]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Mark both maps on degradation while migrating
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* RAID map configuration infos. */
110 struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116 #define IMSM_T_STATE_NORMAL 0
117 #define IMSM_T_STATE_UNINITIALIZED 1
118 #define IMSM_T_STATE_DEGRADED 2
119 #define IMSM_T_STATE_FAILED 3
120 __u8 raid_level;
121 #define IMSM_T_RAID0 0
122 #define IMSM_T_RAID1 1
123 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
127 __u8 ddf;
128 __u32 filler[7]; /* expansion area */
129 #define IMSM_ORD_REBUILD (1 << 24)
130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
131 * top byte contains some flags
132 */
133 } __attribute__ ((packed));
134
135 struct imsm_vol {
136 __u32 curr_migr_unit;
137 __u32 checkpoint_id; /* id to access curr_migr_unit */
138 __u8 migr_state; /* Normal or Migrating */
139 #define MIGR_INIT 0
140 #define MIGR_REBUILD 1
141 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142 #define MIGR_GEN_MIGR 3
143 #define MIGR_STATE_CHANGE 4
144 #define MIGR_REPAIR 5
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153 } __attribute__ ((packed));
154
155 struct imsm_dev {
156 __u8 volume[MAX_RAID_SERIAL_LEN];
157 __u32 size_low;
158 __u32 size_high;
159 #define DEV_BOOTABLE __cpu_to_le32(0x01)
160 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
162 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181 #define IMSM_DEV_FILLERS 10
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184 } __attribute__ ((packed));
185
186 struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202 #define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
206 /* here comes BBM logs */
207 } __attribute__ ((packed));
208
209 #define BBM_LOG_MAX_ENTRIES 254
210
211 struct bbm_log_entry {
212 __u64 defective_block_start;
213 #define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217 } __attribute__ ((__packed__));
218
219 struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226 } __attribute__ ((__packed__));
227
228
229 #ifndef MDASSEMBLE
230 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231 #endif
232
233 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242 struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266 } __attribute__ ((__packed__));
267
268 static __u8 migr_type(struct imsm_dev *dev)
269 {
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275 }
276
277 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278 {
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289 }
290
291 static unsigned int sector_count(__u32 bytes)
292 {
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294 }
295
296 static unsigned int mpb_sectors(struct imsm_super *mpb)
297 {
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
299 }
300
301 struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
304 unsigned index;
305 };
306
307 struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312 };
313
314 enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317 };
318 /* internal representation of IMSM metadata */
319 struct intel_super {
320 union {
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
323 };
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
328 size_t len; /* size of the 'buf' allocation */
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
331 int updates_pending; /* count of pending updates for mdmon */
332 int current_vol; /* index of raid device undergoing creation */
333 __u32 create_offset; /* common start for 'current_vol' */
334 __u32 random; /* random data for seeding new family numbers */
335 struct intel_dev *devlist;
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
342 struct imsm_disk disk;
343 int fd;
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
346 int raiddisk; /* slot to fill in autolayout */
347 enum action action;
348 } *disks, *current_disk;
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
351 struct dl *missing; /* disks removed while we weren't looking */
352 struct bbm_log *bbm_log;
353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
354 const struct imsm_orom *orom; /* platform firmware support */
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356 };
357
358 struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
363 };
364
365 struct extent {
366 unsigned long long start, size;
367 };
368
369 /* definitions of reshape process types */
370 enum imsm_reshape_type {
371 CH_TAKEOVER,
372 CH_MIGRATION,
373 };
374
375 /* definition of messages passed to imsm_process_update */
376 enum imsm_update_type {
377 update_activate_spare,
378 update_create_array,
379 update_kill_array,
380 update_rename_array,
381 update_add_remove_disk,
382 update_reshape_container_disks,
383 update_reshape_migration,
384 update_takeover,
385 update_general_migration_checkpoint,
386 };
387
388 struct imsm_update_activate_spare {
389 enum imsm_update_type type;
390 struct dl *dl;
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394 };
395
396 struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404 };
405
406 enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409 };
410 struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414 };
415
416 struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422 };
423
424 struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
433 int new_chunksize;
434
435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
436 };
437
438 struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441 };
442
443 struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445 };
446
447 struct imsm_update_create_array {
448 enum imsm_update_type type;
449 int dev_idx;
450 struct imsm_dev dev;
451 };
452
453 struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456 };
457
458 struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462 };
463
464 struct imsm_update_add_remove_disk {
465 enum imsm_update_type type;
466 };
467
468
469 static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473 };
474
475 const char *get_sys_dev_type(enum sys_dev_type type)
476 {
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481 }
482
483 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484 {
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494 }
495
496 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497 {
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504 }
505
506 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
507 {
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532 }
533
534 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535 {
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570 }
571
572
573 static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
575
576 static struct supertype *match_metadata_desc_imsm(char *arg)
577 {
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
586 if (!st)
587 return NULL;
588 memset(st, 0, sizeof(*st));
589 st->container_dev = NoMdDev;
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595 }
596
597 #ifndef MDASSEMBLE
598 static __u8 *get_imsm_version(struct imsm_super *mpb)
599 {
600 return &mpb->sig[MPB_SIG_LEN];
601 }
602 #endif
603
604 /* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
608 {
609 if (index >= mpb->num_disks)
610 return NULL;
611 return &mpb->disk[index];
612 }
613
614 /* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
618 {
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
623 return d;
624
625 return NULL;
626 }
627 /* retrieve a disk from the parsed metadata */
628 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629 {
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
636 return NULL;
637 }
638
639 /* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
643 {
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654 }
655
656 static size_t sizeof_imsm_map(struct imsm_map *map)
657 {
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659 }
660
661 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
662 {
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 * -2 - we return longer map /excluding uninitialized state/
669 */
670 struct imsm_map *map = &dev->vol.map[0];
671 struct imsm_map *map2 = NULL;
672
673 if (dev->vol.migr_state)
674 map2 = (void *)map + sizeof_imsm_map(map);
675
676 switch (second_map) {
677 case 0:
678 break;
679 case 1:
680 map = map2;
681 break;
682 case -1:
683 if (map2)
684 map = map2;
685 break;
686 case -2:
687 if (map2
688 && map2->map_state != IMSM_T_STATE_UNINITIALIZED
689 && map2->num_members > map->num_members)
690 map = map2;
691 break;
692 default:
693 map = NULL;
694 }
695 return map;
696
697 }
698
699 /* return the size of the device.
700 * migr_state increases the returned size if map[0] were to be duplicated
701 */
702 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
703 {
704 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
705 sizeof_imsm_map(get_imsm_map(dev, 0));
706
707 /* migrating means an additional map */
708 if (dev->vol.migr_state)
709 size += sizeof_imsm_map(get_imsm_map(dev, 1));
710 else if (migr_state)
711 size += sizeof_imsm_map(get_imsm_map(dev, 0));
712
713 return size;
714 }
715
716 #ifndef MDASSEMBLE
717 /* retrieve disk serial number list from a metadata update */
718 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
719 {
720 void *u = update;
721 struct disk_info *inf;
722
723 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
724 sizeof_imsm_dev(&update->dev, 0);
725
726 return inf;
727 }
728 #endif
729
730 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
731 {
732 int offset;
733 int i;
734 void *_mpb = mpb;
735
736 if (index >= mpb->num_raid_devs)
737 return NULL;
738
739 /* devices start after all disks */
740 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
741
742 for (i = 0; i <= index; i++)
743 if (i == index)
744 return _mpb + offset;
745 else
746 offset += sizeof_imsm_dev(_mpb + offset, 0);
747
748 return NULL;
749 }
750
751 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
752 {
753 struct intel_dev *dv;
754
755 if (index >= super->anchor->num_raid_devs)
756 return NULL;
757 for (dv = super->devlist; dv; dv = dv->next)
758 if (dv->index == index)
759 return dv->dev;
760 return NULL;
761 }
762
763 /*
764 * for second_map:
765 * == 0 get first map
766 * == 1 get second map
767 * == -1 than get map according to the current migr_state
768 */
769 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
770 int slot,
771 int second_map)
772 {
773 struct imsm_map *map;
774
775 map = get_imsm_map(dev, second_map);
776
777 /* top byte identifies disk under rebuild */
778 return __le32_to_cpu(map->disk_ord_tbl[slot]);
779 }
780
781 #define ord_to_idx(ord) (((ord) << 8) >> 8)
782 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
783 {
784 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
785
786 return ord_to_idx(ord);
787 }
788
789 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
790 {
791 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
792 }
793
794 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
795 {
796 int slot;
797 __u32 ord;
798
799 for (slot = 0; slot < map->num_members; slot++) {
800 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
801 if (ord_to_idx(ord) == idx)
802 return slot;
803 }
804
805 return -1;
806 }
807
808 static int get_imsm_raid_level(struct imsm_map *map)
809 {
810 if (map->raid_level == 1) {
811 if (map->num_members == 2)
812 return 1;
813 else
814 return 10;
815 }
816
817 return map->raid_level;
818 }
819
820 static int cmp_extent(const void *av, const void *bv)
821 {
822 const struct extent *a = av;
823 const struct extent *b = bv;
824 if (a->start < b->start)
825 return -1;
826 if (a->start > b->start)
827 return 1;
828 return 0;
829 }
830
831 static int count_memberships(struct dl *dl, struct intel_super *super)
832 {
833 int memberships = 0;
834 int i;
835
836 for (i = 0; i < super->anchor->num_raid_devs; i++) {
837 struct imsm_dev *dev = get_imsm_dev(super, i);
838 struct imsm_map *map = get_imsm_map(dev, 0);
839
840 if (get_imsm_disk_slot(map, dl->index) >= 0)
841 memberships++;
842 }
843
844 return memberships;
845 }
846
847 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
848
849 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
850 {
851 /* find a list of used extents on the given physical device */
852 struct extent *rv, *e;
853 int i;
854 int memberships = count_memberships(dl, super);
855 __u32 reservation;
856
857 /* trim the reserved area for spares, so they can join any array
858 * regardless of whether the OROM has assigned sectors from the
859 * IMSM_RESERVED_SECTORS region
860 */
861 if (dl->index == -1)
862 reservation = imsm_min_reserved_sectors(super);
863 else
864 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
865
866 rv = malloc(sizeof(struct extent) * (memberships + 1));
867 if (!rv)
868 return NULL;
869 e = rv;
870
871 for (i = 0; i < super->anchor->num_raid_devs; i++) {
872 struct imsm_dev *dev = get_imsm_dev(super, i);
873 struct imsm_map *map = get_imsm_map(dev, 0);
874
875 if (get_imsm_disk_slot(map, dl->index) >= 0) {
876 e->start = __le32_to_cpu(map->pba_of_lba0);
877 e->size = __le32_to_cpu(map->blocks_per_member);
878 e++;
879 }
880 }
881 qsort(rv, memberships, sizeof(*rv), cmp_extent);
882
883 /* determine the start of the metadata
884 * when no raid devices are defined use the default
885 * ...otherwise allow the metadata to truncate the value
886 * as is the case with older versions of imsm
887 */
888 if (memberships) {
889 struct extent *last = &rv[memberships - 1];
890 __u32 remainder;
891
892 remainder = __le32_to_cpu(dl->disk.total_blocks) -
893 (last->start + last->size);
894 /* round down to 1k block to satisfy precision of the kernel
895 * 'size' interface
896 */
897 remainder &= ~1UL;
898 /* make sure remainder is still sane */
899 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
900 remainder = ROUND_UP(super->len, 512) >> 9;
901 if (reservation > remainder)
902 reservation = remainder;
903 }
904 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
905 e->size = 0;
906 return rv;
907 }
908
909 /* try to determine how much space is reserved for metadata from
910 * the last get_extents() entry, otherwise fallback to the
911 * default
912 */
913 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
914 {
915 struct extent *e;
916 int i;
917 __u32 rv;
918
919 /* for spares just return a minimal reservation which will grow
920 * once the spare is picked up by an array
921 */
922 if (dl->index == -1)
923 return MPB_SECTOR_CNT;
924
925 e = get_extents(super, dl);
926 if (!e)
927 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
928
929 /* scroll to last entry */
930 for (i = 0; e[i].size; i++)
931 continue;
932
933 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
934
935 free(e);
936
937 return rv;
938 }
939
940 static int is_spare(struct imsm_disk *disk)
941 {
942 return (disk->status & SPARE_DISK) == SPARE_DISK;
943 }
944
945 static int is_configured(struct imsm_disk *disk)
946 {
947 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
948 }
949
950 static int is_failed(struct imsm_disk *disk)
951 {
952 return (disk->status & FAILED_DISK) == FAILED_DISK;
953 }
954
955 /* try to determine how much space is reserved for metadata from
956 * the last get_extents() entry on the smallest active disk,
957 * otherwise fallback to the default
958 */
959 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
960 {
961 struct extent *e;
962 int i;
963 __u32 min_active, remainder;
964 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
965 struct dl *dl, *dl_min = NULL;
966
967 if (!super)
968 return rv;
969
970 min_active = 0;
971 for (dl = super->disks; dl; dl = dl->next) {
972 if (dl->index < 0)
973 continue;
974 if (dl->disk.total_blocks < min_active || min_active == 0) {
975 dl_min = dl;
976 min_active = dl->disk.total_blocks;
977 }
978 }
979 if (!dl_min)
980 return rv;
981
982 /* find last lba used by subarrays on the smallest active disk */
983 e = get_extents(super, dl_min);
984 if (!e)
985 return rv;
986 for (i = 0; e[i].size; i++)
987 continue;
988
989 remainder = min_active - e[i].start;
990 free(e);
991
992 /* to give priority to recovery we should not require full
993 IMSM_RESERVED_SECTORS from the spare */
994 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
995
996 /* if real reservation is smaller use that value */
997 return (remainder < rv) ? remainder : rv;
998 }
999
1000 /* Return minimum size of a spare that can be used in this array*/
1001 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1002 {
1003 struct intel_super *super = st->sb;
1004 struct dl *dl;
1005 struct extent *e;
1006 int i;
1007 unsigned long long rv = 0;
1008
1009 if (!super)
1010 return rv;
1011 /* find first active disk in array */
1012 dl = super->disks;
1013 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1014 dl = dl->next;
1015 if (!dl)
1016 return rv;
1017 /* find last lba used by subarrays */
1018 e = get_extents(super, dl);
1019 if (!e)
1020 return rv;
1021 for (i = 0; e[i].size; i++)
1022 continue;
1023 if (i > 0)
1024 rv = e[i-1].start + e[i-1].size;
1025 free(e);
1026
1027 /* add the amount of space needed for metadata */
1028 rv = rv + imsm_min_reserved_sectors(super);
1029
1030 return rv * 512;
1031 }
1032
1033 #ifndef MDASSEMBLE
1034 static __u64 blocks_per_migr_unit(struct intel_super *super,
1035 struct imsm_dev *dev);
1036
1037 static int is_gen_migration(struct imsm_dev *dev);
1038
1039 static void print_imsm_dev(struct intel_super *super,
1040 struct imsm_dev *dev,
1041 char *uuid,
1042 int disk_idx)
1043 {
1044 __u64 sz;
1045 int slot, i;
1046 struct imsm_map *map = get_imsm_map(dev, 0);
1047 struct imsm_map *map2 = get_imsm_map(dev, 1);
1048 __u32 ord;
1049
1050 printf("\n");
1051 printf("[%.16s]:\n", dev->volume);
1052 printf(" UUID : %s\n", uuid);
1053 printf(" RAID Level : %d", get_imsm_raid_level(map));
1054 if (map2)
1055 printf(" <-- %d", get_imsm_raid_level(map2));
1056 printf("\n");
1057 printf(" Members : %d", map->num_members);
1058 if (map2)
1059 printf(" <-- %d", map2->num_members);
1060 printf("\n");
1061 printf(" Slots : [");
1062 for (i = 0; i < map->num_members; i++) {
1063 ord = get_imsm_ord_tbl_ent(dev, i, 0);
1064 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1065 }
1066 printf("]");
1067 if (map2) {
1068 printf(" <-- [");
1069 for (i = 0; i < map2->num_members; i++) {
1070 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1071 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1072 }
1073 printf("]");
1074 }
1075 printf("\n");
1076 printf(" Failed disk : ");
1077 if (map->failed_disk_num == 0xff)
1078 printf("none");
1079 else
1080 printf("%i", map->failed_disk_num);
1081 printf("\n");
1082 slot = get_imsm_disk_slot(map, disk_idx);
1083 if (slot >= 0) {
1084 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1085 printf(" This Slot : %d%s\n", slot,
1086 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1087 } else
1088 printf(" This Slot : ?\n");
1089 sz = __le32_to_cpu(dev->size_high);
1090 sz <<= 32;
1091 sz += __le32_to_cpu(dev->size_low);
1092 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1093 human_size(sz * 512));
1094 sz = __le32_to_cpu(map->blocks_per_member);
1095 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1096 human_size(sz * 512));
1097 printf(" Sector Offset : %u\n",
1098 __le32_to_cpu(map->pba_of_lba0));
1099 printf(" Num Stripes : %u\n",
1100 __le32_to_cpu(map->num_data_stripes));
1101 printf(" Chunk Size : %u KiB",
1102 __le16_to_cpu(map->blocks_per_strip) / 2);
1103 if (map2)
1104 printf(" <-- %u KiB",
1105 __le16_to_cpu(map2->blocks_per_strip) / 2);
1106 printf("\n");
1107 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1108 printf(" Migrate State : ");
1109 if (dev->vol.migr_state) {
1110 if (migr_type(dev) == MIGR_INIT)
1111 printf("initialize\n");
1112 else if (migr_type(dev) == MIGR_REBUILD)
1113 printf("rebuild\n");
1114 else if (migr_type(dev) == MIGR_VERIFY)
1115 printf("check\n");
1116 else if (migr_type(dev) == MIGR_GEN_MIGR)
1117 printf("general migration\n");
1118 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1119 printf("state change\n");
1120 else if (migr_type(dev) == MIGR_REPAIR)
1121 printf("repair\n");
1122 else
1123 printf("<unknown:%d>\n", migr_type(dev));
1124 } else
1125 printf("idle\n");
1126 printf(" Map State : %s", map_state_str[map->map_state]);
1127 if (dev->vol.migr_state) {
1128 struct imsm_map *map = get_imsm_map(dev, 1);
1129
1130 printf(" <-- %s", map_state_str[map->map_state]);
1131 printf("\n Checkpoint : %u ",
1132 __le32_to_cpu(dev->vol.curr_migr_unit));
1133 if ((is_gen_migration(dev)) && (super->disks->index > 1))
1134 printf("(N/A)");
1135 else
1136 printf("(%llu)", (unsigned long long)
1137 blocks_per_migr_unit(super, dev));
1138 }
1139 printf("\n");
1140 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1141 }
1142
1143 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1144 {
1145 char str[MAX_RAID_SERIAL_LEN + 1];
1146 __u64 sz;
1147
1148 if (index < -1 || !disk)
1149 return;
1150
1151 printf("\n");
1152 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1153 if (index >= 0)
1154 printf(" Disk%02d Serial : %s\n", index, str);
1155 else
1156 printf(" Disk Serial : %s\n", str);
1157 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1158 is_configured(disk) ? " active" : "",
1159 is_failed(disk) ? " failed" : "");
1160 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1161 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1162 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1163 human_size(sz * 512));
1164 }
1165
1166 void examine_migr_rec_imsm(struct intel_super *super)
1167 {
1168 struct migr_record *migr_rec = super->migr_rec;
1169 struct imsm_super *mpb = super->anchor;
1170 int i;
1171
1172 for (i = 0; i < mpb->num_raid_devs; i++) {
1173 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1174 if (is_gen_migration(dev) == 0)
1175 continue;
1176
1177 printf("\nMigration Record Information:");
1178 if (super->disks->index > 1) {
1179 printf(" Empty\n ");
1180 printf("Examine one of first two disks in array\n");
1181 break;
1182 }
1183 printf("\n Status : ");
1184 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1185 printf("Normal\n");
1186 else
1187 printf("Contains Data\n");
1188 printf(" Current Unit : %u\n",
1189 __le32_to_cpu(migr_rec->curr_migr_unit));
1190 printf(" Family : %u\n",
1191 __le32_to_cpu(migr_rec->family_num));
1192 printf(" Ascending : %u\n",
1193 __le32_to_cpu(migr_rec->ascending_migr));
1194 printf(" Blocks Per Unit : %u\n",
1195 __le32_to_cpu(migr_rec->blocks_per_unit));
1196 printf(" Dest. Depth Per Unit : %u\n",
1197 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1198 printf(" Checkpoint Area pba : %u\n",
1199 __le32_to_cpu(migr_rec->ckpt_area_pba));
1200 printf(" First member lba : %u\n",
1201 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1202 printf(" Total Number of Units : %u\n",
1203 __le32_to_cpu(migr_rec->num_migr_units));
1204 printf(" Size of volume : %u\n",
1205 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1206 printf(" Expansion space for LBA64 : %u\n",
1207 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1208 printf(" Record was read from : %u\n",
1209 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1210
1211 break;
1212 }
1213 }
1214 #endif /* MDASSEMBLE */
1215 /*******************************************************************************
1216 * function: imsm_check_attributes
1217 * Description: Function checks if features represented by attributes flags
1218 * are supported by mdadm.
1219 * Parameters:
1220 * attributes - Attributes read from metadata
1221 * Returns:
1222 * 0 - passed attributes contains unsupported features flags
1223 * 1 - all features are supported
1224 ******************************************************************************/
1225 static int imsm_check_attributes(__u32 attributes)
1226 {
1227 int ret_val = 1;
1228 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1229
1230 not_supported &= ~MPB_ATTRIB_IGNORED;
1231
1232 not_supported &= attributes;
1233 if (not_supported) {
1234 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1235 (unsigned)__le32_to_cpu(not_supported));
1236 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1237 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1238 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1239 }
1240 if (not_supported & MPB_ATTRIB_2TB) {
1241 dprintf("\t\tMPB_ATTRIB_2TB\n");
1242 not_supported ^= MPB_ATTRIB_2TB;
1243 }
1244 if (not_supported & MPB_ATTRIB_RAID0) {
1245 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1246 not_supported ^= MPB_ATTRIB_RAID0;
1247 }
1248 if (not_supported & MPB_ATTRIB_RAID1) {
1249 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1250 not_supported ^= MPB_ATTRIB_RAID1;
1251 }
1252 if (not_supported & MPB_ATTRIB_RAID10) {
1253 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1254 not_supported ^= MPB_ATTRIB_RAID10;
1255 }
1256 if (not_supported & MPB_ATTRIB_RAID1E) {
1257 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1258 not_supported ^= MPB_ATTRIB_RAID1E;
1259 }
1260 if (not_supported & MPB_ATTRIB_RAID5) {
1261 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1262 not_supported ^= MPB_ATTRIB_RAID5;
1263 }
1264 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1265 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1266 not_supported ^= MPB_ATTRIB_RAIDCNG;
1267 }
1268 if (not_supported & MPB_ATTRIB_BBM) {
1269 dprintf("\t\tMPB_ATTRIB_BBM\n");
1270 not_supported ^= MPB_ATTRIB_BBM;
1271 }
1272 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1273 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1274 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1275 }
1276 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1277 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1278 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1279 }
1280 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1281 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1282 not_supported ^= MPB_ATTRIB_2TB_DISK;
1283 }
1284 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1285 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1286 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1287 }
1288 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1289 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1290 not_supported ^= MPB_ATTRIB_NEVER_USE;
1291 }
1292
1293 if (not_supported)
1294 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1295
1296 ret_val = 0;
1297 }
1298
1299 return ret_val;
1300 }
1301
1302 #ifndef MDASSEMBLE
1303 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1304
1305 static void examine_super_imsm(struct supertype *st, char *homehost)
1306 {
1307 struct intel_super *super = st->sb;
1308 struct imsm_super *mpb = super->anchor;
1309 char str[MAX_SIGNATURE_LENGTH];
1310 int i;
1311 struct mdinfo info;
1312 char nbuf[64];
1313 __u32 sum;
1314 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1315 struct dl *dl;
1316
1317 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1318 printf(" Magic : %s\n", str);
1319 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1320 printf(" Version : %s\n", get_imsm_version(mpb));
1321 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1322 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1323 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1324 printf(" Attributes : ");
1325 if (imsm_check_attributes(mpb->attributes))
1326 printf("All supported\n");
1327 else
1328 printf("not supported\n");
1329 getinfo_super_imsm(st, &info, NULL);
1330 fname_from_uuid(st, &info, nbuf, ':');
1331 printf(" UUID : %s\n", nbuf + 5);
1332 sum = __le32_to_cpu(mpb->check_sum);
1333 printf(" Checksum : %08x %s\n", sum,
1334 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1335 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1336 printf(" Disks : %d\n", mpb->num_disks);
1337 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1338 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1339 if (super->bbm_log) {
1340 struct bbm_log *log = super->bbm_log;
1341
1342 printf("\n");
1343 printf("Bad Block Management Log:\n");
1344 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1345 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1346 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1347 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1348 printf(" First Spare : %llx\n",
1349 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1350 }
1351 for (i = 0; i < mpb->num_raid_devs; i++) {
1352 struct mdinfo info;
1353 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1354
1355 super->current_vol = i;
1356 getinfo_super_imsm(st, &info, NULL);
1357 fname_from_uuid(st, &info, nbuf, ':');
1358 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1359 }
1360 for (i = 0; i < mpb->num_disks; i++) {
1361 if (i == super->disks->index)
1362 continue;
1363 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1364 }
1365
1366 for (dl = super->disks; dl; dl = dl->next)
1367 if (dl->index == -1)
1368 print_imsm_disk(&dl->disk, -1, reserved);
1369
1370 examine_migr_rec_imsm(super);
1371 }
1372
1373 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1374 {
1375 /* We just write a generic IMSM ARRAY entry */
1376 struct mdinfo info;
1377 char nbuf[64];
1378 struct intel_super *super = st->sb;
1379
1380 if (!super->anchor->num_raid_devs) {
1381 printf("ARRAY metadata=imsm\n");
1382 return;
1383 }
1384
1385 getinfo_super_imsm(st, &info, NULL);
1386 fname_from_uuid(st, &info, nbuf, ':');
1387 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1388 }
1389
1390 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1391 {
1392 /* We just write a generic IMSM ARRAY entry */
1393 struct mdinfo info;
1394 char nbuf[64];
1395 char nbuf1[64];
1396 struct intel_super *super = st->sb;
1397 int i;
1398
1399 if (!super->anchor->num_raid_devs)
1400 return;
1401
1402 getinfo_super_imsm(st, &info, NULL);
1403 fname_from_uuid(st, &info, nbuf, ':');
1404 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1405 struct imsm_dev *dev = get_imsm_dev(super, i);
1406
1407 super->current_vol = i;
1408 getinfo_super_imsm(st, &info, NULL);
1409 fname_from_uuid(st, &info, nbuf1, ':');
1410 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1411 dev->volume, nbuf + 5, i, nbuf1 + 5);
1412 }
1413 }
1414
1415 static void export_examine_super_imsm(struct supertype *st)
1416 {
1417 struct intel_super *super = st->sb;
1418 struct imsm_super *mpb = super->anchor;
1419 struct mdinfo info;
1420 char nbuf[64];
1421
1422 getinfo_super_imsm(st, &info, NULL);
1423 fname_from_uuid(st, &info, nbuf, ':');
1424 printf("MD_METADATA=imsm\n");
1425 printf("MD_LEVEL=container\n");
1426 printf("MD_UUID=%s\n", nbuf+5);
1427 printf("MD_DEVICES=%u\n", mpb->num_disks);
1428 }
1429
1430 static void detail_super_imsm(struct supertype *st, char *homehost)
1431 {
1432 struct mdinfo info;
1433 char nbuf[64];
1434
1435 getinfo_super_imsm(st, &info, NULL);
1436 fname_from_uuid(st, &info, nbuf, ':');
1437 printf("\n UUID : %s\n", nbuf + 5);
1438 }
1439
1440 static void brief_detail_super_imsm(struct supertype *st)
1441 {
1442 struct mdinfo info;
1443 char nbuf[64];
1444 getinfo_super_imsm(st, &info, NULL);
1445 fname_from_uuid(st, &info, nbuf, ':');
1446 printf(" UUID=%s", nbuf + 5);
1447 }
1448
1449 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1450 static void fd2devname(int fd, char *name);
1451
1452 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1453 {
1454 /* dump an unsorted list of devices attached to AHCI Intel storage
1455 * controller, as well as non-connected ports
1456 */
1457 int hba_len = strlen(hba_path) + 1;
1458 struct dirent *ent;
1459 DIR *dir;
1460 char *path = NULL;
1461 int err = 0;
1462 unsigned long port_mask = (1 << port_count) - 1;
1463
1464 if (port_count > (int)sizeof(port_mask) * 8) {
1465 if (verbose)
1466 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1467 return 2;
1468 }
1469
1470 /* scroll through /sys/dev/block looking for devices attached to
1471 * this hba
1472 */
1473 dir = opendir("/sys/dev/block");
1474 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1475 int fd;
1476 char model[64];
1477 char vendor[64];
1478 char buf[1024];
1479 int major, minor;
1480 char *device;
1481 char *c;
1482 int port;
1483 int type;
1484
1485 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1486 continue;
1487 path = devt_to_devpath(makedev(major, minor));
1488 if (!path)
1489 continue;
1490 if (!path_attached_to_hba(path, hba_path)) {
1491 free(path);
1492 path = NULL;
1493 continue;
1494 }
1495
1496 /* retrieve the scsi device type */
1497 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1498 if (verbose)
1499 fprintf(stderr, Name ": failed to allocate 'device'\n");
1500 err = 2;
1501 break;
1502 }
1503 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1504 if (load_sys(device, buf) != 0) {
1505 if (verbose)
1506 fprintf(stderr, Name ": failed to read device type for %s\n",
1507 path);
1508 err = 2;
1509 free(device);
1510 break;
1511 }
1512 type = strtoul(buf, NULL, 10);
1513
1514 /* if it's not a disk print the vendor and model */
1515 if (!(type == 0 || type == 7 || type == 14)) {
1516 vendor[0] = '\0';
1517 model[0] = '\0';
1518 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1519 if (load_sys(device, buf) == 0) {
1520 strncpy(vendor, buf, sizeof(vendor));
1521 vendor[sizeof(vendor) - 1] = '\0';
1522 c = (char *) &vendor[sizeof(vendor) - 1];
1523 while (isspace(*c) || *c == '\0')
1524 *c-- = '\0';
1525
1526 }
1527 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1528 if (load_sys(device, buf) == 0) {
1529 strncpy(model, buf, sizeof(model));
1530 model[sizeof(model) - 1] = '\0';
1531 c = (char *) &model[sizeof(model) - 1];
1532 while (isspace(*c) || *c == '\0')
1533 *c-- = '\0';
1534 }
1535
1536 if (vendor[0] && model[0])
1537 sprintf(buf, "%.64s %.64s", vendor, model);
1538 else
1539 switch (type) { /* numbers from hald/linux/device.c */
1540 case 1: sprintf(buf, "tape"); break;
1541 case 2: sprintf(buf, "printer"); break;
1542 case 3: sprintf(buf, "processor"); break;
1543 case 4:
1544 case 5: sprintf(buf, "cdrom"); break;
1545 case 6: sprintf(buf, "scanner"); break;
1546 case 8: sprintf(buf, "media_changer"); break;
1547 case 9: sprintf(buf, "comm"); break;
1548 case 12: sprintf(buf, "raid"); break;
1549 default: sprintf(buf, "unknown");
1550 }
1551 } else
1552 buf[0] = '\0';
1553 free(device);
1554
1555 /* chop device path to 'host%d' and calculate the port number */
1556 c = strchr(&path[hba_len], '/');
1557 if (!c) {
1558 if (verbose)
1559 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1560 err = 2;
1561 break;
1562 }
1563 *c = '\0';
1564 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1565 port -= host_base;
1566 else {
1567 if (verbose) {
1568 *c = '/'; /* repair the full string */
1569 fprintf(stderr, Name ": failed to determine port number for %s\n",
1570 path);
1571 }
1572 err = 2;
1573 break;
1574 }
1575
1576 /* mark this port as used */
1577 port_mask &= ~(1 << port);
1578
1579 /* print out the device information */
1580 if (buf[0]) {
1581 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1582 continue;
1583 }
1584
1585 fd = dev_open(ent->d_name, O_RDONLY);
1586 if (fd < 0)
1587 printf(" Port%d : - disk info unavailable -\n", port);
1588 else {
1589 fd2devname(fd, buf);
1590 printf(" Port%d : %s", port, buf);
1591 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1592 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1593 else
1594 printf(" ()\n");
1595 close(fd);
1596 }
1597 free(path);
1598 path = NULL;
1599 }
1600 if (path)
1601 free(path);
1602 if (dir)
1603 closedir(dir);
1604 if (err == 0) {
1605 int i;
1606
1607 for (i = 0; i < port_count; i++)
1608 if (port_mask & (1 << i))
1609 printf(" Port%d : - no device attached -\n", i);
1610 }
1611
1612 return err;
1613 }
1614
1615 static void print_found_intel_controllers(struct sys_dev *elem)
1616 {
1617 for (; elem; elem = elem->next) {
1618 fprintf(stderr, Name ": found Intel(R) ");
1619 if (elem->type == SYS_DEV_SATA)
1620 fprintf(stderr, "SATA ");
1621 else if (elem->type == SYS_DEV_SAS)
1622 fprintf(stderr, "SAS ");
1623 fprintf(stderr, "RAID controller");
1624 if (elem->pci_id)
1625 fprintf(stderr, " at %s", elem->pci_id);
1626 fprintf(stderr, ".\n");
1627 }
1628 fflush(stderr);
1629 }
1630
1631 static int ahci_get_port_count(const char *hba_path, int *port_count)
1632 {
1633 struct dirent *ent;
1634 DIR *dir;
1635 int host_base = -1;
1636
1637 *port_count = 0;
1638 if ((dir = opendir(hba_path)) == NULL)
1639 return -1;
1640
1641 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1642 int host;
1643
1644 if (sscanf(ent->d_name, "host%d", &host) != 1)
1645 continue;
1646 if (*port_count == 0)
1647 host_base = host;
1648 else if (host < host_base)
1649 host_base = host;
1650
1651 if (host + 1 > *port_count + host_base)
1652 *port_count = host + 1 - host_base;
1653 }
1654 closedir(dir);
1655 return host_base;
1656 }
1657
1658 static void print_imsm_capability(const struct imsm_orom *orom)
1659 {
1660 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1661 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1662 orom->hotfix_ver, orom->build);
1663 printf(" RAID Levels :%s%s%s%s%s\n",
1664 imsm_orom_has_raid0(orom) ? " raid0" : "",
1665 imsm_orom_has_raid1(orom) ? " raid1" : "",
1666 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1667 imsm_orom_has_raid10(orom) ? " raid10" : "",
1668 imsm_orom_has_raid5(orom) ? " raid5" : "");
1669 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1670 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1671 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1672 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1673 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1674 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1675 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1676 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1677 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1678 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1679 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1680 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1681 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1682 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1683 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1684 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1685 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1686 printf(" Max Disks : %d\n", orom->tds);
1687 printf(" Max Volumes : %d\n", orom->vpa);
1688 return;
1689 }
1690
1691 static int detail_platform_imsm(int verbose, int enumerate_only)
1692 {
1693 /* There are two components to imsm platform support, the ahci SATA
1694 * controller and the option-rom. To find the SATA controller we
1695 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1696 * controller with the Intel vendor id is present. This approach
1697 * allows mdadm to leverage the kernel's ahci detection logic, with the
1698 * caveat that if ahci.ko is not loaded mdadm will not be able to
1699 * detect platform raid capabilities. The option-rom resides in a
1700 * platform "Adapter ROM". We scan for its signature to retrieve the
1701 * platform capabilities. If raid support is disabled in the BIOS the
1702 * option-rom capability structure will not be available.
1703 */
1704 const struct imsm_orom *orom;
1705 struct sys_dev *list, *hba;
1706 int host_base = 0;
1707 int port_count = 0;
1708 int result=0;
1709
1710 if (enumerate_only) {
1711 if (check_env("IMSM_NO_PLATFORM"))
1712 return 0;
1713 list = find_intel_devices();
1714 if (!list)
1715 return 2;
1716 for (hba = list; hba; hba = hba->next) {
1717 orom = find_imsm_capability(hba->type);
1718 if (!orom) {
1719 result = 2;
1720 break;
1721 }
1722 }
1723 free_sys_dev(&list);
1724 return result;
1725 }
1726
1727 list = find_intel_devices();
1728 if (!list) {
1729 if (verbose)
1730 fprintf(stderr, Name ": no active Intel(R) RAID "
1731 "controller found.\n");
1732 free_sys_dev(&list);
1733 return 2;
1734 } else if (verbose)
1735 print_found_intel_controllers(list);
1736
1737 for (hba = list; hba; hba = hba->next) {
1738 orom = find_imsm_capability(hba->type);
1739 if (!orom)
1740 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1741 hba->path, get_sys_dev_type(hba->type));
1742 else
1743 print_imsm_capability(orom);
1744 }
1745
1746 for (hba = list; hba; hba = hba->next) {
1747 printf(" I/O Controller : %s (%s)\n",
1748 hba->path, get_sys_dev_type(hba->type));
1749
1750 if (hba->type == SYS_DEV_SATA) {
1751 host_base = ahci_get_port_count(hba->path, &port_count);
1752 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1753 if (verbose)
1754 fprintf(stderr, Name ": failed to enumerate "
1755 "ports on SATA controller at %s.", hba->pci_id);
1756 result |= 2;
1757 }
1758 }
1759 }
1760
1761 free_sys_dev(&list);
1762 return result;
1763 }
1764 #endif
1765
1766 static int match_home_imsm(struct supertype *st, char *homehost)
1767 {
1768 /* the imsm metadata format does not specify any host
1769 * identification information. We return -1 since we can never
1770 * confirm nor deny whether a given array is "meant" for this
1771 * host. We rely on compare_super and the 'family_num' fields to
1772 * exclude member disks that do not belong, and we rely on
1773 * mdadm.conf to specify the arrays that should be assembled.
1774 * Auto-assembly may still pick up "foreign" arrays.
1775 */
1776
1777 return -1;
1778 }
1779
1780 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1781 {
1782 /* The uuid returned here is used for:
1783 * uuid to put into bitmap file (Create, Grow)
1784 * uuid for backup header when saving critical section (Grow)
1785 * comparing uuids when re-adding a device into an array
1786 * In these cases the uuid required is that of the data-array,
1787 * not the device-set.
1788 * uuid to recognise same set when adding a missing device back
1789 * to an array. This is a uuid for the device-set.
1790 *
1791 * For each of these we can make do with a truncated
1792 * or hashed uuid rather than the original, as long as
1793 * everyone agrees.
1794 * In each case the uuid required is that of the data-array,
1795 * not the device-set.
1796 */
1797 /* imsm does not track uuid's so we synthesis one using sha1 on
1798 * - The signature (Which is constant for all imsm array, but no matter)
1799 * - the orig_family_num of the container
1800 * - the index number of the volume
1801 * - the 'serial' number of the volume.
1802 * Hopefully these are all constant.
1803 */
1804 struct intel_super *super = st->sb;
1805
1806 char buf[20];
1807 struct sha1_ctx ctx;
1808 struct imsm_dev *dev = NULL;
1809 __u32 family_num;
1810
1811 /* some mdadm versions failed to set ->orig_family_num, in which
1812 * case fall back to ->family_num. orig_family_num will be
1813 * fixed up with the first metadata update.
1814 */
1815 family_num = super->anchor->orig_family_num;
1816 if (family_num == 0)
1817 family_num = super->anchor->family_num;
1818 sha1_init_ctx(&ctx);
1819 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1820 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1821 if (super->current_vol >= 0)
1822 dev = get_imsm_dev(super, super->current_vol);
1823 if (dev) {
1824 __u32 vol = super->current_vol;
1825 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1826 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1827 }
1828 sha1_finish_ctx(&ctx, buf);
1829 memcpy(uuid, buf, 4*4);
1830 }
1831
1832 #if 0
1833 static void
1834 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1835 {
1836 __u8 *v = get_imsm_version(mpb);
1837 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1838 char major[] = { 0, 0, 0 };
1839 char minor[] = { 0 ,0, 0 };
1840 char patch[] = { 0, 0, 0 };
1841 char *ver_parse[] = { major, minor, patch };
1842 int i, j;
1843
1844 i = j = 0;
1845 while (*v != '\0' && v < end) {
1846 if (*v != '.' && j < 2)
1847 ver_parse[i][j++] = *v;
1848 else {
1849 i++;
1850 j = 0;
1851 }
1852 v++;
1853 }
1854
1855 *m = strtol(minor, NULL, 0);
1856 *p = strtol(patch, NULL, 0);
1857 }
1858 #endif
1859
1860 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1861 {
1862 /* migr_strip_size when repairing or initializing parity */
1863 struct imsm_map *map = get_imsm_map(dev, 0);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 5:
1868 case 10:
1869 return chunk;
1870 default:
1871 return 128*1024 >> 9;
1872 }
1873 }
1874
1875 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1876 {
1877 /* migr_strip_size when rebuilding a degraded disk, no idea why
1878 * this is different than migr_strip_size_resync(), but it's good
1879 * to be compatible
1880 */
1881 struct imsm_map *map = get_imsm_map(dev, 1);
1882 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1883
1884 switch (get_imsm_raid_level(map)) {
1885 case 1:
1886 case 10:
1887 if (map->num_members % map->num_domains == 0)
1888 return 128*1024 >> 9;
1889 else
1890 return chunk;
1891 case 5:
1892 return max((__u32) 64*1024 >> 9, chunk);
1893 default:
1894 return 128*1024 >> 9;
1895 }
1896 }
1897
1898 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1899 {
1900 struct imsm_map *lo = get_imsm_map(dev, 0);
1901 struct imsm_map *hi = get_imsm_map(dev, 1);
1902 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1903 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1904
1905 return max((__u32) 1, hi_chunk / lo_chunk);
1906 }
1907
1908 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1909 {
1910 struct imsm_map *lo = get_imsm_map(dev, 0);
1911 int level = get_imsm_raid_level(lo);
1912
1913 if (level == 1 || level == 10) {
1914 struct imsm_map *hi = get_imsm_map(dev, 1);
1915
1916 return hi->num_domains;
1917 } else
1918 return num_stripes_per_unit_resync(dev);
1919 }
1920
1921 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1922 {
1923 /* named 'imsm_' because raid0, raid1 and raid10
1924 * counter-intuitively have the same number of data disks
1925 */
1926 struct imsm_map *map = get_imsm_map(dev, second_map);
1927
1928 switch (get_imsm_raid_level(map)) {
1929 case 0:
1930 case 1:
1931 case 10:
1932 return map->num_members;
1933 case 5:
1934 return map->num_members - 1;
1935 default:
1936 dprintf("%s: unsupported raid level\n", __func__);
1937 return 0;
1938 }
1939 }
1940
1941 static __u32 parity_segment_depth(struct imsm_dev *dev)
1942 {
1943 struct imsm_map *map = get_imsm_map(dev, 0);
1944 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1945
1946 switch(get_imsm_raid_level(map)) {
1947 case 1:
1948 case 10:
1949 return chunk * map->num_domains;
1950 case 5:
1951 return chunk * map->num_members;
1952 default:
1953 return chunk;
1954 }
1955 }
1956
1957 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1958 {
1959 struct imsm_map *map = get_imsm_map(dev, 1);
1960 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1961 __u32 strip = block / chunk;
1962
1963 switch (get_imsm_raid_level(map)) {
1964 case 1:
1965 case 10: {
1966 __u32 vol_strip = (strip * map->num_domains) + 1;
1967 __u32 vol_stripe = vol_strip / map->num_members;
1968
1969 return vol_stripe * chunk + block % chunk;
1970 } case 5: {
1971 __u32 stripe = strip / (map->num_members - 1);
1972
1973 return stripe * chunk + block % chunk;
1974 }
1975 default:
1976 return 0;
1977 }
1978 }
1979
1980 static __u64 blocks_per_migr_unit(struct intel_super *super,
1981 struct imsm_dev *dev)
1982 {
1983 /* calculate the conversion factor between per member 'blocks'
1984 * (md/{resync,rebuild}_start) and imsm migration units, return
1985 * 0 for the 'not migrating' and 'unsupported migration' cases
1986 */
1987 if (!dev->vol.migr_state)
1988 return 0;
1989
1990 switch (migr_type(dev)) {
1991 case MIGR_GEN_MIGR: {
1992 struct migr_record *migr_rec = super->migr_rec;
1993 return __le32_to_cpu(migr_rec->blocks_per_unit);
1994 }
1995 case MIGR_VERIFY:
1996 case MIGR_REPAIR:
1997 case MIGR_INIT: {
1998 struct imsm_map *map = get_imsm_map(dev, 0);
1999 __u32 stripes_per_unit;
2000 __u32 blocks_per_unit;
2001 __u32 parity_depth;
2002 __u32 migr_chunk;
2003 __u32 block_map;
2004 __u32 block_rel;
2005 __u32 segment;
2006 __u32 stripe;
2007 __u8 disks;
2008
2009 /* yes, this is really the translation of migr_units to
2010 * per-member blocks in the 'resync' case
2011 */
2012 stripes_per_unit = num_stripes_per_unit_resync(dev);
2013 migr_chunk = migr_strip_blocks_resync(dev);
2014 disks = imsm_num_data_members(dev, 0);
2015 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2016 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2017 segment = blocks_per_unit / stripe;
2018 block_rel = blocks_per_unit - segment * stripe;
2019 parity_depth = parity_segment_depth(dev);
2020 block_map = map_migr_block(dev, block_rel);
2021 return block_map + parity_depth * segment;
2022 }
2023 case MIGR_REBUILD: {
2024 __u32 stripes_per_unit;
2025 __u32 migr_chunk;
2026
2027 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2028 migr_chunk = migr_strip_blocks_rebuild(dev);
2029 return migr_chunk * stripes_per_unit;
2030 }
2031 case MIGR_STATE_CHANGE:
2032 default:
2033 return 0;
2034 }
2035 }
2036
2037 static int imsm_level_to_layout(int level)
2038 {
2039 switch (level) {
2040 case 0:
2041 case 1:
2042 return 0;
2043 case 5:
2044 case 6:
2045 return ALGORITHM_LEFT_ASYMMETRIC;
2046 case 10:
2047 return 0x102;
2048 }
2049 return UnSet;
2050 }
2051
2052 /*******************************************************************************
2053 * Function: read_imsm_migr_rec
2054 * Description: Function reads imsm migration record from last sector of disk
2055 * Parameters:
2056 * fd : disk descriptor
2057 * super : metadata info
2058 * Returns:
2059 * 0 : success,
2060 * -1 : fail
2061 ******************************************************************************/
2062 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2063 {
2064 int ret_val = -1;
2065 unsigned long long dsize;
2066
2067 get_dev_size(fd, NULL, &dsize);
2068 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2069 fprintf(stderr,
2070 Name ": Cannot seek to anchor block: %s\n",
2071 strerror(errno));
2072 goto out;
2073 }
2074 if (read(fd, super->migr_rec_buf, 512) != 512) {
2075 fprintf(stderr,
2076 Name ": Cannot read migr record block: %s\n",
2077 strerror(errno));
2078 goto out;
2079 }
2080 ret_val = 0;
2081
2082 out:
2083 return ret_val;
2084 }
2085
2086 /*******************************************************************************
2087 * Function: load_imsm_migr_rec
2088 * Description: Function reads imsm migration record (it is stored at the last
2089 * sector of disk)
2090 * Parameters:
2091 * super : imsm internal array info
2092 * info : general array info
2093 * Returns:
2094 * 0 : success
2095 * -1 : fail
2096 ******************************************************************************/
2097 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2098 {
2099 struct mdinfo *sd;
2100 struct dl *dl = NULL;
2101 char nm[30];
2102 int retval = -1;
2103 int fd = -1;
2104
2105 if (info) {
2106 for (sd = info->devs ; sd ; sd = sd->next) {
2107 /* read only from one of the first two slots */
2108 if ((sd->disk.raid_disk > 1) ||
2109 (sd->disk.raid_disk < 0))
2110 continue;
2111 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2112 fd = dev_open(nm, O_RDONLY);
2113 if (fd >= 0)
2114 break;
2115 }
2116 }
2117 if (fd < 0) {
2118 for (dl = super->disks; dl; dl = dl->next) {
2119 /* read only from one of the first two slots */
2120 if (dl->index > 1)
2121 continue;
2122 sprintf(nm, "%d:%d", dl->major, dl->minor);
2123 fd = dev_open(nm, O_RDONLY);
2124 if (fd >= 0)
2125 break;
2126 }
2127 }
2128 if (fd < 0)
2129 goto out;
2130 retval = read_imsm_migr_rec(fd, super);
2131
2132 out:
2133 if (fd >= 0)
2134 close(fd);
2135 return retval;
2136 }
2137
2138 #ifndef MDASSEMBLE
2139 /*******************************************************************************
2140 * function: imsm_create_metadata_checkpoint_update
2141 * Description: It creates update for checkpoint change.
2142 * Parameters:
2143 * super : imsm internal array info
2144 * u : pointer to prepared update
2145 * Returns:
2146 * Uptate length.
2147 * If length is equal to 0, input pointer u contains no update
2148 ******************************************************************************/
2149 static int imsm_create_metadata_checkpoint_update(
2150 struct intel_super *super,
2151 struct imsm_update_general_migration_checkpoint **u)
2152 {
2153
2154 int update_memory_size = 0;
2155
2156 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2157
2158 if (u == NULL)
2159 return 0;
2160 *u = NULL;
2161
2162 /* size of all update data without anchor */
2163 update_memory_size =
2164 sizeof(struct imsm_update_general_migration_checkpoint);
2165
2166 *u = calloc(1, update_memory_size);
2167 if (*u == NULL) {
2168 dprintf("error: cannot get memory for "
2169 "imsm_create_metadata_checkpoint_update update\n");
2170 return 0;
2171 }
2172 (*u)->type = update_general_migration_checkpoint;
2173 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2174 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2175 (*u)->curr_migr_unit);
2176
2177 return update_memory_size;
2178 }
2179
2180
2181 static void imsm_update_metadata_locally(struct supertype *st,
2182 void *buf, int len);
2183
2184 /*******************************************************************************
2185 * Function: write_imsm_migr_rec
2186 * Description: Function writes imsm migration record
2187 * (at the last sector of disk)
2188 * Parameters:
2189 * super : imsm internal array info
2190 * Returns:
2191 * 0 : success
2192 * -1 : if fail
2193 ******************************************************************************/
2194 static int write_imsm_migr_rec(struct supertype *st)
2195 {
2196 struct intel_super *super = st->sb;
2197 unsigned long long dsize;
2198 char nm[30];
2199 int fd = -1;
2200 int retval = -1;
2201 struct dl *sd;
2202 int len;
2203 struct imsm_update_general_migration_checkpoint *u;
2204
2205 for (sd = super->disks ; sd ; sd = sd->next) {
2206 /* write to 2 first slots only */
2207 if ((sd->index < 0) || (sd->index > 1))
2208 continue;
2209 sprintf(nm, "%d:%d", sd->major, sd->minor);
2210 fd = dev_open(nm, O_RDWR);
2211 if (fd < 0)
2212 continue;
2213 get_dev_size(fd, NULL, &dsize);
2214 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2215 fprintf(stderr,
2216 Name ": Cannot seek to anchor block: %s\n",
2217 strerror(errno));
2218 goto out;
2219 }
2220 if (write(fd, super->migr_rec_buf, 512) != 512) {
2221 fprintf(stderr,
2222 Name ": Cannot write migr record block: %s\n",
2223 strerror(errno));
2224 goto out;
2225 }
2226 close(fd);
2227 fd = -1;
2228 }
2229 /* update checkpoint information in metadata */
2230 len = imsm_create_metadata_checkpoint_update(super, &u);
2231
2232 if (len <= 0) {
2233 dprintf("imsm: Cannot prepare update\n");
2234 goto out;
2235 }
2236 /* update metadata locally */
2237 imsm_update_metadata_locally(st, u, len);
2238 /* and possibly remotely */
2239 if (st->update_tail) {
2240 append_metadata_update(st, u, len);
2241 /* during reshape we do all work inside metadata handler
2242 * manage_reshape(), so metadata update has to be triggered
2243 * insida it
2244 */
2245 flush_metadata_updates(st);
2246 st->update_tail = &st->updates;
2247 } else
2248 free(u);
2249
2250 retval = 0;
2251 out:
2252 if (fd >= 0)
2253 close(fd);
2254 return retval;
2255 }
2256 #endif /* MDASSEMBLE */
2257
2258 /* spare/missing disks activations are not allowe when
2259 * array/container performs reshape operation, because
2260 * all arrays in container works on the same disks set
2261 */
2262 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2263 {
2264 int rv = 0;
2265 struct intel_dev *i_dev;
2266 struct imsm_dev *dev;
2267
2268 /* check whole container
2269 */
2270 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2271 dev = i_dev->dev;
2272 if (is_gen_migration(dev)) {
2273 /* No repair during any migration in container
2274 */
2275 rv = 1;
2276 break;
2277 }
2278 }
2279 return rv;
2280 }
2281
2282 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2283 {
2284 struct intel_super *super = st->sb;
2285 struct migr_record *migr_rec = super->migr_rec;
2286 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2287 struct imsm_map *map = get_imsm_map(dev, 0);
2288 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2289 struct imsm_map *map_to_analyse = map;
2290 struct dl *dl;
2291 char *devname;
2292 unsigned int component_size_alligment;
2293 int map_disks = info->array.raid_disks;
2294
2295 memset(info, 0, sizeof(*info));
2296 if (prev_map)
2297 map_to_analyse = prev_map;
2298
2299 dl = super->current_disk;
2300
2301 info->container_member = super->current_vol;
2302 info->array.raid_disks = map->num_members;
2303 info->array.level = get_imsm_raid_level(map_to_analyse);
2304 info->array.layout = imsm_level_to_layout(info->array.level);
2305 info->array.md_minor = -1;
2306 info->array.ctime = 0;
2307 info->array.utime = 0;
2308 info->array.chunk_size =
2309 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2310 info->array.state = !dev->vol.dirty;
2311 info->custom_array_size = __le32_to_cpu(dev->size_high);
2312 info->custom_array_size <<= 32;
2313 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2314 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2315
2316 if (prev_map && map->map_state == prev_map->map_state &&
2317 (migr_type(dev) == MIGR_GEN_MIGR)) {
2318 info->reshape_active = 1;
2319 info->new_level = get_imsm_raid_level(map);
2320 info->new_layout = imsm_level_to_layout(info->new_level);
2321 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2322 info->delta_disks = map->num_members - prev_map->num_members;
2323 if (info->delta_disks) {
2324 /* this needs to be applied to every array
2325 * in the container.
2326 */
2327 info->reshape_active = CONTAINER_RESHAPE;
2328 }
2329 /* We shape information that we give to md might have to be
2330 * modify to cope with md's requirement for reshaping arrays.
2331 * For example, when reshaping a RAID0, md requires it to be
2332 * presented as a degraded RAID4.
2333 * Also if a RAID0 is migrating to a RAID5 we need to specify
2334 * the array as already being RAID5, but the 'before' layout
2335 * is a RAID4-like layout.
2336 */
2337 switch (info->array.level) {
2338 case 0:
2339 switch(info->new_level) {
2340 case 0:
2341 /* conversion is happening as RAID4 */
2342 info->array.level = 4;
2343 info->array.raid_disks += 1;
2344 break;
2345 case 5:
2346 /* conversion is happening as RAID5 */
2347 info->array.level = 5;
2348 info->array.layout = ALGORITHM_PARITY_N;
2349 info->delta_disks -= 1;
2350 break;
2351 default:
2352 /* FIXME error message */
2353 info->array.level = UnSet;
2354 break;
2355 }
2356 break;
2357 }
2358 } else {
2359 info->new_level = UnSet;
2360 info->new_layout = UnSet;
2361 info->new_chunk = info->array.chunk_size;
2362 info->delta_disks = 0;
2363 }
2364
2365 if (dl) {
2366 info->disk.major = dl->major;
2367 info->disk.minor = dl->minor;
2368 info->disk.number = dl->index;
2369 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2370 dl->index);
2371 }
2372
2373 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2374 info->component_size =
2375 __le32_to_cpu(map_to_analyse->blocks_per_member);
2376
2377 /* check component size aligment
2378 */
2379 component_size_alligment =
2380 info->component_size % (info->array.chunk_size/512);
2381
2382 if (component_size_alligment &&
2383 (info->array.level != 1) && (info->array.level != UnSet)) {
2384 dprintf("imsm: reported component size alligned from %llu ",
2385 info->component_size);
2386 info->component_size -= component_size_alligment;
2387 dprintf("to %llu (%i).\n",
2388 info->component_size, component_size_alligment);
2389 }
2390
2391 memset(info->uuid, 0, sizeof(info->uuid));
2392 info->recovery_start = MaxSector;
2393
2394 info->reshape_progress = 0;
2395 info->resync_start = MaxSector;
2396 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2397 dev->vol.dirty) &&
2398 imsm_reshape_blocks_arrays_changes(super) == 0) {
2399 info->resync_start = 0;
2400 }
2401 if (dev->vol.migr_state) {
2402 switch (migr_type(dev)) {
2403 case MIGR_REPAIR:
2404 case MIGR_INIT: {
2405 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2406 dev);
2407 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2408
2409 info->resync_start = blocks_per_unit * units;
2410 break;
2411 }
2412 case MIGR_GEN_MIGR: {
2413 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2414 dev);
2415 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2416 unsigned long long array_blocks;
2417 int used_disks;
2418
2419 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2420 (units <
2421 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2422 (super->migr_rec->rec_status ==
2423 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2424 units++;
2425
2426 info->reshape_progress = blocks_per_unit * units;
2427
2428 dprintf("IMSM: General Migration checkpoint : %llu "
2429 "(%llu) -> read reshape progress : %llu\n",
2430 (unsigned long long)units,
2431 (unsigned long long)blocks_per_unit,
2432 info->reshape_progress);
2433
2434 used_disks = imsm_num_data_members(dev, 1);
2435 if (used_disks > 0) {
2436 array_blocks = map->blocks_per_member *
2437 used_disks;
2438 /* round array size down to closest MB
2439 */
2440 info->custom_array_size = (array_blocks
2441 >> SECT_PER_MB_SHIFT)
2442 << SECT_PER_MB_SHIFT;
2443 }
2444 }
2445 case MIGR_VERIFY:
2446 /* we could emulate the checkpointing of
2447 * 'sync_action=check' migrations, but for now
2448 * we just immediately complete them
2449 */
2450 case MIGR_REBUILD:
2451 /* this is handled by container_content_imsm() */
2452 case MIGR_STATE_CHANGE:
2453 /* FIXME handle other migrations */
2454 default:
2455 /* we are not dirty, so... */
2456 info->resync_start = MaxSector;
2457 }
2458 }
2459
2460 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2461 info->name[MAX_RAID_SERIAL_LEN] = 0;
2462
2463 info->array.major_version = -1;
2464 info->array.minor_version = -2;
2465 devname = devnum2devname(st->container_dev);
2466 *info->text_version = '\0';
2467 if (devname)
2468 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2469 free(devname);
2470 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2471 uuid_from_super_imsm(st, info->uuid);
2472
2473 if (dmap) {
2474 int i, j;
2475 for (i=0; i<map_disks; i++) {
2476 dmap[i] = 0;
2477 if (i < info->array.raid_disks) {
2478 struct imsm_disk *dsk;
2479 j = get_imsm_disk_idx(dev, i, -1);
2480 dsk = get_imsm_disk(super, j);
2481 if (dsk && (dsk->status & CONFIGURED_DISK))
2482 dmap[i] = 1;
2483 }
2484 }
2485 }
2486 }
2487
2488 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2489 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2490
2491 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2492 {
2493 struct dl *d;
2494
2495 for (d = super->missing; d; d = d->next)
2496 if (d->index == index)
2497 return &d->disk;
2498 return NULL;
2499 }
2500
2501 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2502 {
2503 struct intel_super *super = st->sb;
2504 struct imsm_disk *disk;
2505 int map_disks = info->array.raid_disks;
2506 int max_enough = -1;
2507 int i;
2508 struct imsm_super *mpb;
2509
2510 if (super->current_vol >= 0) {
2511 getinfo_super_imsm_volume(st, info, map);
2512 return;
2513 }
2514 memset(info, 0, sizeof(*info));
2515
2516 /* Set raid_disks to zero so that Assemble will always pull in valid
2517 * spares
2518 */
2519 info->array.raid_disks = 0;
2520 info->array.level = LEVEL_CONTAINER;
2521 info->array.layout = 0;
2522 info->array.md_minor = -1;
2523 info->array.ctime = 0; /* N/A for imsm */
2524 info->array.utime = 0;
2525 info->array.chunk_size = 0;
2526
2527 info->disk.major = 0;
2528 info->disk.minor = 0;
2529 info->disk.raid_disk = -1;
2530 info->reshape_active = 0;
2531 info->array.major_version = -1;
2532 info->array.minor_version = -2;
2533 strcpy(info->text_version, "imsm");
2534 info->safe_mode_delay = 0;
2535 info->disk.number = -1;
2536 info->disk.state = 0;
2537 info->name[0] = 0;
2538 info->recovery_start = MaxSector;
2539 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2540
2541 /* do we have the all the insync disks that we expect? */
2542 mpb = super->anchor;
2543
2544 for (i = 0; i < mpb->num_raid_devs; i++) {
2545 struct imsm_dev *dev = get_imsm_dev(super, i);
2546 int failed, enough, j, missing = 0;
2547 struct imsm_map *map;
2548 __u8 state;
2549
2550 failed = imsm_count_failed(super, dev);
2551 state = imsm_check_degraded(super, dev, failed);
2552 map = get_imsm_map(dev, 0);
2553
2554 /* any newly missing disks?
2555 * (catches single-degraded vs double-degraded)
2556 */
2557 for (j = 0; j < map->num_members; j++) {
2558 __u32 ord = get_imsm_ord_tbl_ent(dev, j, 0);
2559 __u32 idx = ord_to_idx(ord);
2560
2561 if (!(ord & IMSM_ORD_REBUILD) &&
2562 get_imsm_missing(super, idx)) {
2563 missing = 1;
2564 break;
2565 }
2566 }
2567
2568 if (state == IMSM_T_STATE_FAILED)
2569 enough = -1;
2570 else if (state == IMSM_T_STATE_DEGRADED &&
2571 (state != map->map_state || missing))
2572 enough = 0;
2573 else /* we're normal, or already degraded */
2574 enough = 1;
2575
2576 /* in the missing/failed disk case check to see
2577 * if at least one array is runnable
2578 */
2579 max_enough = max(max_enough, enough);
2580 }
2581 dprintf("%s: enough: %d\n", __func__, max_enough);
2582 info->container_enough = max_enough;
2583
2584 if (super->disks) {
2585 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2586
2587 disk = &super->disks->disk;
2588 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2589 info->component_size = reserved;
2590 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2591 /* we don't change info->disk.raid_disk here because
2592 * this state will be finalized in mdmon after we have
2593 * found the 'most fresh' version of the metadata
2594 */
2595 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2596 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2597 }
2598
2599 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2600 * ->compare_super may have updated the 'num_raid_devs' field for spares
2601 */
2602 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2603 uuid_from_super_imsm(st, info->uuid);
2604 else
2605 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2606
2607 /* I don't know how to compute 'map' on imsm, so use safe default */
2608 if (map) {
2609 int i;
2610 for (i = 0; i < map_disks; i++)
2611 map[i] = 1;
2612 }
2613
2614 }
2615
2616 /* allocates memory and fills disk in mdinfo structure
2617 * for each disk in array */
2618 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2619 {
2620 struct mdinfo *mddev = NULL;
2621 struct intel_super *super = st->sb;
2622 struct imsm_disk *disk;
2623 int count = 0;
2624 struct dl *dl;
2625 if (!super || !super->disks)
2626 return NULL;
2627 dl = super->disks;
2628 mddev = malloc(sizeof(*mddev));
2629 if (!mddev) {
2630 fprintf(stderr, Name ": Failed to allocate memory.\n");
2631 return NULL;
2632 }
2633 memset(mddev, 0, sizeof(*mddev));
2634 while (dl) {
2635 struct mdinfo *tmp;
2636 disk = &dl->disk;
2637 tmp = malloc(sizeof(*tmp));
2638 if (!tmp) {
2639 fprintf(stderr, Name ": Failed to allocate memory.\n");
2640 if (mddev)
2641 sysfs_free(mddev);
2642 return NULL;
2643 }
2644 memset(tmp, 0, sizeof(*tmp));
2645 if (mddev->devs)
2646 tmp->next = mddev->devs;
2647 mddev->devs = tmp;
2648 tmp->disk.number = count++;
2649 tmp->disk.major = dl->major;
2650 tmp->disk.minor = dl->minor;
2651 tmp->disk.state = is_configured(disk) ?
2652 (1 << MD_DISK_ACTIVE) : 0;
2653 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2654 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2655 tmp->disk.raid_disk = -1;
2656 dl = dl->next;
2657 }
2658 return mddev;
2659 }
2660
2661 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2662 char *update, char *devname, int verbose,
2663 int uuid_set, char *homehost)
2664 {
2665 /* For 'assemble' and 'force' we need to return non-zero if any
2666 * change was made. For others, the return value is ignored.
2667 * Update options are:
2668 * force-one : This device looks a bit old but needs to be included,
2669 * update age info appropriately.
2670 * assemble: clear any 'faulty' flag to allow this device to
2671 * be assembled.
2672 * force-array: Array is degraded but being forced, mark it clean
2673 * if that will be needed to assemble it.
2674 *
2675 * newdev: not used ????
2676 * grow: Array has gained a new device - this is currently for
2677 * linear only
2678 * resync: mark as dirty so a resync will happen.
2679 * name: update the name - preserving the homehost
2680 * uuid: Change the uuid of the array to match watch is given
2681 *
2682 * Following are not relevant for this imsm:
2683 * sparc2.2 : update from old dodgey metadata
2684 * super-minor: change the preferred_minor number
2685 * summaries: update redundant counters.
2686 * homehost: update the recorded homehost
2687 * _reshape_progress: record new reshape_progress position.
2688 */
2689 int rv = 1;
2690 struct intel_super *super = st->sb;
2691 struct imsm_super *mpb;
2692
2693 /* we can only update container info */
2694 if (!super || super->current_vol >= 0 || !super->anchor)
2695 return 1;
2696
2697 mpb = super->anchor;
2698
2699 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2700 rv = -1;
2701 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2702 mpb->orig_family_num = *((__u32 *) info->update_private);
2703 rv = 0;
2704 } else if (strcmp(update, "uuid") == 0) {
2705 __u32 *new_family = malloc(sizeof(*new_family));
2706
2707 /* update orig_family_number with the incoming random
2708 * data, report the new effective uuid, and store the
2709 * new orig_family_num for future updates.
2710 */
2711 if (new_family) {
2712 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2713 uuid_from_super_imsm(st, info->uuid);
2714 *new_family = mpb->orig_family_num;
2715 info->update_private = new_family;
2716 rv = 0;
2717 }
2718 } else if (strcmp(update, "assemble") == 0)
2719 rv = 0;
2720 else
2721 rv = -1;
2722
2723 /* successful update? recompute checksum */
2724 if (rv == 0)
2725 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2726
2727 return rv;
2728 }
2729
2730 static size_t disks_to_mpb_size(int disks)
2731 {
2732 size_t size;
2733
2734 size = sizeof(struct imsm_super);
2735 size += (disks - 1) * sizeof(struct imsm_disk);
2736 size += 2 * sizeof(struct imsm_dev);
2737 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2738 size += (4 - 2) * sizeof(struct imsm_map);
2739 /* 4 possible disk_ord_tbl's */
2740 size += 4 * (disks - 1) * sizeof(__u32);
2741
2742 return size;
2743 }
2744
2745 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2746 {
2747 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2748 return 0;
2749
2750 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2751 }
2752
2753 static void free_devlist(struct intel_super *super)
2754 {
2755 struct intel_dev *dv;
2756
2757 while (super->devlist) {
2758 dv = super->devlist->next;
2759 free(super->devlist->dev);
2760 free(super->devlist);
2761 super->devlist = dv;
2762 }
2763 }
2764
2765 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2766 {
2767 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2768 }
2769
2770 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2771 {
2772 /*
2773 * return:
2774 * 0 same, or first was empty, and second was copied
2775 * 1 second had wrong number
2776 * 2 wrong uuid
2777 * 3 wrong other info
2778 */
2779 struct intel_super *first = st->sb;
2780 struct intel_super *sec = tst->sb;
2781
2782 if (!first) {
2783 st->sb = tst->sb;
2784 tst->sb = NULL;
2785 return 0;
2786 }
2787 /* in platform dependent environment test if the disks
2788 * use the same Intel hba
2789 */
2790 if (!check_env("IMSM_NO_PLATFORM")) {
2791 if (!first->hba || !sec->hba ||
2792 (first->hba->type != sec->hba->type)) {
2793 fprintf(stderr,
2794 "HBAs of devices does not match %s != %s\n",
2795 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2796 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2797 return 3;
2798 }
2799 }
2800
2801 /* if an anchor does not have num_raid_devs set then it is a free
2802 * floating spare
2803 */
2804 if (first->anchor->num_raid_devs > 0 &&
2805 sec->anchor->num_raid_devs > 0) {
2806 /* Determine if these disks might ever have been
2807 * related. Further disambiguation can only take place
2808 * in load_super_imsm_all
2809 */
2810 __u32 first_family = first->anchor->orig_family_num;
2811 __u32 sec_family = sec->anchor->orig_family_num;
2812
2813 if (memcmp(first->anchor->sig, sec->anchor->sig,
2814 MAX_SIGNATURE_LENGTH) != 0)
2815 return 3;
2816
2817 if (first_family == 0)
2818 first_family = first->anchor->family_num;
2819 if (sec_family == 0)
2820 sec_family = sec->anchor->family_num;
2821
2822 if (first_family != sec_family)
2823 return 3;
2824
2825 }
2826
2827
2828 /* if 'first' is a spare promote it to a populated mpb with sec's
2829 * family number
2830 */
2831 if (first->anchor->num_raid_devs == 0 &&
2832 sec->anchor->num_raid_devs > 0) {
2833 int i;
2834 struct intel_dev *dv;
2835 struct imsm_dev *dev;
2836
2837 /* we need to copy raid device info from sec if an allocation
2838 * fails here we don't associate the spare
2839 */
2840 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2841 dv = malloc(sizeof(*dv));
2842 if (!dv)
2843 break;
2844 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2845 if (!dev) {
2846 free(dv);
2847 break;
2848 }
2849 dv->dev = dev;
2850 dv->index = i;
2851 dv->next = first->devlist;
2852 first->devlist = dv;
2853 }
2854 if (i < sec->anchor->num_raid_devs) {
2855 /* allocation failure */
2856 free_devlist(first);
2857 fprintf(stderr, "imsm: failed to associate spare\n");
2858 return 3;
2859 }
2860 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2861 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2862 first->anchor->family_num = sec->anchor->family_num;
2863 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2864 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2865 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2866 }
2867
2868 return 0;
2869 }
2870
2871 static void fd2devname(int fd, char *name)
2872 {
2873 struct stat st;
2874 char path[256];
2875 char dname[PATH_MAX];
2876 char *nm;
2877 int rv;
2878
2879 name[0] = '\0';
2880 if (fstat(fd, &st) != 0)
2881 return;
2882 sprintf(path, "/sys/dev/block/%d:%d",
2883 major(st.st_rdev), minor(st.st_rdev));
2884
2885 rv = readlink(path, dname, sizeof(dname)-1);
2886 if (rv <= 0)
2887 return;
2888
2889 dname[rv] = '\0';
2890 nm = strrchr(dname, '/');
2891 if (nm) {
2892 nm++;
2893 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2894 }
2895 }
2896
2897 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2898
2899 static int imsm_read_serial(int fd, char *devname,
2900 __u8 serial[MAX_RAID_SERIAL_LEN])
2901 {
2902 unsigned char scsi_serial[255];
2903 int rv;
2904 int rsp_len;
2905 int len;
2906 char *dest;
2907 char *src;
2908 char *rsp_buf;
2909 int i;
2910
2911 memset(scsi_serial, 0, sizeof(scsi_serial));
2912
2913 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2914
2915 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2916 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2917 fd2devname(fd, (char *) serial);
2918 return 0;
2919 }
2920
2921 if (rv != 0) {
2922 if (devname)
2923 fprintf(stderr,
2924 Name ": Failed to retrieve serial for %s\n",
2925 devname);
2926 return rv;
2927 }
2928
2929 rsp_len = scsi_serial[3];
2930 if (!rsp_len) {
2931 if (devname)
2932 fprintf(stderr,
2933 Name ": Failed to retrieve serial for %s\n",
2934 devname);
2935 return 2;
2936 }
2937 rsp_buf = (char *) &scsi_serial[4];
2938
2939 /* trim all whitespace and non-printable characters and convert
2940 * ':' to ';'
2941 */
2942 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2943 src = &rsp_buf[i];
2944 if (*src > 0x20) {
2945 /* ':' is reserved for use in placeholder serial
2946 * numbers for missing disks
2947 */
2948 if (*src == ':')
2949 *dest++ = ';';
2950 else
2951 *dest++ = *src;
2952 }
2953 }
2954 len = dest - rsp_buf;
2955 dest = rsp_buf;
2956
2957 /* truncate leading characters */
2958 if (len > MAX_RAID_SERIAL_LEN) {
2959 dest += len - MAX_RAID_SERIAL_LEN;
2960 len = MAX_RAID_SERIAL_LEN;
2961 }
2962
2963 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2964 memcpy(serial, dest, len);
2965
2966 return 0;
2967 }
2968
2969 static int serialcmp(__u8 *s1, __u8 *s2)
2970 {
2971 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2972 }
2973
2974 static void serialcpy(__u8 *dest, __u8 *src)
2975 {
2976 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2977 }
2978
2979 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2980 {
2981 struct dl *dl;
2982
2983 for (dl = super->disks; dl; dl = dl->next)
2984 if (serialcmp(dl->serial, serial) == 0)
2985 break;
2986
2987 return dl;
2988 }
2989
2990 static struct imsm_disk *
2991 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2992 {
2993 int i;
2994
2995 for (i = 0; i < mpb->num_disks; i++) {
2996 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2997
2998 if (serialcmp(disk->serial, serial) == 0) {
2999 if (idx)
3000 *idx = i;
3001 return disk;
3002 }
3003 }
3004
3005 return NULL;
3006 }
3007
3008 static int
3009 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3010 {
3011 struct imsm_disk *disk;
3012 struct dl *dl;
3013 struct stat stb;
3014 int rv;
3015 char name[40];
3016 __u8 serial[MAX_RAID_SERIAL_LEN];
3017
3018 rv = imsm_read_serial(fd, devname, serial);
3019
3020 if (rv != 0)
3021 return 2;
3022
3023 dl = calloc(1, sizeof(*dl));
3024 if (!dl) {
3025 if (devname)
3026 fprintf(stderr,
3027 Name ": failed to allocate disk buffer for %s\n",
3028 devname);
3029 return 2;
3030 }
3031
3032 fstat(fd, &stb);
3033 dl->major = major(stb.st_rdev);
3034 dl->minor = minor(stb.st_rdev);
3035 dl->next = super->disks;
3036 dl->fd = keep_fd ? fd : -1;
3037 assert(super->disks == NULL);
3038 super->disks = dl;
3039 serialcpy(dl->serial, serial);
3040 dl->index = -2;
3041 dl->e = NULL;
3042 fd2devname(fd, name);
3043 if (devname)
3044 dl->devname = strdup(devname);
3045 else
3046 dl->devname = strdup(name);
3047
3048 /* look up this disk's index in the current anchor */
3049 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3050 if (disk) {
3051 dl->disk = *disk;
3052 /* only set index on disks that are a member of a
3053 * populated contianer, i.e. one with raid_devs
3054 */
3055 if (is_failed(&dl->disk))
3056 dl->index = -2;
3057 else if (is_spare(&dl->disk))
3058 dl->index = -1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 #ifndef MDASSEMBLE
3065 /* When migrating map0 contains the 'destination' state while map1
3066 * contains the current state. When not migrating map0 contains the
3067 * current state. This routine assumes that map[0].map_state is set to
3068 * the current array state before being called.
3069 *
3070 * Migration is indicated by one of the following states
3071 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3072 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3073 * map1state=unitialized)
3074 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3075 * map1state=normal)
3076 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3077 * map1state=degraded)
3078 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3079 * map1state=normal)
3080 */
3081 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3082 __u8 to_state, int migr_type)
3083 {
3084 struct imsm_map *dest;
3085 struct imsm_map *src = get_imsm_map(dev, 0);
3086
3087 dev->vol.migr_state = 1;
3088 set_migr_type(dev, migr_type);
3089 dev->vol.curr_migr_unit = 0;
3090 dest = get_imsm_map(dev, 1);
3091
3092 /* duplicate and then set the target end state in map[0] */
3093 memcpy(dest, src, sizeof_imsm_map(src));
3094 if ((migr_type == MIGR_REBUILD) ||
3095 (migr_type == MIGR_GEN_MIGR)) {
3096 __u32 ord;
3097 int i;
3098
3099 for (i = 0; i < src->num_members; i++) {
3100 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3101 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3102 }
3103 }
3104
3105 if (migr_type == MIGR_GEN_MIGR)
3106 /* Clear migration record */
3107 memset(super->migr_rec, 0, sizeof(struct migr_record));
3108
3109 src->map_state = to_state;
3110 }
3111
3112 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3113 {
3114 struct imsm_map *map = get_imsm_map(dev, 0);
3115 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3116 int i, j;
3117
3118 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3119 * completed in the last migration.
3120 *
3121 * FIXME add support for raid-level-migration
3122 */
3123 for (i = 0; i < prev->num_members; i++)
3124 for (j = 0; j < map->num_members; j++)
3125 /* during online capacity expansion
3126 * disks position can be changed if takeover is used
3127 */
3128 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3129 ord_to_idx(prev->disk_ord_tbl[i])) {
3130 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3131 break;
3132 }
3133
3134 dev->vol.migr_state = 0;
3135 set_migr_type(dev, 0);
3136 dev->vol.curr_migr_unit = 0;
3137 map->map_state = map_state;
3138 }
3139 #endif
3140
3141 static int parse_raid_devices(struct intel_super *super)
3142 {
3143 int i;
3144 struct imsm_dev *dev_new;
3145 size_t len, len_migr;
3146 size_t max_len = 0;
3147 size_t space_needed = 0;
3148 struct imsm_super *mpb = super->anchor;
3149
3150 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3151 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3152 struct intel_dev *dv;
3153
3154 len = sizeof_imsm_dev(dev_iter, 0);
3155 len_migr = sizeof_imsm_dev(dev_iter, 1);
3156 if (len_migr > len)
3157 space_needed += len_migr - len;
3158
3159 dv = malloc(sizeof(*dv));
3160 if (!dv)
3161 return 1;
3162 if (max_len < len_migr)
3163 max_len = len_migr;
3164 if (max_len > len_migr)
3165 space_needed += max_len - len_migr;
3166 dev_new = malloc(max_len);
3167 if (!dev_new) {
3168 free(dv);
3169 return 1;
3170 }
3171 imsm_copy_dev(dev_new, dev_iter);
3172 dv->dev = dev_new;
3173 dv->index = i;
3174 dv->next = super->devlist;
3175 super->devlist = dv;
3176 }
3177
3178 /* ensure that super->buf is large enough when all raid devices
3179 * are migrating
3180 */
3181 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3182 void *buf;
3183
3184 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3185 if (posix_memalign(&buf, 512, len) != 0)
3186 return 1;
3187
3188 memcpy(buf, super->buf, super->len);
3189 memset(buf + super->len, 0, len - super->len);
3190 free(super->buf);
3191 super->buf = buf;
3192 super->len = len;
3193 }
3194
3195 return 0;
3196 }
3197
3198 /* retrieve a pointer to the bbm log which starts after all raid devices */
3199 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3200 {
3201 void *ptr = NULL;
3202
3203 if (__le32_to_cpu(mpb->bbm_log_size)) {
3204 ptr = mpb;
3205 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3206 }
3207
3208 return ptr;
3209 }
3210
3211 /*******************************************************************************
3212 * Function: check_mpb_migr_compatibility
3213 * Description: Function checks for unsupported migration features:
3214 * - migration optimization area (pba_of_lba0)
3215 * - descending reshape (ascending_migr)
3216 * Parameters:
3217 * super : imsm metadata information
3218 * Returns:
3219 * 0 : migration is compatible
3220 * -1 : migration is not compatible
3221 ******************************************************************************/
3222 int check_mpb_migr_compatibility(struct intel_super *super)
3223 {
3224 struct imsm_map *map0, *map1;
3225 struct migr_record *migr_rec = super->migr_rec;
3226 int i;
3227
3228 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3229 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3230
3231 if (dev_iter &&
3232 dev_iter->vol.migr_state == 1 &&
3233 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3234 /* This device is migrating */
3235 map0 = get_imsm_map(dev_iter, 0);
3236 map1 = get_imsm_map(dev_iter, 1);
3237 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3238 /* migration optimization area was used */
3239 return -1;
3240 if (migr_rec->ascending_migr == 0
3241 && migr_rec->dest_depth_per_unit > 0)
3242 /* descending reshape not supported yet */
3243 return -1;
3244 }
3245 }
3246 return 0;
3247 }
3248
3249 static void __free_imsm(struct intel_super *super, int free_disks);
3250
3251 /* load_imsm_mpb - read matrix metadata
3252 * allocates super->mpb to be freed by free_imsm
3253 */
3254 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3255 {
3256 unsigned long long dsize;
3257 unsigned long long sectors;
3258 struct stat;
3259 struct imsm_super *anchor;
3260 __u32 check_sum;
3261
3262 get_dev_size(fd, NULL, &dsize);
3263 if (dsize < 1024) {
3264 if (devname)
3265 fprintf(stderr,
3266 Name ": %s: device to small for imsm\n",
3267 devname);
3268 return 1;
3269 }
3270
3271 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3272 if (devname)
3273 fprintf(stderr, Name
3274 ": Cannot seek to anchor block on %s: %s\n",
3275 devname, strerror(errno));
3276 return 1;
3277 }
3278
3279 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3280 if (devname)
3281 fprintf(stderr,
3282 Name ": Failed to allocate imsm anchor buffer"
3283 " on %s\n", devname);
3284 return 1;
3285 }
3286 if (read(fd, anchor, 512) != 512) {
3287 if (devname)
3288 fprintf(stderr,
3289 Name ": Cannot read anchor block on %s: %s\n",
3290 devname, strerror(errno));
3291 free(anchor);
3292 return 1;
3293 }
3294
3295 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3296 if (devname)
3297 fprintf(stderr,
3298 Name ": no IMSM anchor on %s\n", devname);
3299 free(anchor);
3300 return 2;
3301 }
3302
3303 __free_imsm(super, 0);
3304 /* reload capability and hba */
3305
3306 /* capability and hba must be updated with new super allocation */
3307 find_intel_hba_capability(fd, super, devname);
3308 super->len = ROUND_UP(anchor->mpb_size, 512);
3309 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3310 if (devname)
3311 fprintf(stderr,
3312 Name ": unable to allocate %zu byte mpb buffer\n",
3313 super->len);
3314 free(anchor);
3315 return 2;
3316 }
3317 memcpy(super->buf, anchor, 512);
3318
3319 sectors = mpb_sectors(anchor) - 1;
3320 free(anchor);
3321
3322 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3323 fprintf(stderr, Name
3324 ": %s could not allocate migr_rec buffer\n", __func__);
3325 free(super->buf);
3326 return 2;
3327 }
3328
3329 if (!sectors) {
3330 check_sum = __gen_imsm_checksum(super->anchor);
3331 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3332 if (devname)
3333 fprintf(stderr,
3334 Name ": IMSM checksum %x != %x on %s\n",
3335 check_sum,
3336 __le32_to_cpu(super->anchor->check_sum),
3337 devname);
3338 return 2;
3339 }
3340
3341 return 0;
3342 }
3343
3344 /* read the extended mpb */
3345 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3346 if (devname)
3347 fprintf(stderr,
3348 Name ": Cannot seek to extended mpb on %s: %s\n",
3349 devname, strerror(errno));
3350 return 1;
3351 }
3352
3353 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3354 if (devname)
3355 fprintf(stderr,
3356 Name ": Cannot read extended mpb on %s: %s\n",
3357 devname, strerror(errno));
3358 return 2;
3359 }
3360
3361 check_sum = __gen_imsm_checksum(super->anchor);
3362 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3363 if (devname)
3364 fprintf(stderr,
3365 Name ": IMSM checksum %x != %x on %s\n",
3366 check_sum, __le32_to_cpu(super->anchor->check_sum),
3367 devname);
3368 return 3;
3369 }
3370
3371 /* FIXME the BBM log is disk specific so we cannot use this global
3372 * buffer for all disks. Ok for now since we only look at the global
3373 * bbm_log_size parameter to gate assembly
3374 */
3375 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3376
3377 return 0;
3378 }
3379
3380 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3381
3382 static int
3383 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3384 {
3385 int err;
3386
3387 err = load_imsm_mpb(fd, super, devname);
3388 if (err)
3389 return err;
3390 err = load_imsm_disk(fd, super, devname, keep_fd);
3391 if (err)
3392 return err;
3393 err = parse_raid_devices(super);
3394
3395 return err;
3396 }
3397
3398 static void __free_imsm_disk(struct dl *d)
3399 {
3400 if (d->fd >= 0)
3401 close(d->fd);
3402 if (d->devname)
3403 free(d->devname);
3404 if (d->e)
3405 free(d->e);
3406 free(d);
3407
3408 }
3409
3410 static void free_imsm_disks(struct intel_super *super)
3411 {
3412 struct dl *d;
3413
3414 while (super->disks) {
3415 d = super->disks;
3416 super->disks = d->next;
3417 __free_imsm_disk(d);
3418 }
3419 while (super->disk_mgmt_list) {
3420 d = super->disk_mgmt_list;
3421 super->disk_mgmt_list = d->next;
3422 __free_imsm_disk(d);
3423 }
3424 while (super->missing) {
3425 d = super->missing;
3426 super->missing = d->next;
3427 __free_imsm_disk(d);
3428 }
3429
3430 }
3431
3432 /* free all the pieces hanging off of a super pointer */
3433 static void __free_imsm(struct intel_super *super, int free_disks)
3434 {
3435 struct intel_hba *elem, *next;
3436
3437 if (super->buf) {
3438 free(super->buf);
3439 super->buf = NULL;
3440 }
3441 /* unlink capability description */
3442 super->orom = NULL;
3443 if (super->migr_rec_buf) {
3444 free(super->migr_rec_buf);
3445 super->migr_rec_buf = NULL;
3446 }
3447 if (free_disks)
3448 free_imsm_disks(super);
3449 free_devlist(super);
3450 elem = super->hba;
3451 while (elem) {
3452 if (elem->path)
3453 free((void *)elem->path);
3454 next = elem->next;
3455 free(elem);
3456 elem = next;
3457 }
3458 super->hba = NULL;
3459 }
3460
3461 static void free_imsm(struct intel_super *super)
3462 {
3463 __free_imsm(super, 1);
3464 free(super);
3465 }
3466
3467 static void free_super_imsm(struct supertype *st)
3468 {
3469 struct intel_super *super = st->sb;
3470
3471 if (!super)
3472 return;
3473
3474 free_imsm(super);
3475 st->sb = NULL;
3476 }
3477
3478 static struct intel_super *alloc_super(void)
3479 {
3480 struct intel_super *super = malloc(sizeof(*super));
3481
3482 if (super) {
3483 memset(super, 0, sizeof(*super));
3484 super->current_vol = -1;
3485 super->create_offset = ~((__u32 ) 0);
3486 }
3487 return super;
3488 }
3489
3490 /*
3491 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3492 */
3493 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3494 {
3495 struct sys_dev *hba_name;
3496 int rv = 0;
3497
3498 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3499 super->orom = NULL;
3500 super->hba = NULL;
3501 return 0;
3502 }
3503 hba_name = find_disk_attached_hba(fd, NULL);
3504 if (!hba_name) {
3505 if (devname)
3506 fprintf(stderr,
3507 Name ": %s is not attached to Intel(R) RAID controller.\n",
3508 devname);
3509 return 1;
3510 }
3511 rv = attach_hba_to_super(super, hba_name);
3512 if (rv == 2) {
3513 if (devname) {
3514 struct intel_hba *hba = super->hba;
3515
3516 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3517 "controller (%s),\n"
3518 " but the container is assigned to Intel(R) "
3519 "%s RAID controller (",
3520 devname,
3521 hba_name->path,
3522 hba_name->pci_id ? : "Err!",
3523 get_sys_dev_type(hba_name->type));
3524
3525 while (hba) {
3526 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3527 if (hba->next)
3528 fprintf(stderr, ", ");
3529 hba = hba->next;
3530 }
3531
3532 fprintf(stderr, ").\n"
3533 " Mixing devices attached to different controllers "
3534 "is not allowed.\n");
3535 }
3536 free_sys_dev(&hba_name);
3537 return 2;
3538 }
3539 super->orom = find_imsm_capability(hba_name->type);
3540 free_sys_dev(&hba_name);
3541 if (!super->orom)
3542 return 3;
3543 return 0;
3544 }
3545
3546 /* find_missing - helper routine for load_super_imsm_all that identifies
3547 * disks that have disappeared from the system. This routine relies on
3548 * the mpb being uptodate, which it is at load time.
3549 */
3550 static int find_missing(struct intel_super *super)
3551 {
3552 int i;
3553 struct imsm_super *mpb = super->anchor;
3554 struct dl *dl;
3555 struct imsm_disk *disk;
3556
3557 for (i = 0; i < mpb->num_disks; i++) {
3558 disk = __get_imsm_disk(mpb, i);
3559 dl = serial_to_dl(disk->serial, super);
3560 if (dl)
3561 continue;
3562
3563 dl = malloc(sizeof(*dl));
3564 if (!dl)
3565 return 1;
3566 dl->major = 0;
3567 dl->minor = 0;
3568 dl->fd = -1;
3569 dl->devname = strdup("missing");
3570 dl->index = i;
3571 serialcpy(dl->serial, disk->serial);
3572 dl->disk = *disk;
3573 dl->e = NULL;
3574 dl->next = super->missing;
3575 super->missing = dl;
3576 }
3577
3578 return 0;
3579 }
3580
3581 #ifndef MDASSEMBLE
3582 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3583 {
3584 struct intel_disk *idisk = disk_list;
3585
3586 while (idisk) {
3587 if (serialcmp(idisk->disk.serial, serial) == 0)
3588 break;
3589 idisk = idisk->next;
3590 }
3591
3592 return idisk;
3593 }
3594
3595 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3596 struct intel_super *super,
3597 struct intel_disk **disk_list)
3598 {
3599 struct imsm_disk *d = &super->disks->disk;
3600 struct imsm_super *mpb = super->anchor;
3601 int i, j;
3602
3603 for (i = 0; i < tbl_size; i++) {
3604 struct imsm_super *tbl_mpb = table[i]->anchor;
3605 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3606
3607 if (tbl_mpb->family_num == mpb->family_num) {
3608 if (tbl_mpb->check_sum == mpb->check_sum) {
3609 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3610 __func__, super->disks->major,
3611 super->disks->minor,
3612 table[i]->disks->major,
3613 table[i]->disks->minor);
3614 break;
3615 }
3616
3617 if (((is_configured(d) && !is_configured(tbl_d)) ||
3618 is_configured(d) == is_configured(tbl_d)) &&
3619 tbl_mpb->generation_num < mpb->generation_num) {
3620 /* current version of the mpb is a
3621 * better candidate than the one in
3622 * super_table, but copy over "cross
3623 * generational" status
3624 */
3625 struct intel_disk *idisk;
3626
3627 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3628 __func__, super->disks->major,
3629 super->disks->minor,
3630 table[i]->disks->major,
3631 table[i]->disks->minor);
3632
3633 idisk = disk_list_get(tbl_d->serial, *disk_list);
3634 if (idisk && is_failed(&idisk->disk))
3635 tbl_d->status |= FAILED_DISK;
3636 break;
3637 } else {
3638 struct intel_disk *idisk;
3639 struct imsm_disk *disk;
3640
3641 /* tbl_mpb is more up to date, but copy
3642 * over cross generational status before
3643 * returning
3644 */
3645 disk = __serial_to_disk(d->serial, mpb, NULL);
3646 if (disk && is_failed(disk))
3647 d->status |= FAILED_DISK;
3648
3649 idisk = disk_list_get(d->serial, *disk_list);
3650 if (idisk) {
3651 idisk->owner = i;
3652 if (disk && is_configured(disk))
3653 idisk->disk.status |= CONFIGURED_DISK;
3654 }
3655
3656 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3657 __func__, super->disks->major,
3658 super->disks->minor,
3659 table[i]->disks->major,
3660 table[i]->disks->minor);
3661
3662 return tbl_size;
3663 }
3664 }
3665 }
3666
3667 if (i >= tbl_size)
3668 table[tbl_size++] = super;
3669 else
3670 table[i] = super;
3671
3672 /* update/extend the merged list of imsm_disk records */
3673 for (j = 0; j < mpb->num_disks; j++) {
3674 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3675 struct intel_disk *idisk;
3676
3677 idisk = disk_list_get(disk->serial, *disk_list);
3678 if (idisk) {
3679 idisk->disk.status |= disk->status;
3680 if (is_configured(&idisk->disk) ||
3681 is_failed(&idisk->disk))
3682 idisk->disk.status &= ~(SPARE_DISK);
3683 } else {
3684 idisk = calloc(1, sizeof(*idisk));
3685 if (!idisk)
3686 return -1;
3687 idisk->owner = IMSM_UNKNOWN_OWNER;
3688 idisk->disk = *disk;
3689 idisk->next = *disk_list;
3690 *disk_list = idisk;
3691 }
3692
3693 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3694 idisk->owner = i;
3695 }
3696
3697 return tbl_size;
3698 }
3699
3700 static struct intel_super *
3701 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3702 const int owner)
3703 {
3704 struct imsm_super *mpb = super->anchor;
3705 int ok_count = 0;
3706 int i;
3707
3708 for (i = 0; i < mpb->num_disks; i++) {
3709 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3710 struct intel_disk *idisk;
3711
3712 idisk = disk_list_get(disk->serial, disk_list);
3713 if (idisk) {
3714 if (idisk->owner == owner ||
3715 idisk->owner == IMSM_UNKNOWN_OWNER)
3716 ok_count++;
3717 else
3718 dprintf("%s: '%.16s' owner %d != %d\n",
3719 __func__, disk->serial, idisk->owner,
3720 owner);
3721 } else {
3722 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3723 __func__, __le32_to_cpu(mpb->family_num), i,
3724 disk->serial);
3725 break;
3726 }
3727 }
3728
3729 if (ok_count == mpb->num_disks)
3730 return super;
3731 return NULL;
3732 }
3733
3734 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3735 {
3736 struct intel_super *s;
3737
3738 for (s = super_list; s; s = s->next) {
3739 if (family_num != s->anchor->family_num)
3740 continue;
3741 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3742 __le32_to_cpu(family_num), s->disks->devname);
3743 }
3744 }
3745
3746 static struct intel_super *
3747 imsm_thunderdome(struct intel_super **super_list, int len)
3748 {
3749 struct intel_super *super_table[len];
3750 struct intel_disk *disk_list = NULL;
3751 struct intel_super *champion, *spare;
3752 struct intel_super *s, **del;
3753 int tbl_size = 0;
3754 int conflict;
3755 int i;
3756
3757 memset(super_table, 0, sizeof(super_table));
3758 for (s = *super_list; s; s = s->next)
3759 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3760
3761 for (i = 0; i < tbl_size; i++) {
3762 struct imsm_disk *d;
3763 struct intel_disk *idisk;
3764 struct imsm_super *mpb = super_table[i]->anchor;
3765
3766 s = super_table[i];
3767 d = &s->disks->disk;
3768
3769 /* 'd' must appear in merged disk list for its
3770 * configuration to be valid
3771 */
3772 idisk = disk_list_get(d->serial, disk_list);
3773 if (idisk && idisk->owner == i)
3774 s = validate_members(s, disk_list, i);
3775 else
3776 s = NULL;
3777
3778 if (!s)
3779 dprintf("%s: marking family: %#x from %d:%d offline\n",
3780 __func__, mpb->family_num,
3781 super_table[i]->disks->major,
3782 super_table[i]->disks->minor);
3783 super_table[i] = s;
3784 }
3785
3786 /* This is where the mdadm implementation differs from the Windows
3787 * driver which has no strict concept of a container. We can only
3788 * assemble one family from a container, so when returning a prodigal
3789 * array member to this system the code will not be able to disambiguate
3790 * the container contents that should be assembled ("foreign" versus
3791 * "local"). It requires user intervention to set the orig_family_num
3792 * to a new value to establish a new container. The Windows driver in
3793 * this situation fixes up the volume name in place and manages the
3794 * foreign array as an independent entity.
3795 */
3796 s = NULL;
3797 spare = NULL;
3798 conflict = 0;
3799 for (i = 0; i < tbl_size; i++) {
3800 struct intel_super *tbl_ent = super_table[i];
3801 int is_spare = 0;
3802
3803 if (!tbl_ent)
3804 continue;
3805
3806 if (tbl_ent->anchor->num_raid_devs == 0) {
3807 spare = tbl_ent;
3808 is_spare = 1;
3809 }
3810
3811 if (s && !is_spare) {
3812 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3813 conflict++;
3814 } else if (!s && !is_spare)
3815 s = tbl_ent;
3816 }
3817
3818 if (!s)
3819 s = spare;
3820 if (!s) {
3821 champion = NULL;
3822 goto out;
3823 }
3824 champion = s;
3825
3826 if (conflict)
3827 fprintf(stderr, "Chose family %#x on '%s', "
3828 "assemble conflicts to new container with '--update=uuid'\n",
3829 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3830
3831 /* collect all dl's onto 'champion', and update them to
3832 * champion's version of the status
3833 */
3834 for (s = *super_list; s; s = s->next) {
3835 struct imsm_super *mpb = champion->anchor;
3836 struct dl *dl = s->disks;
3837
3838 if (s == champion)
3839 continue;
3840
3841 for (i = 0; i < mpb->num_disks; i++) {
3842 struct imsm_disk *disk;
3843
3844 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3845 if (disk) {
3846 dl->disk = *disk;
3847 /* only set index on disks that are a member of
3848 * a populated contianer, i.e. one with
3849 * raid_devs
3850 */
3851 if (is_failed(&dl->disk))
3852 dl->index = -2;
3853 else if (is_spare(&dl->disk))
3854 dl->index = -1;
3855 break;
3856 }
3857 }
3858
3859 if (i >= mpb->num_disks) {
3860 struct intel_disk *idisk;
3861
3862 idisk = disk_list_get(dl->serial, disk_list);
3863 if (idisk && is_spare(&idisk->disk) &&
3864 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3865 dl->index = -1;
3866 else {
3867 dl->index = -2;
3868 continue;
3869 }
3870 }
3871
3872 dl->next = champion->disks;
3873 champion->disks = dl;
3874 s->disks = NULL;
3875 }
3876
3877 /* delete 'champion' from super_list */
3878 for (del = super_list; *del; ) {
3879 if (*del == champion) {
3880 *del = (*del)->next;
3881 break;
3882 } else
3883 del = &(*del)->next;
3884 }
3885 champion->next = NULL;
3886
3887 out:
3888 while (disk_list) {
3889 struct intel_disk *idisk = disk_list;
3890
3891 disk_list = disk_list->next;
3892 free(idisk);
3893 }
3894
3895 return champion;
3896 }
3897
3898 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3899 char *devname)
3900 {
3901 struct mdinfo *sra;
3902 struct intel_super *super_list = NULL;
3903 struct intel_super *super = NULL;
3904 int devnum = fd2devnum(fd);
3905 struct mdinfo *sd;
3906 int retry;
3907 int err = 0;
3908 int i;
3909
3910 /* check if 'fd' an opened container */
3911 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3912 if (!sra)
3913 return 1;
3914
3915 if (sra->array.major_version != -1 ||
3916 sra->array.minor_version != -2 ||
3917 strcmp(sra->text_version, "imsm") != 0) {
3918 err = 1;
3919 goto error;
3920 }
3921 /* load all mpbs */
3922 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3923 struct intel_super *s = alloc_super();
3924 char nm[32];
3925 int dfd;
3926 int rv;
3927
3928 err = 1;
3929 if (!s)
3930 goto error;
3931 s->next = super_list;
3932 super_list = s;
3933
3934 err = 2;
3935 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3936 dfd = dev_open(nm, O_RDWR);
3937 if (dfd < 0)
3938 goto error;
3939
3940 rv = find_intel_hba_capability(dfd, s, devname);
3941 /* no orom/efi or non-intel hba of the disk */
3942 if (rv != 0)
3943 goto error;
3944
3945 err = load_and_parse_mpb(dfd, s, NULL, 1);
3946
3947 /* retry the load if we might have raced against mdmon */
3948 if (err == 3 && mdmon_running(devnum))
3949 for (retry = 0; retry < 3; retry++) {
3950 usleep(3000);
3951 err = load_and_parse_mpb(dfd, s, NULL, 1);
3952 if (err != 3)
3953 break;
3954 }
3955 if (err)
3956 goto error;
3957 }
3958
3959 /* all mpbs enter, maybe one leaves */
3960 super = imsm_thunderdome(&super_list, i);
3961 if (!super) {
3962 err = 1;
3963 goto error;
3964 }
3965
3966 if (find_missing(super) != 0) {
3967 free_imsm(super);
3968 err = 2;
3969 goto error;
3970 }
3971
3972 /* load migration record */
3973 err = load_imsm_migr_rec(super, NULL);
3974 if (err) {
3975 err = 4;
3976 goto error;
3977 }
3978
3979 /* Check migration compatibility */
3980 if (check_mpb_migr_compatibility(super) != 0) {
3981 fprintf(stderr, Name ": Unsupported migration detected");
3982 if (devname)
3983 fprintf(stderr, " on %s\n", devname);
3984 else
3985 fprintf(stderr, " (IMSM).\n");
3986
3987 err = 5;
3988 goto error;
3989 }
3990
3991 err = 0;
3992
3993 error:
3994 while (super_list) {
3995 struct intel_super *s = super_list;
3996
3997 super_list = super_list->next;
3998 free_imsm(s);
3999 }
4000 sysfs_free(sra);
4001
4002 if (err)
4003 return err;
4004
4005 *sbp = super;
4006 st->container_dev = devnum;
4007 if (err == 0 && st->ss == NULL) {
4008 st->ss = &super_imsm;
4009 st->minor_version = 0;
4010 st->max_devs = IMSM_MAX_DEVICES;
4011 }
4012 return 0;
4013 }
4014
4015 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4016 {
4017 return load_super_imsm_all(st, fd, &st->sb, devname);
4018 }
4019 #endif
4020
4021 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4022 {
4023 struct intel_super *super;
4024 int rv;
4025
4026 if (test_partition(fd))
4027 /* IMSM not allowed on partitions */
4028 return 1;
4029
4030 free_super_imsm(st);
4031
4032 super = alloc_super();
4033 if (!super) {
4034 fprintf(stderr,
4035 Name ": malloc of %zu failed.\n",
4036 sizeof(*super));
4037 return 1;
4038 }
4039 /* Load hba and capabilities if they exist.
4040 * But do not preclude loading metadata in case capabilities or hba are
4041 * non-compliant and ignore_hw_compat is set.
4042 */
4043 rv = find_intel_hba_capability(fd, super, devname);
4044 /* no orom/efi or non-intel hba of the disk */
4045 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4046 if (devname)
4047 fprintf(stderr,
4048 Name ": No OROM/EFI properties for %s\n", devname);
4049 free_imsm(super);
4050 return 2;
4051 }
4052 rv = load_and_parse_mpb(fd, super, devname, 0);
4053
4054 if (rv) {
4055 if (devname)
4056 fprintf(stderr,
4057 Name ": Failed to load all information "
4058 "sections on %s\n", devname);
4059 free_imsm(super);
4060 return rv;
4061 }
4062
4063 st->sb = super;
4064 if (st->ss == NULL) {
4065 st->ss = &super_imsm;
4066 st->minor_version = 0;
4067 st->max_devs = IMSM_MAX_DEVICES;
4068 }
4069
4070 /* load migration record */
4071 if (load_imsm_migr_rec(super, NULL) == 0) {
4072 /* Check for unsupported migration features */
4073 if (check_mpb_migr_compatibility(super) != 0) {
4074 fprintf(stderr,
4075 Name ": Unsupported migration detected");
4076 if (devname)
4077 fprintf(stderr, " on %s\n", devname);
4078 else
4079 fprintf(stderr, " (IMSM).\n");
4080 return 3;
4081 }
4082 }
4083
4084 return 0;
4085 }
4086
4087 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4088 {
4089 if (info->level == 1)
4090 return 128;
4091 return info->chunk_size >> 9;
4092 }
4093
4094 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4095 {
4096 __u32 num_stripes;
4097
4098 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4099 num_stripes /= num_domains;
4100
4101 return num_stripes;
4102 }
4103
4104 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4105 {
4106 if (info->level == 1)
4107 return info->size * 2;
4108 else
4109 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4110 }
4111
4112 static void imsm_update_version_info(struct intel_super *super)
4113 {
4114 /* update the version and attributes */
4115 struct imsm_super *mpb = super->anchor;
4116 char *version;
4117 struct imsm_dev *dev;
4118 struct imsm_map *map;
4119 int i;
4120
4121 for (i = 0; i < mpb->num_raid_devs; i++) {
4122 dev = get_imsm_dev(super, i);
4123 map = get_imsm_map(dev, 0);
4124 if (__le32_to_cpu(dev->size_high) > 0)
4125 mpb->attributes |= MPB_ATTRIB_2TB;
4126
4127 /* FIXME detect when an array spans a port multiplier */
4128 #if 0
4129 mpb->attributes |= MPB_ATTRIB_PM;
4130 #endif
4131
4132 if (mpb->num_raid_devs > 1 ||
4133 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4134 version = MPB_VERSION_ATTRIBS;
4135 switch (get_imsm_raid_level(map)) {
4136 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4137 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4138 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4139 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4140 }
4141 } else {
4142 if (map->num_members >= 5)
4143 version = MPB_VERSION_5OR6_DISK_ARRAY;
4144 else if (dev->status == DEV_CLONE_N_GO)
4145 version = MPB_VERSION_CNG;
4146 else if (get_imsm_raid_level(map) == 5)
4147 version = MPB_VERSION_RAID5;
4148 else if (map->num_members >= 3)
4149 version = MPB_VERSION_3OR4_DISK_ARRAY;
4150 else if (get_imsm_raid_level(map) == 1)
4151 version = MPB_VERSION_RAID1;
4152 else
4153 version = MPB_VERSION_RAID0;
4154 }
4155 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4156 }
4157 }
4158
4159 static int check_name(struct intel_super *super, char *name, int quiet)
4160 {
4161 struct imsm_super *mpb = super->anchor;
4162 char *reason = NULL;
4163 int i;
4164
4165 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4166 reason = "must be 16 characters or less";
4167
4168 for (i = 0; i < mpb->num_raid_devs; i++) {
4169 struct imsm_dev *dev = get_imsm_dev(super, i);
4170
4171 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4172 reason = "already exists";
4173 break;
4174 }
4175 }
4176
4177 if (reason && !quiet)
4178 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4179
4180 return !reason;
4181 }
4182
4183 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4184 unsigned long long size, char *name,
4185 char *homehost, int *uuid)
4186 {
4187 /* We are creating a volume inside a pre-existing container.
4188 * so st->sb is already set.
4189 */
4190 struct intel_super *super = st->sb;
4191 struct imsm_super *mpb = super->anchor;
4192 struct intel_dev *dv;
4193 struct imsm_dev *dev;
4194 struct imsm_vol *vol;
4195 struct imsm_map *map;
4196 int idx = mpb->num_raid_devs;
4197 int i;
4198 unsigned long long array_blocks;
4199 size_t size_old, size_new;
4200 __u32 num_data_stripes;
4201
4202 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4203 fprintf(stderr, Name": This imsm-container already has the "
4204 "maximum of %d volumes\n", super->orom->vpa);
4205 return 0;
4206 }
4207
4208 /* ensure the mpb is large enough for the new data */
4209 size_old = __le32_to_cpu(mpb->mpb_size);
4210 size_new = disks_to_mpb_size(info->nr_disks);
4211 if (size_new > size_old) {
4212 void *mpb_new;
4213 size_t size_round = ROUND_UP(size_new, 512);
4214
4215 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4216 fprintf(stderr, Name": could not allocate new mpb\n");
4217 return 0;
4218 }
4219 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4220 fprintf(stderr, Name
4221 ": %s could not allocate migr_rec buffer\n",
4222 __func__);
4223 free(super->buf);
4224 free(super);
4225 free(mpb_new);
4226 return 0;
4227 }
4228 memcpy(mpb_new, mpb, size_old);
4229 free(mpb);
4230 mpb = mpb_new;
4231 super->anchor = mpb_new;
4232 mpb->mpb_size = __cpu_to_le32(size_new);
4233 memset(mpb_new + size_old, 0, size_round - size_old);
4234 }
4235 super->current_vol = idx;
4236
4237 /* handle 'failed_disks' by either:
4238 * a) create dummy disk entries in the table if this the first
4239 * volume in the array. We add them here as this is the only
4240 * opportunity to add them. add_to_super_imsm_volume()
4241 * handles the non-failed disks and continues incrementing
4242 * mpb->num_disks.
4243 * b) validate that 'failed_disks' matches the current number
4244 * of missing disks if the container is populated
4245 */
4246 if (super->current_vol == 0) {
4247 mpb->num_disks = 0;
4248 for (i = 0; i < info->failed_disks; i++) {
4249 struct imsm_disk *disk;
4250
4251 mpb->num_disks++;
4252 disk = __get_imsm_disk(mpb, i);
4253 disk->status = CONFIGURED_DISK | FAILED_DISK;
4254 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4255 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4256 "missing:%d", i);
4257 }
4258 find_missing(super);
4259 } else {
4260 int missing = 0;
4261 struct dl *d;
4262
4263 for (d = super->missing; d; d = d->next)
4264 missing++;
4265 if (info->failed_disks > missing) {
4266 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4267 return 0;
4268 }
4269 }
4270
4271 if (!check_name(super, name, 0))
4272 return 0;
4273 dv = malloc(sizeof(*dv));
4274 if (!dv) {
4275 fprintf(stderr, Name ": failed to allocate device list entry\n");
4276 return 0;
4277 }
4278 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4279 if (!dev) {
4280 free(dv);
4281 fprintf(stderr, Name": could not allocate raid device\n");
4282 return 0;
4283 }
4284
4285 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4286 if (info->level == 1)
4287 array_blocks = info_to_blocks_per_member(info);
4288 else
4289 array_blocks = calc_array_size(info->level, info->raid_disks,
4290 info->layout, info->chunk_size,
4291 info->size*2);
4292 /* round array size down to closest MB */
4293 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4294
4295 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4296 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4297 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4298 vol = &dev->vol;
4299 vol->migr_state = 0;
4300 set_migr_type(dev, MIGR_INIT);
4301 vol->dirty = !info->state;
4302 vol->curr_migr_unit = 0;
4303 map = get_imsm_map(dev, 0);
4304 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4305 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4306 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4307 map->failed_disk_num = ~0;
4308 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
4309 map->ddf = 1;
4310
4311 if (info->level == 1 && info->raid_disks > 2) {
4312 free(dev);
4313 free(dv);
4314 fprintf(stderr, Name": imsm does not support more than 2 disks"
4315 "in a raid1 volume\n");
4316 return 0;
4317 }
4318
4319 map->raid_level = info->level;
4320 if (info->level == 10) {
4321 map->raid_level = 1;
4322 map->num_domains = info->raid_disks / 2;
4323 } else if (info->level == 1)
4324 map->num_domains = info->raid_disks;
4325 else
4326 map->num_domains = 1;
4327
4328 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4329 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4330
4331 map->num_members = info->raid_disks;
4332 for (i = 0; i < map->num_members; i++) {
4333 /* initialized in add_to_super */
4334 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4335 }
4336 mpb->num_raid_devs++;
4337
4338 dv->dev = dev;
4339 dv->index = super->current_vol;
4340 dv->next = super->devlist;
4341 super->devlist = dv;
4342
4343 imsm_update_version_info(super);
4344
4345 return 1;
4346 }
4347
4348 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4349 unsigned long long size, char *name,
4350 char *homehost, int *uuid)
4351 {
4352 /* This is primarily called by Create when creating a new array.
4353 * We will then get add_to_super called for each component, and then
4354 * write_init_super called to write it out to each device.
4355 * For IMSM, Create can create on fresh devices or on a pre-existing
4356 * array.
4357 * To create on a pre-existing array a different method will be called.
4358 * This one is just for fresh drives.
4359 */
4360 struct intel_super *super;
4361 struct imsm_super *mpb;
4362 size_t mpb_size;
4363 char *version;
4364
4365 if (st->sb)
4366 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4367
4368 if (info)
4369 mpb_size = disks_to_mpb_size(info->nr_disks);
4370 else
4371 mpb_size = 512;
4372
4373 super = alloc_super();
4374 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4375 free(super);
4376 super = NULL;
4377 }
4378 if (!super) {
4379 fprintf(stderr, Name
4380 ": %s could not allocate superblock\n", __func__);
4381 return 0;
4382 }
4383 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4384 fprintf(stderr, Name
4385 ": %s could not allocate migr_rec buffer\n", __func__);
4386 free(super->buf);
4387 free(super);
4388 return 0;
4389 }
4390 memset(super->buf, 0, mpb_size);
4391 mpb = super->buf;
4392 mpb->mpb_size = __cpu_to_le32(mpb_size);
4393 st->sb = super;
4394
4395 if (info == NULL) {
4396 /* zeroing superblock */
4397 return 0;
4398 }
4399
4400 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4401
4402 version = (char *) mpb->sig;
4403 strcpy(version, MPB_SIGNATURE);
4404 version += strlen(MPB_SIGNATURE);
4405 strcpy(version, MPB_VERSION_RAID0);
4406
4407 return 1;
4408 }
4409
4410 #ifndef MDASSEMBLE
4411 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4412 int fd, char *devname)
4413 {
4414 struct intel_super *super = st->sb;
4415 struct imsm_super *mpb = super->anchor;
4416 struct imsm_disk *_disk;
4417 struct imsm_dev *dev;
4418 struct imsm_map *map;
4419 struct dl *dl, *df;
4420 int slot;
4421
4422 dev = get_imsm_dev(super, super->current_vol);
4423 map = get_imsm_map(dev, 0);
4424
4425 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4426 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4427 devname);
4428 return 1;
4429 }
4430
4431 if (fd == -1) {
4432 /* we're doing autolayout so grab the pre-marked (in
4433 * validate_geometry) raid_disk
4434 */
4435 for (dl = super->disks; dl; dl = dl->next)
4436 if (dl->raiddisk == dk->raid_disk)
4437 break;
4438 } else {
4439 for (dl = super->disks; dl ; dl = dl->next)
4440 if (dl->major == dk->major &&
4441 dl->minor == dk->minor)
4442 break;
4443 }
4444
4445 if (!dl) {
4446 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4447 return 1;
4448 }
4449
4450 /* add a pristine spare to the metadata */
4451 if (dl->index < 0) {
4452 dl->index = super->anchor->num_disks;
4453 super->anchor->num_disks++;
4454 }
4455 /* Check the device has not already been added */
4456 slot = get_imsm_disk_slot(map, dl->index);
4457 if (slot >= 0 &&
4458 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4459 fprintf(stderr, Name ": %s has been included in this array twice\n",
4460 devname);
4461 return 1;
4462 }
4463 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4464 dl->disk.status = CONFIGURED_DISK;
4465
4466 /* update size of 'missing' disks to be at least as large as the
4467 * largest acitve member (we only have dummy missing disks when
4468 * creating the first volume)
4469 */
4470 if (super->current_vol == 0) {
4471 for (df = super->missing; df; df = df->next) {
4472 if (dl->disk.total_blocks > df->disk.total_blocks)
4473 df->disk.total_blocks = dl->disk.total_blocks;
4474 _disk = __get_imsm_disk(mpb, df->index);
4475 *_disk = df->disk;
4476 }
4477 }
4478
4479 /* refresh unset/failed slots to point to valid 'missing' entries */
4480 for (df = super->missing; df; df = df->next)
4481 for (slot = 0; slot < mpb->num_disks; slot++) {
4482 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4483
4484 if ((ord & IMSM_ORD_REBUILD) == 0)
4485 continue;
4486 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4487 if (is_gen_migration(dev)) {
4488 struct imsm_map *map2 = get_imsm_map(dev, 1);
4489 if (slot < map2->num_members) {
4490 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4491 slot,
4492 1);
4493 if ((unsigned)df->index ==
4494 ord_to_idx(ord2))
4495 set_imsm_ord_tbl_ent(map2,
4496 slot,
4497 df->index |
4498 IMSM_ORD_REBUILD);
4499 }
4500 }
4501 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4502 break;
4503 }
4504
4505 /* if we are creating the first raid device update the family number */
4506 if (super->current_vol == 0) {
4507 __u32 sum;
4508 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4509
4510 _disk = __get_imsm_disk(mpb, dl->index);
4511 if (!_dev || !_disk) {
4512 fprintf(stderr, Name ": BUG mpb setup error\n");
4513 return 1;
4514 }
4515 *_dev = *dev;
4516 *_disk = dl->disk;
4517 sum = random32();
4518 sum += __gen_imsm_checksum(mpb);
4519 mpb->family_num = __cpu_to_le32(sum);
4520 mpb->orig_family_num = mpb->family_num;
4521 }
4522 super->current_disk = dl;
4523 return 0;
4524 }
4525
4526 /* mark_spare()
4527 * Function marks disk as spare and restores disk serial
4528 * in case it was previously marked as failed by takeover operation
4529 * reruns:
4530 * -1 : critical error
4531 * 0 : disk is marked as spare but serial is not set
4532 * 1 : success
4533 */
4534 int mark_spare(struct dl *disk)
4535 {
4536 __u8 serial[MAX_RAID_SERIAL_LEN];
4537 int ret_val = -1;
4538
4539 if (!disk)
4540 return ret_val;
4541
4542 ret_val = 0;
4543 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4544 /* Restore disk serial number, because takeover marks disk
4545 * as failed and adds to serial ':0' before it becomes
4546 * a spare disk.
4547 */
4548 serialcpy(disk->serial, serial);
4549 serialcpy(disk->disk.serial, serial);
4550 ret_val = 1;
4551 }
4552 disk->disk.status = SPARE_DISK;
4553 disk->index = -1;
4554
4555 return ret_val;
4556 }
4557
4558 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4559 int fd, char *devname)
4560 {
4561 struct intel_super *super = st->sb;
4562 struct dl *dd;
4563 unsigned long long size;
4564 __u32 id;
4565 int rv;
4566 struct stat stb;
4567
4568 /* If we are on an RAID enabled platform check that the disk is
4569 * attached to the raid controller.
4570 * We do not need to test disks attachment for container based additions,
4571 * they shall be already tested when container was created/assembled.
4572 */
4573 rv = find_intel_hba_capability(fd, super, devname);
4574 /* no orom/efi or non-intel hba of the disk */
4575 if (rv != 0) {
4576 dprintf("capability: %p fd: %d ret: %d\n",
4577 super->orom, fd, rv);
4578 return 1;
4579 }
4580
4581 if (super->current_vol >= 0)
4582 return add_to_super_imsm_volume(st, dk, fd, devname);
4583
4584 fstat(fd, &stb);
4585 dd = malloc(sizeof(*dd));
4586 if (!dd) {
4587 fprintf(stderr,
4588 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4589 return 1;
4590 }
4591 memset(dd, 0, sizeof(*dd));
4592 dd->major = major(stb.st_rdev);
4593 dd->minor = minor(stb.st_rdev);
4594 dd->devname = devname ? strdup(devname) : NULL;
4595 dd->fd = fd;
4596 dd->e = NULL;
4597 dd->action = DISK_ADD;
4598 rv = imsm_read_serial(fd, devname, dd->serial);
4599 if (rv) {
4600 fprintf(stderr,
4601 Name ": failed to retrieve scsi serial, aborting\n");
4602 free(dd);
4603 abort();
4604 }
4605
4606 get_dev_size(fd, NULL, &size);
4607 size /= 512;
4608 serialcpy(dd->disk.serial, dd->serial);
4609 dd->disk.total_blocks = __cpu_to_le32(size);
4610 mark_spare(dd);
4611 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4612 dd->disk.scsi_id = __cpu_to_le32(id);
4613 else
4614 dd->disk.scsi_id = __cpu_to_le32(0);
4615
4616 if (st->update_tail) {
4617 dd->next = super->disk_mgmt_list;
4618 super->disk_mgmt_list = dd;
4619 } else {
4620 dd->next = super->disks;
4621 super->disks = dd;
4622 super->updates_pending++;
4623 }
4624
4625 return 0;
4626 }
4627
4628
4629 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4630 {
4631 struct intel_super *super = st->sb;
4632 struct dl *dd;
4633
4634 /* remove from super works only in mdmon - for communication
4635 * manager - monitor. Check if communication memory buffer
4636 * is prepared.
4637 */
4638 if (!st->update_tail) {
4639 fprintf(stderr,
4640 Name ": %s shall be used in mdmon context only"
4641 "(line %d).\n", __func__, __LINE__);
4642 return 1;
4643 }
4644 dd = malloc(sizeof(*dd));
4645 if (!dd) {
4646 fprintf(stderr,
4647 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4648 return 1;
4649 }
4650 memset(dd, 0, sizeof(*dd));
4651 dd->major = dk->major;
4652 dd->minor = dk->minor;
4653 dd->fd = -1;
4654 mark_spare(dd);
4655 dd->action = DISK_REMOVE;
4656
4657 dd->next = super->disk_mgmt_list;
4658 super->disk_mgmt_list = dd;
4659
4660
4661 return 0;
4662 }
4663
4664 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4665
4666 static union {
4667 char buf[512];
4668 struct imsm_super anchor;
4669 } spare_record __attribute__ ((aligned(512)));
4670
4671 /* spare records have their own family number and do not have any defined raid
4672 * devices
4673 */
4674 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4675 {
4676 struct imsm_super *mpb = super->anchor;
4677 struct imsm_super *spare = &spare_record.anchor;
4678 __u32 sum;
4679 struct dl *d;
4680
4681 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4682 spare->generation_num = __cpu_to_le32(1UL),
4683 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4684 spare->num_disks = 1,
4685 spare->num_raid_devs = 0,
4686 spare->cache_size = mpb->cache_size,
4687 spare->pwr_cycle_count = __cpu_to_le32(1),
4688
4689 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4690 MPB_SIGNATURE MPB_VERSION_RAID0);
4691
4692 for (d = super->disks; d; d = d->next) {
4693 if (d->index != -1)
4694 continue;
4695
4696 spare->disk[0] = d->disk;
4697 sum = __gen_imsm_checksum(spare);
4698 spare->family_num = __cpu_to_le32(sum);
4699 spare->orig_family_num = 0;
4700 sum = __gen_imsm_checksum(spare);
4701 spare->check_sum = __cpu_to_le32(sum);
4702
4703 if (store_imsm_mpb(d->fd, spare)) {
4704 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4705 __func__, d->major, d->minor, strerror(errno));
4706 return 1;
4707 }
4708 if (doclose) {
4709 close(d->fd);
4710 d->fd = -1;
4711 }
4712 }
4713
4714 return 0;
4715 }
4716
4717 static int write_super_imsm(struct supertype *st, int doclose)
4718 {
4719 struct intel_super *super = st->sb;
4720 struct imsm_super *mpb = super->anchor;
4721 struct dl *d;
4722 __u32 generation;
4723 __u32 sum;
4724 int spares = 0;
4725 int i;
4726 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4727 int num_disks = 0;
4728 int clear_migration_record = 1;
4729
4730 /* 'generation' is incremented everytime the metadata is written */
4731 generation = __le32_to_cpu(mpb->generation_num);
4732 generation++;
4733 mpb->generation_num = __cpu_to_le32(generation);
4734
4735 /* fix up cases where previous mdadm releases failed to set
4736 * orig_family_num
4737 */
4738 if (mpb->orig_family_num == 0)
4739 mpb->orig_family_num = mpb->family_num;
4740
4741 for (d = super->disks; d; d = d->next) {
4742 if (d->index == -1)
4743 spares++;
4744 else {
4745 mpb->disk[d->index] = d->disk;
4746 num_disks++;
4747 }
4748 }
4749 for (d = super->missing; d; d = d->next) {
4750 mpb->disk[d->index] = d->disk;
4751 num_disks++;
4752 }
4753 mpb->num_disks = num_disks;
4754 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4755
4756 for (i = 0; i < mpb->num_raid_devs; i++) {
4757 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4758 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4759 if (dev && dev2) {
4760 imsm_copy_dev(dev, dev2);
4761 mpb_size += sizeof_imsm_dev(dev, 0);
4762 }
4763 if (is_gen_migration(dev2))
4764 clear_migration_record = 0;
4765 }
4766 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4767 mpb->mpb_size = __cpu_to_le32(mpb_size);
4768
4769 /* recalculate checksum */
4770 sum = __gen_imsm_checksum(mpb);
4771 mpb->check_sum = __cpu_to_le32(sum);
4772
4773 if (clear_migration_record)
4774 memset(super->migr_rec_buf, 0, 512);
4775
4776 /* write the mpb for disks that compose raid devices */
4777 for (d = super->disks; d ; d = d->next) {
4778 if (d->index < 0 || is_failed(&d->disk))
4779 continue;
4780 if (store_imsm_mpb(d->fd, mpb))
4781 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4782 __func__, d->major, d->minor, strerror(errno));
4783 if (clear_migration_record) {
4784 unsigned long long dsize;
4785
4786 get_dev_size(d->fd, NULL, &dsize);
4787 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4788 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4789 perror("Write migr_rec failed");
4790 }
4791 }
4792 if (doclose) {
4793 close(d->fd);
4794 d->fd = -1;
4795 }
4796 }
4797
4798 if (spares)
4799 return write_super_imsm_spares(super, doclose);
4800
4801 return 0;
4802 }
4803
4804
4805 static int create_array(struct supertype *st, int dev_idx)
4806 {
4807 size_t len;
4808 struct imsm_update_create_array *u;
4809 struct intel_super *super = st->sb;
4810 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4811 struct imsm_map *map = get_imsm_map(dev, 0);
4812 struct disk_info *inf;
4813 struct imsm_disk *disk;
4814 int i;
4815
4816 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4817 sizeof(*inf) * map->num_members;
4818 u = malloc(len);
4819 if (!u) {
4820 fprintf(stderr, "%s: failed to allocate update buffer\n",
4821 __func__);
4822 return 1;
4823 }
4824
4825 u->type = update_create_array;
4826 u->dev_idx = dev_idx;
4827 imsm_copy_dev(&u->dev, dev);
4828 inf = get_disk_info(u);
4829 for (i = 0; i < map->num_members; i++) {
4830 int idx = get_imsm_disk_idx(dev, i, -1);
4831
4832 disk = get_imsm_disk(super, idx);
4833 serialcpy(inf[i].serial, disk->serial);
4834 }
4835 append_metadata_update(st, u, len);
4836
4837 return 0;
4838 }
4839
4840 static int mgmt_disk(struct supertype *st)
4841 {
4842 struct intel_super *super = st->sb;
4843 size_t len;
4844 struct imsm_update_add_remove_disk *u;
4845
4846 if (!super->disk_mgmt_list)
4847 return 0;
4848
4849 len = sizeof(*u);
4850 u = malloc(len);
4851 if (!u) {
4852 fprintf(stderr, "%s: failed to allocate update buffer\n",
4853 __func__);
4854 return 1;
4855 }
4856
4857 u->type = update_add_remove_disk;
4858 append_metadata_update(st, u, len);
4859
4860 return 0;
4861 }
4862
4863 static int write_init_super_imsm(struct supertype *st)
4864 {
4865 struct intel_super *super = st->sb;
4866 int current_vol = super->current_vol;
4867
4868 /* we are done with current_vol reset it to point st at the container */
4869 super->current_vol = -1;
4870
4871 if (st->update_tail) {
4872 /* queue the recently created array / added disk
4873 * as a metadata update */
4874 int rv;
4875
4876 /* determine if we are creating a volume or adding a disk */
4877 if (current_vol < 0) {
4878 /* in the mgmt (add/remove) disk case we are running
4879 * in mdmon context, so don't close fd's
4880 */
4881 return mgmt_disk(st);
4882 } else
4883 rv = create_array(st, current_vol);
4884
4885 return rv;
4886 } else {
4887 struct dl *d;
4888 for (d = super->disks; d; d = d->next)
4889 Kill(d->devname, NULL, 0, 1, 1);
4890 return write_super_imsm(st, 1);
4891 }
4892 }
4893 #endif
4894
4895 static int store_super_imsm(struct supertype *st, int fd)
4896 {
4897 struct intel_super *super = st->sb;
4898 struct imsm_super *mpb = super ? super->anchor : NULL;
4899
4900 if (!mpb)
4901 return 1;
4902
4903 #ifndef MDASSEMBLE
4904 return store_imsm_mpb(fd, mpb);
4905 #else
4906 return 1;
4907 #endif
4908 }
4909
4910 static int imsm_bbm_log_size(struct imsm_super *mpb)
4911 {
4912 return __le32_to_cpu(mpb->bbm_log_size);
4913 }
4914
4915 #ifndef MDASSEMBLE
4916 static int validate_geometry_imsm_container(struct supertype *st, int level,
4917 int layout, int raiddisks, int chunk,
4918 unsigned long long size, char *dev,
4919 unsigned long long *freesize,
4920 int verbose)
4921 {
4922 int fd;
4923 unsigned long long ldsize;
4924 struct intel_super *super=NULL;
4925 int rv = 0;
4926
4927 if (level != LEVEL_CONTAINER)
4928 return 0;
4929 if (!dev)
4930 return 1;
4931
4932 fd = open(dev, O_RDONLY|O_EXCL, 0);
4933 if (fd < 0) {
4934 if (verbose)
4935 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4936 dev, strerror(errno));
4937 return 0;
4938 }
4939 if (!get_dev_size(fd, dev, &ldsize)) {
4940 close(fd);
4941 return 0;
4942 }
4943
4944 /* capabilities retrieve could be possible
4945 * note that there is no fd for the disks in array.
4946 */
4947 super = alloc_super();
4948 if (!super) {
4949 fprintf(stderr,
4950 Name ": malloc of %zu failed.\n",
4951 sizeof(*super));
4952 close(fd);
4953 return 0;
4954 }
4955
4956 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4957 if (rv != 0) {
4958 #if DEBUG
4959 char str[256];
4960 fd2devname(fd, str);
4961 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4962 fd, str, super->orom, rv, raiddisks);
4963 #endif
4964 /* no orom/efi or non-intel hba of the disk */
4965 close(fd);
4966 free_imsm(super);
4967 return 0;
4968 }
4969 close(fd);
4970 if (super->orom && raiddisks > super->orom->tds) {
4971 if (verbose)
4972 fprintf(stderr, Name ": %d exceeds maximum number of"
4973 " platform supported disks: %d\n",
4974 raiddisks, super->orom->tds);
4975
4976 free_imsm(super);
4977 return 0;
4978 }
4979
4980 *freesize = avail_size_imsm(st, ldsize >> 9);
4981 free_imsm(super);
4982
4983 return 1;
4984 }
4985
4986 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4987 {
4988 const unsigned long long base_start = e[*idx].start;
4989 unsigned long long end = base_start + e[*idx].size;
4990 int i;
4991
4992 if (base_start == end)
4993 return 0;
4994
4995 *idx = *idx + 1;
4996 for (i = *idx; i < num_extents; i++) {
4997 /* extend overlapping extents */
4998 if (e[i].start >= base_start &&
4999 e[i].start <= end) {
5000 if (e[i].size == 0)
5001 return 0;
5002 if (e[i].start + e[i].size > end)
5003 end = e[i].start + e[i].size;
5004 } else if (e[i].start > end) {
5005 *idx = i;
5006 break;
5007 }
5008 }
5009
5010 return end - base_start;
5011 }
5012
5013 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5014 {
5015 /* build a composite disk with all known extents and generate a new
5016 * 'maxsize' given the "all disks in an array must share a common start
5017 * offset" constraint
5018 */
5019 struct extent *e = calloc(sum_extents, sizeof(*e));
5020 struct dl *dl;
5021 int i, j;
5022 int start_extent;
5023 unsigned long long pos;
5024 unsigned long long start = 0;
5025 unsigned long long maxsize;
5026 unsigned long reserve;
5027
5028 if (!e)
5029 return 0;
5030
5031 /* coalesce and sort all extents. also, check to see if we need to
5032 * reserve space between member arrays
5033 */
5034 j = 0;
5035 for (dl = super->disks; dl; dl = dl->next) {
5036 if (!dl->e)
5037 continue;
5038 for (i = 0; i < dl->extent_cnt; i++)
5039 e[j++] = dl->e[i];
5040 }
5041 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5042
5043 /* merge extents */
5044 i = 0;
5045 j = 0;
5046 while (i < sum_extents) {
5047 e[j].start = e[i].start;
5048 e[j].size = find_size(e, &i, sum_extents);
5049 j++;
5050 if (e[j-1].size == 0)
5051 break;
5052 }
5053
5054 pos = 0;
5055 maxsize = 0;
5056 start_extent = 0;
5057 i = 0;
5058 do {
5059 unsigned long long esize;
5060
5061 esize = e[i].start - pos;
5062 if (esize >= maxsize) {
5063 maxsize = esize;
5064 start = pos;
5065 start_extent = i;
5066 }
5067 pos = e[i].start + e[i].size;
5068 i++;
5069 } while (e[i-1].size);
5070 free(e);
5071
5072 if (maxsize == 0)
5073 return 0;
5074
5075 /* FIXME assumes volume at offset 0 is the first volume in a
5076 * container
5077 */
5078 if (start_extent > 0)
5079 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5080 else
5081 reserve = 0;
5082
5083 if (maxsize < reserve)
5084 return 0;
5085
5086 super->create_offset = ~((__u32) 0);
5087 if (start + reserve > super->create_offset)
5088 return 0; /* start overflows create_offset */
5089 super->create_offset = start + reserve;
5090
5091 return maxsize - reserve;
5092 }
5093
5094 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5095 {
5096 if (level < 0 || level == 6 || level == 4)
5097 return 0;
5098
5099 /* if we have an orom prevent invalid raid levels */
5100 if (orom)
5101 switch (level) {
5102 case 0: return imsm_orom_has_raid0(orom);
5103 case 1:
5104 if (raiddisks > 2)
5105 return imsm_orom_has_raid1e(orom);
5106 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5107 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5108 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5109 }
5110 else
5111 return 1; /* not on an Intel RAID platform so anything goes */
5112
5113 return 0;
5114 }
5115
5116 static int imsm_default_chunk(const struct imsm_orom *orom)
5117 {
5118 /* up to 512 if the plaform supports it, otherwise the platform max.
5119 * 128 if no platform detected
5120 */
5121 int fs = max(7, orom ? fls(orom->sss) : 0);
5122
5123 return min(512, (1 << fs));
5124 }
5125
5126 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5127 static int
5128 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5129 int raiddisks, int *chunk, int verbose)
5130 {
5131 /* check/set platform and metadata limits/defaults */
5132 if (super->orom && raiddisks > super->orom->dpa) {
5133 pr_vrb(": platform supports a maximum of %d disks per array\n",
5134 super->orom->dpa);
5135 return 0;
5136 }
5137
5138 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5139 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5140 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5141 level, raiddisks, raiddisks > 1 ? "s" : "");
5142 return 0;
5143 }
5144
5145 if (chunk && (*chunk == 0 || *chunk == UnSet))
5146 *chunk = imsm_default_chunk(super->orom);
5147
5148 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5149 pr_vrb(": platform does not support a chunk size of: "
5150 "%d\n", *chunk);
5151 return 0;
5152 }
5153
5154 if (layout != imsm_level_to_layout(level)) {
5155 if (level == 5)
5156 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5157 else if (level == 10)
5158 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5159 else
5160 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5161 layout, level);
5162 return 0;
5163 }
5164 return 1;
5165 }
5166
5167 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5168 * FIX ME add ahci details
5169 */
5170 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5171 int layout, int raiddisks, int *chunk,
5172 unsigned long long size, char *dev,
5173 unsigned long long *freesize,
5174 int verbose)
5175 {
5176 struct stat stb;
5177 struct intel_super *super = st->sb;
5178 struct imsm_super *mpb;
5179 struct dl *dl;
5180 unsigned long long pos = 0;
5181 unsigned long long maxsize;
5182 struct extent *e;
5183 int i;
5184
5185 /* We must have the container info already read in. */
5186 if (!super)
5187 return 0;
5188
5189 mpb = super->anchor;
5190
5191 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5192 fprintf(stderr, Name ": the option-rom requires all "
5193 "member disks to be a member of all volumes.\n");
5194 return 0;
5195 }
5196
5197 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5198 fprintf(stderr, Name ": RAID gemetry validation failed. "
5199 "Cannot proceed with the action(s).\n");
5200 return 0;
5201 }
5202 if (!dev) {
5203 /* General test: make sure there is space for
5204 * 'raiddisks' device extents of size 'size' at a given
5205 * offset
5206 */
5207 unsigned long long minsize = size;
5208 unsigned long long start_offset = MaxSector;
5209 int dcnt = 0;
5210 if (minsize == 0)
5211 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5212 for (dl = super->disks; dl ; dl = dl->next) {
5213 int found = 0;
5214
5215 pos = 0;
5216 i = 0;
5217 e = get_extents(super, dl);
5218 if (!e) continue;
5219 do {
5220 unsigned long long esize;
5221 esize = e[i].start - pos;
5222 if (esize >= minsize)
5223 found = 1;
5224 if (found && start_offset == MaxSector) {
5225 start_offset = pos;
5226 break;
5227 } else if (found && pos != start_offset) {
5228 found = 0;
5229 break;
5230 }
5231 pos = e[i].start + e[i].size;
5232 i++;
5233 } while (e[i-1].size);
5234 if (found)
5235 dcnt++;
5236 free(e);
5237 }
5238 if (dcnt < raiddisks) {
5239 if (verbose)
5240 fprintf(stderr, Name ": imsm: Not enough "
5241 "devices with space for this array "
5242 "(%d < %d)\n",
5243 dcnt, raiddisks);
5244 return 0;
5245 }
5246 return 1;
5247 }
5248
5249 /* This device must be a member of the set */
5250 if (stat(dev, &stb) < 0)
5251 return 0;
5252 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5253 return 0;
5254 for (dl = super->disks ; dl ; dl = dl->next) {
5255 if (dl->major == (int)major(stb.st_rdev) &&
5256 dl->minor == (int)minor(stb.st_rdev))
5257 break;
5258 }
5259 if (!dl) {
5260 if (verbose)
5261 fprintf(stderr, Name ": %s is not in the "
5262 "same imsm set\n", dev);
5263 return 0;
5264 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5265 /* If a volume is present then the current creation attempt
5266 * cannot incorporate new spares because the orom may not
5267 * understand this configuration (all member disks must be
5268 * members of each array in the container).
5269 */
5270 fprintf(stderr, Name ": %s is a spare and a volume"
5271 " is already defined for this container\n", dev);
5272 fprintf(stderr, Name ": The option-rom requires all member"
5273 " disks to be a member of all volumes\n");
5274 return 0;
5275 }
5276
5277 /* retrieve the largest free space block */
5278 e = get_extents(super, dl);
5279 maxsize = 0;
5280 i = 0;
5281 if (e) {
5282 do {
5283 unsigned long long esize;
5284
5285 esize = e[i].start - pos;
5286 if (esize >= maxsize)
5287 maxsize = esize;
5288 pos = e[i].start + e[i].size;
5289 i++;
5290 } while (e[i-1].size);
5291 dl->e = e;
5292 dl->extent_cnt = i;
5293 } else {
5294 if (verbose)
5295 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5296 dev);
5297 return 0;
5298 }
5299 if (maxsize < size) {
5300 if (verbose)
5301 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5302 dev, maxsize, size);
5303 return 0;
5304 }
5305
5306 /* count total number of extents for merge */
5307 i = 0;
5308 for (dl = super->disks; dl; dl = dl->next)
5309 if (dl->e)
5310 i += dl->extent_cnt;
5311
5312 maxsize = merge_extents(super, i);
5313
5314 if (!check_env("IMSM_NO_PLATFORM") &&
5315 mpb->num_raid_devs > 0 && size && size != maxsize) {
5316 fprintf(stderr, Name ": attempting to create a second "
5317 "volume with size less then remaining space. "
5318 "Aborting...\n");
5319 return 0;
5320 }
5321
5322 if (maxsize < size || maxsize == 0) {
5323 if (verbose)
5324 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5325 maxsize, size);
5326 return 0;
5327 }
5328
5329 *freesize = maxsize;
5330
5331 return 1;
5332 }
5333
5334 static int reserve_space(struct supertype *st, int raiddisks,
5335 unsigned long long size, int chunk,
5336 unsigned long long *freesize)
5337 {
5338 struct intel_super *super = st->sb;
5339 struct imsm_super *mpb = super->anchor;
5340 struct dl *dl;
5341 int i;
5342 int extent_cnt;
5343 struct extent *e;
5344 unsigned long long maxsize;
5345 unsigned long long minsize;
5346 int cnt;
5347 int used;
5348
5349 /* find the largest common start free region of the possible disks */
5350 used = 0;
5351 extent_cnt = 0;
5352 cnt = 0;
5353 for (dl = super->disks; dl; dl = dl->next) {
5354 dl->raiddisk = -1;
5355
5356 if (dl->index >= 0)
5357 used++;
5358
5359 /* don't activate new spares if we are orom constrained
5360 * and there is already a volume active in the container
5361 */
5362 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5363 continue;
5364
5365 e = get_extents(super, dl);
5366 if (!e)
5367 continue;
5368 for (i = 1; e[i-1].size; i++)
5369 ;
5370 dl->e = e;
5371 dl->extent_cnt = i;
5372 extent_cnt += i;
5373 cnt++;
5374 }
5375
5376 maxsize = merge_extents(super, extent_cnt);
5377 minsize = size;
5378 if (size == 0)
5379 /* chunk is in K */
5380 minsize = chunk * 2;
5381
5382 if (cnt < raiddisks ||
5383 (super->orom && used && used != raiddisks) ||
5384 maxsize < minsize ||
5385 maxsize == 0) {
5386 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5387 return 0; /* No enough free spaces large enough */
5388 }
5389
5390 if (size == 0) {
5391 size = maxsize;
5392 if (chunk) {
5393 size /= 2 * chunk;
5394 size *= 2 * chunk;
5395 }
5396 }
5397
5398 cnt = 0;
5399 for (dl = super->disks; dl; dl = dl->next)
5400 if (dl->e)
5401 dl->raiddisk = cnt++;
5402
5403 *freesize = size;
5404
5405 return 1;
5406 }
5407
5408 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5409 int raiddisks, int *chunk, unsigned long long size,
5410 char *dev, unsigned long long *freesize,
5411 int verbose)
5412 {
5413 int fd, cfd;
5414 struct mdinfo *sra;
5415 int is_member = 0;
5416
5417 /* load capability
5418 * if given unused devices create a container
5419 * if given given devices in a container create a member volume
5420 */
5421 if (level == LEVEL_CONTAINER) {
5422 /* Must be a fresh device to add to a container */
5423 return validate_geometry_imsm_container(st, level, layout,
5424 raiddisks,
5425 chunk?*chunk:0, size,
5426 dev, freesize,
5427 verbose);
5428 }
5429
5430 if (!dev) {
5431 if (st->sb) {
5432 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5433 raiddisks, chunk,
5434 verbose))
5435 return 0;
5436 /* we are being asked to automatically layout a
5437 * new volume based on the current contents of
5438 * the container. If the the parameters can be
5439 * satisfied reserve_space will record the disks,
5440 * start offset, and size of the volume to be
5441 * created. add_to_super and getinfo_super
5442 * detect when autolayout is in progress.
5443 */
5444 if (freesize)
5445 return reserve_space(st, raiddisks, size,
5446 chunk?*chunk:0, freesize);
5447 }
5448 return 1;
5449 }
5450 if (st->sb) {
5451 /* creating in a given container */
5452 return validate_geometry_imsm_volume(st, level, layout,
5453 raiddisks, chunk, size,
5454 dev, freesize, verbose);
5455 }
5456
5457 /* This device needs to be a device in an 'imsm' container */
5458 fd = open(dev, O_RDONLY|O_EXCL, 0);
5459 if (fd >= 0) {
5460 if (verbose)
5461 fprintf(stderr,
5462 Name ": Cannot create this array on device %s\n",
5463 dev);
5464 close(fd);
5465 return 0;
5466 }
5467 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5468 if (verbose)
5469 fprintf(stderr, Name ": Cannot open %s: %s\n",
5470 dev, strerror(errno));
5471 return 0;
5472 }
5473 /* Well, it is in use by someone, maybe an 'imsm' container. */
5474 cfd = open_container(fd);
5475 close(fd);
5476 if (cfd < 0) {
5477 if (verbose)
5478 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5479 dev);
5480 return 0;
5481 }
5482 sra = sysfs_read(cfd, 0, GET_VERSION);
5483 if (sra && sra->array.major_version == -1 &&
5484 strcmp(sra->text_version, "imsm") == 0)
5485 is_member = 1;
5486 sysfs_free(sra);
5487 if (is_member) {
5488 /* This is a member of a imsm container. Load the container
5489 * and try to create a volume
5490 */
5491 struct intel_super *super;
5492
5493 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5494 st->sb = super;
5495 st->container_dev = fd2devnum(cfd);
5496 close(cfd);
5497 return validate_geometry_imsm_volume(st, level, layout,
5498 raiddisks, chunk,
5499 size, dev,
5500 freesize, 1)
5501 ? 1 : -1;
5502 }
5503 }
5504
5505 if (verbose)
5506 fprintf(stderr, Name ": failed container membership check\n");
5507
5508 close(cfd);
5509 return 0;
5510 }
5511
5512 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5513 {
5514 struct intel_super *super = st->sb;
5515
5516 if (level && *level == UnSet)
5517 *level = LEVEL_CONTAINER;
5518
5519 if (level && layout && *layout == UnSet)
5520 *layout = imsm_level_to_layout(*level);
5521
5522 if (chunk && (*chunk == UnSet || *chunk == 0))
5523 *chunk = imsm_default_chunk(super->orom);
5524 }
5525
5526 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5527
5528 static int kill_subarray_imsm(struct supertype *st)
5529 {
5530 /* remove the subarray currently referenced by ->current_vol */
5531 __u8 i;
5532 struct intel_dev **dp;
5533 struct intel_super *super = st->sb;
5534 __u8 current_vol = super->current_vol;
5535 struct imsm_super *mpb = super->anchor;
5536
5537 if (super->current_vol < 0)
5538 return 2;
5539 super->current_vol = -1; /* invalidate subarray cursor */
5540
5541 /* block deletions that would change the uuid of active subarrays
5542 *
5543 * FIXME when immutable ids are available, but note that we'll
5544 * also need to fixup the invalidated/active subarray indexes in
5545 * mdstat
5546 */
5547 for (i = 0; i < mpb->num_raid_devs; i++) {
5548 char subarray[4];
5549
5550 if (i < current_vol)
5551 continue;
5552 sprintf(subarray, "%u", i);
5553 if (is_subarray_active(subarray, st->devname)) {
5554 fprintf(stderr,
5555 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5556 current_vol, i);
5557
5558 return 2;
5559 }
5560 }
5561
5562 if (st->update_tail) {
5563 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5564
5565 if (!u)
5566 return 2;
5567 u->type = update_kill_array;
5568 u->dev_idx = current_vol;
5569 append_metadata_update(st, u, sizeof(*u));
5570
5571 return 0;
5572 }
5573
5574 for (dp = &super->devlist; *dp;)
5575 if ((*dp)->index == current_vol) {
5576 *dp = (*dp)->next;
5577 } else {
5578 handle_missing(super, (*dp)->dev);
5579 if ((*dp)->index > current_vol)
5580 (*dp)->index--;
5581 dp = &(*dp)->next;
5582 }
5583
5584 /* no more raid devices, all active components are now spares,
5585 * but of course failed are still failed
5586 */
5587 if (--mpb->num_raid_devs == 0) {
5588 struct dl *d;
5589
5590 for (d = super->disks; d; d = d->next)
5591 if (d->index > -2)
5592 mark_spare(d);
5593 }
5594
5595 super->updates_pending++;
5596
5597 return 0;
5598 }
5599
5600 static int update_subarray_imsm(struct supertype *st, char *subarray,
5601 char *update, struct mddev_ident *ident)
5602 {
5603 /* update the subarray currently referenced by ->current_vol */
5604 struct intel_super *super = st->sb;
5605 struct imsm_super *mpb = super->anchor;
5606
5607 if (strcmp(update, "name") == 0) {
5608 char *name = ident->name;
5609 char *ep;
5610 int vol;
5611
5612 if (is_subarray_active(subarray, st->devname)) {
5613 fprintf(stderr,
5614 Name ": Unable to update name of active subarray\n");
5615 return 2;
5616 }
5617
5618 if (!check_name(super, name, 0))
5619 return 2;
5620
5621 vol = strtoul(subarray, &ep, 10);
5622 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5623 return 2;
5624
5625 if (st->update_tail) {
5626 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5627
5628 if (!u)
5629 return 2;
5630 u->type = update_rename_array;
5631 u->dev_idx = vol;
5632 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5633 append_metadata_update(st, u, sizeof(*u));
5634 } else {
5635 struct imsm_dev *dev;
5636 int i;
5637
5638 dev = get_imsm_dev(super, vol);
5639 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5640 for (i = 0; i < mpb->num_raid_devs; i++) {
5641 dev = get_imsm_dev(super, i);
5642 handle_missing(super, dev);
5643 }
5644 super->updates_pending++;
5645 }
5646 } else
5647 return 2;
5648
5649 return 0;
5650 }
5651
5652 static int is_gen_migration(struct imsm_dev *dev)
5653 {
5654 if (dev == NULL)
5655 return 0;
5656
5657 if (!dev->vol.migr_state)
5658 return 0;
5659
5660 if (migr_type(dev) == MIGR_GEN_MIGR)
5661 return 1;
5662
5663 return 0;
5664 }
5665 #endif /* MDASSEMBLE */
5666
5667 static int is_rebuilding(struct imsm_dev *dev)
5668 {
5669 struct imsm_map *migr_map;
5670
5671 if (!dev->vol.migr_state)
5672 return 0;
5673
5674 if (migr_type(dev) != MIGR_REBUILD)
5675 return 0;
5676
5677 migr_map = get_imsm_map(dev, 1);
5678
5679 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5680 return 1;
5681 else
5682 return 0;
5683 }
5684
5685 static void update_recovery_start(struct intel_super *super,
5686 struct imsm_dev *dev,
5687 struct mdinfo *array)
5688 {
5689 struct mdinfo *rebuild = NULL;
5690 struct mdinfo *d;
5691 __u32 units;
5692
5693 if (!is_rebuilding(dev))
5694 return;
5695
5696 /* Find the rebuild target, but punt on the dual rebuild case */
5697 for (d = array->devs; d; d = d->next)
5698 if (d->recovery_start == 0) {
5699 if (rebuild)
5700 return;
5701 rebuild = d;
5702 }
5703
5704 if (!rebuild) {
5705 /* (?) none of the disks are marked with
5706 * IMSM_ORD_REBUILD, so assume they are missing and the
5707 * disk_ord_tbl was not correctly updated
5708 */
5709 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5710 return;
5711 }
5712
5713 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5714 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5715 }
5716
5717 #ifndef MDASSEMBLE
5718 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5719 #endif
5720
5721 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5722 {
5723 /* Given a container loaded by load_super_imsm_all,
5724 * extract information about all the arrays into
5725 * an mdinfo tree.
5726 * If 'subarray' is given, just extract info about that array.
5727 *
5728 * For each imsm_dev create an mdinfo, fill it in,
5729 * then look for matching devices in super->disks
5730 * and create appropriate device mdinfo.
5731 */
5732 struct intel_super *super = st->sb;
5733 struct imsm_super *mpb = super->anchor;
5734 struct mdinfo *rest = NULL;
5735 unsigned int i;
5736 int sb_errors = 0;
5737 struct dl *d;
5738 int spare_disks = 0;
5739
5740 /* do not assemble arrays when not all attributes are supported */
5741 if (imsm_check_attributes(mpb->attributes) == 0) {
5742 sb_errors = 1;
5743 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5744 "Arrays activation is blocked.\n");
5745 }
5746
5747 /* check for bad blocks */
5748 if (imsm_bbm_log_size(super->anchor)) {
5749 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5750 "Arrays activation is blocked.\n");
5751 sb_errors = 1;
5752 }
5753
5754
5755 /* count spare devices, not used in maps
5756 */
5757 for (d = super->disks; d; d = d->next)
5758 if (d->index == -1)
5759 spare_disks++;
5760
5761 for (i = 0; i < mpb->num_raid_devs; i++) {
5762 struct imsm_dev *dev;
5763 struct imsm_map *map;
5764 struct imsm_map *map2;
5765 struct mdinfo *this;
5766 int slot, chunk;
5767 char *ep;
5768
5769 if (subarray &&
5770 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5771 continue;
5772
5773 dev = get_imsm_dev(super, i);
5774 map = get_imsm_map(dev, 0);
5775 map2 = get_imsm_map(dev, 1);
5776
5777 /* do not publish arrays that are in the middle of an
5778 * unsupported migration
5779 */
5780 if (dev->vol.migr_state &&
5781 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5782 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5783 " unsupported migration in progress\n",
5784 dev->volume);
5785 continue;
5786 }
5787 /* do not publish arrays that are not support by controller's
5788 * OROM/EFI
5789 */
5790
5791 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5792 this = malloc(sizeof(*this));
5793 if (!this) {
5794 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5795 sizeof(*this));
5796 break;
5797 }
5798
5799 super->current_vol = i;
5800 getinfo_super_imsm_volume(st, this, NULL);
5801 this->next = rest;
5802 #ifndef MDASSEMBLE
5803 /* mdadm does not support all metadata features- set the bit in all arrays state */
5804 if (!validate_geometry_imsm_orom(super,
5805 get_imsm_raid_level(map), /* RAID level */
5806 imsm_level_to_layout(get_imsm_raid_level(map)),
5807 map->num_members, /* raid disks */
5808 &chunk,
5809 1 /* verbose */)) {
5810 fprintf(stderr, Name ": IMSM RAID geometry validation"
5811 " failed. Array %s activation is blocked.\n",
5812 dev->volume);
5813 this->array.state |=
5814 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5815 (1<<MD_SB_BLOCK_VOLUME);
5816 }
5817 #endif
5818
5819 /* if array has bad blocks, set suitable bit in all arrays state */
5820 if (sb_errors)
5821 this->array.state |=
5822 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5823 (1<<MD_SB_BLOCK_VOLUME);
5824
5825 for (slot = 0 ; slot < map->num_members; slot++) {
5826 unsigned long long recovery_start;
5827 struct mdinfo *info_d;
5828 struct dl *d;
5829 int idx;
5830 int skip;
5831 __u32 ord;
5832
5833 skip = 0;
5834 idx = get_imsm_disk_idx(dev, slot, 0);
5835 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5836 for (d = super->disks; d ; d = d->next)
5837 if (d->index == idx)
5838 break;
5839
5840 recovery_start = MaxSector;
5841 if (d == NULL)
5842 skip = 1;
5843 if (d && is_failed(&d->disk))
5844 skip = 1;
5845 if (ord & IMSM_ORD_REBUILD)
5846 recovery_start = 0;
5847
5848 /*
5849 * if we skip some disks the array will be assmebled degraded;
5850 * reset resync start to avoid a dirty-degraded
5851 * situation when performing the intial sync
5852 *
5853 * FIXME handle dirty degraded
5854 */
5855 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5856 this->resync_start = MaxSector;
5857 if (skip)
5858 continue;
5859
5860 info_d = calloc(1, sizeof(*info_d));
5861 if (!info_d) {
5862 fprintf(stderr, Name ": failed to allocate disk"
5863 " for volume %.16s\n", dev->volume);
5864 info_d = this->devs;
5865 while (info_d) {
5866 struct mdinfo *d = info_d->next;
5867
5868 free(info_d);
5869 info_d = d;
5870 }
5871 free(this);
5872 this = rest;
5873 break;
5874 }
5875 info_d->next = this->devs;
5876 this->devs = info_d;
5877
5878 info_d->disk.number = d->index;
5879 info_d->disk.major = d->major;
5880 info_d->disk.minor = d->minor;
5881 info_d->disk.raid_disk = slot;
5882 info_d->recovery_start = recovery_start;
5883 if (map2) {
5884 if (slot < map2->num_members)
5885 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5886 else
5887 this->array.spare_disks++;
5888 } else {
5889 if (slot < map->num_members)
5890 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5891 else
5892 this->array.spare_disks++;
5893 }
5894 if (info_d->recovery_start == MaxSector)
5895 this->array.working_disks++;
5896
5897 info_d->events = __le32_to_cpu(mpb->generation_num);
5898 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5899 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5900 }
5901 /* now that the disk list is up-to-date fixup recovery_start */
5902 update_recovery_start(super, dev, this);
5903 this->array.spare_disks += spare_disks;
5904
5905 #ifndef MDASSEMBLE
5906 /* check for reshape */
5907 if (this->reshape_active == 1)
5908 recover_backup_imsm(st, this);
5909 #endif
5910 rest = this;
5911 }
5912
5913 return rest;
5914 }
5915
5916
5917 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5918 {
5919 struct imsm_map *map = get_imsm_map(dev, 0);
5920
5921 if (!failed)
5922 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5923 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5924
5925 switch (get_imsm_raid_level(map)) {
5926 case 0:
5927 return IMSM_T_STATE_FAILED;
5928 break;
5929 case 1:
5930 if (failed < map->num_members)
5931 return IMSM_T_STATE_DEGRADED;
5932 else
5933 return IMSM_T_STATE_FAILED;
5934 break;
5935 case 10:
5936 {
5937 /**
5938 * check to see if any mirrors have failed, otherwise we
5939 * are degraded. Even numbered slots are mirrored on
5940 * slot+1
5941 */
5942 int i;
5943 /* gcc -Os complains that this is unused */
5944 int insync = insync;
5945
5946 for (i = 0; i < map->num_members; i++) {
5947 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5948 int idx = ord_to_idx(ord);
5949 struct imsm_disk *disk;
5950
5951 /* reset the potential in-sync count on even-numbered
5952 * slots. num_copies is always 2 for imsm raid10
5953 */
5954 if ((i & 1) == 0)
5955 insync = 2;
5956
5957 disk = get_imsm_disk(super, idx);
5958 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5959 insync--;
5960
5961 /* no in-sync disks left in this mirror the
5962 * array has failed
5963 */
5964 if (insync == 0)
5965 return IMSM_T_STATE_FAILED;
5966 }
5967
5968 return IMSM_T_STATE_DEGRADED;
5969 }
5970 case 5:
5971 if (failed < 2)
5972 return IMSM_T_STATE_DEGRADED;
5973 else
5974 return IMSM_T_STATE_FAILED;
5975 break;
5976 default:
5977 break;
5978 }
5979
5980 return map->map_state;
5981 }
5982
5983 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5984 {
5985 int i;
5986 int failed = 0;
5987 struct imsm_disk *disk;
5988 struct imsm_map *map = get_imsm_map(dev, 0);
5989 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5990 struct imsm_map *map_for_loop;
5991 __u32 ord;
5992 int idx;
5993
5994 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5995 * disks that are being rebuilt. New failures are recorded to
5996 * map[0]. So we look through all the disks we started with and
5997 * see if any failures are still present, or if any new ones
5998 * have arrived
5999 */
6000 map_for_loop = prev;
6001 if (is_gen_migration(dev))
6002 if (prev && (map->num_members > prev->num_members))
6003 map_for_loop = map;
6004
6005 for (i = 0; i < map_for_loop->num_members; i++) {
6006 ord = 0;
6007 if (i < prev->num_members)
6008 ord |= __le32_to_cpu(prev->disk_ord_tbl[i]);
6009 if (i < map->num_members)
6010 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
6011 idx = ord_to_idx(ord);
6012
6013 disk = get_imsm_disk(super, idx);
6014 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6015 failed++;
6016 }
6017
6018 return failed;
6019 }
6020
6021 #ifndef MDASSEMBLE
6022 static int imsm_open_new(struct supertype *c, struct active_array *a,
6023 char *inst)
6024 {
6025 struct intel_super *super = c->sb;
6026 struct imsm_super *mpb = super->anchor;
6027
6028 if (atoi(inst) >= mpb->num_raid_devs) {
6029 fprintf(stderr, "%s: subarry index %d, out of range\n",
6030 __func__, atoi(inst));
6031 return -ENODEV;
6032 }
6033
6034 dprintf("imsm: open_new %s\n", inst);
6035 a->info.container_member = atoi(inst);
6036 return 0;
6037 }
6038
6039 static int is_resyncing(struct imsm_dev *dev)
6040 {
6041 struct imsm_map *migr_map;
6042
6043 if (!dev->vol.migr_state)
6044 return 0;
6045
6046 if (migr_type(dev) == MIGR_INIT ||
6047 migr_type(dev) == MIGR_REPAIR)
6048 return 1;
6049
6050 if (migr_type(dev) == MIGR_GEN_MIGR)
6051 return 0;
6052
6053 migr_map = get_imsm_map(dev, 1);
6054
6055 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6056 (dev->vol.migr_type != MIGR_GEN_MIGR))
6057 return 1;
6058 else
6059 return 0;
6060 }
6061
6062 /* return true if we recorded new information */
6063 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6064 {
6065 __u32 ord;
6066 int slot;
6067 struct imsm_map *map;
6068 char buf[MAX_RAID_SERIAL_LEN+3];
6069 unsigned int len, shift = 0;
6070
6071 /* new failures are always set in map[0] */
6072 map = get_imsm_map(dev, 0);
6073
6074 slot = get_imsm_disk_slot(map, idx);
6075 if (slot < 0)
6076 return 0;
6077
6078 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6079 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6080 return 0;
6081
6082 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6083 buf[MAX_RAID_SERIAL_LEN] = '\000';
6084 strcat(buf, ":0");
6085 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6086 shift = len - MAX_RAID_SERIAL_LEN + 1;
6087 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6088
6089 disk->status |= FAILED_DISK;
6090 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6091 if (is_gen_migration(dev)) {
6092 struct imsm_map *map2 = get_imsm_map(dev, 1);
6093 if (slot < map2->num_members)
6094 set_imsm_ord_tbl_ent(map2, slot,
6095 idx | IMSM_ORD_REBUILD);
6096 }
6097 if (map->failed_disk_num == 0xff)
6098 map->failed_disk_num = slot;
6099 return 1;
6100 }
6101
6102 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6103 {
6104 mark_failure(dev, disk, idx);
6105
6106 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6107 return;
6108
6109 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6110 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6111 }
6112
6113 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6114 {
6115 __u8 map_state;
6116 struct dl *dl;
6117 int failed;
6118
6119 if (!super->missing)
6120 return;
6121 failed = imsm_count_failed(super, dev);
6122 map_state = imsm_check_degraded(super, dev, failed);
6123
6124 dprintf("imsm: mark missing\n");
6125 end_migration(dev, map_state);
6126 for (dl = super->missing; dl; dl = dl->next)
6127 mark_missing(dev, &dl->disk, dl->index);
6128 super->updates_pending++;
6129 }
6130
6131 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6132 {
6133 int used_disks = imsm_num_data_members(dev, 0);
6134 unsigned long long array_blocks;
6135 struct imsm_map *map;
6136
6137 if (used_disks == 0) {
6138 /* when problems occures
6139 * return current array_blocks value
6140 */
6141 array_blocks = __le32_to_cpu(dev->size_high);
6142 array_blocks = array_blocks << 32;
6143 array_blocks += __le32_to_cpu(dev->size_low);
6144
6145 return array_blocks;
6146 }
6147
6148 /* set array size in metadata
6149 */
6150 map = get_imsm_map(dev, 0);
6151 array_blocks = map->blocks_per_member * used_disks;
6152
6153 /* round array size down to closest MB
6154 */
6155 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6156 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6157 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6158
6159 return array_blocks;
6160 }
6161
6162 static void imsm_set_disk(struct active_array *a, int n, int state);
6163
6164 static void imsm_progress_container_reshape(struct intel_super *super)
6165 {
6166 /* if no device has a migr_state, but some device has a
6167 * different number of members than the previous device, start
6168 * changing the number of devices in this device to match
6169 * previous.
6170 */
6171 struct imsm_super *mpb = super->anchor;
6172 int prev_disks = -1;
6173 int i;
6174 int copy_map_size;
6175
6176 for (i = 0; i < mpb->num_raid_devs; i++) {
6177 struct imsm_dev *dev = get_imsm_dev(super, i);
6178 struct imsm_map *map = get_imsm_map(dev, 0);
6179 struct imsm_map *map2;
6180 int prev_num_members;
6181
6182 if (dev->vol.migr_state)
6183 return;
6184
6185 if (prev_disks == -1)
6186 prev_disks = map->num_members;
6187 if (prev_disks == map->num_members)
6188 continue;
6189
6190 /* OK, this array needs to enter reshape mode.
6191 * i.e it needs a migr_state
6192 */
6193
6194 copy_map_size = sizeof_imsm_map(map);
6195 prev_num_members = map->num_members;
6196 map->num_members = prev_disks;
6197 dev->vol.migr_state = 1;
6198 dev->vol.curr_migr_unit = 0;
6199 set_migr_type(dev, MIGR_GEN_MIGR);
6200 for (i = prev_num_members;
6201 i < map->num_members; i++)
6202 set_imsm_ord_tbl_ent(map, i, i);
6203 map2 = get_imsm_map(dev, 1);
6204 /* Copy the current map */
6205 memcpy(map2, map, copy_map_size);
6206 map2->num_members = prev_num_members;
6207
6208 imsm_set_array_size(dev);
6209 super->updates_pending++;
6210 }
6211 }
6212
6213 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6214 * states are handled in imsm_set_disk() with one exception, when a
6215 * resync is stopped due to a new failure this routine will set the
6216 * 'degraded' state for the array.
6217 */
6218 static int imsm_set_array_state(struct active_array *a, int consistent)
6219 {
6220 int inst = a->info.container_member;
6221 struct intel_super *super = a->container->sb;
6222 struct imsm_dev *dev = get_imsm_dev(super, inst);
6223 struct imsm_map *map = get_imsm_map(dev, 0);
6224 int failed = imsm_count_failed(super, dev);
6225 __u8 map_state = imsm_check_degraded(super, dev, failed);
6226 __u32 blocks_per_unit;
6227
6228 if (dev->vol.migr_state &&
6229 dev->vol.migr_type == MIGR_GEN_MIGR) {
6230 /* array state change is blocked due to reshape action
6231 * We might need to
6232 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6233 * - finish the reshape (if last_checkpoint is big and action != reshape)
6234 * - update curr_migr_unit
6235 */
6236 if (a->curr_action == reshape) {
6237 /* still reshaping, maybe update curr_migr_unit */
6238 goto mark_checkpoint;
6239 } else {
6240 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6241 /* for some reason we aborted the reshape.
6242 *
6243 * disable automatic metadata rollback
6244 * user action is required to recover process
6245 */
6246 if (0) {
6247 struct imsm_map *map2 = get_imsm_map(dev, 1);
6248 dev->vol.migr_state = 0;
6249 set_migr_type(dev, 0);
6250 dev->vol.curr_migr_unit = 0;
6251 memcpy(map, map2, sizeof_imsm_map(map2));
6252 super->updates_pending++;
6253 }
6254 }
6255 if (a->last_checkpoint >= a->info.component_size) {
6256 unsigned long long array_blocks;
6257 int used_disks;
6258 struct mdinfo *mdi;
6259
6260 used_disks = imsm_num_data_members(dev, 0);
6261 if (used_disks > 0) {
6262 array_blocks =
6263 map->blocks_per_member *
6264 used_disks;
6265 /* round array size down to closest MB
6266 */
6267 array_blocks = (array_blocks
6268 >> SECT_PER_MB_SHIFT)
6269 << SECT_PER_MB_SHIFT;
6270 a->info.custom_array_size = array_blocks;
6271 /* encourage manager to update array
6272 * size
6273 */
6274
6275 a->check_reshape = 1;
6276 }
6277 /* finalize online capacity expansion/reshape */
6278 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6279 imsm_set_disk(a,
6280 mdi->disk.raid_disk,
6281 mdi->curr_state);
6282
6283 imsm_progress_container_reshape(super);
6284 }
6285 }
6286 }
6287
6288 /* before we activate this array handle any missing disks */
6289 if (consistent == 2)
6290 handle_missing(super, dev);
6291
6292 if (consistent == 2 &&
6293 (!is_resync_complete(&a->info) ||
6294 map_state != IMSM_T_STATE_NORMAL ||
6295 dev->vol.migr_state))
6296 consistent = 0;
6297
6298 if (is_resync_complete(&a->info)) {
6299 /* complete intialization / resync,
6300 * recovery and interrupted recovery is completed in
6301 * ->set_disk
6302 */
6303 if (is_resyncing(dev)) {
6304 dprintf("imsm: mark resync done\n");
6305 end_migration(dev, map_state);
6306 super->updates_pending++;
6307 a->last_checkpoint = 0;
6308 }
6309 } else if ((!is_resyncing(dev) && !failed) &&
6310 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6311 /* mark the start of the init process if nothing is failed */
6312 dprintf("imsm: mark resync start\n");
6313 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6314 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6315 else
6316 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6317 super->updates_pending++;
6318 }
6319
6320 mark_checkpoint:
6321 /* skip checkpointing for general migration,
6322 * it is controlled in mdadm
6323 */
6324 if (is_gen_migration(dev))
6325 goto skip_mark_checkpoint;
6326
6327 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6328 blocks_per_unit = blocks_per_migr_unit(super, dev);
6329 if (blocks_per_unit) {
6330 __u32 units32;
6331 __u64 units;
6332
6333 units = a->last_checkpoint / blocks_per_unit;
6334 units32 = units;
6335
6336 /* check that we did not overflow 32-bits, and that
6337 * curr_migr_unit needs updating
6338 */
6339 if (units32 == units &&
6340 units32 != 0 &&
6341 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6342 dprintf("imsm: mark checkpoint (%u)\n", units32);
6343 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6344 super->updates_pending++;
6345 }
6346 }
6347
6348 skip_mark_checkpoint:
6349 /* mark dirty / clean */
6350 if (dev->vol.dirty != !consistent) {
6351 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6352 if (consistent)
6353 dev->vol.dirty = 0;
6354 else
6355 dev->vol.dirty = 1;
6356 super->updates_pending++;
6357 }
6358
6359 return consistent;
6360 }
6361
6362 static void imsm_set_disk(struct active_array *a, int n, int state)
6363 {
6364 int inst = a->info.container_member;
6365 struct intel_super *super = a->container->sb;
6366 struct imsm_dev *dev = get_imsm_dev(super, inst);
6367 struct imsm_map *map = get_imsm_map(dev, 0);
6368 struct imsm_disk *disk;
6369 int failed;
6370 __u32 ord;
6371 __u8 map_state;
6372
6373 if (n > map->num_members)
6374 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6375 n, map->num_members - 1);
6376
6377 if (n < 0)
6378 return;
6379
6380 dprintf("imsm: set_disk %d:%x\n", n, state);
6381
6382 ord = get_imsm_ord_tbl_ent(dev, n, -2);
6383 disk = get_imsm_disk(super, ord_to_idx(ord));
6384
6385 /* check for new failures */
6386 if (state & DS_FAULTY) {
6387 if (mark_failure(dev, disk, ord_to_idx(ord)))
6388 super->updates_pending++;
6389 }
6390
6391 /* check if in_sync */
6392 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6393 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6394
6395 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6396 super->updates_pending++;
6397 }
6398
6399 failed = imsm_count_failed(super, dev);
6400 map_state = imsm_check_degraded(super, dev, failed);
6401
6402 /* check if recovery complete, newly degraded, or failed */
6403 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6404 end_migration(dev, map_state);
6405 map = get_imsm_map(dev, 0);
6406 map->failed_disk_num = ~0;
6407 super->updates_pending++;
6408 a->last_checkpoint = 0;
6409 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6410 map->map_state != map_state &&
6411 !dev->vol.migr_state) {
6412 dprintf("imsm: mark degraded\n");
6413 map->map_state = map_state;
6414 super->updates_pending++;
6415 a->last_checkpoint = 0;
6416 } else if (map_state == IMSM_T_STATE_FAILED &&
6417 map->map_state != map_state) {
6418 dprintf("imsm: mark failed\n");
6419 end_migration(dev, map_state);
6420 super->updates_pending++;
6421 a->last_checkpoint = 0;
6422 } else if (is_gen_migration(dev)) {
6423 dprintf("imsm: Detected General Migration in state: ");
6424 if (map_state == IMSM_T_STATE_NORMAL) {
6425 end_migration(dev, map_state);
6426 map = get_imsm_map(dev, 0);
6427 map->failed_disk_num = ~0;
6428 dprintf("normal\n");
6429 } else {
6430 if (map_state == IMSM_T_STATE_DEGRADED) {
6431 printf("degraded\n");
6432 end_migration(dev, map_state);
6433 } else {
6434 dprintf("failed\n");
6435 }
6436 map->map_state = map_state;
6437 }
6438 super->updates_pending++;
6439 }
6440 }
6441
6442 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6443 {
6444 void *buf = mpb;
6445 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6446 unsigned long long dsize;
6447 unsigned long long sectors;
6448
6449 get_dev_size(fd, NULL, &dsize);
6450
6451 if (mpb_size > 512) {
6452 /* -1 to account for anchor */
6453 sectors = mpb_sectors(mpb) - 1;
6454
6455 /* write the extended mpb to the sectors preceeding the anchor */
6456 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6457 return 1;
6458
6459 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6460 != 512 * sectors)
6461 return 1;
6462 }
6463
6464 /* first block is stored on second to last sector of the disk */
6465 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6466 return 1;
6467
6468 if (write(fd, buf, 512) != 512)
6469 return 1;
6470
6471 return 0;
6472 }
6473
6474 static void imsm_sync_metadata(struct supertype *container)
6475 {
6476 struct intel_super *super = container->sb;
6477
6478 dprintf("sync metadata: %d\n", super->updates_pending);
6479 if (!super->updates_pending)
6480 return;
6481
6482 write_super_imsm(container, 0);
6483
6484 super->updates_pending = 0;
6485 }
6486
6487 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6488 {
6489 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6490 int i = get_imsm_disk_idx(dev, idx, -1);
6491 struct dl *dl;
6492
6493 for (dl = super->disks; dl; dl = dl->next)
6494 if (dl->index == i)
6495 break;
6496
6497 if (dl && is_failed(&dl->disk))
6498 dl = NULL;
6499
6500 if (dl)
6501 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6502
6503 return dl;
6504 }
6505
6506 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6507 struct active_array *a, int activate_new,
6508 struct mdinfo *additional_test_list)
6509 {
6510 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6511 int idx = get_imsm_disk_idx(dev, slot, -1);
6512 struct imsm_super *mpb = super->anchor;
6513 struct imsm_map *map;
6514 unsigned long long pos;
6515 struct mdinfo *d;
6516 struct extent *ex;
6517 int i, j;
6518 int found;
6519 __u32 array_start = 0;
6520 __u32 array_end = 0;
6521 struct dl *dl;
6522 struct mdinfo *test_list;
6523
6524 for (dl = super->disks; dl; dl = dl->next) {
6525 /* If in this array, skip */
6526 for (d = a->info.devs ; d ; d = d->next)
6527 if (d->state_fd >= 0 &&
6528 d->disk.major == dl->major &&
6529 d->disk.minor == dl->minor) {
6530 dprintf("%x:%x already in array\n",
6531 dl->major, dl->minor);
6532 break;
6533 }
6534 if (d)
6535 continue;
6536 test_list = additional_test_list;
6537 while (test_list) {
6538 if (test_list->disk.major == dl->major &&
6539 test_list->disk.minor == dl->minor) {
6540 dprintf("%x:%x already in additional test list\n",
6541 dl->major, dl->minor);
6542 break;
6543 }
6544 test_list = test_list->next;
6545 }
6546 if (test_list)
6547 continue;
6548
6549 /* skip in use or failed drives */
6550 if (is_failed(&dl->disk) || idx == dl->index ||
6551 dl->index == -2) {
6552 dprintf("%x:%x status (failed: %d index: %d)\n",
6553 dl->major, dl->minor, is_failed(&dl->disk), idx);
6554 continue;
6555 }
6556
6557 /* skip pure spares when we are looking for partially
6558 * assimilated drives
6559 */
6560 if (dl->index == -1 && !activate_new)
6561 continue;
6562
6563 /* Does this unused device have the requisite free space?
6564 * It needs to be able to cover all member volumes
6565 */
6566 ex = get_extents(super, dl);
6567 if (!ex) {
6568 dprintf("cannot get extents\n");
6569 continue;
6570 }
6571 for (i = 0; i < mpb->num_raid_devs; i++) {
6572 dev = get_imsm_dev(super, i);
6573 map = get_imsm_map(dev, 0);
6574
6575 /* check if this disk is already a member of
6576 * this array
6577 */
6578 if (get_imsm_disk_slot(map, dl->index) >= 0)
6579 continue;
6580
6581 found = 0;
6582 j = 0;
6583 pos = 0;
6584 array_start = __le32_to_cpu(map->pba_of_lba0);
6585 array_end = array_start +
6586 __le32_to_cpu(map->blocks_per_member) - 1;
6587
6588 do {
6589 /* check that we can start at pba_of_lba0 with
6590 * blocks_per_member of space
6591 */
6592 if (array_start >= pos && array_end < ex[j].start) {
6593 found = 1;
6594 break;
6595 }
6596 pos = ex[j].start + ex[j].size;
6597 j++;
6598 } while (ex[j-1].size);
6599
6600 if (!found)
6601 break;
6602 }
6603
6604 free(ex);
6605 if (i < mpb->num_raid_devs) {
6606 dprintf("%x:%x does not have %u to %u available\n",
6607 dl->major, dl->minor, array_start, array_end);
6608 /* No room */
6609 continue;
6610 }
6611 return dl;
6612 }
6613
6614 return dl;
6615 }
6616
6617
6618 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6619 {
6620 struct imsm_dev *dev2;
6621 struct imsm_map *map;
6622 struct dl *idisk;
6623 int slot;
6624 int idx;
6625 __u8 state;
6626
6627 dev2 = get_imsm_dev(cont->sb, dev_idx);
6628 if (dev2) {
6629 state = imsm_check_degraded(cont->sb, dev2, failed);
6630 if (state == IMSM_T_STATE_FAILED) {
6631 map = get_imsm_map(dev2, 0);
6632 if (!map)
6633 return 1;
6634 for (slot = 0; slot < map->num_members; slot++) {
6635 /*
6636 * Check if failed disks are deleted from intel
6637 * disk list or are marked to be deleted
6638 */
6639 idx = get_imsm_disk_idx(dev2, slot, -1);
6640 idisk = get_imsm_dl_disk(cont->sb, idx);
6641 /*
6642 * Do not rebuild the array if failed disks
6643 * from failed sub-array are not removed from
6644 * container.
6645 */
6646 if (idisk &&
6647 is_failed(&idisk->disk) &&
6648 (idisk->action != DISK_REMOVE))
6649 return 0;
6650 }
6651 }
6652 }
6653 return 1;
6654 }
6655
6656 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6657 struct metadata_update **updates)
6658 {
6659 /**
6660 * Find a device with unused free space and use it to replace a
6661 * failed/vacant region in an array. We replace failed regions one a
6662 * array at a time. The result is that a new spare disk will be added
6663 * to the first failed array and after the monitor has finished
6664 * propagating failures the remainder will be consumed.
6665 *
6666 * FIXME add a capability for mdmon to request spares from another
6667 * container.
6668 */
6669
6670 struct intel_super *super = a->container->sb;
6671 int inst = a->info.container_member;
6672 struct imsm_dev *dev = get_imsm_dev(super, inst);
6673 struct imsm_map *map = get_imsm_map(dev, 0);
6674 int failed = a->info.array.raid_disks;
6675 struct mdinfo *rv = NULL;
6676 struct mdinfo *d;
6677 struct mdinfo *di;
6678 struct metadata_update *mu;
6679 struct dl *dl;
6680 struct imsm_update_activate_spare *u;
6681 int num_spares = 0;
6682 int i;
6683 int allowed;
6684
6685 for (d = a->info.devs ; d ; d = d->next) {
6686 if ((d->curr_state & DS_FAULTY) &&
6687 d->state_fd >= 0)
6688 /* wait for Removal to happen */
6689 return NULL;
6690 if (d->state_fd >= 0)
6691 failed--;
6692 }
6693
6694 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6695 inst, failed, a->info.array.raid_disks, a->info.array.level);
6696
6697 if (imsm_reshape_blocks_arrays_changes(super))
6698 return NULL;
6699
6700 if (a->info.array.level == 4)
6701 /* No repair for takeovered array
6702 * imsm doesn't support raid4
6703 */
6704 return NULL;
6705
6706 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6707 return NULL;
6708
6709 /*
6710 * If there are any failed disks check state of the other volume.
6711 * Block rebuild if the another one is failed until failed disks
6712 * are removed from container.
6713 */
6714 if (failed) {
6715 dprintf("found failed disks in %.*s, check if there another"
6716 "failed sub-array.\n",
6717 MAX_RAID_SERIAL_LEN, dev->volume);
6718 /* check if states of the other volumes allow for rebuild */
6719 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6720 if (i != inst) {
6721 allowed = imsm_rebuild_allowed(a->container,
6722 i, failed);
6723 if (!allowed)
6724 return NULL;
6725 }
6726 }
6727 }
6728
6729 /* For each slot, if it is not working, find a spare */
6730 for (i = 0; i < a->info.array.raid_disks; i++) {
6731 for (d = a->info.devs ; d ; d = d->next)
6732 if (d->disk.raid_disk == i)
6733 break;
6734 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6735 if (d && (d->state_fd >= 0))
6736 continue;
6737
6738 /*
6739 * OK, this device needs recovery. Try to re-add the
6740 * previous occupant of this slot, if this fails see if
6741 * we can continue the assimilation of a spare that was
6742 * partially assimilated, finally try to activate a new
6743 * spare.
6744 */
6745 dl = imsm_readd(super, i, a);
6746 if (!dl)
6747 dl = imsm_add_spare(super, i, a, 0, rv);
6748 if (!dl)
6749 dl = imsm_add_spare(super, i, a, 1, rv);
6750 if (!dl)
6751 continue;
6752
6753 /* found a usable disk with enough space */
6754 di = malloc(sizeof(*di));
6755 if (!di)
6756 continue;
6757 memset(di, 0, sizeof(*di));
6758
6759 /* dl->index will be -1 in the case we are activating a
6760 * pristine spare. imsm_process_update() will create a
6761 * new index in this case. Once a disk is found to be
6762 * failed in all member arrays it is kicked from the
6763 * metadata
6764 */
6765 di->disk.number = dl->index;
6766
6767 /* (ab)use di->devs to store a pointer to the device
6768 * we chose
6769 */
6770 di->devs = (struct mdinfo *) dl;
6771
6772 di->disk.raid_disk = i;
6773 di->disk.major = dl->major;
6774 di->disk.minor = dl->minor;
6775 di->disk.state = 0;
6776 di->recovery_start = 0;
6777 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6778 di->component_size = a->info.component_size;
6779 di->container_member = inst;
6780 super->random = random32();
6781 di->next = rv;
6782 rv = di;
6783 num_spares++;
6784 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6785 i, di->data_offset);
6786 }
6787
6788 if (!rv)
6789 /* No spares found */
6790 return rv;
6791 /* Now 'rv' has a list of devices to return.
6792 * Create a metadata_update record to update the
6793 * disk_ord_tbl for the array
6794 */
6795 mu = malloc(sizeof(*mu));
6796 if (mu) {
6797 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6798 if (mu->buf == NULL) {
6799 free(mu);
6800 mu = NULL;
6801 }
6802 }
6803 if (!mu) {
6804 while (rv) {
6805 struct mdinfo *n = rv->next;
6806
6807 free(rv);
6808 rv = n;
6809 }
6810 return NULL;
6811 }
6812
6813 mu->space = NULL;
6814 mu->space_list = NULL;
6815 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6816 mu->next = *updates;
6817 u = (struct imsm_update_activate_spare *) mu->buf;
6818
6819 for (di = rv ; di ; di = di->next) {
6820 u->type = update_activate_spare;
6821 u->dl = (struct dl *) di->devs;
6822 di->devs = NULL;
6823 u->slot = di->disk.raid_disk;
6824 u->array = inst;
6825 u->next = u + 1;
6826 u++;
6827 }
6828 (u-1)->next = NULL;
6829 *updates = mu;
6830
6831 return rv;
6832 }
6833
6834 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6835 {
6836 struct imsm_dev *dev = get_imsm_dev(super, idx);
6837 struct imsm_map *map = get_imsm_map(dev, 0);
6838 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6839 struct disk_info *inf = get_disk_info(u);
6840 struct imsm_disk *disk;
6841 int i;
6842 int j;
6843
6844 for (i = 0; i < map->num_members; i++) {
6845 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6846 for (j = 0; j < new_map->num_members; j++)
6847 if (serialcmp(disk->serial, inf[j].serial) == 0)
6848 return 1;
6849 }
6850
6851 return 0;
6852 }
6853
6854
6855 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6856 {
6857 struct dl *dl = NULL;
6858 for (dl = super->disks; dl; dl = dl->next)
6859 if ((dl->major == major) && (dl->minor == minor))
6860 return dl;
6861 return NULL;
6862 }
6863
6864 static int remove_disk_super(struct intel_super *super, int major, int minor)
6865 {
6866 struct dl *prev = NULL;
6867 struct dl *dl;
6868
6869 prev = NULL;
6870 for (dl = super->disks; dl; dl = dl->next) {
6871 if ((dl->major == major) && (dl->minor == minor)) {
6872 /* remove */
6873 if (prev)
6874 prev->next = dl->next;
6875 else
6876 super->disks = dl->next;
6877 dl->next = NULL;
6878 __free_imsm_disk(dl);
6879 dprintf("%s: removed %x:%x\n",
6880 __func__, major, minor);
6881 break;
6882 }
6883 prev = dl;
6884 }
6885 return 0;
6886 }
6887
6888 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6889
6890 static int add_remove_disk_update(struct intel_super *super)
6891 {
6892 int check_degraded = 0;
6893 struct dl *disk = NULL;
6894 /* add/remove some spares to/from the metadata/contrainer */
6895 while (super->disk_mgmt_list) {
6896 struct dl *disk_cfg;
6897
6898 disk_cfg = super->disk_mgmt_list;
6899 super->disk_mgmt_list = disk_cfg->next;
6900 disk_cfg->next = NULL;
6901
6902 if (disk_cfg->action == DISK_ADD) {
6903 disk_cfg->next = super->disks;
6904 super->disks = disk_cfg;
6905 check_degraded = 1;
6906 dprintf("%s: added %x:%x\n",
6907 __func__, disk_cfg->major,
6908 disk_cfg->minor);
6909 } else if (disk_cfg->action == DISK_REMOVE) {
6910 dprintf("Disk remove action processed: %x.%x\n",
6911 disk_cfg->major, disk_cfg->minor);
6912 disk = get_disk_super(super,
6913 disk_cfg->major,
6914 disk_cfg->minor);
6915 if (disk) {
6916 /* store action status */
6917 disk->action = DISK_REMOVE;
6918 /* remove spare disks only */
6919 if (disk->index == -1) {
6920 remove_disk_super(super,
6921 disk_cfg->major,
6922 disk_cfg->minor);
6923 }
6924 }
6925 /* release allocate disk structure */
6926 __free_imsm_disk(disk_cfg);
6927 }
6928 }
6929 return check_degraded;
6930 }
6931
6932
6933 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6934 struct intel_super *super,
6935 void ***space_list)
6936 {
6937 struct intel_dev *id;
6938 void **tofree = NULL;
6939 int ret_val = 0;
6940
6941 dprintf("apply_reshape_migration_update()\n");
6942 if ((u->subdev < 0) ||
6943 (u->subdev > 1)) {
6944 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6945 return ret_val;
6946 }
6947 if ((space_list == NULL) || (*space_list == NULL)) {
6948 dprintf("imsm: Error: Memory is not allocated\n");
6949 return ret_val;
6950 }
6951
6952 for (id = super->devlist ; id; id = id->next) {
6953 if (id->index == (unsigned)u->subdev) {
6954 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6955 struct imsm_map *map;
6956 struct imsm_dev *new_dev =
6957 (struct imsm_dev *)*space_list;
6958 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6959 int to_state;
6960 struct dl *new_disk;
6961
6962 if (new_dev == NULL)
6963 return ret_val;
6964 *space_list = **space_list;
6965 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6966 map = get_imsm_map(new_dev, 0);
6967 if (migr_map) {
6968 dprintf("imsm: Error: migration in progress");
6969 return ret_val;
6970 }
6971
6972 to_state = map->map_state;
6973 if ((u->new_level == 5) && (map->raid_level == 0)) {
6974 map->num_members++;
6975 /* this should not happen */
6976 if (u->new_disks[0] < 0) {
6977 map->failed_disk_num =
6978 map->num_members - 1;
6979 to_state = IMSM_T_STATE_DEGRADED;
6980 } else
6981 to_state = IMSM_T_STATE_NORMAL;
6982 }
6983 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6984 if (u->new_level > -1)
6985 map->raid_level = u->new_level;
6986 migr_map = get_imsm_map(new_dev, 1);
6987 if ((u->new_level == 5) &&
6988 (migr_map->raid_level == 0)) {
6989 int ord = map->num_members - 1;
6990 migr_map->num_members--;
6991 if (u->new_disks[0] < 0)
6992 ord |= IMSM_ORD_REBUILD;
6993 set_imsm_ord_tbl_ent(map,
6994 map->num_members - 1,
6995 ord);
6996 }
6997 id->dev = new_dev;
6998 tofree = (void **)dev;
6999
7000 /* update chunk size
7001 */
7002 if (u->new_chunksize > 0)
7003 map->blocks_per_strip =
7004 __cpu_to_le16(u->new_chunksize * 2);
7005
7006 /* add disk
7007 */
7008 if ((u->new_level != 5) ||
7009 (migr_map->raid_level != 0) ||
7010 (migr_map->raid_level == map->raid_level))
7011 goto skip_disk_add;
7012
7013 if (u->new_disks[0] >= 0) {
7014 /* use passes spare
7015 */
7016 new_disk = get_disk_super(super,
7017 major(u->new_disks[0]),
7018 minor(u->new_disks[0]));
7019 dprintf("imsm: new disk for reshape is: %i:%i "
7020 "(%p, index = %i)\n",
7021 major(u->new_disks[0]),
7022 minor(u->new_disks[0]),
7023 new_disk, new_disk->index);
7024 if (new_disk == NULL)
7025 goto error_disk_add;
7026
7027 new_disk->index = map->num_members - 1;
7028 /* slot to fill in autolayout
7029 */
7030 new_disk->raiddisk = new_disk->index;
7031 new_disk->disk.status |= CONFIGURED_DISK;
7032 new_disk->disk.status &= ~SPARE_DISK;
7033 } else
7034 goto error_disk_add;
7035
7036 skip_disk_add:
7037 *tofree = *space_list;
7038 /* calculate new size
7039 */
7040 imsm_set_array_size(new_dev);
7041
7042 ret_val = 1;
7043 }
7044 }
7045
7046 if (tofree)
7047 *space_list = tofree;
7048 return ret_val;
7049
7050 error_disk_add:
7051 dprintf("Error: imsm: Cannot find disk.\n");
7052 return ret_val;
7053 }
7054
7055 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7056 struct intel_super *super,
7057 struct active_array *active_array)
7058 {
7059 struct imsm_super *mpb = super->anchor;
7060 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7061 struct imsm_map *map = get_imsm_map(dev, 0);
7062 struct imsm_map *migr_map;
7063 struct active_array *a;
7064 struct imsm_disk *disk;
7065 __u8 to_state;
7066 struct dl *dl;
7067 unsigned int found;
7068 int failed;
7069 int victim;
7070 int i;
7071 int second_map_created = 0;
7072
7073 for (; u; u = u->next) {
7074 victim = get_imsm_disk_idx(dev, u->slot, -1);
7075
7076 if (victim < 0)
7077 return 0;
7078
7079 for (dl = super->disks; dl; dl = dl->next)
7080 if (dl == u->dl)
7081 break;
7082
7083 if (!dl) {
7084 fprintf(stderr, "error: imsm_activate_spare passed "
7085 "an unknown disk (index: %d)\n",
7086 u->dl->index);
7087 return 0;
7088 }
7089
7090 /* count failures (excluding rebuilds and the victim)
7091 * to determine map[0] state
7092 */
7093 failed = 0;
7094 for (i = 0; i < map->num_members; i++) {
7095 if (i == u->slot)
7096 continue;
7097 disk = get_imsm_disk(super,
7098 get_imsm_disk_idx(dev, i, -1));
7099 if (!disk || is_failed(disk))
7100 failed++;
7101 }
7102
7103 /* adding a pristine spare, assign a new index */
7104 if (dl->index < 0) {
7105 dl->index = super->anchor->num_disks;
7106 super->anchor->num_disks++;
7107 }
7108 disk = &dl->disk;
7109 disk->status |= CONFIGURED_DISK;
7110 disk->status &= ~SPARE_DISK;
7111
7112 /* mark rebuild */
7113 to_state = imsm_check_degraded(super, dev, failed);
7114 if (!second_map_created) {
7115 second_map_created = 1;
7116 map->map_state = IMSM_T_STATE_DEGRADED;
7117 migrate(dev, super, to_state, MIGR_REBUILD);
7118 } else
7119 map->map_state = to_state;
7120 migr_map = get_imsm_map(dev, 1);
7121 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7122 set_imsm_ord_tbl_ent(migr_map, u->slot,
7123 dl->index | IMSM_ORD_REBUILD);
7124
7125 /* update the family_num to mark a new container
7126 * generation, being careful to record the existing
7127 * family_num in orig_family_num to clean up after
7128 * earlier mdadm versions that neglected to set it.
7129 */
7130 if (mpb->orig_family_num == 0)
7131 mpb->orig_family_num = mpb->family_num;
7132 mpb->family_num += super->random;
7133
7134 /* count arrays using the victim in the metadata */
7135 found = 0;
7136 for (a = active_array; a ; a = a->next) {
7137 dev = get_imsm_dev(super, a->info.container_member);
7138 map = get_imsm_map(dev, 0);
7139
7140 if (get_imsm_disk_slot(map, victim) >= 0)
7141 found++;
7142 }
7143
7144 /* delete the victim if it is no longer being
7145 * utilized anywhere
7146 */
7147 if (!found) {
7148 struct dl **dlp;
7149
7150 /* We know that 'manager' isn't touching anything,
7151 * so it is safe to delete
7152 */
7153 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7154 if ((*dlp)->index == victim)
7155 break;
7156
7157 /* victim may be on the missing list */
7158 if (!*dlp)
7159 for (dlp = &super->missing; *dlp;
7160 dlp = &(*dlp)->next)
7161 if ((*dlp)->index == victim)
7162 break;
7163 imsm_delete(super, dlp, victim);
7164 }
7165 }
7166
7167 return 1;
7168 }
7169
7170 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7171 struct intel_super *super,
7172 void ***space_list)
7173 {
7174 struct dl *new_disk;
7175 struct intel_dev *id;
7176 int i;
7177 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7178 int disk_count = u->old_raid_disks;
7179 void **tofree = NULL;
7180 int devices_to_reshape = 1;
7181 struct imsm_super *mpb = super->anchor;
7182 int ret_val = 0;
7183 unsigned int dev_id;
7184
7185 dprintf("imsm: apply_reshape_container_disks_update()\n");
7186
7187 /* enable spares to use in array */
7188 for (i = 0; i < delta_disks; i++) {
7189 new_disk = get_disk_super(super,
7190 major(u->new_disks[i]),
7191 minor(u->new_disks[i]));
7192 dprintf("imsm: new disk for reshape is: %i:%i "
7193 "(%p, index = %i)\n",
7194 major(u->new_disks[i]), minor(u->new_disks[i]),
7195 new_disk, new_disk->index);
7196 if ((new_disk == NULL) ||
7197 ((new_disk->index >= 0) &&
7198 (new_disk->index < u->old_raid_disks)))
7199 goto update_reshape_exit;
7200 new_disk->index = disk_count++;
7201 /* slot to fill in autolayout
7202 */
7203 new_disk->raiddisk = new_disk->index;
7204 new_disk->disk.status |=
7205 CONFIGURED_DISK;
7206 new_disk->disk.status &= ~SPARE_DISK;
7207 }
7208
7209 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7210 mpb->num_raid_devs);
7211 /* manage changes in volume
7212 */
7213 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7214 void **sp = *space_list;
7215 struct imsm_dev *newdev;
7216 struct imsm_map *newmap, *oldmap;
7217
7218 for (id = super->devlist ; id; id = id->next) {
7219 if (id->index == dev_id)
7220 break;
7221 }
7222 if (id == NULL)
7223 break;
7224 if (!sp)
7225 continue;
7226 *space_list = *sp;
7227 newdev = (void*)sp;
7228 /* Copy the dev, but not (all of) the map */
7229 memcpy(newdev, id->dev, sizeof(*newdev));
7230 oldmap = get_imsm_map(id->dev, 0);
7231 newmap = get_imsm_map(newdev, 0);
7232 /* Copy the current map */
7233 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7234 /* update one device only
7235 */
7236 if (devices_to_reshape) {
7237 dprintf("imsm: modifying subdev: %i\n",
7238 id->index);
7239 devices_to_reshape--;
7240 newdev->vol.migr_state = 1;
7241 newdev->vol.curr_migr_unit = 0;
7242 set_migr_type(newdev, MIGR_GEN_MIGR);
7243 newmap->num_members = u->new_raid_disks;
7244 for (i = 0; i < delta_disks; i++) {
7245 set_imsm_ord_tbl_ent(newmap,
7246 u->old_raid_disks + i,
7247 u->old_raid_disks + i);
7248 }
7249 /* New map is correct, now need to save old map
7250 */
7251 newmap = get_imsm_map(newdev, 1);
7252 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7253
7254 imsm_set_array_size(newdev);
7255 }
7256
7257 sp = (void **)id->dev;
7258 id->dev = newdev;
7259 *sp = tofree;
7260 tofree = sp;
7261
7262 /* Clear migration record */
7263 memset(super->migr_rec, 0, sizeof(struct migr_record));
7264 }
7265 if (tofree)
7266 *space_list = tofree;
7267 ret_val = 1;
7268
7269 update_reshape_exit:
7270
7271 return ret_val;
7272 }
7273
7274 static int apply_takeover_update(struct imsm_update_takeover *u,
7275 struct intel_super *super,
7276 void ***space_list)
7277 {
7278 struct imsm_dev *dev = NULL;
7279 struct intel_dev *dv;
7280 struct imsm_dev *dev_new;
7281 struct imsm_map *map;
7282 struct dl *dm, *du;
7283 int i;
7284
7285 for (dv = super->devlist; dv; dv = dv->next)
7286 if (dv->index == (unsigned int)u->subarray) {
7287 dev = dv->dev;
7288 break;
7289 }
7290
7291 if (dev == NULL)
7292 return 0;
7293
7294 map = get_imsm_map(dev, 0);
7295
7296 if (u->direction == R10_TO_R0) {
7297 /* Number of failed disks must be half of initial disk number */
7298 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7299 return 0;
7300
7301 /* iterate through devices to mark removed disks as spare */
7302 for (dm = super->disks; dm; dm = dm->next) {
7303 if (dm->disk.status & FAILED_DISK) {
7304 int idx = dm->index;
7305 /* update indexes on the disk list */
7306 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7307 the index values will end up being correct.... NB */
7308 for (du = super->disks; du; du = du->next)
7309 if (du->index > idx)
7310 du->index--;
7311 /* mark as spare disk */
7312 mark_spare(dm);
7313 }
7314 }
7315 /* update map */
7316 map->num_members = map->num_members / 2;
7317 map->map_state = IMSM_T_STATE_NORMAL;
7318 map->num_domains = 1;
7319 map->raid_level = 0;
7320 map->failed_disk_num = -1;
7321 }
7322
7323 if (u->direction == R0_TO_R10) {
7324 void **space;
7325 /* update slots in current disk list */
7326 for (dm = super->disks; dm; dm = dm->next) {
7327 if (dm->index >= 0)
7328 dm->index *= 2;
7329 }
7330 /* create new *missing* disks */
7331 for (i = 0; i < map->num_members; i++) {
7332 space = *space_list;
7333 if (!space)
7334 continue;
7335 *space_list = *space;
7336 du = (void *)space;
7337 memcpy(du, super->disks, sizeof(*du));
7338 du->fd = -1;
7339 du->minor = 0;
7340 du->major = 0;
7341 du->index = (i * 2) + 1;
7342 sprintf((char *)du->disk.serial,
7343 " MISSING_%d", du->index);
7344 sprintf((char *)du->serial,
7345 "MISSING_%d", du->index);
7346 du->next = super->missing;
7347 super->missing = du;
7348 }
7349 /* create new dev and map */
7350 space = *space_list;
7351 if (!space)
7352 return 0;
7353 *space_list = *space;
7354 dev_new = (void *)space;
7355 memcpy(dev_new, dev, sizeof(*dev));
7356 /* update new map */
7357 map = get_imsm_map(dev_new, 0);
7358 map->num_members = map->num_members * 2;
7359 map->map_state = IMSM_T_STATE_DEGRADED;
7360 map->num_domains = 2;
7361 map->raid_level = 1;
7362 /* replace dev<->dev_new */
7363 dv->dev = dev_new;
7364 }
7365 /* update disk order table */
7366 for (du = super->disks; du; du = du->next)
7367 if (du->index >= 0)
7368 set_imsm_ord_tbl_ent(map, du->index, du->index);
7369 for (du = super->missing; du; du = du->next)
7370 if (du->index >= 0) {
7371 set_imsm_ord_tbl_ent(map, du->index, du->index);
7372 mark_missing(dv->dev, &du->disk, du->index);
7373 }
7374
7375 return 1;
7376 }
7377
7378 static void imsm_process_update(struct supertype *st,
7379 struct metadata_update *update)
7380 {
7381 /**
7382 * crack open the metadata_update envelope to find the update record
7383 * update can be one of:
7384 * update_reshape_container_disks - all the arrays in the container
7385 * are being reshaped to have more devices. We need to mark
7386 * the arrays for general migration and convert selected spares
7387 * into active devices.
7388 * update_activate_spare - a spare device has replaced a failed
7389 * device in an array, update the disk_ord_tbl. If this disk is
7390 * present in all member arrays then also clear the SPARE_DISK
7391 * flag
7392 * update_create_array
7393 * update_kill_array
7394 * update_rename_array
7395 * update_add_remove_disk
7396 */
7397 struct intel_super *super = st->sb;
7398 struct imsm_super *mpb;
7399 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7400
7401 /* update requires a larger buf but the allocation failed */
7402 if (super->next_len && !super->next_buf) {
7403 super->next_len = 0;
7404 return;
7405 }
7406
7407 if (super->next_buf) {
7408 memcpy(super->next_buf, super->buf, super->len);
7409 free(super->buf);
7410 super->len = super->next_len;
7411 super->buf = super->next_buf;
7412
7413 super->next_len = 0;
7414 super->next_buf = NULL;
7415 }
7416
7417 mpb = super->anchor;
7418
7419 switch (type) {
7420 case update_general_migration_checkpoint: {
7421 struct intel_dev *id;
7422 struct imsm_update_general_migration_checkpoint *u =
7423 (void *)update->buf;
7424
7425 dprintf("imsm: process_update() "
7426 "for update_general_migration_checkpoint called\n");
7427
7428 /* find device under general migration */
7429 for (id = super->devlist ; id; id = id->next) {
7430 if (is_gen_migration(id->dev)) {
7431 id->dev->vol.curr_migr_unit =
7432 __cpu_to_le32(u->curr_migr_unit);
7433 super->updates_pending++;
7434 }
7435 }
7436 break;
7437 }
7438 case update_takeover: {
7439 struct imsm_update_takeover *u = (void *)update->buf;
7440 if (apply_takeover_update(u, super, &update->space_list)) {
7441 imsm_update_version_info(super);
7442 super->updates_pending++;
7443 }
7444 break;
7445 }
7446
7447 case update_reshape_container_disks: {
7448 struct imsm_update_reshape *u = (void *)update->buf;
7449 if (apply_reshape_container_disks_update(
7450 u, super, &update->space_list))
7451 super->updates_pending++;
7452 break;
7453 }
7454 case update_reshape_migration: {
7455 struct imsm_update_reshape_migration *u = (void *)update->buf;
7456 if (apply_reshape_migration_update(
7457 u, super, &update->space_list))
7458 super->updates_pending++;
7459 break;
7460 }
7461 case update_activate_spare: {
7462 struct imsm_update_activate_spare *u = (void *) update->buf;
7463 if (apply_update_activate_spare(u, super, st->arrays))
7464 super->updates_pending++;
7465 break;
7466 }
7467 case update_create_array: {
7468 /* someone wants to create a new array, we need to be aware of
7469 * a few races/collisions:
7470 * 1/ 'Create' called by two separate instances of mdadm
7471 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7472 * devices that have since been assimilated via
7473 * activate_spare.
7474 * In the event this update can not be carried out mdadm will
7475 * (FIX ME) notice that its update did not take hold.
7476 */
7477 struct imsm_update_create_array *u = (void *) update->buf;
7478 struct intel_dev *dv;
7479 struct imsm_dev *dev;
7480 struct imsm_map *map, *new_map;
7481 unsigned long long start, end;
7482 unsigned long long new_start, new_end;
7483 int i;
7484 struct disk_info *inf;
7485 struct dl *dl;
7486
7487 /* handle racing creates: first come first serve */
7488 if (u->dev_idx < mpb->num_raid_devs) {
7489 dprintf("%s: subarray %d already defined\n",
7490 __func__, u->dev_idx);
7491 goto create_error;
7492 }
7493
7494 /* check update is next in sequence */
7495 if (u->dev_idx != mpb->num_raid_devs) {
7496 dprintf("%s: can not create array %d expected index %d\n",
7497 __func__, u->dev_idx, mpb->num_raid_devs);
7498 goto create_error;
7499 }
7500
7501 new_map = get_imsm_map(&u->dev, 0);
7502 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7503 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7504 inf = get_disk_info(u);
7505
7506 /* handle activate_spare versus create race:
7507 * check to make sure that overlapping arrays do not include
7508 * overalpping disks
7509 */
7510 for (i = 0; i < mpb->num_raid_devs; i++) {
7511 dev = get_imsm_dev(super, i);
7512 map = get_imsm_map(dev, 0);
7513 start = __le32_to_cpu(map->pba_of_lba0);
7514 end = start + __le32_to_cpu(map->blocks_per_member);
7515 if ((new_start >= start && new_start <= end) ||
7516 (start >= new_start && start <= new_end))
7517 /* overlap */;
7518 else
7519 continue;
7520
7521 if (disks_overlap(super, i, u)) {
7522 dprintf("%s: arrays overlap\n", __func__);
7523 goto create_error;
7524 }
7525 }
7526
7527 /* check that prepare update was successful */
7528 if (!update->space) {
7529 dprintf("%s: prepare update failed\n", __func__);
7530 goto create_error;
7531 }
7532
7533 /* check that all disks are still active before committing
7534 * changes. FIXME: could we instead handle this by creating a
7535 * degraded array? That's probably not what the user expects,
7536 * so better to drop this update on the floor.
7537 */
7538 for (i = 0; i < new_map->num_members; i++) {
7539 dl = serial_to_dl(inf[i].serial, super);
7540 if (!dl) {
7541 dprintf("%s: disk disappeared\n", __func__);
7542 goto create_error;
7543 }
7544 }
7545
7546 super->updates_pending++;
7547
7548 /* convert spares to members and fixup ord_tbl */
7549 for (i = 0; i < new_map->num_members; i++) {
7550 dl = serial_to_dl(inf[i].serial, super);
7551 if (dl->index == -1) {
7552 dl->index = mpb->num_disks;
7553 mpb->num_disks++;
7554 dl->disk.status |= CONFIGURED_DISK;
7555 dl->disk.status &= ~SPARE_DISK;
7556 }
7557 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7558 }
7559
7560 dv = update->space;
7561 dev = dv->dev;
7562 update->space = NULL;
7563 imsm_copy_dev(dev, &u->dev);
7564 dv->index = u->dev_idx;
7565 dv->next = super->devlist;
7566 super->devlist = dv;
7567 mpb->num_raid_devs++;
7568
7569 imsm_update_version_info(super);
7570 break;
7571 create_error:
7572 /* mdmon knows how to release update->space, but not
7573 * ((struct intel_dev *) update->space)->dev
7574 */
7575 if (update->space) {
7576 dv = update->space;
7577 free(dv->dev);
7578 }
7579 break;
7580 }
7581 case update_kill_array: {
7582 struct imsm_update_kill_array *u = (void *) update->buf;
7583 int victim = u->dev_idx;
7584 struct active_array *a;
7585 struct intel_dev **dp;
7586 struct imsm_dev *dev;
7587
7588 /* sanity check that we are not affecting the uuid of
7589 * active arrays, or deleting an active array
7590 *
7591 * FIXME when immutable ids are available, but note that
7592 * we'll also need to fixup the invalidated/active
7593 * subarray indexes in mdstat
7594 */
7595 for (a = st->arrays; a; a = a->next)
7596 if (a->info.container_member >= victim)
7597 break;
7598 /* by definition if mdmon is running at least one array
7599 * is active in the container, so checking
7600 * mpb->num_raid_devs is just extra paranoia
7601 */
7602 dev = get_imsm_dev(super, victim);
7603 if (a || !dev || mpb->num_raid_devs == 1) {
7604 dprintf("failed to delete subarray-%d\n", victim);
7605 break;
7606 }
7607
7608 for (dp = &super->devlist; *dp;)
7609 if ((*dp)->index == (unsigned)super->current_vol) {
7610 *dp = (*dp)->next;
7611 } else {
7612 if ((*dp)->index > (unsigned)victim)
7613 (*dp)->index--;
7614 dp = &(*dp)->next;
7615 }
7616 mpb->num_raid_devs--;
7617 super->updates_pending++;
7618 break;
7619 }
7620 case update_rename_array: {
7621 struct imsm_update_rename_array *u = (void *) update->buf;
7622 char name[MAX_RAID_SERIAL_LEN+1];
7623 int target = u->dev_idx;
7624 struct active_array *a;
7625 struct imsm_dev *dev;
7626
7627 /* sanity check that we are not affecting the uuid of
7628 * an active array
7629 */
7630 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7631 name[MAX_RAID_SERIAL_LEN] = '\0';
7632 for (a = st->arrays; a; a = a->next)
7633 if (a->info.container_member == target)
7634 break;
7635 dev = get_imsm_dev(super, u->dev_idx);
7636 if (a || !dev || !check_name(super, name, 1)) {
7637 dprintf("failed to rename subarray-%d\n", target);
7638 break;
7639 }
7640
7641 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7642 super->updates_pending++;
7643 break;
7644 }
7645 case update_add_remove_disk: {
7646 /* we may be able to repair some arrays if disks are
7647 * being added, check teh status of add_remove_disk
7648 * if discs has been added.
7649 */
7650 if (add_remove_disk_update(super)) {
7651 struct active_array *a;
7652
7653 super->updates_pending++;
7654 for (a = st->arrays; a; a = a->next)
7655 a->check_degraded = 1;
7656 }
7657 break;
7658 }
7659 default:
7660 fprintf(stderr, "error: unsuported process update type:"
7661 "(type: %d)\n", type);
7662 }
7663 }
7664
7665 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7666
7667 static void imsm_prepare_update(struct supertype *st,
7668 struct metadata_update *update)
7669 {
7670 /**
7671 * Allocate space to hold new disk entries, raid-device entries or a new
7672 * mpb if necessary. The manager synchronously waits for updates to
7673 * complete in the monitor, so new mpb buffers allocated here can be
7674 * integrated by the monitor thread without worrying about live pointers
7675 * in the manager thread.
7676 */
7677 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7678 struct intel_super *super = st->sb;
7679 struct imsm_super *mpb = super->anchor;
7680 size_t buf_len;
7681 size_t len = 0;
7682
7683 switch (type) {
7684 case update_general_migration_checkpoint:
7685 dprintf("imsm: prepare_update() "
7686 "for update_general_migration_checkpoint called\n");
7687 break;
7688 case update_takeover: {
7689 struct imsm_update_takeover *u = (void *)update->buf;
7690 if (u->direction == R0_TO_R10) {
7691 void **tail = (void **)&update->space_list;
7692 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7693 struct imsm_map *map = get_imsm_map(dev, 0);
7694 int num_members = map->num_members;
7695 void *space;
7696 int size, i;
7697 int err = 0;
7698 /* allocate memory for added disks */
7699 for (i = 0; i < num_members; i++) {
7700 size = sizeof(struct dl);
7701 space = malloc(size);
7702 if (!space) {
7703 err++;
7704 break;
7705 }
7706 *tail = space;
7707 tail = space;
7708 *tail = NULL;
7709 }
7710 /* allocate memory for new device */
7711 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7712 (num_members * sizeof(__u32));
7713 space = malloc(size);
7714 if (!space)
7715 err++;
7716 else {
7717 *tail = space;
7718 tail = space;
7719 *tail = NULL;
7720 }
7721 if (!err) {
7722 len = disks_to_mpb_size(num_members * 2);
7723 } else {
7724 /* if allocation didn't success, free buffer */
7725 while (update->space_list) {
7726 void **sp = update->space_list;
7727 update->space_list = *sp;
7728 free(sp);
7729 }
7730 }
7731 }
7732
7733 break;
7734 }
7735 case update_reshape_container_disks: {
7736 /* Every raid device in the container is about to
7737 * gain some more devices, and we will enter a
7738 * reconfiguration.
7739 * So each 'imsm_map' will be bigger, and the imsm_vol
7740 * will now hold 2 of them.
7741 * Thus we need new 'struct imsm_dev' allocations sized
7742 * as sizeof_imsm_dev but with more devices in both maps.
7743 */
7744 struct imsm_update_reshape *u = (void *)update->buf;
7745 struct intel_dev *dl;
7746 void **space_tail = (void**)&update->space_list;
7747
7748 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7749
7750 for (dl = super->devlist; dl; dl = dl->next) {
7751 int size = sizeof_imsm_dev(dl->dev, 1);
7752 void *s;
7753 if (u->new_raid_disks > u->old_raid_disks)
7754 size += sizeof(__u32)*2*
7755 (u->new_raid_disks - u->old_raid_disks);
7756 s = malloc(size);
7757 if (!s)
7758 break;
7759 *space_tail = s;
7760 space_tail = s;
7761 *space_tail = NULL;
7762 }
7763
7764 len = disks_to_mpb_size(u->new_raid_disks);
7765 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7766 break;
7767 }
7768 case update_reshape_migration: {
7769 /* for migration level 0->5 we need to add disks
7770 * so the same as for container operation we will copy
7771 * device to the bigger location.
7772 * in memory prepared device and new disk area are prepared
7773 * for usage in process update
7774 */
7775 struct imsm_update_reshape_migration *u = (void *)update->buf;
7776 struct intel_dev *id;
7777 void **space_tail = (void **)&update->space_list;
7778 int size;
7779 void *s;
7780 int current_level = -1;
7781
7782 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7783
7784 /* add space for bigger array in update
7785 */
7786 for (id = super->devlist; id; id = id->next) {
7787 if (id->index == (unsigned)u->subdev) {
7788 size = sizeof_imsm_dev(id->dev, 1);
7789 if (u->new_raid_disks > u->old_raid_disks)
7790 size += sizeof(__u32)*2*
7791 (u->new_raid_disks - u->old_raid_disks);
7792 s = malloc(size);
7793 if (!s)
7794 break;
7795 *space_tail = s;
7796 space_tail = s;
7797 *space_tail = NULL;
7798 break;
7799 }
7800 }
7801 if (update->space_list == NULL)
7802 break;
7803
7804 /* add space for disk in update
7805 */
7806 size = sizeof(struct dl);
7807 s = malloc(size);
7808 if (!s) {
7809 free(update->space_list);
7810 update->space_list = NULL;
7811 break;
7812 }
7813 *space_tail = s;
7814 space_tail = s;
7815 *space_tail = NULL;
7816
7817 /* add spare device to update
7818 */
7819 for (id = super->devlist ; id; id = id->next)
7820 if (id->index == (unsigned)u->subdev) {
7821 struct imsm_dev *dev;
7822 struct imsm_map *map;
7823
7824 dev = get_imsm_dev(super, u->subdev);
7825 map = get_imsm_map(dev, 0);
7826 current_level = map->raid_level;
7827 break;
7828 }
7829 if ((u->new_level == 5) && (u->new_level != current_level)) {
7830 struct mdinfo *spares;
7831
7832 spares = get_spares_for_grow(st);
7833 if (spares) {
7834 struct dl *dl;
7835 struct mdinfo *dev;
7836
7837 dev = spares->devs;
7838 if (dev) {
7839 u->new_disks[0] =
7840 makedev(dev->disk.major,
7841 dev->disk.minor);
7842 dl = get_disk_super(super,
7843 dev->disk.major,
7844 dev->disk.minor);
7845 dl->index = u->old_raid_disks;
7846 dev = dev->next;
7847 }
7848 sysfs_free(spares);
7849 }
7850 }
7851 len = disks_to_mpb_size(u->new_raid_disks);
7852 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7853 break;
7854 }
7855 case update_create_array: {
7856 struct imsm_update_create_array *u = (void *) update->buf;
7857 struct intel_dev *dv;
7858 struct imsm_dev *dev = &u->dev;
7859 struct imsm_map *map = get_imsm_map(dev, 0);
7860 struct dl *dl;
7861 struct disk_info *inf;
7862 int i;
7863 int activate = 0;
7864
7865 inf = get_disk_info(u);
7866 len = sizeof_imsm_dev(dev, 1);
7867 /* allocate a new super->devlist entry */
7868 dv = malloc(sizeof(*dv));
7869 if (dv) {
7870 dv->dev = malloc(len);
7871 if (dv->dev)
7872 update->space = dv;
7873 else {
7874 free(dv);
7875 update->space = NULL;
7876 }
7877 }
7878
7879 /* count how many spares will be converted to members */
7880 for (i = 0; i < map->num_members; i++) {
7881 dl = serial_to_dl(inf[i].serial, super);
7882 if (!dl) {
7883 /* hmm maybe it failed?, nothing we can do about
7884 * it here
7885 */
7886 continue;
7887 }
7888 if (count_memberships(dl, super) == 0)
7889 activate++;
7890 }
7891 len += activate * sizeof(struct imsm_disk);
7892 break;
7893 default:
7894 break;
7895 }
7896 }
7897
7898 /* check if we need a larger metadata buffer */
7899 if (super->next_buf)
7900 buf_len = super->next_len;
7901 else
7902 buf_len = super->len;
7903
7904 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7905 /* ok we need a larger buf than what is currently allocated
7906 * if this allocation fails process_update will notice that
7907 * ->next_len is set and ->next_buf is NULL
7908 */
7909 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7910 if (super->next_buf)
7911 free(super->next_buf);
7912
7913 super->next_len = buf_len;
7914 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7915 memset(super->next_buf, 0, buf_len);
7916 else
7917 super->next_buf = NULL;
7918 }
7919 }
7920
7921 /* must be called while manager is quiesced */
7922 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7923 {
7924 struct imsm_super *mpb = super->anchor;
7925 struct dl *iter;
7926 struct imsm_dev *dev;
7927 struct imsm_map *map;
7928 int i, j, num_members;
7929 __u32 ord;
7930
7931 dprintf("%s: deleting device[%d] from imsm_super\n",
7932 __func__, index);
7933
7934 /* shift all indexes down one */
7935 for (iter = super->disks; iter; iter = iter->next)
7936 if (iter->index > (int)index)
7937 iter->index--;
7938 for (iter = super->missing; iter; iter = iter->next)
7939 if (iter->index > (int)index)
7940 iter->index--;
7941
7942 for (i = 0; i < mpb->num_raid_devs; i++) {
7943 dev = get_imsm_dev(super, i);
7944 map = get_imsm_map(dev, 0);
7945 num_members = map->num_members;
7946 for (j = 0; j < num_members; j++) {
7947 /* update ord entries being careful not to propagate
7948 * ord-flags to the first map
7949 */
7950 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7951
7952 if (ord_to_idx(ord) <= index)
7953 continue;
7954
7955 map = get_imsm_map(dev, 0);
7956 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7957 map = get_imsm_map(dev, 1);
7958 if (map)
7959 set_imsm_ord_tbl_ent(map, j, ord - 1);
7960 }
7961 }
7962
7963 mpb->num_disks--;
7964 super->updates_pending++;
7965 if (*dlp) {
7966 struct dl *dl = *dlp;
7967
7968 *dlp = (*dlp)->next;
7969 __free_imsm_disk(dl);
7970 }
7971 }
7972 #endif /* MDASSEMBLE */
7973 /*******************************************************************************
7974 * Function: open_backup_targets
7975 * Description: Function opens file descriptors for all devices given in
7976 * info->devs
7977 * Parameters:
7978 * info : general array info
7979 * raid_disks : number of disks
7980 * raid_fds : table of device's file descriptors
7981 * Returns:
7982 * 0 : success
7983 * -1 : fail
7984 ******************************************************************************/
7985 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7986 {
7987 struct mdinfo *sd;
7988
7989 for (sd = info->devs ; sd ; sd = sd->next) {
7990 char *dn;
7991
7992 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7993 dprintf("disk is faulty!!\n");
7994 continue;
7995 }
7996
7997 if ((sd->disk.raid_disk >= raid_disks) ||
7998 (sd->disk.raid_disk < 0))
7999 continue;
8000
8001 dn = map_dev(sd->disk.major,
8002 sd->disk.minor, 1);
8003 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8004 if (raid_fds[sd->disk.raid_disk] < 0) {
8005 fprintf(stderr, "cannot open component\n");
8006 return -1;
8007 }
8008 }
8009 return 0;
8010 }
8011
8012 #ifndef MDASSEMBLE
8013 /*******************************************************************************
8014 * Function: init_migr_record_imsm
8015 * Description: Function inits imsm migration record
8016 * Parameters:
8017 * super : imsm internal array info
8018 * dev : device under migration
8019 * info : general array info to find the smallest device
8020 * Returns:
8021 * none
8022 ******************************************************************************/
8023 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8024 struct mdinfo *info)
8025 {
8026 struct intel_super *super = st->sb;
8027 struct migr_record *migr_rec = super->migr_rec;
8028 int new_data_disks;
8029 unsigned long long dsize, dev_sectors;
8030 long long unsigned min_dev_sectors = -1LLU;
8031 struct mdinfo *sd;
8032 char nm[30];
8033 int fd;
8034 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8035 struct imsm_map *map_src = get_imsm_map(dev, 1);
8036 unsigned long long num_migr_units;
8037 unsigned long long array_blocks;
8038
8039 memset(migr_rec, 0, sizeof(struct migr_record));
8040 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8041
8042 /* only ascending reshape supported now */
8043 migr_rec->ascending_migr = __cpu_to_le32(1);
8044
8045 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8046 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8047 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8048 new_data_disks = imsm_num_data_members(dev, 0);
8049 migr_rec->blocks_per_unit =
8050 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8051 migr_rec->dest_depth_per_unit =
8052 __cpu_to_le32(migr_rec->dest_depth_per_unit);
8053 array_blocks = info->component_size * new_data_disks;
8054 num_migr_units =
8055 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8056
8057 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8058 num_migr_units++;
8059 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8060
8061 migr_rec->post_migr_vol_cap = dev->size_low;
8062 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8063
8064
8065 /* Find the smallest dev */
8066 for (sd = info->devs ; sd ; sd = sd->next) {
8067 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8068 fd = dev_open(nm, O_RDONLY);
8069 if (fd < 0)
8070 continue;
8071 get_dev_size(fd, NULL, &dsize);
8072 dev_sectors = dsize / 512;
8073 if (dev_sectors < min_dev_sectors)
8074 min_dev_sectors = dev_sectors;
8075 close(fd);
8076 }
8077 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8078 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8079
8080 write_imsm_migr_rec(st);
8081
8082 return;
8083 }
8084
8085 /*******************************************************************************
8086 * Function: save_backup_imsm
8087 * Description: Function saves critical data stripes to Migration Copy Area
8088 * and updates the current migration unit status.
8089 * Use restore_stripes() to form a destination stripe,
8090 * and to write it to the Copy Area.
8091 * Parameters:
8092 * st : supertype information
8093 * dev : imsm device that backup is saved for
8094 * info : general array info
8095 * buf : input buffer
8096 * length : length of data to backup (blocks_per_unit)
8097 * Returns:
8098 * 0 : success
8099 *, -1 : fail
8100 ******************************************************************************/
8101 int save_backup_imsm(struct supertype *st,
8102 struct imsm_dev *dev,
8103 struct mdinfo *info,
8104 void *buf,
8105 int length)
8106 {
8107 int rv = -1;
8108 struct intel_super *super = st->sb;
8109 unsigned long long *target_offsets = NULL;
8110 int *targets = NULL;
8111 int i;
8112 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8113 int new_disks = map_dest->num_members;
8114 int dest_layout = 0;
8115 int dest_chunk;
8116 unsigned long long start;
8117 int data_disks = imsm_num_data_members(dev, 0);
8118
8119 targets = malloc(new_disks * sizeof(int));
8120 if (!targets)
8121 goto abort;
8122
8123 for (i = 0; i < new_disks; i++)
8124 targets[i] = -1;
8125
8126 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8127 if (!target_offsets)
8128 goto abort;
8129
8130 start = info->reshape_progress * 512;
8131 for (i = 0; i < new_disks; i++) {
8132 target_offsets[i] = (unsigned long long)
8133 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8134 /* move back copy area adderss, it will be moved forward
8135 * in restore_stripes() using start input variable
8136 */
8137 target_offsets[i] -= start/data_disks;
8138 }
8139
8140 if (open_backup_targets(info, new_disks, targets))
8141 goto abort;
8142
8143 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8144 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8145
8146 if (restore_stripes(targets, /* list of dest devices */
8147 target_offsets, /* migration record offsets */
8148 new_disks,
8149 dest_chunk,
8150 map_dest->raid_level,
8151 dest_layout,
8152 -1, /* source backup file descriptor */
8153 0, /* input buf offset
8154 * always 0 buf is already offseted */
8155 start,
8156 length,
8157 buf) != 0) {
8158 fprintf(stderr, Name ": Error restoring stripes\n");
8159 goto abort;
8160 }
8161
8162 rv = 0;
8163
8164 abort:
8165 if (targets) {
8166 for (i = 0; i < new_disks; i++)
8167 if (targets[i] >= 0)
8168 close(targets[i]);
8169 free(targets);
8170 }
8171 free(target_offsets);
8172
8173 return rv;
8174 }
8175
8176 /*******************************************************************************
8177 * Function: save_checkpoint_imsm
8178 * Description: Function called for current unit status update
8179 * in the migration record. It writes it to disk.
8180 * Parameters:
8181 * super : imsm internal array info
8182 * info : general array info
8183 * Returns:
8184 * 0: success
8185 * 1: failure
8186 * 2: failure, means no valid migration record
8187 * / no general migration in progress /
8188 ******************************************************************************/
8189 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8190 {
8191 struct intel_super *super = st->sb;
8192 unsigned long long blocks_per_unit;
8193 unsigned long long curr_migr_unit;
8194
8195 if (load_imsm_migr_rec(super, info) != 0) {
8196 dprintf("imsm: ERROR: Cannot read migration record "
8197 "for checkpoint save.\n");
8198 return 1;
8199 }
8200
8201 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8202 if (blocks_per_unit == 0) {
8203 dprintf("imsm: no migration in progress.\n");
8204 return 2;
8205 }
8206 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8207 /* check if array is alligned to copy area
8208 * if it is not alligned, add one to current migration unit value
8209 * this can happend on array reshape finish only
8210 */
8211 if (info->reshape_progress % blocks_per_unit)
8212 curr_migr_unit++;
8213
8214 super->migr_rec->curr_migr_unit =
8215 __cpu_to_le32(curr_migr_unit);
8216 super->migr_rec->rec_status = __cpu_to_le32(state);
8217 super->migr_rec->dest_1st_member_lba =
8218 __cpu_to_le32(curr_migr_unit *
8219 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8220 if (write_imsm_migr_rec(st) < 0) {
8221 dprintf("imsm: Cannot write migration record "
8222 "outside backup area\n");
8223 return 1;
8224 }
8225
8226 return 0;
8227 }
8228
8229 /*******************************************************************************
8230 * Function: recover_backup_imsm
8231 * Description: Function recovers critical data from the Migration Copy Area
8232 * while assembling an array.
8233 * Parameters:
8234 * super : imsm internal array info
8235 * info : general array info
8236 * Returns:
8237 * 0 : success (or there is no data to recover)
8238 * 1 : fail
8239 ******************************************************************************/
8240 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8241 {
8242 struct intel_super *super = st->sb;
8243 struct migr_record *migr_rec = super->migr_rec;
8244 struct imsm_map *map_dest = NULL;
8245 struct intel_dev *id = NULL;
8246 unsigned long long read_offset;
8247 unsigned long long write_offset;
8248 unsigned unit_len;
8249 int *targets = NULL;
8250 int new_disks, i, err;
8251 char *buf = NULL;
8252 int retval = 1;
8253 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8254 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8255 char buffer[20];
8256 int skipped_disks = 0;
8257 int max_degradation;
8258
8259 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8260 if (err < 1)
8261 return 1;
8262
8263 /* recover data only during assemblation */
8264 if (strncmp(buffer, "inactive", 8) != 0)
8265 return 0;
8266 /* no data to recover */
8267 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8268 return 0;
8269 if (curr_migr_unit >= num_migr_units)
8270 return 1;
8271
8272 /* find device during reshape */
8273 for (id = super->devlist; id; id = id->next)
8274 if (is_gen_migration(id->dev))
8275 break;
8276 if (id == NULL)
8277 return 1;
8278
8279 map_dest = get_imsm_map(id->dev, 0);
8280 new_disks = map_dest->num_members;
8281 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8282
8283 read_offset = (unsigned long long)
8284 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8285
8286 write_offset = ((unsigned long long)
8287 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8288 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8289
8290 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8291 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8292 goto abort;
8293 targets = malloc(new_disks * sizeof(int));
8294 if (!targets)
8295 goto abort;
8296
8297 open_backup_targets(info, new_disks, targets);
8298
8299 for (i = 0; i < new_disks; i++) {
8300 if (targets[i] < 0) {
8301 skipped_disks++;
8302 continue;
8303 }
8304 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8305 fprintf(stderr,
8306 Name ": Cannot seek to block: %s\n",
8307 strerror(errno));
8308 goto abort;
8309 }
8310 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8311 fprintf(stderr,
8312 Name ": Cannot read copy area block: %s\n",
8313 strerror(errno));
8314 goto abort;
8315 }
8316 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8317 fprintf(stderr,
8318 Name ": Cannot seek to block: %s\n",
8319 strerror(errno));
8320 goto abort;
8321 }
8322 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8323 fprintf(stderr,
8324 Name ": Cannot restore block: %s\n",
8325 strerror(errno));
8326 goto abort;
8327 }
8328 }
8329
8330 if (skipped_disks > max_degradation) {
8331 fprintf(stderr,
8332 Name ": Cannot restore data from backup."
8333 " Too many failed disks\n");
8334 goto abort;
8335 }
8336
8337 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8338 /* ignore error == 2, this can mean end of reshape here
8339 */
8340 dprintf("imsm: Cannot write checkpoint to "
8341 "migration record (UNIT_SRC_NORMAL) during restart\n");
8342 } else
8343 retval = 0;
8344
8345 abort:
8346 if (targets) {
8347 for (i = 0; i < new_disks; i++)
8348 if (targets[i])
8349 close(targets[i]);
8350 free(targets);
8351 }
8352 free(buf);
8353 return retval;
8354 }
8355
8356 static char disk_by_path[] = "/dev/disk/by-path/";
8357
8358 static const char *imsm_get_disk_controller_domain(const char *path)
8359 {
8360 char disk_path[PATH_MAX];
8361 char *drv=NULL;
8362 struct stat st;
8363
8364 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8365 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8366 if (stat(disk_path, &st) == 0) {
8367 struct sys_dev* hba;
8368 char *path=NULL;
8369
8370 path = devt_to_devpath(st.st_rdev);
8371 if (path == NULL)
8372 return "unknown";
8373 hba = find_disk_attached_hba(-1, path);
8374 if (hba && hba->type == SYS_DEV_SAS)
8375 drv = "isci";
8376 else if (hba && hba->type == SYS_DEV_SATA)
8377 drv = "ahci";
8378 else
8379 drv = "unknown";
8380 dprintf("path: %s hba: %s attached: %s\n",
8381 path, (hba) ? hba->path : "NULL", drv);
8382 free(path);
8383 if (hba)
8384 free_sys_dev(&hba);
8385 }
8386 return drv;
8387 }
8388
8389 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8390 {
8391 char subdev_name[20];
8392 struct mdstat_ent *mdstat;
8393
8394 sprintf(subdev_name, "%d", subdev);
8395 mdstat = mdstat_by_subdev(subdev_name, container);
8396 if (!mdstat)
8397 return -1;
8398
8399 *minor = mdstat->devnum;
8400 free_mdstat(mdstat);
8401 return 0;
8402 }
8403
8404 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8405 struct geo_params *geo,
8406 int *old_raid_disks)
8407 {
8408 /* currently we only support increasing the number of devices
8409 * for a container. This increases the number of device for each
8410 * member array. They must all be RAID0 or RAID5.
8411 */
8412 int ret_val = 0;
8413 struct mdinfo *info, *member;
8414 int devices_that_can_grow = 0;
8415
8416 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8417 "st->devnum = (%i)\n",
8418 st->devnum);
8419
8420 if (geo->size != -1 ||
8421 geo->level != UnSet ||
8422 geo->layout != UnSet ||
8423 geo->chunksize != 0 ||
8424 geo->raid_disks == UnSet) {
8425 dprintf("imsm: Container operation is allowed for "
8426 "raid disks number change only.\n");
8427 return ret_val;
8428 }
8429
8430 info = container_content_imsm(st, NULL);
8431 for (member = info; member; member = member->next) {
8432 int result;
8433 int minor;
8434
8435 dprintf("imsm: checking device_num: %i\n",
8436 member->container_member);
8437
8438 if (geo->raid_disks <= member->array.raid_disks) {
8439 /* we work on container for Online Capacity Expansion
8440 * only so raid_disks has to grow
8441 */
8442 dprintf("imsm: for container operation raid disks "
8443 "increase is required\n");
8444 break;
8445 }
8446
8447 if ((info->array.level != 0) &&
8448 (info->array.level != 5)) {
8449 /* we cannot use this container with other raid level
8450 */
8451 dprintf("imsm: for container operation wrong"
8452 " raid level (%i) detected\n",
8453 info->array.level);
8454 break;
8455 } else {
8456 /* check for platform support
8457 * for this raid level configuration
8458 */
8459 struct intel_super *super = st->sb;
8460 if (!is_raid_level_supported(super->orom,
8461 member->array.level,
8462 geo->raid_disks)) {
8463 dprintf("platform does not support raid%d with"
8464 " %d disk%s\n",
8465 info->array.level,
8466 geo->raid_disks,
8467 geo->raid_disks > 1 ? "s" : "");
8468 break;
8469 }
8470 /* check if component size is aligned to chunk size
8471 */
8472 if (info->component_size %
8473 (info->array.chunk_size/512)) {
8474 dprintf("Component size is not aligned to "
8475 "chunk size\n");
8476 break;
8477 }
8478 }
8479
8480 if (*old_raid_disks &&
8481 info->array.raid_disks != *old_raid_disks)
8482 break;
8483 *old_raid_disks = info->array.raid_disks;
8484
8485 /* All raid5 and raid0 volumes in container
8486 * have to be ready for Online Capacity Expansion
8487 * so they need to be assembled. We have already
8488 * checked that no recovery etc is happening.
8489 */
8490 result = imsm_find_array_minor_by_subdev(member->container_member,
8491 st->container_dev,
8492 &minor);
8493 if (result < 0) {
8494 dprintf("imsm: cannot find array\n");
8495 break;
8496 }
8497 devices_that_can_grow++;
8498 }
8499 sysfs_free(info);
8500 if (!member && devices_that_can_grow)
8501 ret_val = 1;
8502
8503 if (ret_val)
8504 dprintf("\tContainer operation allowed\n");
8505 else
8506 dprintf("\tError: %i\n", ret_val);
8507
8508 return ret_val;
8509 }
8510
8511 /* Function: get_spares_for_grow
8512 * Description: Allocates memory and creates list of spare devices
8513 * avaliable in container. Checks if spare drive size is acceptable.
8514 * Parameters: Pointer to the supertype structure
8515 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8516 * NULL if fail
8517 */
8518 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8519 {
8520 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8521 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8522 }
8523
8524 /******************************************************************************
8525 * function: imsm_create_metadata_update_for_reshape
8526 * Function creates update for whole IMSM container.
8527 *
8528 ******************************************************************************/
8529 static int imsm_create_metadata_update_for_reshape(
8530 struct supertype *st,
8531 struct geo_params *geo,
8532 int old_raid_disks,
8533 struct imsm_update_reshape **updatep)
8534 {
8535 struct intel_super *super = st->sb;
8536 struct imsm_super *mpb = super->anchor;
8537 int update_memory_size = 0;
8538 struct imsm_update_reshape *u = NULL;
8539 struct mdinfo *spares = NULL;
8540 int i;
8541 int delta_disks = 0;
8542 struct mdinfo *dev;
8543
8544 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8545 geo->raid_disks);
8546
8547 delta_disks = geo->raid_disks - old_raid_disks;
8548
8549 /* size of all update data without anchor */
8550 update_memory_size = sizeof(struct imsm_update_reshape);
8551
8552 /* now add space for spare disks that we need to add. */
8553 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8554
8555 u = calloc(1, update_memory_size);
8556 if (u == NULL) {
8557 dprintf("error: "
8558 "cannot get memory for imsm_update_reshape update\n");
8559 return 0;
8560 }
8561 u->type = update_reshape_container_disks;
8562 u->old_raid_disks = old_raid_disks;
8563 u->new_raid_disks = geo->raid_disks;
8564
8565 /* now get spare disks list
8566 */
8567 spares = get_spares_for_grow(st);
8568
8569 if (spares == NULL
8570 || delta_disks > spares->array.spare_disks) {
8571 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8572 "for %s.\n", geo->dev_name);
8573 i = -1;
8574 goto abort;
8575 }
8576
8577 /* we have got spares
8578 * update disk list in imsm_disk list table in anchor
8579 */
8580 dprintf("imsm: %i spares are available.\n\n",
8581 spares->array.spare_disks);
8582
8583 dev = spares->devs;
8584 for (i = 0; i < delta_disks; i++) {
8585 struct dl *dl;
8586
8587 if (dev == NULL)
8588 break;
8589 u->new_disks[i] = makedev(dev->disk.major,
8590 dev->disk.minor);
8591 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8592 dl->index = mpb->num_disks;
8593 mpb->num_disks++;
8594 dev = dev->next;
8595 }
8596
8597 abort:
8598 /* free spares
8599 */
8600 sysfs_free(spares);
8601
8602 dprintf("imsm: reshape update preparation :");
8603 if (i == delta_disks) {
8604 dprintf(" OK\n");
8605 *updatep = u;
8606 return update_memory_size;
8607 }
8608 free(u);
8609 dprintf(" Error\n");
8610
8611 return 0;
8612 }
8613
8614 /******************************************************************************
8615 * function: imsm_create_metadata_update_for_migration()
8616 * Creates update for IMSM array.
8617 *
8618 ******************************************************************************/
8619 static int imsm_create_metadata_update_for_migration(
8620 struct supertype *st,
8621 struct geo_params *geo,
8622 struct imsm_update_reshape_migration **updatep)
8623 {
8624 struct intel_super *super = st->sb;
8625 int update_memory_size = 0;
8626 struct imsm_update_reshape_migration *u = NULL;
8627 struct imsm_dev *dev;
8628 int previous_level = -1;
8629
8630 dprintf("imsm_create_metadata_update_for_migration(enter)"
8631 " New Level = %i\n", geo->level);
8632
8633 /* size of all update data without anchor */
8634 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8635
8636 u = calloc(1, update_memory_size);
8637 if (u == NULL) {
8638 dprintf("error: cannot get memory for "
8639 "imsm_create_metadata_update_for_migration\n");
8640 return 0;
8641 }
8642 u->type = update_reshape_migration;
8643 u->subdev = super->current_vol;
8644 u->new_level = geo->level;
8645 u->new_layout = geo->layout;
8646 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8647 u->new_disks[0] = -1;
8648 u->new_chunksize = -1;
8649
8650 dev = get_imsm_dev(super, u->subdev);
8651 if (dev) {
8652 struct imsm_map *map;
8653
8654 map = get_imsm_map(dev, 0);
8655 if (map) {
8656 int current_chunk_size =
8657 __le16_to_cpu(map->blocks_per_strip) / 2;
8658
8659 if (geo->chunksize != current_chunk_size) {
8660 u->new_chunksize = geo->chunksize / 1024;
8661 dprintf("imsm: "
8662 "chunk size change from %i to %i\n",
8663 current_chunk_size, u->new_chunksize);
8664 }
8665 previous_level = map->raid_level;
8666 }
8667 }
8668 if ((geo->level == 5) && (previous_level == 0)) {
8669 struct mdinfo *spares = NULL;
8670
8671 u->new_raid_disks++;
8672 spares = get_spares_for_grow(st);
8673 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8674 free(u);
8675 sysfs_free(spares);
8676 update_memory_size = 0;
8677 dprintf("error: cannot get spare device "
8678 "for requested migration");
8679 return 0;
8680 }
8681 sysfs_free(spares);
8682 }
8683 dprintf("imsm: reshape update preparation : OK\n");
8684 *updatep = u;
8685
8686 return update_memory_size;
8687 }
8688
8689 static void imsm_update_metadata_locally(struct supertype *st,
8690 void *buf, int len)
8691 {
8692 struct metadata_update mu;
8693
8694 mu.buf = buf;
8695 mu.len = len;
8696 mu.space = NULL;
8697 mu.space_list = NULL;
8698 mu.next = NULL;
8699 imsm_prepare_update(st, &mu);
8700 imsm_process_update(st, &mu);
8701
8702 while (mu.space_list) {
8703 void **space = mu.space_list;
8704 mu.space_list = *space;
8705 free(space);
8706 }
8707 }
8708
8709 /***************************************************************************
8710 * Function: imsm_analyze_change
8711 * Description: Function analyze change for single volume
8712 * and validate if transition is supported
8713 * Parameters: Geometry parameters, supertype structure
8714 * Returns: Operation type code on success, -1 if fail
8715 ****************************************************************************/
8716 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8717 struct geo_params *geo)
8718 {
8719 struct mdinfo info;
8720 int change = -1;
8721 int check_devs = 0;
8722 int chunk;
8723 int devNumChange=0;
8724 int layout = -1;
8725
8726 getinfo_super_imsm_volume(st, &info, NULL);
8727 if ((geo->level != info.array.level) &&
8728 (geo->level >= 0) &&
8729 (geo->level != UnSet)) {
8730 switch (info.array.level) {
8731 case 0:
8732 if (geo->level == 5) {
8733 change = CH_MIGRATION;
8734 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8735 fprintf(stderr,
8736 Name " Error. Requested Layout "
8737 "not supported (left-asymmetric layout "
8738 "is supported only)!\n");
8739 change = -1;
8740 goto analyse_change_exit;
8741 }
8742 layout = geo->layout;
8743 check_devs = 1;
8744 devNumChange = 1; /* parity disk added */
8745 } else if (geo->level == 10) {
8746 change = CH_TAKEOVER;
8747 check_devs = 1;
8748 devNumChange = 2; /* two mirrors added */
8749 layout = 0x102; /* imsm supported layout */
8750 }
8751 break;
8752 case 1:
8753 case 10:
8754 if (geo->level == 0) {
8755 change = CH_TAKEOVER;
8756 check_devs = 1;
8757 devNumChange = -(geo->raid_disks/2);
8758 layout = 0; /* imsm raid0 layout */
8759 }
8760 break;
8761 }
8762 if (change == -1) {
8763 fprintf(stderr,
8764 Name " Error. Level Migration from %d to %d "
8765 "not supported!\n",
8766 info.array.level, geo->level);
8767 goto analyse_change_exit;
8768 }
8769 } else
8770 geo->level = info.array.level;
8771
8772 if ((geo->layout != info.array.layout)
8773 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8774 change = CH_MIGRATION;
8775 if ((info.array.layout == 0)
8776 && (info.array.level == 5)
8777 && (geo->layout == 5)) {
8778 /* reshape 5 -> 4 */
8779 } else if ((info.array.layout == 5)
8780 && (info.array.level == 5)
8781 && (geo->layout == 0)) {
8782 /* reshape 4 -> 5 */
8783 geo->layout = 0;
8784 geo->level = 5;
8785 } else {
8786 fprintf(stderr,
8787 Name " Error. Layout Migration from %d to %d "
8788 "not supported!\n",
8789 info.array.layout, geo->layout);
8790 change = -1;
8791 goto analyse_change_exit;
8792 }
8793 } else
8794 geo->layout = info.array.layout;
8795
8796 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8797 && (geo->chunksize != info.array.chunk_size))
8798 change = CH_MIGRATION;
8799 else
8800 geo->chunksize = info.array.chunk_size;
8801
8802 chunk = geo->chunksize / 1024;
8803 if (!validate_geometry_imsm(st,
8804 geo->level,
8805 layout,
8806 geo->raid_disks + devNumChange,
8807 &chunk,
8808 geo->size,
8809 0, 0, 1))
8810 change = -1;
8811
8812 if (check_devs) {
8813 struct intel_super *super = st->sb;
8814 struct imsm_super *mpb = super->anchor;
8815
8816 if (mpb->num_raid_devs > 1) {
8817 fprintf(stderr,
8818 Name " Error. Cannot perform operation on %s"
8819 "- for this operation it MUST be single "
8820 "array in container\n",
8821 geo->dev_name);
8822 change = -1;
8823 }
8824 }
8825
8826 analyse_change_exit:
8827
8828 return change;
8829 }
8830
8831 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8832 {
8833 struct intel_super *super = st->sb;
8834 struct imsm_update_takeover *u;
8835
8836 u = malloc(sizeof(struct imsm_update_takeover));
8837 if (u == NULL)
8838 return 1;
8839
8840 u->type = update_takeover;
8841 u->subarray = super->current_vol;
8842
8843 /* 10->0 transition */
8844 if (geo->level == 0)
8845 u->direction = R10_TO_R0;
8846
8847 /* 0->10 transition */
8848 if (geo->level == 10)
8849 u->direction = R0_TO_R10;
8850
8851 /* update metadata locally */
8852 imsm_update_metadata_locally(st, u,
8853 sizeof(struct imsm_update_takeover));
8854 /* and possibly remotely */
8855 if (st->update_tail)
8856 append_metadata_update(st, u,
8857 sizeof(struct imsm_update_takeover));
8858 else
8859 free(u);
8860
8861 return 0;
8862 }
8863
8864 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8865 int layout, int chunksize, int raid_disks,
8866 int delta_disks, char *backup, char *dev,
8867 int verbose)
8868 {
8869 int ret_val = 1;
8870 struct geo_params geo;
8871
8872 dprintf("imsm: reshape_super called.\n");
8873
8874 memset(&geo, 0, sizeof(struct geo_params));
8875
8876 geo.dev_name = dev;
8877 geo.dev_id = st->devnum;
8878 geo.size = size;
8879 geo.level = level;
8880 geo.layout = layout;
8881 geo.chunksize = chunksize;
8882 geo.raid_disks = raid_disks;
8883 if (delta_disks != UnSet)
8884 geo.raid_disks += delta_disks;
8885
8886 dprintf("\tfor level : %i\n", geo.level);
8887 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8888
8889 if (experimental() == 0)
8890 return ret_val;
8891
8892 if (st->container_dev == st->devnum) {
8893 /* On container level we can only increase number of devices. */
8894 dprintf("imsm: info: Container operation\n");
8895 int old_raid_disks = 0;
8896
8897 if (imsm_reshape_is_allowed_on_container(
8898 st, &geo, &old_raid_disks)) {
8899 struct imsm_update_reshape *u = NULL;
8900 int len;
8901
8902 len = imsm_create_metadata_update_for_reshape(
8903 st, &geo, old_raid_disks, &u);
8904
8905 if (len <= 0) {
8906 dprintf("imsm: Cannot prepare update\n");
8907 goto exit_imsm_reshape_super;
8908 }
8909
8910 ret_val = 0;
8911 /* update metadata locally */
8912 imsm_update_metadata_locally(st, u, len);
8913 /* and possibly remotely */
8914 if (st->update_tail)
8915 append_metadata_update(st, u, len);
8916 else
8917 free(u);
8918
8919 } else {
8920 fprintf(stderr, Name ": (imsm) Operation "
8921 "is not allowed on this container\n");
8922 }
8923 } else {
8924 /* On volume level we support following operations
8925 * - takeover: raid10 -> raid0; raid0 -> raid10
8926 * - chunk size migration
8927 * - migration: raid5 -> raid0; raid0 -> raid5
8928 */
8929 struct intel_super *super = st->sb;
8930 struct intel_dev *dev = super->devlist;
8931 int change, devnum;
8932 dprintf("imsm: info: Volume operation\n");
8933 /* find requested device */
8934 while (dev) {
8935 if (imsm_find_array_minor_by_subdev(
8936 dev->index, st->container_dev, &devnum) == 0
8937 && devnum == geo.dev_id)
8938 break;
8939 dev = dev->next;
8940 }
8941 if (dev == NULL) {
8942 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8943 geo.dev_name, geo.dev_id);
8944 goto exit_imsm_reshape_super;
8945 }
8946 super->current_vol = dev->index;
8947 change = imsm_analyze_change(st, &geo);
8948 switch (change) {
8949 case CH_TAKEOVER:
8950 ret_val = imsm_takeover(st, &geo);
8951 break;
8952 case CH_MIGRATION: {
8953 struct imsm_update_reshape_migration *u = NULL;
8954 int len =
8955 imsm_create_metadata_update_for_migration(
8956 st, &geo, &u);
8957 if (len < 1) {
8958 dprintf("imsm: "
8959 "Cannot prepare update\n");
8960 break;
8961 }
8962 ret_val = 0;
8963 /* update metadata locally */
8964 imsm_update_metadata_locally(st, u, len);
8965 /* and possibly remotely */
8966 if (st->update_tail)
8967 append_metadata_update(st, u, len);
8968 else
8969 free(u);
8970 }
8971 break;
8972 default:
8973 ret_val = 1;
8974 }
8975 }
8976
8977 exit_imsm_reshape_super:
8978 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8979 return ret_val;
8980 }
8981
8982 /*******************************************************************************
8983 * Function: wait_for_reshape_imsm
8984 * Description: Function writes new sync_max value and waits until
8985 * reshape process reach new position
8986 * Parameters:
8987 * sra : general array info
8988 * ndata : number of disks in new array's layout
8989 * Returns:
8990 * 0 : success,
8991 * 1 : there is no reshape in progress,
8992 * -1 : fail
8993 ******************************************************************************/
8994 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
8995 {
8996 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8997 unsigned long long completed;
8998 /* to_complete : new sync_max position */
8999 unsigned long long to_complete = sra->reshape_progress;
9000 unsigned long long position_to_set = to_complete / ndata;
9001
9002 if (fd < 0) {
9003 dprintf("imsm: wait_for_reshape_imsm() "
9004 "cannot open reshape_position\n");
9005 return 1;
9006 }
9007
9008 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9009 dprintf("imsm: wait_for_reshape_imsm() "
9010 "cannot read reshape_position (no reshape in progres)\n");
9011 close(fd);
9012 return 0;
9013 }
9014
9015 if (completed > to_complete) {
9016 dprintf("imsm: wait_for_reshape_imsm() "
9017 "wrong next position to set %llu (%llu)\n",
9018 to_complete, completed);
9019 close(fd);
9020 return -1;
9021 }
9022 dprintf("Position set: %llu\n", position_to_set);
9023 if (sysfs_set_num(sra, NULL, "sync_max",
9024 position_to_set) != 0) {
9025 dprintf("imsm: wait_for_reshape_imsm() "
9026 "cannot set reshape position to %llu\n",
9027 position_to_set);
9028 close(fd);
9029 return -1;
9030 }
9031
9032 do {
9033 char action[20];
9034 fd_set rfds;
9035 FD_ZERO(&rfds);
9036 FD_SET(fd, &rfds);
9037 select(fd+1, &rfds, NULL, NULL, NULL);
9038 if (sysfs_get_str(sra, NULL, "sync_action",
9039 action, 20) > 0 &&
9040 strncmp(action, "reshape", 7) != 0)
9041 break;
9042 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9043 dprintf("imsm: wait_for_reshape_imsm() "
9044 "cannot read reshape_position (in loop)\n");
9045 close(fd);
9046 return 1;
9047 }
9048 } while (completed < to_complete);
9049 close(fd);
9050 return 0;
9051
9052 }
9053
9054 /*******************************************************************************
9055 * Function: check_degradation_change
9056 * Description: Check that array hasn't become failed.
9057 * Parameters:
9058 * info : for sysfs access
9059 * sources : source disks descriptors
9060 * degraded: previous degradation level
9061 * Returns:
9062 * degradation level
9063 ******************************************************************************/
9064 int check_degradation_change(struct mdinfo *info,
9065 int *sources,
9066 int degraded)
9067 {
9068 unsigned long long new_degraded;
9069 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9070 if (new_degraded != (unsigned long long)degraded) {
9071 /* check each device to ensure it is still working */
9072 struct mdinfo *sd;
9073 new_degraded = 0;
9074 for (sd = info->devs ; sd ; sd = sd->next) {
9075 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9076 continue;
9077 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9078 char sbuf[20];
9079 if (sysfs_get_str(info,
9080 sd, "state", sbuf, 20) < 0 ||
9081 strstr(sbuf, "faulty") ||
9082 strstr(sbuf, "in_sync") == NULL) {
9083 /* this device is dead */
9084 sd->disk.state = (1<<MD_DISK_FAULTY);
9085 if (sd->disk.raid_disk >= 0 &&
9086 sources[sd->disk.raid_disk] >= 0) {
9087 close(sources[
9088 sd->disk.raid_disk]);
9089 sources[sd->disk.raid_disk] =
9090 -1;
9091 }
9092 new_degraded++;
9093 }
9094 }
9095 }
9096 }
9097
9098 return new_degraded;
9099 }
9100
9101 /*******************************************************************************
9102 * Function: imsm_manage_reshape
9103 * Description: Function finds array under reshape and it manages reshape
9104 * process. It creates stripes backups (if required) and sets
9105 * checheckpoits.
9106 * Parameters:
9107 * afd : Backup handle (nattive) - not used
9108 * sra : general array info
9109 * reshape : reshape parameters - not used
9110 * st : supertype structure
9111 * blocks : size of critical section [blocks]
9112 * fds : table of source device descriptor
9113 * offsets : start of array (offest per devices)
9114 * dests : not used
9115 * destfd : table of destination device descriptor
9116 * destoffsets : table of destination offsets (per device)
9117 * Returns:
9118 * 1 : success, reshape is done
9119 * 0 : fail
9120 ******************************************************************************/
9121 static int imsm_manage_reshape(
9122 int afd, struct mdinfo *sra, struct reshape *reshape,
9123 struct supertype *st, unsigned long backup_blocks,
9124 int *fds, unsigned long long *offsets,
9125 int dests, int *destfd, unsigned long long *destoffsets)
9126 {
9127 int ret_val = 0;
9128 struct intel_super *super = st->sb;
9129 struct intel_dev *dv = NULL;
9130 struct imsm_dev *dev = NULL;
9131 struct imsm_map *map_src;
9132 int migr_vol_qan = 0;
9133 int ndata, odata; /* [bytes] */
9134 int chunk; /* [bytes] */
9135 struct migr_record *migr_rec;
9136 char *buf = NULL;
9137 unsigned int buf_size; /* [bytes] */
9138 unsigned long long max_position; /* array size [bytes] */
9139 unsigned long long next_step; /* [blocks]/[bytes] */
9140 unsigned long long old_data_stripe_length;
9141 unsigned long long start_src; /* [bytes] */
9142 unsigned long long start; /* [bytes] */
9143 unsigned long long start_buf_shift; /* [bytes] */
9144 int degraded = 0;
9145 int source_layout = 0;
9146
9147 if (!fds || !offsets || !sra)
9148 goto abort;
9149
9150 /* Find volume during the reshape */
9151 for (dv = super->devlist; dv; dv = dv->next) {
9152 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9153 && dv->dev->vol.migr_state == 1) {
9154 dev = dv->dev;
9155 migr_vol_qan++;
9156 }
9157 }
9158 /* Only one volume can migrate at the same time */
9159 if (migr_vol_qan != 1) {
9160 fprintf(stderr, Name " : %s", migr_vol_qan ?
9161 "Number of migrating volumes greater than 1\n" :
9162 "There is no volume during migrationg\n");
9163 goto abort;
9164 }
9165
9166 map_src = get_imsm_map(dev, 1);
9167 if (map_src == NULL)
9168 goto abort;
9169
9170 ndata = imsm_num_data_members(dev, 0);
9171 odata = imsm_num_data_members(dev, 1);
9172
9173 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9174 old_data_stripe_length = odata * chunk;
9175
9176 migr_rec = super->migr_rec;
9177
9178 /* initialize migration record for start condition */
9179 if (sra->reshape_progress == 0)
9180 init_migr_record_imsm(st, dev, sra);
9181 else {
9182 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9183 dprintf("imsm: cannot restart migration when data "
9184 "are present in copy area.\n");
9185 goto abort;
9186 }
9187 }
9188
9189 /* size for data */
9190 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9191 /* extend buffer size for parity disk */
9192 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9193 /* add space for stripe aligment */
9194 buf_size += old_data_stripe_length;
9195 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9196 dprintf("imsm: Cannot allocate checpoint buffer\n");
9197 goto abort;
9198 }
9199
9200 max_position = sra->component_size * ndata;
9201 source_layout = imsm_level_to_layout(map_src->raid_level);
9202
9203 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9204 __le32_to_cpu(migr_rec->num_migr_units)) {
9205 /* current reshape position [blocks] */
9206 unsigned long long current_position =
9207 __le32_to_cpu(migr_rec->blocks_per_unit)
9208 * __le32_to_cpu(migr_rec->curr_migr_unit);
9209 unsigned long long border;
9210
9211 /* Check that array hasn't become failed.
9212 */
9213 degraded = check_degradation_change(sra, fds, degraded);
9214 if (degraded > 1) {
9215 dprintf("imsm: Abort reshape due to degradation"
9216 " level (%i)\n", degraded);
9217 goto abort;
9218 }
9219
9220 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9221
9222 if ((current_position + next_step) > max_position)
9223 next_step = max_position - current_position;
9224
9225 start = current_position * 512;
9226
9227 /* allign reading start to old geometry */
9228 start_buf_shift = start % old_data_stripe_length;
9229 start_src = start - start_buf_shift;
9230
9231 border = (start_src / odata) - (start / ndata);
9232 border /= 512;
9233 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9234 /* save critical stripes to buf
9235 * start - start address of current unit
9236 * to backup [bytes]
9237 * start_src - start address of current unit
9238 * to backup alligned to source array
9239 * [bytes]
9240 */
9241 unsigned long long next_step_filler = 0;
9242 unsigned long long copy_length = next_step * 512;
9243
9244 /* allign copy area length to stripe in old geometry */
9245 next_step_filler = ((copy_length + start_buf_shift)
9246 % old_data_stripe_length);
9247 if (next_step_filler)
9248 next_step_filler = (old_data_stripe_length
9249 - next_step_filler);
9250 dprintf("save_stripes() parameters: start = %llu,"
9251 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9252 "\tstart_in_buf_shift = %llu,"
9253 "\tnext_step_filler = %llu\n",
9254 start, start_src, copy_length,
9255 start_buf_shift, next_step_filler);
9256
9257 if (save_stripes(fds, offsets, map_src->num_members,
9258 chunk, map_src->raid_level,
9259 source_layout, 0, NULL, start_src,
9260 copy_length +
9261 next_step_filler + start_buf_shift,
9262 buf)) {
9263 dprintf("imsm: Cannot save stripes"
9264 " to buffer\n");
9265 goto abort;
9266 }
9267 /* Convert data to destination format and store it
9268 * in backup general migration area
9269 */
9270 if (save_backup_imsm(st, dev, sra,
9271 buf + start_buf_shift, copy_length)) {
9272 dprintf("imsm: Cannot save stripes to "
9273 "target devices\n");
9274 goto abort;
9275 }
9276 if (save_checkpoint_imsm(st, sra,
9277 UNIT_SRC_IN_CP_AREA)) {
9278 dprintf("imsm: Cannot write checkpoint to "
9279 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9280 goto abort;
9281 }
9282 } else {
9283 /* set next step to use whole border area */
9284 border /= next_step;
9285 if (border > 1)
9286 next_step *= border;
9287 }
9288 /* When data backed up, checkpoint stored,
9289 * kick the kernel to reshape unit of data
9290 */
9291 next_step = next_step + sra->reshape_progress;
9292 /* limit next step to array max position */
9293 if (next_step > max_position)
9294 next_step = max_position;
9295 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9296 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9297 sra->reshape_progress = next_step;
9298
9299 /* wait until reshape finish */
9300 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9301 dprintf("wait_for_reshape_imsm returned error!\n");
9302 goto abort;
9303 }
9304
9305 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9306 /* ignore error == 2, this can mean end of reshape here
9307 */
9308 dprintf("imsm: Cannot write checkpoint to "
9309 "migration record (UNIT_SRC_NORMAL)\n");
9310 goto abort;
9311 }
9312
9313 }
9314
9315 /* return '1' if done */
9316 ret_val = 1;
9317 abort:
9318 free(buf);
9319 abort_reshape(sra);
9320
9321 return ret_val;
9322 }
9323 #endif /* MDASSEMBLE */
9324
9325 struct superswitch super_imsm = {
9326 #ifndef MDASSEMBLE
9327 .examine_super = examine_super_imsm,
9328 .brief_examine_super = brief_examine_super_imsm,
9329 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9330 .export_examine_super = export_examine_super_imsm,
9331 .detail_super = detail_super_imsm,
9332 .brief_detail_super = brief_detail_super_imsm,
9333 .write_init_super = write_init_super_imsm,
9334 .validate_geometry = validate_geometry_imsm,
9335 .add_to_super = add_to_super_imsm,
9336 .remove_from_super = remove_from_super_imsm,
9337 .detail_platform = detail_platform_imsm,
9338 .kill_subarray = kill_subarray_imsm,
9339 .update_subarray = update_subarray_imsm,
9340 .load_container = load_container_imsm,
9341 .default_geometry = default_geometry_imsm,
9342 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9343 .reshape_super = imsm_reshape_super,
9344 .manage_reshape = imsm_manage_reshape,
9345 .recover_backup = recover_backup_imsm,
9346 #endif
9347 .match_home = match_home_imsm,
9348 .uuid_from_super= uuid_from_super_imsm,
9349 .getinfo_super = getinfo_super_imsm,
9350 .getinfo_super_disks = getinfo_super_disks_imsm,
9351 .update_super = update_super_imsm,
9352
9353 .avail_size = avail_size_imsm,
9354 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9355
9356 .compare_super = compare_super_imsm,
9357
9358 .load_super = load_super_imsm,
9359 .init_super = init_super_imsm,
9360 .store_super = store_super_imsm,
9361 .free_super = free_super_imsm,
9362 .match_metadata_desc = match_metadata_desc_imsm,
9363 .container_content = container_content_imsm,
9364
9365
9366 .external = 1,
9367 .name = "imsm",
9368
9369 #ifndef MDASSEMBLE
9370 /* for mdmon */
9371 .open_new = imsm_open_new,
9372 .set_array_state= imsm_set_array_state,
9373 .set_disk = imsm_set_disk,
9374 .sync_metadata = imsm_sync_metadata,
9375 .activate_spare = imsm_activate_spare,
9376 .process_update = imsm_process_update,
9377 .prepare_update = imsm_prepare_update,
9378 #endif /* MDASSEMBLE */
9379 };