]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
Auto init/de-init libssl
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * ! \file ssl/ssl_lib.c \brief Version independent SSL functions.
3 */
4 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * All rights reserved.
6 *
7 * This package is an SSL implementation written
8 * by Eric Young (eay@cryptsoft.com).
9 * The implementation was written so as to conform with Netscapes SSL.
10 *
11 * This library is free for commercial and non-commercial use as long as
12 * the following conditions are aheared to. The following conditions
13 * apply to all code found in this distribution, be it the RC4, RSA,
14 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
15 * included with this distribution is covered by the same copyright terms
16 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
17 *
18 * Copyright remains Eric Young's, and as such any Copyright notices in
19 * the code are not to be removed.
20 * If this package is used in a product, Eric Young should be given attribution
21 * as the author of the parts of the library used.
22 * This can be in the form of a textual message at program startup or
23 * in documentation (online or textual) provided with the package.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. All advertising materials mentioning features or use of this software
34 * must display the following acknowledgement:
35 * "This product includes cryptographic software written by
36 * Eric Young (eay@cryptsoft.com)"
37 * The word 'cryptographic' can be left out if the rouines from the library
38 * being used are not cryptographic related :-).
39 * 4. If you include any Windows specific code (or a derivative thereof) from
40 * the apps directory (application code) you must include an acknowledgement:
41 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
42 *
43 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 *
55 * The licence and distribution terms for any publically available version or
56 * derivative of this code cannot be changed. i.e. this code cannot simply be
57 * copied and put under another distribution licence
58 * [including the GNU Public Licence.]
59 */
60 /* ====================================================================
61 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 *
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 *
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in
72 * the documentation and/or other materials provided with the
73 * distribution.
74 *
75 * 3. All advertising materials mentioning features or use of this
76 * software must display the following acknowledgment:
77 * "This product includes software developed by the OpenSSL Project
78 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
79 *
80 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
81 * endorse or promote products derived from this software without
82 * prior written permission. For written permission, please contact
83 * openssl-core@openssl.org.
84 *
85 * 5. Products derived from this software may not be called "OpenSSL"
86 * nor may "OpenSSL" appear in their names without prior written
87 * permission of the OpenSSL Project.
88 *
89 * 6. Redistributions of any form whatsoever must retain the following
90 * acknowledgment:
91 * "This product includes software developed by the OpenSSL Project
92 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
95 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
97 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
98 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
99 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
100 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
101 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
103 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
104 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
105 * OF THE POSSIBILITY OF SUCH DAMAGE.
106 * ====================================================================
107 *
108 * This product includes cryptographic software written by Eric Young
109 * (eay@cryptsoft.com). This product includes software written by Tim
110 * Hudson (tjh@cryptsoft.com).
111 *
112 */
113 /* ====================================================================
114 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
115 * ECC cipher suite support in OpenSSL originally developed by
116 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
117 */
118 /* ====================================================================
119 * Copyright 2005 Nokia. All rights reserved.
120 *
121 * The portions of the attached software ("Contribution") is developed by
122 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
123 * license.
124 *
125 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
126 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
127 * support (see RFC 4279) to OpenSSL.
128 *
129 * No patent licenses or other rights except those expressly stated in
130 * the OpenSSL open source license shall be deemed granted or received
131 * expressly, by implication, estoppel, or otherwise.
132 *
133 * No assurances are provided by Nokia that the Contribution does not
134 * infringe the patent or other intellectual property rights of any third
135 * party or that the license provides you with all the necessary rights
136 * to make use of the Contribution.
137 *
138 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
139 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
140 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
141 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
142 * OTHERWISE.
143 */
144
145 #ifdef REF_CHECK
146 # include <assert.h>
147 #endif
148 #include <stdio.h>
149 #include "ssl_locl.h"
150 #include <openssl/objects.h>
151 #include <openssl/lhash.h>
152 #include <openssl/x509v3.h>
153 #include <openssl/rand.h>
154 #include <openssl/ocsp.h>
155 #ifndef OPENSSL_NO_DH
156 # include <openssl/dh.h>
157 #endif
158 #ifndef OPENSSL_NO_ENGINE
159 # include <openssl/engine.h>
160 #endif
161 #include <openssl/async.h>
162
163 const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
164
165 SSL3_ENC_METHOD ssl3_undef_enc_method = {
166 /*
167 * evil casts, but these functions are only called if there's a library
168 * bug
169 */
170 (int (*)(SSL *, int))ssl_undefined_function,
171 (int (*)(SSL *, unsigned char *, int))ssl_undefined_function,
172 ssl_undefined_function,
173 (int (*)(SSL *, unsigned char *, unsigned char *, int))
174 ssl_undefined_function,
175 (int (*)(SSL *, int))ssl_undefined_function,
176 (int (*)(SSL *, const char *, int, unsigned char *))
177 ssl_undefined_function,
178 0, /* finish_mac_length */
179 NULL, /* client_finished_label */
180 0, /* client_finished_label_len */
181 NULL, /* server_finished_label */
182 0, /* server_finished_label_len */
183 (int (*)(int))ssl_undefined_function,
184 (int (*)(SSL *, unsigned char *, size_t, const char *,
185 size_t, const unsigned char *, size_t,
186 int use_context))ssl_undefined_function,
187 };
188
189 struct ssl_async_args {
190 SSL *s;
191 void *buf;
192 int num;
193 enum { READFUNC, WRITEFUNC, OTHERFUNC} type;
194 union {
195 int (*func_read)(SSL *, void *, int);
196 int (*func_write)(SSL *, const void *, int);
197 int (*func_other)(SSL *);
198 } f;
199 };
200
201 static const struct {
202 uint8_t mtype;
203 uint8_t ord;
204 int nid;
205 } dane_mds[] = {
206 { DANETLS_MATCHING_FULL, 0, NID_undef },
207 { DANETLS_MATCHING_2256, 1, NID_sha256 },
208 { DANETLS_MATCHING_2512, 2, NID_sha512 },
209 };
210
211 static int dane_ctx_enable(struct dane_ctx_st *dctx)
212 {
213 const EVP_MD **mdevp;
214 uint8_t *mdord;
215 uint8_t mdmax = DANETLS_MATCHING_LAST;
216 int n = ((int) mdmax) + 1; /* int to handle PrivMatch(255) */
217 size_t i;
218
219 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
220 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
221
222 if (mdord == NULL || mdevp == NULL) {
223 OPENSSL_free(mdevp);
224 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
225 return 0;
226 }
227
228 /* Install default entries */
229 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
230 const EVP_MD *md;
231
232 if (dane_mds[i].nid == NID_undef ||
233 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
234 continue;
235 mdevp[dane_mds[i].mtype] = md;
236 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
237 }
238
239 dctx->mdevp = mdevp;
240 dctx->mdord = mdord;
241 dctx->mdmax = mdmax;
242
243 return 1;
244 }
245
246 static void dane_ctx_final(struct dane_ctx_st *dctx)
247 {
248 OPENSSL_free(dctx->mdevp);
249 dctx->mdevp = NULL;
250
251 OPENSSL_free(dctx->mdord);
252 dctx->mdord = NULL;
253 dctx->mdmax = 0;
254 }
255
256 static void tlsa_free(danetls_record *t)
257 {
258 if (t == NULL)
259 return;
260 OPENSSL_free(t->data);
261 EVP_PKEY_free(t->spki);
262 OPENSSL_free(t);
263 }
264
265 static void dane_final(struct dane_st *dane)
266 {
267 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
268 dane->trecs = NULL;
269
270 sk_X509_pop_free(dane->certs, X509_free);
271 dane->certs = NULL;
272
273 X509_free(dane->mcert);
274 dane->mcert = NULL;
275 dane->mtlsa = NULL;
276 dane->mdpth = -1;
277 dane->pdpth = -1;
278 }
279
280 /*
281 * dane_copy - Copy dane configuration, sans verification state.
282 */
283 static int ssl_dane_dup(SSL *to, SSL *from)
284 {
285 int num;
286 int i;
287
288 if (!DANETLS_ENABLED(&from->dane))
289 return 1;
290
291 dane_final(&to->dane);
292
293 num = sk_danetls_record_num(from->dane.trecs);
294 for (i = 0; i < num; ++i) {
295 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
296 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
297 t->data, t->dlen) <= 0)
298 return 0;
299 }
300 return 1;
301 }
302
303 static int dane_mtype_set(
304 struct dane_ctx_st *dctx,
305 const EVP_MD *md,
306 uint8_t mtype,
307 uint8_t ord)
308 {
309 int i;
310
311 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
312 SSLerr(SSL_F_DANE_MTYPE_SET,
313 SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
314 return 0;
315 }
316
317 if (mtype > dctx->mdmax) {
318 const EVP_MD **mdevp;
319 uint8_t *mdord;
320 int n = ((int) mtype) + 1;
321
322 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
323 if (mdevp == NULL) {
324 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
325 return -1;
326 }
327 dctx->mdevp = mdevp;
328
329 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
330 if (mdord == NULL) {
331 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
332 return -1;
333 }
334 dctx->mdord = mdord;
335
336 /* Zero-fill any gaps */
337 for (i = dctx->mdmax+1; i < mtype; ++i) {
338 mdevp[i] = NULL;
339 mdord[i] = 0;
340 }
341
342 dctx->mdmax = mtype;
343 }
344
345 dctx->mdevp[mtype] = md;
346 /* Coerce ordinal of disabled matching types to 0 */
347 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
348
349 return 1;
350 }
351
352 static const EVP_MD *tlsa_md_get(struct dane_st *dane, uint8_t mtype)
353 {
354 if (mtype > dane->dctx->mdmax)
355 return NULL;
356 return dane->dctx->mdevp[mtype];
357 }
358
359 static int dane_tlsa_add(
360 struct dane_st *dane,
361 uint8_t usage,
362 uint8_t selector,
363 uint8_t mtype,
364 unsigned char *data,
365 size_t dlen)
366 {
367 danetls_record *t;
368 const EVP_MD *md = NULL;
369 int ilen = (int)dlen;
370 int i;
371
372 if (dane->trecs == NULL) {
373 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
374 return -1;
375 }
376
377 if (ilen < 0 || dlen != (size_t)ilen) {
378 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
379 return 0;
380 }
381
382 if (usage > DANETLS_USAGE_LAST) {
383 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
384 return 0;
385 }
386
387 if (selector > DANETLS_SELECTOR_LAST) {
388 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
389 return 0;
390 }
391
392 if (mtype != DANETLS_MATCHING_FULL) {
393 md = tlsa_md_get(dane, mtype);
394 if (md == NULL) {
395 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
396 return 0;
397 }
398 }
399
400 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
402 return 0;
403 }
404 if (!data) {
405 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
406 return 0;
407 }
408
409 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
410 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
411 return -1;
412 }
413
414 t->usage = usage;
415 t->selector = selector;
416 t->mtype = mtype;
417 t->data = OPENSSL_malloc(ilen);
418 if (t->data == NULL) {
419 tlsa_free(t);
420 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
421 return -1;
422 }
423 memcpy(t->data, data, ilen);
424 t->dlen = ilen;
425
426 /* Validate and cache full certificate or public key */
427 if (mtype == DANETLS_MATCHING_FULL) {
428 const unsigned char *p = data;
429 X509 *cert = NULL;
430 EVP_PKEY *pkey = NULL;
431
432 switch (selector) {
433 case DANETLS_SELECTOR_CERT:
434 if (!d2i_X509(&cert, &p, dlen) || p < data ||
435 dlen != (size_t)(p - data)) {
436 tlsa_free(t);
437 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
438 return 0;
439 }
440 if (X509_get0_pubkey(cert) == NULL) {
441 tlsa_free(t);
442 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
443 return 0;
444 }
445
446 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
447 X509_free(cert);
448 break;
449 }
450
451 /*
452 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
453 * records that contain full certificates of trust-anchors that are
454 * not present in the wire chain. For usage PKIX-TA(0), we augment
455 * the chain with untrusted Full(0) certificates from DNS, in case
456 * they are missing from the chain.
457 */
458 if ((dane->certs == NULL &&
459 (dane->certs = sk_X509_new_null()) == NULL) ||
460 !sk_X509_push(dane->certs, cert)) {
461 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
462 X509_free(cert);
463 tlsa_free(t);
464 return -1;
465 }
466 break;
467
468 case DANETLS_SELECTOR_SPKI:
469 if (!d2i_PUBKEY(&pkey, &p, dlen) || p < data ||
470 dlen != (size_t)(p - data)) {
471 tlsa_free(t);
472 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
473 return 0;
474 }
475
476 /*
477 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
478 * records that contain full bare keys of trust-anchors that are
479 * not present in the wire chain.
480 */
481 if (usage == DANETLS_USAGE_DANE_TA)
482 t->spki = pkey;
483 else
484 EVP_PKEY_free(pkey);
485 break;
486 }
487 }
488
489 /*-
490 * Find the right insertion point for the new record.
491 *
492 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
493 * they can be processed first, as they require no chain building, and no
494 * expiration or hostname checks. Because DANE-EE(3) is numerically
495 * largest, this is accomplished via descending sort by "usage".
496 *
497 * We also sort in descending order by matching ordinal to simplify
498 * the implementation of digest agility in the verification code.
499 *
500 * The choice of order for the selector is not significant, so we
501 * use the same descending order for consistency.
502 */
503 for (i = 0; i < sk_danetls_record_num(dane->trecs); ++i) {
504 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
505 if (rec->usage > usage)
506 continue;
507 if (rec->usage < usage)
508 break;
509 if (rec->selector > selector)
510 continue;
511 if (rec->selector < selector)
512 break;
513 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
514 continue;
515 break;
516 }
517
518 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
519 tlsa_free(t);
520 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
521 return -1;
522 }
523 dane->umask |= DANETLS_USAGE_BIT(usage);
524
525 return 1;
526 }
527
528 static void clear_ciphers(SSL *s)
529 {
530 /* clear the current cipher */
531 ssl_clear_cipher_ctx(s);
532 ssl_clear_hash_ctx(&s->read_hash);
533 ssl_clear_hash_ctx(&s->write_hash);
534 }
535
536 int SSL_clear(SSL *s)
537 {
538 if (s->method == NULL) {
539 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
540 return (0);
541 }
542
543 if (ssl_clear_bad_session(s)) {
544 SSL_SESSION_free(s->session);
545 s->session = NULL;
546 }
547
548 s->error = 0;
549 s->hit = 0;
550 s->shutdown = 0;
551
552 if (s->renegotiate) {
553 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
554 return 0;
555 }
556
557 ossl_statem_clear(s);
558
559 s->version = s->method->version;
560 s->client_version = s->version;
561 s->rwstate = SSL_NOTHING;
562
563 BUF_MEM_free(s->init_buf);
564 s->init_buf = NULL;
565 clear_ciphers(s);
566 s->first_packet = 0;
567
568 /* Reset DANE verification result state */
569 s->dane.mdpth = -1;
570 s->dane.pdpth = -1;
571 X509_free(s->dane.mcert);
572 s->dane.mcert = NULL;
573 s->dane.mtlsa = NULL;
574
575 /* Clear the verification result peername */
576 X509_VERIFY_PARAM_move_peername(s->param, NULL);
577
578 /*
579 * Check to see if we were changed into a different method, if so, revert
580 * back if we are not doing session-id reuse.
581 */
582 if (!ossl_statem_get_in_handshake(s) && (s->session == NULL)
583 && (s->method != s->ctx->method)) {
584 s->method->ssl_free(s);
585 s->method = s->ctx->method;
586 if (!s->method->ssl_new(s))
587 return (0);
588 } else
589 s->method->ssl_clear(s);
590
591 RECORD_LAYER_clear(&s->rlayer);
592
593 return (1);
594 }
595
596 /** Used to change an SSL_CTXs default SSL method type */
597 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
598 {
599 STACK_OF(SSL_CIPHER) *sk;
600
601 ctx->method = meth;
602
603 sk = ssl_create_cipher_list(ctx->method, &(ctx->cipher_list),
604 &(ctx->cipher_list_by_id),
605 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
606 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
607 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION,
608 SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
609 return (0);
610 }
611 return (1);
612 }
613
614 SSL *SSL_new(SSL_CTX *ctx)
615 {
616 SSL *s;
617
618 if (ctx == NULL) {
619 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
620 return (NULL);
621 }
622 if (ctx->method == NULL) {
623 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
624 return (NULL);
625 }
626
627 s = OPENSSL_zalloc(sizeof(*s));
628 if (s == NULL)
629 goto err;
630
631 RECORD_LAYER_init(&s->rlayer, s);
632
633 s->options = ctx->options;
634 s->min_proto_version = ctx->min_proto_version;
635 s->max_proto_version = ctx->max_proto_version;
636 s->mode = ctx->mode;
637 s->max_cert_list = ctx->max_cert_list;
638 s->references = 1;
639
640 /*
641 * Earlier library versions used to copy the pointer to the CERT, not
642 * its contents; only when setting new parameters for the per-SSL
643 * copy, ssl_cert_new would be called (and the direct reference to
644 * the per-SSL_CTX settings would be lost, but those still were
645 * indirectly accessed for various purposes, and for that reason they
646 * used to be known as s->ctx->default_cert). Now we don't look at the
647 * SSL_CTX's CERT after having duplicated it once.
648 */
649 s->cert = ssl_cert_dup(ctx->cert);
650 if (s->cert == NULL)
651 goto err;
652
653 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
654 s->msg_callback = ctx->msg_callback;
655 s->msg_callback_arg = ctx->msg_callback_arg;
656 s->verify_mode = ctx->verify_mode;
657 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
658 s->sid_ctx_length = ctx->sid_ctx_length;
659 OPENSSL_assert(s->sid_ctx_length <= sizeof s->sid_ctx);
660 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
661 s->verify_callback = ctx->default_verify_callback;
662 s->generate_session_id = ctx->generate_session_id;
663
664 s->param = X509_VERIFY_PARAM_new();
665 if (s->param == NULL)
666 goto err;
667 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
668 s->quiet_shutdown = ctx->quiet_shutdown;
669 s->max_send_fragment = ctx->max_send_fragment;
670
671 CRYPTO_add(&ctx->references, 1, CRYPTO_LOCK_SSL_CTX);
672 s->ctx = ctx;
673 s->tlsext_debug_cb = 0;
674 s->tlsext_debug_arg = NULL;
675 s->tlsext_ticket_expected = 0;
676 s->tlsext_status_type = -1;
677 s->tlsext_status_expected = 0;
678 s->tlsext_ocsp_ids = NULL;
679 s->tlsext_ocsp_exts = NULL;
680 s->tlsext_ocsp_resp = NULL;
681 s->tlsext_ocsp_resplen = -1;
682 CRYPTO_add(&ctx->references, 1, CRYPTO_LOCK_SSL_CTX);
683 s->initial_ctx = ctx;
684 # ifndef OPENSSL_NO_EC
685 if (ctx->tlsext_ecpointformatlist) {
686 s->tlsext_ecpointformatlist =
687 OPENSSL_memdup(ctx->tlsext_ecpointformatlist,
688 ctx->tlsext_ecpointformatlist_length);
689 if (!s->tlsext_ecpointformatlist)
690 goto err;
691 s->tlsext_ecpointformatlist_length =
692 ctx->tlsext_ecpointformatlist_length;
693 }
694 if (ctx->tlsext_ellipticcurvelist) {
695 s->tlsext_ellipticcurvelist =
696 OPENSSL_memdup(ctx->tlsext_ellipticcurvelist,
697 ctx->tlsext_ellipticcurvelist_length);
698 if (!s->tlsext_ellipticcurvelist)
699 goto err;
700 s->tlsext_ellipticcurvelist_length =
701 ctx->tlsext_ellipticcurvelist_length;
702 }
703 # endif
704 # ifndef OPENSSL_NO_NEXTPROTONEG
705 s->next_proto_negotiated = NULL;
706 # endif
707
708 if (s->ctx->alpn_client_proto_list) {
709 s->alpn_client_proto_list =
710 OPENSSL_malloc(s->ctx->alpn_client_proto_list_len);
711 if (s->alpn_client_proto_list == NULL)
712 goto err;
713 memcpy(s->alpn_client_proto_list, s->ctx->alpn_client_proto_list,
714 s->ctx->alpn_client_proto_list_len);
715 s->alpn_client_proto_list_len = s->ctx->alpn_client_proto_list_len;
716 }
717
718 s->verified_chain = NULL;
719 s->verify_result = X509_V_OK;
720
721 s->default_passwd_callback = ctx->default_passwd_callback;
722 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
723
724 s->method = ctx->method;
725
726 if (!s->method->ssl_new(s))
727 goto err;
728
729 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
730
731 if (!SSL_clear(s))
732 goto err;
733
734 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
735
736 #ifndef OPENSSL_NO_PSK
737 s->psk_client_callback = ctx->psk_client_callback;
738 s->psk_server_callback = ctx->psk_server_callback;
739 #endif
740
741 s->job = NULL;
742
743 return (s);
744 err:
745 SSL_free(s);
746 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
747 return (NULL);
748 }
749
750 void SSL_up_ref(SSL *s)
751 {
752 CRYPTO_add(&s->references, 1, CRYPTO_LOCK_SSL);
753 }
754
755 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
756 unsigned int sid_ctx_len)
757 {
758 if (sid_ctx_len > sizeof ctx->sid_ctx) {
759 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
760 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
761 return 0;
762 }
763 ctx->sid_ctx_length = sid_ctx_len;
764 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
765
766 return 1;
767 }
768
769 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
770 unsigned int sid_ctx_len)
771 {
772 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
773 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
774 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
775 return 0;
776 }
777 ssl->sid_ctx_length = sid_ctx_len;
778 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
779
780 return 1;
781 }
782
783 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
784 {
785 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
786 ctx->generate_session_id = cb;
787 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
788 return 1;
789 }
790
791 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
792 {
793 CRYPTO_w_lock(CRYPTO_LOCK_SSL);
794 ssl->generate_session_id = cb;
795 CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
796 return 1;
797 }
798
799 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
800 unsigned int id_len)
801 {
802 /*
803 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
804 * we can "construct" a session to give us the desired check - ie. to
805 * find if there's a session in the hash table that would conflict with
806 * any new session built out of this id/id_len and the ssl_version in use
807 * by this SSL.
808 */
809 SSL_SESSION r, *p;
810
811 if (id_len > sizeof r.session_id)
812 return 0;
813
814 r.ssl_version = ssl->version;
815 r.session_id_length = id_len;
816 memcpy(r.session_id, id, id_len);
817
818 CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
819 p = lh_SSL_SESSION_retrieve(ssl->ctx->sessions, &r);
820 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
821 return (p != NULL);
822 }
823
824 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
825 {
826 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
827 }
828
829 int SSL_set_purpose(SSL *s, int purpose)
830 {
831 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
832 }
833
834 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
835 {
836 return X509_VERIFY_PARAM_set_trust(s->param, trust);
837 }
838
839 int SSL_set_trust(SSL *s, int trust)
840 {
841 return X509_VERIFY_PARAM_set_trust(s->param, trust);
842 }
843
844 int SSL_set1_host(SSL *s, const char *hostname)
845 {
846 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
847 }
848
849 int SSL_add1_host(SSL *s, const char *hostname)
850 {
851 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
852 }
853
854 void SSL_set_hostflags(SSL *s, unsigned int flags)
855 {
856 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
857 }
858
859 const char *SSL_get0_peername(SSL *s)
860 {
861 return X509_VERIFY_PARAM_get0_peername(s->param);
862 }
863
864 int SSL_CTX_dane_enable(SSL_CTX *ctx)
865 {
866 return dane_ctx_enable(&ctx->dane);
867 }
868
869 int SSL_dane_enable(SSL *s, const char *basedomain)
870 {
871 struct dane_st *dane = &s->dane;
872
873 if (s->ctx->dane.mdmax == 0) {
874 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
875 return 0;
876 }
877 if (dane->trecs != NULL) {
878 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
879 return 0;
880 }
881
882 /*
883 * Default SNI name. This rejects empty names, while set1_host below
884 * accepts them and disables host name checks. To avoid side-effects with
885 * invalid input, set the SNI name first.
886 */
887 if (s->tlsext_hostname == NULL) {
888 if (!SSL_set_tlsext_host_name(s, basedomain)) {
889 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
890 return -1;
891 }
892 }
893
894 /* Primary RFC6125 reference identifier */
895 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
896 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
897 return -1;
898 }
899
900 dane->mdpth = -1;
901 dane->pdpth = -1;
902 dane->dctx = &s->ctx->dane;
903 dane->trecs = sk_danetls_record_new_null();
904
905 if (dane->trecs == NULL) {
906 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
907 return -1;
908 }
909 return 1;
910 }
911
912 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
913 {
914 struct dane_st *dane = &s->dane;
915
916 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
917 return -1;
918 if (dane->mtlsa) {
919 if (mcert)
920 *mcert = dane->mcert;
921 if (mspki)
922 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
923 }
924 return dane->mdpth;
925 }
926
927 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
928 uint8_t *mtype, unsigned const char **data, size_t *dlen)
929 {
930 struct dane_st *dane = &s->dane;
931
932 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
933 return -1;
934 if (dane->mtlsa) {
935 if (usage)
936 *usage = dane->mtlsa->usage;
937 if (selector)
938 *selector = dane->mtlsa->selector;
939 if (mtype)
940 *mtype = dane->mtlsa->mtype;
941 if (data)
942 *data = dane->mtlsa->data;
943 if (dlen)
944 *dlen = dane->mtlsa->dlen;
945 }
946 return dane->mdpth;
947 }
948
949 struct dane_st *SSL_get0_dane(SSL *s)
950 {
951 return &s->dane;
952 }
953
954 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
955 uint8_t mtype, unsigned char *data, size_t dlen)
956 {
957 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
958 }
959
960 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, uint8_t ord)
961 {
962 return dane_mtype_set(&ctx->dane, md, mtype, ord);
963 }
964
965 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
966 {
967 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
968 }
969
970 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
971 {
972 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
973 }
974
975 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
976 {
977 return ctx->param;
978 }
979
980 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
981 {
982 return ssl->param;
983 }
984
985 void SSL_certs_clear(SSL *s)
986 {
987 ssl_cert_clear_certs(s->cert);
988 }
989
990 void SSL_free(SSL *s)
991 {
992 int i;
993
994 if (s == NULL)
995 return;
996
997 i = CRYPTO_add(&s->references, -1, CRYPTO_LOCK_SSL);
998 #ifdef REF_PRINT
999 REF_PRINT("SSL", s);
1000 #endif
1001 if (i > 0)
1002 return;
1003 #ifdef REF_CHECK
1004 if (i < 0) {
1005 fprintf(stderr, "SSL_free, bad reference count\n");
1006 abort(); /* ok */
1007 }
1008 #endif
1009
1010 X509_VERIFY_PARAM_free(s->param);
1011 dane_final(&s->dane);
1012 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1013
1014 if (s->bbio != NULL) {
1015 /* If the buffering BIO is in place, pop it off */
1016 if (s->bbio == s->wbio) {
1017 s->wbio = BIO_pop(s->wbio);
1018 }
1019 BIO_free(s->bbio);
1020 s->bbio = NULL;
1021 }
1022 BIO_free_all(s->rbio);
1023 if (s->wbio != s->rbio)
1024 BIO_free_all(s->wbio);
1025
1026 BUF_MEM_free(s->init_buf);
1027
1028 /* add extra stuff */
1029 sk_SSL_CIPHER_free(s->cipher_list);
1030 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1031
1032 /* Make the next call work :-) */
1033 if (s->session != NULL) {
1034 ssl_clear_bad_session(s);
1035 SSL_SESSION_free(s->session);
1036 }
1037
1038 clear_ciphers(s);
1039
1040 ssl_cert_free(s->cert);
1041 /* Free up if allocated */
1042
1043 OPENSSL_free(s->tlsext_hostname);
1044 SSL_CTX_free(s->initial_ctx);
1045 #ifndef OPENSSL_NO_EC
1046 OPENSSL_free(s->tlsext_ecpointformatlist);
1047 OPENSSL_free(s->tlsext_ellipticcurvelist);
1048 #endif /* OPENSSL_NO_EC */
1049 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts, X509_EXTENSION_free);
1050 sk_OCSP_RESPID_pop_free(s->tlsext_ocsp_ids, OCSP_RESPID_free);
1051 OPENSSL_free(s->tlsext_ocsp_resp);
1052 OPENSSL_free(s->alpn_client_proto_list);
1053
1054 sk_X509_NAME_pop_free(s->client_CA, X509_NAME_free);
1055
1056 sk_X509_pop_free(s->verified_chain, X509_free);
1057
1058 if (s->method != NULL)
1059 s->method->ssl_free(s);
1060
1061 RECORD_LAYER_release(&s->rlayer);
1062
1063 SSL_CTX_free(s->ctx);
1064
1065 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1066 OPENSSL_free(s->next_proto_negotiated);
1067 #endif
1068
1069 #ifndef OPENSSL_NO_SRTP
1070 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1071 #endif
1072
1073 OPENSSL_free(s);
1074 }
1075
1076 void SSL_set_rbio(SSL *s, BIO *rbio)
1077 {
1078 if (s->rbio != rbio)
1079 BIO_free_all(s->rbio);
1080 s->rbio = rbio;
1081 }
1082
1083 void SSL_set_wbio(SSL *s, BIO *wbio)
1084 {
1085 /*
1086 * If the output buffering BIO is still in place, remove it
1087 */
1088 if (s->bbio != NULL) {
1089 if (s->wbio == s->bbio) {
1090 s->wbio = s->wbio->next_bio;
1091 s->bbio->next_bio = NULL;
1092 }
1093 }
1094 if (s->wbio != wbio && s->rbio != s->wbio)
1095 BIO_free_all(s->wbio);
1096 s->wbio = wbio;
1097 }
1098
1099 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1100 {
1101 SSL_set_wbio(s, wbio);
1102 SSL_set_rbio(s, rbio);
1103 }
1104
1105 BIO *SSL_get_rbio(const SSL *s)
1106 {
1107 return (s->rbio);
1108 }
1109
1110 BIO *SSL_get_wbio(const SSL *s)
1111 {
1112 return (s->wbio);
1113 }
1114
1115 int SSL_get_fd(const SSL *s)
1116 {
1117 return (SSL_get_rfd(s));
1118 }
1119
1120 int SSL_get_rfd(const SSL *s)
1121 {
1122 int ret = -1;
1123 BIO *b, *r;
1124
1125 b = SSL_get_rbio(s);
1126 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1127 if (r != NULL)
1128 BIO_get_fd(r, &ret);
1129 return (ret);
1130 }
1131
1132 int SSL_get_wfd(const SSL *s)
1133 {
1134 int ret = -1;
1135 BIO *b, *r;
1136
1137 b = SSL_get_wbio(s);
1138 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1139 if (r != NULL)
1140 BIO_get_fd(r, &ret);
1141 return (ret);
1142 }
1143
1144 #ifndef OPENSSL_NO_SOCK
1145 int SSL_set_fd(SSL *s, int fd)
1146 {
1147 int ret = 0;
1148 BIO *bio = NULL;
1149
1150 bio = BIO_new(BIO_s_socket());
1151
1152 if (bio == NULL) {
1153 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1154 goto err;
1155 }
1156 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1157 SSL_set_bio(s, bio, bio);
1158 ret = 1;
1159 err:
1160 return (ret);
1161 }
1162
1163 int SSL_set_wfd(SSL *s, int fd)
1164 {
1165 int ret = 0;
1166 BIO *bio = NULL;
1167
1168 if ((s->rbio == NULL) || (BIO_method_type(s->rbio) != BIO_TYPE_SOCKET)
1169 || ((int)BIO_get_fd(s->rbio, NULL) != fd)) {
1170 bio = BIO_new(BIO_s_socket());
1171
1172 if (bio == NULL) {
1173 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1174 goto err;
1175 }
1176 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1177 SSL_set_bio(s, SSL_get_rbio(s), bio);
1178 } else
1179 SSL_set_bio(s, SSL_get_rbio(s), SSL_get_rbio(s));
1180 ret = 1;
1181 err:
1182 return (ret);
1183 }
1184
1185 int SSL_set_rfd(SSL *s, int fd)
1186 {
1187 int ret = 0;
1188 BIO *bio = NULL;
1189
1190 if ((s->wbio == NULL) || (BIO_method_type(s->wbio) != BIO_TYPE_SOCKET)
1191 || ((int)BIO_get_fd(s->wbio, NULL) != fd)) {
1192 bio = BIO_new(BIO_s_socket());
1193
1194 if (bio == NULL) {
1195 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1196 goto err;
1197 }
1198 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1199 SSL_set_bio(s, bio, SSL_get_wbio(s));
1200 } else
1201 SSL_set_bio(s, SSL_get_wbio(s), SSL_get_wbio(s));
1202 ret = 1;
1203 err:
1204 return (ret);
1205 }
1206 #endif
1207
1208 /* return length of latest Finished message we sent, copy to 'buf' */
1209 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1210 {
1211 size_t ret = 0;
1212
1213 if (s->s3 != NULL) {
1214 ret = s->s3->tmp.finish_md_len;
1215 if (count > ret)
1216 count = ret;
1217 memcpy(buf, s->s3->tmp.finish_md, count);
1218 }
1219 return ret;
1220 }
1221
1222 /* return length of latest Finished message we expected, copy to 'buf' */
1223 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1224 {
1225 size_t ret = 0;
1226
1227 if (s->s3 != NULL) {
1228 ret = s->s3->tmp.peer_finish_md_len;
1229 if (count > ret)
1230 count = ret;
1231 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1232 }
1233 return ret;
1234 }
1235
1236 int SSL_get_verify_mode(const SSL *s)
1237 {
1238 return (s->verify_mode);
1239 }
1240
1241 int SSL_get_verify_depth(const SSL *s)
1242 {
1243 return X509_VERIFY_PARAM_get_depth(s->param);
1244 }
1245
1246 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1247 return (s->verify_callback);
1248 }
1249
1250 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1251 {
1252 return (ctx->verify_mode);
1253 }
1254
1255 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1256 {
1257 return X509_VERIFY_PARAM_get_depth(ctx->param);
1258 }
1259
1260 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1261 return (ctx->default_verify_callback);
1262 }
1263
1264 void SSL_set_verify(SSL *s, int mode,
1265 int (*callback) (int ok, X509_STORE_CTX *ctx))
1266 {
1267 s->verify_mode = mode;
1268 if (callback != NULL)
1269 s->verify_callback = callback;
1270 }
1271
1272 void SSL_set_verify_depth(SSL *s, int depth)
1273 {
1274 X509_VERIFY_PARAM_set_depth(s->param, depth);
1275 }
1276
1277 void SSL_set_read_ahead(SSL *s, int yes)
1278 {
1279 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1280 }
1281
1282 int SSL_get_read_ahead(const SSL *s)
1283 {
1284 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1285 }
1286
1287 int SSL_pending(const SSL *s)
1288 {
1289 /*
1290 * SSL_pending cannot work properly if read-ahead is enabled
1291 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1292 * impossible to fix since SSL_pending cannot report errors that may be
1293 * observed while scanning the new data. (Note that SSL_pending() is
1294 * often used as a boolean value, so we'd better not return -1.)
1295 */
1296 return (s->method->ssl_pending(s));
1297 }
1298
1299 X509 *SSL_get_peer_certificate(const SSL *s)
1300 {
1301 X509 *r;
1302
1303 if ((s == NULL) || (s->session == NULL))
1304 r = NULL;
1305 else
1306 r = s->session->peer;
1307
1308 if (r == NULL)
1309 return (r);
1310
1311 X509_up_ref(r);
1312
1313 return (r);
1314 }
1315
1316 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1317 {
1318 STACK_OF(X509) *r;
1319
1320 if ((s == NULL) || (s->session == NULL))
1321 r = NULL;
1322 else
1323 r = s->session->peer_chain;
1324
1325 /*
1326 * If we are a client, cert_chain includes the peer's own certificate; if
1327 * we are a server, it does not.
1328 */
1329
1330 return (r);
1331 }
1332
1333 /*
1334 * Now in theory, since the calling process own 't' it should be safe to
1335 * modify. We need to be able to read f without being hassled
1336 */
1337 int SSL_copy_session_id(SSL *t, const SSL *f)
1338 {
1339 /* Do we need to to SSL locking? */
1340 if (!SSL_set_session(t, SSL_get_session(f))) {
1341 return 0;
1342 }
1343
1344 /*
1345 * what if we are setup for one protocol version but want to talk another
1346 */
1347 if (t->method != f->method) {
1348 t->method->ssl_free(t);
1349 t->method = f->method;
1350 if (t->method->ssl_new(t) == 0)
1351 return 0;
1352 }
1353
1354 CRYPTO_add(&f->cert->references, 1, CRYPTO_LOCK_SSL_CERT);
1355 ssl_cert_free(t->cert);
1356 t->cert = f->cert;
1357 if (!SSL_set_session_id_context(t, f->sid_ctx, f->sid_ctx_length)) {
1358 return 0;
1359 }
1360
1361 return 1;
1362 }
1363
1364 /* Fix this so it checks all the valid key/cert options */
1365 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1366 {
1367 if ((ctx == NULL) ||
1368 (ctx->cert->key->x509 == NULL)) {
1369 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,
1370 SSL_R_NO_CERTIFICATE_ASSIGNED);
1371 return (0);
1372 }
1373 if (ctx->cert->key->privatekey == NULL) {
1374 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,
1375 SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1376 return (0);
1377 }
1378 return (X509_check_private_key
1379 (ctx->cert->key->x509, ctx->cert->key->privatekey));
1380 }
1381
1382 /* Fix this function so that it takes an optional type parameter */
1383 int SSL_check_private_key(const SSL *ssl)
1384 {
1385 if (ssl == NULL) {
1386 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1387 return (0);
1388 }
1389 if (ssl->cert->key->x509 == NULL) {
1390 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1391 return (0);
1392 }
1393 if (ssl->cert->key->privatekey == NULL) {
1394 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1395 return (0);
1396 }
1397 return (X509_check_private_key(ssl->cert->key->x509,
1398 ssl->cert->key->privatekey));
1399 }
1400
1401 int SSL_waiting_for_async(SSL *s)
1402 {
1403 if(s->job)
1404 return 1;
1405
1406 return 0;
1407 }
1408
1409 int SSL_get_async_wait_fd(SSL *s)
1410 {
1411 if (!s->job)
1412 return -1;
1413
1414 return ASYNC_get_wait_fd(s->job);
1415 }
1416
1417 int SSL_accept(SSL *s)
1418 {
1419 if (s->handshake_func == 0) {
1420 /* Not properly initialized yet */
1421 SSL_set_accept_state(s);
1422 }
1423
1424 return SSL_do_handshake(s);
1425 }
1426
1427 int SSL_connect(SSL *s)
1428 {
1429 if (s->handshake_func == 0) {
1430 /* Not properly initialized yet */
1431 SSL_set_connect_state(s);
1432 }
1433
1434 return SSL_do_handshake(s);
1435 }
1436
1437 long SSL_get_default_timeout(const SSL *s)
1438 {
1439 return (s->method->get_timeout());
1440 }
1441
1442 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1443 int (*func)(void *)) {
1444 int ret;
1445 switch(ASYNC_start_job(&s->job, &ret, func, args,
1446 sizeof(struct ssl_async_args))) {
1447 case ASYNC_ERR:
1448 s->rwstate = SSL_NOTHING;
1449 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1450 return -1;
1451 case ASYNC_PAUSE:
1452 s->rwstate = SSL_ASYNC_PAUSED;
1453 return -1;
1454 case ASYNC_FINISH:
1455 s->job = NULL;
1456 return ret;
1457 default:
1458 s->rwstate = SSL_NOTHING;
1459 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1460 /* Shouldn't happen */
1461 return -1;
1462 }
1463 }
1464
1465 static int ssl_io_intern(void *vargs)
1466 {
1467 struct ssl_async_args *args;
1468 SSL *s;
1469 void *buf;
1470 int num;
1471
1472 args = (struct ssl_async_args *)vargs;
1473 s = args->s;
1474 buf = args->buf;
1475 num = args->num;
1476 switch (args->type) {
1477 case READFUNC:
1478 return args->f.func_read(s, buf, num);
1479 case WRITEFUNC:
1480 return args->f.func_write(s, buf, num);
1481 case OTHERFUNC:
1482 return args->f.func_other(s);
1483 }
1484 return -1;
1485 }
1486
1487 int SSL_read(SSL *s, void *buf, int num)
1488 {
1489 if (s->handshake_func == 0) {
1490 SSLerr(SSL_F_SSL_READ, SSL_R_UNINITIALIZED);
1491 return -1;
1492 }
1493
1494 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1495 s->rwstate = SSL_NOTHING;
1496 return (0);
1497 }
1498
1499 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1500 struct ssl_async_args args;
1501
1502 args.s = s;
1503 args.buf = buf;
1504 args.num = num;
1505 args.type = READFUNC;
1506 args.f.func_read = s->method->ssl_read;
1507
1508 return ssl_start_async_job(s, &args, ssl_io_intern);
1509 } else {
1510 return s->method->ssl_read(s, buf, num);
1511 }
1512 }
1513
1514 int SSL_peek(SSL *s, void *buf, int num)
1515 {
1516 if (s->handshake_func == 0) {
1517 SSLerr(SSL_F_SSL_PEEK, SSL_R_UNINITIALIZED);
1518 return -1;
1519 }
1520
1521 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1522 return (0);
1523 }
1524 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1525 struct ssl_async_args args;
1526
1527 args.s = s;
1528 args.buf = buf;
1529 args.num = num;
1530 args.type = READFUNC;
1531 args.f.func_read = s->method->ssl_peek;
1532
1533 return ssl_start_async_job(s, &args, ssl_io_intern);
1534 } else {
1535 return s->method->ssl_peek(s, buf, num);
1536 }
1537 }
1538
1539 int SSL_write(SSL *s, const void *buf, int num)
1540 {
1541 if (s->handshake_func == 0) {
1542 SSLerr(SSL_F_SSL_WRITE, SSL_R_UNINITIALIZED);
1543 return -1;
1544 }
1545
1546 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1547 s->rwstate = SSL_NOTHING;
1548 SSLerr(SSL_F_SSL_WRITE, SSL_R_PROTOCOL_IS_SHUTDOWN);
1549 return (-1);
1550 }
1551
1552 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1553 struct ssl_async_args args;
1554
1555 args.s = s;
1556 args.buf = (void *)buf;
1557 args.num = num;
1558 args.type = WRITEFUNC;
1559 args.f.func_write = s->method->ssl_write;
1560
1561 return ssl_start_async_job(s, &args, ssl_io_intern);
1562 } else {
1563 return s->method->ssl_write(s, buf, num);
1564 }
1565 }
1566
1567 int SSL_shutdown(SSL *s)
1568 {
1569 /*
1570 * Note that this function behaves differently from what one might
1571 * expect. Return values are 0 for no success (yet), 1 for success; but
1572 * calling it once is usually not enough, even if blocking I/O is used
1573 * (see ssl3_shutdown).
1574 */
1575
1576 if (s->handshake_func == 0) {
1577 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1578 return -1;
1579 }
1580
1581 if (!SSL_in_init(s)) {
1582 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1583 struct ssl_async_args args;
1584
1585 args.s = s;
1586 args.type = OTHERFUNC;
1587 args.f.func_other = s->method->ssl_shutdown;
1588
1589 return ssl_start_async_job(s, &args, ssl_io_intern);
1590 } else {
1591 return s->method->ssl_shutdown(s);
1592 }
1593 } else {
1594 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
1595 return -1;
1596 }
1597 }
1598
1599 int SSL_renegotiate(SSL *s)
1600 {
1601 if (s->renegotiate == 0)
1602 s->renegotiate = 1;
1603
1604 s->new_session = 1;
1605
1606 return (s->method->ssl_renegotiate(s));
1607 }
1608
1609 int SSL_renegotiate_abbreviated(SSL *s)
1610 {
1611 if (s->renegotiate == 0)
1612 s->renegotiate = 1;
1613
1614 s->new_session = 0;
1615
1616 return (s->method->ssl_renegotiate(s));
1617 }
1618
1619 int SSL_renegotiate_pending(SSL *s)
1620 {
1621 /*
1622 * becomes true when negotiation is requested; false again once a
1623 * handshake has finished
1624 */
1625 return (s->renegotiate != 0);
1626 }
1627
1628 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
1629 {
1630 long l;
1631
1632 switch (cmd) {
1633 case SSL_CTRL_GET_READ_AHEAD:
1634 return (RECORD_LAYER_get_read_ahead(&s->rlayer));
1635 case SSL_CTRL_SET_READ_AHEAD:
1636 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
1637 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
1638 return (l);
1639
1640 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1641 s->msg_callback_arg = parg;
1642 return 1;
1643
1644 case SSL_CTRL_MODE:
1645 return (s->mode |= larg);
1646 case SSL_CTRL_CLEAR_MODE:
1647 return (s->mode &= ~larg);
1648 case SSL_CTRL_GET_MAX_CERT_LIST:
1649 return (s->max_cert_list);
1650 case SSL_CTRL_SET_MAX_CERT_LIST:
1651 l = s->max_cert_list;
1652 s->max_cert_list = larg;
1653 return (l);
1654 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1655 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1656 return 0;
1657 s->max_send_fragment = larg;
1658 return 1;
1659 case SSL_CTRL_GET_RI_SUPPORT:
1660 if (s->s3)
1661 return s->s3->send_connection_binding;
1662 else
1663 return 0;
1664 case SSL_CTRL_CERT_FLAGS:
1665 return (s->cert->cert_flags |= larg);
1666 case SSL_CTRL_CLEAR_CERT_FLAGS:
1667 return (s->cert->cert_flags &= ~larg);
1668
1669 case SSL_CTRL_GET_RAW_CIPHERLIST:
1670 if (parg) {
1671 if (s->s3->tmp.ciphers_raw == NULL)
1672 return 0;
1673 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
1674 return (int)s->s3->tmp.ciphers_rawlen;
1675 } else {
1676 return TLS_CIPHER_LEN;
1677 }
1678 case SSL_CTRL_GET_EXTMS_SUPPORT:
1679 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
1680 return -1;
1681 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
1682 return 1;
1683 else
1684 return 0;
1685 case SSL_CTRL_SET_MIN_PROTO_VERSION:
1686 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
1687 &s->min_proto_version);
1688 case SSL_CTRL_SET_MAX_PROTO_VERSION:
1689 return ssl_set_version_bound(s->ctx->method->version, (int)larg,
1690 &s->max_proto_version);
1691 default:
1692 return (s->method->ssl_ctrl(s, cmd, larg, parg));
1693 }
1694 }
1695
1696 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
1697 {
1698 switch (cmd) {
1699 case SSL_CTRL_SET_MSG_CALLBACK:
1700 s->msg_callback = (void (*)
1701 (int write_p, int version, int content_type,
1702 const void *buf, size_t len, SSL *ssl,
1703 void *arg))(fp);
1704 return 1;
1705
1706 default:
1707 return (s->method->ssl_callback_ctrl(s, cmd, fp));
1708 }
1709 }
1710
1711 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
1712 {
1713 return ctx->sessions;
1714 }
1715
1716 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
1717 {
1718 long l;
1719 /* For some cases with ctx == NULL perform syntax checks */
1720 if (ctx == NULL) {
1721 switch (cmd) {
1722 #ifndef OPENSSL_NO_EC
1723 case SSL_CTRL_SET_CURVES_LIST:
1724 return tls1_set_curves_list(NULL, NULL, parg);
1725 #endif
1726 case SSL_CTRL_SET_SIGALGS_LIST:
1727 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
1728 return tls1_set_sigalgs_list(NULL, parg, 0);
1729 default:
1730 return 0;
1731 }
1732 }
1733
1734 switch (cmd) {
1735 case SSL_CTRL_GET_READ_AHEAD:
1736 return (ctx->read_ahead);
1737 case SSL_CTRL_SET_READ_AHEAD:
1738 l = ctx->read_ahead;
1739 ctx->read_ahead = larg;
1740 return (l);
1741
1742 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1743 ctx->msg_callback_arg = parg;
1744 return 1;
1745
1746 case SSL_CTRL_GET_MAX_CERT_LIST:
1747 return (ctx->max_cert_list);
1748 case SSL_CTRL_SET_MAX_CERT_LIST:
1749 l = ctx->max_cert_list;
1750 ctx->max_cert_list = larg;
1751 return (l);
1752
1753 case SSL_CTRL_SET_SESS_CACHE_SIZE:
1754 l = ctx->session_cache_size;
1755 ctx->session_cache_size = larg;
1756 return (l);
1757 case SSL_CTRL_GET_SESS_CACHE_SIZE:
1758 return (ctx->session_cache_size);
1759 case SSL_CTRL_SET_SESS_CACHE_MODE:
1760 l = ctx->session_cache_mode;
1761 ctx->session_cache_mode = larg;
1762 return (l);
1763 case SSL_CTRL_GET_SESS_CACHE_MODE:
1764 return (ctx->session_cache_mode);
1765
1766 case SSL_CTRL_SESS_NUMBER:
1767 return (lh_SSL_SESSION_num_items(ctx->sessions));
1768 case SSL_CTRL_SESS_CONNECT:
1769 return (ctx->stats.sess_connect);
1770 case SSL_CTRL_SESS_CONNECT_GOOD:
1771 return (ctx->stats.sess_connect_good);
1772 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
1773 return (ctx->stats.sess_connect_renegotiate);
1774 case SSL_CTRL_SESS_ACCEPT:
1775 return (ctx->stats.sess_accept);
1776 case SSL_CTRL_SESS_ACCEPT_GOOD:
1777 return (ctx->stats.sess_accept_good);
1778 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
1779 return (ctx->stats.sess_accept_renegotiate);
1780 case SSL_CTRL_SESS_HIT:
1781 return (ctx->stats.sess_hit);
1782 case SSL_CTRL_SESS_CB_HIT:
1783 return (ctx->stats.sess_cb_hit);
1784 case SSL_CTRL_SESS_MISSES:
1785 return (ctx->stats.sess_miss);
1786 case SSL_CTRL_SESS_TIMEOUTS:
1787 return (ctx->stats.sess_timeout);
1788 case SSL_CTRL_SESS_CACHE_FULL:
1789 return (ctx->stats.sess_cache_full);
1790 case SSL_CTRL_MODE:
1791 return (ctx->mode |= larg);
1792 case SSL_CTRL_CLEAR_MODE:
1793 return (ctx->mode &= ~larg);
1794 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1795 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1796 return 0;
1797 ctx->max_send_fragment = larg;
1798 return 1;
1799 case SSL_CTRL_CERT_FLAGS:
1800 return (ctx->cert->cert_flags |= larg);
1801 case SSL_CTRL_CLEAR_CERT_FLAGS:
1802 return (ctx->cert->cert_flags &= ~larg);
1803 case SSL_CTRL_SET_MIN_PROTO_VERSION:
1804 return ssl_set_version_bound(ctx->method->version, (int)larg,
1805 &ctx->min_proto_version);
1806 case SSL_CTRL_SET_MAX_PROTO_VERSION:
1807 return ssl_set_version_bound(ctx->method->version, (int)larg,
1808 &ctx->max_proto_version);
1809 default:
1810 return (ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg));
1811 }
1812 }
1813
1814 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
1815 {
1816 switch (cmd) {
1817 case SSL_CTRL_SET_MSG_CALLBACK:
1818 ctx->msg_callback = (void (*)
1819 (int write_p, int version, int content_type,
1820 const void *buf, size_t len, SSL *ssl,
1821 void *arg))(fp);
1822 return 1;
1823
1824 default:
1825 return (ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp));
1826 }
1827 }
1828
1829 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
1830 {
1831 if (a->id > b->id)
1832 return 1;
1833 if (a->id < b->id)
1834 return -1;
1835 return 0;
1836 }
1837
1838 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
1839 const SSL_CIPHER *const *bp)
1840 {
1841 if ((*ap)->id > (*bp)->id)
1842 return 1;
1843 if ((*ap)->id < (*bp)->id)
1844 return -1;
1845 return 0;
1846 }
1847
1848 /** return a STACK of the ciphers available for the SSL and in order of
1849 * preference */
1850 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
1851 {
1852 if (s != NULL) {
1853 if (s->cipher_list != NULL) {
1854 return (s->cipher_list);
1855 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
1856 return (s->ctx->cipher_list);
1857 }
1858 }
1859 return (NULL);
1860 }
1861
1862 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
1863 {
1864 if ((s == NULL) || (s->session == NULL) || !s->server)
1865 return NULL;
1866 return s->session->ciphers;
1867 }
1868
1869 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
1870 {
1871 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
1872 int i;
1873 ciphers = SSL_get_ciphers(s);
1874 if (!ciphers)
1875 return NULL;
1876 ssl_set_client_disabled(s);
1877 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
1878 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
1879 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED)) {
1880 if (!sk)
1881 sk = sk_SSL_CIPHER_new_null();
1882 if (!sk)
1883 return NULL;
1884 if (!sk_SSL_CIPHER_push(sk, c)) {
1885 sk_SSL_CIPHER_free(sk);
1886 return NULL;
1887 }
1888 }
1889 }
1890 return sk;
1891 }
1892
1893 /** return a STACK of the ciphers available for the SSL and in order of
1894 * algorithm id */
1895 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
1896 {
1897 if (s != NULL) {
1898 if (s->cipher_list_by_id != NULL) {
1899 return (s->cipher_list_by_id);
1900 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
1901 return (s->ctx->cipher_list_by_id);
1902 }
1903 }
1904 return (NULL);
1905 }
1906
1907 /** The old interface to get the same thing as SSL_get_ciphers() */
1908 const char *SSL_get_cipher_list(const SSL *s, int n)
1909 {
1910 const SSL_CIPHER *c;
1911 STACK_OF(SSL_CIPHER) *sk;
1912
1913 if (s == NULL)
1914 return (NULL);
1915 sk = SSL_get_ciphers(s);
1916 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
1917 return (NULL);
1918 c = sk_SSL_CIPHER_value(sk, n);
1919 if (c == NULL)
1920 return (NULL);
1921 return (c->name);
1922 }
1923
1924 /** specify the ciphers to be used by default by the SSL_CTX */
1925 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
1926 {
1927 STACK_OF(SSL_CIPHER) *sk;
1928
1929 sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
1930 &ctx->cipher_list_by_id, str, ctx->cert);
1931 /*
1932 * ssl_create_cipher_list may return an empty stack if it was unable to
1933 * find a cipher matching the given rule string (for example if the rule
1934 * string specifies a cipher which has been disabled). This is not an
1935 * error as far as ssl_create_cipher_list is concerned, and hence
1936 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
1937 */
1938 if (sk == NULL)
1939 return 0;
1940 else if (sk_SSL_CIPHER_num(sk) == 0) {
1941 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
1942 return 0;
1943 }
1944 return 1;
1945 }
1946
1947 /** specify the ciphers to be used by the SSL */
1948 int SSL_set_cipher_list(SSL *s, const char *str)
1949 {
1950 STACK_OF(SSL_CIPHER) *sk;
1951
1952 sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
1953 &s->cipher_list_by_id, str, s->cert);
1954 /* see comment in SSL_CTX_set_cipher_list */
1955 if (sk == NULL)
1956 return 0;
1957 else if (sk_SSL_CIPHER_num(sk) == 0) {
1958 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
1959 return 0;
1960 }
1961 return 1;
1962 }
1963
1964 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int len)
1965 {
1966 char *p;
1967 STACK_OF(SSL_CIPHER) *sk;
1968 const SSL_CIPHER *c;
1969 int i;
1970
1971 if ((s->session == NULL) || (s->session->ciphers == NULL) || (len < 2))
1972 return (NULL);
1973
1974 p = buf;
1975 sk = s->session->ciphers;
1976
1977 if (sk_SSL_CIPHER_num(sk) == 0)
1978 return NULL;
1979
1980 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
1981 int n;
1982
1983 c = sk_SSL_CIPHER_value(sk, i);
1984 n = strlen(c->name);
1985 if (n + 1 > len) {
1986 if (p != buf)
1987 --p;
1988 *p = '\0';
1989 return buf;
1990 }
1991 memcpy(p, c->name, n + 1);
1992 p += n;
1993 *(p++) = ':';
1994 len -= n + 1;
1995 }
1996 p[-1] = '\0';
1997 return (buf);
1998 }
1999
2000 /** return a servername extension value if provided in Client Hello, or NULL.
2001 * So far, only host_name types are defined (RFC 3546).
2002 */
2003
2004 const char *SSL_get_servername(const SSL *s, const int type)
2005 {
2006 if (type != TLSEXT_NAMETYPE_host_name)
2007 return NULL;
2008
2009 return s->session && !s->tlsext_hostname ?
2010 s->session->tlsext_hostname : s->tlsext_hostname;
2011 }
2012
2013 int SSL_get_servername_type(const SSL *s)
2014 {
2015 if (s->session
2016 && (!s->tlsext_hostname ? s->session->
2017 tlsext_hostname : s->tlsext_hostname))
2018 return TLSEXT_NAMETYPE_host_name;
2019 return -1;
2020 }
2021
2022 /*
2023 * SSL_select_next_proto implements the standard protocol selection. It is
2024 * expected that this function is called from the callback set by
2025 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2026 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2027 * not included in the length. A byte string of length 0 is invalid. No byte
2028 * string may be truncated. The current, but experimental algorithm for
2029 * selecting the protocol is: 1) If the server doesn't support NPN then this
2030 * is indicated to the callback. In this case, the client application has to
2031 * abort the connection or have a default application level protocol. 2) If
2032 * the server supports NPN, but advertises an empty list then the client
2033 * selects the first protcol in its list, but indicates via the API that this
2034 * fallback case was enacted. 3) Otherwise, the client finds the first
2035 * protocol in the server's list that it supports and selects this protocol.
2036 * This is because it's assumed that the server has better information about
2037 * which protocol a client should use. 4) If the client doesn't support any
2038 * of the server's advertised protocols, then this is treated the same as
2039 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2040 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2041 */
2042 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2043 const unsigned char *server,
2044 unsigned int server_len,
2045 const unsigned char *client,
2046 unsigned int client_len)
2047 {
2048 unsigned int i, j;
2049 const unsigned char *result;
2050 int status = OPENSSL_NPN_UNSUPPORTED;
2051
2052 /*
2053 * For each protocol in server preference order, see if we support it.
2054 */
2055 for (i = 0; i < server_len;) {
2056 for (j = 0; j < client_len;) {
2057 if (server[i] == client[j] &&
2058 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2059 /* We found a match */
2060 result = &server[i];
2061 status = OPENSSL_NPN_NEGOTIATED;
2062 goto found;
2063 }
2064 j += client[j];
2065 j++;
2066 }
2067 i += server[i];
2068 i++;
2069 }
2070
2071 /* There's no overlap between our protocols and the server's list. */
2072 result = client;
2073 status = OPENSSL_NPN_NO_OVERLAP;
2074
2075 found:
2076 *out = (unsigned char *)result + 1;
2077 *outlen = result[0];
2078 return status;
2079 }
2080
2081 #ifndef OPENSSL_NO_NEXTPROTONEG
2082 /*
2083 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2084 * client's requested protocol for this connection and returns 0. If the
2085 * client didn't request any protocol, then *data is set to NULL. Note that
2086 * the client can request any protocol it chooses. The value returned from
2087 * this function need not be a member of the list of supported protocols
2088 * provided by the callback.
2089 */
2090 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2091 unsigned *len)
2092 {
2093 *data = s->next_proto_negotiated;
2094 if (!*data) {
2095 *len = 0;
2096 } else {
2097 *len = s->next_proto_negotiated_len;
2098 }
2099 }
2100
2101 /*
2102 * SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when
2103 * a TLS server needs a list of supported protocols for Next Protocol
2104 * Negotiation. The returned list must be in wire format. The list is
2105 * returned by setting |out| to point to it and |outlen| to its length. This
2106 * memory will not be modified, but one should assume that the SSL* keeps a
2107 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2108 * wishes to advertise. Otherwise, no such extension will be included in the
2109 * ServerHello.
2110 */
2111 void SSL_CTX_set_next_protos_advertised_cb(SSL_CTX *ctx,
2112 int (*cb) (SSL *ssl,
2113 const unsigned char
2114 **out,
2115 unsigned int *outlen,
2116 void *arg), void *arg)
2117 {
2118 ctx->next_protos_advertised_cb = cb;
2119 ctx->next_protos_advertised_cb_arg = arg;
2120 }
2121
2122 /*
2123 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2124 * client needs to select a protocol from the server's provided list. |out|
2125 * must be set to point to the selected protocol (which may be within |in|).
2126 * The length of the protocol name must be written into |outlen|. The
2127 * server's advertised protocols are provided in |in| and |inlen|. The
2128 * callback can assume that |in| is syntactically valid. The client must
2129 * select a protocol. It is fatal to the connection if this callback returns
2130 * a value other than SSL_TLSEXT_ERR_OK.
2131 */
2132 void SSL_CTX_set_next_proto_select_cb(SSL_CTX *ctx,
2133 int (*cb) (SSL *s, unsigned char **out,
2134 unsigned char *outlen,
2135 const unsigned char *in,
2136 unsigned int inlen,
2137 void *arg), void *arg)
2138 {
2139 ctx->next_proto_select_cb = cb;
2140 ctx->next_proto_select_cb_arg = arg;
2141 }
2142 #endif
2143
2144 /*
2145 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2146 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2147 * length-prefixed strings). Returns 0 on success.
2148 */
2149 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2150 unsigned protos_len)
2151 {
2152 OPENSSL_free(ctx->alpn_client_proto_list);
2153 ctx->alpn_client_proto_list = OPENSSL_malloc(protos_len);
2154 if (ctx->alpn_client_proto_list == NULL)
2155 return 1;
2156 memcpy(ctx->alpn_client_proto_list, protos, protos_len);
2157 ctx->alpn_client_proto_list_len = protos_len;
2158
2159 return 0;
2160 }
2161
2162 /*
2163 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2164 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2165 * length-prefixed strings). Returns 0 on success.
2166 */
2167 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2168 unsigned protos_len)
2169 {
2170 OPENSSL_free(ssl->alpn_client_proto_list);
2171 ssl->alpn_client_proto_list = OPENSSL_malloc(protos_len);
2172 if (ssl->alpn_client_proto_list == NULL)
2173 return 1;
2174 memcpy(ssl->alpn_client_proto_list, protos, protos_len);
2175 ssl->alpn_client_proto_list_len = protos_len;
2176
2177 return 0;
2178 }
2179
2180 /*
2181 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2182 * called during ClientHello processing in order to select an ALPN protocol
2183 * from the client's list of offered protocols.
2184 */
2185 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2186 int (*cb) (SSL *ssl,
2187 const unsigned char **out,
2188 unsigned char *outlen,
2189 const unsigned char *in,
2190 unsigned int inlen,
2191 void *arg), void *arg)
2192 {
2193 ctx->alpn_select_cb = cb;
2194 ctx->alpn_select_cb_arg = arg;
2195 }
2196
2197 /*
2198 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from
2199 * |ssl|. On return it sets |*data| to point to |*len| bytes of protocol name
2200 * (not including the leading length-prefix byte). If the server didn't
2201 * respond with a negotiated protocol then |*len| will be zero.
2202 */
2203 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2204 unsigned *len)
2205 {
2206 *data = NULL;
2207 if (ssl->s3)
2208 *data = ssl->s3->alpn_selected;
2209 if (*data == NULL)
2210 *len = 0;
2211 else
2212 *len = ssl->s3->alpn_selected_len;
2213 }
2214
2215
2216 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2217 const char *label, size_t llen,
2218 const unsigned char *p, size_t plen,
2219 int use_context)
2220 {
2221 if (s->version < TLS1_VERSION)
2222 return -1;
2223
2224 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2225 llen, p, plen,
2226 use_context);
2227 }
2228
2229 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2230 {
2231 unsigned long l;
2232
2233 l = (unsigned long)
2234 ((unsigned int)a->session_id[0]) |
2235 ((unsigned int)a->session_id[1] << 8L) |
2236 ((unsigned long)a->session_id[2] << 16L) |
2237 ((unsigned long)a->session_id[3] << 24L);
2238 return (l);
2239 }
2240
2241 /*
2242 * NB: If this function (or indeed the hash function which uses a sort of
2243 * coarser function than this one) is changed, ensure
2244 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2245 * being able to construct an SSL_SESSION that will collide with any existing
2246 * session with a matching session ID.
2247 */
2248 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
2249 {
2250 if (a->ssl_version != b->ssl_version)
2251 return (1);
2252 if (a->session_id_length != b->session_id_length)
2253 return (1);
2254 return (memcmp(a->session_id, b->session_id, a->session_id_length));
2255 }
2256
2257 /*
2258 * These wrapper functions should remain rather than redeclaring
2259 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
2260 * variable. The reason is that the functions aren't static, they're exposed
2261 * via ssl.h.
2262 */
2263
2264 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
2265 {
2266 SSL_CTX *ret = NULL;
2267
2268 if (meth == NULL) {
2269 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
2270 return (NULL);
2271 }
2272
2273 OPENSSL_INIT_ssl_library_start(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL);
2274
2275 if (FIPS_mode() && (meth->version < TLS1_VERSION)) {
2276 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_AT_LEAST_TLS_1_0_NEEDED_IN_FIPS_MODE);
2277 return NULL;
2278 }
2279
2280 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
2281 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
2282 goto err;
2283 }
2284 ret = OPENSSL_zalloc(sizeof(*ret));
2285 if (ret == NULL)
2286 goto err;
2287
2288 ret->method = meth;
2289 ret->min_proto_version = 0;
2290 ret->max_proto_version = 0;
2291 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
2292 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
2293 /* We take the system default. */
2294 ret->session_timeout = meth->get_timeout();
2295 ret->references = 1;
2296 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
2297 ret->verify_mode = SSL_VERIFY_NONE;
2298 if ((ret->cert = ssl_cert_new()) == NULL)
2299 goto err;
2300
2301 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
2302 if (ret->sessions == NULL)
2303 goto err;
2304 ret->cert_store = X509_STORE_new();
2305 if (ret->cert_store == NULL)
2306 goto err;
2307
2308 if (!ssl_create_cipher_list(ret->method,
2309 &ret->cipher_list, &ret->cipher_list_by_id,
2310 SSL_DEFAULT_CIPHER_LIST, ret->cert)
2311 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
2312 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
2313 goto err2;
2314 }
2315
2316 ret->param = X509_VERIFY_PARAM_new();
2317 if (ret->param == NULL)
2318 goto err;
2319
2320 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
2321 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
2322 goto err2;
2323 }
2324 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
2325 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
2326 goto err2;
2327 }
2328
2329 if ((ret->client_CA = sk_X509_NAME_new_null()) == NULL)
2330 goto err;
2331
2332 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data);
2333
2334 /* No compression for DTLS */
2335 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
2336 ret->comp_methods = SSL_COMP_get_compression_methods();
2337
2338 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
2339
2340 /* Setup RFC4507 ticket keys */
2341 if ((RAND_bytes(ret->tlsext_tick_key_name, 16) <= 0)
2342 || (RAND_bytes(ret->tlsext_tick_hmac_key, 16) <= 0)
2343 || (RAND_bytes(ret->tlsext_tick_aes_key, 16) <= 0))
2344 ret->options |= SSL_OP_NO_TICKET;
2345
2346 #ifndef OPENSSL_NO_SRP
2347 if (!SSL_CTX_SRP_CTX_init(ret))
2348 goto err;
2349 #endif
2350 #ifndef OPENSSL_NO_ENGINE
2351 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
2352 # define eng_strx(x) #x
2353 # define eng_str(x) eng_strx(x)
2354 /* Use specific client engine automatically... ignore errors */
2355 {
2356 ENGINE *eng;
2357 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2358 if (!eng) {
2359 ERR_clear_error();
2360 ENGINE_load_builtin_engines();
2361 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
2362 }
2363 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
2364 ERR_clear_error();
2365 }
2366 # endif
2367 #endif
2368 /*
2369 * Default is to connect to non-RI servers. When RI is more widely
2370 * deployed might change this.
2371 */
2372 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
2373 /*
2374 * Disable compression by default to prevent CRIME. Applications can
2375 * re-enable compression by configuring
2376 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
2377 * or by using the SSL_CONF library.
2378 */
2379 ret->options |= SSL_OP_NO_COMPRESSION;
2380
2381 return (ret);
2382 err:
2383 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
2384 err2:
2385 SSL_CTX_free(ret);
2386 return (NULL);
2387 }
2388
2389 void SSL_CTX_up_ref(SSL_CTX *ctx)
2390 {
2391 CRYPTO_add(&ctx->references, 1, CRYPTO_LOCK_SSL_CTX);
2392 }
2393
2394 void SSL_CTX_free(SSL_CTX *a)
2395 {
2396 int i;
2397
2398 if (a == NULL)
2399 return;
2400
2401 i = CRYPTO_add(&a->references, -1, CRYPTO_LOCK_SSL_CTX);
2402 #ifdef REF_PRINT
2403 REF_PRINT("SSL_CTX", a);
2404 #endif
2405 if (i > 0)
2406 return;
2407 #ifdef REF_CHECK
2408 if (i < 0) {
2409 fprintf(stderr, "SSL_CTX_free, bad reference count\n");
2410 abort(); /* ok */
2411 }
2412 #endif
2413
2414 X509_VERIFY_PARAM_free(a->param);
2415 dane_ctx_final(&a->dane);
2416
2417 /*
2418 * Free internal session cache. However: the remove_cb() may reference
2419 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
2420 * after the sessions were flushed.
2421 * As the ex_data handling routines might also touch the session cache,
2422 * the most secure solution seems to be: empty (flush) the cache, then
2423 * free ex_data, then finally free the cache.
2424 * (See ticket [openssl.org #212].)
2425 */
2426 if (a->sessions != NULL)
2427 SSL_CTX_flush_sessions(a, 0);
2428
2429 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
2430 lh_SSL_SESSION_free(a->sessions);
2431 X509_STORE_free(a->cert_store);
2432 sk_SSL_CIPHER_free(a->cipher_list);
2433 sk_SSL_CIPHER_free(a->cipher_list_by_id);
2434 ssl_cert_free(a->cert);
2435 sk_X509_NAME_pop_free(a->client_CA, X509_NAME_free);
2436 sk_X509_pop_free(a->extra_certs, X509_free);
2437 a->comp_methods = NULL;
2438 #ifndef OPENSSL_NO_SRTP
2439 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
2440 #endif
2441 #ifndef OPENSSL_NO_SRP
2442 SSL_CTX_SRP_CTX_free(a);
2443 #endif
2444 #ifndef OPENSSL_NO_ENGINE
2445 if (a->client_cert_engine)
2446 ENGINE_finish(a->client_cert_engine);
2447 #endif
2448
2449 #ifndef OPENSSL_NO_EC
2450 OPENSSL_free(a->tlsext_ecpointformatlist);
2451 OPENSSL_free(a->tlsext_ellipticcurvelist);
2452 #endif
2453 OPENSSL_free(a->alpn_client_proto_list);
2454
2455 OPENSSL_free(a);
2456 }
2457
2458 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
2459 {
2460 ctx->default_passwd_callback = cb;
2461 }
2462
2463 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
2464 {
2465 ctx->default_passwd_callback_userdata = u;
2466 }
2467
2468 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
2469 {
2470 s->default_passwd_callback = cb;
2471 }
2472
2473 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
2474 {
2475 s->default_passwd_callback_userdata = u;
2476 }
2477
2478 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
2479 int (*cb) (X509_STORE_CTX *, void *),
2480 void *arg)
2481 {
2482 ctx->app_verify_callback = cb;
2483 ctx->app_verify_arg = arg;
2484 }
2485
2486 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
2487 int (*cb) (int, X509_STORE_CTX *))
2488 {
2489 ctx->verify_mode = mode;
2490 ctx->default_verify_callback = cb;
2491 }
2492
2493 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
2494 {
2495 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2496 }
2497
2498 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg),
2499 void *arg)
2500 {
2501 ssl_cert_set_cert_cb(c->cert, cb, arg);
2502 }
2503
2504 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
2505 {
2506 ssl_cert_set_cert_cb(s->cert, cb, arg);
2507 }
2508
2509 void ssl_set_masks(SSL *s, const SSL_CIPHER *cipher)
2510 {
2511 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_GOST)
2512 CERT_PKEY *cpk;
2513 #endif
2514 CERT *c = s->cert;
2515 uint32_t *pvalid = s->s3->tmp.valid_flags;
2516 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
2517 unsigned long mask_k, mask_a;
2518 #ifndef OPENSSL_NO_EC
2519 int have_ecc_cert, ecdsa_ok;
2520 int ecdh_ok;
2521 X509 *x = NULL;
2522 int pk_nid = 0, md_nid = 0;
2523 #endif
2524 if (c == NULL)
2525 return;
2526
2527 #ifndef OPENSSL_NO_DH
2528 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
2529 #else
2530 dh_tmp = 0;
2531 #endif
2532
2533 rsa_enc = pvalid[SSL_PKEY_RSA_ENC] & CERT_PKEY_VALID;
2534 rsa_sign = pvalid[SSL_PKEY_RSA_SIGN] & CERT_PKEY_SIGN;
2535 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_SIGN;
2536 #ifndef OPENSSL_NO_EC
2537 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
2538 #endif
2539 mask_k = 0;
2540 mask_a = 0;
2541
2542 #ifdef CIPHER_DEBUG
2543 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
2544 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
2545 #endif
2546
2547 #ifndef OPENSSL_NO_GOST
2548 cpk = &(c->pkeys[SSL_PKEY_GOST12_512]);
2549 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2550 mask_k |= SSL_kGOST;
2551 mask_a |= SSL_aGOST12;
2552 }
2553 cpk = &(c->pkeys[SSL_PKEY_GOST12_256]);
2554 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2555 mask_k |= SSL_kGOST;
2556 mask_a |= SSL_aGOST12;
2557 }
2558 cpk = &(c->pkeys[SSL_PKEY_GOST01]);
2559 if (cpk->x509 != NULL && cpk->privatekey != NULL) {
2560 mask_k |= SSL_kGOST;
2561 mask_a |= SSL_aGOST01;
2562 }
2563 #endif
2564
2565 if (rsa_enc)
2566 mask_k |= SSL_kRSA;
2567
2568 if (dh_tmp)
2569 mask_k |= SSL_kDHE;
2570
2571 if (rsa_enc || rsa_sign) {
2572 mask_a |= SSL_aRSA;
2573 }
2574
2575 if (dsa_sign) {
2576 mask_a |= SSL_aDSS;
2577 }
2578
2579 mask_a |= SSL_aNULL;
2580
2581 /*
2582 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
2583 * depending on the key usage extension.
2584 */
2585 #ifndef OPENSSL_NO_EC
2586 if (have_ecc_cert) {
2587 uint32_t ex_kusage;
2588 cpk = &c->pkeys[SSL_PKEY_ECC];
2589 x = cpk->x509;
2590 ex_kusage = X509_get_key_usage(x);
2591 ecdh_ok = ex_kusage & X509v3_KU_KEY_AGREEMENT;
2592 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
2593 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
2594 ecdsa_ok = 0;
2595 OBJ_find_sigid_algs(X509_get_signature_nid(x), &md_nid, &pk_nid);
2596 if (ecdh_ok) {
2597
2598 if (pk_nid == NID_rsaEncryption || pk_nid == NID_rsa) {
2599 mask_k |= SSL_kECDHr;
2600 mask_a |= SSL_aECDH;
2601 }
2602
2603 if (pk_nid == NID_X9_62_id_ecPublicKey) {
2604 mask_k |= SSL_kECDHe;
2605 mask_a |= SSL_aECDH;
2606 }
2607 }
2608 if (ecdsa_ok) {
2609 mask_a |= SSL_aECDSA;
2610 }
2611 }
2612 #endif
2613
2614 #ifndef OPENSSL_NO_EC
2615 mask_k |= SSL_kECDHE;
2616 #endif
2617
2618 #ifndef OPENSSL_NO_PSK
2619 mask_k |= SSL_kPSK;
2620 mask_a |= SSL_aPSK;
2621 if (mask_k & SSL_kRSA)
2622 mask_k |= SSL_kRSAPSK;
2623 if (mask_k & SSL_kDHE)
2624 mask_k |= SSL_kDHEPSK;
2625 if (mask_k & SSL_kECDHE)
2626 mask_k |= SSL_kECDHEPSK;
2627 #endif
2628
2629 s->s3->tmp.mask_k = mask_k;
2630 s->s3->tmp.mask_a = mask_a;
2631 }
2632
2633 #ifndef OPENSSL_NO_EC
2634
2635 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
2636 {
2637 unsigned long alg_k, alg_a;
2638 int md_nid = 0, pk_nid = 0;
2639 const SSL_CIPHER *cs = s->s3->tmp.new_cipher;
2640 uint32_t ex_kusage = X509_get_key_usage(x);
2641
2642 alg_k = cs->algorithm_mkey;
2643 alg_a = cs->algorithm_auth;
2644
2645 OBJ_find_sigid_algs(X509_get_signature_nid(x), &md_nid, &pk_nid);
2646
2647 if (alg_k & SSL_kECDHe || alg_k & SSL_kECDHr) {
2648 /* key usage, if present, must allow key agreement */
2649 if (!(ex_kusage & X509v3_KU_KEY_AGREEMENT)) {
2650 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
2651 SSL_R_ECC_CERT_NOT_FOR_KEY_AGREEMENT);
2652 return 0;
2653 }
2654 if ((alg_k & SSL_kECDHe) && TLS1_get_version(s) < TLS1_2_VERSION) {
2655 /* signature alg must be ECDSA */
2656 if (pk_nid != NID_X9_62_id_ecPublicKey) {
2657 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
2658 SSL_R_ECC_CERT_SHOULD_HAVE_SHA1_SIGNATURE);
2659 return 0;
2660 }
2661 }
2662 if ((alg_k & SSL_kECDHr) && TLS1_get_version(s) < TLS1_2_VERSION) {
2663 /* signature alg must be RSA */
2664
2665 if (pk_nid != NID_rsaEncryption && pk_nid != NID_rsa) {
2666 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
2667 SSL_R_ECC_CERT_SHOULD_HAVE_RSA_SIGNATURE);
2668 return 0;
2669 }
2670 }
2671 }
2672 if (alg_a & SSL_aECDSA) {
2673 /* key usage, if present, must allow signing */
2674 if (!(ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)) {
2675 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
2676 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
2677 return 0;
2678 }
2679 }
2680
2681 return 1; /* all checks are ok */
2682 }
2683
2684 #endif
2685
2686 static int ssl_get_server_cert_index(const SSL *s)
2687 {
2688 int idx;
2689 idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
2690 if (idx == SSL_PKEY_RSA_ENC && !s->cert->pkeys[SSL_PKEY_RSA_ENC].x509)
2691 idx = SSL_PKEY_RSA_SIGN;
2692 if (idx == SSL_PKEY_GOST_EC) {
2693 if (s->cert->pkeys[SSL_PKEY_GOST12_512].x509)
2694 idx = SSL_PKEY_GOST12_512;
2695 else if (s->cert->pkeys[SSL_PKEY_GOST12_256].x509)
2696 idx = SSL_PKEY_GOST12_256;
2697 else if (s->cert->pkeys[SSL_PKEY_GOST01].x509)
2698 idx = SSL_PKEY_GOST01;
2699 else
2700 idx = -1;
2701 }
2702 if (idx == -1)
2703 SSLerr(SSL_F_SSL_GET_SERVER_CERT_INDEX, ERR_R_INTERNAL_ERROR);
2704 return idx;
2705 }
2706
2707 CERT_PKEY *ssl_get_server_send_pkey(SSL *s)
2708 {
2709 CERT *c;
2710 int i;
2711
2712 c = s->cert;
2713 if (!s->s3 || !s->s3->tmp.new_cipher)
2714 return NULL;
2715 ssl_set_masks(s, s->s3->tmp.new_cipher);
2716
2717 #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
2718 /*
2719 * Broken protocol test: return last used certificate: which may mismatch
2720 * the one expected.
2721 */
2722 if (c->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
2723 return c->key;
2724 #endif
2725
2726 i = ssl_get_server_cert_index(s);
2727
2728 /* This may or may not be an error. */
2729 if (i < 0)
2730 return NULL;
2731
2732 /* May be NULL. */
2733 return &c->pkeys[i];
2734 }
2735
2736 EVP_PKEY *ssl_get_sign_pkey(SSL *s, const SSL_CIPHER *cipher,
2737 const EVP_MD **pmd)
2738 {
2739 unsigned long alg_a;
2740 CERT *c;
2741 int idx = -1;
2742
2743 alg_a = cipher->algorithm_auth;
2744 c = s->cert;
2745
2746 #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
2747 /*
2748 * Broken protocol test: use last key: which may mismatch the one
2749 * expected.
2750 */
2751 if (c->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
2752 idx = c->key - c->pkeys;
2753 else
2754 #endif
2755
2756 if ((alg_a & SSL_aDSS) &&
2757 (c->pkeys[SSL_PKEY_DSA_SIGN].privatekey != NULL))
2758 idx = SSL_PKEY_DSA_SIGN;
2759 else if (alg_a & SSL_aRSA) {
2760 if (c->pkeys[SSL_PKEY_RSA_SIGN].privatekey != NULL)
2761 idx = SSL_PKEY_RSA_SIGN;
2762 else if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey != NULL)
2763 idx = SSL_PKEY_RSA_ENC;
2764 } else if ((alg_a & SSL_aECDSA) &&
2765 (c->pkeys[SSL_PKEY_ECC].privatekey != NULL))
2766 idx = SSL_PKEY_ECC;
2767 if (idx == -1) {
2768 SSLerr(SSL_F_SSL_GET_SIGN_PKEY, ERR_R_INTERNAL_ERROR);
2769 return (NULL);
2770 }
2771 if (pmd)
2772 *pmd = s->s3->tmp.md[idx];
2773 return c->pkeys[idx].privatekey;
2774 }
2775
2776 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
2777 size_t *serverinfo_length)
2778 {
2779 CERT *c = NULL;
2780 int i = 0;
2781 *serverinfo_length = 0;
2782
2783 c = s->cert;
2784 i = ssl_get_server_cert_index(s);
2785
2786 if (i == -1)
2787 return 0;
2788 if (c->pkeys[i].serverinfo == NULL)
2789 return 0;
2790
2791 *serverinfo = c->pkeys[i].serverinfo;
2792 *serverinfo_length = c->pkeys[i].serverinfo_length;
2793 return 1;
2794 }
2795
2796 void ssl_update_cache(SSL *s, int mode)
2797 {
2798 int i;
2799
2800 /*
2801 * If the session_id_length is 0, we are not supposed to cache it, and it
2802 * would be rather hard to do anyway :-)
2803 */
2804 if (s->session->session_id_length == 0)
2805 return;
2806
2807 i = s->session_ctx->session_cache_mode;
2808 if ((i & mode) && (!s->hit)
2809 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
2810 || SSL_CTX_add_session(s->session_ctx, s->session))
2811 && (s->session_ctx->new_session_cb != NULL)) {
2812 CRYPTO_add(&s->session->references, 1, CRYPTO_LOCK_SSL_SESSION);
2813 if (!s->session_ctx->new_session_cb(s, s->session))
2814 SSL_SESSION_free(s->session);
2815 }
2816
2817 /* auto flush every 255 connections */
2818 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
2819 if ((((mode & SSL_SESS_CACHE_CLIENT)
2820 ? s->session_ctx->stats.sess_connect_good
2821 : s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff) {
2822 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
2823 }
2824 }
2825 }
2826
2827 const SSL_METHOD *SSL_CTX_get_ssl_method(SSL_CTX *ctx)
2828 {
2829 return ctx->method;
2830 }
2831
2832 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
2833 {
2834 return (s->method);
2835 }
2836
2837 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
2838 {
2839 int ret = 1;
2840
2841 if (s->method != meth) {
2842 const SSL_METHOD *sm = s->method;
2843 int (*hf)(SSL *) = s->handshake_func;
2844
2845 if (sm->version == meth->version)
2846 s->method = meth;
2847 else {
2848 sm->ssl_free(s);
2849 s->method = meth;
2850 ret = s->method->ssl_new(s);
2851 }
2852
2853 if (hf == sm->ssl_connect)
2854 s->handshake_func = meth->ssl_connect;
2855 else if (hf == sm->ssl_accept)
2856 s->handshake_func = meth->ssl_accept;
2857 }
2858 return (ret);
2859 }
2860
2861 int SSL_get_error(const SSL *s, int i)
2862 {
2863 int reason;
2864 unsigned long l;
2865 BIO *bio;
2866
2867 if (i > 0)
2868 return (SSL_ERROR_NONE);
2869
2870 /*
2871 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
2872 * where we do encode the error
2873 */
2874 if ((l = ERR_peek_error()) != 0) {
2875 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
2876 return (SSL_ERROR_SYSCALL);
2877 else
2878 return (SSL_ERROR_SSL);
2879 }
2880
2881 if ((i < 0) && SSL_want_read(s)) {
2882 bio = SSL_get_rbio(s);
2883 if (BIO_should_read(bio))
2884 return (SSL_ERROR_WANT_READ);
2885 else if (BIO_should_write(bio))
2886 /*
2887 * This one doesn't make too much sense ... We never try to write
2888 * to the rbio, and an application program where rbio and wbio
2889 * are separate couldn't even know what it should wait for.
2890 * However if we ever set s->rwstate incorrectly (so that we have
2891 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
2892 * wbio *are* the same, this test works around that bug; so it
2893 * might be safer to keep it.
2894 */
2895 return (SSL_ERROR_WANT_WRITE);
2896 else if (BIO_should_io_special(bio)) {
2897 reason = BIO_get_retry_reason(bio);
2898 if (reason == BIO_RR_CONNECT)
2899 return (SSL_ERROR_WANT_CONNECT);
2900 else if (reason == BIO_RR_ACCEPT)
2901 return (SSL_ERROR_WANT_ACCEPT);
2902 else
2903 return (SSL_ERROR_SYSCALL); /* unknown */
2904 }
2905 }
2906
2907 if ((i < 0) && SSL_want_write(s)) {
2908 bio = SSL_get_wbio(s);
2909 if (BIO_should_write(bio))
2910 return (SSL_ERROR_WANT_WRITE);
2911 else if (BIO_should_read(bio))
2912 /*
2913 * See above (SSL_want_read(s) with BIO_should_write(bio))
2914 */
2915 return (SSL_ERROR_WANT_READ);
2916 else if (BIO_should_io_special(bio)) {
2917 reason = BIO_get_retry_reason(bio);
2918 if (reason == BIO_RR_CONNECT)
2919 return (SSL_ERROR_WANT_CONNECT);
2920 else if (reason == BIO_RR_ACCEPT)
2921 return (SSL_ERROR_WANT_ACCEPT);
2922 else
2923 return (SSL_ERROR_SYSCALL);
2924 }
2925 }
2926 if ((i < 0) && SSL_want_x509_lookup(s)) {
2927 return (SSL_ERROR_WANT_X509_LOOKUP);
2928 }
2929 if ((i < 0) && SSL_want_async(s)) {
2930 return SSL_ERROR_WANT_ASYNC;
2931 }
2932
2933 if (i == 0) {
2934 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
2935 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
2936 return (SSL_ERROR_ZERO_RETURN);
2937 }
2938 return (SSL_ERROR_SYSCALL);
2939 }
2940
2941 static int ssl_do_handshake_intern(void *vargs)
2942 {
2943 struct ssl_async_args *args;
2944 SSL *s;
2945
2946 args = (struct ssl_async_args *)vargs;
2947 s = args->s;
2948
2949 return s->handshake_func(s);
2950 }
2951
2952 int SSL_do_handshake(SSL *s)
2953 {
2954 int ret = 1;
2955
2956 if (s->handshake_func == NULL) {
2957 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
2958 return -1;
2959 }
2960
2961 s->method->ssl_renegotiate_check(s);
2962
2963 if (SSL_in_init(s) || SSL_in_before(s)) {
2964 if((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2965 struct ssl_async_args args;
2966
2967 args.s = s;
2968
2969 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
2970 } else {
2971 ret = s->handshake_func(s);
2972 }
2973 }
2974 return ret;
2975 }
2976
2977 void SSL_set_accept_state(SSL *s)
2978 {
2979 s->server = 1;
2980 s->shutdown = 0;
2981 ossl_statem_clear(s);
2982 s->handshake_func = s->method->ssl_accept;
2983 clear_ciphers(s);
2984 }
2985
2986 void SSL_set_connect_state(SSL *s)
2987 {
2988 s->server = 0;
2989 s->shutdown = 0;
2990 ossl_statem_clear(s);
2991 s->handshake_func = s->method->ssl_connect;
2992 clear_ciphers(s);
2993 }
2994
2995 int ssl_undefined_function(SSL *s)
2996 {
2997 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2998 return (0);
2999 }
3000
3001 int ssl_undefined_void_function(void)
3002 {
3003 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3004 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3005 return (0);
3006 }
3007
3008 int ssl_undefined_const_function(const SSL *s)
3009 {
3010 return (0);
3011 }
3012
3013 SSL_METHOD *ssl_bad_method(int ver)
3014 {
3015 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3016 return (NULL);
3017 }
3018
3019 const char *SSL_get_version(const SSL *s)
3020 {
3021 if (s->version == TLS1_2_VERSION)
3022 return ("TLSv1.2");
3023 else if (s->version == TLS1_1_VERSION)
3024 return ("TLSv1.1");
3025 else if (s->version == TLS1_VERSION)
3026 return ("TLSv1");
3027 else if (s->version == SSL3_VERSION)
3028 return ("SSLv3");
3029 else if (s->version == DTLS1_BAD_VER)
3030 return ("DTLSv0.9");
3031 else if (s->version == DTLS1_VERSION)
3032 return ("DTLSv1");
3033 else if (s->version == DTLS1_2_VERSION)
3034 return ("DTLSv1.2");
3035 else
3036 return ("unknown");
3037 }
3038
3039 SSL *SSL_dup(SSL *s)
3040 {
3041 STACK_OF(X509_NAME) *sk;
3042 X509_NAME *xn;
3043 SSL *ret;
3044 int i;
3045
3046 /* If we're not quiescent, just up_ref! */
3047 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3048 CRYPTO_add(&s->references, 1, CRYPTO_LOCK_SSL);
3049 return s;
3050 }
3051
3052 /*
3053 * Otherwise, copy configuration state, and session if set.
3054 */
3055 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3056 return (NULL);
3057
3058 if (s->session != NULL) {
3059 /*
3060 * Arranges to share the same session via up_ref. This "copies"
3061 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3062 */
3063 if (!SSL_copy_session_id(ret, s))
3064 goto err;
3065 } else {
3066 /*
3067 * No session has been established yet, so we have to expect that
3068 * s->cert or ret->cert will be changed later -- they should not both
3069 * point to the same object, and thus we can't use
3070 * SSL_copy_session_id.
3071 */
3072 if (!SSL_set_ssl_method(ret, s->method))
3073 goto err;
3074
3075 if (s->cert != NULL) {
3076 ssl_cert_free(ret->cert);
3077 ret->cert = ssl_cert_dup(s->cert);
3078 if (ret->cert == NULL)
3079 goto err;
3080 }
3081
3082 if (!SSL_set_session_id_context(ret, s->sid_ctx, s->sid_ctx_length))
3083 goto err;
3084 }
3085
3086 ssl_dane_dup(ret, s);
3087 ret->version = s->version;
3088 ret->options = s->options;
3089 ret->mode = s->mode;
3090 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3091 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3092 ret->msg_callback = s->msg_callback;
3093 ret->msg_callback_arg = s->msg_callback_arg;
3094 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3095 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3096 ret->generate_session_id = s->generate_session_id;
3097
3098 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3099
3100 /* copy app data, a little dangerous perhaps */
3101 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3102 goto err;
3103
3104 /* setup rbio, and wbio */
3105 if (s->rbio != NULL) {
3106 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3107 goto err;
3108 }
3109 if (s->wbio != NULL) {
3110 if (s->wbio != s->rbio) {
3111 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3112 goto err;
3113 } else
3114 ret->wbio = ret->rbio;
3115 }
3116
3117 ret->server = s->server;
3118 if (s->handshake_func) {
3119 if (s->server)
3120 SSL_set_accept_state(ret);
3121 else
3122 SSL_set_connect_state(ret);
3123 }
3124 ret->shutdown = s->shutdown;
3125 ret->hit = s->hit;
3126
3127 ret->default_passwd_callback = s->default_passwd_callback;
3128 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3129
3130 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3131
3132 /* dup the cipher_list and cipher_list_by_id stacks */
3133 if (s->cipher_list != NULL) {
3134 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3135 goto err;
3136 }
3137 if (s->cipher_list_by_id != NULL)
3138 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3139 == NULL)
3140 goto err;
3141
3142 /* Dup the client_CA list */
3143 if (s->client_CA != NULL) {
3144 if ((sk = sk_X509_NAME_dup(s->client_CA)) == NULL)
3145 goto err;
3146 ret->client_CA = sk;
3147 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
3148 xn = sk_X509_NAME_value(sk, i);
3149 if (sk_X509_NAME_set(sk, i, X509_NAME_dup(xn)) == NULL) {
3150 X509_NAME_free(xn);
3151 goto err;
3152 }
3153 }
3154 }
3155 return ret;
3156
3157 err:
3158 SSL_free(ret);
3159 return NULL;
3160 }
3161
3162 void ssl_clear_cipher_ctx(SSL *s)
3163 {
3164 if (s->enc_read_ctx != NULL) {
3165 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3166 s->enc_read_ctx = NULL;
3167 }
3168 if (s->enc_write_ctx != NULL) {
3169 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3170 s->enc_write_ctx = NULL;
3171 }
3172 #ifndef OPENSSL_NO_COMP
3173 COMP_CTX_free(s->expand);
3174 s->expand = NULL;
3175 COMP_CTX_free(s->compress);
3176 s->compress = NULL;
3177 #endif
3178 }
3179
3180 X509 *SSL_get_certificate(const SSL *s)
3181 {
3182 if (s->cert != NULL)
3183 return (s->cert->key->x509);
3184 else
3185 return (NULL);
3186 }
3187
3188 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3189 {
3190 if (s->cert != NULL)
3191 return (s->cert->key->privatekey);
3192 else
3193 return (NULL);
3194 }
3195
3196 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3197 {
3198 if (ctx->cert != NULL)
3199 return ctx->cert->key->x509;
3200 else
3201 return NULL;
3202 }
3203
3204 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3205 {
3206 if (ctx->cert != NULL)
3207 return ctx->cert->key->privatekey;
3208 else
3209 return NULL;
3210 }
3211
3212 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3213 {
3214 if ((s->session != NULL) && (s->session->cipher != NULL))
3215 return (s->session->cipher);
3216 return (NULL);
3217 }
3218
3219 const COMP_METHOD *SSL_get_current_compression(SSL *s)
3220 {
3221 #ifndef OPENSSL_NO_COMP
3222 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
3223 #else
3224 return NULL;
3225 #endif
3226 }
3227
3228 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
3229 {
3230 #ifndef OPENSSL_NO_COMP
3231 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
3232 #else
3233 return NULL;
3234 #endif
3235 }
3236
3237 int ssl_init_wbio_buffer(SSL *s, int push)
3238 {
3239 BIO *bbio;
3240
3241 if (s->bbio == NULL) {
3242 bbio = BIO_new(BIO_f_buffer());
3243 if (bbio == NULL)
3244 return (0);
3245 s->bbio = bbio;
3246 } else {
3247 bbio = s->bbio;
3248 if (s->bbio == s->wbio)
3249 s->wbio = BIO_pop(s->wbio);
3250 }
3251 (void)BIO_reset(bbio);
3252 /* if (!BIO_set_write_buffer_size(bbio,16*1024)) */
3253 if (!BIO_set_read_buffer_size(bbio, 1)) {
3254 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
3255 return (0);
3256 }
3257 if (push) {
3258 if (s->wbio != bbio)
3259 s->wbio = BIO_push(bbio, s->wbio);
3260 } else {
3261 if (s->wbio == bbio)
3262 s->wbio = BIO_pop(bbio);
3263 }
3264 return (1);
3265 }
3266
3267 void ssl_free_wbio_buffer(SSL *s)
3268 {
3269 /* callers ensure s is never null */
3270 if (s->bbio == NULL)
3271 return;
3272
3273 if (s->bbio == s->wbio) {
3274 /* remove buffering */
3275 s->wbio = BIO_pop(s->wbio);
3276 #ifdef REF_CHECK /* not the usual REF_CHECK, but this avoids
3277 * adding one more preprocessor symbol */
3278 assert(s->wbio != NULL);
3279 #endif
3280 }
3281 BIO_free(s->bbio);
3282 s->bbio = NULL;
3283 }
3284
3285 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
3286 {
3287 ctx->quiet_shutdown = mode;
3288 }
3289
3290 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
3291 {
3292 return (ctx->quiet_shutdown);
3293 }
3294
3295 void SSL_set_quiet_shutdown(SSL *s, int mode)
3296 {
3297 s->quiet_shutdown = mode;
3298 }
3299
3300 int SSL_get_quiet_shutdown(const SSL *s)
3301 {
3302 return (s->quiet_shutdown);
3303 }
3304
3305 void SSL_set_shutdown(SSL *s, int mode)
3306 {
3307 s->shutdown = mode;
3308 }
3309
3310 int SSL_get_shutdown(const SSL *s)
3311 {
3312 return (s->shutdown);
3313 }
3314
3315 int SSL_version(const SSL *s)
3316 {
3317 return (s->version);
3318 }
3319
3320 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
3321 {
3322 return (ssl->ctx);
3323 }
3324
3325 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
3326 {
3327 CERT *new_cert;
3328 if (ssl->ctx == ctx)
3329 return ssl->ctx;
3330 if (ctx == NULL)
3331 ctx = ssl->initial_ctx;
3332 new_cert = ssl_cert_dup(ctx->cert);
3333 if (new_cert == NULL) {
3334 return NULL;
3335 }
3336 ssl_cert_free(ssl->cert);
3337 ssl->cert = new_cert;
3338
3339 /*
3340 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
3341 * so setter APIs must prevent invalid lengths from entering the system.
3342 */
3343 OPENSSL_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
3344
3345 /*
3346 * If the session ID context matches that of the parent SSL_CTX,
3347 * inherit it from the new SSL_CTX as well. If however the context does
3348 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
3349 * leave it unchanged.
3350 */
3351 if ((ssl->ctx != NULL) &&
3352 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
3353 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
3354 ssl->sid_ctx_length = ctx->sid_ctx_length;
3355 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
3356 }
3357
3358 CRYPTO_add(&ctx->references, 1, CRYPTO_LOCK_SSL_CTX);
3359 SSL_CTX_free(ssl->ctx); /* decrement reference count */
3360 ssl->ctx = ctx;
3361
3362 return (ssl->ctx);
3363 }
3364
3365 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
3366 {
3367 return (X509_STORE_set_default_paths(ctx->cert_store));
3368 }
3369
3370 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
3371 {
3372 X509_LOOKUP *lookup;
3373
3374 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
3375 if (lookup == NULL)
3376 return 0;
3377 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
3378
3379 /* Clear any errors if the default directory does not exist */
3380 ERR_clear_error();
3381
3382 return 1;
3383 }
3384
3385 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
3386 {
3387 X509_LOOKUP *lookup;
3388
3389 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
3390 if (lookup == NULL)
3391 return 0;
3392
3393 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
3394
3395 /* Clear any errors if the default file does not exist */
3396 ERR_clear_error();
3397
3398 return 1;
3399 }
3400
3401 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
3402 const char *CApath)
3403 {
3404 return (X509_STORE_load_locations(ctx->cert_store, CAfile, CApath));
3405 }
3406
3407 void SSL_set_info_callback(SSL *ssl,
3408 void (*cb) (const SSL *ssl, int type, int val))
3409 {
3410 ssl->info_callback = cb;
3411 }
3412
3413 /*
3414 * One compiler (Diab DCC) doesn't like argument names in returned function
3415 * pointer.
3416 */
3417 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
3418 int /* type */ ,
3419 int /* val */ ) {
3420 return ssl->info_callback;
3421 }
3422
3423 void SSL_set_verify_result(SSL *ssl, long arg)
3424 {
3425 ssl->verify_result = arg;
3426 }
3427
3428 long SSL_get_verify_result(const SSL *ssl)
3429 {
3430 return (ssl->verify_result);
3431 }
3432
3433 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
3434 {
3435 if (outlen == 0)
3436 return sizeof(ssl->s3->client_random);
3437 if (outlen > sizeof(ssl->s3->client_random))
3438 outlen = sizeof(ssl->s3->client_random);
3439 memcpy(out, ssl->s3->client_random, outlen);
3440 return outlen;
3441 }
3442
3443 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
3444 {
3445 if (outlen == 0)
3446 return sizeof(ssl->s3->server_random);
3447 if (outlen > sizeof(ssl->s3->server_random))
3448 outlen = sizeof(ssl->s3->server_random);
3449 memcpy(out, ssl->s3->server_random, outlen);
3450 return outlen;
3451 }
3452
3453 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
3454 unsigned char *out, size_t outlen)
3455 {
3456 if (session->master_key_length < 0) {
3457 /* Should never happen */
3458 return 0;
3459 }
3460 if (outlen == 0)
3461 return session->master_key_length;
3462 if (outlen > (size_t)session->master_key_length)
3463 outlen = session->master_key_length;
3464 memcpy(out, session->master_key, outlen);
3465 return outlen;
3466 }
3467
3468 int SSL_set_ex_data(SSL *s, int idx, void *arg)
3469 {
3470 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3471 }
3472
3473 void *SSL_get_ex_data(const SSL *s, int idx)
3474 {
3475 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3476 }
3477
3478 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
3479 {
3480 return (CRYPTO_set_ex_data(&s->ex_data, idx, arg));
3481 }
3482
3483 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
3484 {
3485 return (CRYPTO_get_ex_data(&s->ex_data, idx));
3486 }
3487
3488 int ssl_ok(SSL *s)
3489 {
3490 return (1);
3491 }
3492
3493 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3494 {
3495 return (ctx->cert_store);
3496 }
3497
3498 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
3499 {
3500 X509_STORE_free(ctx->cert_store);
3501 ctx->cert_store = store;
3502 }
3503
3504 int SSL_want(const SSL *s)
3505 {
3506 return (s->rwstate);
3507 }
3508
3509 /**
3510 * \brief Set the callback for generating temporary DH keys.
3511 * \param ctx the SSL context.
3512 * \param dh the callback
3513 */
3514
3515 #ifndef OPENSSL_NO_DH
3516 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
3517 DH *(*dh) (SSL *ssl, int is_export,
3518 int keylength))
3519 {
3520 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3521 }
3522
3523 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
3524 int keylength))
3525 {
3526 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
3527 }
3528 #endif
3529
3530 #ifndef OPENSSL_NO_PSK
3531 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3532 {
3533 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3534 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT,
3535 SSL_R_DATA_LENGTH_TOO_LONG);
3536 return 0;
3537 }
3538 OPENSSL_free(ctx->cert->psk_identity_hint);
3539 if (identity_hint != NULL) {
3540 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3541 if (ctx->cert->psk_identity_hint == NULL)
3542 return 0;
3543 } else
3544 ctx->cert->psk_identity_hint = NULL;
3545 return 1;
3546 }
3547
3548 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3549 {
3550 if (s == NULL)
3551 return 0;
3552
3553 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
3554 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
3555 return 0;
3556 }
3557 OPENSSL_free(s->cert->psk_identity_hint);
3558 if (identity_hint != NULL) {
3559 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
3560 if (s->cert->psk_identity_hint == NULL)
3561 return 0;
3562 } else
3563 s->cert->psk_identity_hint = NULL;
3564 return 1;
3565 }
3566
3567 const char *SSL_get_psk_identity_hint(const SSL *s)
3568 {
3569 if (s == NULL || s->session == NULL)
3570 return NULL;
3571 return (s->session->psk_identity_hint);
3572 }
3573
3574 const char *SSL_get_psk_identity(const SSL *s)
3575 {
3576 if (s == NULL || s->session == NULL)
3577 return NULL;
3578 return (s->session->psk_identity);
3579 }
3580
3581 void SSL_set_psk_client_callback(SSL *s,
3582 unsigned int (*cb) (SSL *ssl,
3583 const char *hint,
3584 char *identity,
3585 unsigned int
3586 max_identity_len,
3587 unsigned char *psk,
3588 unsigned int
3589 max_psk_len))
3590 {
3591 s->psk_client_callback = cb;
3592 }
3593
3594 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx,
3595 unsigned int (*cb) (SSL *ssl,
3596 const char *hint,
3597 char *identity,
3598 unsigned int
3599 max_identity_len,
3600 unsigned char *psk,
3601 unsigned int
3602 max_psk_len))
3603 {
3604 ctx->psk_client_callback = cb;
3605 }
3606
3607 void SSL_set_psk_server_callback(SSL *s,
3608 unsigned int (*cb) (SSL *ssl,
3609 const char *identity,
3610 unsigned char *psk,
3611 unsigned int
3612 max_psk_len))
3613 {
3614 s->psk_server_callback = cb;
3615 }
3616
3617 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx,
3618 unsigned int (*cb) (SSL *ssl,
3619 const char *identity,
3620 unsigned char *psk,
3621 unsigned int
3622 max_psk_len))
3623 {
3624 ctx->psk_server_callback = cb;
3625 }
3626 #endif
3627
3628 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
3629 void (*cb) (int write_p, int version,
3630 int content_type, const void *buf,
3631 size_t len, SSL *ssl, void *arg))
3632 {
3633 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3634 }
3635
3636 void SSL_set_msg_callback(SSL *ssl,
3637 void (*cb) (int write_p, int version,
3638 int content_type, const void *buf,
3639 size_t len, SSL *ssl, void *arg))
3640 {
3641 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3642 }
3643
3644 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
3645 int (*cb) (SSL *ssl,
3646 int
3647 is_forward_secure))
3648 {
3649 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3650 (void (*)(void))cb);
3651 }
3652
3653 void SSL_set_not_resumable_session_callback(SSL *ssl,
3654 int (*cb) (SSL *ssl,
3655 int is_forward_secure))
3656 {
3657 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
3658 (void (*)(void))cb);
3659 }
3660
3661 /*
3662 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
3663 * vairable, freeing EVP_MD_CTX previously stored in that variable, if any.
3664 * If EVP_MD pointer is passed, initializes ctx with this md Returns newly
3665 * allocated ctx;
3666 */
3667
3668 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
3669 {
3670 ssl_clear_hash_ctx(hash);
3671 *hash = EVP_MD_CTX_new();
3672 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
3673 EVP_MD_CTX_free(*hash);
3674 *hash = NULL;
3675 return NULL;
3676 }
3677 return *hash;
3678 }
3679
3680 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
3681 {
3682
3683 if (*hash)
3684 EVP_MD_CTX_free(*hash);
3685 *hash = NULL;
3686 }
3687
3688 /* Retrieve handshake hashes */
3689 int ssl_handshake_hash(SSL *s, unsigned char *out, int outlen)
3690 {
3691 EVP_MD_CTX *ctx = NULL;
3692 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
3693 int ret = EVP_MD_CTX_size(hdgst);
3694 if (ret < 0 || ret > outlen) {
3695 ret = 0;
3696 goto err;
3697 }
3698 ctx = EVP_MD_CTX_new();
3699 if (ctx == NULL) {
3700 ret = 0;
3701 goto err;
3702 }
3703 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
3704 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0)
3705 ret = 0;
3706 err:
3707 EVP_MD_CTX_free(ctx);
3708 return ret;
3709 }
3710
3711 int SSL_session_reused(SSL *s)
3712 {
3713 return s->hit;
3714 }
3715
3716 int SSL_is_server(SSL *s)
3717 {
3718 return s->server;
3719 }
3720
3721 #if OPENSSL_API_COMPAT < 0x10100000L
3722 void SSL_set_debug(SSL *s, int debug)
3723 {
3724 /* Old function was do-nothing anyway... */
3725 (void)s;
3726 (void)debug;
3727 }
3728 #endif
3729
3730
3731 void SSL_set_security_level(SSL *s, int level)
3732 {
3733 s->cert->sec_level = level;
3734 }
3735
3736 int SSL_get_security_level(const SSL *s)
3737 {
3738 return s->cert->sec_level;
3739 }
3740
3741 void SSL_set_security_callback(SSL *s,
3742 int (*cb) (SSL *s, SSL_CTX *ctx, int op,
3743 int bits, int nid, void *other,
3744 void *ex))
3745 {
3746 s->cert->sec_cb = cb;
3747 }
3748
3749 int (*SSL_get_security_callback(const SSL *s)) (SSL *s, SSL_CTX *ctx, int op,
3750 int bits, int nid,
3751 void *other, void *ex) {
3752 return s->cert->sec_cb;
3753 }
3754
3755 void SSL_set0_security_ex_data(SSL *s, void *ex)
3756 {
3757 s->cert->sec_ex = ex;
3758 }
3759
3760 void *SSL_get0_security_ex_data(const SSL *s)
3761 {
3762 return s->cert->sec_ex;
3763 }
3764
3765 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
3766 {
3767 ctx->cert->sec_level = level;
3768 }
3769
3770 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
3771 {
3772 return ctx->cert->sec_level;
3773 }
3774
3775 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
3776 int (*cb) (SSL *s, SSL_CTX *ctx, int op,
3777 int bits, int nid, void *other,
3778 void *ex))
3779 {
3780 ctx->cert->sec_cb = cb;
3781 }
3782
3783 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (SSL *s,
3784 SSL_CTX *ctx,
3785 int op, int bits,
3786 int nid,
3787 void *other,
3788 void *ex) {
3789 return ctx->cert->sec_cb;
3790 }
3791
3792 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
3793 {
3794 ctx->cert->sec_ex = ex;
3795 }
3796
3797 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
3798 {
3799 return ctx->cert->sec_ex;
3800 }
3801
3802
3803 /*
3804 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
3805 * can return unsigned long, instead of the generic long return value from the
3806 * control interface.
3807 */
3808 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
3809 {
3810 return ctx->options;
3811 }
3812 unsigned long SSL_get_options(const SSL* s)
3813 {
3814 return s->options;
3815 }
3816 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
3817 {
3818 return ctx->options |= op;
3819 }
3820 unsigned long SSL_set_options(SSL *s, unsigned long op)
3821 {
3822 return s->options |= op;
3823 }
3824 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
3825 {
3826 return ctx->options &= ~op;
3827 }
3828 unsigned long SSL_clear_options(SSL *s, unsigned long op)
3829 {
3830 return s->options &= ~op;
3831 }
3832
3833 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
3834 {
3835 return s->verified_chain;
3836 }
3837
3838 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);