]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Update copyright year
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "ssl_local.h"
27 #include <openssl/ct.h>
28
29 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
30 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
31
32 SSL3_ENC_METHOD const TLSv1_enc_data = {
33 tls1_enc,
34 tls1_mac,
35 tls1_setup_key_block,
36 tls1_generate_master_secret,
37 tls1_change_cipher_state,
38 tls1_final_finish_mac,
39 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41 tls1_alert_code,
42 tls1_export_keying_material,
43 0,
44 ssl3_set_handshake_header,
45 tls_close_construct_packet,
46 ssl3_handshake_write
47 };
48
49 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50 tls1_enc,
51 tls1_mac,
52 tls1_setup_key_block,
53 tls1_generate_master_secret,
54 tls1_change_cipher_state,
55 tls1_final_finish_mac,
56 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
57 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
58 tls1_alert_code,
59 tls1_export_keying_material,
60 SSL_ENC_FLAG_EXPLICIT_IV,
61 ssl3_set_handshake_header,
62 tls_close_construct_packet,
63 ssl3_handshake_write
64 };
65
66 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
67 tls1_enc,
68 tls1_mac,
69 tls1_setup_key_block,
70 tls1_generate_master_secret,
71 tls1_change_cipher_state,
72 tls1_final_finish_mac,
73 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
74 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
75 tls1_alert_code,
76 tls1_export_keying_material,
77 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
78 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
79 ssl3_set_handshake_header,
80 tls_close_construct_packet,
81 ssl3_handshake_write
82 };
83
84 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
85 tls13_enc,
86 tls1_mac,
87 tls13_setup_key_block,
88 tls13_generate_master_secret,
89 tls13_change_cipher_state,
90 tls13_final_finish_mac,
91 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
92 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
93 tls13_alert_code,
94 tls13_export_keying_material,
95 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
96 ssl3_set_handshake_header,
97 tls_close_construct_packet,
98 ssl3_handshake_write
99 };
100
101 long tls1_default_timeout(void)
102 {
103 /*
104 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
105 * http, the cache would over fill
106 */
107 return (60 * 60 * 2);
108 }
109
110 int tls1_new(SSL *s)
111 {
112 if (!ssl3_new(s))
113 return 0;
114 if (!s->method->ssl_clear(s))
115 return 0;
116
117 return 1;
118 }
119
120 void tls1_free(SSL *s)
121 {
122 OPENSSL_free(s->ext.session_ticket);
123 ssl3_free(s);
124 }
125
126 int tls1_clear(SSL *s)
127 {
128 if (!ssl3_clear(s))
129 return 0;
130
131 if (s->method->version == TLS_ANY_VERSION)
132 s->version = TLS_MAX_VERSION_INTERNAL;
133 else
134 s->version = s->method->version;
135
136 return 1;
137 }
138
139 /* Legacy NID to group_id mapping. Only works for groups we know about */
140 static struct {
141 int nid;
142 uint16_t group_id;
143 } nid_to_group[] = {
144 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
145 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
146 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
147 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
148 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
149 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
150 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
151 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
152 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
153 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
154 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
155 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
156 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
157 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
158 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
159 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
160 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
161 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
162 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
163 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
164 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
165 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
166 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
167 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
168 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
169 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
170 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
171 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
172 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
173 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
174 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
175 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
176 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
177 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
178 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
179 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
180 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
181 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
182 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
183 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
184 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
185 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
186 };
187
188 static const unsigned char ecformats_default[] = {
189 TLSEXT_ECPOINTFORMAT_uncompressed,
190 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
191 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
192 };
193
194 /* The default curves */
195 static const uint16_t supported_groups_default[] = {
196 OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
197 OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
198 OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
199 OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
200 OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
201 OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
202 OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
203 OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
204 OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
205 OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
206 OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
207 OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
208 OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
209 OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
210 OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
211 OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
212 OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
213 };
214
215 static const uint16_t suiteb_curves[] = {
216 OSSL_TLS_GROUP_ID_secp256r1,
217 OSSL_TLS_GROUP_ID_secp384r1,
218 };
219
220 struct provider_group_data_st {
221 SSL_CTX *ctx;
222 OSSL_PROVIDER *provider;
223 };
224
225 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
226 static OSSL_CALLBACK add_provider_groups;
227 static int add_provider_groups(const OSSL_PARAM params[], void *data)
228 {
229 struct provider_group_data_st *pgd = data;
230 SSL_CTX *ctx = pgd->ctx;
231 OSSL_PROVIDER *provider = pgd->provider;
232 const OSSL_PARAM *p;
233 TLS_GROUP_INFO *ginf = NULL;
234 EVP_KEYMGMT *keymgmt;
235 unsigned int gid;
236 unsigned int is_kem = 0;
237 int ret = 0;
238
239 if (ctx->group_list_max_len == ctx->group_list_len) {
240 TLS_GROUP_INFO *tmp = NULL;
241
242 if (ctx->group_list_max_len == 0)
243 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
244 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
245 else
246 tmp = OPENSSL_realloc(ctx->group_list,
247 (ctx->group_list_max_len
248 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
249 * sizeof(TLS_GROUP_INFO));
250 if (tmp == NULL) {
251 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
252 return 0;
253 }
254 ctx->group_list = tmp;
255 memset(tmp + ctx->group_list_max_len,
256 0,
257 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
258 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
259 }
260
261 ginf = &ctx->group_list[ctx->group_list_len];
262
263 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
264 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
265 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
266 goto err;
267 }
268 ginf->tlsname = OPENSSL_strdup(p->data);
269 if (ginf->tlsname == NULL) {
270 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
271 goto err;
272 }
273
274 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
275 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
276 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277 goto err;
278 }
279 ginf->realname = OPENSSL_strdup(p->data);
280 if (ginf->realname == NULL) {
281 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
282 goto err;
283 }
284
285 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288 goto err;
289 }
290 ginf->group_id = (uint16_t)gid;
291
292 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295 goto err;
296 }
297 ginf->algorithm = OPENSSL_strdup(p->data);
298 if (ginf->algorithm == NULL) {
299 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
300 goto err;
301 }
302
303 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
304 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
305 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306 goto err;
307 }
308
309 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
310 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
311 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312 goto err;
313 }
314 ginf->is_kem = 1 & is_kem;
315
316 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
317 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
318 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
319 goto err;
320 }
321
322 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
323 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
324 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
325 goto err;
326 }
327
328 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
329 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
330 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
331 goto err;
332 }
333
334 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
335 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
336 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
337 goto err;
338 }
339 /*
340 * Now check that the algorithm is actually usable for our property query
341 * string. Regardless of the result we still return success because we have
342 * successfully processed this group, even though we may decide not to use
343 * it.
344 */
345 ret = 1;
346 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
347 if (keymgmt != NULL) {
348 /*
349 * We have successfully fetched the algorithm - however if the provider
350 * doesn't match this one then we ignore it.
351 *
352 * Note: We're cheating a little here. Technically if the same algorithm
353 * is available from more than one provider then it is undefined which
354 * implementation you will get back. Theoretically this could be
355 * different every time...we assume here that you'll always get the
356 * same one back if you repeat the exact same fetch. Is this a reasonable
357 * assumption to make (in which case perhaps we should document this
358 * behaviour)?
359 */
360 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
361 /* We have a match - so we will use this group */
362 ctx->group_list_len++;
363 ginf = NULL;
364 }
365 EVP_KEYMGMT_free(keymgmt);
366 }
367 err:
368 if (ginf != NULL) {
369 OPENSSL_free(ginf->tlsname);
370 OPENSSL_free(ginf->realname);
371 OPENSSL_free(ginf->algorithm);
372 ginf->tlsname = ginf->realname = NULL;
373 }
374 return ret;
375 }
376
377 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378 {
379 struct provider_group_data_st pgd;
380
381 pgd.ctx = vctx;
382 pgd.provider = provider;
383 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384 add_provider_groups, &pgd);
385 }
386
387 int ssl_load_groups(SSL_CTX *ctx)
388 {
389 size_t i, j, num_deflt_grps = 0;
390 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393 return 0;
394
395 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396 for (j = 0; j < ctx->group_list_len; j++) {
397 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399 break;
400 }
401 }
402 }
403
404 if (num_deflt_grps == 0)
405 return 1;
406
407 ctx->ext.supported_groups_default
408 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410 if (ctx->ext.supported_groups_default == NULL) {
411 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
412 return 0;
413 }
414
415 memcpy(ctx->ext.supported_groups_default,
416 tmp_supp_groups,
417 num_deflt_grps * sizeof(tmp_supp_groups[0]));
418 ctx->ext.supported_groups_default_len = num_deflt_grps;
419
420 return 1;
421 }
422
423 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
424 {
425 size_t i;
426
427 for (i = 0; i < ctx->group_list_len; i++) {
428 if (strcmp(ctx->group_list[i].tlsname, name) == 0
429 || strcmp(ctx->group_list[i].realname, name) == 0)
430 return ctx->group_list[i].group_id;
431 }
432
433 return 0;
434 }
435
436 uint16_t ssl_group_id_internal_to_tls13(uint16_t curve_id)
437 {
438 switch(curve_id) {
439 case OSSL_TLS_GROUP_ID_brainpoolP256r1:
440 return OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13;
441 case OSSL_TLS_GROUP_ID_brainpoolP384r1:
442 return OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13;
443 case OSSL_TLS_GROUP_ID_brainpoolP512r1:
444 return OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13;
445 case OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13:
446 case OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13:
447 case OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13:
448 return 0;
449 default:
450 return curve_id;
451 }
452 }
453
454 uint16_t ssl_group_id_tls13_to_internal(uint16_t curve_id)
455 {
456 switch(curve_id) {
457 case OSSL_TLS_GROUP_ID_brainpoolP256r1:
458 case OSSL_TLS_GROUP_ID_brainpoolP384r1:
459 case OSSL_TLS_GROUP_ID_brainpoolP512r1:
460 return 0;
461 case OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13:
462 return OSSL_TLS_GROUP_ID_brainpoolP256r1;
463 case OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13:
464 return OSSL_TLS_GROUP_ID_brainpoolP384r1;
465 case OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13:
466 return OSSL_TLS_GROUP_ID_brainpoolP512r1;
467 default:
468 return curve_id;
469 }
470 }
471
472 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
473 {
474 size_t i;
475
476 for (i = 0; i < ctx->group_list_len; i++) {
477 if (ctx->group_list[i].group_id == group_id)
478 return &ctx->group_list[i];
479 }
480
481 return NULL;
482 }
483
484 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
485 {
486 size_t i;
487
488 if (group_id == 0)
489 return NID_undef;
490
491 /*
492 * Return well known Group NIDs - for backwards compatibility. This won't
493 * work for groups we don't know about.
494 */
495 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
496 {
497 if (nid_to_group[i].group_id == group_id)
498 return nid_to_group[i].nid;
499 }
500 if (!include_unknown)
501 return NID_undef;
502 return TLSEXT_nid_unknown | (int)group_id;
503 }
504
505 uint16_t tls1_nid2group_id(int nid)
506 {
507 size_t i;
508
509 /*
510 * Return well known Group ids - for backwards compatibility. This won't
511 * work for groups we don't know about.
512 */
513 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
514 {
515 if (nid_to_group[i].nid == nid)
516 return nid_to_group[i].group_id;
517 }
518
519 return 0;
520 }
521
522 /*
523 * Set *pgroups to the supported groups list and *pgroupslen to
524 * the number of groups supported.
525 */
526 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
527 size_t *pgroupslen)
528 {
529 /* For Suite B mode only include P-256, P-384 */
530 switch (tls1_suiteb(s)) {
531 case SSL_CERT_FLAG_SUITEB_128_LOS:
532 *pgroups = suiteb_curves;
533 *pgroupslen = OSSL_NELEM(suiteb_curves);
534 break;
535
536 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
537 *pgroups = suiteb_curves;
538 *pgroupslen = 1;
539 break;
540
541 case SSL_CERT_FLAG_SUITEB_192_LOS:
542 *pgroups = suiteb_curves + 1;
543 *pgroupslen = 1;
544 break;
545
546 default:
547 if (s->ext.supportedgroups == NULL) {
548 *pgroups = s->ctx->ext.supported_groups_default;
549 *pgroupslen = s->ctx->ext.supported_groups_default_len;
550 } else {
551 *pgroups = s->ext.supportedgroups;
552 *pgroupslen = s->ext.supportedgroups_len;
553 }
554 break;
555 }
556 }
557
558 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
559 int isec, int *okfortls13)
560 {
561 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
562 int ret;
563
564 if (okfortls13 != NULL)
565 *okfortls13 = 0;
566
567 if (ginfo == NULL)
568 return 0;
569
570 if (SSL_IS_DTLS(s)) {
571 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
572 return 0;
573 if (ginfo->maxdtls == 0)
574 ret = 1;
575 else
576 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
577 if (ginfo->mindtls > 0)
578 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
579 } else {
580 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
581 return 0;
582 if (ginfo->maxtls == 0)
583 ret = 1;
584 else
585 ret = (minversion <= ginfo->maxtls);
586 if (ginfo->mintls > 0)
587 ret &= (maxversion >= ginfo->mintls);
588 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
589 *okfortls13 = (ginfo->maxtls == 0)
590 || (ginfo->maxtls >= TLS1_3_VERSION);
591 }
592 ret &= !isec
593 || strcmp(ginfo->algorithm, "EC") == 0
594 || strcmp(ginfo->algorithm, "X25519") == 0
595 || strcmp(ginfo->algorithm, "X448") == 0;
596
597 return ret;
598 }
599
600 /* See if group is allowed by security callback */
601 int tls_group_allowed(SSL *s, uint16_t group, int op)
602 {
603 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
604 unsigned char gtmp[2];
605
606 if (ginfo == NULL)
607 return 0;
608
609 gtmp[0] = group >> 8;
610 gtmp[1] = group & 0xff;
611 return ssl_security(s, op, ginfo->secbits,
612 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
613 }
614
615 /* Return 1 if "id" is in "list" */
616 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
617 {
618 size_t i;
619 for (i = 0; i < listlen; i++)
620 if (list[i] == id)
621 return 1;
622 return 0;
623 }
624
625 /*-
626 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
627 * if there is no match.
628 * For nmatch == -1, return number of matches
629 * For nmatch == -2, return the id of the group to use for
630 * a tmp key, or 0 if there is no match.
631 */
632 uint16_t tls1_shared_group(SSL *s, int nmatch)
633 {
634 const uint16_t *pref, *supp;
635 size_t num_pref, num_supp, i;
636 int k;
637
638 /* Can't do anything on client side */
639 if (s->server == 0)
640 return 0;
641 if (nmatch == -2) {
642 if (tls1_suiteb(s)) {
643 /*
644 * For Suite B ciphersuite determines curve: we already know
645 * these are acceptable due to previous checks.
646 */
647 unsigned long cid = s->s3.tmp.new_cipher->id;
648
649 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
650 return OSSL_TLS_GROUP_ID_secp256r1;
651 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
652 return OSSL_TLS_GROUP_ID_secp384r1;
653 /* Should never happen */
654 return 0;
655 }
656 /* If not Suite B just return first preference shared curve */
657 nmatch = 0;
658 }
659 /*
660 * If server preference set, our groups are the preference order
661 * otherwise peer decides.
662 */
663 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
664 tls1_get_supported_groups(s, &pref, &num_pref);
665 tls1_get_peer_groups(s, &supp, &num_supp);
666 } else {
667 tls1_get_peer_groups(s, &pref, &num_pref);
668 tls1_get_supported_groups(s, &supp, &num_supp);
669 }
670
671 for (k = 0, i = 0; i < num_pref; i++) {
672 uint16_t id = pref[i];
673 uint16_t cid = id;
674
675 if (SSL_IS_TLS13(s)) {
676 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE)
677 cid = ssl_group_id_internal_to_tls13(id);
678 else
679 cid = id = ssl_group_id_tls13_to_internal(id);
680 }
681 if (!tls1_in_list(cid, supp, num_supp)
682 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
683 continue;
684 if (nmatch == k)
685 return id;
686 k++;
687 }
688 if (nmatch == -1)
689 return k;
690 /* Out of range (nmatch > k). */
691 return 0;
692 }
693
694 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
695 int *groups, size_t ngroups)
696 {
697 uint16_t *glist;
698 size_t i;
699 /*
700 * Bitmap of groups included to detect duplicates: two variables are added
701 * to detect duplicates as some values are more than 32.
702 */
703 unsigned long *dup_list = NULL;
704 unsigned long dup_list_egrp = 0;
705 unsigned long dup_list_dhgrp = 0;
706
707 if (ngroups == 0) {
708 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
709 return 0;
710 }
711 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
712 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
713 return 0;
714 }
715 for (i = 0; i < ngroups; i++) {
716 unsigned long idmask;
717 uint16_t id;
718 id = tls1_nid2group_id(groups[i]);
719 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
720 goto err;
721 idmask = 1L << (id & 0x00FF);
722 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
723 if (!id || ((*dup_list) & idmask))
724 goto err;
725 *dup_list |= idmask;
726 glist[i] = id;
727 }
728 OPENSSL_free(*pext);
729 *pext = glist;
730 *pextlen = ngroups;
731 return 1;
732 err:
733 OPENSSL_free(glist);
734 return 0;
735 }
736
737 # define GROUPLIST_INCREMENT 40
738 # define GROUP_NAME_BUFFER_LENGTH 64
739 typedef struct {
740 SSL_CTX *ctx;
741 size_t gidcnt;
742 size_t gidmax;
743 uint16_t *gid_arr;
744 } gid_cb_st;
745
746 static int gid_cb(const char *elem, int len, void *arg)
747 {
748 gid_cb_st *garg = arg;
749 size_t i;
750 uint16_t gid = 0;
751 char etmp[GROUP_NAME_BUFFER_LENGTH];
752
753 if (elem == NULL)
754 return 0;
755 if (garg->gidcnt == garg->gidmax) {
756 uint16_t *tmp =
757 OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
758 if (tmp == NULL)
759 return 0;
760 garg->gidmax += GROUPLIST_INCREMENT;
761 garg->gid_arr = tmp;
762 }
763 if (len > (int)(sizeof(etmp) - 1))
764 return 0;
765 memcpy(etmp, elem, len);
766 etmp[len] = 0;
767
768 gid = tls1_group_name2id(garg->ctx, etmp);
769 if (gid == 0)
770 return 0;
771 for (i = 0; i < garg->gidcnt; i++)
772 if (garg->gid_arr[i] == gid)
773 return 0;
774 garg->gid_arr[garg->gidcnt++] = gid;
775 return 1;
776 }
777
778 /* Set groups based on a colon separated list */
779 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
780 const char *str)
781 {
782 gid_cb_st gcb;
783 uint16_t *tmparr;
784 int ret = 0;
785
786 gcb.gidcnt = 0;
787 gcb.gidmax = GROUPLIST_INCREMENT;
788 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
789 if (gcb.gid_arr == NULL)
790 return 0;
791 gcb.ctx = ctx;
792 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
793 goto end;
794 if (pext == NULL) {
795 ret = 1;
796 goto end;
797 }
798
799 /*
800 * gid_cb ensurse there are no duplicates so we can just go ahead and set
801 * the result
802 */
803 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
804 if (tmparr == NULL)
805 goto end;
806 *pext = tmparr;
807 *pextlen = gcb.gidcnt;
808 ret = 1;
809 end:
810 OPENSSL_free(gcb.gid_arr);
811 return ret;
812 }
813
814 /* Check a group id matches preferences */
815 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
816 {
817 const uint16_t *groups;
818 size_t groups_len;
819
820 if (group_id == 0)
821 return 0;
822
823 /* Check for Suite B compliance */
824 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
825 unsigned long cid = s->s3.tmp.new_cipher->id;
826
827 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
828 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
829 return 0;
830 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
831 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
832 return 0;
833 } else {
834 /* Should never happen */
835 return 0;
836 }
837 }
838
839 if (check_own_groups) {
840 /* Check group is one of our preferences */
841 tls1_get_supported_groups(s, &groups, &groups_len);
842 if (!tls1_in_list(group_id, groups, groups_len))
843 return 0;
844 }
845
846 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
847 return 0;
848
849 /* For clients, nothing more to check */
850 if (!s->server)
851 return 1;
852
853 /* Check group is one of peers preferences */
854 tls1_get_peer_groups(s, &groups, &groups_len);
855
856 /*
857 * RFC 4492 does not require the supported elliptic curves extension
858 * so if it is not sent we can just choose any curve.
859 * It is invalid to send an empty list in the supported groups
860 * extension, so groups_len == 0 always means no extension.
861 */
862 if (groups_len == 0)
863 return 1;
864 return tls1_in_list(group_id, groups, groups_len);
865 }
866
867 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
868 size_t *num_formats)
869 {
870 /*
871 * If we have a custom point format list use it otherwise use default
872 */
873 if (s->ext.ecpointformats) {
874 *pformats = s->ext.ecpointformats;
875 *num_formats = s->ext.ecpointformats_len;
876 } else {
877 *pformats = ecformats_default;
878 /* For Suite B we don't support char2 fields */
879 if (tls1_suiteb(s))
880 *num_formats = sizeof(ecformats_default) - 1;
881 else
882 *num_formats = sizeof(ecformats_default);
883 }
884 }
885
886 /* Check a key is compatible with compression extension */
887 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
888 {
889 unsigned char comp_id;
890 size_t i;
891 int point_conv;
892
893 /* If not an EC key nothing to check */
894 if (!EVP_PKEY_is_a(pkey, "EC"))
895 return 1;
896
897
898 /* Get required compression id */
899 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
900 if (point_conv == 0)
901 return 0;
902 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
903 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
904 } else if (SSL_IS_TLS13(s)) {
905 /*
906 * ec_point_formats extension is not used in TLSv1.3 so we ignore
907 * this check.
908 */
909 return 1;
910 } else {
911 int field_type = EVP_PKEY_get_field_type(pkey);
912
913 if (field_type == NID_X9_62_prime_field)
914 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
915 else if (field_type == NID_X9_62_characteristic_two_field)
916 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
917 else
918 return 0;
919 }
920 /*
921 * If point formats extension present check it, otherwise everything is
922 * supported (see RFC4492).
923 */
924 if (s->ext.peer_ecpointformats == NULL)
925 return 1;
926
927 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
928 if (s->ext.peer_ecpointformats[i] == comp_id)
929 return 1;
930 }
931 return 0;
932 }
933
934 /* Return group id of a key */
935 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
936 {
937 int curve_nid = ssl_get_EC_curve_nid(pkey);
938
939 if (curve_nid == NID_undef)
940 return 0;
941 return tls1_nid2group_id(curve_nid);
942 }
943
944 /*
945 * Check cert parameters compatible with extensions: currently just checks EC
946 * certificates have compatible curves and compression.
947 */
948 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
949 {
950 uint16_t group_id;
951 EVP_PKEY *pkey;
952 pkey = X509_get0_pubkey(x);
953 if (pkey == NULL)
954 return 0;
955 /* If not EC nothing to do */
956 if (!EVP_PKEY_is_a(pkey, "EC"))
957 return 1;
958 /* Check compression */
959 if (!tls1_check_pkey_comp(s, pkey))
960 return 0;
961 group_id = tls1_get_group_id(pkey);
962 /*
963 * For a server we allow the certificate to not be in our list of supported
964 * groups.
965 */
966 if (!tls1_check_group_id(s, group_id, !s->server))
967 return 0;
968 /*
969 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
970 * SHA384+P-384.
971 */
972 if (check_ee_md && tls1_suiteb(s)) {
973 int check_md;
974 size_t i;
975
976 /* Check to see we have necessary signing algorithm */
977 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
978 check_md = NID_ecdsa_with_SHA256;
979 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
980 check_md = NID_ecdsa_with_SHA384;
981 else
982 return 0; /* Should never happen */
983 for (i = 0; i < s->shared_sigalgslen; i++) {
984 if (check_md == s->shared_sigalgs[i]->sigandhash)
985 return 1;
986 }
987 return 0;
988 }
989 return 1;
990 }
991
992 /*
993 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
994 * @s: SSL connection
995 * @cid: Cipher ID we're considering using
996 *
997 * Checks that the kECDHE cipher suite we're considering using
998 * is compatible with the client extensions.
999 *
1000 * Returns 0 when the cipher can't be used or 1 when it can.
1001 */
1002 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
1003 {
1004 /* If not Suite B just need a shared group */
1005 if (!tls1_suiteb(s))
1006 return tls1_shared_group(s, 0) != 0;
1007 /*
1008 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1009 * curves permitted.
1010 */
1011 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1012 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1013 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1014 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1015
1016 return 0;
1017 }
1018
1019 /* Default sigalg schemes */
1020 static const uint16_t tls12_sigalgs[] = {
1021 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1022 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1023 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1024 TLSEXT_SIGALG_ed25519,
1025 TLSEXT_SIGALG_ed448,
1026 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1027 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1028 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1029
1030 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1031 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1032 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1033 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1034 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1035 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1036
1037 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1038 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1039 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1040
1041 TLSEXT_SIGALG_ecdsa_sha224,
1042 TLSEXT_SIGALG_ecdsa_sha1,
1043
1044 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1045 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1046
1047 TLSEXT_SIGALG_dsa_sha224,
1048 TLSEXT_SIGALG_dsa_sha1,
1049
1050 TLSEXT_SIGALG_dsa_sha256,
1051 TLSEXT_SIGALG_dsa_sha384,
1052 TLSEXT_SIGALG_dsa_sha512,
1053
1054 #ifndef OPENSSL_NO_GOST
1055 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1056 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1057 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1058 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1059 TLSEXT_SIGALG_gostr34102001_gostr3411,
1060 #endif
1061 };
1062
1063
1064 static const uint16_t suiteb_sigalgs[] = {
1065 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1066 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1067 };
1068
1069 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1070 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1071 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1072 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1073 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1074 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1075 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1076 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1077 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1078 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1079 {"ed25519", TLSEXT_SIGALG_ed25519,
1080 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1081 NID_undef, NID_undef, 1},
1082 {"ed448", TLSEXT_SIGALG_ed448,
1083 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1084 NID_undef, NID_undef, 1},
1085 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1086 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1087 NID_ecdsa_with_SHA224, NID_undef, 1},
1088 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1089 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1090 NID_ecdsa_with_SHA1, NID_undef, 1},
1091 {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1092 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1093 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1094 {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1095 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1096 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1097 {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1098 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1099 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1100 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1101 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1102 NID_undef, NID_undef, 1},
1103 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1104 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1105 NID_undef, NID_undef, 1},
1106 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1107 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1108 NID_undef, NID_undef, 1},
1109 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1110 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1111 NID_undef, NID_undef, 1},
1112 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1113 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1114 NID_undef, NID_undef, 1},
1115 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1116 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1117 NID_undef, NID_undef, 1},
1118 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1119 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1120 NID_sha256WithRSAEncryption, NID_undef, 1},
1121 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1122 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1123 NID_sha384WithRSAEncryption, NID_undef, 1},
1124 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1125 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1126 NID_sha512WithRSAEncryption, NID_undef, 1},
1127 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1128 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1129 NID_sha224WithRSAEncryption, NID_undef, 1},
1130 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1131 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1132 NID_sha1WithRSAEncryption, NID_undef, 1},
1133 {NULL, TLSEXT_SIGALG_dsa_sha256,
1134 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1135 NID_dsa_with_SHA256, NID_undef, 1},
1136 {NULL, TLSEXT_SIGALG_dsa_sha384,
1137 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1138 NID_undef, NID_undef, 1},
1139 {NULL, TLSEXT_SIGALG_dsa_sha512,
1140 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1141 NID_undef, NID_undef, 1},
1142 {NULL, TLSEXT_SIGALG_dsa_sha224,
1143 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1144 NID_undef, NID_undef, 1},
1145 {NULL, TLSEXT_SIGALG_dsa_sha1,
1146 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1147 NID_dsaWithSHA1, NID_undef, 1},
1148 #ifndef OPENSSL_NO_GOST
1149 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1150 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1151 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1152 NID_undef, NID_undef, 1},
1153 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1154 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1155 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1156 NID_undef, NID_undef, 1},
1157 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1158 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1159 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1160 NID_undef, NID_undef, 1},
1161 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1162 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1163 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1164 NID_undef, NID_undef, 1},
1165 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1166 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1167 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1168 NID_undef, NID_undef, 1}
1169 #endif
1170 };
1171 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1172 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1173 "rsa_pkcs1_md5_sha1", 0,
1174 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1175 EVP_PKEY_RSA, SSL_PKEY_RSA,
1176 NID_undef, NID_undef, 1
1177 };
1178
1179 /*
1180 * Default signature algorithm values used if signature algorithms not present.
1181 * From RFC5246. Note: order must match certificate index order.
1182 */
1183 static const uint16_t tls_default_sigalg[] = {
1184 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1185 0, /* SSL_PKEY_RSA_PSS_SIGN */
1186 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1187 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1188 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1189 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1190 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1191 0, /* SSL_PKEY_ED25519 */
1192 0, /* SSL_PKEY_ED448 */
1193 };
1194
1195 int ssl_setup_sig_algs(SSL_CTX *ctx)
1196 {
1197 size_t i;
1198 const SIGALG_LOOKUP *lu;
1199 SIGALG_LOOKUP *cache
1200 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1201 EVP_PKEY *tmpkey = EVP_PKEY_new();
1202 int ret = 0;
1203
1204 if (cache == NULL || tmpkey == NULL)
1205 goto err;
1206
1207 ERR_set_mark();
1208 for (i = 0, lu = sigalg_lookup_tbl;
1209 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1210 EVP_PKEY_CTX *pctx;
1211
1212 cache[i] = *lu;
1213
1214 /*
1215 * Check hash is available.
1216 * This test is not perfect. A provider could have support
1217 * for a signature scheme, but not a particular hash. However the hash
1218 * could be available from some other loaded provider. In that case it
1219 * could be that the signature is available, and the hash is available
1220 * independently - but not as a combination. We ignore this for now.
1221 */
1222 if (lu->hash != NID_undef
1223 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1224 cache[i].enabled = 0;
1225 continue;
1226 }
1227
1228 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1229 cache[i].enabled = 0;
1230 continue;
1231 }
1232 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1233 /* If unable to create pctx we assume the sig algorithm is unavailable */
1234 if (pctx == NULL)
1235 cache[i].enabled = 0;
1236 EVP_PKEY_CTX_free(pctx);
1237 }
1238 ERR_pop_to_mark();
1239 ctx->sigalg_lookup_cache = cache;
1240 cache = NULL;
1241
1242 ret = 1;
1243 err:
1244 OPENSSL_free(cache);
1245 EVP_PKEY_free(tmpkey);
1246 return ret;
1247 }
1248
1249 /* Lookup TLS signature algorithm */
1250 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1251 {
1252 size_t i;
1253 const SIGALG_LOOKUP *lu;
1254
1255 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1256 /* cache should have the same number of elements as sigalg_lookup_tbl */
1257 i < OSSL_NELEM(sigalg_lookup_tbl);
1258 lu++, i++) {
1259 if (lu->sigalg == sigalg) {
1260 if (!lu->enabled)
1261 return NULL;
1262 return lu;
1263 }
1264 }
1265 return NULL;
1266 }
1267 /* Lookup hash: return 0 if invalid or not enabled */
1268 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1269 {
1270 const EVP_MD *md;
1271 if (lu == NULL)
1272 return 0;
1273 /* lu->hash == NID_undef means no associated digest */
1274 if (lu->hash == NID_undef) {
1275 md = NULL;
1276 } else {
1277 md = ssl_md(ctx, lu->hash_idx);
1278 if (md == NULL)
1279 return 0;
1280 }
1281 if (pmd)
1282 *pmd = md;
1283 return 1;
1284 }
1285
1286 /*
1287 * Check if key is large enough to generate RSA-PSS signature.
1288 *
1289 * The key must greater than or equal to 2 * hash length + 2.
1290 * SHA512 has a hash length of 64 bytes, which is incompatible
1291 * with a 128 byte (1024 bit) key.
1292 */
1293 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1294 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1295 const SIGALG_LOOKUP *lu)
1296 {
1297 const EVP_MD *md;
1298
1299 if (pkey == NULL)
1300 return 0;
1301 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1302 return 0;
1303 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1304 return 0;
1305 return 1;
1306 }
1307
1308 /*
1309 * Returns a signature algorithm when the peer did not send a list of supported
1310 * signature algorithms. The signature algorithm is fixed for the certificate
1311 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1312 * certificate type from |s| will be used.
1313 * Returns the signature algorithm to use, or NULL on error.
1314 */
1315 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1316 {
1317 if (idx == -1) {
1318 if (s->server) {
1319 size_t i;
1320
1321 /* Work out index corresponding to ciphersuite */
1322 for (i = 0; i < SSL_PKEY_NUM; i++) {
1323 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1324
1325 if (clu == NULL)
1326 continue;
1327 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1328 idx = i;
1329 break;
1330 }
1331 }
1332
1333 /*
1334 * Some GOST ciphersuites allow more than one signature algorithms
1335 * */
1336 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1337 int real_idx;
1338
1339 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1340 real_idx--) {
1341 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1342 idx = real_idx;
1343 break;
1344 }
1345 }
1346 }
1347 /*
1348 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1349 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1350 */
1351 else if (idx == SSL_PKEY_GOST12_256) {
1352 int real_idx;
1353
1354 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1355 real_idx--) {
1356 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1357 idx = real_idx;
1358 break;
1359 }
1360 }
1361 }
1362 } else {
1363 idx = s->cert->key - s->cert->pkeys;
1364 }
1365 }
1366 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1367 return NULL;
1368 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1369 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1370
1371 if (lu == NULL)
1372 return NULL;
1373 if (!tls1_lookup_md(s->ctx, lu, NULL))
1374 return NULL;
1375 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1376 return NULL;
1377 return lu;
1378 }
1379 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1380 return NULL;
1381 return &legacy_rsa_sigalg;
1382 }
1383 /* Set peer sigalg based key type */
1384 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1385 {
1386 size_t idx;
1387 const SIGALG_LOOKUP *lu;
1388
1389 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1390 return 0;
1391 lu = tls1_get_legacy_sigalg(s, idx);
1392 if (lu == NULL)
1393 return 0;
1394 s->s3.tmp.peer_sigalg = lu;
1395 return 1;
1396 }
1397
1398 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1399 {
1400 /*
1401 * If Suite B mode use Suite B sigalgs only, ignore any other
1402 * preferences.
1403 */
1404 switch (tls1_suiteb(s)) {
1405 case SSL_CERT_FLAG_SUITEB_128_LOS:
1406 *psigs = suiteb_sigalgs;
1407 return OSSL_NELEM(suiteb_sigalgs);
1408
1409 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1410 *psigs = suiteb_sigalgs;
1411 return 1;
1412
1413 case SSL_CERT_FLAG_SUITEB_192_LOS:
1414 *psigs = suiteb_sigalgs + 1;
1415 return 1;
1416 }
1417 /*
1418 * We use client_sigalgs (if not NULL) if we're a server
1419 * and sending a certificate request or if we're a client and
1420 * determining which shared algorithm to use.
1421 */
1422 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1423 *psigs = s->cert->client_sigalgs;
1424 return s->cert->client_sigalgslen;
1425 } else if (s->cert->conf_sigalgs) {
1426 *psigs = s->cert->conf_sigalgs;
1427 return s->cert->conf_sigalgslen;
1428 } else {
1429 *psigs = tls12_sigalgs;
1430 return OSSL_NELEM(tls12_sigalgs);
1431 }
1432 }
1433
1434 /*
1435 * Called by servers only. Checks that we have a sig alg that supports the
1436 * specified EC curve.
1437 */
1438 int tls_check_sigalg_curve(const SSL *s, int curve)
1439 {
1440 const uint16_t *sigs;
1441 size_t siglen, i;
1442
1443 if (s->cert->conf_sigalgs) {
1444 sigs = s->cert->conf_sigalgs;
1445 siglen = s->cert->conf_sigalgslen;
1446 } else {
1447 sigs = tls12_sigalgs;
1448 siglen = OSSL_NELEM(tls12_sigalgs);
1449 }
1450
1451 for (i = 0; i < siglen; i++) {
1452 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1453
1454 if (lu == NULL)
1455 continue;
1456 if (lu->sig == EVP_PKEY_EC
1457 && lu->curve != NID_undef
1458 && curve == lu->curve)
1459 return 1;
1460 }
1461
1462 return 0;
1463 }
1464
1465 /*
1466 * Return the number of security bits for the signature algorithm, or 0 on
1467 * error.
1468 */
1469 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1470 {
1471 const EVP_MD *md = NULL;
1472 int secbits = 0;
1473
1474 if (!tls1_lookup_md(ctx, lu, &md))
1475 return 0;
1476 if (md != NULL)
1477 {
1478 int md_type = EVP_MD_get_type(md);
1479
1480 /* Security bits: half digest bits */
1481 secbits = EVP_MD_get_size(md) * 4;
1482 /*
1483 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1484 * they're no longer accepted at security level 1. The real values don't
1485 * really matter as long as they're lower than 80, which is our
1486 * security level 1.
1487 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1488 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1489 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1490 * puts a chosen-prefix attack for MD5 at 2^39.
1491 */
1492 if (md_type == NID_sha1)
1493 secbits = 64;
1494 else if (md_type == NID_md5_sha1)
1495 secbits = 67;
1496 else if (md_type == NID_md5)
1497 secbits = 39;
1498 } else {
1499 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1500 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1501 secbits = 128;
1502 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1503 secbits = 224;
1504 }
1505 return secbits;
1506 }
1507
1508 /*
1509 * Check signature algorithm is consistent with sent supported signature
1510 * algorithms and if so set relevant digest and signature scheme in
1511 * s.
1512 */
1513 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1514 {
1515 const uint16_t *sent_sigs;
1516 const EVP_MD *md = NULL;
1517 char sigalgstr[2];
1518 size_t sent_sigslen, i, cidx;
1519 int pkeyid = -1;
1520 const SIGALG_LOOKUP *lu;
1521 int secbits = 0;
1522
1523 pkeyid = EVP_PKEY_get_id(pkey);
1524 /* Should never happen */
1525 if (pkeyid == -1)
1526 return -1;
1527 if (SSL_IS_TLS13(s)) {
1528 /* Disallow DSA for TLS 1.3 */
1529 if (pkeyid == EVP_PKEY_DSA) {
1530 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1531 return 0;
1532 }
1533 /* Only allow PSS for TLS 1.3 */
1534 if (pkeyid == EVP_PKEY_RSA)
1535 pkeyid = EVP_PKEY_RSA_PSS;
1536 }
1537 lu = tls1_lookup_sigalg(s, sig);
1538 /*
1539 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1540 * is consistent with signature: RSA keys can be used for RSA-PSS
1541 */
1542 if (lu == NULL
1543 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1544 || (pkeyid != lu->sig
1545 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1546 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1547 return 0;
1548 }
1549 /* Check the sigalg is consistent with the key OID */
1550 if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1551 || lu->sig_idx != (int)cidx) {
1552 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1553 return 0;
1554 }
1555
1556 if (pkeyid == EVP_PKEY_EC) {
1557
1558 /* Check point compression is permitted */
1559 if (!tls1_check_pkey_comp(s, pkey)) {
1560 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1561 SSL_R_ILLEGAL_POINT_COMPRESSION);
1562 return 0;
1563 }
1564
1565 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1566 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1567 int curve = ssl_get_EC_curve_nid(pkey);
1568
1569 if (lu->curve != NID_undef && curve != lu->curve) {
1570 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1571 return 0;
1572 }
1573 }
1574 if (!SSL_IS_TLS13(s)) {
1575 /* Check curve matches extensions */
1576 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1577 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1578 return 0;
1579 }
1580 if (tls1_suiteb(s)) {
1581 /* Check sigalg matches a permissible Suite B value */
1582 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1583 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1584 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1585 SSL_R_WRONG_SIGNATURE_TYPE);
1586 return 0;
1587 }
1588 }
1589 }
1590 } else if (tls1_suiteb(s)) {
1591 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1592 return 0;
1593 }
1594
1595 /* Check signature matches a type we sent */
1596 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1597 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1598 if (sig == *sent_sigs)
1599 break;
1600 }
1601 /* Allow fallback to SHA1 if not strict mode */
1602 if (i == sent_sigslen && (lu->hash != NID_sha1
1603 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1604 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1605 return 0;
1606 }
1607 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1608 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1609 return 0;
1610 }
1611 /*
1612 * Make sure security callback allows algorithm. For historical
1613 * reasons we have to pass the sigalg as a two byte char array.
1614 */
1615 sigalgstr[0] = (sig >> 8) & 0xff;
1616 sigalgstr[1] = sig & 0xff;
1617 secbits = sigalg_security_bits(s->ctx, lu);
1618 if (secbits == 0 ||
1619 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1620 md != NULL ? EVP_MD_get_type(md) : NID_undef,
1621 (void *)sigalgstr)) {
1622 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1623 return 0;
1624 }
1625 /* Store the sigalg the peer uses */
1626 s->s3.tmp.peer_sigalg = lu;
1627 return 1;
1628 }
1629
1630 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1631 {
1632 if (s->s3.tmp.peer_sigalg == NULL)
1633 return 0;
1634 *pnid = s->s3.tmp.peer_sigalg->sig;
1635 return 1;
1636 }
1637
1638 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1639 {
1640 if (s->s3.tmp.sigalg == NULL)
1641 return 0;
1642 *pnid = s->s3.tmp.sigalg->sig;
1643 return 1;
1644 }
1645
1646 /*
1647 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1648 * supported, doesn't appear in supported signature algorithms, isn't supported
1649 * by the enabled protocol versions or by the security level.
1650 *
1651 * This function should only be used for checking which ciphers are supported
1652 * by the client.
1653 *
1654 * Call ssl_cipher_disabled() to check that it's enabled or not.
1655 */
1656 int ssl_set_client_disabled(SSL *s)
1657 {
1658 s->s3.tmp.mask_a = 0;
1659 s->s3.tmp.mask_k = 0;
1660 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1661 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1662 &s->s3.tmp.max_ver, NULL) != 0)
1663 return 0;
1664 #ifndef OPENSSL_NO_PSK
1665 /* with PSK there must be client callback set */
1666 if (!s->psk_client_callback) {
1667 s->s3.tmp.mask_a |= SSL_aPSK;
1668 s->s3.tmp.mask_k |= SSL_PSK;
1669 }
1670 #endif /* OPENSSL_NO_PSK */
1671 #ifndef OPENSSL_NO_SRP
1672 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1673 s->s3.tmp.mask_a |= SSL_aSRP;
1674 s->s3.tmp.mask_k |= SSL_kSRP;
1675 }
1676 #endif
1677 return 1;
1678 }
1679
1680 /*
1681 * ssl_cipher_disabled - check that a cipher is disabled or not
1682 * @s: SSL connection that you want to use the cipher on
1683 * @c: cipher to check
1684 * @op: Security check that you want to do
1685 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1686 *
1687 * Returns 1 when it's disabled, 0 when enabled.
1688 */
1689 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1690 {
1691 if (c->algorithm_mkey & s->s3.tmp.mask_k
1692 || c->algorithm_auth & s->s3.tmp.mask_a)
1693 return 1;
1694 if (s->s3.tmp.max_ver == 0)
1695 return 1;
1696 if (!SSL_IS_DTLS(s)) {
1697 int min_tls = c->min_tls;
1698
1699 /*
1700 * For historical reasons we will allow ECHDE to be selected by a server
1701 * in SSLv3 if we are a client
1702 */
1703 if (min_tls == TLS1_VERSION && ecdhe
1704 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1705 min_tls = SSL3_VERSION;
1706
1707 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1708 return 1;
1709 }
1710 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1711 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1712 return 1;
1713
1714 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1715 }
1716
1717 int tls_use_ticket(SSL *s)
1718 {
1719 if ((s->options & SSL_OP_NO_TICKET))
1720 return 0;
1721 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1722 }
1723
1724 int tls1_set_server_sigalgs(SSL *s)
1725 {
1726 size_t i;
1727
1728 /* Clear any shared signature algorithms */
1729 OPENSSL_free(s->shared_sigalgs);
1730 s->shared_sigalgs = NULL;
1731 s->shared_sigalgslen = 0;
1732 /* Clear certificate validity flags */
1733 for (i = 0; i < SSL_PKEY_NUM; i++)
1734 s->s3.tmp.valid_flags[i] = 0;
1735 /*
1736 * If peer sent no signature algorithms check to see if we support
1737 * the default algorithm for each certificate type
1738 */
1739 if (s->s3.tmp.peer_cert_sigalgs == NULL
1740 && s->s3.tmp.peer_sigalgs == NULL) {
1741 const uint16_t *sent_sigs;
1742 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1743
1744 for (i = 0; i < SSL_PKEY_NUM; i++) {
1745 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1746 size_t j;
1747
1748 if (lu == NULL)
1749 continue;
1750 /* Check default matches a type we sent */
1751 for (j = 0; j < sent_sigslen; j++) {
1752 if (lu->sigalg == sent_sigs[j]) {
1753 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1754 break;
1755 }
1756 }
1757 }
1758 return 1;
1759 }
1760
1761 if (!tls1_process_sigalgs(s)) {
1762 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1763 return 0;
1764 }
1765 if (s->shared_sigalgs != NULL)
1766 return 1;
1767
1768 /* Fatal error if no shared signature algorithms */
1769 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1770 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1771 return 0;
1772 }
1773
1774 /*-
1775 * Gets the ticket information supplied by the client if any.
1776 *
1777 * hello: The parsed ClientHello data
1778 * ret: (output) on return, if a ticket was decrypted, then this is set to
1779 * point to the resulting session.
1780 */
1781 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1782 SSL_SESSION **ret)
1783 {
1784 size_t size;
1785 RAW_EXTENSION *ticketext;
1786
1787 *ret = NULL;
1788 s->ext.ticket_expected = 0;
1789
1790 /*
1791 * If tickets disabled or not supported by the protocol version
1792 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1793 * resumption.
1794 */
1795 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1796 return SSL_TICKET_NONE;
1797
1798 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1799 if (!ticketext->present)
1800 return SSL_TICKET_NONE;
1801
1802 size = PACKET_remaining(&ticketext->data);
1803
1804 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1805 hello->session_id, hello->session_id_len, ret);
1806 }
1807
1808 /*-
1809 * tls_decrypt_ticket attempts to decrypt a session ticket.
1810 *
1811 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1812 * expecting a pre-shared key ciphersuite, in which case we have no use for
1813 * session tickets and one will never be decrypted, nor will
1814 * s->ext.ticket_expected be set to 1.
1815 *
1816 * Side effects:
1817 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1818 * a new session ticket to the client because the client indicated support
1819 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1820 * a session ticket or we couldn't use the one it gave us, or if
1821 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1822 * Otherwise, s->ext.ticket_expected is set to 0.
1823 *
1824 * etick: points to the body of the session ticket extension.
1825 * eticklen: the length of the session tickets extension.
1826 * sess_id: points at the session ID.
1827 * sesslen: the length of the session ID.
1828 * psess: (output) on return, if a ticket was decrypted, then this is set to
1829 * point to the resulting session.
1830 */
1831 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1832 size_t eticklen, const unsigned char *sess_id,
1833 size_t sesslen, SSL_SESSION **psess)
1834 {
1835 SSL_SESSION *sess = NULL;
1836 unsigned char *sdec;
1837 const unsigned char *p;
1838 int slen, renew_ticket = 0, declen;
1839 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1840 size_t mlen;
1841 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1842 SSL_HMAC *hctx = NULL;
1843 EVP_CIPHER_CTX *ctx = NULL;
1844 SSL_CTX *tctx = s->session_ctx;
1845
1846 if (eticklen == 0) {
1847 /*
1848 * The client will accept a ticket but doesn't currently have
1849 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1850 */
1851 ret = SSL_TICKET_EMPTY;
1852 goto end;
1853 }
1854 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1855 /*
1856 * Indicate that the ticket couldn't be decrypted rather than
1857 * generating the session from ticket now, trigger
1858 * abbreviated handshake based on external mechanism to
1859 * calculate the master secret later.
1860 */
1861 ret = SSL_TICKET_NO_DECRYPT;
1862 goto end;
1863 }
1864
1865 /* Need at least keyname + iv */
1866 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1867 ret = SSL_TICKET_NO_DECRYPT;
1868 goto end;
1869 }
1870
1871 /* Initialize session ticket encryption and HMAC contexts */
1872 hctx = ssl_hmac_new(tctx);
1873 if (hctx == NULL) {
1874 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1875 goto end;
1876 }
1877 ctx = EVP_CIPHER_CTX_new();
1878 if (ctx == NULL) {
1879 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1880 goto end;
1881 }
1882 #ifndef OPENSSL_NO_DEPRECATED_3_0
1883 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1884 #else
1885 if (tctx->ext.ticket_key_evp_cb != NULL)
1886 #endif
1887 {
1888 unsigned char *nctick = (unsigned char *)etick;
1889 int rv = 0;
1890
1891 if (tctx->ext.ticket_key_evp_cb != NULL)
1892 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1893 nctick + TLSEXT_KEYNAME_LENGTH,
1894 ctx,
1895 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1896 0);
1897 #ifndef OPENSSL_NO_DEPRECATED_3_0
1898 else if (tctx->ext.ticket_key_cb != NULL)
1899 /* if 0 is returned, write an empty ticket */
1900 rv = tctx->ext.ticket_key_cb(s, nctick,
1901 nctick + TLSEXT_KEYNAME_LENGTH,
1902 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1903 #endif
1904 if (rv < 0) {
1905 ret = SSL_TICKET_FATAL_ERR_OTHER;
1906 goto end;
1907 }
1908 if (rv == 0) {
1909 ret = SSL_TICKET_NO_DECRYPT;
1910 goto end;
1911 }
1912 if (rv == 2)
1913 renew_ticket = 1;
1914 } else {
1915 EVP_CIPHER *aes256cbc = NULL;
1916
1917 /* Check key name matches */
1918 if (memcmp(etick, tctx->ext.tick_key_name,
1919 TLSEXT_KEYNAME_LENGTH) != 0) {
1920 ret = SSL_TICKET_NO_DECRYPT;
1921 goto end;
1922 }
1923
1924 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1925 s->ctx->propq);
1926 if (aes256cbc == NULL
1927 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1928 sizeof(tctx->ext.secure->tick_hmac_key),
1929 "SHA256") <= 0
1930 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1931 tctx->ext.secure->tick_aes_key,
1932 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1933 EVP_CIPHER_free(aes256cbc);
1934 ret = SSL_TICKET_FATAL_ERR_OTHER;
1935 goto end;
1936 }
1937 EVP_CIPHER_free(aes256cbc);
1938 if (SSL_IS_TLS13(s))
1939 renew_ticket = 1;
1940 }
1941 /*
1942 * Attempt to process session ticket, first conduct sanity and integrity
1943 * checks on ticket.
1944 */
1945 mlen = ssl_hmac_size(hctx);
1946 if (mlen == 0) {
1947 ret = SSL_TICKET_FATAL_ERR_OTHER;
1948 goto end;
1949 }
1950
1951 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1952 if (eticklen <=
1953 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx) + mlen) {
1954 ret = SSL_TICKET_NO_DECRYPT;
1955 goto end;
1956 }
1957 eticklen -= mlen;
1958 /* Check HMAC of encrypted ticket */
1959 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1960 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1961 ret = SSL_TICKET_FATAL_ERR_OTHER;
1962 goto end;
1963 }
1964
1965 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1966 ret = SSL_TICKET_NO_DECRYPT;
1967 goto end;
1968 }
1969 /* Attempt to decrypt session data */
1970 /* Move p after IV to start of encrypted ticket, update length */
1971 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx);
1972 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx);
1973 sdec = OPENSSL_malloc(eticklen);
1974 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1975 (int)eticklen) <= 0) {
1976 OPENSSL_free(sdec);
1977 ret = SSL_TICKET_FATAL_ERR_OTHER;
1978 goto end;
1979 }
1980 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1981 OPENSSL_free(sdec);
1982 ret = SSL_TICKET_NO_DECRYPT;
1983 goto end;
1984 }
1985 slen += declen;
1986 p = sdec;
1987
1988 sess = d2i_SSL_SESSION(NULL, &p, slen);
1989 slen -= p - sdec;
1990 OPENSSL_free(sdec);
1991 if (sess) {
1992 /* Some additional consistency checks */
1993 if (slen != 0) {
1994 SSL_SESSION_free(sess);
1995 sess = NULL;
1996 ret = SSL_TICKET_NO_DECRYPT;
1997 goto end;
1998 }
1999 /*
2000 * The session ID, if non-empty, is used by some clients to detect
2001 * that the ticket has been accepted. So we copy it to the session
2002 * structure. If it is empty set length to zero as required by
2003 * standard.
2004 */
2005 if (sesslen) {
2006 memcpy(sess->session_id, sess_id, sesslen);
2007 sess->session_id_length = sesslen;
2008 }
2009 if (renew_ticket)
2010 ret = SSL_TICKET_SUCCESS_RENEW;
2011 else
2012 ret = SSL_TICKET_SUCCESS;
2013 goto end;
2014 }
2015 ERR_clear_error();
2016 /*
2017 * For session parse failure, indicate that we need to send a new ticket.
2018 */
2019 ret = SSL_TICKET_NO_DECRYPT;
2020
2021 end:
2022 EVP_CIPHER_CTX_free(ctx);
2023 ssl_hmac_free(hctx);
2024
2025 /*
2026 * If set, the decrypt_ticket_cb() is called unless a fatal error was
2027 * detected above. The callback is responsible for checking |ret| before it
2028 * performs any action
2029 */
2030 if (s->session_ctx->decrypt_ticket_cb != NULL
2031 && (ret == SSL_TICKET_EMPTY
2032 || ret == SSL_TICKET_NO_DECRYPT
2033 || ret == SSL_TICKET_SUCCESS
2034 || ret == SSL_TICKET_SUCCESS_RENEW)) {
2035 size_t keyname_len = eticklen;
2036 int retcb;
2037
2038 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2039 keyname_len = TLSEXT_KEYNAME_LENGTH;
2040 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
2041 ret,
2042 s->session_ctx->ticket_cb_data);
2043 switch (retcb) {
2044 case SSL_TICKET_RETURN_ABORT:
2045 ret = SSL_TICKET_FATAL_ERR_OTHER;
2046 break;
2047
2048 case SSL_TICKET_RETURN_IGNORE:
2049 ret = SSL_TICKET_NONE;
2050 SSL_SESSION_free(sess);
2051 sess = NULL;
2052 break;
2053
2054 case SSL_TICKET_RETURN_IGNORE_RENEW:
2055 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2056 ret = SSL_TICKET_NO_DECRYPT;
2057 /* else the value of |ret| will already do the right thing */
2058 SSL_SESSION_free(sess);
2059 sess = NULL;
2060 break;
2061
2062 case SSL_TICKET_RETURN_USE:
2063 case SSL_TICKET_RETURN_USE_RENEW:
2064 if (ret != SSL_TICKET_SUCCESS
2065 && ret != SSL_TICKET_SUCCESS_RENEW)
2066 ret = SSL_TICKET_FATAL_ERR_OTHER;
2067 else if (retcb == SSL_TICKET_RETURN_USE)
2068 ret = SSL_TICKET_SUCCESS;
2069 else
2070 ret = SSL_TICKET_SUCCESS_RENEW;
2071 break;
2072
2073 default:
2074 ret = SSL_TICKET_FATAL_ERR_OTHER;
2075 }
2076 }
2077
2078 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2079 switch (ret) {
2080 case SSL_TICKET_NO_DECRYPT:
2081 case SSL_TICKET_SUCCESS_RENEW:
2082 case SSL_TICKET_EMPTY:
2083 s->ext.ticket_expected = 1;
2084 }
2085 }
2086
2087 *psess = sess;
2088
2089 return ret;
2090 }
2091
2092 /* Check to see if a signature algorithm is allowed */
2093 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2094 {
2095 unsigned char sigalgstr[2];
2096 int secbits;
2097
2098 if (lu == NULL || !lu->enabled)
2099 return 0;
2100 /* DSA is not allowed in TLS 1.3 */
2101 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2102 return 0;
2103 /*
2104 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2105 * spec
2106 */
2107 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2108 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2109 || lu->hash_idx == SSL_MD_MD5_IDX
2110 || lu->hash_idx == SSL_MD_SHA224_IDX))
2111 return 0;
2112
2113 /* See if public key algorithm allowed */
2114 if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2115 return 0;
2116
2117 if (lu->sig == NID_id_GostR3410_2012_256
2118 || lu->sig == NID_id_GostR3410_2012_512
2119 || lu->sig == NID_id_GostR3410_2001) {
2120 /* We never allow GOST sig algs on the server with TLSv1.3 */
2121 if (s->server && SSL_IS_TLS13(s))
2122 return 0;
2123 if (!s->server
2124 && s->method->version == TLS_ANY_VERSION
2125 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2126 int i, num;
2127 STACK_OF(SSL_CIPHER) *sk;
2128
2129 /*
2130 * We're a client that could negotiate TLSv1.3. We only allow GOST
2131 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2132 * ciphersuites enabled.
2133 */
2134
2135 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2136 return 0;
2137
2138 sk = SSL_get_ciphers(s);
2139 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2140 for (i = 0; i < num; i++) {
2141 const SSL_CIPHER *c;
2142
2143 c = sk_SSL_CIPHER_value(sk, i);
2144 /* Skip disabled ciphers */
2145 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2146 continue;
2147
2148 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2149 break;
2150 }
2151 if (i == num)
2152 return 0;
2153 }
2154 }
2155
2156 /* Finally see if security callback allows it */
2157 secbits = sigalg_security_bits(s->ctx, lu);
2158 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2159 sigalgstr[1] = lu->sigalg & 0xff;
2160 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2161 }
2162
2163 /*
2164 * Get a mask of disabled public key algorithms based on supported signature
2165 * algorithms. For example if no signature algorithm supports RSA then RSA is
2166 * disabled.
2167 */
2168
2169 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2170 {
2171 const uint16_t *sigalgs;
2172 size_t i, sigalgslen;
2173 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2174 /*
2175 * Go through all signature algorithms seeing if we support any
2176 * in disabled_mask.
2177 */
2178 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2179 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2180 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2181 const SSL_CERT_LOOKUP *clu;
2182
2183 if (lu == NULL)
2184 continue;
2185
2186 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2187 if (clu == NULL)
2188 continue;
2189
2190 /* If algorithm is disabled see if we can enable it */
2191 if ((clu->amask & disabled_mask) != 0
2192 && tls12_sigalg_allowed(s, op, lu))
2193 disabled_mask &= ~clu->amask;
2194 }
2195 *pmask_a |= disabled_mask;
2196 }
2197
2198 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2199 const uint16_t *psig, size_t psiglen)
2200 {
2201 size_t i;
2202 int rv = 0;
2203
2204 for (i = 0; i < psiglen; i++, psig++) {
2205 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2206
2207 if (lu == NULL
2208 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2209 continue;
2210 if (!WPACKET_put_bytes_u16(pkt, *psig))
2211 return 0;
2212 /*
2213 * If TLS 1.3 must have at least one valid TLS 1.3 message
2214 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2215 */
2216 if (rv == 0 && (!SSL_IS_TLS13(s)
2217 || (lu->sig != EVP_PKEY_RSA
2218 && lu->hash != NID_sha1
2219 && lu->hash != NID_sha224)))
2220 rv = 1;
2221 }
2222 if (rv == 0)
2223 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2224 return rv;
2225 }
2226
2227 /* Given preference and allowed sigalgs set shared sigalgs */
2228 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2229 const uint16_t *pref, size_t preflen,
2230 const uint16_t *allow, size_t allowlen)
2231 {
2232 const uint16_t *ptmp, *atmp;
2233 size_t i, j, nmatch = 0;
2234 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2235 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2236
2237 /* Skip disabled hashes or signature algorithms */
2238 if (lu == NULL
2239 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2240 continue;
2241 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2242 if (*ptmp == *atmp) {
2243 nmatch++;
2244 if (shsig)
2245 *shsig++ = lu;
2246 break;
2247 }
2248 }
2249 }
2250 return nmatch;
2251 }
2252
2253 /* Set shared signature algorithms for SSL structures */
2254 static int tls1_set_shared_sigalgs(SSL *s)
2255 {
2256 const uint16_t *pref, *allow, *conf;
2257 size_t preflen, allowlen, conflen;
2258 size_t nmatch;
2259 const SIGALG_LOOKUP **salgs = NULL;
2260 CERT *c = s->cert;
2261 unsigned int is_suiteb = tls1_suiteb(s);
2262
2263 OPENSSL_free(s->shared_sigalgs);
2264 s->shared_sigalgs = NULL;
2265 s->shared_sigalgslen = 0;
2266 /* If client use client signature algorithms if not NULL */
2267 if (!s->server && c->client_sigalgs && !is_suiteb) {
2268 conf = c->client_sigalgs;
2269 conflen = c->client_sigalgslen;
2270 } else if (c->conf_sigalgs && !is_suiteb) {
2271 conf = c->conf_sigalgs;
2272 conflen = c->conf_sigalgslen;
2273 } else
2274 conflen = tls12_get_psigalgs(s, 0, &conf);
2275 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2276 pref = conf;
2277 preflen = conflen;
2278 allow = s->s3.tmp.peer_sigalgs;
2279 allowlen = s->s3.tmp.peer_sigalgslen;
2280 } else {
2281 allow = conf;
2282 allowlen = conflen;
2283 pref = s->s3.tmp.peer_sigalgs;
2284 preflen = s->s3.tmp.peer_sigalgslen;
2285 }
2286 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2287 if (nmatch) {
2288 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2289 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2290 return 0;
2291 }
2292 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2293 } else {
2294 salgs = NULL;
2295 }
2296 s->shared_sigalgs = salgs;
2297 s->shared_sigalgslen = nmatch;
2298 return 1;
2299 }
2300
2301 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2302 {
2303 unsigned int stmp;
2304 size_t size, i;
2305 uint16_t *buf;
2306
2307 size = PACKET_remaining(pkt);
2308
2309 /* Invalid data length */
2310 if (size == 0 || (size & 1) != 0)
2311 return 0;
2312
2313 size >>= 1;
2314
2315 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2316 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2317 return 0;
2318 }
2319 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2320 buf[i] = stmp;
2321
2322 if (i != size) {
2323 OPENSSL_free(buf);
2324 return 0;
2325 }
2326
2327 OPENSSL_free(*pdest);
2328 *pdest = buf;
2329 *pdestlen = size;
2330
2331 return 1;
2332 }
2333
2334 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2335 {
2336 /* Extension ignored for inappropriate versions */
2337 if (!SSL_USE_SIGALGS(s))
2338 return 1;
2339 /* Should never happen */
2340 if (s->cert == NULL)
2341 return 0;
2342
2343 if (cert)
2344 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2345 &s->s3.tmp.peer_cert_sigalgslen);
2346 else
2347 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2348 &s->s3.tmp.peer_sigalgslen);
2349
2350 }
2351
2352 /* Set preferred digest for each key type */
2353
2354 int tls1_process_sigalgs(SSL *s)
2355 {
2356 size_t i;
2357 uint32_t *pvalid = s->s3.tmp.valid_flags;
2358
2359 if (!tls1_set_shared_sigalgs(s))
2360 return 0;
2361
2362 for (i = 0; i < SSL_PKEY_NUM; i++)
2363 pvalid[i] = 0;
2364
2365 for (i = 0; i < s->shared_sigalgslen; i++) {
2366 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2367 int idx = sigptr->sig_idx;
2368
2369 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2370 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2371 continue;
2372 /* If not disabled indicate we can explicitly sign */
2373 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2374 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2375 }
2376 return 1;
2377 }
2378
2379 int SSL_get_sigalgs(SSL *s, int idx,
2380 int *psign, int *phash, int *psignhash,
2381 unsigned char *rsig, unsigned char *rhash)
2382 {
2383 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2384 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2385 if (psig == NULL || numsigalgs > INT_MAX)
2386 return 0;
2387 if (idx >= 0) {
2388 const SIGALG_LOOKUP *lu;
2389
2390 if (idx >= (int)numsigalgs)
2391 return 0;
2392 psig += idx;
2393 if (rhash != NULL)
2394 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2395 if (rsig != NULL)
2396 *rsig = (unsigned char)(*psig & 0xff);
2397 lu = tls1_lookup_sigalg(s, *psig);
2398 if (psign != NULL)
2399 *psign = lu != NULL ? lu->sig : NID_undef;
2400 if (phash != NULL)
2401 *phash = lu != NULL ? lu->hash : NID_undef;
2402 if (psignhash != NULL)
2403 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2404 }
2405 return (int)numsigalgs;
2406 }
2407
2408 int SSL_get_shared_sigalgs(SSL *s, int idx,
2409 int *psign, int *phash, int *psignhash,
2410 unsigned char *rsig, unsigned char *rhash)
2411 {
2412 const SIGALG_LOOKUP *shsigalgs;
2413 if (s->shared_sigalgs == NULL
2414 || idx < 0
2415 || idx >= (int)s->shared_sigalgslen
2416 || s->shared_sigalgslen > INT_MAX)
2417 return 0;
2418 shsigalgs = s->shared_sigalgs[idx];
2419 if (phash != NULL)
2420 *phash = shsigalgs->hash;
2421 if (psign != NULL)
2422 *psign = shsigalgs->sig;
2423 if (psignhash != NULL)
2424 *psignhash = shsigalgs->sigandhash;
2425 if (rsig != NULL)
2426 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2427 if (rhash != NULL)
2428 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2429 return (int)s->shared_sigalgslen;
2430 }
2431
2432 /* Maximum possible number of unique entries in sigalgs array */
2433 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2434
2435 typedef struct {
2436 size_t sigalgcnt;
2437 /* TLSEXT_SIGALG_XXX values */
2438 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2439 } sig_cb_st;
2440
2441 static void get_sigorhash(int *psig, int *phash, const char *str)
2442 {
2443 if (strcmp(str, "RSA") == 0) {
2444 *psig = EVP_PKEY_RSA;
2445 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2446 *psig = EVP_PKEY_RSA_PSS;
2447 } else if (strcmp(str, "DSA") == 0) {
2448 *psig = EVP_PKEY_DSA;
2449 } else if (strcmp(str, "ECDSA") == 0) {
2450 *psig = EVP_PKEY_EC;
2451 } else {
2452 *phash = OBJ_sn2nid(str);
2453 if (*phash == NID_undef)
2454 *phash = OBJ_ln2nid(str);
2455 }
2456 }
2457 /* Maximum length of a signature algorithm string component */
2458 #define TLS_MAX_SIGSTRING_LEN 40
2459
2460 static int sig_cb(const char *elem, int len, void *arg)
2461 {
2462 sig_cb_st *sarg = arg;
2463 size_t i;
2464 const SIGALG_LOOKUP *s;
2465 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2466 int sig_alg = NID_undef, hash_alg = NID_undef;
2467 if (elem == NULL)
2468 return 0;
2469 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2470 return 0;
2471 if (len > (int)(sizeof(etmp) - 1))
2472 return 0;
2473 memcpy(etmp, elem, len);
2474 etmp[len] = 0;
2475 p = strchr(etmp, '+');
2476 /*
2477 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2478 * if there's no '+' in the provided name, look for the new-style combined
2479 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2480 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2481 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2482 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2483 * in the table.
2484 */
2485 if (p == NULL) {
2486 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2487 i++, s++) {
2488 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2489 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2490 break;
2491 }
2492 }
2493 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2494 return 0;
2495 } else {
2496 *p = 0;
2497 p++;
2498 if (*p == 0)
2499 return 0;
2500 get_sigorhash(&sig_alg, &hash_alg, etmp);
2501 get_sigorhash(&sig_alg, &hash_alg, p);
2502 if (sig_alg == NID_undef || hash_alg == NID_undef)
2503 return 0;
2504 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2505 i++, s++) {
2506 if (s->hash == hash_alg && s->sig == sig_alg) {
2507 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2508 break;
2509 }
2510 }
2511 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2512 return 0;
2513 }
2514
2515 /* Reject duplicates */
2516 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2517 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2518 sarg->sigalgcnt--;
2519 return 0;
2520 }
2521 }
2522 return 1;
2523 }
2524
2525 /*
2526 * Set supported signature algorithms based on a colon separated list of the
2527 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2528 */
2529 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2530 {
2531 sig_cb_st sig;
2532 sig.sigalgcnt = 0;
2533 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2534 return 0;
2535 if (c == NULL)
2536 return 1;
2537 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2538 }
2539
2540 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2541 int client)
2542 {
2543 uint16_t *sigalgs;
2544
2545 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2546 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2547 return 0;
2548 }
2549 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2550
2551 if (client) {
2552 OPENSSL_free(c->client_sigalgs);
2553 c->client_sigalgs = sigalgs;
2554 c->client_sigalgslen = salglen;
2555 } else {
2556 OPENSSL_free(c->conf_sigalgs);
2557 c->conf_sigalgs = sigalgs;
2558 c->conf_sigalgslen = salglen;
2559 }
2560
2561 return 1;
2562 }
2563
2564 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2565 {
2566 uint16_t *sigalgs, *sptr;
2567 size_t i;
2568
2569 if (salglen & 1)
2570 return 0;
2571 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2572 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2573 return 0;
2574 }
2575 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2576 size_t j;
2577 const SIGALG_LOOKUP *curr;
2578 int md_id = *psig_nids++;
2579 int sig_id = *psig_nids++;
2580
2581 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2582 j++, curr++) {
2583 if (curr->hash == md_id && curr->sig == sig_id) {
2584 *sptr++ = curr->sigalg;
2585 break;
2586 }
2587 }
2588
2589 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2590 goto err;
2591 }
2592
2593 if (client) {
2594 OPENSSL_free(c->client_sigalgs);
2595 c->client_sigalgs = sigalgs;
2596 c->client_sigalgslen = salglen / 2;
2597 } else {
2598 OPENSSL_free(c->conf_sigalgs);
2599 c->conf_sigalgs = sigalgs;
2600 c->conf_sigalgslen = salglen / 2;
2601 }
2602
2603 return 1;
2604
2605 err:
2606 OPENSSL_free(sigalgs);
2607 return 0;
2608 }
2609
2610 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2611 {
2612 int sig_nid, use_pc_sigalgs = 0;
2613 size_t i;
2614 const SIGALG_LOOKUP *sigalg;
2615 size_t sigalgslen;
2616 if (default_nid == -1)
2617 return 1;
2618 sig_nid = X509_get_signature_nid(x);
2619 if (default_nid)
2620 return sig_nid == default_nid ? 1 : 0;
2621
2622 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2623 /*
2624 * If we're in TLSv1.3 then we only get here if we're checking the
2625 * chain. If the peer has specified peer_cert_sigalgs then we use them
2626 * otherwise we default to normal sigalgs.
2627 */
2628 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2629 use_pc_sigalgs = 1;
2630 } else {
2631 sigalgslen = s->shared_sigalgslen;
2632 }
2633 for (i = 0; i < sigalgslen; i++) {
2634 sigalg = use_pc_sigalgs
2635 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2636 : s->shared_sigalgs[i];
2637 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2638 return 1;
2639 }
2640 return 0;
2641 }
2642
2643 /* Check to see if a certificate issuer name matches list of CA names */
2644 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2645 {
2646 const X509_NAME *nm;
2647 int i;
2648 nm = X509_get_issuer_name(x);
2649 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2650 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2651 return 1;
2652 }
2653 return 0;
2654 }
2655
2656 /*
2657 * Check certificate chain is consistent with TLS extensions and is usable by
2658 * server. This servers two purposes: it allows users to check chains before
2659 * passing them to the server and it allows the server to check chains before
2660 * attempting to use them.
2661 */
2662
2663 /* Flags which need to be set for a certificate when strict mode not set */
2664
2665 #define CERT_PKEY_VALID_FLAGS \
2666 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2667 /* Strict mode flags */
2668 #define CERT_PKEY_STRICT_FLAGS \
2669 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2670 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2671
2672 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2673 int idx)
2674 {
2675 int i;
2676 int rv = 0;
2677 int check_flags = 0, strict_mode;
2678 CERT_PKEY *cpk = NULL;
2679 CERT *c = s->cert;
2680 uint32_t *pvalid;
2681 unsigned int suiteb_flags = tls1_suiteb(s);
2682 /* idx == -1 means checking server chains */
2683 if (idx != -1) {
2684 /* idx == -2 means checking client certificate chains */
2685 if (idx == -2) {
2686 cpk = c->key;
2687 idx = (int)(cpk - c->pkeys);
2688 } else
2689 cpk = c->pkeys + idx;
2690 pvalid = s->s3.tmp.valid_flags + idx;
2691 x = cpk->x509;
2692 pk = cpk->privatekey;
2693 chain = cpk->chain;
2694 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2695 /* If no cert or key, forget it */
2696 if (!x || !pk)
2697 goto end;
2698 } else {
2699 size_t certidx;
2700
2701 if (!x || !pk)
2702 return 0;
2703
2704 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2705 return 0;
2706 idx = certidx;
2707 pvalid = s->s3.tmp.valid_flags + idx;
2708
2709 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2710 check_flags = CERT_PKEY_STRICT_FLAGS;
2711 else
2712 check_flags = CERT_PKEY_VALID_FLAGS;
2713 strict_mode = 1;
2714 }
2715
2716 if (suiteb_flags) {
2717 int ok;
2718 if (check_flags)
2719 check_flags |= CERT_PKEY_SUITEB;
2720 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2721 if (ok == X509_V_OK)
2722 rv |= CERT_PKEY_SUITEB;
2723 else if (!check_flags)
2724 goto end;
2725 }
2726
2727 /*
2728 * Check all signature algorithms are consistent with signature
2729 * algorithms extension if TLS 1.2 or later and strict mode.
2730 */
2731 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2732 int default_nid;
2733 int rsign = 0;
2734 if (s->s3.tmp.peer_cert_sigalgs != NULL
2735 || s->s3.tmp.peer_sigalgs != NULL) {
2736 default_nid = 0;
2737 /* If no sigalgs extension use defaults from RFC5246 */
2738 } else {
2739 switch (idx) {
2740 case SSL_PKEY_RSA:
2741 rsign = EVP_PKEY_RSA;
2742 default_nid = NID_sha1WithRSAEncryption;
2743 break;
2744
2745 case SSL_PKEY_DSA_SIGN:
2746 rsign = EVP_PKEY_DSA;
2747 default_nid = NID_dsaWithSHA1;
2748 break;
2749
2750 case SSL_PKEY_ECC:
2751 rsign = EVP_PKEY_EC;
2752 default_nid = NID_ecdsa_with_SHA1;
2753 break;
2754
2755 case SSL_PKEY_GOST01:
2756 rsign = NID_id_GostR3410_2001;
2757 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2758 break;
2759
2760 case SSL_PKEY_GOST12_256:
2761 rsign = NID_id_GostR3410_2012_256;
2762 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2763 break;
2764
2765 case SSL_PKEY_GOST12_512:
2766 rsign = NID_id_GostR3410_2012_512;
2767 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2768 break;
2769
2770 default:
2771 default_nid = -1;
2772 break;
2773 }
2774 }
2775 /*
2776 * If peer sent no signature algorithms extension and we have set
2777 * preferred signature algorithms check we support sha1.
2778 */
2779 if (default_nid > 0 && c->conf_sigalgs) {
2780 size_t j;
2781 const uint16_t *p = c->conf_sigalgs;
2782 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2783 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2784
2785 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2786 break;
2787 }
2788 if (j == c->conf_sigalgslen) {
2789 if (check_flags)
2790 goto skip_sigs;
2791 else
2792 goto end;
2793 }
2794 }
2795 /* Check signature algorithm of each cert in chain */
2796 if (SSL_IS_TLS13(s)) {
2797 /*
2798 * We only get here if the application has called SSL_check_chain(),
2799 * so check_flags is always set.
2800 */
2801 if (find_sig_alg(s, x, pk) != NULL)
2802 rv |= CERT_PKEY_EE_SIGNATURE;
2803 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2804 if (!check_flags)
2805 goto end;
2806 } else
2807 rv |= CERT_PKEY_EE_SIGNATURE;
2808 rv |= CERT_PKEY_CA_SIGNATURE;
2809 for (i = 0; i < sk_X509_num(chain); i++) {
2810 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2811 if (check_flags) {
2812 rv &= ~CERT_PKEY_CA_SIGNATURE;
2813 break;
2814 } else
2815 goto end;
2816 }
2817 }
2818 }
2819 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2820 else if (check_flags)
2821 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2822 skip_sigs:
2823 /* Check cert parameters are consistent */
2824 if (tls1_check_cert_param(s, x, 1))
2825 rv |= CERT_PKEY_EE_PARAM;
2826 else if (!check_flags)
2827 goto end;
2828 if (!s->server)
2829 rv |= CERT_PKEY_CA_PARAM;
2830 /* In strict mode check rest of chain too */
2831 else if (strict_mode) {
2832 rv |= CERT_PKEY_CA_PARAM;
2833 for (i = 0; i < sk_X509_num(chain); i++) {
2834 X509 *ca = sk_X509_value(chain, i);
2835 if (!tls1_check_cert_param(s, ca, 0)) {
2836 if (check_flags) {
2837 rv &= ~CERT_PKEY_CA_PARAM;
2838 break;
2839 } else
2840 goto end;
2841 }
2842 }
2843 }
2844 if (!s->server && strict_mode) {
2845 STACK_OF(X509_NAME) *ca_dn;
2846 int check_type = 0;
2847
2848 if (EVP_PKEY_is_a(pk, "RSA"))
2849 check_type = TLS_CT_RSA_SIGN;
2850 else if (EVP_PKEY_is_a(pk, "DSA"))
2851 check_type = TLS_CT_DSS_SIGN;
2852 else if (EVP_PKEY_is_a(pk, "EC"))
2853 check_type = TLS_CT_ECDSA_SIGN;
2854
2855 if (check_type) {
2856 const uint8_t *ctypes = s->s3.tmp.ctype;
2857 size_t j;
2858
2859 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2860 if (*ctypes == check_type) {
2861 rv |= CERT_PKEY_CERT_TYPE;
2862 break;
2863 }
2864 }
2865 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2866 goto end;
2867 } else {
2868 rv |= CERT_PKEY_CERT_TYPE;
2869 }
2870
2871 ca_dn = s->s3.tmp.peer_ca_names;
2872
2873 if (!sk_X509_NAME_num(ca_dn))
2874 rv |= CERT_PKEY_ISSUER_NAME;
2875
2876 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2877 if (ssl_check_ca_name(ca_dn, x))
2878 rv |= CERT_PKEY_ISSUER_NAME;
2879 }
2880 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2881 for (i = 0; i < sk_X509_num(chain); i++) {
2882 X509 *xtmp = sk_X509_value(chain, i);
2883 if (ssl_check_ca_name(ca_dn, xtmp)) {
2884 rv |= CERT_PKEY_ISSUER_NAME;
2885 break;
2886 }
2887 }
2888 }
2889 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2890 goto end;
2891 } else
2892 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2893
2894 if (!check_flags || (rv & check_flags) == check_flags)
2895 rv |= CERT_PKEY_VALID;
2896
2897 end:
2898
2899 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2900 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2901 else
2902 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2903
2904 /*
2905 * When checking a CERT_PKEY structure all flags are irrelevant if the
2906 * chain is invalid.
2907 */
2908 if (!check_flags) {
2909 if (rv & CERT_PKEY_VALID) {
2910 *pvalid = rv;
2911 } else {
2912 /* Preserve sign and explicit sign flag, clear rest */
2913 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2914 return 0;
2915 }
2916 }
2917 return rv;
2918 }
2919
2920 /* Set validity of certificates in an SSL structure */
2921 void tls1_set_cert_validity(SSL *s)
2922 {
2923 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2924 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2925 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2926 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2927 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2928 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2929 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2930 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2931 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2932 }
2933
2934 /* User level utility function to check a chain is suitable */
2935 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2936 {
2937 return tls1_check_chain(s, x, pk, chain, -1);
2938 }
2939
2940 EVP_PKEY *ssl_get_auto_dh(SSL *s)
2941 {
2942 EVP_PKEY *dhp = NULL;
2943 BIGNUM *p;
2944 int dh_secbits = 80, sec_level_bits;
2945 EVP_PKEY_CTX *pctx = NULL;
2946 OSSL_PARAM_BLD *tmpl = NULL;
2947 OSSL_PARAM *params = NULL;
2948
2949 if (s->cert->dh_tmp_auto != 2) {
2950 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2951 if (s->s3.tmp.new_cipher->strength_bits == 256)
2952 dh_secbits = 128;
2953 else
2954 dh_secbits = 80;
2955 } else {
2956 if (s->s3.tmp.cert == NULL)
2957 return NULL;
2958 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2959 }
2960 }
2961
2962 /* Do not pick a prime that is too weak for the current security level */
2963 sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2964 if (dh_secbits < sec_level_bits)
2965 dh_secbits = sec_level_bits;
2966
2967 if (dh_secbits >= 192)
2968 p = BN_get_rfc3526_prime_8192(NULL);
2969 else if (dh_secbits >= 152)
2970 p = BN_get_rfc3526_prime_4096(NULL);
2971 else if (dh_secbits >= 128)
2972 p = BN_get_rfc3526_prime_3072(NULL);
2973 else if (dh_secbits >= 112)
2974 p = BN_get_rfc3526_prime_2048(NULL);
2975 else
2976 p = BN_get_rfc2409_prime_1024(NULL);
2977 if (p == NULL)
2978 goto err;
2979
2980 pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2981 if (pctx == NULL
2982 || EVP_PKEY_fromdata_init(pctx) != 1)
2983 goto err;
2984
2985 tmpl = OSSL_PARAM_BLD_new();
2986 if (tmpl == NULL
2987 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2988 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2989 goto err;
2990
2991 params = OSSL_PARAM_BLD_to_param(tmpl);
2992 if (params == NULL
2993 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2994 goto err;
2995
2996 err:
2997 OSSL_PARAM_free(params);
2998 OSSL_PARAM_BLD_free(tmpl);
2999 EVP_PKEY_CTX_free(pctx);
3000 BN_free(p);
3001 return dhp;
3002 }
3003
3004 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
3005 {
3006 int secbits = -1;
3007 EVP_PKEY *pkey = X509_get0_pubkey(x);
3008 if (pkey) {
3009 /*
3010 * If no parameters this will return -1 and fail using the default
3011 * security callback for any non-zero security level. This will
3012 * reject keys which omit parameters but this only affects DSA and
3013 * omission of parameters is never (?) done in practice.
3014 */
3015 secbits = EVP_PKEY_get_security_bits(pkey);
3016 }
3017 if (s)
3018 return ssl_security(s, op, secbits, 0, x);
3019 else
3020 return ssl_ctx_security(ctx, op, secbits, 0, x);
3021 }
3022
3023 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
3024 {
3025 /* Lookup signature algorithm digest */
3026 int secbits, nid, pknid;
3027 /* Don't check signature if self signed */
3028 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3029 return 1;
3030 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3031 secbits = -1;
3032 /* If digest NID not defined use signature NID */
3033 if (nid == NID_undef)
3034 nid = pknid;
3035 if (s)
3036 return ssl_security(s, op, secbits, nid, x);
3037 else
3038 return ssl_ctx_security(ctx, op, secbits, nid, x);
3039 }
3040
3041 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
3042 {
3043 if (vfy)
3044 vfy = SSL_SECOP_PEER;
3045 if (is_ee) {
3046 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3047 return SSL_R_EE_KEY_TOO_SMALL;
3048 } else {
3049 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3050 return SSL_R_CA_KEY_TOO_SMALL;
3051 }
3052 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3053 return SSL_R_CA_MD_TOO_WEAK;
3054 return 1;
3055 }
3056
3057 /*
3058 * Check security of a chain, if |sk| includes the end entity certificate then
3059 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3060 * one to the peer. Return values: 1 if ok otherwise error code to use
3061 */
3062
3063 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3064 {
3065 int rv, start_idx, i;
3066 if (x == NULL) {
3067 x = sk_X509_value(sk, 0);
3068 start_idx = 1;
3069 } else
3070 start_idx = 0;
3071
3072 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3073 if (rv != 1)
3074 return rv;
3075
3076 for (i = start_idx; i < sk_X509_num(sk); i++) {
3077 x = sk_X509_value(sk, i);
3078 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3079 if (rv != 1)
3080 return rv;
3081 }
3082 return 1;
3083 }
3084
3085 /*
3086 * For TLS 1.2 servers check if we have a certificate which can be used
3087 * with the signature algorithm "lu" and return index of certificate.
3088 */
3089
3090 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3091 {
3092 int sig_idx = lu->sig_idx;
3093 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3094
3095 /* If not recognised or not supported by cipher mask it is not suitable */
3096 if (clu == NULL
3097 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3098 || (clu->nid == EVP_PKEY_RSA_PSS
3099 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3100 return -1;
3101
3102 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3103 }
3104
3105 /*
3106 * Checks the given cert against signature_algorithm_cert restrictions sent by
3107 * the peer (if any) as well as whether the hash from the sigalg is usable with
3108 * the key.
3109 * Returns true if the cert is usable and false otherwise.
3110 */
3111 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3112 EVP_PKEY *pkey)
3113 {
3114 const SIGALG_LOOKUP *lu;
3115 int mdnid, pknid, supported;
3116 size_t i;
3117 const char *mdname = NULL;
3118
3119 /*
3120 * If the given EVP_PKEY cannot support signing with this digest,
3121 * the answer is simply 'no'.
3122 */
3123 if (sig->hash != NID_undef)
3124 mdname = OBJ_nid2sn(sig->hash);
3125 supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3126 mdname,
3127 s->ctx->propq);
3128 if (supported <= 0)
3129 return 0;
3130
3131 /*
3132 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3133 * on the sigalg with which the certificate was signed (by its issuer).
3134 */
3135 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3136 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3137 return 0;
3138 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3139 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3140 if (lu == NULL)
3141 continue;
3142
3143 /*
3144 * This does not differentiate between the
3145 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3146 * have a chain here that lets us look at the key OID in the
3147 * signing certificate.
3148 */
3149 if (mdnid == lu->hash && pknid == lu->sig)
3150 return 1;
3151 }
3152 return 0;
3153 }
3154
3155 /*
3156 * Without signat_algorithms_cert, any certificate for which we have
3157 * a viable public key is permitted.
3158 */
3159 return 1;
3160 }
3161
3162 /*
3163 * Returns true if |s| has a usable certificate configured for use
3164 * with signature scheme |sig|.
3165 * "Usable" includes a check for presence as well as applying
3166 * the signature_algorithm_cert restrictions sent by the peer (if any).
3167 * Returns false if no usable certificate is found.
3168 */
3169 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3170 {
3171 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3172 if (idx == -1)
3173 idx = sig->sig_idx;
3174 if (!ssl_has_cert(s, idx))
3175 return 0;
3176
3177 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3178 s->cert->pkeys[idx].privatekey);
3179 }
3180
3181 /*
3182 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3183 * specified signature scheme |sig|, or false otherwise.
3184 */
3185 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3186 EVP_PKEY *pkey)
3187 {
3188 size_t idx;
3189
3190 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3191 return 0;
3192
3193 /* Check the key is consistent with the sig alg */
3194 if ((int)idx != sig->sig_idx)
3195 return 0;
3196
3197 return check_cert_usable(s, sig, x, pkey);
3198 }
3199
3200 /*
3201 * Find a signature scheme that works with the supplied certificate |x| and key
3202 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3203 * available certs/keys to find one that works.
3204 */
3205 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3206 {
3207 const SIGALG_LOOKUP *lu = NULL;
3208 size_t i;
3209 int curve = -1;
3210 EVP_PKEY *tmppkey;
3211
3212 /* Look for a shared sigalgs matching possible certificates */
3213 for (i = 0; i < s->shared_sigalgslen; i++) {
3214 lu = s->shared_sigalgs[i];
3215
3216 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3217 if (lu->hash == NID_sha1
3218 || lu->hash == NID_sha224
3219 || lu->sig == EVP_PKEY_DSA
3220 || lu->sig == EVP_PKEY_RSA)
3221 continue;
3222 /* Check that we have a cert, and signature_algorithms_cert */
3223 if (!tls1_lookup_md(s->ctx, lu, NULL))
3224 continue;
3225 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3226 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3227 continue;
3228
3229 tmppkey = (pkey != NULL) ? pkey
3230 : s->cert->pkeys[lu->sig_idx].privatekey;
3231
3232 if (lu->sig == EVP_PKEY_EC) {
3233 if (curve == -1)
3234 curve = ssl_get_EC_curve_nid(tmppkey);
3235 if (lu->curve != NID_undef && curve != lu->curve)
3236 continue;
3237 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3238 /* validate that key is large enough for the signature algorithm */
3239 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3240 continue;
3241 }
3242 break;
3243 }
3244
3245 if (i == s->shared_sigalgslen)
3246 return NULL;
3247
3248 return lu;
3249 }
3250
3251 /*
3252 * Choose an appropriate signature algorithm based on available certificates
3253 * Sets chosen certificate and signature algorithm.
3254 *
3255 * For servers if we fail to find a required certificate it is a fatal error,
3256 * an appropriate error code is set and a TLS alert is sent.
3257 *
3258 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3259 * a fatal error: we will either try another certificate or not present one
3260 * to the server. In this case no error is set.
3261 */
3262 int tls_choose_sigalg(SSL *s, int fatalerrs)
3263 {
3264 const SIGALG_LOOKUP *lu = NULL;
3265 int sig_idx = -1;
3266
3267 s->s3.tmp.cert = NULL;
3268 s->s3.tmp.sigalg = NULL;
3269
3270 if (SSL_IS_TLS13(s)) {
3271 lu = find_sig_alg(s, NULL, NULL);
3272 if (lu == NULL) {
3273 if (!fatalerrs)
3274 return 1;
3275 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3276 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3277 return 0;
3278 }
3279 } else {
3280 /* If ciphersuite doesn't require a cert nothing to do */
3281 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3282 return 1;
3283 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3284 return 1;
3285
3286 if (SSL_USE_SIGALGS(s)) {
3287 size_t i;
3288 if (s->s3.tmp.peer_sigalgs != NULL) {
3289 int curve = -1;
3290
3291 /* For Suite B need to match signature algorithm to curve */
3292 if (tls1_suiteb(s))
3293 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3294 .privatekey);
3295
3296 /*
3297 * Find highest preference signature algorithm matching
3298 * cert type
3299 */
3300 for (i = 0; i < s->shared_sigalgslen; i++) {
3301 lu = s->shared_sigalgs[i];
3302
3303 if (s->server) {
3304 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3305 continue;
3306 } else {
3307 int cc_idx = s->cert->key - s->cert->pkeys;
3308
3309 sig_idx = lu->sig_idx;
3310 if (cc_idx != sig_idx)
3311 continue;
3312 }
3313 /* Check that we have a cert, and sig_algs_cert */
3314 if (!has_usable_cert(s, lu, sig_idx))
3315 continue;
3316 if (lu->sig == EVP_PKEY_RSA_PSS) {
3317 /* validate that key is large enough for the signature algorithm */
3318 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3319
3320 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3321 continue;
3322 }
3323 if (curve == -1 || lu->curve == curve)
3324 break;
3325 }
3326 #ifndef OPENSSL_NO_GOST
3327 /*
3328 * Some Windows-based implementations do not send GOST algorithms indication
3329 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3330 * we have to assume GOST support.
3331 */
3332 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3333 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3334 if (!fatalerrs)
3335 return 1;
3336 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3337 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3338 return 0;
3339 } else {
3340 i = 0;
3341 sig_idx = lu->sig_idx;
3342 }
3343 }
3344 #endif
3345 if (i == s->shared_sigalgslen) {
3346 if (!fatalerrs)
3347 return 1;
3348 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3349 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3350 return 0;
3351 }
3352 } else {
3353 /*
3354 * If we have no sigalg use defaults
3355 */
3356 const uint16_t *sent_sigs;
3357 size_t sent_sigslen;
3358
3359 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3360 if (!fatalerrs)
3361 return 1;
3362 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3363 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3364 return 0;
3365 }
3366
3367 /* Check signature matches a type we sent */
3368 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3369 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3370 if (lu->sigalg == *sent_sigs
3371 && has_usable_cert(s, lu, lu->sig_idx))
3372 break;
3373 }
3374 if (i == sent_sigslen) {
3375 if (!fatalerrs)
3376 return 1;
3377 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3378 SSL_R_WRONG_SIGNATURE_TYPE);
3379 return 0;
3380 }
3381 }
3382 } else {
3383 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3384 if (!fatalerrs)
3385 return 1;
3386 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3387 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3388 return 0;
3389 }
3390 }
3391 }
3392 if (sig_idx == -1)
3393 sig_idx = lu->sig_idx;
3394 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3395 s->cert->key = s->s3.tmp.cert;
3396 s->s3.tmp.sigalg = lu;
3397 return 1;
3398 }
3399
3400 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3401 {
3402 if (mode != TLSEXT_max_fragment_length_DISABLED
3403 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3404 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3405 return 0;
3406 }
3407
3408 ctx->ext.max_fragment_len_mode = mode;
3409 return 1;
3410 }
3411
3412 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3413 {
3414 if (mode != TLSEXT_max_fragment_length_DISABLED
3415 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3416 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3417 return 0;
3418 }
3419
3420 ssl->ext.max_fragment_len_mode = mode;
3421 return 1;
3422 }
3423
3424 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3425 {
3426 return session->ext.max_fragment_len_mode;
3427 }
3428
3429 /*
3430 * Helper functions for HMAC access with legacy support included.
3431 */
3432 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3433 {
3434 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3435 EVP_MAC *mac = NULL;
3436
3437 if (ret == NULL)
3438 return NULL;
3439 #ifndef OPENSSL_NO_DEPRECATED_3_0
3440 if (ctx->ext.ticket_key_evp_cb == NULL
3441 && ctx->ext.ticket_key_cb != NULL) {
3442 if (!ssl_hmac_old_new(ret))
3443 goto err;
3444 return ret;
3445 }
3446 #endif
3447 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3448 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3449 goto err;
3450 EVP_MAC_free(mac);
3451 return ret;
3452 err:
3453 EVP_MAC_CTX_free(ret->ctx);
3454 EVP_MAC_free(mac);
3455 OPENSSL_free(ret);
3456 return NULL;
3457 }
3458
3459 void ssl_hmac_free(SSL_HMAC *ctx)
3460 {
3461 if (ctx != NULL) {
3462 EVP_MAC_CTX_free(ctx->ctx);
3463 #ifndef OPENSSL_NO_DEPRECATED_3_0
3464 ssl_hmac_old_free(ctx);
3465 #endif
3466 OPENSSL_free(ctx);
3467 }
3468 }
3469
3470 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3471 {
3472 return ctx->ctx;
3473 }
3474
3475 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3476 {
3477 OSSL_PARAM params[2], *p = params;
3478
3479 if (ctx->ctx != NULL) {
3480 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3481 *p = OSSL_PARAM_construct_end();
3482 if (EVP_MAC_init(ctx->ctx, key, len, params))
3483 return 1;
3484 }
3485 #ifndef OPENSSL_NO_DEPRECATED_3_0
3486 if (ctx->old_ctx != NULL)
3487 return ssl_hmac_old_init(ctx, key, len, md);
3488 #endif
3489 return 0;
3490 }
3491
3492 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3493 {
3494 if (ctx->ctx != NULL)
3495 return EVP_MAC_update(ctx->ctx, data, len);
3496 #ifndef OPENSSL_NO_DEPRECATED_3_0
3497 if (ctx->old_ctx != NULL)
3498 return ssl_hmac_old_update(ctx, data, len);
3499 #endif
3500 return 0;
3501 }
3502
3503 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3504 size_t max_size)
3505 {
3506 if (ctx->ctx != NULL)
3507 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3508 #ifndef OPENSSL_NO_DEPRECATED_3_0
3509 if (ctx->old_ctx != NULL)
3510 return ssl_hmac_old_final(ctx, md, len);
3511 #endif
3512 return 0;
3513 }
3514
3515 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3516 {
3517 if (ctx->ctx != NULL)
3518 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3519 #ifndef OPENSSL_NO_DEPRECATED_3_0
3520 if (ctx->old_ctx != NULL)
3521 return ssl_hmac_old_size(ctx);
3522 #endif
3523 return 0;
3524 }
3525
3526 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3527 {
3528 char gname[OSSL_MAX_NAME_SIZE];
3529
3530 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3531 return OBJ_txt2nid(gname);
3532
3533 return NID_undef;
3534 }
3535
3536 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3537 const unsigned char *enckey,
3538 size_t enckeylen)
3539 {
3540 if (EVP_PKEY_is_a(pkey, "DH")) {
3541 int bits = EVP_PKEY_get_bits(pkey);
3542
3543 if (bits <= 0 || enckeylen != (size_t)bits / 8)
3544 /* the encoded key must be padded to the length of the p */
3545 return 0;
3546 } else if (EVP_PKEY_is_a(pkey, "EC")) {
3547 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3548 || enckey[0] != 0x04)
3549 return 0;
3550 }
3551
3552 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3553 }