]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Rename tls_curve_info to TLS_GROUP_INFO, move to ssl_locl.h
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "internal/nelem.h"
21 #include "ssl_locl.h"
22 #include <openssl/ct.h>
23
24 SSL3_ENC_METHOD const TLSv1_enc_data = {
25 tls1_enc,
26 tls1_mac,
27 tls1_setup_key_block,
28 tls1_generate_master_secret,
29 tls1_change_cipher_state,
30 tls1_final_finish_mac,
31 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
32 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
33 tls1_alert_code,
34 tls1_export_keying_material,
35 0,
36 ssl3_set_handshake_header,
37 tls_close_construct_packet,
38 ssl3_handshake_write
39 };
40
41 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
42 tls1_enc,
43 tls1_mac,
44 tls1_setup_key_block,
45 tls1_generate_master_secret,
46 tls1_change_cipher_state,
47 tls1_final_finish_mac,
48 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
49 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
50 tls1_alert_code,
51 tls1_export_keying_material,
52 SSL_ENC_FLAG_EXPLICIT_IV,
53 ssl3_set_handshake_header,
54 tls_close_construct_packet,
55 ssl3_handshake_write
56 };
57
58 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
59 tls1_enc,
60 tls1_mac,
61 tls1_setup_key_block,
62 tls1_generate_master_secret,
63 tls1_change_cipher_state,
64 tls1_final_finish_mac,
65 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
66 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
67 tls1_alert_code,
68 tls1_export_keying_material,
69 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
70 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
71 ssl3_set_handshake_header,
72 tls_close_construct_packet,
73 ssl3_handshake_write
74 };
75
76 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
77 tls13_enc,
78 tls1_mac,
79 tls13_setup_key_block,
80 tls13_generate_master_secret,
81 tls13_change_cipher_state,
82 tls13_final_finish_mac,
83 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
84 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
85 tls13_alert_code,
86 tls13_export_keying_material,
87 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
88 ssl3_set_handshake_header,
89 tls_close_construct_packet,
90 ssl3_handshake_write
91 };
92
93 long tls1_default_timeout(void)
94 {
95 /*
96 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
97 * http, the cache would over fill
98 */
99 return (60 * 60 * 2);
100 }
101
102 int tls1_new(SSL *s)
103 {
104 if (!ssl3_new(s))
105 return 0;
106 if (!s->method->ssl_clear(s))
107 return 0;
108
109 return 1;
110 }
111
112 void tls1_free(SSL *s)
113 {
114 OPENSSL_free(s->ext.session_ticket);
115 ssl3_free(s);
116 }
117
118 int tls1_clear(SSL *s)
119 {
120 if (!ssl3_clear(s))
121 return 0;
122
123 if (s->method->version == TLS_ANY_VERSION)
124 s->version = TLS_MAX_VERSION;
125 else
126 s->version = s->method->version;
127
128 return 1;
129 }
130
131 #ifndef OPENSSL_NO_EC
132
133 /*
134 * Table of curve information.
135 * Do not delete entries or reorder this array! It is used as a lookup
136 * table: the index of each entry is one less than the TLS curve id.
137 */
138 static const TLS_GROUP_INFO nid_list[] = {
139 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
140 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
141 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
142 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
143 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
144 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
145 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
146 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
147 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
148 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
149 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
150 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
151 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
152 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
153 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
154 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
155 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
156 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
157 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
158 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
159 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
160 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
161 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
162 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
163 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
164 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
165 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
166 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
167 {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
168 };
169
170 static const unsigned char ecformats_default[] = {
171 TLSEXT_ECPOINTFORMAT_uncompressed,
172 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
173 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
174 };
175
176 /* The default curves */
177 static const uint16_t eccurves_default[] = {
178 29, /* X25519 (29) */
179 23, /* secp256r1 (23) */
180 25, /* secp521r1 (25) */
181 24, /* secp384r1 (24) */
182 };
183
184 static const uint16_t suiteb_curves[] = {
185 TLSEXT_curve_P_256,
186 TLSEXT_curve_P_384
187 };
188
189 int tls1_ec_curve_id2nid(uint16_t curve_id, unsigned int *pflags)
190 {
191 const TLS_GROUP_INFO *cinfo;
192 /* ECC curves from RFC 4492 and RFC 7027 */
193 if (curve_id < 1 || curve_id > OSSL_NELEM(nid_list))
194 return NID_undef;
195 cinfo = nid_list + curve_id - 1;
196 if (pflags)
197 *pflags = cinfo->flags;
198 return cinfo->nid;
199 }
200
201 uint16_t tls1_ec_nid2curve_id(int nid)
202 {
203 size_t i;
204 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
205 if (nid_list[i].nid == nid)
206 return i + 1;
207 }
208 return 0;
209 }
210
211 /*
212 * Get curves list, if "sess" is set return client curves otherwise
213 * preferred list.
214 * Sets |num_curves| to the number of curves in the list, i.e.,
215 * the length of |pcurves| is num_curves.
216 * Returns 1 on success and 0 if the client curves list has invalid format.
217 * The latter indicates an internal error: we should not be accepting such
218 * lists in the first place.
219 */
220 int tls1_get_curvelist(SSL *s, int sess, const uint16_t **pcurves,
221 size_t *num_curves)
222 {
223 size_t pcurveslen = 0;
224
225 if (sess) {
226 *pcurves = s->session->ext.supportedgroups;
227 pcurveslen = s->session->ext.supportedgroups_len;
228 } else {
229 /* For Suite B mode only include P-256, P-384 */
230 switch (tls1_suiteb(s)) {
231 case SSL_CERT_FLAG_SUITEB_128_LOS:
232 *pcurves = suiteb_curves;
233 pcurveslen = OSSL_NELEM(suiteb_curves);
234 break;
235
236 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
237 *pcurves = suiteb_curves;
238 pcurveslen = 1;
239 break;
240
241 case SSL_CERT_FLAG_SUITEB_192_LOS:
242 *pcurves = suiteb_curves + 1;
243 pcurveslen = 1;
244 break;
245 default:
246 *pcurves = s->ext.supportedgroups;
247 pcurveslen = s->ext.supportedgroups_len;
248 }
249 if (!*pcurves) {
250 *pcurves = eccurves_default;
251 pcurveslen = OSSL_NELEM(eccurves_default);
252 }
253 }
254
255 *num_curves = pcurveslen;
256 return 1;
257 }
258
259 /* See if curve is allowed by security callback */
260 int tls_curve_allowed(SSL *s, uint16_t curve, int op)
261 {
262 const TLS_GROUP_INFO *cinfo;
263 unsigned char ctmp[2];
264 if (curve > 0xff)
265 return 1;
266 if (curve < 1 || curve > OSSL_NELEM(nid_list))
267 return 0;
268 cinfo = &nid_list[curve - 1];
269 # ifdef OPENSSL_NO_EC2M
270 if (cinfo->flags & TLS_CURVE_CHAR2)
271 return 0;
272 # endif
273 ctmp[0] = curve >> 8;
274 ctmp[1] = curve & 0xff;
275 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp);
276 }
277
278 /* Check a curve is one of our preferences */
279 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
280 {
281 const uint16_t *curves;
282 uint16_t curve_id;
283 size_t num_curves, i;
284 unsigned int suiteb_flags = tls1_suiteb(s);
285 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
286 return 0;
287 curve_id = (p[1] << 8) | p[2];
288 /* Check curve matches Suite B preferences */
289 if (suiteb_flags) {
290 unsigned long cid = s->s3->tmp.new_cipher->id;
291 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
292 if (curve_id != TLSEXT_curve_P_256)
293 return 0;
294 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
295 if (curve_id != TLSEXT_curve_P_384)
296 return 0;
297 } else /* Should never happen */
298 return 0;
299 }
300 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
301 return 0;
302 for (i = 0; i < num_curves; i++) {
303 if (curve_id == curves[i])
304 return tls_curve_allowed(s, curve_id, SSL_SECOP_CURVE_CHECK);
305 }
306 return 0;
307 }
308
309 /*-
310 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
311 * if there is no match.
312 * For nmatch == -1, return number of matches
313 * For nmatch == -2, return the id of the group to use for
314 * an tmp key, or 0 if there is no match.
315 */
316 uint16_t tls1_shared_group(SSL *s, int nmatch)
317 {
318 const uint16_t *pref, *supp;
319 size_t num_pref, num_supp, i, j;
320 int k;
321
322 /* Can't do anything on client side */
323 if (s->server == 0)
324 return 0;
325 if (nmatch == -2) {
326 if (tls1_suiteb(s)) {
327 /*
328 * For Suite B ciphersuite determines curve: we already know
329 * these are acceptable due to previous checks.
330 */
331 unsigned long cid = s->s3->tmp.new_cipher->id;
332
333 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
334 return TLSEXT_curve_P_256;
335 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
336 return TLSEXT_curve_P_384;
337 /* Should never happen */
338 return 0;
339 }
340 /* If not Suite B just return first preference shared curve */
341 nmatch = 0;
342 }
343 /*
344 * Avoid truncation. tls1_get_curvelist takes an int
345 * but s->options is a long...
346 */
347 if (!tls1_get_curvelist(s,
348 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
349 &supp, &num_supp))
350 return 0;
351 if (!tls1_get_curvelist(s,
352 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0,
353 &pref, &num_pref))
354 return 0;
355
356 for (k = 0, i = 0; i < num_pref; i++) {
357 uint16_t id = pref[i];
358
359 for (j = 0; j < num_supp; j++) {
360 if (id == supp[j]) {
361 if (!tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED))
362 continue;
363 if (nmatch == k)
364 return id;
365 k++;
366 }
367 }
368 }
369 if (nmatch == -1)
370 return k;
371 /* Out of range (nmatch > k). */
372 return 0;
373 }
374
375 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
376 int *groups, size_t ngroups)
377 {
378 uint16_t *glist;
379 size_t i;
380 /*
381 * Bitmap of groups included to detect duplicates: only works while group
382 * ids < 32
383 */
384 unsigned long dup_list = 0;
385 glist = OPENSSL_malloc(ngroups * sizeof(*glist));
386 if (glist == NULL)
387 return 0;
388 for (i = 0; i < ngroups; i++) {
389 unsigned long idmask;
390 uint16_t id;
391 /* TODO(TLS1.3): Convert for DH groups */
392 id = tls1_ec_nid2curve_id(groups[i]);
393 idmask = 1L << id;
394 if (!id || (dup_list & idmask)) {
395 OPENSSL_free(glist);
396 return 0;
397 }
398 dup_list |= idmask;
399 glist[i] = id;
400 }
401 OPENSSL_free(*pext);
402 *pext = glist;
403 *pextlen = ngroups;
404 return 1;
405 }
406
407 # define MAX_CURVELIST 28
408
409 typedef struct {
410 size_t nidcnt;
411 int nid_arr[MAX_CURVELIST];
412 } nid_cb_st;
413
414 static int nid_cb(const char *elem, int len, void *arg)
415 {
416 nid_cb_st *narg = arg;
417 size_t i;
418 int nid;
419 char etmp[20];
420 if (elem == NULL)
421 return 0;
422 if (narg->nidcnt == MAX_CURVELIST)
423 return 0;
424 if (len > (int)(sizeof(etmp) - 1))
425 return 0;
426 memcpy(etmp, elem, len);
427 etmp[len] = 0;
428 nid = EC_curve_nist2nid(etmp);
429 if (nid == NID_undef)
430 nid = OBJ_sn2nid(etmp);
431 if (nid == NID_undef)
432 nid = OBJ_ln2nid(etmp);
433 if (nid == NID_undef)
434 return 0;
435 for (i = 0; i < narg->nidcnt; i++)
436 if (narg->nid_arr[i] == nid)
437 return 0;
438 narg->nid_arr[narg->nidcnt++] = nid;
439 return 1;
440 }
441
442 /* Set groups based on a colon separate list */
443 int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str)
444 {
445 nid_cb_st ncb;
446 ncb.nidcnt = 0;
447 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
448 return 0;
449 if (pext == NULL)
450 return 1;
451 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
452 }
453
454 /* For an EC key set TLS id and required compression based on parameters */
455 static int tls1_set_ec_id(uint16_t *pcurve_id, unsigned char *comp_id,
456 EC_KEY *ec)
457 {
458 int curve_nid;
459 const EC_GROUP *grp;
460 if (!ec)
461 return 0;
462 /* Determine if it is a prime field */
463 grp = EC_KEY_get0_group(ec);
464 if (!grp)
465 return 0;
466 /* Determine curve ID */
467 curve_nid = EC_GROUP_get_curve_name(grp);
468 *pcurve_id = tls1_ec_nid2curve_id(curve_nid);
469 /* If no id return error: we don't support arbitrary explicit curves */
470 if (*pcurve_id == 0)
471 return 0;
472 if (comp_id) {
473 if (EC_KEY_get0_public_key(ec) == NULL)
474 return 0;
475 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
476 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
477 } else {
478 if ((nid_list[*pcurve_id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
479 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
480 else
481 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
482 }
483 }
484 return 1;
485 }
486
487 /* Check an EC key is compatible with extensions */
488 static int tls1_check_ec_key(SSL *s, uint16_t curve_id, unsigned char *comp_id)
489 {
490 const unsigned char *pformats;
491 const uint16_t *pcurves;
492 size_t num_formats, num_curves, i;
493 int j;
494 /*
495 * If point formats extension present check it, otherwise everything is
496 * supported (see RFC4492).
497 */
498 if (comp_id && s->session->ext.ecpointformats) {
499 pformats = s->session->ext.ecpointformats;
500 num_formats = s->session->ext.ecpointformats_len;
501 for (i = 0; i < num_formats; i++, pformats++) {
502 if (*comp_id == *pformats)
503 break;
504 }
505 if (i == num_formats)
506 return 0;
507 }
508 if (curve_id == 0)
509 return 1;
510 /* Check curve is consistent with client and server preferences */
511 for (j = 0; j <= 1; j++) {
512 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
513 return 0;
514 if (j == 1 && num_curves == 0) {
515 /*
516 * If we've not received any curves then skip this check.
517 * RFC 4492 does not require the supported elliptic curves extension
518 * so if it is not sent we can just choose any curve.
519 * It is invalid to send an empty list in the elliptic curves
520 * extension, so num_curves == 0 always means no extension.
521 */
522 break;
523 }
524 for (i = 0; i < num_curves; i++) {
525 if (pcurves[i] == curve_id)
526 break;
527 }
528 if (i == num_curves)
529 return 0;
530 /* For clients can only check sent curve list */
531 if (!s->server)
532 break;
533 }
534 return 1;
535 }
536
537 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
538 size_t *num_formats)
539 {
540 /*
541 * If we have a custom point format list use it otherwise use default
542 */
543 if (s->ext.ecpointformats) {
544 *pformats = s->ext.ecpointformats;
545 *num_formats = s->ext.ecpointformats_len;
546 } else {
547 *pformats = ecformats_default;
548 /* For Suite B we don't support char2 fields */
549 if (tls1_suiteb(s))
550 *num_formats = sizeof(ecformats_default) - 1;
551 else
552 *num_formats = sizeof(ecformats_default);
553 }
554 }
555
556 /*
557 * Check cert parameters compatible with extensions: currently just checks EC
558 * certificates have compatible curves and compression.
559 */
560 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
561 {
562 unsigned char comp_id;
563 uint16_t curve_id;
564 EVP_PKEY *pkey;
565 int rv;
566 pkey = X509_get0_pubkey(x);
567 if (!pkey)
568 return 0;
569 /* If not EC nothing to do */
570 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
571 return 1;
572 rv = tls1_set_ec_id(&curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
573 if (!rv)
574 return 0;
575 /*
576 * Can't check curve_id for client certs as we don't have a supported
577 * curves extension.
578 */
579 rv = tls1_check_ec_key(s, s->server ? curve_id : 0, &comp_id);
580 if (!rv)
581 return 0;
582 /*
583 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
584 * SHA384+P-384.
585 */
586 if (check_ee_md && tls1_suiteb(s)) {
587 int check_md;
588 size_t i;
589 CERT *c = s->cert;
590
591 /* Check to see we have necessary signing algorithm */
592 if (curve_id == TLSEXT_curve_P_256)
593 check_md = NID_ecdsa_with_SHA256;
594 else if (curve_id == TLSEXT_curve_P_384)
595 check_md = NID_ecdsa_with_SHA384;
596 else
597 return 0; /* Should never happen */
598 for (i = 0; i < c->shared_sigalgslen; i++)
599 if (check_md == c->shared_sigalgs[i]->sigandhash)
600 break;
601 if (i == c->shared_sigalgslen)
602 return 0;
603 }
604 return rv;
605 }
606
607 /*
608 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
609 * @s: SSL connection
610 * @cid: Cipher ID we're considering using
611 *
612 * Checks that the kECDHE cipher suite we're considering using
613 * is compatible with the client extensions.
614 *
615 * Returns 0 when the cipher can't be used or 1 when it can.
616 */
617 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
618 {
619 /*
620 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
621 * curves permitted.
622 */
623 if (tls1_suiteb(s)) {
624 uint16_t curve_id;
625
626 /* Curve to check determined by ciphersuite */
627 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
628 curve_id = TLSEXT_curve_P_256;
629 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
630 curve_id = TLSEXT_curve_P_384;
631 else
632 return 0;
633 /* Check this curve is acceptable */
634 if (!tls1_check_ec_key(s, curve_id, NULL))
635 return 0;
636 return 1;
637 }
638 /* Need a shared curve */
639 return tls1_shared_group(s, 0) != 0;
640 }
641
642 #else
643
644 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
645 {
646 return 1;
647 }
648
649 #endif /* OPENSSL_NO_EC */
650
651 /* Default sigalg schemes */
652 static const uint16_t tls12_sigalgs[] = {
653 #ifndef OPENSSL_NO_EC
654 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
655 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
656 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
657 TLSEXT_SIGALG_ed25519,
658 #endif
659
660 TLSEXT_SIGALG_rsa_pss_sha256,
661 TLSEXT_SIGALG_rsa_pss_sha384,
662 TLSEXT_SIGALG_rsa_pss_sha512,
663
664 TLSEXT_SIGALG_rsa_pkcs1_sha256,
665 TLSEXT_SIGALG_rsa_pkcs1_sha384,
666 TLSEXT_SIGALG_rsa_pkcs1_sha512,
667
668 #ifndef OPENSSL_NO_EC
669 TLSEXT_SIGALG_ecdsa_sha224,
670 TLSEXT_SIGALG_ecdsa_sha1,
671 #endif
672 TLSEXT_SIGALG_rsa_pkcs1_sha224,
673 TLSEXT_SIGALG_rsa_pkcs1_sha1,
674 #ifndef OPENSSL_NO_DSA
675 TLSEXT_SIGALG_dsa_sha224,
676 TLSEXT_SIGALG_dsa_sha1,
677
678 TLSEXT_SIGALG_dsa_sha256,
679 TLSEXT_SIGALG_dsa_sha384,
680 TLSEXT_SIGALG_dsa_sha512
681 #endif
682 };
683
684 #ifndef OPENSSL_NO_EC
685 static const uint16_t suiteb_sigalgs[] = {
686 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
687 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
688 };
689 #endif
690
691 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
692 #ifndef OPENSSL_NO_EC
693 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
694 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
695 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
696 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
697 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
698 NID_ecdsa_with_SHA384, NID_secp384r1},
699 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
700 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
701 NID_ecdsa_with_SHA512, NID_secp521r1},
702 {"ed25519", TLSEXT_SIGALG_ed25519,
703 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
704 NID_undef, NID_undef},
705 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
706 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
707 NID_ecdsa_with_SHA224, NID_undef},
708 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
709 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
710 NID_ecdsa_with_SHA1, NID_undef},
711 #endif
712 {"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256,
713 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
714 NID_undef, NID_undef},
715 {"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384,
716 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
717 NID_undef, NID_undef},
718 {"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512,
719 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
720 NID_undef, NID_undef},
721 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
722 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
723 NID_sha256WithRSAEncryption, NID_undef},
724 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
725 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
726 NID_sha384WithRSAEncryption, NID_undef},
727 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
728 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
729 NID_sha512WithRSAEncryption, NID_undef},
730 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
731 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
732 NID_sha224WithRSAEncryption, NID_undef},
733 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
734 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
735 NID_sha1WithRSAEncryption, NID_undef},
736 #ifndef OPENSSL_NO_DSA
737 {NULL, TLSEXT_SIGALG_dsa_sha256,
738 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
739 NID_dsa_with_SHA256, NID_undef},
740 {NULL, TLSEXT_SIGALG_dsa_sha384,
741 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
742 NID_undef, NID_undef},
743 {NULL, TLSEXT_SIGALG_dsa_sha512,
744 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
745 NID_undef, NID_undef},
746 {NULL, TLSEXT_SIGALG_dsa_sha224,
747 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
748 NID_undef, NID_undef},
749 {NULL, TLSEXT_SIGALG_dsa_sha1,
750 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
751 NID_dsaWithSHA1, NID_undef},
752 #endif
753 #ifndef OPENSSL_NO_GOST
754 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
755 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
756 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
757 NID_undef, NID_undef},
758 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
759 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
760 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
761 NID_undef, NID_undef},
762 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
763 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
764 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
765 NID_undef, NID_undef}
766 #endif
767 };
768 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
769 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
770 "rsa_pkcs1_md5_sha1", 0,
771 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
772 EVP_PKEY_RSA, SSL_PKEY_RSA,
773 NID_undef, NID_undef
774 };
775
776 /*
777 * Default signature algorithm values used if signature algorithms not present.
778 * From RFC5246. Note: order must match certificate index order.
779 */
780 static const uint16_t tls_default_sigalg[] = {
781 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
782 0, /* SSL_PKEY_RSA_PSS_SIGN */
783 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
784 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
785 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
786 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
787 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
788 0 /* SSL_PKEY_ED25519 */
789 };
790
791 /* Lookup TLS signature algorithm */
792 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
793 {
794 size_t i;
795 const SIGALG_LOOKUP *s;
796
797 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
798 i++, s++) {
799 if (s->sigalg == sigalg)
800 return s;
801 }
802 return NULL;
803 }
804 /* Lookup hash: return 0 if invalid or not enabled */
805 int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
806 {
807 const EVP_MD *md;
808 if (lu == NULL)
809 return 0;
810 /* lu->hash == NID_undef means no associated digest */
811 if (lu->hash == NID_undef) {
812 md = NULL;
813 } else {
814 md = ssl_md(lu->hash_idx);
815 if (md == NULL)
816 return 0;
817 }
818 if (pmd)
819 *pmd = md;
820 return 1;
821 }
822
823 /*
824 * Return a signature algorithm for TLS < 1.2 where the signature type
825 * is fixed by the certificate type.
826 */
827 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
828 {
829 if (idx == -1) {
830 if (s->server) {
831 size_t i;
832
833 /* Work out index corresponding to ciphersuite */
834 for (i = 0; i < SSL_PKEY_NUM; i++) {
835 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
836
837 if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) {
838 idx = i;
839 break;
840 }
841 }
842 } else {
843 idx = s->cert->key - s->cert->pkeys;
844 }
845 }
846 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
847 return NULL;
848 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
849 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
850
851 if (!tls1_lookup_md(lu, NULL))
852 return NULL;
853 return lu;
854 }
855 return &legacy_rsa_sigalg;
856 }
857 /* Set peer sigalg based key type */
858 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
859 {
860 size_t idx;
861 const SIGALG_LOOKUP *lu;
862
863 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
864 return 0;
865 lu = tls1_get_legacy_sigalg(s, idx);
866 if (lu == NULL)
867 return 0;
868 s->s3->tmp.peer_sigalg = lu;
869 return 1;
870 }
871
872 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
873 {
874 /*
875 * If Suite B mode use Suite B sigalgs only, ignore any other
876 * preferences.
877 */
878 #ifndef OPENSSL_NO_EC
879 switch (tls1_suiteb(s)) {
880 case SSL_CERT_FLAG_SUITEB_128_LOS:
881 *psigs = suiteb_sigalgs;
882 return OSSL_NELEM(suiteb_sigalgs);
883
884 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
885 *psigs = suiteb_sigalgs;
886 return 1;
887
888 case SSL_CERT_FLAG_SUITEB_192_LOS:
889 *psigs = suiteb_sigalgs + 1;
890 return 1;
891 }
892 #endif
893 /*
894 * We use client_sigalgs (if not NULL) if we're a server
895 * and sending a certificate request or if we're a client and
896 * determining which shared algorithm to use.
897 */
898 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
899 *psigs = s->cert->client_sigalgs;
900 return s->cert->client_sigalgslen;
901 } else if (s->cert->conf_sigalgs) {
902 *psigs = s->cert->conf_sigalgs;
903 return s->cert->conf_sigalgslen;
904 } else {
905 *psigs = tls12_sigalgs;
906 return OSSL_NELEM(tls12_sigalgs);
907 }
908 }
909
910 /*
911 * Check signature algorithm is consistent with sent supported signature
912 * algorithms and if so set relevant digest and signature scheme in
913 * s.
914 */
915 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
916 {
917 const uint16_t *sent_sigs;
918 const EVP_MD *md = NULL;
919 char sigalgstr[2];
920 size_t sent_sigslen, i;
921 int pkeyid = EVP_PKEY_id(pkey);
922 const SIGALG_LOOKUP *lu;
923
924 /* Should never happen */
925 if (pkeyid == -1)
926 return -1;
927 if (SSL_IS_TLS13(s)) {
928 /* Disallow DSA for TLS 1.3 */
929 if (pkeyid == EVP_PKEY_DSA) {
930 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
931 return 0;
932 }
933 /* Only allow PSS for TLS 1.3 */
934 if (pkeyid == EVP_PKEY_RSA)
935 pkeyid = EVP_PKEY_RSA_PSS;
936 }
937 lu = tls1_lookup_sigalg(sig);
938 /*
939 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
940 * is consistent with signature: RSA keys can be used for RSA-PSS
941 */
942 if (lu == NULL
943 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
944 || (pkeyid != lu->sig
945 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
946 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
947 return 0;
948 }
949 #ifndef OPENSSL_NO_EC
950 if (pkeyid == EVP_PKEY_EC) {
951 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
952 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
953
954 if (SSL_IS_TLS13(s)) {
955 if (EC_KEY_get_conv_form(ec) != POINT_CONVERSION_UNCOMPRESSED) {
956 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
957 SSL_R_ILLEGAL_POINT_COMPRESSION);
958 return 0;
959 }
960 /* For TLS 1.3 check curve matches signature algorithm */
961 if (lu->curve != NID_undef && curve != lu->curve) {
962 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
963 return 0;
964 }
965 } else {
966 unsigned char comp_id;
967 uint16_t curve_id;
968
969 /* Check compression and curve matches extensions */
970 if (!tls1_set_ec_id(&curve_id, &comp_id, ec))
971 return 0;
972 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
973 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
974 return 0;
975 }
976 if (tls1_suiteb(s)) {
977 /* Check sigalg matches a permissible Suite B value */
978 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
979 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
980 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
981 SSL_R_WRONG_SIGNATURE_TYPE);
982 return 0;
983 }
984 /*
985 * Suite B also requires P-256+SHA256 and P-384+SHA384:
986 * this matches the TLS 1.3 requirements so we can just
987 * check the curve is the expected TLS 1.3 value.
988 * If this fails an inappropriate digest is being used.
989 */
990 if (curve != lu->curve) {
991 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
992 SSL_R_ILLEGAL_SUITEB_DIGEST);
993 return 0;
994 }
995 }
996 }
997 } else if (tls1_suiteb(s)) {
998 return 0;
999 }
1000 #endif
1001
1002 /* Check signature matches a type we sent */
1003 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1004 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1005 if (sig == *sent_sigs)
1006 break;
1007 }
1008 /* Allow fallback to SHA1 if not strict mode */
1009 if (i == sent_sigslen && (lu->hash != NID_sha1
1010 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1011 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1012 return 0;
1013 }
1014 if (!tls1_lookup_md(lu, &md)) {
1015 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
1016 return 0;
1017 }
1018 if (md != NULL) {
1019 /*
1020 * Make sure security callback allows algorithm. For historical
1021 * reasons we have to pass the sigalg as a two byte char array.
1022 */
1023 sigalgstr[0] = (sig >> 8) & 0xff;
1024 sigalgstr[1] = sig & 0xff;
1025 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1026 EVP_MD_size(md) * 4, EVP_MD_type(md),
1027 (void *)sigalgstr)) {
1028 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1029 return 0;
1030 }
1031 }
1032 /* Store the sigalg the peer uses */
1033 s->s3->tmp.peer_sigalg = lu;
1034 return 1;
1035 }
1036
1037 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1038 {
1039 if (s->s3->tmp.peer_sigalg == NULL)
1040 return 0;
1041 *pnid = s->s3->tmp.peer_sigalg->sig;
1042 return 1;
1043 }
1044
1045 /*
1046 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1047 * supported, doesn't appear in supported signature algorithms, isn't supported
1048 * by the enabled protocol versions or by the security level.
1049 *
1050 * This function should only be used for checking which ciphers are supported
1051 * by the client.
1052 *
1053 * Call ssl_cipher_disabled() to check that it's enabled or not.
1054 */
1055 void ssl_set_client_disabled(SSL *s)
1056 {
1057 s->s3->tmp.mask_a = 0;
1058 s->s3->tmp.mask_k = 0;
1059 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1060 ssl_get_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
1061 #ifndef OPENSSL_NO_PSK
1062 /* with PSK there must be client callback set */
1063 if (!s->psk_client_callback) {
1064 s->s3->tmp.mask_a |= SSL_aPSK;
1065 s->s3->tmp.mask_k |= SSL_PSK;
1066 }
1067 #endif /* OPENSSL_NO_PSK */
1068 #ifndef OPENSSL_NO_SRP
1069 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1070 s->s3->tmp.mask_a |= SSL_aSRP;
1071 s->s3->tmp.mask_k |= SSL_kSRP;
1072 }
1073 #endif
1074 }
1075
1076 /*
1077 * ssl_cipher_disabled - check that a cipher is disabled or not
1078 * @s: SSL connection that you want to use the cipher on
1079 * @c: cipher to check
1080 * @op: Security check that you want to do
1081 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1082 *
1083 * Returns 1 when it's disabled, 0 when enabled.
1084 */
1085 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1086 {
1087 if (c->algorithm_mkey & s->s3->tmp.mask_k
1088 || c->algorithm_auth & s->s3->tmp.mask_a)
1089 return 1;
1090 if (s->s3->tmp.max_ver == 0)
1091 return 1;
1092 if (!SSL_IS_DTLS(s)) {
1093 int min_tls = c->min_tls;
1094
1095 /*
1096 * For historical reasons we will allow ECHDE to be selected by a server
1097 * in SSLv3 if we are a client
1098 */
1099 if (min_tls == TLS1_VERSION && ecdhe
1100 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1101 min_tls = SSL3_VERSION;
1102
1103 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))
1104 return 1;
1105 }
1106 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1107 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1108 return 1;
1109
1110 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1111 }
1112
1113 int tls_use_ticket(SSL *s)
1114 {
1115 if ((s->options & SSL_OP_NO_TICKET))
1116 return 0;
1117 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1118 }
1119
1120 int tls1_set_server_sigalgs(SSL *s)
1121 {
1122 int al;
1123 size_t i;
1124
1125 /* Clear any shared signature algorithms */
1126 OPENSSL_free(s->cert->shared_sigalgs);
1127 s->cert->shared_sigalgs = NULL;
1128 s->cert->shared_sigalgslen = 0;
1129 /* Clear certificate validity flags */
1130 for (i = 0; i < SSL_PKEY_NUM; i++)
1131 s->s3->tmp.valid_flags[i] = 0;
1132 /*
1133 * If peer sent no signature algorithms check to see if we support
1134 * the default algorithm for each certificate type
1135 */
1136 if (s->s3->tmp.peer_sigalgs == NULL) {
1137 const uint16_t *sent_sigs;
1138 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1139
1140 for (i = 0; i < SSL_PKEY_NUM; i++) {
1141 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1142 size_t j;
1143
1144 if (lu == NULL)
1145 continue;
1146 /* Check default matches a type we sent */
1147 for (j = 0; j < sent_sigslen; j++) {
1148 if (lu->sigalg == sent_sigs[j]) {
1149 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN;
1150 break;
1151 }
1152 }
1153 }
1154 return 1;
1155 }
1156
1157 if (!tls1_process_sigalgs(s)) {
1158 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
1159 al = SSL_AD_INTERNAL_ERROR;
1160 goto err;
1161 }
1162 if (s->cert->shared_sigalgs != NULL)
1163 return 1;
1164 /* Fatal error if no shared signature algorithms */
1165 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1166 al = SSL_AD_HANDSHAKE_FAILURE;
1167 err:
1168 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1169 return 0;
1170 }
1171
1172 /*-
1173 * Gets the ticket information supplied by the client if any.
1174 *
1175 * hello: The parsed ClientHello data
1176 * ret: (output) on return, if a ticket was decrypted, then this is set to
1177 * point to the resulting session.
1178 *
1179 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
1180 * ciphersuite, in which case we have no use for session tickets and one will
1181 * never be decrypted, nor will s->ext.ticket_expected be set to 1.
1182 *
1183 * Returns:
1184 * -1: fatal error, either from parsing or decrypting the ticket.
1185 * 0: no ticket was found (or was ignored, based on settings).
1186 * 1: a zero length extension was found, indicating that the client supports
1187 * session tickets but doesn't currently have one to offer.
1188 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
1189 * couldn't be decrypted because of a non-fatal error.
1190 * 3: a ticket was successfully decrypted and *ret was set.
1191 *
1192 * Side effects:
1193 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1194 * a new session ticket to the client because the client indicated support
1195 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1196 * a session ticket or we couldn't use the one it gave us, or if
1197 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1198 * Otherwise, s->ext.ticket_expected is set to 0.
1199 */
1200 TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1201 SSL_SESSION **ret)
1202 {
1203 int retv;
1204 size_t size;
1205 RAW_EXTENSION *ticketext;
1206
1207 *ret = NULL;
1208 s->ext.ticket_expected = 0;
1209
1210 /*
1211 * If tickets disabled or not supported by the protocol version
1212 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1213 * resumption.
1214 */
1215 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1216 return TICKET_NONE;
1217
1218 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1219 if (!ticketext->present)
1220 return TICKET_NONE;
1221
1222 size = PACKET_remaining(&ticketext->data);
1223 if (size == 0) {
1224 /*
1225 * The client will accept a ticket but doesn't currently have
1226 * one.
1227 */
1228 s->ext.ticket_expected = 1;
1229 return TICKET_EMPTY;
1230 }
1231 if (s->ext.session_secret_cb) {
1232 /*
1233 * Indicate that the ticket couldn't be decrypted rather than
1234 * generating the session from ticket now, trigger
1235 * abbreviated handshake based on external mechanism to
1236 * calculate the master secret later.
1237 */
1238 return TICKET_NO_DECRYPT;
1239 }
1240
1241 retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1242 hello->session_id, hello->session_id_len, ret);
1243 switch (retv) {
1244 case TICKET_NO_DECRYPT:
1245 s->ext.ticket_expected = 1;
1246 return TICKET_NO_DECRYPT;
1247
1248 case TICKET_SUCCESS:
1249 return TICKET_SUCCESS;
1250
1251 case TICKET_SUCCESS_RENEW:
1252 s->ext.ticket_expected = 1;
1253 return TICKET_SUCCESS;
1254
1255 default:
1256 return TICKET_FATAL_ERR_OTHER;
1257 }
1258 }
1259
1260 /*-
1261 * tls_decrypt_ticket attempts to decrypt a session ticket.
1262 *
1263 * etick: points to the body of the session ticket extension.
1264 * eticklen: the length of the session tickets extension.
1265 * sess_id: points at the session ID.
1266 * sesslen: the length of the session ID.
1267 * psess: (output) on return, if a ticket was decrypted, then this is set to
1268 * point to the resulting session.
1269 */
1270 TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1271 size_t eticklen, const unsigned char *sess_id,
1272 size_t sesslen, SSL_SESSION **psess)
1273 {
1274 SSL_SESSION *sess;
1275 unsigned char *sdec;
1276 const unsigned char *p;
1277 int slen, renew_ticket = 0, declen;
1278 TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER;
1279 size_t mlen;
1280 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1281 HMAC_CTX *hctx = NULL;
1282 EVP_CIPHER_CTX *ctx;
1283 SSL_CTX *tctx = s->session_ctx;
1284
1285 /* Initialize session ticket encryption and HMAC contexts */
1286 hctx = HMAC_CTX_new();
1287 if (hctx == NULL)
1288 return TICKET_FATAL_ERR_MALLOC;
1289 ctx = EVP_CIPHER_CTX_new();
1290 if (ctx == NULL) {
1291 ret = TICKET_FATAL_ERR_MALLOC;
1292 goto err;
1293 }
1294 if (tctx->ext.ticket_key_cb) {
1295 unsigned char *nctick = (unsigned char *)etick;
1296 int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
1297 ctx, hctx, 0);
1298 if (rv < 0)
1299 goto err;
1300 if (rv == 0) {
1301 ret = TICKET_NO_DECRYPT;
1302 goto err;
1303 }
1304 if (rv == 2)
1305 renew_ticket = 1;
1306 } else {
1307 /* Check key name matches */
1308 if (memcmp(etick, tctx->ext.tick_key_name,
1309 sizeof(tctx->ext.tick_key_name)) != 0) {
1310 ret = TICKET_NO_DECRYPT;
1311 goto err;
1312 }
1313 if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
1314 sizeof(tctx->ext.tick_hmac_key),
1315 EVP_sha256(), NULL) <= 0
1316 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1317 tctx->ext.tick_aes_key,
1318 etick
1319 + sizeof(tctx->ext.tick_key_name)) <= 0) {
1320 goto err;
1321 }
1322 }
1323 /*
1324 * Attempt to process session ticket, first conduct sanity and integrity
1325 * checks on ticket.
1326 */
1327 mlen = HMAC_size(hctx);
1328 if (mlen == 0) {
1329 goto err;
1330 }
1331 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1332 if (eticklen <=
1333 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1334 ret = TICKET_NO_DECRYPT;
1335 goto err;
1336 }
1337 eticklen -= mlen;
1338 /* Check HMAC of encrypted ticket */
1339 if (HMAC_Update(hctx, etick, eticklen) <= 0
1340 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1341 goto err;
1342 }
1343 HMAC_CTX_free(hctx);
1344 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1345 EVP_CIPHER_CTX_free(ctx);
1346 return TICKET_NO_DECRYPT;
1347 }
1348 /* Attempt to decrypt session data */
1349 /* Move p after IV to start of encrypted ticket, update length */
1350 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1351 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1352 sdec = OPENSSL_malloc(eticklen);
1353 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1354 (int)eticklen) <= 0) {
1355 EVP_CIPHER_CTX_free(ctx);
1356 OPENSSL_free(sdec);
1357 return TICKET_FATAL_ERR_OTHER;
1358 }
1359 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1360 EVP_CIPHER_CTX_free(ctx);
1361 OPENSSL_free(sdec);
1362 return TICKET_NO_DECRYPT;
1363 }
1364 slen += declen;
1365 EVP_CIPHER_CTX_free(ctx);
1366 ctx = NULL;
1367 p = sdec;
1368
1369 sess = d2i_SSL_SESSION(NULL, &p, slen);
1370 slen -= p - sdec;
1371 OPENSSL_free(sdec);
1372 if (sess) {
1373 /* Some additional consistency checks */
1374 if (slen != 0 || sess->session_id_length != 0) {
1375 SSL_SESSION_free(sess);
1376 return TICKET_NO_DECRYPT;
1377 }
1378 /*
1379 * The session ID, if non-empty, is used by some clients to detect
1380 * that the ticket has been accepted. So we copy it to the session
1381 * structure. If it is empty set length to zero as required by
1382 * standard.
1383 */
1384 if (sesslen)
1385 memcpy(sess->session_id, sess_id, sesslen);
1386 sess->session_id_length = sesslen;
1387 *psess = sess;
1388 if (renew_ticket)
1389 return TICKET_SUCCESS_RENEW;
1390 else
1391 return TICKET_SUCCESS;
1392 }
1393 ERR_clear_error();
1394 /*
1395 * For session parse failure, indicate that we need to send a new ticket.
1396 */
1397 return TICKET_NO_DECRYPT;
1398 err:
1399 EVP_CIPHER_CTX_free(ctx);
1400 HMAC_CTX_free(hctx);
1401 return ret;
1402 }
1403
1404 /* Check to see if a signature algorithm is allowed */
1405 static int tls12_sigalg_allowed(SSL *s, int op, const SIGALG_LOOKUP *lu)
1406 {
1407 unsigned char sigalgstr[2];
1408 int secbits;
1409
1410 /* See if sigalgs is recognised and if hash is enabled */
1411 if (!tls1_lookup_md(lu, NULL))
1412 return 0;
1413 /* DSA is not allowed in TLS 1.3 */
1414 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1415 return 0;
1416 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
1417 if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION
1418 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
1419 || lu->hash_idx == SSL_MD_MD5_IDX
1420 || lu->hash_idx == SSL_MD_SHA224_IDX))
1421 return 0;
1422 /* See if public key algorithm allowed */
1423 if (ssl_cert_is_disabled(lu->sig_idx))
1424 return 0;
1425 if (lu->hash == NID_undef)
1426 return 1;
1427 /* Security bits: half digest bits */
1428 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1429 /* Finally see if security callback allows it */
1430 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1431 sigalgstr[1] = lu->sigalg & 0xff;
1432 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1433 }
1434
1435 /*
1436 * Get a mask of disabled public key algorithms based on supported signature
1437 * algorithms. For example if no signature algorithm supports RSA then RSA is
1438 * disabled.
1439 */
1440
1441 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1442 {
1443 const uint16_t *sigalgs;
1444 size_t i, sigalgslen;
1445 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
1446 /*
1447 * Go through all signature algorithms seeing if we support any
1448 * in disabled_mask.
1449 */
1450 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1451 for (i = 0; i < sigalgslen; i ++, sigalgs++) {
1452 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1453 const SSL_CERT_LOOKUP *clu;
1454
1455 if (lu == NULL)
1456 continue;
1457
1458 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
1459
1460 /* If algorithm is disabled see if we can enable it */
1461 if ((clu->amask & disabled_mask) != 0
1462 && tls12_sigalg_allowed(s, op, lu))
1463 disabled_mask &= ~clu->amask;
1464 }
1465 *pmask_a |= disabled_mask;
1466 }
1467
1468 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1469 const uint16_t *psig, size_t psiglen)
1470 {
1471 size_t i;
1472 int rv = 0;
1473
1474 for (i = 0; i < psiglen; i++, psig++) {
1475 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1476
1477 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1478 continue;
1479 if (!WPACKET_put_bytes_u16(pkt, *psig))
1480 return 0;
1481 /*
1482 * If TLS 1.3 must have at least one valid TLS 1.3 message
1483 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1484 */
1485 if (rv == 0 && (!SSL_IS_TLS13(s)
1486 || (lu->sig != EVP_PKEY_RSA
1487 && lu->hash != NID_sha1
1488 && lu->hash != NID_sha224)))
1489 rv = 1;
1490 }
1491 if (rv == 0)
1492 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1493 return rv;
1494 }
1495
1496 /* Given preference and allowed sigalgs set shared sigalgs */
1497 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1498 const uint16_t *pref, size_t preflen,
1499 const uint16_t *allow, size_t allowlen)
1500 {
1501 const uint16_t *ptmp, *atmp;
1502 size_t i, j, nmatch = 0;
1503 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1504 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1505
1506 /* Skip disabled hashes or signature algorithms */
1507 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1508 continue;
1509 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1510 if (*ptmp == *atmp) {
1511 nmatch++;
1512 if (shsig)
1513 *shsig++ = lu;
1514 break;
1515 }
1516 }
1517 }
1518 return nmatch;
1519 }
1520
1521 /* Set shared signature algorithms for SSL structures */
1522 static int tls1_set_shared_sigalgs(SSL *s)
1523 {
1524 const uint16_t *pref, *allow, *conf;
1525 size_t preflen, allowlen, conflen;
1526 size_t nmatch;
1527 const SIGALG_LOOKUP **salgs = NULL;
1528 CERT *c = s->cert;
1529 unsigned int is_suiteb = tls1_suiteb(s);
1530
1531 OPENSSL_free(c->shared_sigalgs);
1532 c->shared_sigalgs = NULL;
1533 c->shared_sigalgslen = 0;
1534 /* If client use client signature algorithms if not NULL */
1535 if (!s->server && c->client_sigalgs && !is_suiteb) {
1536 conf = c->client_sigalgs;
1537 conflen = c->client_sigalgslen;
1538 } else if (c->conf_sigalgs && !is_suiteb) {
1539 conf = c->conf_sigalgs;
1540 conflen = c->conf_sigalgslen;
1541 } else
1542 conflen = tls12_get_psigalgs(s, 0, &conf);
1543 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1544 pref = conf;
1545 preflen = conflen;
1546 allow = s->s3->tmp.peer_sigalgs;
1547 allowlen = s->s3->tmp.peer_sigalgslen;
1548 } else {
1549 allow = conf;
1550 allowlen = conflen;
1551 pref = s->s3->tmp.peer_sigalgs;
1552 preflen = s->s3->tmp.peer_sigalgslen;
1553 }
1554 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1555 if (nmatch) {
1556 salgs = OPENSSL_malloc(nmatch * sizeof(*salgs));
1557 if (salgs == NULL)
1558 return 0;
1559 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1560 } else {
1561 salgs = NULL;
1562 }
1563 c->shared_sigalgs = salgs;
1564 c->shared_sigalgslen = nmatch;
1565 return 1;
1566 }
1567
1568 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
1569 {
1570 unsigned int stmp;
1571 size_t size, i;
1572 uint16_t *buf;
1573
1574 size = PACKET_remaining(pkt);
1575
1576 /* Invalid data length */
1577 if (size == 0 || (size & 1) != 0)
1578 return 0;
1579
1580 size >>= 1;
1581
1582 buf = OPENSSL_malloc(size * sizeof(*buf));
1583 if (buf == NULL)
1584 return 0;
1585 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1586 buf[i] = stmp;
1587
1588 if (i != size) {
1589 OPENSSL_free(buf);
1590 return 0;
1591 }
1592
1593 OPENSSL_free(*pdest);
1594 *pdest = buf;
1595 *pdestlen = size;
1596
1597 return 1;
1598 }
1599
1600 int tls1_save_sigalgs(SSL *s, PACKET *pkt)
1601 {
1602 /* Extension ignored for inappropriate versions */
1603 if (!SSL_USE_SIGALGS(s))
1604 return 1;
1605 /* Should never happen */
1606 if (s->cert == NULL)
1607 return 0;
1608
1609 return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs,
1610 &s->s3->tmp.peer_sigalgslen);
1611
1612 return 1;
1613 }
1614
1615 /* Set preferred digest for each key type */
1616
1617 int tls1_process_sigalgs(SSL *s)
1618 {
1619 size_t i;
1620 uint32_t *pvalid = s->s3->tmp.valid_flags;
1621 CERT *c = s->cert;
1622
1623 if (!tls1_set_shared_sigalgs(s))
1624 return 0;
1625
1626 for (i = 0; i < SSL_PKEY_NUM; i++)
1627 pvalid[i] = 0;
1628
1629 for (i = 0; i < c->shared_sigalgslen; i++) {
1630 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
1631 int idx = sigptr->sig_idx;
1632
1633 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1634 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1635 continue;
1636 /* If not disabled indicate we can explicitly sign */
1637 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
1638 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1639 }
1640 return 1;
1641 }
1642
1643 int SSL_get_sigalgs(SSL *s, int idx,
1644 int *psign, int *phash, int *psignhash,
1645 unsigned char *rsig, unsigned char *rhash)
1646 {
1647 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1648 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1649 if (psig == NULL || numsigalgs > INT_MAX)
1650 return 0;
1651 if (idx >= 0) {
1652 const SIGALG_LOOKUP *lu;
1653
1654 if (idx >= (int)numsigalgs)
1655 return 0;
1656 psig += idx;
1657 if (rhash != NULL)
1658 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1659 if (rsig != NULL)
1660 *rsig = (unsigned char)(*psig & 0xff);
1661 lu = tls1_lookup_sigalg(*psig);
1662 if (psign != NULL)
1663 *psign = lu != NULL ? lu->sig : NID_undef;
1664 if (phash != NULL)
1665 *phash = lu != NULL ? lu->hash : NID_undef;
1666 if (psignhash != NULL)
1667 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1668 }
1669 return (int)numsigalgs;
1670 }
1671
1672 int SSL_get_shared_sigalgs(SSL *s, int idx,
1673 int *psign, int *phash, int *psignhash,
1674 unsigned char *rsig, unsigned char *rhash)
1675 {
1676 const SIGALG_LOOKUP *shsigalgs;
1677 if (s->cert->shared_sigalgs == NULL
1678 || idx < 0
1679 || idx >= (int)s->cert->shared_sigalgslen
1680 || s->cert->shared_sigalgslen > INT_MAX)
1681 return 0;
1682 shsigalgs = s->cert->shared_sigalgs[idx];
1683 if (phash != NULL)
1684 *phash = shsigalgs->hash;
1685 if (psign != NULL)
1686 *psign = shsigalgs->sig;
1687 if (psignhash != NULL)
1688 *psignhash = shsigalgs->sigandhash;
1689 if (rsig != NULL)
1690 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1691 if (rhash != NULL)
1692 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1693 return (int)s->cert->shared_sigalgslen;
1694 }
1695
1696 /* Maximum possible number of unique entries in sigalgs array */
1697 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1698
1699 typedef struct {
1700 size_t sigalgcnt;
1701 int sigalgs[TLS_MAX_SIGALGCNT];
1702 } sig_cb_st;
1703
1704 static void get_sigorhash(int *psig, int *phash, const char *str)
1705 {
1706 if (strcmp(str, "RSA") == 0) {
1707 *psig = EVP_PKEY_RSA;
1708 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1709 *psig = EVP_PKEY_RSA_PSS;
1710 } else if (strcmp(str, "DSA") == 0) {
1711 *psig = EVP_PKEY_DSA;
1712 } else if (strcmp(str, "ECDSA") == 0) {
1713 *psig = EVP_PKEY_EC;
1714 } else {
1715 *phash = OBJ_sn2nid(str);
1716 if (*phash == NID_undef)
1717 *phash = OBJ_ln2nid(str);
1718 }
1719 }
1720 /* Maximum length of a signature algorithm string component */
1721 #define TLS_MAX_SIGSTRING_LEN 40
1722
1723 static int sig_cb(const char *elem, int len, void *arg)
1724 {
1725 sig_cb_st *sarg = arg;
1726 size_t i;
1727 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1728 int sig_alg = NID_undef, hash_alg = NID_undef;
1729 if (elem == NULL)
1730 return 0;
1731 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1732 return 0;
1733 if (len > (int)(sizeof(etmp) - 1))
1734 return 0;
1735 memcpy(etmp, elem, len);
1736 etmp[len] = 0;
1737 p = strchr(etmp, '+');
1738 /* See if we have a match for TLS 1.3 names */
1739 if (p == NULL) {
1740 const SIGALG_LOOKUP *s;
1741
1742 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1743 i++, s++) {
1744 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1745 sig_alg = s->sig;
1746 hash_alg = s->hash;
1747 break;
1748 }
1749 }
1750 } else {
1751 *p = 0;
1752 p++;
1753 if (*p == 0)
1754 return 0;
1755 get_sigorhash(&sig_alg, &hash_alg, etmp);
1756 get_sigorhash(&sig_alg, &hash_alg, p);
1757 }
1758
1759 if (sig_alg == NID_undef || (p != NULL && hash_alg == NID_undef))
1760 return 0;
1761
1762 for (i = 0; i < sarg->sigalgcnt; i += 2) {
1763 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
1764 return 0;
1765 }
1766 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
1767 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
1768 return 1;
1769 }
1770
1771 /*
1772 * Set supported signature algorithms based on a colon separated list of the
1773 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1774 */
1775 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1776 {
1777 sig_cb_st sig;
1778 sig.sigalgcnt = 0;
1779 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1780 return 0;
1781 if (c == NULL)
1782 return 1;
1783 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
1784 }
1785
1786 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
1787 {
1788 uint16_t *sigalgs, *sptr;
1789 size_t i;
1790
1791 if (salglen & 1)
1792 return 0;
1793 sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs));
1794 if (sigalgs == NULL)
1795 return 0;
1796 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
1797 size_t j;
1798 const SIGALG_LOOKUP *curr;
1799 int md_id = *psig_nids++;
1800 int sig_id = *psig_nids++;
1801
1802 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
1803 j++, curr++) {
1804 if (curr->hash == md_id && curr->sig == sig_id) {
1805 *sptr++ = curr->sigalg;
1806 break;
1807 }
1808 }
1809
1810 if (j == OSSL_NELEM(sigalg_lookup_tbl))
1811 goto err;
1812 }
1813
1814 if (client) {
1815 OPENSSL_free(c->client_sigalgs);
1816 c->client_sigalgs = sigalgs;
1817 c->client_sigalgslen = salglen / 2;
1818 } else {
1819 OPENSSL_free(c->conf_sigalgs);
1820 c->conf_sigalgs = sigalgs;
1821 c->conf_sigalgslen = salglen / 2;
1822 }
1823
1824 return 1;
1825
1826 err:
1827 OPENSSL_free(sigalgs);
1828 return 0;
1829 }
1830
1831 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
1832 {
1833 int sig_nid;
1834 size_t i;
1835 if (default_nid == -1)
1836 return 1;
1837 sig_nid = X509_get_signature_nid(x);
1838 if (default_nid)
1839 return sig_nid == default_nid ? 1 : 0;
1840 for (i = 0; i < c->shared_sigalgslen; i++)
1841 if (sig_nid == c->shared_sigalgs[i]->sigandhash)
1842 return 1;
1843 return 0;
1844 }
1845
1846 /* Check to see if a certificate issuer name matches list of CA names */
1847 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
1848 {
1849 X509_NAME *nm;
1850 int i;
1851 nm = X509_get_issuer_name(x);
1852 for (i = 0; i < sk_X509_NAME_num(names); i++) {
1853 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
1854 return 1;
1855 }
1856 return 0;
1857 }
1858
1859 /*
1860 * Check certificate chain is consistent with TLS extensions and is usable by
1861 * server. This servers two purposes: it allows users to check chains before
1862 * passing them to the server and it allows the server to check chains before
1863 * attempting to use them.
1864 */
1865
1866 /* Flags which need to be set for a certificate when strict mode not set */
1867
1868 #define CERT_PKEY_VALID_FLAGS \
1869 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
1870 /* Strict mode flags */
1871 #define CERT_PKEY_STRICT_FLAGS \
1872 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
1873 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
1874
1875 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
1876 int idx)
1877 {
1878 int i;
1879 int rv = 0;
1880 int check_flags = 0, strict_mode;
1881 CERT_PKEY *cpk = NULL;
1882 CERT *c = s->cert;
1883 uint32_t *pvalid;
1884 unsigned int suiteb_flags = tls1_suiteb(s);
1885 /* idx == -1 means checking server chains */
1886 if (idx != -1) {
1887 /* idx == -2 means checking client certificate chains */
1888 if (idx == -2) {
1889 cpk = c->key;
1890 idx = (int)(cpk - c->pkeys);
1891 } else
1892 cpk = c->pkeys + idx;
1893 pvalid = s->s3->tmp.valid_flags + idx;
1894 x = cpk->x509;
1895 pk = cpk->privatekey;
1896 chain = cpk->chain;
1897 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
1898 /* If no cert or key, forget it */
1899 if (!x || !pk)
1900 goto end;
1901 } else {
1902 size_t certidx;
1903
1904 if (!x || !pk)
1905 return 0;
1906
1907 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
1908 return 0;
1909 idx = certidx;
1910 pvalid = s->s3->tmp.valid_flags + idx;
1911
1912 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1913 check_flags = CERT_PKEY_STRICT_FLAGS;
1914 else
1915 check_flags = CERT_PKEY_VALID_FLAGS;
1916 strict_mode = 1;
1917 }
1918
1919 if (suiteb_flags) {
1920 int ok;
1921 if (check_flags)
1922 check_flags |= CERT_PKEY_SUITEB;
1923 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
1924 if (ok == X509_V_OK)
1925 rv |= CERT_PKEY_SUITEB;
1926 else if (!check_flags)
1927 goto end;
1928 }
1929
1930 /*
1931 * Check all signature algorithms are consistent with signature
1932 * algorithms extension if TLS 1.2 or later and strict mode.
1933 */
1934 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
1935 int default_nid;
1936 int rsign = 0;
1937 if (s->s3->tmp.peer_sigalgs)
1938 default_nid = 0;
1939 /* If no sigalgs extension use defaults from RFC5246 */
1940 else {
1941 switch (idx) {
1942 case SSL_PKEY_RSA:
1943 rsign = EVP_PKEY_RSA;
1944 default_nid = NID_sha1WithRSAEncryption;
1945 break;
1946
1947 case SSL_PKEY_DSA_SIGN:
1948 rsign = EVP_PKEY_DSA;
1949 default_nid = NID_dsaWithSHA1;
1950 break;
1951
1952 case SSL_PKEY_ECC:
1953 rsign = EVP_PKEY_EC;
1954 default_nid = NID_ecdsa_with_SHA1;
1955 break;
1956
1957 case SSL_PKEY_GOST01:
1958 rsign = NID_id_GostR3410_2001;
1959 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
1960 break;
1961
1962 case SSL_PKEY_GOST12_256:
1963 rsign = NID_id_GostR3410_2012_256;
1964 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
1965 break;
1966
1967 case SSL_PKEY_GOST12_512:
1968 rsign = NID_id_GostR3410_2012_512;
1969 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
1970 break;
1971
1972 default:
1973 default_nid = -1;
1974 break;
1975 }
1976 }
1977 /*
1978 * If peer sent no signature algorithms extension and we have set
1979 * preferred signature algorithms check we support sha1.
1980 */
1981 if (default_nid > 0 && c->conf_sigalgs) {
1982 size_t j;
1983 const uint16_t *p = c->conf_sigalgs;
1984 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
1985 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
1986
1987 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
1988 break;
1989 }
1990 if (j == c->conf_sigalgslen) {
1991 if (check_flags)
1992 goto skip_sigs;
1993 else
1994 goto end;
1995 }
1996 }
1997 /* Check signature algorithm of each cert in chain */
1998 if (!tls1_check_sig_alg(c, x, default_nid)) {
1999 if (!check_flags)
2000 goto end;
2001 } else
2002 rv |= CERT_PKEY_EE_SIGNATURE;
2003 rv |= CERT_PKEY_CA_SIGNATURE;
2004 for (i = 0; i < sk_X509_num(chain); i++) {
2005 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2006 if (check_flags) {
2007 rv &= ~CERT_PKEY_CA_SIGNATURE;
2008 break;
2009 } else
2010 goto end;
2011 }
2012 }
2013 }
2014 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2015 else if (check_flags)
2016 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2017 skip_sigs:
2018 /* Check cert parameters are consistent */
2019 if (tls1_check_cert_param(s, x, 1))
2020 rv |= CERT_PKEY_EE_PARAM;
2021 else if (!check_flags)
2022 goto end;
2023 if (!s->server)
2024 rv |= CERT_PKEY_CA_PARAM;
2025 /* In strict mode check rest of chain too */
2026 else if (strict_mode) {
2027 rv |= CERT_PKEY_CA_PARAM;
2028 for (i = 0; i < sk_X509_num(chain); i++) {
2029 X509 *ca = sk_X509_value(chain, i);
2030 if (!tls1_check_cert_param(s, ca, 0)) {
2031 if (check_flags) {
2032 rv &= ~CERT_PKEY_CA_PARAM;
2033 break;
2034 } else
2035 goto end;
2036 }
2037 }
2038 }
2039 if (!s->server && strict_mode) {
2040 STACK_OF(X509_NAME) *ca_dn;
2041 int check_type = 0;
2042 switch (EVP_PKEY_id(pk)) {
2043 case EVP_PKEY_RSA:
2044 check_type = TLS_CT_RSA_SIGN;
2045 break;
2046 case EVP_PKEY_DSA:
2047 check_type = TLS_CT_DSS_SIGN;
2048 break;
2049 case EVP_PKEY_EC:
2050 check_type = TLS_CT_ECDSA_SIGN;
2051 break;
2052 }
2053 if (check_type) {
2054 const uint8_t *ctypes = s->s3->tmp.ctype;
2055 size_t j;
2056
2057 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) {
2058 if (*ctypes == check_type) {
2059 rv |= CERT_PKEY_CERT_TYPE;
2060 break;
2061 }
2062 }
2063 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2064 goto end;
2065 } else {
2066 rv |= CERT_PKEY_CERT_TYPE;
2067 }
2068
2069 ca_dn = s->s3->tmp.peer_ca_names;
2070
2071 if (!sk_X509_NAME_num(ca_dn))
2072 rv |= CERT_PKEY_ISSUER_NAME;
2073
2074 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2075 if (ssl_check_ca_name(ca_dn, x))
2076 rv |= CERT_PKEY_ISSUER_NAME;
2077 }
2078 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2079 for (i = 0; i < sk_X509_num(chain); i++) {
2080 X509 *xtmp = sk_X509_value(chain, i);
2081 if (ssl_check_ca_name(ca_dn, xtmp)) {
2082 rv |= CERT_PKEY_ISSUER_NAME;
2083 break;
2084 }
2085 }
2086 }
2087 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2088 goto end;
2089 } else
2090 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2091
2092 if (!check_flags || (rv & check_flags) == check_flags)
2093 rv |= CERT_PKEY_VALID;
2094
2095 end:
2096
2097 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2098 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2099 else
2100 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2101
2102 /*
2103 * When checking a CERT_PKEY structure all flags are irrelevant if the
2104 * chain is invalid.
2105 */
2106 if (!check_flags) {
2107 if (rv & CERT_PKEY_VALID) {
2108 *pvalid = rv;
2109 } else {
2110 /* Preserve sign and explicit sign flag, clear rest */
2111 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2112 return 0;
2113 }
2114 }
2115 return rv;
2116 }
2117
2118 /* Set validity of certificates in an SSL structure */
2119 void tls1_set_cert_validity(SSL *s)
2120 {
2121 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2122 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2123 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2124 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2125 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2126 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2127 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2128 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2129 }
2130
2131 /* User level utility function to check a chain is suitable */
2132 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2133 {
2134 return tls1_check_chain(s, x, pk, chain, -1);
2135 }
2136
2137 #ifndef OPENSSL_NO_DH
2138 DH *ssl_get_auto_dh(SSL *s)
2139 {
2140 int dh_secbits = 80;
2141 if (s->cert->dh_tmp_auto == 2)
2142 return DH_get_1024_160();
2143 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2144 if (s->s3->tmp.new_cipher->strength_bits == 256)
2145 dh_secbits = 128;
2146 else
2147 dh_secbits = 80;
2148 } else {
2149 if (s->s3->tmp.cert == NULL)
2150 return NULL;
2151 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
2152 }
2153
2154 if (dh_secbits >= 128) {
2155 DH *dhp = DH_new();
2156 BIGNUM *p, *g;
2157 if (dhp == NULL)
2158 return NULL;
2159 g = BN_new();
2160 if (g != NULL)
2161 BN_set_word(g, 2);
2162 if (dh_secbits >= 192)
2163 p = BN_get_rfc3526_prime_8192(NULL);
2164 else
2165 p = BN_get_rfc3526_prime_3072(NULL);
2166 if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2167 DH_free(dhp);
2168 BN_free(p);
2169 BN_free(g);
2170 return NULL;
2171 }
2172 return dhp;
2173 }
2174 if (dh_secbits >= 112)
2175 return DH_get_2048_224();
2176 return DH_get_1024_160();
2177 }
2178 #endif
2179
2180 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2181 {
2182 int secbits = -1;
2183 EVP_PKEY *pkey = X509_get0_pubkey(x);
2184 if (pkey) {
2185 /*
2186 * If no parameters this will return -1 and fail using the default
2187 * security callback for any non-zero security level. This will
2188 * reject keys which omit parameters but this only affects DSA and
2189 * omission of parameters is never (?) done in practice.
2190 */
2191 secbits = EVP_PKEY_security_bits(pkey);
2192 }
2193 if (s)
2194 return ssl_security(s, op, secbits, 0, x);
2195 else
2196 return ssl_ctx_security(ctx, op, secbits, 0, x);
2197 }
2198
2199 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2200 {
2201 /* Lookup signature algorithm digest */
2202 int secbits, nid, pknid;
2203 /* Don't check signature if self signed */
2204 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2205 return 1;
2206 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2207 secbits = -1;
2208 /* If digest NID not defined use signature NID */
2209 if (nid == NID_undef)
2210 nid = pknid;
2211 if (s)
2212 return ssl_security(s, op, secbits, nid, x);
2213 else
2214 return ssl_ctx_security(ctx, op, secbits, nid, x);
2215 }
2216
2217 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2218 {
2219 if (vfy)
2220 vfy = SSL_SECOP_PEER;
2221 if (is_ee) {
2222 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2223 return SSL_R_EE_KEY_TOO_SMALL;
2224 } else {
2225 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2226 return SSL_R_CA_KEY_TOO_SMALL;
2227 }
2228 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2229 return SSL_R_CA_MD_TOO_WEAK;
2230 return 1;
2231 }
2232
2233 /*
2234 * Check security of a chain, if |sk| includes the end entity certificate then
2235 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2236 * one to the peer. Return values: 1 if ok otherwise error code to use
2237 */
2238
2239 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2240 {
2241 int rv, start_idx, i;
2242 if (x == NULL) {
2243 x = sk_X509_value(sk, 0);
2244 start_idx = 1;
2245 } else
2246 start_idx = 0;
2247
2248 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2249 if (rv != 1)
2250 return rv;
2251
2252 for (i = start_idx; i < sk_X509_num(sk); i++) {
2253 x = sk_X509_value(sk, i);
2254 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2255 if (rv != 1)
2256 return rv;
2257 }
2258 return 1;
2259 }
2260
2261 /*
2262 * For TLS 1.2 servers check if we have a certificate which can be used
2263 * with the signature algorithm "lu" and return index of certificate.
2264 */
2265
2266 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
2267 {
2268 int sig_idx = lu->sig_idx;
2269 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
2270
2271 /* If not recognised or not supported by cipher mask it is not suitable */
2272 if (clu == NULL || !(clu->amask & s->s3->tmp.new_cipher->algorithm_auth))
2273 return -1;
2274
2275 /* If PSS and we have no PSS cert use RSA */
2276 if (sig_idx == SSL_PKEY_RSA_PSS_SIGN && !ssl_has_cert(s, sig_idx))
2277 sig_idx = SSL_PKEY_RSA;
2278
2279 return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
2280 }
2281
2282 /*
2283 * Choose an appropriate signature algorithm based on available certificates
2284 * Sets chosen certificate and signature algorithm.
2285 *
2286 * For servers if we fail to find a required certificate it is a fatal error
2287 * and an appropriate error code is set and the TLS alert set in *al.
2288 *
2289 * For clients al is set to NULL. If a certificate is not suitable it is not
2290 * a fatal error: we will either try another certificate or not present one
2291 * to the server. In this case no error is set.
2292 */
2293 int tls_choose_sigalg(SSL *s, int *al)
2294 {
2295 const SIGALG_LOOKUP *lu = NULL;
2296 int sig_idx = -1;
2297
2298 s->s3->tmp.cert = NULL;
2299 s->s3->tmp.sigalg = NULL;
2300
2301 if (SSL_IS_TLS13(s)) {
2302 size_t i;
2303 #ifndef OPENSSL_NO_EC
2304 int curve = -1, skip_ec = 0;
2305 #endif
2306
2307 /* Look for a certificate matching shared sigalgs */
2308 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2309 lu = s->cert->shared_sigalgs[i];
2310
2311 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2312 if (lu->hash == NID_sha1
2313 || lu->hash == NID_sha224
2314 || lu->sig == EVP_PKEY_DSA
2315 || lu->sig == EVP_PKEY_RSA)
2316 continue;
2317 if (!tls1_lookup_md(lu, NULL))
2318 continue;
2319 if (!ssl_has_cert(s, lu->sig_idx)) {
2320 if (lu->sig_idx != SSL_PKEY_RSA_PSS_SIGN
2321 || !ssl_has_cert(s, SSL_PKEY_RSA))
2322 continue;
2323 sig_idx = SSL_PKEY_RSA;
2324 }
2325 if (lu->sig == EVP_PKEY_EC) {
2326 #ifndef OPENSSL_NO_EC
2327 if (curve == -1) {
2328 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2329
2330 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2331 if (EC_KEY_get_conv_form(ec)
2332 != POINT_CONVERSION_UNCOMPRESSED)
2333 skip_ec = 1;
2334 }
2335 if (skip_ec || (lu->curve != NID_undef && curve != lu->curve))
2336 continue;
2337 #else
2338 continue;
2339 #endif
2340 }
2341 break;
2342 }
2343 if (i == s->cert->shared_sigalgslen) {
2344 if (al == NULL)
2345 return 1;
2346 *al = SSL_AD_HANDSHAKE_FAILURE;
2347 SSLerr(SSL_F_TLS_CHOOSE_SIGALG,
2348 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2349 return 0;
2350 }
2351 } else {
2352 /* If ciphersuite doesn't require a cert nothing to do */
2353 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT))
2354 return 1;
2355 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
2356 return 1;
2357
2358 if (SSL_USE_SIGALGS(s)) {
2359 if (s->s3->tmp.peer_sigalgs != NULL) {
2360 size_t i;
2361 #ifndef OPENSSL_NO_EC
2362 int curve;
2363
2364 /* For Suite B need to match signature algorithm to curve */
2365 if (tls1_suiteb(s)) {
2366 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
2367 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2368 } else {
2369 curve = -1;
2370 }
2371 #endif
2372
2373 /*
2374 * Find highest preference signature algorithm matching
2375 * cert type
2376 */
2377 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2378 lu = s->cert->shared_sigalgs[i];
2379
2380 if (s->server) {
2381 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
2382 continue;
2383 } else {
2384 int cc_idx = s->cert->key - s->cert->pkeys;
2385
2386 sig_idx = lu->sig_idx;
2387 if (cc_idx != sig_idx) {
2388 if (sig_idx != SSL_PKEY_RSA_PSS_SIGN
2389 || cc_idx != SSL_PKEY_RSA)
2390 continue;
2391 sig_idx = SSL_PKEY_RSA;
2392 }
2393 }
2394 #ifndef OPENSSL_NO_EC
2395 if (curve == -1 || lu->curve == curve)
2396 #endif
2397 break;
2398 }
2399 if (i == s->cert->shared_sigalgslen) {
2400 if (al == NULL)
2401 return 1;
2402 *al = SSL_AD_INTERNAL_ERROR;
2403 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2404 return 0;
2405 }
2406 } else {
2407 /*
2408 * If we have no sigalg use defaults
2409 */
2410 const uint16_t *sent_sigs;
2411 size_t sent_sigslen, i;
2412
2413 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2414 if (al == NULL)
2415 return 1;
2416 *al = SSL_AD_INTERNAL_ERROR;
2417 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2418 return 0;
2419 }
2420
2421 /* Check signature matches a type we sent */
2422 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2423 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2424 if (lu->sigalg == *sent_sigs)
2425 break;
2426 }
2427 if (i == sent_sigslen) {
2428 if (al == NULL)
2429 return 1;
2430 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
2431 *al = SSL_AD_ILLEGAL_PARAMETER;
2432 return 0;
2433 }
2434 }
2435 } else {
2436 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
2437 if (al == NULL)
2438 return 1;
2439 *al = SSL_AD_INTERNAL_ERROR;
2440 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2441 return 0;
2442 }
2443 }
2444 }
2445 if (sig_idx == -1)
2446 sig_idx = lu->sig_idx;
2447 s->s3->tmp.cert = &s->cert->pkeys[sig_idx];
2448 s->cert->key = s->s3->tmp.cert;
2449 s->s3->tmp.sigalg = lu;
2450 return 1;
2451 }