3705 {
3706 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3707 (void (*)(void))cb);
3708 }
3709
3710 /*
3711 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
3712 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
3713 * If EVP_MD pointer is passed, initializes ctx with this md Returns newly
3714 * allocated ctx;
3715 */
3716
3717 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
3718 {
3719 ssl_clear_hash_ctx(hash);
3720 *hash = EVP_MD_CTX_new();
3721 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
3722 EVP_MD_CTX_free(*hash);
3723 *hash = NULL;
3724 return NULL;
3725 }
3726 return *hash;
3727 }
3728
3729 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
3730 {
3731
3732 if (*hash)
3733 EVP_MD_CTX_free(*hash);
3734 *hash = NULL;
3735 }
3736
3737 /* Retrieve handshake hashes */
3738 int ssl_handshake_hash(SSL *s, unsigned char *out, int outlen)
3739 {
3740 EVP_MD_CTX *ctx = NULL;
3741 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
3742 int ret = EVP_MD_CTX_size(hdgst);
3743 if (ret < 0 || ret > outlen) {
3744 ret = 0;
3745 goto err;
3746 }
3747 ctx = EVP_MD_CTX_new();
3748 if (ctx == NULL) {
3749 ret = 0;
3750 goto err;
3751 }
3752 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
3753 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
3754 ret = 0;
3755 err:
3756 EVP_MD_CTX_free(ctx);
3757 return ret;
3758 }
3759
3760 int SSL_session_reused(SSL *s)
3761 {
3762 return s->hit;
3763 }
3764
3765 int SSL_is_server(SSL *s)
3766 {
3767 return s->server;
3768 }
3769
3770 #if OPENSSL_API_COMPAT < 0x10100000L
3771 void SSL_set_debug(SSL *s, int debug)
3772 {
3773 /* Old function was do-nothing anyway... */
3774 (void)s;
3775 (void)debug;
3776 }
3777 #endif
3778
3779 void SSL_set_security_level(SSL *s, int level)
3780 {
3781 s->cert->sec_level = level;
3782 }
3783
3784 int SSL_get_security_level(const SSL *s)
3785 {
3786 return s->cert->sec_level;
3787 }
3788
3789 void SSL_set_security_callback(SSL *s,
3790 int (*cb) (const SSL *s, const SSL_CTX *ctx,
3791 int op, int bits, int nid,
3792 void *other, void *ex))
3793 {
3794 s->cert->sec_cb = cb;
3795 }
3796
3797 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
3798 const SSL_CTX *ctx, int op,
3799 int bits, int nid, void *other,
3800 void *ex) {
3801 return s->cert->sec_cb;
3802 }
3803
3804 void SSL_set0_security_ex_data(SSL *s, void *ex)
3805 {
3806 s->cert->sec_ex = ex;
3807 }
3808
3809 void *SSL_get0_security_ex_data(const SSL *s)
3810 {
3811 return s->cert->sec_ex;
3812 }
3813
3814 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
3815 {
3816 ctx->cert->sec_level = level;
3817 }
3818
3819 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
3820 {
3821 return ctx->cert->sec_level;
3822 }
3823
3824 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
3825 int (*cb) (const SSL *s, const SSL_CTX *ctx,
3826 int op, int bits, int nid,
3827 void *other, void *ex))
3828 {
3829 ctx->cert->sec_cb = cb;
3830 }
3831
3832 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
3833 const SSL_CTX *ctx,
3834 int op, int bits,
3835 int nid,
3836 void *other,
3837 void *ex) {
3838 return ctx->cert->sec_cb;
3839 }
3840
3841 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
3842 {
3843 ctx->cert->sec_ex = ex;
3844 }
3845
3846 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
3847 {
3848 return ctx->cert->sec_ex;
3849 }
3850
3851 /*
3852 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
3853 * can return unsigned long, instead of the generic long return value from the
3854 * control interface.
3855 */
3856 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
3857 {
3858 return ctx->options;
3859 }
3860
3861 unsigned long SSL_get_options(const SSL *s)
3862 {
3863 return s->options;
3864 }
3865
3866 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
3867 {
3868 return ctx->options |= op;
3869 }
3870
3871 unsigned long SSL_set_options(SSL *s, unsigned long op)
3872 {
3873 return s->options |= op;
3874 }
3875
3876 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
3877 {
3878 return ctx->options &= ~op;
3879 }
3880
3881 unsigned long SSL_clear_options(SSL *s, unsigned long op)
3882 {
3883 return s->options &= ~op;
3884 }
3885
3886 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
3887 {
3888 return s->verified_chain;
3889 }
3890
3891 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
3892
3893 #ifndef OPENSSL_NO_CT
3894
3895 /*
3896 * Moves SCTs from the |src| stack to the |dst| stack.
3897 * The source of each SCT will be set to |origin|.
3898 * If |dst| points to a NULL pointer, a new stack will be created and owned by
3899 * the caller.
3900 * Returns the number of SCTs moved, or a negative integer if an error occurs.
3901 */
3902 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
3903 sct_source_t origin)
3904 {
3905 int scts_moved = 0;
3906 SCT *sct = NULL;
3907
3908 if (*dst == NULL) {
3909 *dst = sk_SCT_new_null();
3910 if (*dst == NULL) {
3911 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
3912 goto err;
3913 }
3914 }
3915
3916 while ((sct = sk_SCT_pop(src)) != NULL) {
3917 if (SCT_set_source(sct, origin) != 1)
3918 goto err;
3919
3920 if (sk_SCT_push(*dst, sct) <= 0)
3921 goto err;
3922 scts_moved += 1;
3923 }
3924
3925 return scts_moved;
3926 err:
3927 if (sct != NULL)
3928 sk_SCT_push(src, sct); /* Put the SCT back */
3929 return -1;
3930 }
3931
3932 /*
3933 * Look for data collected during ServerHello and parse if found.
3934 * Returns the number of SCTs extracted.
3935 */
3936 static int ct_extract_tls_extension_scts(SSL *s)
3937 {
3938 int scts_extracted = 0;
3939
3940 if (s->tlsext_scts != NULL) {
3941 const unsigned char *p = s->tlsext_scts;
3942 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->tlsext_scts_len);
3943
3944 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
3945
3946 SCT_LIST_free(scts);
3947 }
3948
3949 return scts_extracted;
3950 }
3951
3952 /*
3953 * Checks for an OCSP response and then attempts to extract any SCTs found if it
3954 * contains an SCT X509 extension. They will be stored in |s->scts|.
3955 * Returns:
3956 * - The number of SCTs extracted, assuming an OCSP response exists.
3957 * - 0 if no OCSP response exists or it contains no SCTs.
3958 * - A negative integer if an error occurs.
3959 */
3960 static int ct_extract_ocsp_response_scts(SSL *s)
3961 {
3962 # ifndef OPENSSL_NO_OCSP
3963 int scts_extracted = 0;
3964 const unsigned char *p;
3965 OCSP_BASICRESP *br = NULL;
3966 OCSP_RESPONSE *rsp = NULL;
3967 STACK_OF(SCT) *scts = NULL;
3968 int i;
3969
3970 if (s->tlsext_ocsp_resp == NULL || s->tlsext_ocsp_resplen == 0)
3971 goto err;
3972
3973 p = s->tlsext_ocsp_resp;
3974 rsp = d2i_OCSP_RESPONSE(NULL, &p, s->tlsext_ocsp_resplen);
3975 if (rsp == NULL)
3976 goto err;
3977
3978 br = OCSP_response_get1_basic(rsp);
3979 if (br == NULL)
3980 goto err;
3981
3982 for (i = 0; i < OCSP_resp_count(br); ++i) {
3983 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
3984
3985 if (single == NULL)
3986 continue;
3987
3988 scts =
3989 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
3990 scts_extracted =
3991 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
3992 if (scts_extracted < 0)
3993 goto err;
3994 }
3995 err:
3996 SCT_LIST_free(scts);
3997 OCSP_BASICRESP_free(br);
3998 OCSP_RESPONSE_free(rsp);
3999 return scts_extracted;
4000 # else
4001 /* Behave as if no OCSP response exists */
4002 return 0;
4003 # endif
4004 }
4005
4006 /*
4007 * Attempts to extract SCTs from the peer certificate.
4008 * Return the number of SCTs extracted, or a negative integer if an error
4009 * occurs.
4010 */
4011 static int ct_extract_x509v3_extension_scts(SSL *s)
4012 {
4013 int scts_extracted = 0;
4014 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4015
4016 if (cert != NULL) {
4017 STACK_OF(SCT) *scts =
4018 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4019
4020 scts_extracted =
4021 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4022
4023 SCT_LIST_free(scts);
4024 }
4025
4026 return scts_extracted;
4027 }
4028
4029 /*
4030 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4031 * response (if it exists) and X509v3 extensions in the certificate.
4032 * Returns NULL if an error occurs.
4033 */
4034 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4035 {
4036 if (!s->scts_parsed) {
4037 if (ct_extract_tls_extension_scts(s) < 0 ||
4038 ct_extract_ocsp_response_scts(s) < 0 ||
4039 ct_extract_x509v3_extension_scts(s) < 0)
4040 goto err;
4041
4042 s->scts_parsed = 1;
4043 }
4044 return s->scts;
4045 err:
4046 return NULL;
4047 }
4048
4049 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4050 const STACK_OF(SCT) *scts, void *unused_arg)
4051 {
4052 return 1;
4053 }
4054
4055 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4056 const STACK_OF(SCT) *scts, void *unused_arg)
4057 {
4058 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4059 int i;
4060
4061 for (i = 0; i < count; ++i) {
4062 SCT *sct = sk_SCT_value(scts, i);
4063 int status = SCT_get_validation_status(sct);
4064
4065 if (status == SCT_VALIDATION_STATUS_VALID)
4066 return 1;
4067 }
4068 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4069 return 0;
4070 }
4071
4072 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4073 void *arg)
4074 {
4075 /*
4076 * Since code exists that uses the custom extension handler for CT, look
4077 * for this and throw an error if they have already registered to use CT.
4078 */
4079 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4080 TLSEXT_TYPE_signed_certificate_timestamp))
4081 {
4082 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4083 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4084 return 0;
4085 }
4086
4087 if (callback != NULL) {
4088 /*
4089 * If we are validating CT, then we MUST accept SCTs served via OCSP
4090 */
4091 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4092 return 0;
4093 }
4094
4095 s->ct_validation_callback = callback;
4096 s->ct_validation_callback_arg = arg;
4097
4098 return 1;
4099 }
4100
4101 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4102 ssl_ct_validation_cb callback, void *arg)
4103 {
4104 /*
4105 * Since code exists that uses the custom extension handler for CT, look for
4106 * this and throw an error if they have already registered to use CT.
4107 */
4108 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4109 TLSEXT_TYPE_signed_certificate_timestamp))
4110 {
4111 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4112 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4113 return 0;
4114 }
4115
4116 ctx->ct_validation_callback = callback;
4117 ctx->ct_validation_callback_arg = arg;
4118 return 1;
4119 }
4120
4121 int SSL_ct_is_enabled(const SSL *s)
4122 {
4123 return s->ct_validation_callback != NULL;
4124 }
4125
4126 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4127 {
4128 return ctx->ct_validation_callback != NULL;
4129 }
4130
4131 int ssl_validate_ct(SSL *s)
4132 {
4133 int ret = 0;
4134 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4135 X509 *issuer;
4136 SSL_DANE *dane = &s->dane;
4137 CT_POLICY_EVAL_CTX *ctx = NULL;
4138 const STACK_OF(SCT) *scts;
4139
4140 /*
4141 * If no callback is set, the peer is anonymous, or its chain is invalid,
4142 * skip SCT validation - just return success. Applications that continue
4143 * handshakes without certificates, with unverified chains, or pinned leaf
4144 * certificates are outside the scope of the WebPKI and CT.
4145 *
4146 * The above exclusions notwithstanding the vast majority of peers will
4147 * have rather ordinary certificate chains validated by typical
4148 * applications that perform certificate verification and therefore will
4149 * process SCTs when enabled.
4150 */
4151 if (s->ct_validation_callback == NULL || cert == NULL ||
4152 s->verify_result != X509_V_OK ||
4153 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4154 return 1;
4155
4156 /*
4157 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4158 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4159 */
4160 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4161 switch (dane->mtlsa->usage) {
4162 case DANETLS_USAGE_DANE_TA:
4163 case DANETLS_USAGE_DANE_EE:
4164 return 1;
4165 }
4166 }
4167
4168 ctx = CT_POLICY_EVAL_CTX_new();
4169 if (ctx == NULL) {
4170 SSLerr(SSL_F_SSL_VALIDATE_CT, ERR_R_MALLOC_FAILURE);
4171 goto end;
4172 }
4173
4174 issuer = sk_X509_value(s->verified_chain, 1);
4175 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
4176 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
4177 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
4178
4179 scts = SSL_get0_peer_scts(s);
4180
4181 /*
4182 * This function returns success (> 0) only when all the SCTs are valid, 0
4183 * when some are invalid, and < 0 on various internal errors (out of
4184 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
4185 * reason to abort the handshake, that decision is up to the callback.
4186 * Therefore, we error out only in the unexpected case that the return
4187 * value is negative.
4188 *
4189 * XXX: One might well argue that the return value of this function is an
4190 * unfortunate design choice. Its job is only to determine the validation
4191 * status of each of the provided SCTs. So long as it correctly separates
4192 * the wheat from the chaff it should return success. Failure in this case
4193 * ought to correspond to an inability to carry out its duties.
4194 */
4195 if (SCT_LIST_validate(scts, ctx) < 0) {
4196 SSLerr(SSL_F_SSL_VALIDATE_CT, SSL_R_SCT_VERIFICATION_FAILED);
4197 goto end;
4198 }
4199
4200 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
4201 if (ret < 0)
4202 ret = 0; /* This function returns 0 on failure */
4203
4204 end:
4205 CT_POLICY_EVAL_CTX_free(ctx);
4206 /*
4207 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
4208 * failure return code here. Also the application may wish the complete
4209 * the handshake, and then disconnect cleanly at a higher layer, after
4210 * checking the verification status of the completed connection.
4211 *
4212 * We therefore force a certificate verification failure which will be
4213 * visible via SSL_get_verify_result() and cached as part of any resumed
4214 * session.
4215 *
4216 * Note: the permissive callback is for information gathering only, always
4217 * returns success, and does not affect verification status. Only the
4218 * strict callback or a custom application-specified callback can trigger
4219 * connection failure or record a verification error.
4220 */
4221 if (ret <= 0)
4222 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
4223 return ret;
4224 }
4225
4226 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
4227 {
4228 switch (validation_mode) {
4229 default:
4230 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4231 return 0;
4232 case SSL_CT_VALIDATION_PERMISSIVE:
4233 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
4234 case SSL_CT_VALIDATION_STRICT:
4235 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
4236 }
4237 }
4238
4239 int SSL_enable_ct(SSL *s, int validation_mode)
4240 {
4241 switch (validation_mode) {
4242 default:
4243 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
4244 return 0;
4245 case SSL_CT_VALIDATION_PERMISSIVE:
4246 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
4247 case SSL_CT_VALIDATION_STRICT:
4248 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
4249 }
4250 }
4251
4252 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
4253 {
4254 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
4255 }
4256
4257 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
4258 {
4259 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
4260 }
4261
4262 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
4263 {
4264 CTLOG_STORE_free(ctx->ctlog_store);
4265 ctx->ctlog_store = logs;
4266 }
4267
4268 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
4269 {
4270 return ctx->ctlog_store;
4271 }
4272
4273 #endif