]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
Use CERT_PKEY pointer instead of index
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "ssl_locl.h"
21 #include <openssl/ct.h>
22
23 SSL3_ENC_METHOD const TLSv1_enc_data = {
24 tls1_enc,
25 tls1_mac,
26 tls1_setup_key_block,
27 tls1_generate_master_secret,
28 tls1_change_cipher_state,
29 tls1_final_finish_mac,
30 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
31 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
32 tls1_alert_code,
33 tls1_export_keying_material,
34 0,
35 ssl3_set_handshake_header,
36 tls_close_construct_packet,
37 ssl3_handshake_write
38 };
39
40 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
41 tls1_enc,
42 tls1_mac,
43 tls1_setup_key_block,
44 tls1_generate_master_secret,
45 tls1_change_cipher_state,
46 tls1_final_finish_mac,
47 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
48 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
49 tls1_alert_code,
50 tls1_export_keying_material,
51 SSL_ENC_FLAG_EXPLICIT_IV,
52 ssl3_set_handshake_header,
53 tls_close_construct_packet,
54 ssl3_handshake_write
55 };
56
57 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
58 tls1_enc,
59 tls1_mac,
60 tls1_setup_key_block,
61 tls1_generate_master_secret,
62 tls1_change_cipher_state,
63 tls1_final_finish_mac,
64 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
65 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
66 tls1_alert_code,
67 tls1_export_keying_material,
68 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
69 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
70 ssl3_set_handshake_header,
71 tls_close_construct_packet,
72 ssl3_handshake_write
73 };
74
75 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
76 tls13_enc,
77 tls1_mac,
78 tls13_setup_key_block,
79 tls13_generate_master_secret,
80 tls13_change_cipher_state,
81 tls13_final_finish_mac,
82 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
83 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
84 tls13_alert_code,
85 tls1_export_keying_material,
86 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
87 ssl3_set_handshake_header,
88 tls_close_construct_packet,
89 ssl3_handshake_write
90 };
91
92 long tls1_default_timeout(void)
93 {
94 /*
95 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
96 * http, the cache would over fill
97 */
98 return (60 * 60 * 2);
99 }
100
101 int tls1_new(SSL *s)
102 {
103 if (!ssl3_new(s))
104 return (0);
105 s->method->ssl_clear(s);
106 return (1);
107 }
108
109 void tls1_free(SSL *s)
110 {
111 OPENSSL_free(s->ext.session_ticket);
112 ssl3_free(s);
113 }
114
115 void tls1_clear(SSL *s)
116 {
117 ssl3_clear(s);
118 if (s->method->version == TLS_ANY_VERSION)
119 s->version = TLS_MAX_VERSION;
120 else
121 s->version = s->method->version;
122 }
123
124 #ifndef OPENSSL_NO_EC
125
126 typedef struct {
127 int nid; /* Curve NID */
128 int secbits; /* Bits of security (from SP800-57) */
129 unsigned int flags; /* Flags: currently just field type */
130 } tls_curve_info;
131
132 /*
133 * Table of curve information.
134 * Do not delete entries or reorder this array! It is used as a lookup
135 * table: the index of each entry is one less than the TLS curve id.
136 */
137 static const tls_curve_info nid_list[] = {
138 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
139 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
140 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
141 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
142 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
143 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
144 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
145 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
146 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
147 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
148 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
149 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
150 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
151 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
152 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
153 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
154 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
155 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
156 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
157 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
158 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
159 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
160 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
161 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
162 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
163 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
164 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
165 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
166 {NID_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
167 };
168
169 static const unsigned char ecformats_default[] = {
170 TLSEXT_ECPOINTFORMAT_uncompressed,
171 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
172 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
173 };
174
175 /* The default curves */
176 static const unsigned char eccurves_default[] = {
177 0, 29, /* X25519 (29) */
178 0, 23, /* secp256r1 (23) */
179 0, 25, /* secp521r1 (25) */
180 0, 24, /* secp384r1 (24) */
181 };
182
183 static const unsigned char suiteb_curves[] = {
184 0, TLSEXT_curve_P_256,
185 0, TLSEXT_curve_P_384
186 };
187
188 int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags)
189 {
190 const tls_curve_info *cinfo;
191 /* ECC curves from RFC 4492 and RFC 7027 */
192 if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
193 return 0;
194 cinfo = nid_list + curve_id - 1;
195 if (pflags)
196 *pflags = cinfo->flags;
197 return cinfo->nid;
198 }
199
200 int tls1_ec_nid2curve_id(int nid)
201 {
202 size_t i;
203 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
204 if (nid_list[i].nid == nid)
205 return (int)(i + 1);
206 }
207 return 0;
208 }
209
210 /*
211 * Get curves list, if "sess" is set return client curves otherwise
212 * preferred list.
213 * Sets |num_curves| to the number of curves in the list, i.e.,
214 * the length of |pcurves| is 2 * num_curves.
215 * Returns 1 on success and 0 if the client curves list has invalid format.
216 * The latter indicates an internal error: we should not be accepting such
217 * lists in the first place.
218 * TODO(emilia): we should really be storing the curves list in explicitly
219 * parsed form instead. (However, this would affect binary compatibility
220 * so cannot happen in the 1.0.x series.)
221 */
222 int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves,
223 size_t *num_curves)
224 {
225 size_t pcurveslen = 0;
226
227 if (sess) {
228 *pcurves = s->session->ext.supportedgroups;
229 pcurveslen = s->session->ext.supportedgroups_len;
230 } else {
231 /* For Suite B mode only include P-256, P-384 */
232 switch (tls1_suiteb(s)) {
233 case SSL_CERT_FLAG_SUITEB_128_LOS:
234 *pcurves = suiteb_curves;
235 pcurveslen = sizeof(suiteb_curves);
236 break;
237
238 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
239 *pcurves = suiteb_curves;
240 pcurveslen = 2;
241 break;
242
243 case SSL_CERT_FLAG_SUITEB_192_LOS:
244 *pcurves = suiteb_curves + 2;
245 pcurveslen = 2;
246 break;
247 default:
248 *pcurves = s->ext.supportedgroups;
249 pcurveslen = s->ext.supportedgroups_len;
250 }
251 if (!*pcurves) {
252 *pcurves = eccurves_default;
253 pcurveslen = sizeof(eccurves_default);
254 }
255 }
256
257 /* We do not allow odd length arrays to enter the system. */
258 if (pcurveslen & 1) {
259 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
260 *num_curves = 0;
261 return 0;
262 }
263 *num_curves = pcurveslen / 2;
264 return 1;
265 }
266
267 /* See if curve is allowed by security callback */
268 int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
269 {
270 const tls_curve_info *cinfo;
271 if (curve[0])
272 return 1;
273 if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
274 return 0;
275 cinfo = &nid_list[curve[1] - 1];
276 # ifdef OPENSSL_NO_EC2M
277 if (cinfo->flags & TLS_CURVE_CHAR2)
278 return 0;
279 # endif
280 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
281 }
282
283 /* Check a curve is one of our preferences */
284 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
285 {
286 const unsigned char *curves;
287 size_t num_curves, i;
288 unsigned int suiteb_flags = tls1_suiteb(s);
289 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
290 return 0;
291 /* Check curve matches Suite B preferences */
292 if (suiteb_flags) {
293 unsigned long cid = s->s3->tmp.new_cipher->id;
294 if (p[1])
295 return 0;
296 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
297 if (p[2] != TLSEXT_curve_P_256)
298 return 0;
299 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
300 if (p[2] != TLSEXT_curve_P_384)
301 return 0;
302 } else /* Should never happen */
303 return 0;
304 }
305 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
306 return 0;
307 for (i = 0; i < num_curves; i++, curves += 2) {
308 if (p[1] == curves[0] && p[2] == curves[1])
309 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
310 }
311 return 0;
312 }
313
314 /*-
315 * For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef
316 * if there is no match.
317 * For nmatch == -1, return number of matches
318 * For nmatch == -2, return the NID of the group to use for
319 * an EC tmp key, or NID_undef if there is no match.
320 */
321 int tls1_shared_group(SSL *s, int nmatch)
322 {
323 const unsigned char *pref, *supp;
324 size_t num_pref, num_supp, i, j;
325 int k;
326
327 /* Can't do anything on client side */
328 if (s->server == 0)
329 return -1;
330 if (nmatch == -2) {
331 if (tls1_suiteb(s)) {
332 /*
333 * For Suite B ciphersuite determines curve: we already know
334 * these are acceptable due to previous checks.
335 */
336 unsigned long cid = s->s3->tmp.new_cipher->id;
337
338 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
339 return NID_X9_62_prime256v1; /* P-256 */
340 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
341 return NID_secp384r1; /* P-384 */
342 /* Should never happen */
343 return NID_undef;
344 }
345 /* If not Suite B just return first preference shared curve */
346 nmatch = 0;
347 }
348 /*
349 * Avoid truncation. tls1_get_curvelist takes an int
350 * but s->options is a long...
351 */
352 if (!tls1_get_curvelist(s,
353 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
354 &supp, &num_supp))
355 /* In practice, NID_undef == 0 but let's be precise. */
356 return nmatch == -1 ? 0 : NID_undef;
357 if (!tls1_get_curvelist(s,
358 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0,
359 &pref, &num_pref))
360 return nmatch == -1 ? 0 : NID_undef;
361
362 for (k = 0, i = 0; i < num_pref; i++, pref += 2) {
363 const unsigned char *tsupp = supp;
364
365 for (j = 0; j < num_supp; j++, tsupp += 2) {
366 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
367 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
368 continue;
369 if (nmatch == k) {
370 int id = (pref[0] << 8) | pref[1];
371
372 return tls1_ec_curve_id2nid(id, NULL);
373 }
374 k++;
375 }
376 }
377 }
378 if (nmatch == -1)
379 return k;
380 /* Out of range (nmatch > k). */
381 return NID_undef;
382 }
383
384 int tls1_set_groups(unsigned char **pext, size_t *pextlen,
385 int *groups, size_t ngroups)
386 {
387 unsigned char *glist, *p;
388 size_t i;
389 /*
390 * Bitmap of groups included to detect duplicates: only works while group
391 * ids < 32
392 */
393 unsigned long dup_list = 0;
394 glist = OPENSSL_malloc(ngroups * 2);
395 if (glist == NULL)
396 return 0;
397 for (i = 0, p = glist; i < ngroups; i++) {
398 unsigned long idmask;
399 int id;
400 /* TODO(TLS1.3): Convert for DH groups */
401 id = tls1_ec_nid2curve_id(groups[i]);
402 idmask = 1L << id;
403 if (!id || (dup_list & idmask)) {
404 OPENSSL_free(glist);
405 return 0;
406 }
407 dup_list |= idmask;
408 s2n(id, p);
409 }
410 OPENSSL_free(*pext);
411 *pext = glist;
412 *pextlen = ngroups * 2;
413 return 1;
414 }
415
416 # define MAX_CURVELIST 28
417
418 typedef struct {
419 size_t nidcnt;
420 int nid_arr[MAX_CURVELIST];
421 } nid_cb_st;
422
423 static int nid_cb(const char *elem, int len, void *arg)
424 {
425 nid_cb_st *narg = arg;
426 size_t i;
427 int nid;
428 char etmp[20];
429 if (elem == NULL)
430 return 0;
431 if (narg->nidcnt == MAX_CURVELIST)
432 return 0;
433 if (len > (int)(sizeof(etmp) - 1))
434 return 0;
435 memcpy(etmp, elem, len);
436 etmp[len] = 0;
437 nid = EC_curve_nist2nid(etmp);
438 if (nid == NID_undef)
439 nid = OBJ_sn2nid(etmp);
440 if (nid == NID_undef)
441 nid = OBJ_ln2nid(etmp);
442 if (nid == NID_undef)
443 return 0;
444 for (i = 0; i < narg->nidcnt; i++)
445 if (narg->nid_arr[i] == nid)
446 return 0;
447 narg->nid_arr[narg->nidcnt++] = nid;
448 return 1;
449 }
450
451 /* Set groups based on a colon separate list */
452 int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str)
453 {
454 nid_cb_st ncb;
455 ncb.nidcnt = 0;
456 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
457 return 0;
458 if (pext == NULL)
459 return 1;
460 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
461 }
462
463 /* For an EC key set TLS id and required compression based on parameters */
464 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
465 EC_KEY *ec)
466 {
467 int id;
468 const EC_GROUP *grp;
469 if (!ec)
470 return 0;
471 /* Determine if it is a prime field */
472 grp = EC_KEY_get0_group(ec);
473 if (!grp)
474 return 0;
475 /* Determine curve ID */
476 id = EC_GROUP_get_curve_name(grp);
477 id = tls1_ec_nid2curve_id(id);
478 /* If no id return error: we don't support arbitrary explicit curves */
479 if (id == 0)
480 return 0;
481 curve_id[0] = 0;
482 curve_id[1] = (unsigned char)id;
483 if (comp_id) {
484 if (EC_KEY_get0_public_key(ec) == NULL)
485 return 0;
486 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
487 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
488 } else {
489 if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
490 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
491 else
492 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
493 }
494 }
495 return 1;
496 }
497
498 /* Check an EC key is compatible with extensions */
499 static int tls1_check_ec_key(SSL *s,
500 unsigned char *curve_id, unsigned char *comp_id)
501 {
502 const unsigned char *pformats, *pcurves;
503 size_t num_formats, num_curves, i;
504 int j;
505 /*
506 * If point formats extension present check it, otherwise everything is
507 * supported (see RFC4492).
508 */
509 if (comp_id && s->session->ext.ecpointformats) {
510 pformats = s->session->ext.ecpointformats;
511 num_formats = s->session->ext.ecpointformats_len;
512 for (i = 0; i < num_formats; i++, pformats++) {
513 if (*comp_id == *pformats)
514 break;
515 }
516 if (i == num_formats)
517 return 0;
518 }
519 if (!curve_id)
520 return 1;
521 /* Check curve is consistent with client and server preferences */
522 for (j = 0; j <= 1; j++) {
523 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
524 return 0;
525 if (j == 1 && num_curves == 0) {
526 /*
527 * If we've not received any curves then skip this check.
528 * RFC 4492 does not require the supported elliptic curves extension
529 * so if it is not sent we can just choose any curve.
530 * It is invalid to send an empty list in the elliptic curves
531 * extension, so num_curves == 0 always means no extension.
532 */
533 break;
534 }
535 for (i = 0; i < num_curves; i++, pcurves += 2) {
536 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
537 break;
538 }
539 if (i == num_curves)
540 return 0;
541 /* For clients can only check sent curve list */
542 if (!s->server)
543 break;
544 }
545 return 1;
546 }
547
548 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
549 size_t *num_formats)
550 {
551 /*
552 * If we have a custom point format list use it otherwise use default
553 */
554 if (s->ext.ecpointformats) {
555 *pformats = s->ext.ecpointformats;
556 *num_formats = s->ext.ecpointformats_len;
557 } else {
558 *pformats = ecformats_default;
559 /* For Suite B we don't support char2 fields */
560 if (tls1_suiteb(s))
561 *num_formats = sizeof(ecformats_default) - 1;
562 else
563 *num_formats = sizeof(ecformats_default);
564 }
565 }
566
567 /*
568 * Check cert parameters compatible with extensions: currently just checks EC
569 * certificates have compatible curves and compression.
570 */
571 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
572 {
573 unsigned char comp_id, curve_id[2];
574 EVP_PKEY *pkey;
575 int rv;
576 pkey = X509_get0_pubkey(x);
577 if (!pkey)
578 return 0;
579 /* If not EC nothing to do */
580 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
581 return 1;
582 rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
583 if (!rv)
584 return 0;
585 /*
586 * Can't check curve_id for client certs as we don't have a supported
587 * curves extension.
588 */
589 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
590 if (!rv)
591 return 0;
592 /*
593 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
594 * SHA384+P-384, adjust digest if necessary.
595 */
596 if (set_ee_md && tls1_suiteb(s)) {
597 int check_md;
598 size_t i;
599 CERT *c = s->cert;
600 if (curve_id[0])
601 return 0;
602 /* Check to see we have necessary signing algorithm */
603 if (curve_id[1] == TLSEXT_curve_P_256)
604 check_md = NID_ecdsa_with_SHA256;
605 else if (curve_id[1] == TLSEXT_curve_P_384)
606 check_md = NID_ecdsa_with_SHA384;
607 else
608 return 0; /* Should never happen */
609 for (i = 0; i < c->shared_sigalgslen; i++)
610 if (check_md == c->shared_sigalgs[i]->sigandhash)
611 break;
612 if (i == c->shared_sigalgslen)
613 return 0;
614 if (set_ee_md == 2) {
615 if (check_md == NID_ecdsa_with_SHA256)
616 s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha256();
617 else
618 s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha384();
619 }
620 }
621 return rv;
622 }
623
624 # ifndef OPENSSL_NO_EC
625 /*
626 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
627 * @s: SSL connection
628 * @cid: Cipher ID we're considering using
629 *
630 * Checks that the kECDHE cipher suite we're considering using
631 * is compatible with the client extensions.
632 *
633 * Returns 0 when the cipher can't be used or 1 when it can.
634 */
635 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
636 {
637 /*
638 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
639 * curves permitted.
640 */
641 if (tls1_suiteb(s)) {
642 unsigned char curve_id[2];
643 /* Curve to check determined by ciphersuite */
644 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
645 curve_id[1] = TLSEXT_curve_P_256;
646 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
647 curve_id[1] = TLSEXT_curve_P_384;
648 else
649 return 0;
650 curve_id[0] = 0;
651 /* Check this curve is acceptable */
652 if (!tls1_check_ec_key(s, curve_id, NULL))
653 return 0;
654 return 1;
655 }
656 /* Need a shared curve */
657 if (tls1_shared_group(s, 0))
658 return 1;
659 return 0;
660 }
661 # endif /* OPENSSL_NO_EC */
662
663 #else
664
665 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
666 {
667 return 1;
668 }
669
670 #endif /* OPENSSL_NO_EC */
671
672 /* Default sigalg schemes */
673 static const uint16_t tls12_sigalgs[] = {
674 #ifndef OPENSSL_NO_EC
675 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
676 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
677 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
678 #endif
679
680 TLSEXT_SIGALG_rsa_pss_sha256,
681 TLSEXT_SIGALG_rsa_pss_sha384,
682 TLSEXT_SIGALG_rsa_pss_sha512,
683
684 TLSEXT_SIGALG_rsa_pkcs1_sha256,
685 TLSEXT_SIGALG_rsa_pkcs1_sha384,
686 TLSEXT_SIGALG_rsa_pkcs1_sha512,
687
688 #ifndef OPENSSL_NO_EC
689 TLSEXT_SIGALG_ecdsa_sha1,
690 #endif
691 TLSEXT_SIGALG_rsa_pkcs1_sha1,
692 #ifndef OPENSSL_NO_DSA
693 TLSEXT_SIGALG_dsa_sha1,
694
695 TLSEXT_SIGALG_dsa_sha256,
696 TLSEXT_SIGALG_dsa_sha384,
697 TLSEXT_SIGALG_dsa_sha512
698 #endif
699 };
700
701 #ifndef OPENSSL_NO_EC
702 static const uint16_t suiteb_sigalgs[] = {
703 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
704 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
705 };
706 #endif
707
708 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
709 #ifndef OPENSSL_NO_EC
710 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
711 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
712 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
713 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
714 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
715 NID_ecdsa_with_SHA384, NID_secp384r1},
716 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
717 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
718 NID_ecdsa_with_SHA512, NID_secp521r1},
719 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
720 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
721 NID_ecdsa_with_SHA1, NID_undef},
722 #endif
723 {"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256,
724 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
725 NID_undef, NID_undef},
726 {"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384,
727 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
728 NID_undef, NID_undef},
729 {"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512,
730 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
731 NID_undef, NID_undef},
732 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
733 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
734 NID_sha256WithRSAEncryption, NID_undef},
735 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
736 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
737 NID_sha384WithRSAEncryption, NID_undef},
738 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
739 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
740 NID_sha512WithRSAEncryption, NID_undef},
741 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
742 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
743 NID_sha1WithRSAEncryption, NID_undef},
744 #ifndef OPENSSL_NO_DSA
745 {NULL, TLSEXT_SIGALG_dsa_sha256,
746 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
747 NID_dsa_with_SHA256, NID_undef},
748 {NULL, TLSEXT_SIGALG_dsa_sha384,
749 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
750 NID_undef, NID_undef},
751 {NULL, TLSEXT_SIGALG_dsa_sha512,
752 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
753 NID_undef, NID_undef},
754 {NULL, TLSEXT_SIGALG_dsa_sha1,
755 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
756 NID_dsaWithSHA1, NID_undef},
757 #endif
758 #ifndef OPENSSL_NO_GOST
759 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
760 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
761 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
762 NID_undef, NID_undef},
763 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
764 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
765 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
766 NID_undef, NID_undef},
767 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
768 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
769 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
770 NID_undef, NID_undef}
771 #endif
772 };
773 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
774 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
775 "rsa_pkcs1_md5_sha1", 0,
776 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
777 EVP_PKEY_RSA, SSL_PKEY_RSA,
778 NID_undef, NID_undef
779 };
780
781 /*
782 * Default signature algorithm values used if signature algorithms not present.
783 * From RFC5246. Note: order must match certificate index order.
784 */
785 static const uint16_t tls_default_sigalg[] = {
786 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
787 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
788 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
789 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
790 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
791 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 /* SSL_PKEY_GOST12_512 */
792 };
793
794 /* Lookup TLS signature algorithm */
795 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
796 {
797 size_t i;
798 const SIGALG_LOOKUP *s;
799
800 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
801 i++, s++) {
802 if (s->sigalg == sigalg)
803 return s;
804 }
805 return NULL;
806 }
807 /*
808 * Return a signature algorithm for TLS < 1.2 where the signature type
809 * is fixed by the certificate type.
810 */
811 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
812 {
813 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
814 return NULL;
815 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
816 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
817
818 if (lu == NULL || ssl_md(lu->hash_idx) == NULL) {
819 return NULL;
820 }
821 return lu;
822 }
823 return &legacy_rsa_sigalg;
824 }
825 /* Set peer sigalg based key type */
826 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
827 {
828 int idx = ssl_cert_type(NULL, pkey);
829
830 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, idx);
831 if (lu == NULL)
832 return 0;
833 s->s3->tmp.peer_sigalg = lu;
834 return 1;
835 }
836
837 static int tls_sigalg_get_sig(uint16_t sigalg)
838 {
839 const SIGALG_LOOKUP *r = tls1_lookup_sigalg(sigalg);
840
841 return r != NULL ? r->sig : 0;
842 }
843
844 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
845 {
846 /*
847 * If Suite B mode use Suite B sigalgs only, ignore any other
848 * preferences.
849 */
850 #ifndef OPENSSL_NO_EC
851 switch (tls1_suiteb(s)) {
852 case SSL_CERT_FLAG_SUITEB_128_LOS:
853 *psigs = suiteb_sigalgs;
854 return OSSL_NELEM(suiteb_sigalgs);
855
856 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
857 *psigs = suiteb_sigalgs;
858 return 1;
859
860 case SSL_CERT_FLAG_SUITEB_192_LOS:
861 *psigs = suiteb_sigalgs + 1;
862 return 1;
863 }
864 #endif
865 /*
866 * We use client_sigalgs (if not NULL) if we're a server
867 * and sending a certificate request or if we're a client and
868 * determining which shared algorithm to use.
869 */
870 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
871 *psigs = s->cert->client_sigalgs;
872 return s->cert->client_sigalgslen;
873 } else if (s->cert->conf_sigalgs) {
874 *psigs = s->cert->conf_sigalgs;
875 return s->cert->conf_sigalgslen;
876 } else {
877 *psigs = tls12_sigalgs;
878 return OSSL_NELEM(tls12_sigalgs);
879 }
880 }
881
882 /*
883 * Check signature algorithm is consistent with sent supported signature
884 * algorithms and if so set relevant digest and signature scheme in
885 * s.
886 */
887 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
888 {
889 const uint16_t *sent_sigs;
890 const EVP_MD *md = NULL;
891 char sigalgstr[2];
892 size_t sent_sigslen, i;
893 int pkeyid = EVP_PKEY_id(pkey);
894 const SIGALG_LOOKUP *lu;
895
896 /* Should never happen */
897 if (pkeyid == -1)
898 return -1;
899 /* Only allow PSS for TLS 1.3 */
900 if (SSL_IS_TLS13(s) && pkeyid == EVP_PKEY_RSA)
901 pkeyid = EVP_PKEY_RSA_PSS;
902 lu = tls1_lookup_sigalg(sig);
903 /*
904 * Check sigalgs is known and key type is consistent with signature:
905 * RSA keys can be used for RSA-PSS
906 */
907 if (lu == NULL || (pkeyid != lu->sig
908 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
909 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
910 return 0;
911 }
912 #ifndef OPENSSL_NO_EC
913 if (pkeyid == EVP_PKEY_EC) {
914 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
915 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
916
917 if (SSL_IS_TLS13(s)) {
918 /* For TLS 1.3 check curve matches signature algorithm */
919
920 if (curve != lu->curve) {
921 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
922 return 0;
923 }
924 } else {
925 unsigned char curve_id[2], comp_id;
926
927 /* Check compression and curve matches extensions */
928 if (!tls1_set_ec_id(curve_id, &comp_id, ec))
929 return 0;
930 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
931 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
932 return 0;
933 }
934 if (tls1_suiteb(s)) {
935 /* Check sigalg matches a permissible Suite B value */
936 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
937 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
938 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
939 SSL_R_WRONG_SIGNATURE_TYPE);
940 return 0;
941 }
942 /*
943 * Suite B also requires P-256+SHA256 and P-384+SHA384:
944 * this matches the TLS 1.3 requirements so we can just
945 * check the curve is the expected TLS 1.3 value.
946 * If this fails an inappropriate digest is being used.
947 */
948 if (curve != lu->curve) {
949 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
950 SSL_R_ILLEGAL_SUITEB_DIGEST);
951 return 0;
952 }
953 }
954 }
955 } else if (tls1_suiteb(s)) {
956 return 0;
957 }
958 #endif
959
960 /* Check signature matches a type we sent */
961 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
962 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
963 if (sig == *sent_sigs)
964 break;
965 }
966 /* Allow fallback to SHA1 if not strict mode */
967 if (i == sent_sigslen && (lu->hash != NID_sha1
968 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
969 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
970 return 0;
971 }
972 md = ssl_md(lu->hash_idx);
973 if (md == NULL) {
974 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
975 return 0;
976 }
977 /*
978 * Make sure security callback allows algorithm. For historical reasons we
979 * have to pass the sigalg as a two byte char array.
980 */
981 sigalgstr[0] = (sig >> 8) & 0xff;
982 sigalgstr[1] = sig & 0xff;
983 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
984 EVP_MD_size(md) * 4, EVP_MD_type(md),
985 (void *)sigalgstr)) {
986 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
987 return 0;
988 }
989 /* Store the sigalg the peer uses */
990 s->s3->tmp.peer_sigalg = lu;
991 return 1;
992 }
993
994 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
995 {
996 if (s->s3->tmp.peer_sigalg == NULL)
997 return 0;
998 *pnid = s->s3->tmp.peer_sigalg->sig;
999 return 1;
1000 }
1001
1002 /*
1003 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1004 * supported, doesn't appear in supported signature algorithms, isn't supported
1005 * by the enabled protocol versions or by the security level.
1006 *
1007 * This function should only be used for checking which ciphers are supported
1008 * by the client.
1009 *
1010 * Call ssl_cipher_disabled() to check that it's enabled or not.
1011 */
1012 void ssl_set_client_disabled(SSL *s)
1013 {
1014 s->s3->tmp.mask_a = 0;
1015 s->s3->tmp.mask_k = 0;
1016 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1017 ssl_get_client_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
1018 #ifndef OPENSSL_NO_PSK
1019 /* with PSK there must be client callback set */
1020 if (!s->psk_client_callback) {
1021 s->s3->tmp.mask_a |= SSL_aPSK;
1022 s->s3->tmp.mask_k |= SSL_PSK;
1023 }
1024 #endif /* OPENSSL_NO_PSK */
1025 #ifndef OPENSSL_NO_SRP
1026 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1027 s->s3->tmp.mask_a |= SSL_aSRP;
1028 s->s3->tmp.mask_k |= SSL_kSRP;
1029 }
1030 #endif
1031 }
1032
1033 /*
1034 * ssl_cipher_disabled - check that a cipher is disabled or not
1035 * @s: SSL connection that you want to use the cipher on
1036 * @c: cipher to check
1037 * @op: Security check that you want to do
1038 *
1039 * Returns 1 when it's disabled, 0 when enabled.
1040 */
1041 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
1042 {
1043 if (c->algorithm_mkey & s->s3->tmp.mask_k
1044 || c->algorithm_auth & s->s3->tmp.mask_a)
1045 return 1;
1046 if (s->s3->tmp.max_ver == 0)
1047 return 1;
1048 if (!SSL_IS_DTLS(s) && ((c->min_tls > s->s3->tmp.max_ver)
1049 || (c->max_tls < s->s3->tmp.min_ver)))
1050 return 1;
1051 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1052 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1053 return 1;
1054
1055 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1056 }
1057
1058 int tls_use_ticket(SSL *s)
1059 {
1060 if ((s->options & SSL_OP_NO_TICKET))
1061 return 0;
1062 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1063 }
1064
1065 /* Initialise digests to default values */
1066 void ssl_set_default_md(SSL *s)
1067 {
1068 const EVP_MD **pmd = s->s3->tmp.md;
1069 #ifndef OPENSSL_NO_DSA
1070 pmd[SSL_PKEY_DSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX);
1071 #endif
1072 #ifndef OPENSSL_NO_RSA
1073 if (SSL_USE_SIGALGS(s))
1074 pmd[SSL_PKEY_RSA] = ssl_md(SSL_MD_SHA1_IDX);
1075 else
1076 pmd[SSL_PKEY_RSA] = ssl_md(SSL_MD_MD5_SHA1_IDX);
1077 #endif
1078 #ifndef OPENSSL_NO_EC
1079 pmd[SSL_PKEY_ECC] = ssl_md(SSL_MD_SHA1_IDX);
1080 #endif
1081 #ifndef OPENSSL_NO_GOST
1082 pmd[SSL_PKEY_GOST01] = ssl_md(SSL_MD_GOST94_IDX);
1083 pmd[SSL_PKEY_GOST12_256] = ssl_md(SSL_MD_GOST12_256_IDX);
1084 pmd[SSL_PKEY_GOST12_512] = ssl_md(SSL_MD_GOST12_512_IDX);
1085 #endif
1086 }
1087
1088 int tls1_set_server_sigalgs(SSL *s)
1089 {
1090 int al;
1091 size_t i;
1092
1093 /* Clear any shared signature algorithms */
1094 OPENSSL_free(s->cert->shared_sigalgs);
1095 s->cert->shared_sigalgs = NULL;
1096 s->cert->shared_sigalgslen = 0;
1097 /* Clear certificate digests and validity flags */
1098 for (i = 0; i < SSL_PKEY_NUM; i++) {
1099 s->s3->tmp.md[i] = NULL;
1100 s->s3->tmp.valid_flags[i] = 0;
1101 }
1102
1103 /* If sigalgs received process it. */
1104 if (s->s3->tmp.peer_sigalgs) {
1105 if (!tls1_process_sigalgs(s)) {
1106 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
1107 al = SSL_AD_INTERNAL_ERROR;
1108 goto err;
1109 }
1110 /* Fatal error is no shared signature algorithms */
1111 if (!s->cert->shared_sigalgs) {
1112 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS,
1113 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1114 al = SSL_AD_ILLEGAL_PARAMETER;
1115 goto err;
1116 }
1117 } else {
1118 ssl_set_default_md(s);
1119 }
1120 return 1;
1121 err:
1122 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1123 return 0;
1124 }
1125
1126 /*-
1127 * Gets the ticket information supplied by the client if any.
1128 *
1129 * hello: The parsed ClientHello data
1130 * ret: (output) on return, if a ticket was decrypted, then this is set to
1131 * point to the resulting session.
1132 *
1133 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
1134 * ciphersuite, in which case we have no use for session tickets and one will
1135 * never be decrypted, nor will s->ext.ticket_expected be set to 1.
1136 *
1137 * Returns:
1138 * -1: fatal error, either from parsing or decrypting the ticket.
1139 * 0: no ticket was found (or was ignored, based on settings).
1140 * 1: a zero length extension was found, indicating that the client supports
1141 * session tickets but doesn't currently have one to offer.
1142 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
1143 * couldn't be decrypted because of a non-fatal error.
1144 * 3: a ticket was successfully decrypted and *ret was set.
1145 *
1146 * Side effects:
1147 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1148 * a new session ticket to the client because the client indicated support
1149 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1150 * a session ticket or we couldn't use the one it gave us, or if
1151 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1152 * Otherwise, s->ext.ticket_expected is set to 0.
1153 */
1154 TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1155 SSL_SESSION **ret)
1156 {
1157 int retv;
1158 size_t size;
1159 RAW_EXTENSION *ticketext;
1160
1161 *ret = NULL;
1162 s->ext.ticket_expected = 0;
1163
1164 /*
1165 * If tickets disabled or not supported by the protocol version
1166 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1167 * resumption.
1168 */
1169 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1170 return TICKET_NONE;
1171
1172 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1173 if (!ticketext->present)
1174 return TICKET_NONE;
1175
1176 size = PACKET_remaining(&ticketext->data);
1177 if (size == 0) {
1178 /*
1179 * The client will accept a ticket but doesn't currently have
1180 * one.
1181 */
1182 s->ext.ticket_expected = 1;
1183 return TICKET_EMPTY;
1184 }
1185 if (s->ext.session_secret_cb) {
1186 /*
1187 * Indicate that the ticket couldn't be decrypted rather than
1188 * generating the session from ticket now, trigger
1189 * abbreviated handshake based on external mechanism to
1190 * calculate the master secret later.
1191 */
1192 return TICKET_NO_DECRYPT;
1193 }
1194
1195 retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1196 hello->session_id, hello->session_id_len, ret);
1197 switch (retv) {
1198 case TICKET_NO_DECRYPT:
1199 s->ext.ticket_expected = 1;
1200 return TICKET_NO_DECRYPT;
1201
1202 case TICKET_SUCCESS:
1203 return TICKET_SUCCESS;
1204
1205 case TICKET_SUCCESS_RENEW:
1206 s->ext.ticket_expected = 1;
1207 return TICKET_SUCCESS;
1208
1209 default:
1210 return TICKET_FATAL_ERR_OTHER;
1211 }
1212 }
1213
1214 /*-
1215 * tls_decrypt_ticket attempts to decrypt a session ticket.
1216 *
1217 * etick: points to the body of the session ticket extension.
1218 * eticklen: the length of the session tickets extension.
1219 * sess_id: points at the session ID.
1220 * sesslen: the length of the session ID.
1221 * psess: (output) on return, if a ticket was decrypted, then this is set to
1222 * point to the resulting session.
1223 */
1224 TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1225 size_t eticklen, const unsigned char *sess_id,
1226 size_t sesslen, SSL_SESSION **psess)
1227 {
1228 SSL_SESSION *sess;
1229 unsigned char *sdec;
1230 const unsigned char *p;
1231 int slen, renew_ticket = 0, declen;
1232 TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER;
1233 size_t mlen;
1234 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1235 HMAC_CTX *hctx = NULL;
1236 EVP_CIPHER_CTX *ctx;
1237 SSL_CTX *tctx = s->session_ctx;
1238
1239 /* Initialize session ticket encryption and HMAC contexts */
1240 hctx = HMAC_CTX_new();
1241 if (hctx == NULL)
1242 return TICKET_FATAL_ERR_MALLOC;
1243 ctx = EVP_CIPHER_CTX_new();
1244 if (ctx == NULL) {
1245 ret = TICKET_FATAL_ERR_MALLOC;
1246 goto err;
1247 }
1248 if (tctx->ext.ticket_key_cb) {
1249 unsigned char *nctick = (unsigned char *)etick;
1250 int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
1251 ctx, hctx, 0);
1252 if (rv < 0)
1253 goto err;
1254 if (rv == 0) {
1255 ret = TICKET_NO_DECRYPT;
1256 goto err;
1257 }
1258 if (rv == 2)
1259 renew_ticket = 1;
1260 } else {
1261 /* Check key name matches */
1262 if (memcmp(etick, tctx->ext.tick_key_name,
1263 sizeof(tctx->ext.tick_key_name)) != 0) {
1264 ret = TICKET_NO_DECRYPT;
1265 goto err;
1266 }
1267 if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
1268 sizeof(tctx->ext.tick_hmac_key),
1269 EVP_sha256(), NULL) <= 0
1270 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1271 tctx->ext.tick_aes_key,
1272 etick
1273 + sizeof(tctx->ext.tick_key_name)) <= 0) {
1274 goto err;
1275 }
1276 }
1277 /*
1278 * Attempt to process session ticket, first conduct sanity and integrity
1279 * checks on ticket.
1280 */
1281 mlen = HMAC_size(hctx);
1282 if (mlen == 0) {
1283 goto err;
1284 }
1285 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1286 if (eticklen <=
1287 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1288 ret = TICKET_NO_DECRYPT;
1289 goto err;
1290 }
1291 eticklen -= mlen;
1292 /* Check HMAC of encrypted ticket */
1293 if (HMAC_Update(hctx, etick, eticklen) <= 0
1294 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1295 goto err;
1296 }
1297 HMAC_CTX_free(hctx);
1298 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1299 EVP_CIPHER_CTX_free(ctx);
1300 return TICKET_NO_DECRYPT;
1301 }
1302 /* Attempt to decrypt session data */
1303 /* Move p after IV to start of encrypted ticket, update length */
1304 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1305 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1306 sdec = OPENSSL_malloc(eticklen);
1307 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1308 (int)eticklen) <= 0) {
1309 EVP_CIPHER_CTX_free(ctx);
1310 OPENSSL_free(sdec);
1311 return TICKET_FATAL_ERR_OTHER;
1312 }
1313 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1314 EVP_CIPHER_CTX_free(ctx);
1315 OPENSSL_free(sdec);
1316 return TICKET_NO_DECRYPT;
1317 }
1318 slen += declen;
1319 EVP_CIPHER_CTX_free(ctx);
1320 ctx = NULL;
1321 p = sdec;
1322
1323 sess = d2i_SSL_SESSION(NULL, &p, slen);
1324 OPENSSL_free(sdec);
1325 if (sess) {
1326 /*
1327 * The session ID, if non-empty, is used by some clients to detect
1328 * that the ticket has been accepted. So we copy it to the session
1329 * structure. If it is empty set length to zero as required by
1330 * standard.
1331 */
1332 if (sesslen)
1333 memcpy(sess->session_id, sess_id, sesslen);
1334 sess->session_id_length = sesslen;
1335 *psess = sess;
1336 if (renew_ticket)
1337 return TICKET_SUCCESS_RENEW;
1338 else
1339 return TICKET_SUCCESS;
1340 }
1341 ERR_clear_error();
1342 /*
1343 * For session parse failure, indicate that we need to send a new ticket.
1344 */
1345 return TICKET_NO_DECRYPT;
1346 err:
1347 EVP_CIPHER_CTX_free(ctx);
1348 HMAC_CTX_free(hctx);
1349 return ret;
1350 }
1351
1352 int tls12_get_sigandhash(SSL *s, WPACKET *pkt, const EVP_PKEY *pk,
1353 const EVP_MD *md, int *ispss)
1354 {
1355 int md_id, sig_id;
1356 size_t i;
1357 const SIGALG_LOOKUP *curr;
1358
1359 if (md == NULL)
1360 return 0;
1361 md_id = EVP_MD_type(md);
1362 sig_id = EVP_PKEY_id(pk);
1363 if (md_id == NID_undef)
1364 return 0;
1365 /* For TLS 1.3 only allow RSA-PSS */
1366 if (SSL_IS_TLS13(s) && sig_id == EVP_PKEY_RSA)
1367 sig_id = EVP_PKEY_RSA_PSS;
1368
1369 if (s->s3->tmp.peer_sigalgs == NULL) {
1370 /* Should never happen: we abort if no sigalgs extension and TLS 1.3 */
1371 if (SSL_IS_TLS13(s))
1372 return 0;
1373 /* For TLS 1.2 and no sigalgs lookup using complete table */
1374 for (i = 0, curr = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1375 i++, curr++) {
1376 if (curr->hash == md_id && curr->sig == sig_id) {
1377 if (!WPACKET_put_bytes_u16(pkt, curr->sigalg))
1378 return 0;
1379 *ispss = curr->sig == EVP_PKEY_RSA_PSS;
1380 return 1;
1381 }
1382 }
1383 return 0;
1384 }
1385
1386 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
1387 curr = s->cert->shared_sigalgs[i];
1388
1389 /*
1390 * Look for matching key and hash. If key type is RSA also match PSS
1391 * signature type.
1392 */
1393 if (curr->hash == md_id && (curr->sig == sig_id
1394 || (sig_id == EVP_PKEY_RSA && curr->sig == EVP_PKEY_RSA_PSS))){
1395 if (!WPACKET_put_bytes_u16(pkt, curr->sigalg))
1396 return 0;
1397 *ispss = curr->sig == EVP_PKEY_RSA_PSS;
1398 return 1;
1399 }
1400 }
1401 return 0;
1402 }
1403
1404 static int tls12_get_pkey_idx(int sig_nid)
1405 {
1406 switch (sig_nid) {
1407 #ifndef OPENSSL_NO_RSA
1408 case EVP_PKEY_RSA:
1409 return SSL_PKEY_RSA;
1410 /*
1411 * For now return RSA key for PSS. When we support PSS only keys
1412 * this will need to be updated.
1413 */
1414 case EVP_PKEY_RSA_PSS:
1415 return SSL_PKEY_RSA;
1416 #endif
1417 #ifndef OPENSSL_NO_DSA
1418 case EVP_PKEY_DSA:
1419 return SSL_PKEY_DSA_SIGN;
1420 #endif
1421 #ifndef OPENSSL_NO_EC
1422 case EVP_PKEY_EC:
1423 return SSL_PKEY_ECC;
1424 #endif
1425 #ifndef OPENSSL_NO_GOST
1426 case NID_id_GostR3410_2001:
1427 return SSL_PKEY_GOST01;
1428
1429 case NID_id_GostR3410_2012_256:
1430 return SSL_PKEY_GOST12_256;
1431
1432 case NID_id_GostR3410_2012_512:
1433 return SSL_PKEY_GOST12_512;
1434 #endif
1435 }
1436 return -1;
1437 }
1438
1439 /* Check to see if a signature algorithm is allowed */
1440 static int tls12_sigalg_allowed(SSL *s, int op, uint16_t ptmp)
1441 {
1442 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(ptmp);
1443 unsigned char sigalgstr[2];
1444 int secbits;
1445
1446 /* See if sigalgs is recognised and if hash is enabled */
1447 if (lu == NULL || ssl_md(lu->hash_idx) == NULL)
1448 return 0;
1449 /* See if public key algorithm allowed */
1450 if (tls12_get_pkey_idx(lu->sig) == -1)
1451 return 0;
1452 /* Security bits: half digest bits */
1453 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1454 /* Finally see if security callback allows it */
1455 sigalgstr[0] = (ptmp >> 8) & 0xff;
1456 sigalgstr[1] = ptmp & 0xff;
1457 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1458 }
1459
1460 /*
1461 * Get a mask of disabled public key algorithms based on supported signature
1462 * algorithms. For example if no signature algorithm supports RSA then RSA is
1463 * disabled.
1464 */
1465
1466 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1467 {
1468 const uint16_t *sigalgs;
1469 size_t i, sigalgslen;
1470 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
1471 /*
1472 * Now go through all signature algorithms seeing if we support any for
1473 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
1474 * down calls to security callback only check if we have to.
1475 */
1476 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1477 for (i = 0; i < sigalgslen; i ++, sigalgs++) {
1478 switch (tls_sigalg_get_sig(*sigalgs)) {
1479 #ifndef OPENSSL_NO_RSA
1480 /* Any RSA-PSS signature algorithms also mean we allow RSA */
1481 case EVP_PKEY_RSA_PSS:
1482 case EVP_PKEY_RSA:
1483 if (!have_rsa && tls12_sigalg_allowed(s, op, *sigalgs))
1484 have_rsa = 1;
1485 break;
1486 #endif
1487 #ifndef OPENSSL_NO_DSA
1488 case EVP_PKEY_DSA:
1489 if (!have_dsa && tls12_sigalg_allowed(s, op, *sigalgs))
1490 have_dsa = 1;
1491 break;
1492 #endif
1493 #ifndef OPENSSL_NO_EC
1494 case EVP_PKEY_EC:
1495 if (!have_ecdsa && tls12_sigalg_allowed(s, op, *sigalgs))
1496 have_ecdsa = 1;
1497 break;
1498 #endif
1499 }
1500 }
1501 if (!have_rsa)
1502 *pmask_a |= SSL_aRSA;
1503 if (!have_dsa)
1504 *pmask_a |= SSL_aDSS;
1505 if (!have_ecdsa)
1506 *pmask_a |= SSL_aECDSA;
1507 }
1508
1509 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1510 const uint16_t *psig, size_t psiglen)
1511 {
1512 size_t i;
1513
1514 for (i = 0; i < psiglen; i++, psig++) {
1515 if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, *psig)) {
1516 if (!WPACKET_put_bytes_u16(pkt, *psig))
1517 return 0;
1518 }
1519 }
1520 return 1;
1521 }
1522
1523 /* Given preference and allowed sigalgs set shared sigalgs */
1524 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1525 const uint16_t *pref, size_t preflen,
1526 const uint16_t *allow, size_t allowlen)
1527 {
1528 const uint16_t *ptmp, *atmp;
1529 size_t i, j, nmatch = 0;
1530 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1531 /* Skip disabled hashes or signature algorithms */
1532 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, *ptmp))
1533 continue;
1534 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1535 if (*ptmp == *atmp) {
1536 nmatch++;
1537 if (shsig) {
1538 *shsig = tls1_lookup_sigalg(*ptmp);
1539 shsig++;
1540 }
1541 break;
1542 }
1543 }
1544 }
1545 return nmatch;
1546 }
1547
1548 /* Set shared signature algorithms for SSL structures */
1549 static int tls1_set_shared_sigalgs(SSL *s)
1550 {
1551 const uint16_t *pref, *allow, *conf;
1552 size_t preflen, allowlen, conflen;
1553 size_t nmatch;
1554 const SIGALG_LOOKUP **salgs = NULL;
1555 CERT *c = s->cert;
1556 unsigned int is_suiteb = tls1_suiteb(s);
1557
1558 OPENSSL_free(c->shared_sigalgs);
1559 c->shared_sigalgs = NULL;
1560 c->shared_sigalgslen = 0;
1561 /* If client use client signature algorithms if not NULL */
1562 if (!s->server && c->client_sigalgs && !is_suiteb) {
1563 conf = c->client_sigalgs;
1564 conflen = c->client_sigalgslen;
1565 } else if (c->conf_sigalgs && !is_suiteb) {
1566 conf = c->conf_sigalgs;
1567 conflen = c->conf_sigalgslen;
1568 } else
1569 conflen = tls12_get_psigalgs(s, 0, &conf);
1570 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1571 pref = conf;
1572 preflen = conflen;
1573 allow = s->s3->tmp.peer_sigalgs;
1574 allowlen = s->s3->tmp.peer_sigalgslen;
1575 } else {
1576 allow = conf;
1577 allowlen = conflen;
1578 pref = s->s3->tmp.peer_sigalgs;
1579 preflen = s->s3->tmp.peer_sigalgslen;
1580 }
1581 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1582 if (nmatch) {
1583 salgs = OPENSSL_malloc(nmatch * sizeof(*salgs));
1584 if (salgs == NULL)
1585 return 0;
1586 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1587 } else {
1588 salgs = NULL;
1589 }
1590 c->shared_sigalgs = salgs;
1591 c->shared_sigalgslen = nmatch;
1592 return 1;
1593 }
1594
1595 /* Set preferred digest for each key type */
1596
1597 int tls1_save_sigalgs(SSL *s, PACKET *pkt)
1598 {
1599 CERT *c = s->cert;
1600 unsigned int stmp;
1601 size_t size, i;
1602
1603 /* Extension ignored for inappropriate versions */
1604 if (!SSL_USE_SIGALGS(s))
1605 return 1;
1606 /* Should never happen */
1607 if (!c)
1608 return 0;
1609
1610 size = PACKET_remaining(pkt);
1611
1612 /* Invalid data length */
1613 if ((size & 1) != 0)
1614 return 0;
1615
1616 size >>= 1;
1617
1618 OPENSSL_free(s->s3->tmp.peer_sigalgs);
1619 s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size
1620 * sizeof(*s->s3->tmp.peer_sigalgs));
1621 if (s->s3->tmp.peer_sigalgs == NULL)
1622 return 0;
1623 s->s3->tmp.peer_sigalgslen = size;
1624 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1625 s->s3->tmp.peer_sigalgs[i] = stmp;
1626
1627 if (i != size)
1628 return 0;
1629
1630 return 1;
1631 }
1632
1633 int tls1_process_sigalgs(SSL *s)
1634 {
1635 int idx;
1636 size_t i;
1637 const EVP_MD *md;
1638 const EVP_MD **pmd = s->s3->tmp.md;
1639 uint32_t *pvalid = s->s3->tmp.valid_flags;
1640 CERT *c = s->cert;
1641
1642 if (!tls1_set_shared_sigalgs(s))
1643 return 0;
1644
1645 for (i = 0; i < c->shared_sigalgslen; i++) {
1646 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
1647
1648 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1649 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1650 continue;
1651 idx = tls12_get_pkey_idx(sigptr->sig);
1652 if (idx >= 0 && pmd[idx] == NULL) {
1653 md = ssl_md(sigptr->hash_idx);
1654 pmd[idx] = md;
1655 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN;
1656 }
1657 }
1658 /*
1659 * In strict mode or TLS1.3 leave unset digests as NULL to indicate we can't
1660 * use the certificate for signing.
1661 */
1662 if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1663 && !SSL_IS_TLS13(s)) {
1664 /*
1665 * Set any remaining keys to default values. NOTE: if alg is not
1666 * supported it stays as NULL.
1667 */
1668 #ifndef OPENSSL_NO_DSA
1669 if (pmd[SSL_PKEY_DSA_SIGN] == NULL)
1670 pmd[SSL_PKEY_DSA_SIGN] = EVP_sha1();
1671 #endif
1672 #ifndef OPENSSL_NO_RSA
1673 if (pmd[SSL_PKEY_RSA] == NULL) {
1674 pmd[SSL_PKEY_RSA] = EVP_sha1();
1675 }
1676 #endif
1677 #ifndef OPENSSL_NO_EC
1678 if (pmd[SSL_PKEY_ECC] == NULL)
1679 pmd[SSL_PKEY_ECC] = EVP_sha1();
1680 #endif
1681 #ifndef OPENSSL_NO_GOST
1682 if (pmd[SSL_PKEY_GOST01] == NULL)
1683 pmd[SSL_PKEY_GOST01] = EVP_get_digestbynid(NID_id_GostR3411_94);
1684 if (pmd[SSL_PKEY_GOST12_256] == NULL)
1685 pmd[SSL_PKEY_GOST12_256] =
1686 EVP_get_digestbynid(NID_id_GostR3411_2012_256);
1687 if (pmd[SSL_PKEY_GOST12_512] == NULL)
1688 pmd[SSL_PKEY_GOST12_512] =
1689 EVP_get_digestbynid(NID_id_GostR3411_2012_512);
1690 #endif
1691 }
1692 return 1;
1693 }
1694
1695 int SSL_get_sigalgs(SSL *s, int idx,
1696 int *psign, int *phash, int *psignhash,
1697 unsigned char *rsig, unsigned char *rhash)
1698 {
1699 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1700 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1701 if (psig == NULL || numsigalgs > INT_MAX)
1702 return 0;
1703 if (idx >= 0) {
1704 const SIGALG_LOOKUP *lu;
1705
1706 if (idx >= (int)numsigalgs)
1707 return 0;
1708 psig += idx;
1709 if (rhash != NULL)
1710 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1711 if (rsig != NULL)
1712 *rsig = (unsigned char)(*psig & 0xff);
1713 lu = tls1_lookup_sigalg(*psig);
1714 if (psign != NULL)
1715 *psign = lu != NULL ? lu->sig : NID_undef;
1716 if (phash != NULL)
1717 *phash = lu != NULL ? lu->hash : NID_undef;
1718 if (psignhash != NULL)
1719 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1720 }
1721 return (int)numsigalgs;
1722 }
1723
1724 int SSL_get_shared_sigalgs(SSL *s, int idx,
1725 int *psign, int *phash, int *psignhash,
1726 unsigned char *rsig, unsigned char *rhash)
1727 {
1728 const SIGALG_LOOKUP *shsigalgs;
1729 if (s->cert->shared_sigalgs == NULL
1730 || idx < 0
1731 || idx >= (int)s->cert->shared_sigalgslen
1732 || s->cert->shared_sigalgslen > INT_MAX)
1733 return 0;
1734 shsigalgs = s->cert->shared_sigalgs[idx];
1735 if (phash != NULL)
1736 *phash = shsigalgs->hash;
1737 if (psign != NULL)
1738 *psign = shsigalgs->sig;
1739 if (psignhash != NULL)
1740 *psignhash = shsigalgs->sigandhash;
1741 if (rsig != NULL)
1742 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1743 if (rhash != NULL)
1744 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1745 return (int)s->cert->shared_sigalgslen;
1746 }
1747
1748 /* Maximum possible number of unique entries in sigalgs array */
1749 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1750
1751 typedef struct {
1752 size_t sigalgcnt;
1753 int sigalgs[TLS_MAX_SIGALGCNT];
1754 } sig_cb_st;
1755
1756 static void get_sigorhash(int *psig, int *phash, const char *str)
1757 {
1758 if (strcmp(str, "RSA") == 0) {
1759 *psig = EVP_PKEY_RSA;
1760 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1761 *psig = EVP_PKEY_RSA_PSS;
1762 } else if (strcmp(str, "DSA") == 0) {
1763 *psig = EVP_PKEY_DSA;
1764 } else if (strcmp(str, "ECDSA") == 0) {
1765 *psig = EVP_PKEY_EC;
1766 } else {
1767 *phash = OBJ_sn2nid(str);
1768 if (*phash == NID_undef)
1769 *phash = OBJ_ln2nid(str);
1770 }
1771 }
1772 /* Maximum length of a signature algorithm string component */
1773 #define TLS_MAX_SIGSTRING_LEN 40
1774
1775 static int sig_cb(const char *elem, int len, void *arg)
1776 {
1777 sig_cb_st *sarg = arg;
1778 size_t i;
1779 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1780 int sig_alg = NID_undef, hash_alg = NID_undef;
1781 if (elem == NULL)
1782 return 0;
1783 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1784 return 0;
1785 if (len > (int)(sizeof(etmp) - 1))
1786 return 0;
1787 memcpy(etmp, elem, len);
1788 etmp[len] = 0;
1789 p = strchr(etmp, '+');
1790 /* See if we have a match for TLS 1.3 names */
1791 if (p == NULL) {
1792 const SIGALG_LOOKUP *s;
1793
1794 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1795 i++, s++) {
1796 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1797 sig_alg = s->sig;
1798 hash_alg = s->hash;
1799 break;
1800 }
1801 }
1802 } else {
1803 *p = 0;
1804 p++;
1805 if (*p == 0)
1806 return 0;
1807 get_sigorhash(&sig_alg, &hash_alg, etmp);
1808 get_sigorhash(&sig_alg, &hash_alg, p);
1809 }
1810
1811 if (sig_alg == NID_undef || hash_alg == NID_undef)
1812 return 0;
1813
1814 for (i = 0; i < sarg->sigalgcnt; i += 2) {
1815 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
1816 return 0;
1817 }
1818 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
1819 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
1820 return 1;
1821 }
1822
1823 /*
1824 * Set supported signature algorithms based on a colon separated list of the
1825 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1826 */
1827 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1828 {
1829 sig_cb_st sig;
1830 sig.sigalgcnt = 0;
1831 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1832 return 0;
1833 if (c == NULL)
1834 return 1;
1835 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
1836 }
1837
1838 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
1839 {
1840 uint16_t *sigalgs, *sptr;
1841 size_t i;
1842
1843 if (salglen & 1)
1844 return 0;
1845 sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs));
1846 if (sigalgs == NULL)
1847 return 0;
1848 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
1849 size_t j;
1850 const SIGALG_LOOKUP *curr;
1851 int md_id = *psig_nids++;
1852 int sig_id = *psig_nids++;
1853
1854 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
1855 j++, curr++) {
1856 if (curr->hash == md_id && curr->sig == sig_id) {
1857 *sptr++ = curr->sigalg;
1858 break;
1859 }
1860 }
1861
1862 if (j == OSSL_NELEM(sigalg_lookup_tbl))
1863 goto err;
1864 }
1865
1866 if (client) {
1867 OPENSSL_free(c->client_sigalgs);
1868 c->client_sigalgs = sigalgs;
1869 c->client_sigalgslen = salglen / 2;
1870 } else {
1871 OPENSSL_free(c->conf_sigalgs);
1872 c->conf_sigalgs = sigalgs;
1873 c->conf_sigalgslen = salglen / 2;
1874 }
1875
1876 return 1;
1877
1878 err:
1879 OPENSSL_free(sigalgs);
1880 return 0;
1881 }
1882
1883 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
1884 {
1885 int sig_nid;
1886 size_t i;
1887 if (default_nid == -1)
1888 return 1;
1889 sig_nid = X509_get_signature_nid(x);
1890 if (default_nid)
1891 return sig_nid == default_nid ? 1 : 0;
1892 for (i = 0; i < c->shared_sigalgslen; i++)
1893 if (sig_nid == c->shared_sigalgs[i]->sigandhash)
1894 return 1;
1895 return 0;
1896 }
1897
1898 /* Check to see if a certificate issuer name matches list of CA names */
1899 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
1900 {
1901 X509_NAME *nm;
1902 int i;
1903 nm = X509_get_issuer_name(x);
1904 for (i = 0; i < sk_X509_NAME_num(names); i++) {
1905 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
1906 return 1;
1907 }
1908 return 0;
1909 }
1910
1911 /*
1912 * Check certificate chain is consistent with TLS extensions and is usable by
1913 * server. This servers two purposes: it allows users to check chains before
1914 * passing them to the server and it allows the server to check chains before
1915 * attempting to use them.
1916 */
1917
1918 /* Flags which need to be set for a certificate when stict mode not set */
1919
1920 #define CERT_PKEY_VALID_FLAGS \
1921 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
1922 /* Strict mode flags */
1923 #define CERT_PKEY_STRICT_FLAGS \
1924 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
1925 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
1926
1927 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
1928 int idx)
1929 {
1930 int i;
1931 int rv = 0;
1932 int check_flags = 0, strict_mode;
1933 CERT_PKEY *cpk = NULL;
1934 CERT *c = s->cert;
1935 uint32_t *pvalid;
1936 unsigned int suiteb_flags = tls1_suiteb(s);
1937 /* idx == -1 means checking server chains */
1938 if (idx != -1) {
1939 /* idx == -2 means checking client certificate chains */
1940 if (idx == -2) {
1941 cpk = c->key;
1942 idx = (int)(cpk - c->pkeys);
1943 } else
1944 cpk = c->pkeys + idx;
1945 pvalid = s->s3->tmp.valid_flags + idx;
1946 x = cpk->x509;
1947 pk = cpk->privatekey;
1948 chain = cpk->chain;
1949 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
1950 /* If no cert or key, forget it */
1951 if (!x || !pk)
1952 goto end;
1953 } else {
1954 if (!x || !pk)
1955 return 0;
1956 idx = ssl_cert_type(x, pk);
1957 if (idx == -1)
1958 return 0;
1959 pvalid = s->s3->tmp.valid_flags + idx;
1960
1961 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1962 check_flags = CERT_PKEY_STRICT_FLAGS;
1963 else
1964 check_flags = CERT_PKEY_VALID_FLAGS;
1965 strict_mode = 1;
1966 }
1967
1968 if (suiteb_flags) {
1969 int ok;
1970 if (check_flags)
1971 check_flags |= CERT_PKEY_SUITEB;
1972 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
1973 if (ok == X509_V_OK)
1974 rv |= CERT_PKEY_SUITEB;
1975 else if (!check_flags)
1976 goto end;
1977 }
1978
1979 /*
1980 * Check all signature algorithms are consistent with signature
1981 * algorithms extension if TLS 1.2 or later and strict mode.
1982 */
1983 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
1984 int default_nid;
1985 int rsign = 0;
1986 if (s->s3->tmp.peer_sigalgs)
1987 default_nid = 0;
1988 /* If no sigalgs extension use defaults from RFC5246 */
1989 else {
1990 switch (idx) {
1991 case SSL_PKEY_RSA:
1992 rsign = EVP_PKEY_RSA;
1993 default_nid = NID_sha1WithRSAEncryption;
1994 break;
1995
1996 case SSL_PKEY_DSA_SIGN:
1997 rsign = EVP_PKEY_DSA;
1998 default_nid = NID_dsaWithSHA1;
1999 break;
2000
2001 case SSL_PKEY_ECC:
2002 rsign = EVP_PKEY_EC;
2003 default_nid = NID_ecdsa_with_SHA1;
2004 break;
2005
2006 case SSL_PKEY_GOST01:
2007 rsign = NID_id_GostR3410_2001;
2008 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2009 break;
2010
2011 case SSL_PKEY_GOST12_256:
2012 rsign = NID_id_GostR3410_2012_256;
2013 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2014 break;
2015
2016 case SSL_PKEY_GOST12_512:
2017 rsign = NID_id_GostR3410_2012_512;
2018 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2019 break;
2020
2021 default:
2022 default_nid = -1;
2023 break;
2024 }
2025 }
2026 /*
2027 * If peer sent no signature algorithms extension and we have set
2028 * preferred signature algorithms check we support sha1.
2029 */
2030 if (default_nid > 0 && c->conf_sigalgs) {
2031 size_t j;
2032 const uint16_t *p = c->conf_sigalgs;
2033 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2034 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
2035
2036 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2037 break;
2038 }
2039 if (j == c->conf_sigalgslen) {
2040 if (check_flags)
2041 goto skip_sigs;
2042 else
2043 goto end;
2044 }
2045 }
2046 /* Check signature algorithm of each cert in chain */
2047 if (!tls1_check_sig_alg(c, x, default_nid)) {
2048 if (!check_flags)
2049 goto end;
2050 } else
2051 rv |= CERT_PKEY_EE_SIGNATURE;
2052 rv |= CERT_PKEY_CA_SIGNATURE;
2053 for (i = 0; i < sk_X509_num(chain); i++) {
2054 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2055 if (check_flags) {
2056 rv &= ~CERT_PKEY_CA_SIGNATURE;
2057 break;
2058 } else
2059 goto end;
2060 }
2061 }
2062 }
2063 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2064 else if (check_flags)
2065 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2066 skip_sigs:
2067 /* Check cert parameters are consistent */
2068 if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
2069 rv |= CERT_PKEY_EE_PARAM;
2070 else if (!check_flags)
2071 goto end;
2072 if (!s->server)
2073 rv |= CERT_PKEY_CA_PARAM;
2074 /* In strict mode check rest of chain too */
2075 else if (strict_mode) {
2076 rv |= CERT_PKEY_CA_PARAM;
2077 for (i = 0; i < sk_X509_num(chain); i++) {
2078 X509 *ca = sk_X509_value(chain, i);
2079 if (!tls1_check_cert_param(s, ca, 0)) {
2080 if (check_flags) {
2081 rv &= ~CERT_PKEY_CA_PARAM;
2082 break;
2083 } else
2084 goto end;
2085 }
2086 }
2087 }
2088 if (!s->server && strict_mode) {
2089 STACK_OF(X509_NAME) *ca_dn;
2090 int check_type = 0;
2091 switch (EVP_PKEY_id(pk)) {
2092 case EVP_PKEY_RSA:
2093 check_type = TLS_CT_RSA_SIGN;
2094 break;
2095 case EVP_PKEY_DSA:
2096 check_type = TLS_CT_DSS_SIGN;
2097 break;
2098 case EVP_PKEY_EC:
2099 check_type = TLS_CT_ECDSA_SIGN;
2100 break;
2101 }
2102 if (check_type) {
2103 const unsigned char *ctypes;
2104 int ctypelen;
2105 if (c->ctypes) {
2106 ctypes = c->ctypes;
2107 ctypelen = (int)c->ctype_num;
2108 } else {
2109 ctypes = (unsigned char *)s->s3->tmp.ctype;
2110 ctypelen = s->s3->tmp.ctype_num;
2111 }
2112 for (i = 0; i < ctypelen; i++) {
2113 if (ctypes[i] == check_type) {
2114 rv |= CERT_PKEY_CERT_TYPE;
2115 break;
2116 }
2117 }
2118 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2119 goto end;
2120 } else
2121 rv |= CERT_PKEY_CERT_TYPE;
2122
2123 ca_dn = s->s3->tmp.ca_names;
2124
2125 if (!sk_X509_NAME_num(ca_dn))
2126 rv |= CERT_PKEY_ISSUER_NAME;
2127
2128 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2129 if (ssl_check_ca_name(ca_dn, x))
2130 rv |= CERT_PKEY_ISSUER_NAME;
2131 }
2132 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2133 for (i = 0; i < sk_X509_num(chain); i++) {
2134 X509 *xtmp = sk_X509_value(chain, i);
2135 if (ssl_check_ca_name(ca_dn, xtmp)) {
2136 rv |= CERT_PKEY_ISSUER_NAME;
2137 break;
2138 }
2139 }
2140 }
2141 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2142 goto end;
2143 } else
2144 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2145
2146 if (!check_flags || (rv & check_flags) == check_flags)
2147 rv |= CERT_PKEY_VALID;
2148
2149 end:
2150
2151 if (TLS1_get_version(s) >= TLS1_2_VERSION) {
2152 if (*pvalid & CERT_PKEY_EXPLICIT_SIGN)
2153 rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2154 else if (s->s3->tmp.md[idx] != NULL)
2155 rv |= CERT_PKEY_SIGN;
2156 } else
2157 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2158
2159 /*
2160 * When checking a CERT_PKEY structure all flags are irrelevant if the
2161 * chain is invalid.
2162 */
2163 if (!check_flags) {
2164 if (rv & CERT_PKEY_VALID)
2165 *pvalid = rv;
2166 else {
2167 /* Preserve explicit sign flag, clear rest */
2168 *pvalid &= CERT_PKEY_EXPLICIT_SIGN;
2169 return 0;
2170 }
2171 }
2172 return rv;
2173 }
2174
2175 /* Set validity of certificates in an SSL structure */
2176 void tls1_set_cert_validity(SSL *s)
2177 {
2178 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2179 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2180 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2181 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2182 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2183 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2184 }
2185
2186 /* User level utiity function to check a chain is suitable */
2187 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2188 {
2189 return tls1_check_chain(s, x, pk, chain, -1);
2190 }
2191
2192 #ifndef OPENSSL_NO_DH
2193 DH *ssl_get_auto_dh(SSL *s)
2194 {
2195 int dh_secbits = 80;
2196 if (s->cert->dh_tmp_auto == 2)
2197 return DH_get_1024_160();
2198 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2199 if (s->s3->tmp.new_cipher->strength_bits == 256)
2200 dh_secbits = 128;
2201 else
2202 dh_secbits = 80;
2203 } else {
2204 if (s->s3->tmp.cert == NULL)
2205 return NULL;
2206 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
2207 }
2208
2209 if (dh_secbits >= 128) {
2210 DH *dhp = DH_new();
2211 BIGNUM *p, *g;
2212 if (dhp == NULL)
2213 return NULL;
2214 g = BN_new();
2215 if (g != NULL)
2216 BN_set_word(g, 2);
2217 if (dh_secbits >= 192)
2218 p = BN_get_rfc3526_prime_8192(NULL);
2219 else
2220 p = BN_get_rfc3526_prime_3072(NULL);
2221 if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2222 DH_free(dhp);
2223 BN_free(p);
2224 BN_free(g);
2225 return NULL;
2226 }
2227 return dhp;
2228 }
2229 if (dh_secbits >= 112)
2230 return DH_get_2048_224();
2231 return DH_get_1024_160();
2232 }
2233 #endif
2234
2235 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2236 {
2237 int secbits = -1;
2238 EVP_PKEY *pkey = X509_get0_pubkey(x);
2239 if (pkey) {
2240 /*
2241 * If no parameters this will return -1 and fail using the default
2242 * security callback for any non-zero security level. This will
2243 * reject keys which omit parameters but this only affects DSA and
2244 * omission of parameters is never (?) done in practice.
2245 */
2246 secbits = EVP_PKEY_security_bits(pkey);
2247 }
2248 if (s)
2249 return ssl_security(s, op, secbits, 0, x);
2250 else
2251 return ssl_ctx_security(ctx, op, secbits, 0, x);
2252 }
2253
2254 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2255 {
2256 /* Lookup signature algorithm digest */
2257 int secbits = -1, md_nid = NID_undef, sig_nid;
2258 /* Don't check signature if self signed */
2259 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2260 return 1;
2261 sig_nid = X509_get_signature_nid(x);
2262 if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) {
2263 const EVP_MD *md;
2264 if (md_nid && (md = EVP_get_digestbynid(md_nid)))
2265 secbits = EVP_MD_size(md) * 4;
2266 }
2267 if (s)
2268 return ssl_security(s, op, secbits, md_nid, x);
2269 else
2270 return ssl_ctx_security(ctx, op, secbits, md_nid, x);
2271 }
2272
2273 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2274 {
2275 if (vfy)
2276 vfy = SSL_SECOP_PEER;
2277 if (is_ee) {
2278 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2279 return SSL_R_EE_KEY_TOO_SMALL;
2280 } else {
2281 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2282 return SSL_R_CA_KEY_TOO_SMALL;
2283 }
2284 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2285 return SSL_R_CA_MD_TOO_WEAK;
2286 return 1;
2287 }
2288
2289 /*
2290 * Check security of a chain, if sk includes the end entity certificate then
2291 * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending
2292 * one to the peer. Return values: 1 if ok otherwise error code to use
2293 */
2294
2295 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2296 {
2297 int rv, start_idx, i;
2298 if (x == NULL) {
2299 x = sk_X509_value(sk, 0);
2300 start_idx = 1;
2301 } else
2302 start_idx = 0;
2303
2304 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2305 if (rv != 1)
2306 return rv;
2307
2308 for (i = start_idx; i < sk_X509_num(sk); i++) {
2309 x = sk_X509_value(sk, i);
2310 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2311 if (rv != 1)
2312 return rv;
2313 }
2314 return 1;
2315 }
2316
2317 /*
2318 * Choose an appropriate signature algorithm based on available certificates
2319 * Set current certificate and digest to match chosen algorithm.
2320 */
2321 int tls_choose_sigalg(SSL *s, int *al)
2322 {
2323 int idx;
2324 const SIGALG_LOOKUP *lu = NULL;
2325
2326 if (SSL_IS_TLS13(s)) {
2327 size_t i;
2328 #ifndef OPENSSL_NO_EC
2329 int curve = -1;
2330 #endif
2331
2332 /* Look for a certificate matching shared sigaglgs */
2333 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2334 lu = s->cert->shared_sigalgs[i];
2335
2336 /* Skip RSA if not PSS */
2337 if (lu->sig == EVP_PKEY_RSA)
2338 continue;
2339 if (ssl_md(lu->hash_idx) == NULL)
2340 continue;
2341 idx = lu->sig_idx;
2342 if (!ssl_has_cert(s, idx))
2343 continue;
2344 if (lu->sig == EVP_PKEY_EC) {
2345 #ifndef OPENSSL_NO_EC
2346 if (curve == -1) {
2347 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[idx].privatekey);
2348
2349 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2350 }
2351 if (curve != lu->curve)
2352 continue;
2353 #else
2354 continue;
2355 #endif
2356 }
2357 break;
2358 }
2359 if (i == s->cert->shared_sigalgslen) {
2360 *al = SSL_AD_HANDSHAKE_FAILURE;
2361 SSLerr(SSL_F_TLS_CHOOSE_SIGALG,
2362 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2363 return 0;
2364 }
2365 } else {
2366 /* Find index corresponding to ciphersuite */
2367 idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
2368 /* If no certificate for ciphersuite return */
2369 if (idx == -1) {
2370 s->s3->tmp.cert = NULL;
2371 s->s3->tmp.sigalg = NULL;
2372 return 1;
2373 }
2374 if (idx == SSL_PKEY_GOST_EC) {
2375 /* Work out which GOST certificate is avaiable */
2376 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
2377 idx = SSL_PKEY_GOST12_512;
2378 } else if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
2379 idx = SSL_PKEY_GOST12_256;
2380 } else if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
2381 idx = SSL_PKEY_GOST01;
2382 } else {
2383 *al = SSL_AD_INTERNAL_ERROR;
2384 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2385 return 0;
2386 }
2387 } else if (!ssl_has_cert(s, idx)) {
2388 *al = SSL_AD_INTERNAL_ERROR;
2389 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2390 return 0;
2391 }
2392
2393 if (SSL_USE_SIGALGS(s)) {
2394 if (s->s3->tmp.peer_sigalgs != NULL) {
2395 size_t i;
2396
2397 /*
2398 * Find highest preference signature algorithm matching
2399 * cert type
2400 */
2401 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2402 lu = s->cert->shared_sigalgs[i];
2403 if (lu->sig_idx == idx)
2404 break;
2405 if (idx == SSL_PKEY_RSA && lu->sig == EVP_PKEY_RSA_PSS)
2406 break;
2407 }
2408 if (i == s->cert->shared_sigalgslen) {
2409 *al = SSL_AD_INTERNAL_ERROR;
2410 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2411 return 0;
2412 }
2413 } else {
2414 /*
2415 * If we have no sigalg use defaults
2416 */
2417 const uint16_t *sent_sigs;
2418 size_t sent_sigslen, i;
2419
2420 if ((lu = tls1_get_legacy_sigalg(s, idx)) == NULL) {
2421 *al = SSL_AD_INTERNAL_ERROR;
2422 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2423 return 0;
2424 }
2425
2426 /* Check signature matches a type we sent */
2427 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2428 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2429 if (lu->sigalg == *sent_sigs)
2430 break;
2431 }
2432 if (i == sent_sigslen) {
2433 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
2434 *al = SSL_AD_HANDSHAKE_FAILURE;
2435 return 0;
2436 }
2437 }
2438 } else {
2439 if ((lu = tls1_get_legacy_sigalg(s, idx)) == NULL) {
2440 *al = SSL_AD_INTERNAL_ERROR;
2441 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2442 return 0;
2443 }
2444 }
2445 }
2446 s->s3->tmp.cert = &s->cert->pkeys[idx];
2447 s->s3->tmp.sigalg = lu;
2448 return 1;
2449 }