]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Resolve swallowed returns codes
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /* ssl/t1_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112 #include <stdio.h>
113 #include <openssl/objects.h>
114 #include <openssl/evp.h>
115 #include <openssl/hmac.h>
116 #include <openssl/ocsp.h>
117 #include <openssl/rand.h>
118 #ifndef OPENSSL_NO_DH
119 # include <openssl/dh.h>
120 # include <openssl/bn.h>
121 #endif
122 #include "ssl_locl.h"
123
124 const char tls1_version_str[] = "TLSv1" OPENSSL_VERSION_PTEXT;
125
126 #ifndef OPENSSL_NO_TLSEXT
127 static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen,
128 const unsigned char *sess_id, int sesslen,
129 SSL_SESSION **psess);
130 static int ssl_check_clienthello_tlsext_early(SSL *s);
131 int ssl_check_serverhello_tlsext(SSL *s);
132 #endif
133
134 SSL3_ENC_METHOD const TLSv1_enc_data = {
135 tls1_enc,
136 tls1_mac,
137 tls1_setup_key_block,
138 tls1_generate_master_secret,
139 tls1_change_cipher_state,
140 tls1_final_finish_mac,
141 TLS1_FINISH_MAC_LENGTH,
142 tls1_cert_verify_mac,
143 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
144 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
145 tls1_alert_code,
146 tls1_export_keying_material,
147 0,
148 SSL3_HM_HEADER_LENGTH,
149 ssl3_set_handshake_header,
150 ssl3_handshake_write
151 };
152
153 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
154 tls1_enc,
155 tls1_mac,
156 tls1_setup_key_block,
157 tls1_generate_master_secret,
158 tls1_change_cipher_state,
159 tls1_final_finish_mac,
160 TLS1_FINISH_MAC_LENGTH,
161 tls1_cert_verify_mac,
162 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
163 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
164 tls1_alert_code,
165 tls1_export_keying_material,
166 SSL_ENC_FLAG_EXPLICIT_IV,
167 SSL3_HM_HEADER_LENGTH,
168 ssl3_set_handshake_header,
169 ssl3_handshake_write
170 };
171
172 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
173 tls1_enc,
174 tls1_mac,
175 tls1_setup_key_block,
176 tls1_generate_master_secret,
177 tls1_change_cipher_state,
178 tls1_final_finish_mac,
179 TLS1_FINISH_MAC_LENGTH,
180 tls1_cert_verify_mac,
181 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
182 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
183 tls1_alert_code,
184 tls1_export_keying_material,
185 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
186 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
187 SSL3_HM_HEADER_LENGTH,
188 ssl3_set_handshake_header,
189 ssl3_handshake_write
190 };
191
192 long tls1_default_timeout(void)
193 {
194 /*
195 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
196 * http, the cache would over fill
197 */
198 return (60 * 60 * 2);
199 }
200
201 int tls1_new(SSL *s)
202 {
203 if (!ssl3_new(s))
204 return (0);
205 s->method->ssl_clear(s);
206 return (1);
207 }
208
209 void tls1_free(SSL *s)
210 {
211 #ifndef OPENSSL_NO_TLSEXT
212 if (s->tlsext_session_ticket) {
213 OPENSSL_free(s->tlsext_session_ticket);
214 }
215 #endif /* OPENSSL_NO_TLSEXT */
216 ssl3_free(s);
217 }
218
219 void tls1_clear(SSL *s)
220 {
221 ssl3_clear(s);
222 s->version = s->method->version;
223 }
224
225 #ifndef OPENSSL_NO_EC
226
227 typedef struct {
228 int nid; /* Curve NID */
229 int secbits; /* Bits of security (from SP800-57) */
230 unsigned int flags; /* Flags: currently just field type */
231 } tls_curve_info;
232
233 # define TLS_CURVE_CHAR2 0x1
234 # define TLS_CURVE_PRIME 0x0
235
236 static const tls_curve_info nid_list[] = {
237 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
238 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
239 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
240 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
241 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
242 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
243 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
244 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
245 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
246 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
247 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
248 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
249 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
250 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
251 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
252 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
253 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
254 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
255 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
256 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
257 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
258 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
259 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
260 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
261 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
262 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
263 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
264 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
265 };
266
267 static const unsigned char ecformats_default[] = {
268 TLSEXT_ECPOINTFORMAT_uncompressed,
269 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
270 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
271 };
272
273 static const unsigned char eccurves_default[] = {
274 0, 14, /* sect571r1 (14) */
275 0, 13, /* sect571k1 (13) */
276 0, 25, /* secp521r1 (25) */
277 0, 28, /* brainpool512r1 (28) */
278 0, 11, /* sect409k1 (11) */
279 0, 12, /* sect409r1 (12) */
280 0, 27, /* brainpoolP384r1 (27) */
281 0, 24, /* secp384r1 (24) */
282 0, 9, /* sect283k1 (9) */
283 0, 10, /* sect283r1 (10) */
284 0, 26, /* brainpoolP256r1 (26) */
285 0, 22, /* secp256k1 (22) */
286 0, 23, /* secp256r1 (23) */
287 0, 8, /* sect239k1 (8) */
288 0, 6, /* sect233k1 (6) */
289 0, 7, /* sect233r1 (7) */
290 0, 20, /* secp224k1 (20) */
291 0, 21, /* secp224r1 (21) */
292 0, 4, /* sect193r1 (4) */
293 0, 5, /* sect193r2 (5) */
294 0, 18, /* secp192k1 (18) */
295 0, 19, /* secp192r1 (19) */
296 0, 1, /* sect163k1 (1) */
297 0, 2, /* sect163r1 (2) */
298 0, 3, /* sect163r2 (3) */
299 0, 15, /* secp160k1 (15) */
300 0, 16, /* secp160r1 (16) */
301 0, 17, /* secp160r2 (17) */
302 };
303
304 static const unsigned char suiteb_curves[] = {
305 0, TLSEXT_curve_P_256,
306 0, TLSEXT_curve_P_384
307 };
308
309 int tls1_ec_curve_id2nid(int curve_id)
310 {
311 /* ECC curves from RFC 4492 and RFC 7027 */
312 if ((curve_id < 1) || ((unsigned int)curve_id >
313 sizeof(nid_list) / sizeof(nid_list[0])))
314 return 0;
315 return nid_list[curve_id - 1].nid;
316 }
317
318 int tls1_ec_nid2curve_id(int nid)
319 {
320 /* ECC curves from RFC 4492 and RFC 7027 */
321 switch (nid) {
322 case NID_sect163k1: /* sect163k1 (1) */
323 return 1;
324 case NID_sect163r1: /* sect163r1 (2) */
325 return 2;
326 case NID_sect163r2: /* sect163r2 (3) */
327 return 3;
328 case NID_sect193r1: /* sect193r1 (4) */
329 return 4;
330 case NID_sect193r2: /* sect193r2 (5) */
331 return 5;
332 case NID_sect233k1: /* sect233k1 (6) */
333 return 6;
334 case NID_sect233r1: /* sect233r1 (7) */
335 return 7;
336 case NID_sect239k1: /* sect239k1 (8) */
337 return 8;
338 case NID_sect283k1: /* sect283k1 (9) */
339 return 9;
340 case NID_sect283r1: /* sect283r1 (10) */
341 return 10;
342 case NID_sect409k1: /* sect409k1 (11) */
343 return 11;
344 case NID_sect409r1: /* sect409r1 (12) */
345 return 12;
346 case NID_sect571k1: /* sect571k1 (13) */
347 return 13;
348 case NID_sect571r1: /* sect571r1 (14) */
349 return 14;
350 case NID_secp160k1: /* secp160k1 (15) */
351 return 15;
352 case NID_secp160r1: /* secp160r1 (16) */
353 return 16;
354 case NID_secp160r2: /* secp160r2 (17) */
355 return 17;
356 case NID_secp192k1: /* secp192k1 (18) */
357 return 18;
358 case NID_X9_62_prime192v1: /* secp192r1 (19) */
359 return 19;
360 case NID_secp224k1: /* secp224k1 (20) */
361 return 20;
362 case NID_secp224r1: /* secp224r1 (21) */
363 return 21;
364 case NID_secp256k1: /* secp256k1 (22) */
365 return 22;
366 case NID_X9_62_prime256v1: /* secp256r1 (23) */
367 return 23;
368 case NID_secp384r1: /* secp384r1 (24) */
369 return 24;
370 case NID_secp521r1: /* secp521r1 (25) */
371 return 25;
372 case NID_brainpoolP256r1: /* brainpoolP256r1 (26) */
373 return 26;
374 case NID_brainpoolP384r1: /* brainpoolP384r1 (27) */
375 return 27;
376 case NID_brainpoolP512r1: /* brainpool512r1 (28) */
377 return 28;
378 default:
379 return 0;
380 }
381 }
382
383 /*
384 * Get curves list, if "sess" is set return client curves otherwise
385 * preferred list.
386 * Sets |num_curves| to the number of curves in the list, i.e.,
387 * the length of |pcurves| is 2 * num_curves.
388 * Returns 1 on success and 0 if the client curves list has invalid format.
389 * The latter indicates an internal error: we should not be accepting such
390 * lists in the first place.
391 * TODO(emilia): we should really be storing the curves list in explicitly
392 * parsed form instead. (However, this would affect binary compatibility
393 * so cannot happen in the 1.0.x series.)
394 */
395 static int tls1_get_curvelist(SSL *s, int sess,
396 const unsigned char **pcurves,
397 size_t *num_curves)
398 {
399 size_t pcurveslen = 0;
400 if (sess) {
401 *pcurves = s->session->tlsext_ellipticcurvelist;
402 pcurveslen = s->session->tlsext_ellipticcurvelist_length;
403 } else {
404 /* For Suite B mode only include P-256, P-384 */
405 switch (tls1_suiteb(s)) {
406 case SSL_CERT_FLAG_SUITEB_128_LOS:
407 *pcurves = suiteb_curves;
408 pcurveslen = sizeof(suiteb_curves);
409 break;
410
411 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
412 *pcurves = suiteb_curves;
413 pcurveslen = 2;
414 break;
415
416 case SSL_CERT_FLAG_SUITEB_192_LOS:
417 *pcurves = suiteb_curves + 2;
418 pcurveslen = 2;
419 break;
420 default:
421 *pcurves = s->tlsext_ellipticcurvelist;
422 pcurveslen = s->tlsext_ellipticcurvelist_length;
423 }
424 if (!*pcurves) {
425 *pcurves = eccurves_default;
426 pcurveslen = sizeof(eccurves_default);
427 }
428 }
429
430 /* We do not allow odd length arrays to enter the system. */
431 if (pcurveslen & 1) {
432 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
433 *num_curves = 0;
434 return 0;
435 } else {
436 *num_curves = pcurveslen / 2;
437 return 1;
438 }
439 }
440
441 /* See if curve is allowed by security callback */
442 static int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
443 {
444 const tls_curve_info *cinfo;
445 if (curve[0])
446 return 1;
447 if ((curve[1] < 1) || ((size_t)curve[1] >
448 sizeof(nid_list) / sizeof(nid_list[0])))
449 return 0;
450 cinfo = &nid_list[curve[1] - 1];
451 # ifdef OPENSSL_NO_EC2M
452 if (cinfo->flags & TLS_CURVE_CHAR2)
453 return 0;
454 # endif
455 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
456 }
457
458 /* Check a curve is one of our preferences */
459 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
460 {
461 const unsigned char *curves;
462 size_t num_curves, i;
463 unsigned int suiteb_flags = tls1_suiteb(s);
464 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
465 return 0;
466 /* Check curve matches Suite B preferences */
467 if (suiteb_flags) {
468 unsigned long cid = s->s3->tmp.new_cipher->id;
469 if (p[1])
470 return 0;
471 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
472 if (p[2] != TLSEXT_curve_P_256)
473 return 0;
474 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
475 if (p[2] != TLSEXT_curve_P_384)
476 return 0;
477 } else /* Should never happen */
478 return 0;
479 }
480 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
481 return 0;
482 for (i = 0; i < num_curves; i++, curves += 2) {
483 if (p[1] == curves[0] && p[2] == curves[1])
484 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
485 }
486 return 0;
487 }
488
489 /*-
490 * Return |nmatch|th shared curve or NID_undef if there is no match.
491 * For nmatch == -1, return number of matches
492 * For nmatch == -2, return the NID of the curve to use for
493 * an EC tmp key, or NID_undef if there is no match.
494 */
495 int tls1_shared_curve(SSL *s, int nmatch)
496 {
497 const unsigned char *pref, *supp;
498 size_t num_pref, num_supp, i, j;
499 int k;
500 /* Can't do anything on client side */
501 if (s->server == 0)
502 return -1;
503 if (nmatch == -2) {
504 if (tls1_suiteb(s)) {
505 /*
506 * For Suite B ciphersuite determines curve: we already know
507 * these are acceptable due to previous checks.
508 */
509 unsigned long cid = s->s3->tmp.new_cipher->id;
510 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
511 return NID_X9_62_prime256v1; /* P-256 */
512 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
513 return NID_secp384r1; /* P-384 */
514 /* Should never happen */
515 return NID_undef;
516 }
517 /* If not Suite B just return first preference shared curve */
518 nmatch = 0;
519 }
520 /*
521 * Avoid truncation. tls1_get_curvelist takes an int
522 * but s->options is a long...
523 */
524 if (!tls1_get_curvelist
525 (s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0, &supp,
526 &num_supp))
527 /* In practice, NID_undef == 0 but let's be precise. */
528 return nmatch == -1 ? 0 : NID_undef;
529 if (!tls1_get_curvelist
530 (s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref,
531 &num_pref))
532 return nmatch == -1 ? 0 : NID_undef;
533 k = 0;
534 for (i = 0; i < num_pref; i++, pref += 2) {
535 const unsigned char *tsupp = supp;
536 for (j = 0; j < num_supp; j++, tsupp += 2) {
537 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
538 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
539 continue;
540 if (nmatch == k) {
541 int id = (pref[0] << 8) | pref[1];
542 return tls1_ec_curve_id2nid(id);
543 }
544 k++;
545 }
546 }
547 }
548 if (nmatch == -1)
549 return k;
550 /* Out of range (nmatch > k). */
551 return NID_undef;
552 }
553
554 int tls1_set_curves(unsigned char **pext, size_t *pextlen,
555 int *curves, size_t ncurves)
556 {
557 unsigned char *clist, *p;
558 size_t i;
559 /*
560 * Bitmap of curves included to detect duplicates: only works while curve
561 * ids < 32
562 */
563 unsigned long dup_list = 0;
564 clist = OPENSSL_malloc(ncurves * 2);
565 if (!clist)
566 return 0;
567 for (i = 0, p = clist; i < ncurves; i++) {
568 unsigned long idmask;
569 int id;
570 id = tls1_ec_nid2curve_id(curves[i]);
571 idmask = 1L << id;
572 if (!id || (dup_list & idmask)) {
573 OPENSSL_free(clist);
574 return 0;
575 }
576 dup_list |= idmask;
577 s2n(id, p);
578 }
579 if (*pext)
580 OPENSSL_free(*pext);
581 *pext = clist;
582 *pextlen = ncurves * 2;
583 return 1;
584 }
585
586 # define MAX_CURVELIST 28
587
588 typedef struct {
589 size_t nidcnt;
590 int nid_arr[MAX_CURVELIST];
591 } nid_cb_st;
592
593 static int nid_cb(const char *elem, int len, void *arg)
594 {
595 nid_cb_st *narg = arg;
596 size_t i;
597 int nid;
598 char etmp[20];
599 if (elem == NULL)
600 return 0;
601 if (narg->nidcnt == MAX_CURVELIST)
602 return 0;
603 if (len > (int)(sizeof(etmp) - 1))
604 return 0;
605 memcpy(etmp, elem, len);
606 etmp[len] = 0;
607 nid = EC_curve_nist2nid(etmp);
608 if (nid == NID_undef)
609 nid = OBJ_sn2nid(etmp);
610 if (nid == NID_undef)
611 nid = OBJ_ln2nid(etmp);
612 if (nid == NID_undef)
613 return 0;
614 for (i = 0; i < narg->nidcnt; i++)
615 if (narg->nid_arr[i] == nid)
616 return 0;
617 narg->nid_arr[narg->nidcnt++] = nid;
618 return 1;
619 }
620
621 /* Set curves based on a colon separate list */
622 int tls1_set_curves_list(unsigned char **pext, size_t *pextlen,
623 const char *str)
624 {
625 nid_cb_st ncb;
626 ncb.nidcnt = 0;
627 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
628 return 0;
629 if (pext == NULL)
630 return 1;
631 return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
632 }
633
634 /* For an EC key set TLS id and required compression based on parameters */
635 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
636 EC_KEY *ec)
637 {
638 int is_prime, id;
639 const EC_GROUP *grp;
640 const EC_METHOD *meth;
641 if (!ec)
642 return 0;
643 /* Determine if it is a prime field */
644 grp = EC_KEY_get0_group(ec);
645 if (!grp)
646 return 0;
647 meth = EC_GROUP_method_of(grp);
648 if (!meth)
649 return 0;
650 if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field)
651 is_prime = 1;
652 else
653 is_prime = 0;
654 /* Determine curve ID */
655 id = EC_GROUP_get_curve_name(grp);
656 id = tls1_ec_nid2curve_id(id);
657 /* If we have an ID set it, otherwise set arbitrary explicit curve */
658 if (id) {
659 curve_id[0] = 0;
660 curve_id[1] = (unsigned char)id;
661 } else {
662 curve_id[0] = 0xff;
663 if (is_prime)
664 curve_id[1] = 0x01;
665 else
666 curve_id[1] = 0x02;
667 }
668 if (comp_id) {
669 if (EC_KEY_get0_public_key(ec) == NULL)
670 return 0;
671 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) {
672 if (is_prime)
673 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
674 else
675 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
676 } else
677 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
678 }
679 return 1;
680 }
681
682 /* Check an EC key is compatible with extensions */
683 static int tls1_check_ec_key(SSL *s,
684 unsigned char *curve_id, unsigned char *comp_id)
685 {
686 const unsigned char *pformats, *pcurves;
687 size_t num_formats, num_curves, i;
688 int j;
689 /*
690 * If point formats extension present check it, otherwise everything is
691 * supported (see RFC4492).
692 */
693 if (comp_id && s->session->tlsext_ecpointformatlist) {
694 pformats = s->session->tlsext_ecpointformatlist;
695 num_formats = s->session->tlsext_ecpointformatlist_length;
696 for (i = 0; i < num_formats; i++, pformats++) {
697 if (*comp_id == *pformats)
698 break;
699 }
700 if (i == num_formats)
701 return 0;
702 }
703 if (!curve_id)
704 return 1;
705 /* Check curve is consistent with client and server preferences */
706 for (j = 0; j <= 1; j++) {
707 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
708 return 0;
709 if (j == 1 && num_curves == 0) {
710 /*
711 * If we've not received any curves then skip this check.
712 * RFC 4492 does not require the supported elliptic curves extension
713 * so if it is not sent we can just choose any curve.
714 * It is invalid to send an empty list in the elliptic curves
715 * extension, so num_curves == 0 always means no extension.
716 */
717 break;
718 }
719 for (i = 0; i < num_curves; i++, pcurves += 2) {
720 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
721 break;
722 }
723 if (i == num_curves)
724 return 0;
725 /* For clients can only check sent curve list */
726 if (!s->server)
727 break;
728 }
729 return 1;
730 }
731
732 static void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
733 size_t *num_formats)
734 {
735 /*
736 * If we have a custom point format list use it otherwise use default
737 */
738 if (s->tlsext_ecpointformatlist) {
739 *pformats = s->tlsext_ecpointformatlist;
740 *num_formats = s->tlsext_ecpointformatlist_length;
741 } else {
742 *pformats = ecformats_default;
743 /* For Suite B we don't support char2 fields */
744 if (tls1_suiteb(s))
745 *num_formats = sizeof(ecformats_default) - 1;
746 else
747 *num_formats = sizeof(ecformats_default);
748 }
749 }
750
751 /*
752 * Check cert parameters compatible with extensions: currently just checks EC
753 * certificates have compatible curves and compression.
754 */
755 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
756 {
757 unsigned char comp_id, curve_id[2];
758 EVP_PKEY *pkey;
759 int rv;
760 pkey = X509_get_pubkey(x);
761 if (!pkey)
762 return 0;
763 /* If not EC nothing to do */
764 if (pkey->type != EVP_PKEY_EC) {
765 EVP_PKEY_free(pkey);
766 return 1;
767 }
768 rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec);
769 EVP_PKEY_free(pkey);
770 if (!rv)
771 return 0;
772 /*
773 * Can't check curve_id for client certs as we don't have a supported
774 * curves extension.
775 */
776 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
777 if (!rv)
778 return 0;
779 /*
780 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
781 * SHA384+P-384, adjust digest if necessary.
782 */
783 if (set_ee_md && tls1_suiteb(s)) {
784 int check_md;
785 size_t i;
786 CERT *c = s->cert;
787 if (curve_id[0])
788 return 0;
789 /* Check to see we have necessary signing algorithm */
790 if (curve_id[1] == TLSEXT_curve_P_256)
791 check_md = NID_ecdsa_with_SHA256;
792 else if (curve_id[1] == TLSEXT_curve_P_384)
793 check_md = NID_ecdsa_with_SHA384;
794 else
795 return 0; /* Should never happen */
796 for (i = 0; i < c->shared_sigalgslen; i++)
797 if (check_md == c->shared_sigalgs[i].signandhash_nid)
798 break;
799 if (i == c->shared_sigalgslen)
800 return 0;
801 if (set_ee_md == 2) {
802 if (check_md == NID_ecdsa_with_SHA256)
803 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha256();
804 else
805 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha384();
806 }
807 }
808 return rv;
809 }
810
811 # ifndef OPENSSL_NO_EC
812 /* Check EC temporary key is compatible with client extensions */
813 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
814 {
815 unsigned char curve_id[2];
816 EC_KEY *ec = s->cert->ecdh_tmp;
817 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
818 /* Allow any curve: not just those peer supports */
819 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
820 return 1;
821 # endif
822 /*
823 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
824 * curves permitted.
825 */
826 if (tls1_suiteb(s)) {
827 /* Curve to check determined by ciphersuite */
828 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
829 curve_id[1] = TLSEXT_curve_P_256;
830 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
831 curve_id[1] = TLSEXT_curve_P_384;
832 else
833 return 0;
834 curve_id[0] = 0;
835 /* Check this curve is acceptable */
836 if (!tls1_check_ec_key(s, curve_id, NULL))
837 return 0;
838 /* If auto or setting curve from callback assume OK */
839 if (s->cert->ecdh_tmp_auto || s->cert->ecdh_tmp_cb)
840 return 1;
841 /* Otherwise check curve is acceptable */
842 else {
843 unsigned char curve_tmp[2];
844 if (!ec)
845 return 0;
846 if (!tls1_set_ec_id(curve_tmp, NULL, ec))
847 return 0;
848 if (!curve_tmp[0] || curve_tmp[1] == curve_id[1])
849 return 1;
850 return 0;
851 }
852
853 }
854 if (s->cert->ecdh_tmp_auto) {
855 /* Need a shared curve */
856 if (tls1_shared_curve(s, 0))
857 return 1;
858 else
859 return 0;
860 }
861 if (!ec) {
862 if (s->cert->ecdh_tmp_cb)
863 return 1;
864 else
865 return 0;
866 }
867 if (!tls1_set_ec_id(curve_id, NULL, ec))
868 return 0;
869 /* Set this to allow use of invalid curves for testing */
870 # if 0
871 return 1;
872 # else
873 return tls1_check_ec_key(s, curve_id, NULL);
874 # endif
875 }
876 # endif /* OPENSSL_NO_EC */
877
878 #else
879
880 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
881 {
882 return 1;
883 }
884
885 #endif /* OPENSSL_NO_EC */
886
887 #ifndef OPENSSL_NO_TLSEXT
888
889 /*
890 * List of supported signature algorithms and hashes. Should make this
891 * customisable at some point, for now include everything we support.
892 */
893
894 # ifdef OPENSSL_NO_RSA
895 # define tlsext_sigalg_rsa(md) /* */
896 # else
897 # define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
898 # endif
899
900 # ifdef OPENSSL_NO_DSA
901 # define tlsext_sigalg_dsa(md) /* */
902 # else
903 # define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa,
904 # endif
905
906 # ifdef OPENSSL_NO_EC
907 # define tlsext_sigalg_ecdsa(md) /* */
908 # else
909 # define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,
910 # endif
911
912 # define tlsext_sigalg(md) \
913 tlsext_sigalg_rsa(md) \
914 tlsext_sigalg_dsa(md) \
915 tlsext_sigalg_ecdsa(md)
916
917 static const unsigned char tls12_sigalgs[] = {
918 tlsext_sigalg(TLSEXT_hash_sha512)
919 tlsext_sigalg(TLSEXT_hash_sha384)
920 tlsext_sigalg(TLSEXT_hash_sha256)
921 tlsext_sigalg(TLSEXT_hash_sha224)
922 tlsext_sigalg(TLSEXT_hash_sha1)
923 };
924
925 # ifndef OPENSSL_NO_EC
926 static const unsigned char suiteb_sigalgs[] = {
927 tlsext_sigalg_ecdsa(TLSEXT_hash_sha256)
928 tlsext_sigalg_ecdsa(TLSEXT_hash_sha384)
929 };
930 # endif
931 size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs)
932 {
933 /*
934 * If Suite B mode use Suite B sigalgs only, ignore any other
935 * preferences.
936 */
937 # ifndef OPENSSL_NO_EC
938 switch (tls1_suiteb(s)) {
939 case SSL_CERT_FLAG_SUITEB_128_LOS:
940 *psigs = suiteb_sigalgs;
941 return sizeof(suiteb_sigalgs);
942
943 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
944 *psigs = suiteb_sigalgs;
945 return 2;
946
947 case SSL_CERT_FLAG_SUITEB_192_LOS:
948 *psigs = suiteb_sigalgs + 2;
949 return 2;
950 }
951 # endif
952 /* If server use client authentication sigalgs if not NULL */
953 if (s->server && s->cert->client_sigalgs) {
954 *psigs = s->cert->client_sigalgs;
955 return s->cert->client_sigalgslen;
956 } else if (s->cert->conf_sigalgs) {
957 *psigs = s->cert->conf_sigalgs;
958 return s->cert->conf_sigalgslen;
959 } else {
960 *psigs = tls12_sigalgs;
961 return sizeof(tls12_sigalgs);
962 }
963 }
964
965 /*
966 * Check signature algorithm is consistent with sent supported signature
967 * algorithms and if so return relevant digest.
968 */
969 int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s,
970 const unsigned char *sig, EVP_PKEY *pkey)
971 {
972 const unsigned char *sent_sigs;
973 size_t sent_sigslen, i;
974 int sigalg = tls12_get_sigid(pkey);
975 /* Should never happen */
976 if (sigalg == -1)
977 return -1;
978 /* Check key type is consistent with signature */
979 if (sigalg != (int)sig[1]) {
980 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
981 return 0;
982 }
983 # ifndef OPENSSL_NO_EC
984 if (pkey->type == EVP_PKEY_EC) {
985 unsigned char curve_id[2], comp_id;
986 /* Check compression and curve matches extensions */
987 if (!tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec))
988 return 0;
989 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
990 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
991 return 0;
992 }
993 /* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */
994 if (tls1_suiteb(s)) {
995 if (curve_id[0])
996 return 0;
997 if (curve_id[1] == TLSEXT_curve_P_256) {
998 if (sig[0] != TLSEXT_hash_sha256) {
999 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
1000 SSL_R_ILLEGAL_SUITEB_DIGEST);
1001 return 0;
1002 }
1003 } else if (curve_id[1] == TLSEXT_curve_P_384) {
1004 if (sig[0] != TLSEXT_hash_sha384) {
1005 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
1006 SSL_R_ILLEGAL_SUITEB_DIGEST);
1007 return 0;
1008 }
1009 } else
1010 return 0;
1011 }
1012 } else if (tls1_suiteb(s))
1013 return 0;
1014 # endif
1015
1016 /* Check signature matches a type we sent */
1017 sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
1018 for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) {
1019 if (sig[0] == sent_sigs[0] && sig[1] == sent_sigs[1])
1020 break;
1021 }
1022 /* Allow fallback to SHA1 if not strict mode */
1023 if (i == sent_sigslen
1024 && (sig[0] != TLSEXT_hash_sha1
1025 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1026 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1027 return 0;
1028 }
1029 *pmd = tls12_get_hash(sig[0]);
1030 if (*pmd == NULL) {
1031 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
1032 return 0;
1033 }
1034 /* Make sure security callback allows algorithm */
1035 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1036 EVP_MD_size(*pmd) * 4, EVP_MD_type(*pmd),
1037 (void *)sig)) {
1038 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1039 return 0;
1040 }
1041 /*
1042 * Store the digest used so applications can retrieve it if they wish.
1043 */
1044 if (s->session && s->session->sess_cert)
1045 s->session->sess_cert->peer_key->digest = *pmd;
1046 return 1;
1047 }
1048
1049 /*
1050 * Get a mask of disabled algorithms: an algorithm is disabled if it isn't
1051 * supported or doesn't appear in supported signature algorithms. Unlike
1052 * ssl_cipher_get_disabled this applies to a specific session and not global
1053 * settings.
1054 */
1055 void ssl_set_client_disabled(SSL *s)
1056 {
1057 CERT *c = s->cert;
1058 c->mask_a = 0;
1059 c->mask_k = 0;
1060 /* Don't allow TLS 1.2 only ciphers if we don't suppport them */
1061 if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s))
1062 c->mask_ssl = SSL_TLSV1_2;
1063 else
1064 c->mask_ssl = 0;
1065 ssl_set_sig_mask(&c->mask_a, s, SSL_SECOP_SIGALG_MASK);
1066 /*
1067 * Disable static DH if we don't include any appropriate signature
1068 * algorithms.
1069 */
1070 if (c->mask_a & SSL_aRSA)
1071 c->mask_k |= SSL_kDHr | SSL_kECDHr;
1072 if (c->mask_a & SSL_aDSS)
1073 c->mask_k |= SSL_kDHd;
1074 if (c->mask_a & SSL_aECDSA)
1075 c->mask_k |= SSL_kECDHe;
1076 # ifndef OPENSSL_NO_KRB5
1077 if (!kssl_tgt_is_available(s->kssl_ctx)) {
1078 c->mask_a |= SSL_aKRB5;
1079 c->mask_k |= SSL_kKRB5;
1080 }
1081 # endif
1082 # ifndef OPENSSL_NO_PSK
1083 /* with PSK there must be client callback set */
1084 if (!s->psk_client_callback) {
1085 c->mask_a |= SSL_aPSK;
1086 c->mask_k |= SSL_kPSK;
1087 }
1088 # endif /* OPENSSL_NO_PSK */
1089 # ifndef OPENSSL_NO_SRP
1090 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1091 c->mask_a |= SSL_aSRP;
1092 c->mask_k |= SSL_kSRP;
1093 }
1094 # endif
1095 c->valid = 1;
1096 }
1097
1098 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
1099 {
1100 CERT *ct = s->cert;
1101 if (c->algorithm_ssl & ct->mask_ssl || c->algorithm_mkey & ct->mask_k
1102 || c->algorithm_auth & ct->mask_a)
1103 return 1;
1104 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1105 }
1106
1107 static int tls_use_ticket(SSL *s)
1108 {
1109 if (s->options & SSL_OP_NO_TICKET)
1110 return 0;
1111 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1112 }
1113
1114 unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf,
1115 unsigned char *limit, int *al)
1116 {
1117 int extdatalen = 0;
1118 unsigned char *orig = buf;
1119 unsigned char *ret = buf;
1120 # ifndef OPENSSL_NO_EC
1121 /* See if we support any ECC ciphersuites */
1122 int using_ecc = 0;
1123 if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) {
1124 int i;
1125 unsigned long alg_k, alg_a;
1126 STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);
1127
1128 for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) {
1129 SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);
1130
1131 alg_k = c->algorithm_mkey;
1132 alg_a = c->algorithm_auth;
1133 if ((alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe)
1134 || (alg_a & SSL_aECDSA))) {
1135 using_ecc = 1;
1136 break;
1137 }
1138 }
1139 }
1140 # endif
1141
1142 ret += 2;
1143
1144 if (ret >= limit)
1145 return NULL; /* this really never occurs, but ... */
1146
1147 /* Add RI if renegotiating */
1148 if (s->renegotiate) {
1149 int el;
1150
1151 if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) {
1152 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1153 return NULL;
1154 }
1155
1156 if ((limit - ret - 4 - el) < 0)
1157 return NULL;
1158
1159 s2n(TLSEXT_TYPE_renegotiate, ret);
1160 s2n(el, ret);
1161
1162 if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) {
1163 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1164 return NULL;
1165 }
1166
1167 ret += el;
1168 }
1169 /* Only add RI for SSLv3 */
1170 if (s->client_version == SSL3_VERSION)
1171 goto done;
1172
1173 if (s->tlsext_hostname != NULL) {
1174 /* Add TLS extension servername to the Client Hello message */
1175 unsigned long size_str;
1176 long lenmax;
1177
1178 /*-
1179 * check for enough space.
1180 * 4 for the servername type and entension length
1181 * 2 for servernamelist length
1182 * 1 for the hostname type
1183 * 2 for hostname length
1184 * + hostname length
1185 */
1186
1187 if ((lenmax = limit - ret - 9) < 0
1188 || (size_str =
1189 strlen(s->tlsext_hostname)) > (unsigned long)lenmax)
1190 return NULL;
1191
1192 /* extension type and length */
1193 s2n(TLSEXT_TYPE_server_name, ret);
1194 s2n(size_str + 5, ret);
1195
1196 /* length of servername list */
1197 s2n(size_str + 3, ret);
1198
1199 /* hostname type, length and hostname */
1200 *(ret++) = (unsigned char)TLSEXT_NAMETYPE_host_name;
1201 s2n(size_str, ret);
1202 memcpy(ret, s->tlsext_hostname, size_str);
1203 ret += size_str;
1204 }
1205 # ifndef OPENSSL_NO_SRP
1206 /* Add SRP username if there is one */
1207 if (s->srp_ctx.login != NULL) { /* Add TLS extension SRP username to the
1208 * Client Hello message */
1209
1210 int login_len = strlen(s->srp_ctx.login);
1211 if (login_len > 255 || login_len == 0) {
1212 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1213 return NULL;
1214 }
1215
1216 /*-
1217 * check for enough space.
1218 * 4 for the srp type type and entension length
1219 * 1 for the srp user identity
1220 * + srp user identity length
1221 */
1222 if ((limit - ret - 5 - login_len) < 0)
1223 return NULL;
1224
1225 /* fill in the extension */
1226 s2n(TLSEXT_TYPE_srp, ret);
1227 s2n(login_len + 1, ret);
1228 (*ret++) = (unsigned char)login_len;
1229 memcpy(ret, s->srp_ctx.login, login_len);
1230 ret += login_len;
1231 }
1232 # endif
1233
1234 # ifndef OPENSSL_NO_EC
1235 if (using_ecc) {
1236 /*
1237 * Add TLS extension ECPointFormats to the ClientHello message
1238 */
1239 long lenmax;
1240 const unsigned char *pcurves, *pformats;
1241 size_t num_curves, num_formats, curves_list_len;
1242 size_t i;
1243 unsigned char *etmp;
1244
1245 tls1_get_formatlist(s, &pformats, &num_formats);
1246
1247 if ((lenmax = limit - ret - 5) < 0)
1248 return NULL;
1249 if (num_formats > (size_t)lenmax)
1250 return NULL;
1251 if (num_formats > 255) {
1252 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1253 return NULL;
1254 }
1255
1256 s2n(TLSEXT_TYPE_ec_point_formats, ret);
1257 /* The point format list has 1-byte length. */
1258 s2n(num_formats + 1, ret);
1259 *(ret++) = (unsigned char)num_formats;
1260 memcpy(ret, pformats, num_formats);
1261 ret += num_formats;
1262
1263 /*
1264 * Add TLS extension EllipticCurves to the ClientHello message
1265 */
1266 pcurves = s->tlsext_ellipticcurvelist;
1267 if (!tls1_get_curvelist(s, 0, &pcurves, &num_curves))
1268 return NULL;
1269
1270 if ((lenmax = limit - ret - 6) < 0)
1271 return NULL;
1272 if (num_curves > (size_t)lenmax / 2)
1273 return NULL;
1274 if (num_curves > 65532 / 2) {
1275 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1276 return NULL;
1277 }
1278
1279 s2n(TLSEXT_TYPE_elliptic_curves, ret);
1280 etmp = ret + 4;
1281 /* Copy curve ID if supported */
1282 for (i = 0; i < num_curves; i++, pcurves += 2) {
1283 if (tls_curve_allowed(s, pcurves, SSL_SECOP_CURVE_SUPPORTED)) {
1284 *etmp++ = pcurves[0];
1285 *etmp++ = pcurves[1];
1286 }
1287 }
1288
1289 curves_list_len = etmp - ret - 4;
1290
1291 s2n(curves_list_len + 2, ret);
1292 s2n(curves_list_len, ret);
1293 ret += curves_list_len;
1294 }
1295 # endif /* OPENSSL_NO_EC */
1296
1297 if (tls_use_ticket(s)) {
1298 int ticklen;
1299 if (!s->new_session && s->session && s->session->tlsext_tick)
1300 ticklen = s->session->tlsext_ticklen;
1301 else if (s->session && s->tlsext_session_ticket &&
1302 s->tlsext_session_ticket->data) {
1303 ticklen = s->tlsext_session_ticket->length;
1304 s->session->tlsext_tick = OPENSSL_malloc(ticklen);
1305 if (!s->session->tlsext_tick)
1306 return NULL;
1307 memcpy(s->session->tlsext_tick,
1308 s->tlsext_session_ticket->data, ticklen);
1309 s->session->tlsext_ticklen = ticklen;
1310 } else
1311 ticklen = 0;
1312 if (ticklen == 0 && s->tlsext_session_ticket &&
1313 s->tlsext_session_ticket->data == NULL)
1314 goto skip_ext;
1315 /*
1316 * Check for enough room 2 for extension type, 2 for len rest for
1317 * ticket
1318 */
1319 if ((long)(limit - ret - 4 - ticklen) < 0)
1320 return NULL;
1321 s2n(TLSEXT_TYPE_session_ticket, ret);
1322 s2n(ticklen, ret);
1323 if (ticklen) {
1324 memcpy(ret, s->session->tlsext_tick, ticklen);
1325 ret += ticklen;
1326 }
1327 }
1328 skip_ext:
1329
1330 if (SSL_USE_SIGALGS(s)) {
1331 size_t salglen;
1332 const unsigned char *salg;
1333 unsigned char *etmp;
1334 salglen = tls12_get_psigalgs(s, &salg);
1335 if ((size_t)(limit - ret) < salglen + 6)
1336 return NULL;
1337 s2n(TLSEXT_TYPE_signature_algorithms, ret);
1338 etmp = ret;
1339 /* Skip over lengths for now */
1340 ret += 4;
1341 salglen = tls12_copy_sigalgs(s, ret, salg, salglen);
1342 /* Fill in lengths */
1343 s2n(salglen + 2, etmp);
1344 s2n(salglen, etmp);
1345 ret += salglen;
1346 }
1347
1348 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) {
1349 int i;
1350 long extlen, idlen, itmp;
1351 OCSP_RESPID *id;
1352
1353 idlen = 0;
1354 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) {
1355 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
1356 itmp = i2d_OCSP_RESPID(id, NULL);
1357 if (itmp <= 0)
1358 return NULL;
1359 idlen += itmp + 2;
1360 }
1361
1362 if (s->tlsext_ocsp_exts) {
1363 extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL);
1364 if (extlen < 0)
1365 return NULL;
1366 } else
1367 extlen = 0;
1368
1369 if ((long)(limit - ret - 7 - extlen - idlen) < 0)
1370 return NULL;
1371 s2n(TLSEXT_TYPE_status_request, ret);
1372 if (extlen + idlen > 0xFFF0)
1373 return NULL;
1374 s2n(extlen + idlen + 5, ret);
1375 *(ret++) = TLSEXT_STATUSTYPE_ocsp;
1376 s2n(idlen, ret);
1377 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++) {
1378 /* save position of id len */
1379 unsigned char *q = ret;
1380 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
1381 /* skip over id len */
1382 ret += 2;
1383 itmp = i2d_OCSP_RESPID(id, &ret);
1384 /* write id len */
1385 s2n(itmp, q);
1386 }
1387 s2n(extlen, ret);
1388 if (extlen > 0)
1389 i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret);
1390 }
1391 # ifndef OPENSSL_NO_HEARTBEATS
1392 /* Add Heartbeat extension */
1393 if ((limit - ret - 4 - 1) < 0)
1394 return NULL;
1395 s2n(TLSEXT_TYPE_heartbeat, ret);
1396 s2n(1, ret);
1397 /*-
1398 * Set mode:
1399 * 1: peer may send requests
1400 * 2: peer not allowed to send requests
1401 */
1402 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
1403 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
1404 else
1405 *(ret++) = SSL_TLSEXT_HB_ENABLED;
1406 # endif
1407
1408 # ifndef OPENSSL_NO_NEXTPROTONEG
1409 if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) {
1410 /*
1411 * The client advertises an emtpy extension to indicate its support
1412 * for Next Protocol Negotiation
1413 */
1414 if (limit - ret - 4 < 0)
1415 return NULL;
1416 s2n(TLSEXT_TYPE_next_proto_neg, ret);
1417 s2n(0, ret);
1418 }
1419 # endif
1420
1421 if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len) {
1422 if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len)
1423 return NULL;
1424 s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
1425 s2n(2 + s->alpn_client_proto_list_len, ret);
1426 s2n(s->alpn_client_proto_list_len, ret);
1427 memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len);
1428 ret += s->alpn_client_proto_list_len;
1429 }
1430 # ifndef OPENSSL_NO_SRTP
1431 if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)) {
1432 int el;
1433
1434 /* Returns 0 on success!! */
1435 if (ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0)) {
1436 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1437 return NULL;
1438 }
1439
1440 if ((limit - ret - 4 - el) < 0)
1441 return NULL;
1442
1443 s2n(TLSEXT_TYPE_use_srtp, ret);
1444 s2n(el, ret);
1445
1446 if (ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) {
1447 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1448 return NULL;
1449 }
1450 ret += el;
1451 }
1452 # endif
1453 custom_ext_init(&s->cert->cli_ext);
1454 /* Add custom TLS Extensions to ClientHello */
1455 if (!custom_ext_add(s, 0, &ret, limit, al))
1456 return NULL;
1457 # ifdef TLSEXT_TYPE_encrypt_then_mac
1458 s2n(TLSEXT_TYPE_encrypt_then_mac, ret);
1459 s2n(0, ret);
1460 # endif
1461 s2n(TLSEXT_TYPE_extended_master_secret, ret);
1462 s2n(0, ret);
1463
1464 /*
1465 * Add padding to workaround bugs in F5 terminators. See
1466 * https://tools.ietf.org/html/draft-agl-tls-padding-03 NB: because this
1467 * code works out the length of all existing extensions it MUST always
1468 * appear last.
1469 */
1470 if (s->options & SSL_OP_TLSEXT_PADDING) {
1471 int hlen = ret - (unsigned char *)s->init_buf->data;
1472 /*
1473 * The code in s23_clnt.c to build ClientHello messages includes the
1474 * 5-byte record header in the buffer, while the code in s3_clnt.c
1475 * does not.
1476 */
1477 if (s->state == SSL23_ST_CW_CLNT_HELLO_A)
1478 hlen -= 5;
1479 if (hlen > 0xff && hlen < 0x200) {
1480 hlen = 0x200 - hlen;
1481 if (hlen >= 4)
1482 hlen -= 4;
1483 else
1484 hlen = 0;
1485
1486 s2n(TLSEXT_TYPE_padding, ret);
1487 s2n(hlen, ret);
1488 memset(ret, 0, hlen);
1489 ret += hlen;
1490 }
1491 }
1492
1493 done:
1494
1495 if ((extdatalen = ret - orig - 2) == 0)
1496 return orig;
1497
1498 s2n(extdatalen, orig);
1499 return ret;
1500 }
1501
1502 unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf,
1503 unsigned char *limit, int *al)
1504 {
1505 int extdatalen = 0;
1506 unsigned char *orig = buf;
1507 unsigned char *ret = buf;
1508 # ifndef OPENSSL_NO_NEXTPROTONEG
1509 int next_proto_neg_seen;
1510 # endif
1511 # ifndef OPENSSL_NO_EC
1512 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
1513 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
1514 int using_ecc = (alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe))
1515 || (alg_a & SSL_aECDSA);
1516 using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL);
1517 # endif
1518
1519 ret += 2;
1520 if (ret >= limit)
1521 return NULL; /* this really never occurs, but ... */
1522
1523 if (s->s3->send_connection_binding) {
1524 int el;
1525
1526 if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) {
1527 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1528 return NULL;
1529 }
1530
1531 if ((limit - ret - 4 - el) < 0)
1532 return NULL;
1533
1534 s2n(TLSEXT_TYPE_renegotiate, ret);
1535 s2n(el, ret);
1536
1537 if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) {
1538 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1539 return NULL;
1540 }
1541
1542 ret += el;
1543 }
1544
1545 /* Only add RI for SSLv3 */
1546 if (s->version == SSL3_VERSION)
1547 goto done;
1548
1549 if (!s->hit && s->servername_done == 1
1550 && s->session->tlsext_hostname != NULL) {
1551 if ((long)(limit - ret - 4) < 0)
1552 return NULL;
1553
1554 s2n(TLSEXT_TYPE_server_name, ret);
1555 s2n(0, ret);
1556 }
1557 # ifndef OPENSSL_NO_EC
1558 if (using_ecc) {
1559 const unsigned char *plist;
1560 size_t plistlen;
1561 /*
1562 * Add TLS extension ECPointFormats to the ServerHello message
1563 */
1564 long lenmax;
1565
1566 tls1_get_formatlist(s, &plist, &plistlen);
1567
1568 if ((lenmax = limit - ret - 5) < 0)
1569 return NULL;
1570 if (plistlen > (size_t)lenmax)
1571 return NULL;
1572 if (plistlen > 255) {
1573 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1574 return NULL;
1575 }
1576
1577 s2n(TLSEXT_TYPE_ec_point_formats, ret);
1578 s2n(plistlen + 1, ret);
1579 *(ret++) = (unsigned char)plistlen;
1580 memcpy(ret, plist, plistlen);
1581 ret += plistlen;
1582
1583 }
1584 /*
1585 * Currently the server should not respond with a SupportedCurves
1586 * extension
1587 */
1588 # endif /* OPENSSL_NO_EC */
1589
1590 if (s->tlsext_ticket_expected && tls_use_ticket(s)) {
1591 if ((long)(limit - ret - 4) < 0)
1592 return NULL;
1593 s2n(TLSEXT_TYPE_session_ticket, ret);
1594 s2n(0, ret);
1595 }
1596
1597 if (s->tlsext_status_expected) {
1598 if ((long)(limit - ret - 4) < 0)
1599 return NULL;
1600 s2n(TLSEXT_TYPE_status_request, ret);
1601 s2n(0, ret);
1602 }
1603
1604 # ifndef OPENSSL_NO_SRTP
1605 if (SSL_IS_DTLS(s) && s->srtp_profile) {
1606 int el;
1607
1608 /* Returns 0 on success!! */
1609 if(ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0)) {
1610 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1611 return NULL;
1612 }
1613 if ((limit - ret - 4 - el) < 0)
1614 return NULL;
1615
1616 s2n(TLSEXT_TYPE_use_srtp, ret);
1617 s2n(el, ret);
1618
1619 if (ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) {
1620 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
1621 return NULL;
1622 }
1623 ret += el;
1624 }
1625 # endif
1626
1627 if (((s->s3->tmp.new_cipher->id & 0xFFFF) == 0x80
1628 || (s->s3->tmp.new_cipher->id & 0xFFFF) == 0x81)
1629 && (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG)) {
1630 const unsigned char cryptopro_ext[36] = {
1631 0xfd, 0xe8, /* 65000 */
1632 0x00, 0x20, /* 32 bytes length */
1633 0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85,
1634 0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06,
1635 0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08,
1636 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17
1637 };
1638 if (limit - ret < 36)
1639 return NULL;
1640 memcpy(ret, cryptopro_ext, 36);
1641 ret += 36;
1642
1643 }
1644 # ifndef OPENSSL_NO_HEARTBEATS
1645 /* Add Heartbeat extension if we've received one */
1646 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) {
1647 if ((limit - ret - 4 - 1) < 0)
1648 return NULL;
1649 s2n(TLSEXT_TYPE_heartbeat, ret);
1650 s2n(1, ret);
1651 /*-
1652 * Set mode:
1653 * 1: peer may send requests
1654 * 2: peer not allowed to send requests
1655 */
1656 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
1657 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
1658 else
1659 *(ret++) = SSL_TLSEXT_HB_ENABLED;
1660
1661 }
1662 # endif
1663
1664 # ifndef OPENSSL_NO_NEXTPROTONEG
1665 next_proto_neg_seen = s->s3->next_proto_neg_seen;
1666 s->s3->next_proto_neg_seen = 0;
1667 if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) {
1668 const unsigned char *npa;
1669 unsigned int npalen;
1670 int r;
1671
1672 r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen,
1673 s->
1674 ctx->next_protos_advertised_cb_arg);
1675 if (r == SSL_TLSEXT_ERR_OK) {
1676 if ((long)(limit - ret - 4 - npalen) < 0)
1677 return NULL;
1678 s2n(TLSEXT_TYPE_next_proto_neg, ret);
1679 s2n(npalen, ret);
1680 memcpy(ret, npa, npalen);
1681 ret += npalen;
1682 s->s3->next_proto_neg_seen = 1;
1683 }
1684 }
1685 # endif
1686 if (!custom_ext_add(s, 1, &ret, limit, al))
1687 return NULL;
1688 # ifdef TLSEXT_TYPE_encrypt_then_mac
1689 if (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC) {
1690 /*
1691 * Don't use encrypt_then_mac if AEAD or RC4 might want to disable
1692 * for other cases too.
1693 */
1694 if (s->s3->tmp.new_cipher->algorithm_mac == SSL_AEAD
1695 || s->s3->tmp.new_cipher->algorithm_enc == SSL_RC4)
1696 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
1697 else {
1698 s2n(TLSEXT_TYPE_encrypt_then_mac, ret);
1699 s2n(0, ret);
1700 }
1701 }
1702 # endif
1703 if (!s->hit && s->session->flags & SSL_SESS_FLAG_EXTMS) {
1704 s2n(TLSEXT_TYPE_extended_master_secret, ret);
1705 s2n(0, ret);
1706 }
1707
1708 if (s->s3->alpn_selected) {
1709 const unsigned char *selected = s->s3->alpn_selected;
1710 unsigned len = s->s3->alpn_selected_len;
1711
1712 if ((long)(limit - ret - 4 - 2 - 1 - len) < 0)
1713 return NULL;
1714 s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
1715 s2n(3 + len, ret);
1716 s2n(1 + len, ret);
1717 *ret++ = len;
1718 memcpy(ret, selected, len);
1719 ret += len;
1720 }
1721
1722 done:
1723
1724 if ((extdatalen = ret - orig - 2) == 0)
1725 return orig;
1726
1727 s2n(extdatalen, orig);
1728 return ret;
1729 }
1730
1731 /*
1732 * tls1_alpn_handle_client_hello is called to process the ALPN extension in a
1733 * ClientHello. data: the contents of the extension, not including the type
1734 * and length. data_len: the number of bytes in |data| al: a pointer to the
1735 * alert value to send in the event of a non-zero return. returns: 0 on
1736 * success.
1737 */
1738 static int tls1_alpn_handle_client_hello(SSL *s, const unsigned char *data,
1739 unsigned data_len, int *al)
1740 {
1741 unsigned i;
1742 unsigned proto_len;
1743 const unsigned char *selected;
1744 unsigned char selected_len;
1745 int r;
1746
1747 if (s->ctx->alpn_select_cb == NULL)
1748 return 0;
1749
1750 if (data_len < 2)
1751 goto parse_error;
1752
1753 /*
1754 * data should contain a uint16 length followed by a series of 8-bit,
1755 * length-prefixed strings.
1756 */
1757 i = ((unsigned)data[0]) << 8 | ((unsigned)data[1]);
1758 data_len -= 2;
1759 data += 2;
1760 if (data_len != i)
1761 goto parse_error;
1762
1763 if (data_len < 2)
1764 goto parse_error;
1765
1766 for (i = 0; i < data_len;) {
1767 proto_len = data[i];
1768 i++;
1769
1770 if (proto_len == 0)
1771 goto parse_error;
1772
1773 if (i + proto_len < i || i + proto_len > data_len)
1774 goto parse_error;
1775
1776 i += proto_len;
1777 }
1778
1779 r = s->ctx->alpn_select_cb(s, &selected, &selected_len, data, data_len,
1780 s->ctx->alpn_select_cb_arg);
1781 if (r == SSL_TLSEXT_ERR_OK) {
1782 if (s->s3->alpn_selected)
1783 OPENSSL_free(s->s3->alpn_selected);
1784 s->s3->alpn_selected = OPENSSL_malloc(selected_len);
1785 if (!s->s3->alpn_selected) {
1786 *al = SSL_AD_INTERNAL_ERROR;
1787 return -1;
1788 }
1789 memcpy(s->s3->alpn_selected, selected, selected_len);
1790 s->s3->alpn_selected_len = selected_len;
1791 }
1792 return 0;
1793
1794 parse_error:
1795 *al = SSL_AD_DECODE_ERROR;
1796 return -1;
1797 }
1798
1799 # ifndef OPENSSL_NO_EC
1800 /*-
1801 * ssl_check_for_safari attempts to fingerprint Safari using OS X
1802 * SecureTransport using the TLS extension block in |d|, of length |n|.
1803 * Safari, since 10.6, sends exactly these extensions, in this order:
1804 * SNI,
1805 * elliptic_curves
1806 * ec_point_formats
1807 *
1808 * We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8,
1809 * but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them.
1810 * Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from
1811 * 10.8..10.8.3 (which don't work).
1812 */
1813 static void ssl_check_for_safari(SSL *s, const unsigned char *data,
1814 const unsigned char *d, int n)
1815 {
1816 unsigned short type, size;
1817 static const unsigned char kSafariExtensionsBlock[] = {
1818 0x00, 0x0a, /* elliptic_curves extension */
1819 0x00, 0x08, /* 8 bytes */
1820 0x00, 0x06, /* 6 bytes of curve ids */
1821 0x00, 0x17, /* P-256 */
1822 0x00, 0x18, /* P-384 */
1823 0x00, 0x19, /* P-521 */
1824
1825 0x00, 0x0b, /* ec_point_formats */
1826 0x00, 0x02, /* 2 bytes */
1827 0x01, /* 1 point format */
1828 0x00, /* uncompressed */
1829 };
1830
1831 /* The following is only present in TLS 1.2 */
1832 static const unsigned char kSafariTLS12ExtensionsBlock[] = {
1833 0x00, 0x0d, /* signature_algorithms */
1834 0x00, 0x0c, /* 12 bytes */
1835 0x00, 0x0a, /* 10 bytes */
1836 0x05, 0x01, /* SHA-384/RSA */
1837 0x04, 0x01, /* SHA-256/RSA */
1838 0x02, 0x01, /* SHA-1/RSA */
1839 0x04, 0x03, /* SHA-256/ECDSA */
1840 0x02, 0x03, /* SHA-1/ECDSA */
1841 };
1842
1843 if (data >= (d + n - 2))
1844 return;
1845 data += 2;
1846
1847 if (data > (d + n - 4))
1848 return;
1849 n2s(data, type);
1850 n2s(data, size);
1851
1852 if (type != TLSEXT_TYPE_server_name)
1853 return;
1854
1855 if (data + size > d + n)
1856 return;
1857 data += size;
1858
1859 if (TLS1_get_client_version(s) >= TLS1_2_VERSION) {
1860 const size_t len1 = sizeof(kSafariExtensionsBlock);
1861 const size_t len2 = sizeof(kSafariTLS12ExtensionsBlock);
1862
1863 if (data + len1 + len2 != d + n)
1864 return;
1865 if (memcmp(data, kSafariExtensionsBlock, len1) != 0)
1866 return;
1867 if (memcmp(data + len1, kSafariTLS12ExtensionsBlock, len2) != 0)
1868 return;
1869 } else {
1870 const size_t len = sizeof(kSafariExtensionsBlock);
1871
1872 if (data + len != d + n)
1873 return;
1874 if (memcmp(data, kSafariExtensionsBlock, len) != 0)
1875 return;
1876 }
1877
1878 s->s3->is_probably_safari = 1;
1879 }
1880 # endif /* !OPENSSL_NO_EC */
1881
1882 static int ssl_scan_clienthello_tlsext(SSL *s, unsigned char **p,
1883 unsigned char *d, int n, int *al)
1884 {
1885 unsigned short type;
1886 unsigned short size;
1887 unsigned short len;
1888 unsigned char *data = *p;
1889 int renegotiate_seen = 0;
1890
1891 s->servername_done = 0;
1892 s->tlsext_status_type = -1;
1893 # ifndef OPENSSL_NO_NEXTPROTONEG
1894 s->s3->next_proto_neg_seen = 0;
1895 # endif
1896
1897 if (s->s3->alpn_selected) {
1898 OPENSSL_free(s->s3->alpn_selected);
1899 s->s3->alpn_selected = NULL;
1900 }
1901 # ifndef OPENSSL_NO_HEARTBEATS
1902 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
1903 SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
1904 # endif
1905
1906 # ifndef OPENSSL_NO_EC
1907 if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG)
1908 ssl_check_for_safari(s, data, d, n);
1909 # endif /* !OPENSSL_NO_EC */
1910
1911 /* Clear any signature algorithms extension received */
1912 if (s->cert->peer_sigalgs) {
1913 OPENSSL_free(s->cert->peer_sigalgs);
1914 s->cert->peer_sigalgs = NULL;
1915 }
1916 # ifdef TLSEXT_TYPE_encrypt_then_mac
1917 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
1918 # endif
1919
1920 # ifndef OPENSSL_NO_SRP
1921 if (s->srp_ctx.login != NULL) {
1922 OPENSSL_free(s->srp_ctx.login);
1923 s->srp_ctx.login = NULL;
1924 }
1925 # endif
1926
1927 s->srtp_profile = NULL;
1928
1929 if (data >= (d + n - 2))
1930 goto ri_check;
1931 n2s(data, len);
1932
1933 if (data > (d + n - len))
1934 goto ri_check;
1935
1936 while (data <= (d + n - 4)) {
1937 n2s(data, type);
1938 n2s(data, size);
1939
1940 if (data + size > (d + n))
1941 goto ri_check;
1942 if (s->tlsext_debug_cb)
1943 s->tlsext_debug_cb(s, 0, type, data, size, s->tlsext_debug_arg);
1944 if (type == TLSEXT_TYPE_renegotiate) {
1945 if (!ssl_parse_clienthello_renegotiate_ext(s, data, size, al))
1946 return 0;
1947 renegotiate_seen = 1;
1948 } else if (s->version == SSL3_VERSION) {
1949 }
1950 /*-
1951 * The servername extension is treated as follows:
1952 *
1953 * - Only the hostname type is supported with a maximum length of 255.
1954 * - The servername is rejected if too long or if it contains zeros,
1955 * in which case an fatal alert is generated.
1956 * - The servername field is maintained together with the session cache.
1957 * - When a session is resumed, the servername call back invoked in order
1958 * to allow the application to position itself to the right context.
1959 * - The servername is acknowledged if it is new for a session or when
1960 * it is identical to a previously used for the same session.
1961 * Applications can control the behaviour. They can at any time
1962 * set a 'desirable' servername for a new SSL object. This can be the
1963 * case for example with HTTPS when a Host: header field is received and
1964 * a renegotiation is requested. In this case, a possible servername
1965 * presented in the new client hello is only acknowledged if it matches
1966 * the value of the Host: field.
1967 * - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
1968 * if they provide for changing an explicit servername context for the
1969 * session, i.e. when the session has been established with a servername
1970 * extension.
1971 * - On session reconnect, the servername extension may be absent.
1972 *
1973 */
1974
1975 else if (type == TLSEXT_TYPE_server_name) {
1976 unsigned char *sdata;
1977 int servname_type;
1978 int dsize;
1979
1980 if (size < 2) {
1981 *al = SSL_AD_DECODE_ERROR;
1982 return 0;
1983 }
1984 n2s(data, dsize);
1985 size -= 2;
1986 if (dsize > size) {
1987 *al = SSL_AD_DECODE_ERROR;
1988 return 0;
1989 }
1990
1991 sdata = data;
1992 while (dsize > 3) {
1993 servname_type = *(sdata++);
1994 n2s(sdata, len);
1995 dsize -= 3;
1996
1997 if (len > dsize) {
1998 *al = SSL_AD_DECODE_ERROR;
1999 return 0;
2000 }
2001 if (s->servername_done == 0)
2002 switch (servname_type) {
2003 case TLSEXT_NAMETYPE_host_name:
2004 if (!s->hit) {
2005 if (s->session->tlsext_hostname) {
2006 *al = SSL_AD_DECODE_ERROR;
2007 return 0;
2008 }
2009 if (len > TLSEXT_MAXLEN_host_name) {
2010 *al = TLS1_AD_UNRECOGNIZED_NAME;
2011 return 0;
2012 }
2013 if ((s->session->tlsext_hostname =
2014 OPENSSL_malloc(len + 1)) == NULL) {
2015 *al = TLS1_AD_INTERNAL_ERROR;
2016 return 0;
2017 }
2018 memcpy(s->session->tlsext_hostname, sdata, len);
2019 s->session->tlsext_hostname[len] = '\0';
2020 if (strlen(s->session->tlsext_hostname) != len) {
2021 OPENSSL_free(s->session->tlsext_hostname);
2022 s->session->tlsext_hostname = NULL;
2023 *al = TLS1_AD_UNRECOGNIZED_NAME;
2024 return 0;
2025 }
2026 s->servername_done = 1;
2027
2028 } else
2029 s->servername_done = s->session->tlsext_hostname
2030 && strlen(s->session->tlsext_hostname) == len
2031 && strncmp(s->session->tlsext_hostname,
2032 (char *)sdata, len) == 0;
2033
2034 break;
2035
2036 default:
2037 break;
2038 }
2039
2040 dsize -= len;
2041 }
2042 if (dsize != 0) {
2043 *al = SSL_AD_DECODE_ERROR;
2044 return 0;
2045 }
2046
2047 }
2048 # ifndef OPENSSL_NO_SRP
2049 else if (type == TLSEXT_TYPE_srp) {
2050 if (size <= 0 || ((len = data[0])) != (size - 1)) {
2051 *al = SSL_AD_DECODE_ERROR;
2052 return 0;
2053 }
2054 if (s->srp_ctx.login != NULL) {
2055 *al = SSL_AD_DECODE_ERROR;
2056 return 0;
2057 }
2058 if ((s->srp_ctx.login = OPENSSL_malloc(len + 1)) == NULL)
2059 return -1;
2060 memcpy(s->srp_ctx.login, &data[1], len);
2061 s->srp_ctx.login[len] = '\0';
2062
2063 if (strlen(s->srp_ctx.login) != len) {
2064 *al = SSL_AD_DECODE_ERROR;
2065 return 0;
2066 }
2067 }
2068 # endif
2069
2070 # ifndef OPENSSL_NO_EC
2071 else if (type == TLSEXT_TYPE_ec_point_formats) {
2072 unsigned char *sdata = data;
2073 int ecpointformatlist_length = *(sdata++);
2074
2075 if (ecpointformatlist_length != size - 1 ||
2076 ecpointformatlist_length < 1) {
2077 *al = TLS1_AD_DECODE_ERROR;
2078 return 0;
2079 }
2080 if (!s->hit) {
2081 if (s->session->tlsext_ecpointformatlist) {
2082 OPENSSL_free(s->session->tlsext_ecpointformatlist);
2083 s->session->tlsext_ecpointformatlist = NULL;
2084 }
2085 s->session->tlsext_ecpointformatlist_length = 0;
2086 if ((s->session->tlsext_ecpointformatlist =
2087 OPENSSL_malloc(ecpointformatlist_length)) == NULL) {
2088 *al = TLS1_AD_INTERNAL_ERROR;
2089 return 0;
2090 }
2091 s->session->tlsext_ecpointformatlist_length =
2092 ecpointformatlist_length;
2093 memcpy(s->session->tlsext_ecpointformatlist, sdata,
2094 ecpointformatlist_length);
2095 }
2096 } else if (type == TLSEXT_TYPE_elliptic_curves) {
2097 unsigned char *sdata = data;
2098 int ellipticcurvelist_length = (*(sdata++) << 8);
2099 ellipticcurvelist_length += (*(sdata++));
2100
2101 if (ellipticcurvelist_length != size - 2 ||
2102 ellipticcurvelist_length < 1 ||
2103 /* Each NamedCurve is 2 bytes. */
2104 ellipticcurvelist_length & 1) {
2105 *al = TLS1_AD_DECODE_ERROR;
2106 return 0;
2107 }
2108 if (!s->hit) {
2109 if (s->session->tlsext_ellipticcurvelist) {
2110 *al = TLS1_AD_DECODE_ERROR;
2111 return 0;
2112 }
2113 s->session->tlsext_ellipticcurvelist_length = 0;
2114 if ((s->session->tlsext_ellipticcurvelist =
2115 OPENSSL_malloc(ellipticcurvelist_length)) == NULL) {
2116 *al = TLS1_AD_INTERNAL_ERROR;
2117 return 0;
2118 }
2119 s->session->tlsext_ellipticcurvelist_length =
2120 ellipticcurvelist_length;
2121 memcpy(s->session->tlsext_ellipticcurvelist, sdata,
2122 ellipticcurvelist_length);
2123 }
2124 }
2125 # endif /* OPENSSL_NO_EC */
2126 else if (type == TLSEXT_TYPE_session_ticket) {
2127 if (s->tls_session_ticket_ext_cb &&
2128 !s->tls_session_ticket_ext_cb(s, data, size,
2129 s->tls_session_ticket_ext_cb_arg))
2130 {
2131 *al = TLS1_AD_INTERNAL_ERROR;
2132 return 0;
2133 }
2134 } else if (type == TLSEXT_TYPE_signature_algorithms) {
2135 int dsize;
2136 if (s->cert->peer_sigalgs || size < 2) {
2137 *al = SSL_AD_DECODE_ERROR;
2138 return 0;
2139 }
2140 n2s(data, dsize);
2141 size -= 2;
2142 if (dsize != size || dsize & 1 || !dsize) {
2143 *al = SSL_AD_DECODE_ERROR;
2144 return 0;
2145 }
2146 if (!tls1_save_sigalgs(s, data, dsize)) {
2147 *al = SSL_AD_DECODE_ERROR;
2148 return 0;
2149 }
2150 } else if (type == TLSEXT_TYPE_status_request) {
2151
2152 if (size < 5) {
2153 *al = SSL_AD_DECODE_ERROR;
2154 return 0;
2155 }
2156
2157 s->tlsext_status_type = *data++;
2158 size--;
2159 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp) {
2160 const unsigned char *sdata;
2161 int dsize;
2162 /* Read in responder_id_list */
2163 n2s(data, dsize);
2164 size -= 2;
2165 if (dsize > size) {
2166 *al = SSL_AD_DECODE_ERROR;
2167 return 0;
2168 }
2169 while (dsize > 0) {
2170 OCSP_RESPID *id;
2171 int idsize;
2172 if (dsize < 4) {
2173 *al = SSL_AD_DECODE_ERROR;
2174 return 0;
2175 }
2176 n2s(data, idsize);
2177 dsize -= 2 + idsize;
2178 size -= 2 + idsize;
2179 if (dsize < 0) {
2180 *al = SSL_AD_DECODE_ERROR;
2181 return 0;
2182 }
2183 sdata = data;
2184 data += idsize;
2185 id = d2i_OCSP_RESPID(NULL, &sdata, idsize);
2186 if (!id) {
2187 *al = SSL_AD_DECODE_ERROR;
2188 return 0;
2189 }
2190 if (data != sdata) {
2191 OCSP_RESPID_free(id);
2192 *al = SSL_AD_DECODE_ERROR;
2193 return 0;
2194 }
2195 if (!s->tlsext_ocsp_ids
2196 && !(s->tlsext_ocsp_ids =
2197 sk_OCSP_RESPID_new_null())) {
2198 OCSP_RESPID_free(id);
2199 *al = SSL_AD_INTERNAL_ERROR;
2200 return 0;
2201 }
2202 if (!sk_OCSP_RESPID_push(s->tlsext_ocsp_ids, id)) {
2203 OCSP_RESPID_free(id);
2204 *al = SSL_AD_INTERNAL_ERROR;
2205 return 0;
2206 }
2207 }
2208
2209 /* Read in request_extensions */
2210 if (size < 2) {
2211 *al = SSL_AD_DECODE_ERROR;
2212 return 0;
2213 }
2214 n2s(data, dsize);
2215 size -= 2;
2216 if (dsize != size) {
2217 *al = SSL_AD_DECODE_ERROR;
2218 return 0;
2219 }
2220 sdata = data;
2221 if (dsize > 0) {
2222 if (s->tlsext_ocsp_exts) {
2223 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts,
2224 X509_EXTENSION_free);
2225 }
2226
2227 s->tlsext_ocsp_exts =
2228 d2i_X509_EXTENSIONS(NULL, &sdata, dsize);
2229 if (!s->tlsext_ocsp_exts || (data + dsize != sdata)) {
2230 *al = SSL_AD_DECODE_ERROR;
2231 return 0;
2232 }
2233 }
2234 }
2235 /*
2236 * We don't know what to do with any other type * so ignore it.
2237 */
2238 else
2239 s->tlsext_status_type = -1;
2240 }
2241 # ifndef OPENSSL_NO_HEARTBEATS
2242 else if (type == TLSEXT_TYPE_heartbeat) {
2243 switch (data[0]) {
2244 case 0x01: /* Client allows us to send HB requests */
2245 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2246 break;
2247 case 0x02: /* Client doesn't accept HB requests */
2248 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2249 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
2250 break;
2251 default:
2252 *al = SSL_AD_ILLEGAL_PARAMETER;
2253 return 0;
2254 }
2255 }
2256 # endif
2257 # ifndef OPENSSL_NO_NEXTPROTONEG
2258 else if (type == TLSEXT_TYPE_next_proto_neg &&
2259 s->s3->tmp.finish_md_len == 0 &&
2260 s->s3->alpn_selected == NULL) {
2261 /*-
2262 * We shouldn't accept this extension on a
2263 * renegotiation.
2264 *
2265 * s->new_session will be set on renegotiation, but we
2266 * probably shouldn't rely that it couldn't be set on
2267 * the initial renegotation too in certain cases (when
2268 * there's some other reason to disallow resuming an
2269 * earlier session -- the current code won't be doing
2270 * anything like that, but this might change).
2271 *
2272 * A valid sign that there's been a previous handshake
2273 * in this connection is if s->s3->tmp.finish_md_len >
2274 * 0. (We are talking about a check that will happen
2275 * in the Hello protocol round, well before a new
2276 * Finished message could have been computed.)
2277 */
2278 s->s3->next_proto_neg_seen = 1;
2279 }
2280 # endif
2281
2282 else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
2283 s->ctx->alpn_select_cb && s->s3->tmp.finish_md_len == 0) {
2284 if (tls1_alpn_handle_client_hello(s, data, size, al) != 0)
2285 return 0;
2286 # ifndef OPENSSL_NO_NEXTPROTONEG
2287 /* ALPN takes precedence over NPN. */
2288 s->s3->next_proto_neg_seen = 0;
2289 # endif
2290 }
2291
2292 /* session ticket processed earlier */
2293 # ifndef OPENSSL_NO_SRTP
2294 else if (SSL_IS_DTLS(s) && SSL_get_srtp_profiles(s)
2295 && type == TLSEXT_TYPE_use_srtp) {
2296 if (ssl_parse_clienthello_use_srtp_ext(s, data, size, al))
2297 return 0;
2298 }
2299 # endif
2300 # ifdef TLSEXT_TYPE_encrypt_then_mac
2301 else if (type == TLSEXT_TYPE_encrypt_then_mac)
2302 s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
2303 # endif
2304 else if (type == TLSEXT_TYPE_extended_master_secret) {
2305 if (!s->hit)
2306 s->session->flags |= SSL_SESS_FLAG_EXTMS;
2307 }
2308 /*
2309 * If this ClientHello extension was unhandled and this is a
2310 * nonresumed connection, check whether the extension is a custom
2311 * TLS Extension (has a custom_srv_ext_record), and if so call the
2312 * callback and record the extension number so that an appropriate
2313 * ServerHello may be later returned.
2314 */
2315 else if (!s->hit) {
2316 if (custom_ext_parse(s, 1, type, data, size, al) <= 0)
2317 return 0;
2318 }
2319
2320 data += size;
2321 }
2322
2323 *p = data;
2324
2325 ri_check:
2326
2327 /* Need RI if renegotiating */
2328
2329 if (!renegotiate_seen && s->renegotiate &&
2330 !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
2331 *al = SSL_AD_HANDSHAKE_FAILURE;
2332 SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT,
2333 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
2334 return 0;
2335 }
2336
2337 return 1;
2338 }
2339
2340 int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d,
2341 int n)
2342 {
2343 int al = -1;
2344 custom_ext_init(&s->cert->srv_ext);
2345 if (ssl_scan_clienthello_tlsext(s, p, d, n, &al) <= 0) {
2346 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2347 return 0;
2348 }
2349
2350 if (ssl_check_clienthello_tlsext_early(s) <= 0) {
2351 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT, SSL_R_CLIENTHELLO_TLSEXT);
2352 return 0;
2353 }
2354 return 1;
2355 }
2356
2357 # ifndef OPENSSL_NO_NEXTPROTONEG
2358 /*
2359 * ssl_next_proto_validate validates a Next Protocol Negotiation block. No
2360 * elements of zero length are allowed and the set of elements must exactly
2361 * fill the length of the block.
2362 */
2363 static char ssl_next_proto_validate(unsigned char *d, unsigned len)
2364 {
2365 unsigned int off = 0;
2366
2367 while (off < len) {
2368 if (d[off] == 0)
2369 return 0;
2370 off += d[off];
2371 off++;
2372 }
2373
2374 return off == len;
2375 }
2376 # endif
2377
2378 static int ssl_scan_serverhello_tlsext(SSL *s, unsigned char **p,
2379 unsigned char *d, int n, int *al)
2380 {
2381 unsigned short length;
2382 unsigned short type;
2383 unsigned short size;
2384 unsigned char *data = *p;
2385 int tlsext_servername = 0;
2386 int renegotiate_seen = 0;
2387
2388 # ifndef OPENSSL_NO_NEXTPROTONEG
2389 s->s3->next_proto_neg_seen = 0;
2390 # endif
2391 s->tlsext_ticket_expected = 0;
2392
2393 if (s->s3->alpn_selected) {
2394 OPENSSL_free(s->s3->alpn_selected);
2395 s->s3->alpn_selected = NULL;
2396 }
2397 # ifndef OPENSSL_NO_HEARTBEATS
2398 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
2399 SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
2400 # endif
2401
2402 # ifdef TLSEXT_TYPE_encrypt_then_mac
2403 s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
2404 # endif
2405
2406 if (data >= (d + n - 2))
2407 goto ri_check;
2408
2409 n2s(data, length);
2410 if (data + length != d + n) {
2411 *al = SSL_AD_DECODE_ERROR;
2412 return 0;
2413 }
2414
2415 while (data <= (d + n - 4)) {
2416 n2s(data, type);
2417 n2s(data, size);
2418
2419 if (data + size > (d + n))
2420 goto ri_check;
2421
2422 if (s->tlsext_debug_cb)
2423 s->tlsext_debug_cb(s, 1, type, data, size, s->tlsext_debug_arg);
2424
2425 if (type == TLSEXT_TYPE_renegotiate) {
2426 if (!ssl_parse_serverhello_renegotiate_ext(s, data, size, al))
2427 return 0;
2428 renegotiate_seen = 1;
2429 } else if (s->version == SSL3_VERSION) {
2430 } else if (type == TLSEXT_TYPE_server_name) {
2431 if (s->tlsext_hostname == NULL || size > 0) {
2432 *al = TLS1_AD_UNRECOGNIZED_NAME;
2433 return 0;
2434 }
2435 tlsext_servername = 1;
2436 }
2437 # ifndef OPENSSL_NO_EC
2438 else if (type == TLSEXT_TYPE_ec_point_formats) {
2439 unsigned char *sdata = data;
2440 int ecpointformatlist_length = *(sdata++);
2441
2442 if (ecpointformatlist_length != size - 1) {
2443 *al = TLS1_AD_DECODE_ERROR;
2444 return 0;
2445 }
2446 if (!s->hit) {
2447 s->session->tlsext_ecpointformatlist_length = 0;
2448 if (s->session->tlsext_ecpointformatlist != NULL)
2449 OPENSSL_free(s->session->tlsext_ecpointformatlist);
2450 if ((s->session->tlsext_ecpointformatlist =
2451 OPENSSL_malloc(ecpointformatlist_length)) == NULL) {
2452 *al = TLS1_AD_INTERNAL_ERROR;
2453 return 0;
2454 }
2455 s->session->tlsext_ecpointformatlist_length =
2456 ecpointformatlist_length;
2457 memcpy(s->session->tlsext_ecpointformatlist, sdata,
2458 ecpointformatlist_length);
2459 }
2460 }
2461 # endif /* OPENSSL_NO_EC */
2462
2463 else if (type == TLSEXT_TYPE_session_ticket) {
2464 if (s->tls_session_ticket_ext_cb &&
2465 !s->tls_session_ticket_ext_cb(s, data, size,
2466 s->tls_session_ticket_ext_cb_arg))
2467 {
2468 *al = TLS1_AD_INTERNAL_ERROR;
2469 return 0;
2470 }
2471 if (!tls_use_ticket(s) || (size > 0)) {
2472 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2473 return 0;
2474 }
2475 s->tlsext_ticket_expected = 1;
2476 }
2477 else if (type == TLSEXT_TYPE_status_request) {
2478 /*
2479 * MUST be empty and only sent if we've requested a status
2480 * request message.
2481 */
2482 if ((s->tlsext_status_type == -1) || (size > 0)) {
2483 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2484 return 0;
2485 }
2486 /* Set flag to expect CertificateStatus message */
2487 s->tlsext_status_expected = 1;
2488 }
2489 # ifndef OPENSSL_NO_NEXTPROTONEG
2490 else if (type == TLSEXT_TYPE_next_proto_neg &&
2491 s->s3->tmp.finish_md_len == 0) {
2492 unsigned char *selected;
2493 unsigned char selected_len;
2494
2495 /* We must have requested it. */
2496 if (s->ctx->next_proto_select_cb == NULL) {
2497 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2498 return 0;
2499 }
2500 /* The data must be valid */
2501 if (!ssl_next_proto_validate(data, size)) {
2502 *al = TLS1_AD_DECODE_ERROR;
2503 return 0;
2504 }
2505 if (s->
2506 ctx->next_proto_select_cb(s, &selected, &selected_len, data,
2507 size,
2508 s->ctx->next_proto_select_cb_arg) !=
2509 SSL_TLSEXT_ERR_OK) {
2510 *al = TLS1_AD_INTERNAL_ERROR;
2511 return 0;
2512 }
2513 s->next_proto_negotiated = OPENSSL_malloc(selected_len);
2514 if (!s->next_proto_negotiated) {
2515 *al = TLS1_AD_INTERNAL_ERROR;
2516 return 0;
2517 }
2518 memcpy(s->next_proto_negotiated, selected, selected_len);
2519 s->next_proto_negotiated_len = selected_len;
2520 s->s3->next_proto_neg_seen = 1;
2521 }
2522 # endif
2523
2524 else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation) {
2525 unsigned len;
2526
2527 /* We must have requested it. */
2528 if (s->alpn_client_proto_list == NULL) {
2529 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
2530 return 0;
2531 }
2532 if (size < 4) {
2533 *al = TLS1_AD_DECODE_ERROR;
2534 return 0;
2535 }
2536 /*-
2537 * The extension data consists of:
2538 * uint16 list_length
2539 * uint8 proto_length;
2540 * uint8 proto[proto_length];
2541 */
2542 len = data[0];
2543 len <<= 8;
2544 len |= data[1];
2545 if (len != (unsigned)size - 2) {
2546 *al = TLS1_AD_DECODE_ERROR;
2547 return 0;
2548 }
2549 len = data[2];
2550 if (len != (unsigned)size - 3) {
2551 *al = TLS1_AD_DECODE_ERROR;
2552 return 0;
2553 }
2554 if (s->s3->alpn_selected)
2555 OPENSSL_free(s->s3->alpn_selected);
2556 s->s3->alpn_selected = OPENSSL_malloc(len);
2557 if (!s->s3->alpn_selected) {
2558 *al = TLS1_AD_INTERNAL_ERROR;
2559 return 0;
2560 }
2561 memcpy(s->s3->alpn_selected, data + 3, len);
2562 s->s3->alpn_selected_len = len;
2563 }
2564 # ifndef OPENSSL_NO_HEARTBEATS
2565 else if (type == TLSEXT_TYPE_heartbeat) {
2566 switch (data[0]) {
2567 case 0x01: /* Server allows us to send HB requests */
2568 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2569 break;
2570 case 0x02: /* Server doesn't accept HB requests */
2571 s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
2572 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
2573 break;
2574 default:
2575 *al = SSL_AD_ILLEGAL_PARAMETER;
2576 return 0;
2577 }
2578 }
2579 # endif
2580 # ifndef OPENSSL_NO_SRTP
2581 else if (SSL_IS_DTLS(s) && type == TLSEXT_TYPE_use_srtp) {
2582 if (ssl_parse_serverhello_use_srtp_ext(s, data, size, al))
2583 return 0;
2584 }
2585 # endif
2586 # ifdef TLSEXT_TYPE_encrypt_then_mac
2587 else if (type == TLSEXT_TYPE_encrypt_then_mac) {
2588 /* Ignore if inappropriate ciphersuite */
2589 if (s->s3->tmp.new_cipher->algorithm_mac != SSL_AEAD
2590 && s->s3->tmp.new_cipher->algorithm_enc != SSL_RC4)
2591 s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
2592 }
2593 # endif
2594 else if (type == TLSEXT_TYPE_extended_master_secret) {
2595 if (!s->hit)
2596 s->session->flags |= SSL_SESS_FLAG_EXTMS;
2597 }
2598 /*
2599 * If this extension type was not otherwise handled, but matches a
2600 * custom_cli_ext_record, then send it to the c callback
2601 */
2602 else if (custom_ext_parse(s, 0, type, data, size, al) <= 0)
2603 return 0;
2604
2605 data += size;
2606 }
2607
2608 if (data != d + n) {
2609 *al = SSL_AD_DECODE_ERROR;
2610 return 0;
2611 }
2612
2613 if (!s->hit && tlsext_servername == 1) {
2614 if (s->tlsext_hostname) {
2615 if (s->session->tlsext_hostname == NULL) {
2616 s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
2617 if (!s->session->tlsext_hostname) {
2618 *al = SSL_AD_UNRECOGNIZED_NAME;
2619 return 0;
2620 }
2621 } else {
2622 *al = SSL_AD_DECODE_ERROR;
2623 return 0;
2624 }
2625 }
2626 }
2627
2628 *p = data;
2629
2630 ri_check:
2631
2632 /*
2633 * Determine if we need to see RI. Strictly speaking if we want to avoid
2634 * an attack we should *always* see RI even on initial server hello
2635 * because the client doesn't see any renegotiation during an attack.
2636 * However this would mean we could not connect to any server which
2637 * doesn't support RI so for the immediate future tolerate RI absence on
2638 * initial connect only.
2639 */
2640 if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT)
2641 && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
2642 *al = SSL_AD_HANDSHAKE_FAILURE;
2643 SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT,
2644 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
2645 return 0;
2646 }
2647
2648 return 1;
2649 }
2650
2651 int ssl_prepare_clienthello_tlsext(SSL *s)
2652 {
2653
2654 return 1;
2655 }
2656
2657 int ssl_prepare_serverhello_tlsext(SSL *s)
2658 {
2659 return 1;
2660 }
2661
2662 static int ssl_check_clienthello_tlsext_early(SSL *s)
2663 {
2664 int ret = SSL_TLSEXT_ERR_NOACK;
2665 int al = SSL_AD_UNRECOGNIZED_NAME;
2666
2667 # ifndef OPENSSL_NO_EC
2668 /*
2669 * The handling of the ECPointFormats extension is done elsewhere, namely
2670 * in ssl3_choose_cipher in s3_lib.c.
2671 */
2672 /*
2673 * The handling of the EllipticCurves extension is done elsewhere, namely
2674 * in ssl3_choose_cipher in s3_lib.c.
2675 */
2676 # endif
2677
2678 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
2679 ret =
2680 s->ctx->tlsext_servername_callback(s, &al,
2681 s->ctx->tlsext_servername_arg);
2682 else if (s->initial_ctx != NULL
2683 && s->initial_ctx->tlsext_servername_callback != 0)
2684 ret =
2685 s->initial_ctx->tlsext_servername_callback(s, &al,
2686 s->
2687 initial_ctx->tlsext_servername_arg);
2688
2689 switch (ret) {
2690 case SSL_TLSEXT_ERR_ALERT_FATAL:
2691 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2692 return -1;
2693
2694 case SSL_TLSEXT_ERR_ALERT_WARNING:
2695 ssl3_send_alert(s, SSL3_AL_WARNING, al);
2696 return 1;
2697
2698 case SSL_TLSEXT_ERR_NOACK:
2699 s->servername_done = 0;
2700 default:
2701 return 1;
2702 }
2703 }
2704
2705 int tls1_set_server_sigalgs(SSL *s)
2706 {
2707 int al;
2708 size_t i;
2709 /* Clear any shared sigtnature algorithms */
2710 if (s->cert->shared_sigalgs) {
2711 OPENSSL_free(s->cert->shared_sigalgs);
2712 s->cert->shared_sigalgs = NULL;
2713 s->cert->shared_sigalgslen = 0;
2714 }
2715 /* Clear certificate digests and validity flags */
2716 for (i = 0; i < SSL_PKEY_NUM; i++) {
2717 s->cert->pkeys[i].digest = NULL;
2718 s->cert->pkeys[i].valid_flags = 0;
2719 }
2720
2721 /* If sigalgs received process it. */
2722 if (s->cert->peer_sigalgs) {
2723 if (!tls1_process_sigalgs(s)) {
2724 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
2725 al = SSL_AD_INTERNAL_ERROR;
2726 goto err;
2727 }
2728 /* Fatal error is no shared signature algorithms */
2729 if (!s->cert->shared_sigalgs) {
2730 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
2731 SSL_R_NO_SHARED_SIGATURE_ALGORITHMS);
2732 al = SSL_AD_ILLEGAL_PARAMETER;
2733 goto err;
2734 }
2735 } else
2736 ssl_cert_set_default_md(s->cert);
2737 return 1;
2738 err:
2739 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2740 return 0;
2741 }
2742
2743 int ssl_check_clienthello_tlsext_late(SSL *s)
2744 {
2745 int ret = SSL_TLSEXT_ERR_OK;
2746 int al;
2747
2748 /*
2749 * If status request then ask callback what to do. Note: this must be
2750 * called after servername callbacks in case the certificate has changed,
2751 * and must be called after the cipher has been chosen because this may
2752 * influence which certificate is sent
2753 */
2754 if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb) {
2755 int r;
2756 CERT_PKEY *certpkey;
2757 certpkey = ssl_get_server_send_pkey(s);
2758 /* If no certificate can't return certificate status */
2759 if (certpkey == NULL) {
2760 s->tlsext_status_expected = 0;
2761 return 1;
2762 }
2763 /*
2764 * Set current certificate to one we will use so SSL_get_certificate
2765 * et al can pick it up.
2766 */
2767 s->cert->key = certpkey;
2768 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
2769 switch (r) {
2770 /* We don't want to send a status request response */
2771 case SSL_TLSEXT_ERR_NOACK:
2772 s->tlsext_status_expected = 0;
2773 break;
2774 /* status request response should be sent */
2775 case SSL_TLSEXT_ERR_OK:
2776 if (s->tlsext_ocsp_resp)
2777 s->tlsext_status_expected = 1;
2778 else
2779 s->tlsext_status_expected = 0;
2780 break;
2781 /* something bad happened */
2782 case SSL_TLSEXT_ERR_ALERT_FATAL:
2783 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2784 al = SSL_AD_INTERNAL_ERROR;
2785 goto err;
2786 }
2787 } else
2788 s->tlsext_status_expected = 0;
2789
2790 err:
2791 switch (ret) {
2792 case SSL_TLSEXT_ERR_ALERT_FATAL:
2793 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2794 return -1;
2795
2796 case SSL_TLSEXT_ERR_ALERT_WARNING:
2797 ssl3_send_alert(s, SSL3_AL_WARNING, al);
2798 return 1;
2799
2800 default:
2801 return 1;
2802 }
2803 }
2804
2805 int ssl_check_serverhello_tlsext(SSL *s)
2806 {
2807 int ret = SSL_TLSEXT_ERR_NOACK;
2808 int al = SSL_AD_UNRECOGNIZED_NAME;
2809
2810 # ifndef OPENSSL_NO_EC
2811 /*
2812 * If we are client and using an elliptic curve cryptography cipher
2813 * suite, then if server returns an EC point formats lists extension it
2814 * must contain uncompressed.
2815 */
2816 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
2817 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
2818 if ((s->tlsext_ecpointformatlist != NULL)
2819 && (s->tlsext_ecpointformatlist_length > 0)
2820 && (s->session->tlsext_ecpointformatlist != NULL)
2821 && (s->session->tlsext_ecpointformatlist_length > 0)
2822 && ((alg_k & (SSL_kECDHE | SSL_kECDHr | SSL_kECDHe))
2823 || (alg_a & SSL_aECDSA))) {
2824 /* we are using an ECC cipher */
2825 size_t i;
2826 unsigned char *list;
2827 int found_uncompressed = 0;
2828 list = s->session->tlsext_ecpointformatlist;
2829 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++) {
2830 if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed) {
2831 found_uncompressed = 1;
2832 break;
2833 }
2834 }
2835 if (!found_uncompressed) {
2836 SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT,
2837 SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST);
2838 return -1;
2839 }
2840 }
2841 ret = SSL_TLSEXT_ERR_OK;
2842 # endif /* OPENSSL_NO_EC */
2843
2844 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
2845 ret =
2846 s->ctx->tlsext_servername_callback(s, &al,
2847 s->ctx->tlsext_servername_arg);
2848 else if (s->initial_ctx != NULL
2849 && s->initial_ctx->tlsext_servername_callback != 0)
2850 ret =
2851 s->initial_ctx->tlsext_servername_callback(s, &al,
2852 s->
2853 initial_ctx->tlsext_servername_arg);
2854
2855 /*
2856 * If we've requested certificate status and we wont get one tell the
2857 * callback
2858 */
2859 if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected)
2860 && s->ctx && s->ctx->tlsext_status_cb) {
2861 int r;
2862 /*
2863 * Set resp to NULL, resplen to -1 so callback knows there is no
2864 * response.
2865 */
2866 if (s->tlsext_ocsp_resp) {
2867 OPENSSL_free(s->tlsext_ocsp_resp);
2868 s->tlsext_ocsp_resp = NULL;
2869 }
2870 s->tlsext_ocsp_resplen = -1;
2871 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
2872 if (r == 0) {
2873 al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
2874 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2875 }
2876 if (r < 0) {
2877 al = SSL_AD_INTERNAL_ERROR;
2878 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2879 }
2880 }
2881
2882 switch (ret) {
2883 case SSL_TLSEXT_ERR_ALERT_FATAL:
2884 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2885 return -1;
2886
2887 case SSL_TLSEXT_ERR_ALERT_WARNING:
2888 ssl3_send_alert(s, SSL3_AL_WARNING, al);
2889 return 1;
2890
2891 case SSL_TLSEXT_ERR_NOACK:
2892 s->servername_done = 0;
2893 default:
2894 return 1;
2895 }
2896 }
2897
2898 int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d,
2899 int n)
2900 {
2901 int al = -1;
2902 if (s->version < SSL3_VERSION)
2903 return 1;
2904 if (ssl_scan_serverhello_tlsext(s, p, d, n, &al) <= 0) {
2905 ssl3_send_alert(s, SSL3_AL_FATAL, al);
2906 return 0;
2907 }
2908
2909 if (ssl_check_serverhello_tlsext(s) <= 0) {
2910 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT, SSL_R_SERVERHELLO_TLSEXT);
2911 return 0;
2912 }
2913 return 1;
2914 }
2915
2916 /*-
2917 * Since the server cache lookup is done early on in the processing of the
2918 * ClientHello, and other operations depend on the result, we need to handle
2919 * any TLS session ticket extension at the same time.
2920 *
2921 * session_id: points at the session ID in the ClientHello. This code will
2922 * read past the end of this in order to parse out the session ticket
2923 * extension, if any.
2924 * len: the length of the session ID.
2925 * limit: a pointer to the first byte after the ClientHello.
2926 * ret: (output) on return, if a ticket was decrypted, then this is set to
2927 * point to the resulting session.
2928 *
2929 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
2930 * ciphersuite, in which case we have no use for session tickets and one will
2931 * never be decrypted, nor will s->tlsext_ticket_expected be set to 1.
2932 *
2933 * Returns:
2934 * -1: fatal error, either from parsing or decrypting the ticket.
2935 * 0: no ticket was found (or was ignored, based on settings).
2936 * 1: a zero length extension was found, indicating that the client supports
2937 * session tickets but doesn't currently have one to offer.
2938 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
2939 * couldn't be decrypted because of a non-fatal error.
2940 * 3: a ticket was successfully decrypted and *ret was set.
2941 *
2942 * Side effects:
2943 * Sets s->tlsext_ticket_expected to 1 if the server will have to issue
2944 * a new session ticket to the client because the client indicated support
2945 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2946 * a session ticket or we couldn't use the one it gave us, or if
2947 * s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket.
2948 * Otherwise, s->tlsext_ticket_expected is set to 0.
2949 */
2950 int tls1_process_ticket(SSL *s, unsigned char *session_id, int len,
2951 const unsigned char *limit, SSL_SESSION **ret)
2952 {
2953 /* Point after session ID in client hello */
2954 const unsigned char *p = session_id + len;
2955 unsigned short i;
2956
2957 *ret = NULL;
2958 s->tlsext_ticket_expected = 0;
2959
2960 /*
2961 * If tickets disabled behave as if no ticket present to permit stateful
2962 * resumption.
2963 */
2964 if (!tls_use_ticket(s))
2965 return 0;
2966 if ((s->version <= SSL3_VERSION) || !limit)
2967 return 0;
2968 if (p >= limit)
2969 return -1;
2970 /* Skip past DTLS cookie */
2971 if (SSL_IS_DTLS(s)) {
2972 i = *(p++);
2973 p += i;
2974 if (p >= limit)
2975 return -1;
2976 }
2977 /* Skip past cipher list */
2978 n2s(p, i);
2979 p += i;
2980 if (p >= limit)
2981 return -1;
2982 /* Skip past compression algorithm list */
2983 i = *(p++);
2984 p += i;
2985 if (p > limit)
2986 return -1;
2987 /* Now at start of extensions */
2988 if ((p + 2) >= limit)
2989 return 0;
2990 n2s(p, i);
2991 while ((p + 4) <= limit) {
2992 unsigned short type, size;
2993 n2s(p, type);
2994 n2s(p, size);
2995 if (p + size > limit)
2996 return 0;
2997 if (type == TLSEXT_TYPE_session_ticket) {
2998 int r;
2999 if (size == 0) {
3000 /*
3001 * The client will accept a ticket but doesn't currently have
3002 * one.
3003 */
3004 s->tlsext_ticket_expected = 1;
3005 return 1;
3006 }
3007 if (s->tls_session_secret_cb) {
3008 /*
3009 * Indicate that the ticket couldn't be decrypted rather than
3010 * generating the session from ticket now, trigger
3011 * abbreviated handshake based on external mechanism to
3012 * calculate the master secret later.
3013 */
3014 return 2;
3015 }
3016 r = tls_decrypt_ticket(s, p, size, session_id, len, ret);
3017 switch (r) {
3018 case 2: /* ticket couldn't be decrypted */
3019 s->tlsext_ticket_expected = 1;
3020 return 2;
3021 case 3: /* ticket was decrypted */
3022 return r;
3023 case 4: /* ticket decrypted but need to renew */
3024 s->tlsext_ticket_expected = 1;
3025 return 3;
3026 default: /* fatal error */
3027 return -1;
3028 }
3029 }
3030 p += size;
3031 }
3032 return 0;
3033 }
3034
3035 /*-
3036 * tls_decrypt_ticket attempts to decrypt a session ticket.
3037 *
3038 * etick: points to the body of the session ticket extension.
3039 * eticklen: the length of the session tickets extenion.
3040 * sess_id: points at the session ID.
3041 * sesslen: the length of the session ID.
3042 * psess: (output) on return, if a ticket was decrypted, then this is set to
3043 * point to the resulting session.
3044 *
3045 * Returns:
3046 * -1: fatal error, either from parsing or decrypting the ticket.
3047 * 2: the ticket couldn't be decrypted.
3048 * 3: a ticket was successfully decrypted and *psess was set.
3049 * 4: same as 3, but the ticket needs to be renewed.
3050 */
3051 static int tls_decrypt_ticket(SSL *s, const unsigned char *etick,
3052 int eticklen, const unsigned char *sess_id,
3053 int sesslen, SSL_SESSION **psess)
3054 {
3055 SSL_SESSION *sess;
3056 unsigned char *sdec;
3057 const unsigned char *p;
3058 int slen, mlen, renew_ticket = 0;
3059 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3060 HMAC_CTX hctx;
3061 EVP_CIPHER_CTX ctx;
3062 SSL_CTX *tctx = s->initial_ctx;
3063 /* Need at least keyname + iv + some encrypted data */
3064 if (eticklen < 48)
3065 return 2;
3066 /* Initialize session ticket encryption and HMAC contexts */
3067 HMAC_CTX_init(&hctx);
3068 EVP_CIPHER_CTX_init(&ctx);
3069 if (tctx->tlsext_ticket_key_cb) {
3070 unsigned char *nctick = (unsigned char *)etick;
3071 int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16,
3072 &ctx, &hctx, 0);
3073 if (rv < 0)
3074 return -1;
3075 if (rv == 0)
3076 return 2;
3077 if (rv == 2)
3078 renew_ticket = 1;
3079 } else {
3080 /* Check key name matches */
3081 if (memcmp(etick, tctx->tlsext_tick_key_name, 16))
3082 return 2;
3083 HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
3084 EVP_sha256(), NULL);
3085 EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
3086 tctx->tlsext_tick_aes_key, etick + 16);
3087 }
3088 /*
3089 * Attempt to process session ticket, first conduct sanity and integrity
3090 * checks on ticket.
3091 */
3092 mlen = HMAC_size(&hctx);
3093 if (mlen < 0) {
3094 EVP_CIPHER_CTX_cleanup(&ctx);
3095 return -1;
3096 }
3097 eticklen -= mlen;
3098 /* Check HMAC of encrypted ticket */
3099 HMAC_Update(&hctx, etick, eticklen);
3100 HMAC_Final(&hctx, tick_hmac, NULL);
3101 HMAC_CTX_cleanup(&hctx);
3102 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3103 EVP_CIPHER_CTX_cleanup(&ctx);
3104 return 2;
3105 }
3106 /* Attempt to decrypt session data */
3107 /* Move p after IV to start of encrypted ticket, update length */
3108 p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
3109 eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
3110 sdec = OPENSSL_malloc(eticklen);
3111 if (!sdec) {
3112 EVP_CIPHER_CTX_cleanup(&ctx);
3113 return -1;
3114 }
3115 EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
3116 if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0) {
3117 EVP_CIPHER_CTX_cleanup(&ctx);
3118 OPENSSL_free(sdec);
3119 return 2;
3120 }
3121 slen += mlen;
3122 EVP_CIPHER_CTX_cleanup(&ctx);
3123 p = sdec;
3124
3125 sess = d2i_SSL_SESSION(NULL, &p, slen);
3126 OPENSSL_free(sdec);
3127 if (sess) {
3128 /*
3129 * The session ID, if non-empty, is used by some clients to detect
3130 * that the ticket has been accepted. So we copy it to the session
3131 * structure. If it is empty set length to zero as required by
3132 * standard.
3133 */
3134 if (sesslen)
3135 memcpy(sess->session_id, sess_id, sesslen);
3136 sess->session_id_length = sesslen;
3137 *psess = sess;
3138 if (renew_ticket)
3139 return 4;
3140 else
3141 return 3;
3142 }
3143 ERR_clear_error();
3144 /*
3145 * For session parse failure, indicate that we need to send a new ticket.
3146 */
3147 return 2;
3148 }
3149
3150 /* Tables to translate from NIDs to TLS v1.2 ids */
3151
3152 typedef struct {
3153 int nid;
3154 int id;
3155 } tls12_lookup;
3156
3157 static const tls12_lookup tls12_md[] = {
3158 {NID_md5, TLSEXT_hash_md5},
3159 {NID_sha1, TLSEXT_hash_sha1},
3160 {NID_sha224, TLSEXT_hash_sha224},
3161 {NID_sha256, TLSEXT_hash_sha256},
3162 {NID_sha384, TLSEXT_hash_sha384},
3163 {NID_sha512, TLSEXT_hash_sha512}
3164 };
3165
3166 static const tls12_lookup tls12_sig[] = {
3167 {EVP_PKEY_RSA, TLSEXT_signature_rsa},
3168 {EVP_PKEY_DSA, TLSEXT_signature_dsa},
3169 {EVP_PKEY_EC, TLSEXT_signature_ecdsa}
3170 };
3171
3172 static int tls12_find_id(int nid, const tls12_lookup *table, size_t tlen)
3173 {
3174 size_t i;
3175 for (i = 0; i < tlen; i++) {
3176 if (table[i].nid == nid)
3177 return table[i].id;
3178 }
3179 return -1;
3180 }
3181
3182 static int tls12_find_nid(int id, const tls12_lookup *table, size_t tlen)
3183 {
3184 size_t i;
3185 for (i = 0; i < tlen; i++) {
3186 if ((table[i].id) == id)
3187 return table[i].nid;
3188 }
3189 return NID_undef;
3190 }
3191
3192 int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk,
3193 const EVP_MD *md)
3194 {
3195 int sig_id, md_id;
3196 if (!md)
3197 return 0;
3198 md_id = tls12_find_id(EVP_MD_type(md), tls12_md,
3199 sizeof(tls12_md) / sizeof(tls12_lookup));
3200 if (md_id == -1)
3201 return 0;
3202 sig_id = tls12_get_sigid(pk);
3203 if (sig_id == -1)
3204 return 0;
3205 p[0] = (unsigned char)md_id;
3206 p[1] = (unsigned char)sig_id;
3207 return 1;
3208 }
3209
3210 int tls12_get_sigid(const EVP_PKEY *pk)
3211 {
3212 return tls12_find_id(pk->type, tls12_sig,
3213 sizeof(tls12_sig) / sizeof(tls12_lookup));
3214 }
3215
3216 typedef struct {
3217 int nid;
3218 int secbits;
3219 const EVP_MD *(*mfunc) (void);
3220 } tls12_hash_info;
3221
3222 static const tls12_hash_info tls12_md_info[] = {
3223 # ifdef OPENSSL_NO_MD5
3224 {NID_md5, 64, 0},
3225 # else
3226 {NID_md5, 64, EVP_md5},
3227 # endif
3228 {NID_sha1, 80, EVP_sha1},
3229 {NID_sha224, 112, EVP_sha224},
3230 {NID_sha256, 128, EVP_sha256},
3231 {NID_sha384, 192, EVP_sha384},
3232 {NID_sha512, 256, EVP_sha512}
3233 };
3234
3235 static const tls12_hash_info *tls12_get_hash_info(unsigned char hash_alg)
3236 {
3237 if (hash_alg == 0)
3238 return NULL;
3239 if (hash_alg > sizeof(tls12_md_info) / sizeof(tls12_md_info[0]))
3240 return NULL;
3241 return tls12_md_info + hash_alg - 1;
3242 }
3243
3244 const EVP_MD *tls12_get_hash(unsigned char hash_alg)
3245 {
3246 const tls12_hash_info *inf;
3247 if (hash_alg == TLSEXT_hash_md5 && FIPS_mode())
3248 return NULL;
3249 inf = tls12_get_hash_info(hash_alg);
3250 if (!inf || !inf->mfunc)
3251 return NULL;
3252 return inf->mfunc();
3253 }
3254
3255 static int tls12_get_pkey_idx(unsigned char sig_alg)
3256 {
3257 switch (sig_alg) {
3258 # ifndef OPENSSL_NO_RSA
3259 case TLSEXT_signature_rsa:
3260 return SSL_PKEY_RSA_SIGN;
3261 # endif
3262 # ifndef OPENSSL_NO_DSA
3263 case TLSEXT_signature_dsa:
3264 return SSL_PKEY_DSA_SIGN;
3265 # endif
3266 # ifndef OPENSSL_NO_EC
3267 case TLSEXT_signature_ecdsa:
3268 return SSL_PKEY_ECC;
3269 # endif
3270 }
3271 return -1;
3272 }
3273
3274 /* Convert TLS 1.2 signature algorithm extension values into NIDs */
3275 static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
3276 int *psignhash_nid, const unsigned char *data)
3277 {
3278 int sign_nid = 0, hash_nid = 0;
3279 if (!phash_nid && !psign_nid && !psignhash_nid)
3280 return;
3281 if (phash_nid || psignhash_nid) {
3282 hash_nid = tls12_find_nid(data[0], tls12_md,
3283 sizeof(tls12_md) / sizeof(tls12_lookup));
3284 if (phash_nid)
3285 *phash_nid = hash_nid;
3286 }
3287 if (psign_nid || psignhash_nid) {
3288 sign_nid = tls12_find_nid(data[1], tls12_sig,
3289 sizeof(tls12_sig) / sizeof(tls12_lookup));
3290 if (psign_nid)
3291 *psign_nid = sign_nid;
3292 }
3293 if (psignhash_nid) {
3294 if (sign_nid && hash_nid)
3295 OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid);
3296 else
3297 *psignhash_nid = NID_undef;
3298 }
3299 }
3300
3301 /* Check to see if a signature algorithm is allowed */
3302 static int tls12_sigalg_allowed(SSL *s, int op, const unsigned char *ptmp)
3303 {
3304 /* See if we have an entry in the hash table and it is enabled */
3305 const tls12_hash_info *hinf = tls12_get_hash_info(ptmp[0]);
3306 if (!hinf || !hinf->mfunc)
3307 return 0;
3308 /* See if public key algorithm allowed */
3309 if (tls12_get_pkey_idx(ptmp[1]) == -1)
3310 return 0;
3311 /* Finally see if security callback allows it */
3312 return ssl_security(s, op, hinf->secbits, hinf->nid, (void *)ptmp);
3313 }
3314
3315 /*
3316 * Get a mask of disabled public key algorithms based on supported signature
3317 * algorithms. For example if no signature algorithm supports RSA then RSA is
3318 * disabled.
3319 */
3320
3321 void ssl_set_sig_mask(unsigned long *pmask_a, SSL *s, int op)
3322 {
3323 const unsigned char *sigalgs;
3324 size_t i, sigalgslen;
3325 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
3326 /*
3327 * Now go through all signature algorithms seeing if we support any for
3328 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
3329 * down calls to security callback only check if we have to.
3330 */
3331 sigalgslen = tls12_get_psigalgs(s, &sigalgs);
3332 for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) {
3333 switch (sigalgs[1]) {
3334 # ifndef OPENSSL_NO_RSA
3335 case TLSEXT_signature_rsa:
3336 if (!have_rsa && tls12_sigalg_allowed(s, op, sigalgs))
3337 have_rsa = 1;
3338 break;
3339 # endif
3340 # ifndef OPENSSL_NO_DSA
3341 case TLSEXT_signature_dsa:
3342 if (!have_dsa && tls12_sigalg_allowed(s, op, sigalgs))
3343 have_dsa = 1;
3344 break;
3345 # endif
3346 # ifndef OPENSSL_NO_EC
3347 case TLSEXT_signature_ecdsa:
3348 if (!have_ecdsa && tls12_sigalg_allowed(s, op, sigalgs))
3349 have_ecdsa = 1;
3350 break;
3351 # endif
3352 }
3353 }
3354 if (!have_rsa)
3355 *pmask_a |= SSL_aRSA;
3356 if (!have_dsa)
3357 *pmask_a |= SSL_aDSS;
3358 if (!have_ecdsa)
3359 *pmask_a |= SSL_aECDSA;
3360 }
3361
3362 size_t tls12_copy_sigalgs(SSL *s, unsigned char *out,
3363 const unsigned char *psig, size_t psiglen)
3364 {
3365 unsigned char *tmpout = out;
3366 size_t i;
3367 for (i = 0; i < psiglen; i += 2, psig += 2) {
3368 if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, psig)) {
3369 *tmpout++ = psig[0];
3370 *tmpout++ = psig[1];
3371 }
3372 }
3373 return tmpout - out;
3374 }
3375
3376 /* Given preference and allowed sigalgs set shared sigalgs */
3377 static int tls12_shared_sigalgs(SSL *s, TLS_SIGALGS *shsig,
3378 const unsigned char *pref, size_t preflen,
3379 const unsigned char *allow, size_t allowlen)
3380 {
3381 const unsigned char *ptmp, *atmp;
3382 size_t i, j, nmatch = 0;
3383 for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) {
3384 /* Skip disabled hashes or signature algorithms */
3385 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, ptmp))
3386 continue;
3387 for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) {
3388 if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) {
3389 nmatch++;
3390 if (shsig) {
3391 shsig->rhash = ptmp[0];
3392 shsig->rsign = ptmp[1];
3393 tls1_lookup_sigalg(&shsig->hash_nid,
3394 &shsig->sign_nid,
3395 &shsig->signandhash_nid, ptmp);
3396 shsig++;
3397 }
3398 break;
3399 }
3400 }
3401 }
3402 return nmatch;
3403 }
3404
3405 /* Set shared signature algorithms for SSL structures */
3406 static int tls1_set_shared_sigalgs(SSL *s)
3407 {
3408 const unsigned char *pref, *allow, *conf;
3409 size_t preflen, allowlen, conflen;
3410 size_t nmatch;
3411 TLS_SIGALGS *salgs = NULL;
3412 CERT *c = s->cert;
3413 unsigned int is_suiteb = tls1_suiteb(s);
3414 if (c->shared_sigalgs) {
3415 OPENSSL_free(c->shared_sigalgs);
3416 c->shared_sigalgs = NULL;
3417 c->shared_sigalgslen = 0;
3418 }
3419 /* If client use client signature algorithms if not NULL */
3420 if (!s->server && c->client_sigalgs && !is_suiteb) {
3421 conf = c->client_sigalgs;
3422 conflen = c->client_sigalgslen;
3423 } else if (c->conf_sigalgs && !is_suiteb) {
3424 conf = c->conf_sigalgs;
3425 conflen = c->conf_sigalgslen;
3426 } else
3427 conflen = tls12_get_psigalgs(s, &conf);
3428 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3429 pref = conf;
3430 preflen = conflen;
3431 allow = c->peer_sigalgs;
3432 allowlen = c->peer_sigalgslen;
3433 } else {
3434 allow = conf;
3435 allowlen = conflen;
3436 pref = c->peer_sigalgs;
3437 preflen = c->peer_sigalgslen;
3438 }
3439 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3440 if (nmatch) {
3441 salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
3442 if (!salgs)
3443 return 0;
3444 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3445 } else {
3446 salgs = NULL;
3447 }
3448 c->shared_sigalgs = salgs;
3449 c->shared_sigalgslen = nmatch;
3450 return 1;
3451 }
3452
3453 /* Set preferred digest for each key type */
3454
3455 int tls1_save_sigalgs(SSL *s, const unsigned char *data, int dsize)
3456 {
3457 CERT *c = s->cert;
3458 /* Extension ignored for inappropriate versions */
3459 if (!SSL_USE_SIGALGS(s))
3460 return 1;
3461 /* Should never happen */
3462 if (!c)
3463 return 0;
3464
3465 if (c->peer_sigalgs)
3466 OPENSSL_free(c->peer_sigalgs);
3467 c->peer_sigalgs = OPENSSL_malloc(dsize);
3468 if (!c->peer_sigalgs)
3469 return 0;
3470 c->peer_sigalgslen = dsize;
3471 memcpy(c->peer_sigalgs, data, dsize);
3472 return 1;
3473 }
3474
3475 int tls1_process_sigalgs(SSL *s)
3476 {
3477 int idx;
3478 size_t i;
3479 const EVP_MD *md;
3480 CERT *c = s->cert;
3481 TLS_SIGALGS *sigptr;
3482 if (!tls1_set_shared_sigalgs(s))
3483 return 0;
3484
3485 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
3486 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) {
3487 /*
3488 * Use first set signature preference to force message digest,
3489 * ignoring any peer preferences.
3490 */
3491 const unsigned char *sigs = NULL;
3492 if (s->server)
3493 sigs = c->conf_sigalgs;
3494 else
3495 sigs = c->client_sigalgs;
3496 if (sigs) {
3497 idx = tls12_get_pkey_idx(sigs[1]);
3498 md = tls12_get_hash(sigs[0]);
3499 c->pkeys[idx].digest = md;
3500 c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
3501 if (idx == SSL_PKEY_RSA_SIGN) {
3502 c->pkeys[SSL_PKEY_RSA_ENC].valid_flags =
3503 CERT_PKEY_EXPLICIT_SIGN;
3504 c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
3505 }
3506 }
3507 }
3508 # endif
3509
3510 for (i = 0, sigptr = c->shared_sigalgs;
3511 i < c->shared_sigalgslen; i++, sigptr++) {
3512 idx = tls12_get_pkey_idx(sigptr->rsign);
3513 if (idx > 0 && c->pkeys[idx].digest == NULL) {
3514 md = tls12_get_hash(sigptr->rhash);
3515 c->pkeys[idx].digest = md;
3516 c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
3517 if (idx == SSL_PKEY_RSA_SIGN) {
3518 c->pkeys[SSL_PKEY_RSA_ENC].valid_flags =
3519 CERT_PKEY_EXPLICIT_SIGN;
3520 c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
3521 }
3522 }
3523
3524 }
3525 /*
3526 * In strict mode leave unset digests as NULL to indicate we can't use
3527 * the certificate for signing.
3528 */
3529 if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
3530 /*
3531 * Set any remaining keys to default values. NOTE: if alg is not
3532 * supported it stays as NULL.
3533 */
3534 # ifndef OPENSSL_NO_DSA
3535 if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest)
3536 c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1();
3537 # endif
3538 # ifndef OPENSSL_NO_RSA
3539 if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest) {
3540 c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1();
3541 c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1();
3542 }
3543 # endif
3544 # ifndef OPENSSL_NO_EC
3545 if (!c->pkeys[SSL_PKEY_ECC].digest)
3546 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1();
3547 # endif
3548 }
3549 return 1;
3550 }
3551
3552 int SSL_get_sigalgs(SSL *s, int idx,
3553 int *psign, int *phash, int *psignhash,
3554 unsigned char *rsig, unsigned char *rhash)
3555 {
3556 const unsigned char *psig = s->cert->peer_sigalgs;
3557 if (psig == NULL)
3558 return 0;
3559 if (idx >= 0) {
3560 idx <<= 1;
3561 if (idx >= (int)s->cert->peer_sigalgslen)
3562 return 0;
3563 psig += idx;
3564 if (rhash)
3565 *rhash = psig[0];
3566 if (rsig)
3567 *rsig = psig[1];
3568 tls1_lookup_sigalg(phash, psign, psignhash, psig);
3569 }
3570 return s->cert->peer_sigalgslen / 2;
3571 }
3572
3573 int SSL_get_shared_sigalgs(SSL *s, int idx,
3574 int *psign, int *phash, int *psignhash,
3575 unsigned char *rsig, unsigned char *rhash)
3576 {
3577 TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
3578 if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen)
3579 return 0;
3580 shsigalgs += idx;
3581 if (phash)
3582 *phash = shsigalgs->hash_nid;
3583 if (psign)
3584 *psign = shsigalgs->sign_nid;
3585 if (psignhash)
3586 *psignhash = shsigalgs->signandhash_nid;
3587 if (rsig)
3588 *rsig = shsigalgs->rsign;
3589 if (rhash)
3590 *rhash = shsigalgs->rhash;
3591 return s->cert->shared_sigalgslen;
3592 }
3593
3594 # ifndef OPENSSL_NO_HEARTBEATS
3595 int tls1_process_heartbeat(SSL *s)
3596 {
3597 unsigned char *p = &s->s3->rrec.data[0], *pl;
3598 unsigned short hbtype;
3599 unsigned int payload;
3600 unsigned int padding = 16; /* Use minimum padding */
3601
3602 if (s->msg_callback)
3603 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
3604 &s->s3->rrec.data[0], s->s3->rrec.length,
3605 s, s->msg_callback_arg);
3606
3607 /* Read type and payload length first */
3608 if (1 + 2 + 16 > s->s3->rrec.length)
3609 return 0; /* silently discard */
3610 hbtype = *p++;
3611 n2s(p, payload);
3612 if (1 + 2 + payload + 16 > s->s3->rrec.length)
3613 return 0; /* silently discard per RFC 6520 sec. 4 */
3614 pl = p;
3615
3616 if (hbtype == TLS1_HB_REQUEST) {
3617 unsigned char *buffer, *bp;
3618 int r;
3619
3620 /*
3621 * Allocate memory for the response, size is 1 bytes message type,
3622 * plus 2 bytes payload length, plus payload, plus padding
3623 */
3624 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
3625 if (buffer == NULL) {
3626 SSLerr(SSL_F_TLS1_PROCESS_HEARTBEAT, ERR_R_MALLOC_FAILURE);
3627 return -1;
3628 }
3629 bp = buffer;
3630
3631 /* Enter response type, length and copy payload */
3632 *bp++ = TLS1_HB_RESPONSE;
3633 s2n(payload, bp);
3634 memcpy(bp, pl, payload);
3635 bp += payload;
3636 /* Random padding */
3637 if (RAND_bytes(bp, padding) <= 0) {
3638 OPENSSL_free(buffer);
3639 return -1;
3640 }
3641
3642 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer,
3643 3 + payload + padding);
3644
3645 if (r >= 0 && s->msg_callback)
3646 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
3647 buffer, 3 + payload + padding,
3648 s, s->msg_callback_arg);
3649
3650 OPENSSL_free(buffer);
3651
3652 if (r < 0)
3653 return r;
3654 } else if (hbtype == TLS1_HB_RESPONSE) {
3655 unsigned int seq;
3656
3657 /*
3658 * We only send sequence numbers (2 bytes unsigned int), and 16
3659 * random bytes, so we just try to read the sequence number
3660 */
3661 n2s(pl, seq);
3662
3663 if (payload == 18 && seq == s->tlsext_hb_seq) {
3664 s->tlsext_hb_seq++;
3665 s->tlsext_hb_pending = 0;
3666 }
3667 }
3668
3669 return 0;
3670 }
3671
3672 int tls1_heartbeat(SSL *s)
3673 {
3674 unsigned char *buf, *p;
3675 int ret = -1;
3676 unsigned int payload = 18; /* Sequence number + random bytes */
3677 unsigned int padding = 16; /* Use minimum padding */
3678
3679 /* Only send if peer supports and accepts HB requests... */
3680 if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) ||
3681 s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS) {
3682 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT);
3683 return -1;
3684 }
3685
3686 /* ...and there is none in flight yet... */
3687 if (s->tlsext_hb_pending) {
3688 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_TLS_HEARTBEAT_PENDING);
3689 return -1;
3690 }
3691
3692 /* ...and no handshake in progress. */
3693 if (SSL_in_init(s) || s->in_handshake) {
3694 SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_UNEXPECTED_MESSAGE);
3695 return -1;
3696 }
3697
3698 /*
3699 * Check if padding is too long, payload and padding must not exceed 2^14
3700 * - 3 = 16381 bytes in total.
3701 */
3702 OPENSSL_assert(payload + padding <= 16381);
3703
3704 /*-
3705 * Create HeartBeat message, we just use a sequence number
3706 * as payload to distuingish different messages and add
3707 * some random stuff.
3708 * - Message Type, 1 byte
3709 * - Payload Length, 2 bytes (unsigned int)
3710 * - Payload, the sequence number (2 bytes uint)
3711 * - Payload, random bytes (16 bytes uint)
3712 * - Padding
3713 */
3714 buf = OPENSSL_malloc(1 + 2 + payload + padding);
3715 if (buf == NULL) {
3716 SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_MALLOC_FAILURE);
3717 return -1;
3718 }
3719 p = buf;
3720 /* Message Type */
3721 *p++ = TLS1_HB_REQUEST;
3722 /* Payload length (18 bytes here) */
3723 s2n(payload, p);
3724 /* Sequence number */
3725 s2n(s->tlsext_hb_seq, p);
3726 /* 16 random bytes */
3727 if (RAND_bytes(p, 16) <= 0) {
3728 SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR);
3729 goto err;
3730 }
3731 p += 16;
3732 /* Random padding */
3733 if (RAND_bytes(p, padding) <= 0) {
3734 SSLerr(SSL_F_TLS1_HEARTBEAT, ERR_R_INTERNAL_ERROR);
3735 goto err;
3736 }
3737
3738 ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);
3739 if (ret >= 0) {
3740 if (s->msg_callback)
3741 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
3742 buf, 3 + payload + padding,
3743 s, s->msg_callback_arg);
3744
3745 s->tlsext_hb_pending = 1;
3746 }
3747
3748 err:
3749 OPENSSL_free(buf);
3750 return ret;
3751 }
3752 # endif
3753
3754 # define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2)
3755
3756 typedef struct {
3757 size_t sigalgcnt;
3758 int sigalgs[MAX_SIGALGLEN];
3759 } sig_cb_st;
3760
3761 static int sig_cb(const char *elem, int len, void *arg)
3762 {
3763 sig_cb_st *sarg = arg;
3764 size_t i;
3765 char etmp[20], *p;
3766 int sig_alg, hash_alg;
3767 if (elem == NULL)
3768 return 0;
3769 if (sarg->sigalgcnt == MAX_SIGALGLEN)
3770 return 0;
3771 if (len > (int)(sizeof(etmp) - 1))
3772 return 0;
3773 memcpy(etmp, elem, len);
3774 etmp[len] = 0;
3775 p = strchr(etmp, '+');
3776 if (!p)
3777 return 0;
3778 *p = 0;
3779 p++;
3780 if (!*p)
3781 return 0;
3782
3783 if (!strcmp(etmp, "RSA"))
3784 sig_alg = EVP_PKEY_RSA;
3785 else if (!strcmp(etmp, "DSA"))
3786 sig_alg = EVP_PKEY_DSA;
3787 else if (!strcmp(etmp, "ECDSA"))
3788 sig_alg = EVP_PKEY_EC;
3789 else
3790 return 0;
3791
3792 hash_alg = OBJ_sn2nid(p);
3793 if (hash_alg == NID_undef)
3794 hash_alg = OBJ_ln2nid(p);
3795 if (hash_alg == NID_undef)
3796 return 0;
3797
3798 for (i = 0; i < sarg->sigalgcnt; i += 2) {
3799 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
3800 return 0;
3801 }
3802 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
3803 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
3804 return 1;
3805 }
3806
3807 /*
3808 * Set suppored signature algorithms based on a colon separated list of the
3809 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3810 */
3811 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
3812 {
3813 sig_cb_st sig;
3814 sig.sigalgcnt = 0;
3815 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3816 return 0;
3817 if (c == NULL)
3818 return 1;
3819 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3820 }
3821
3822 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen,
3823 int client)
3824 {
3825 unsigned char *sigalgs, *sptr;
3826 int rhash, rsign;
3827 size_t i;
3828 if (salglen & 1)
3829 return 0;
3830 sigalgs = OPENSSL_malloc(salglen);
3831 if (sigalgs == NULL)
3832 return 0;
3833 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3834 rhash = tls12_find_id(*psig_nids++, tls12_md,
3835 sizeof(tls12_md) / sizeof(tls12_lookup));
3836 rsign = tls12_find_id(*psig_nids++, tls12_sig,
3837 sizeof(tls12_sig) / sizeof(tls12_lookup));
3838
3839 if (rhash == -1 || rsign == -1)
3840 goto err;
3841 *sptr++ = rhash;
3842 *sptr++ = rsign;
3843 }
3844
3845 if (client) {
3846 if (c->client_sigalgs)
3847 OPENSSL_free(c->client_sigalgs);
3848 c->client_sigalgs = sigalgs;
3849 c->client_sigalgslen = salglen;
3850 } else {
3851 if (c->conf_sigalgs)
3852 OPENSSL_free(c->conf_sigalgs);
3853 c->conf_sigalgs = sigalgs;
3854 c->conf_sigalgslen = salglen;
3855 }
3856
3857 return 1;
3858
3859 err:
3860 OPENSSL_free(sigalgs);
3861 return 0;
3862 }
3863
3864 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
3865 {
3866 int sig_nid;
3867 size_t i;
3868 if (default_nid == -1)
3869 return 1;
3870 sig_nid = X509_get_signature_nid(x);
3871 if (default_nid)
3872 return sig_nid == default_nid ? 1 : 0;
3873 for (i = 0; i < c->shared_sigalgslen; i++)
3874 if (sig_nid == c->shared_sigalgs[i].signandhash_nid)
3875 return 1;
3876 return 0;
3877 }
3878
3879 /* Check to see if a certificate issuer name matches list of CA names */
3880 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3881 {
3882 X509_NAME *nm;
3883 int i;
3884 nm = X509_get_issuer_name(x);
3885 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3886 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3887 return 1;
3888 }
3889 return 0;
3890 }
3891
3892 /*
3893 * Check certificate chain is consistent with TLS extensions and is usable by
3894 * server. This servers two purposes: it allows users to check chains before
3895 * passing them to the server and it allows the server to check chains before
3896 * attempting to use them.
3897 */
3898
3899 /* Flags which need to be set for a certificate when stict mode not set */
3900
3901 # define CERT_PKEY_VALID_FLAGS \
3902 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3903 /* Strict mode flags */
3904 # define CERT_PKEY_STRICT_FLAGS \
3905 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3906 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3907
3908 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
3909 int idx)
3910 {
3911 int i;
3912 int rv = 0;
3913 int check_flags = 0, strict_mode;
3914 CERT_PKEY *cpk = NULL;
3915 CERT *c = s->cert;
3916 unsigned int suiteb_flags = tls1_suiteb(s);
3917 /* idx == -1 means checking server chains */
3918 if (idx != -1) {
3919 /* idx == -2 means checking client certificate chains */
3920 if (idx == -2) {
3921 cpk = c->key;
3922 idx = cpk - c->pkeys;
3923 } else
3924 cpk = c->pkeys + idx;
3925 x = cpk->x509;
3926 pk = cpk->privatekey;
3927 chain = cpk->chain;
3928 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3929 /* If no cert or key, forget it */
3930 if (!x || !pk)
3931 goto end;
3932 # ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
3933 /* Allow any certificate to pass test */
3934 if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL) {
3935 rv = CERT_PKEY_STRICT_FLAGS | CERT_PKEY_EXPLICIT_SIGN |
3936 CERT_PKEY_VALID | CERT_PKEY_SIGN;
3937 cpk->valid_flags = rv;
3938 return rv;
3939 }
3940 # endif
3941 } else {
3942 if (!x || !pk)
3943 return 0;
3944 idx = ssl_cert_type(x, pk);
3945 if (idx == -1)
3946 return 0;
3947 cpk = c->pkeys + idx;
3948 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3949 check_flags = CERT_PKEY_STRICT_FLAGS;
3950 else
3951 check_flags = CERT_PKEY_VALID_FLAGS;
3952 strict_mode = 1;
3953 }
3954
3955 if (suiteb_flags) {
3956 int ok;
3957 if (check_flags)
3958 check_flags |= CERT_PKEY_SUITEB;
3959 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3960 if (ok == X509_V_OK)
3961 rv |= CERT_PKEY_SUITEB;
3962 else if (!check_flags)
3963 goto end;
3964 }
3965
3966 /*
3967 * Check all signature algorithms are consistent with signature
3968 * algorithms extension if TLS 1.2 or later and strict mode.
3969 */
3970 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
3971 int default_nid;
3972 unsigned char rsign = 0;
3973 if (c->peer_sigalgs)
3974 default_nid = 0;
3975 /* If no sigalgs extension use defaults from RFC5246 */
3976 else {
3977 switch (idx) {
3978 case SSL_PKEY_RSA_ENC:
3979 case SSL_PKEY_RSA_SIGN:
3980 case SSL_PKEY_DH_RSA:
3981 rsign = TLSEXT_signature_rsa;
3982 default_nid = NID_sha1WithRSAEncryption;
3983 break;
3984
3985 case SSL_PKEY_DSA_SIGN:
3986 case SSL_PKEY_DH_DSA:
3987 rsign = TLSEXT_signature_dsa;
3988 default_nid = NID_dsaWithSHA1;
3989 break;
3990
3991 case SSL_PKEY_ECC:
3992 rsign = TLSEXT_signature_ecdsa;
3993 default_nid = NID_ecdsa_with_SHA1;
3994 break;
3995
3996 default:
3997 default_nid = -1;
3998 break;
3999 }
4000 }
4001 /*
4002 * If peer sent no signature algorithms extension and we have set
4003 * preferred signature algorithms check we support sha1.
4004 */
4005 if (default_nid > 0 && c->conf_sigalgs) {
4006 size_t j;
4007 const unsigned char *p = c->conf_sigalgs;
4008 for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2) {
4009 if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign)
4010 break;
4011 }
4012 if (j == c->conf_sigalgslen) {
4013 if (check_flags)
4014 goto skip_sigs;
4015 else
4016 goto end;
4017 }
4018 }
4019 /* Check signature algorithm of each cert in chain */
4020 if (!tls1_check_sig_alg(c, x, default_nid)) {
4021 if (!check_flags)
4022 goto end;
4023 } else
4024 rv |= CERT_PKEY_EE_SIGNATURE;
4025 rv |= CERT_PKEY_CA_SIGNATURE;
4026 for (i = 0; i < sk_X509_num(chain); i++) {
4027 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
4028 if (check_flags) {
4029 rv &= ~CERT_PKEY_CA_SIGNATURE;
4030 break;
4031 } else
4032 goto end;
4033 }
4034 }
4035 }
4036 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4037 else if (check_flags)
4038 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4039 skip_sigs:
4040 /* Check cert parameters are consistent */
4041 if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
4042 rv |= CERT_PKEY_EE_PARAM;
4043 else if (!check_flags)
4044 goto end;
4045 if (!s->server)
4046 rv |= CERT_PKEY_CA_PARAM;
4047 /* In strict mode check rest of chain too */
4048 else if (strict_mode) {
4049 rv |= CERT_PKEY_CA_PARAM;
4050 for (i = 0; i < sk_X509_num(chain); i++) {
4051 X509 *ca = sk_X509_value(chain, i);
4052 if (!tls1_check_cert_param(s, ca, 0)) {
4053 if (check_flags) {
4054 rv &= ~CERT_PKEY_CA_PARAM;
4055 break;
4056 } else
4057 goto end;
4058 }
4059 }
4060 }
4061 if (!s->server && strict_mode) {
4062 STACK_OF(X509_NAME) *ca_dn;
4063 int check_type = 0;
4064 switch (pk->type) {
4065 case EVP_PKEY_RSA:
4066 check_type = TLS_CT_RSA_SIGN;
4067 break;
4068 case EVP_PKEY_DSA:
4069 check_type = TLS_CT_DSS_SIGN;
4070 break;
4071 case EVP_PKEY_EC:
4072 check_type = TLS_CT_ECDSA_SIGN;
4073 break;
4074 case EVP_PKEY_DH:
4075 case EVP_PKEY_DHX:
4076 {
4077 int cert_type = X509_certificate_type(x, pk);
4078 if (cert_type & EVP_PKS_RSA)
4079 check_type = TLS_CT_RSA_FIXED_DH;
4080 if (cert_type & EVP_PKS_DSA)
4081 check_type = TLS_CT_DSS_FIXED_DH;
4082 }
4083 }
4084 if (check_type) {
4085 const unsigned char *ctypes;
4086 int ctypelen;
4087 if (c->ctypes) {
4088 ctypes = c->ctypes;
4089 ctypelen = (int)c->ctype_num;
4090 } else {
4091 ctypes = (unsigned char *)s->s3->tmp.ctype;
4092 ctypelen = s->s3->tmp.ctype_num;
4093 }
4094 for (i = 0; i < ctypelen; i++) {
4095 if (ctypes[i] == check_type) {
4096 rv |= CERT_PKEY_CERT_TYPE;
4097 break;
4098 }
4099 }
4100 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4101 goto end;
4102 } else
4103 rv |= CERT_PKEY_CERT_TYPE;
4104
4105 ca_dn = s->s3->tmp.ca_names;
4106
4107 if (!sk_X509_NAME_num(ca_dn))
4108 rv |= CERT_PKEY_ISSUER_NAME;
4109
4110 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
4111 if (ssl_check_ca_name(ca_dn, x))
4112 rv |= CERT_PKEY_ISSUER_NAME;
4113 }
4114 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
4115 for (i = 0; i < sk_X509_num(chain); i++) {
4116 X509 *xtmp = sk_X509_value(chain, i);
4117 if (ssl_check_ca_name(ca_dn, xtmp)) {
4118 rv |= CERT_PKEY_ISSUER_NAME;
4119 break;
4120 }
4121 }
4122 }
4123 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4124 goto end;
4125 } else
4126 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4127
4128 if (!check_flags || (rv & check_flags) == check_flags)
4129 rv |= CERT_PKEY_VALID;
4130
4131 end:
4132
4133 if (TLS1_get_version(s) >= TLS1_2_VERSION) {
4134 if (cpk->valid_flags & CERT_PKEY_EXPLICIT_SIGN)
4135 rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4136 else if (cpk->digest)
4137 rv |= CERT_PKEY_SIGN;
4138 } else
4139 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4140
4141 /*
4142 * When checking a CERT_PKEY structure all flags are irrelevant if the
4143 * chain is invalid.
4144 */
4145 if (!check_flags) {
4146 if (rv & CERT_PKEY_VALID)
4147 cpk->valid_flags = rv;
4148 else {
4149 /* Preserve explicit sign flag, clear rest */
4150 cpk->valid_flags &= CERT_PKEY_EXPLICIT_SIGN;
4151 return 0;
4152 }
4153 }
4154 return rv;
4155 }
4156
4157 /* Set validity of certificates in an SSL structure */
4158 void tls1_set_cert_validity(SSL *s)
4159 {
4160 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC);
4161 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN);
4162 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4163 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA);
4164 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA);
4165 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4166 }
4167
4168 /* User level utiity function to check a chain is suitable */
4169 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4170 {
4171 return tls1_check_chain(s, x, pk, chain, -1);
4172 }
4173
4174 #endif
4175
4176 #ifndef OPENSSL_NO_DH
4177 DH *ssl_get_auto_dh(SSL *s)
4178 {
4179 int dh_secbits = 80;
4180 if (s->cert->dh_tmp_auto == 2)
4181 return DH_get_1024_160();
4182 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL) {
4183 if (s->s3->tmp.new_cipher->strength_bits == 256)
4184 dh_secbits = 128;
4185 else
4186 dh_secbits = 80;
4187 } else {
4188 CERT_PKEY *cpk = ssl_get_server_send_pkey(s);
4189 dh_secbits = EVP_PKEY_security_bits(cpk->privatekey);
4190 }
4191
4192 if (dh_secbits >= 128) {
4193 DH *dhp = DH_new();
4194 if (!dhp)
4195 return NULL;
4196 dhp->g = BN_new();
4197 if (dhp->g)
4198 BN_set_word(dhp->g, 2);
4199 if (dh_secbits >= 192)
4200 dhp->p = get_rfc3526_prime_8192(NULL);
4201 else
4202 dhp->p = get_rfc3526_prime_3072(NULL);
4203 if (!dhp->p || !dhp->g) {
4204 DH_free(dhp);
4205 return NULL;
4206 }
4207 return dhp;
4208 }
4209 if (dh_secbits >= 112)
4210 return DH_get_2048_224();
4211 return DH_get_1024_160();
4212 }
4213 #endif
4214
4215 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
4216 {
4217 int secbits;
4218 EVP_PKEY *pkey = X509_get_pubkey(x);
4219 if (pkey) {
4220 secbits = EVP_PKEY_security_bits(pkey);
4221 EVP_PKEY_free(pkey);
4222 } else
4223 secbits = -1;
4224 if (s)
4225 return ssl_security(s, op, secbits, 0, x);
4226 else
4227 return ssl_ctx_security(ctx, op, secbits, 0, x);
4228 }
4229
4230 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
4231 {
4232 /* Lookup signature algorithm digest */
4233 int secbits = -1, md_nid = NID_undef, sig_nid;
4234 sig_nid = X509_get_signature_nid(x);
4235 if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) {
4236 const EVP_MD *md;
4237 if (md_nid && (md = EVP_get_digestbynid(md_nid)))
4238 secbits = EVP_MD_size(md) * 4;
4239 }
4240 if (s)
4241 return ssl_security(s, op, secbits, md_nid, x);
4242 else
4243 return ssl_ctx_security(ctx, op, secbits, md_nid, x);
4244 }
4245
4246 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
4247 {
4248 if (vfy)
4249 vfy = SSL_SECOP_PEER;
4250 if (is_ee) {
4251 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4252 return SSL_R_EE_KEY_TOO_SMALL;
4253 } else {
4254 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4255 return SSL_R_CA_KEY_TOO_SMALL;
4256 }
4257 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4258 return SSL_R_CA_MD_TOO_WEAK;
4259 return 1;
4260 }
4261
4262 /*
4263 * Check security of a chain, if sk includes the end entity certificate then
4264 * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending
4265 * one to the peer. Return values: 1 if ok otherwise error code to use
4266 */
4267
4268 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
4269 {
4270 int rv, start_idx, i;
4271 if (x == NULL) {
4272 x = sk_X509_value(sk, 0);
4273 start_idx = 1;
4274 } else
4275 start_idx = 0;
4276
4277 rv = ssl_security_cert(s, NULL, x, vfy, 1);
4278 if (rv != 1)
4279 return rv;
4280
4281 for (i = start_idx; i < sk_X509_num(sk); i++) {
4282 x = sk_X509_value(sk, i);
4283 rv = ssl_security_cert(s, NULL, x, vfy, 0);
4284 if (rv != 1)
4285 return rv;
4286 }
4287 return 1;
4288 }