]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: bad block management (phase1)
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
72 top byte special */
73 } __attribute__ ((packed));
74
75 struct imsm_vol {
76 __u32 reserved[2];
77 __u8 migr_state; /* Normal or Migrating */
78 __u8 migr_type; /* Initializing, Rebuilding, ... */
79 __u8 dirty;
80 __u8 fill[1];
81 __u32 filler[5];
82 struct imsm_map map[1];
83 /* here comes another one if migr_state */
84 } __attribute__ ((packed));
85
86 struct imsm_dev {
87 __u8 volume[MAX_RAID_SERIAL_LEN];
88 __u32 size_low;
89 __u32 size_high;
90 __u32 status; /* Persistent RaidDev status */
91 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
92 #define IMSM_DEV_FILLERS 12
93 __u32 filler[IMSM_DEV_FILLERS];
94 struct imsm_vol vol;
95 } __attribute__ ((packed));
96
97 struct imsm_super {
98 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
99 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
100 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
101 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
102 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
103 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
104 __u32 attributes; /* 0x34 - 0x37 */
105 __u8 num_disks; /* 0x38 Number of configured disks */
106 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
107 __u8 error_log_pos; /* 0x3A */
108 __u8 fill[1]; /* 0x3B */
109 __u32 cache_size; /* 0x3c - 0x40 in mb */
110 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
111 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
112 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
113 #define IMSM_FILLERS 35
114 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
115 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
116 /* here comes imsm_dev[num_raid_devs] */
117 /* here comes BBM logs */
118 } __attribute__ ((packed));
119
120 #define BBM_LOG_MAX_ENTRIES 254
121
122 struct bbm_log_entry {
123 __u64 defective_block_start;
124 #define UNREADABLE 0xFFFFFFFF
125 __u32 spare_block_offset;
126 __u16 remapped_marked_count;
127 __u16 disk_ordinal;
128 } __attribute__ ((__packed__));
129
130 struct bbm_log {
131 __u32 signature; /* 0xABADB10C */
132 __u32 entry_count;
133 __u32 reserved_spare_block_count; /* 0 */
134 __u32 reserved; /* 0xFFFF */
135 __u64 first_spare_lba;
136 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
137 } __attribute__ ((__packed__));
138
139
140 #ifndef MDASSEMBLE
141 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
142 #endif
143
144 static unsigned int sector_count(__u32 bytes)
145 {
146 return ((bytes + (512-1)) & (~(512-1))) / 512;
147 }
148
149 static unsigned int mpb_sectors(struct imsm_super *mpb)
150 {
151 return sector_count(__le32_to_cpu(mpb->mpb_size));
152 }
153
154 /* internal representation of IMSM metadata */
155 struct intel_super {
156 union {
157 void *buf; /* O_DIRECT buffer for reading/writing metadata */
158 struct imsm_super *anchor; /* immovable parameters */
159 };
160 size_t len; /* size of the 'buf' allocation */
161 int updates_pending; /* count of pending updates for mdmon */
162 int creating_imsm; /* flag to indicate container creation */
163 int current_vol; /* index of raid device undergoing creation */
164 #define IMSM_MAX_DISKS 6
165 struct imsm_disk *disk_tbl[IMSM_MAX_DISKS];
166 #define IMSM_MAX_RAID_DEVS 2
167 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
168 struct dl {
169 struct dl *next;
170 int index;
171 __u8 serial[MAX_RAID_SERIAL_LEN];
172 int major, minor;
173 char *devname;
174 int fd;
175 } *disks;
176 struct bbm_log *bbm_log;
177 };
178
179 struct extent {
180 unsigned long long start, size;
181 };
182
183 /* definition of messages passed to imsm_process_update */
184 enum imsm_update_type {
185 update_activate_spare,
186 update_create_array,
187 };
188
189 struct imsm_update_activate_spare {
190 enum imsm_update_type type;
191 int disk_idx;
192 int slot;
193 int array;
194 struct imsm_update_activate_spare *next;
195 };
196
197 struct imsm_update_create_array {
198 enum imsm_update_type type;
199 struct imsm_dev dev;
200 int dev_idx;
201 };
202
203 static int imsm_env_devname_as_serial(void)
204 {
205 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
206
207 if (val && atoi(val) == 1)
208 return 1;
209
210 return 0;
211 }
212
213
214 static struct supertype *match_metadata_desc_imsm(char *arg)
215 {
216 struct supertype *st;
217
218 if (strcmp(arg, "imsm") != 0 &&
219 strcmp(arg, "default") != 0
220 )
221 return NULL;
222
223 st = malloc(sizeof(*st));
224 memset(st, 0, sizeof(*st));
225 st->ss = &super_imsm;
226 st->max_devs = IMSM_MAX_DEVICES;
227 st->minor_version = 0;
228 st->sb = NULL;
229 return st;
230 }
231
232 static __u8 *get_imsm_version(struct imsm_super *mpb)
233 {
234 return &mpb->sig[MPB_SIG_LEN];
235 }
236
237 /* retrieve a disk directly from the anchor when the anchor is known to be
238 * up-to-date, currently only at load time
239 */
240 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
241 {
242 if (index >= mpb->num_disks)
243 return NULL;
244 return &mpb->disk[index];
245 }
246
247 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
248 {
249 if (index >= super->anchor->num_disks)
250 return NULL;
251 return super->disk_tbl[index];
252 }
253
254 /* generate a checksum directly from the anchor when the anchor is known to be
255 * up-to-date, currently only at load or write_super after coalescing
256 */
257 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
258 {
259 __u32 end = mpb->mpb_size / sizeof(end);
260 __u32 *p = (__u32 *) mpb;
261 __u32 sum = 0;
262
263 while (end--)
264 sum += __le32_to_cpu(*p++);
265
266 return sum - __le32_to_cpu(mpb->check_sum);
267 }
268
269 static size_t sizeof_imsm_dev(struct imsm_dev *dev)
270 {
271 size_t size = sizeof(*dev);
272
273 /* each map has disk_ord_tbl[num_members - 1] additional space */
274 size += sizeof(__u32) * (dev->vol.map[0].num_members - 1);
275
276 /* migrating means an additional map */
277 if (dev->vol.migr_state) {
278 size += sizeof(struct imsm_map);
279 size += sizeof(__u32) * (dev->vol.map[1].num_members - 1);
280 }
281
282 return size;
283 }
284
285 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
286 {
287 int offset;
288 int i;
289 void *_mpb = mpb;
290
291 if (index >= mpb->num_raid_devs)
292 return NULL;
293
294 /* devices start after all disks */
295 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
296
297 for (i = 0; i <= index; i++)
298 if (i == index)
299 return _mpb + offset;
300 else
301 offset += sizeof_imsm_dev(_mpb + offset);
302
303 return NULL;
304 }
305
306 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
307 {
308 if (index >= super->anchor->num_raid_devs)
309 return NULL;
310 return super->dev_tbl[index];
311 }
312
313 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
314 {
315 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
316
317 /* top byte is 'special' */
318 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
319 }
320
321 static int get_imsm_raid_level(struct imsm_map *map)
322 {
323 if (map->raid_level == 1) {
324 if (map->num_members == 2)
325 return 1;
326 else
327 return 10;
328 }
329
330 return map->raid_level;
331 }
332
333 static int cmp_extent(const void *av, const void *bv)
334 {
335 const struct extent *a = av;
336 const struct extent *b = bv;
337 if (a->start < b->start)
338 return -1;
339 if (a->start > b->start)
340 return 1;
341 return 0;
342 }
343
344 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
345 {
346 /* find a list of used extents on the given physical device */
347 struct imsm_disk *disk;
348 struct extent *rv, *e;
349 int i, j;
350 int memberships = 0;
351
352 disk = get_imsm_disk(super, dl->index);
353 if (!disk)
354 return NULL;
355
356 for (i = 0; i < super->anchor->num_raid_devs; i++) {
357 struct imsm_dev *dev = get_imsm_dev(super, i);
358 struct imsm_map *map = dev->vol.map;
359
360 for (j = 0; j < map->num_members; j++) {
361 __u32 index = get_imsm_disk_idx(map, j);
362
363 if (index == dl->index)
364 memberships++;
365 }
366 }
367 rv = malloc(sizeof(struct extent) * (memberships + 1));
368 if (!rv)
369 return NULL;
370 e = rv;
371
372 for (i = 0; i < super->anchor->num_raid_devs; i++) {
373 struct imsm_dev *dev = get_imsm_dev(super, i);
374 struct imsm_map *map = dev->vol.map;
375
376 for (j = 0; j < map->num_members; j++) {
377 __u32 index = get_imsm_disk_idx(map, j);
378
379 if (index == dl->index) {
380 e->start = __le32_to_cpu(map->pba_of_lba0);
381 e->size = __le32_to_cpu(map->blocks_per_member);
382 e++;
383 }
384 }
385 }
386 qsort(rv, memberships, sizeof(*rv), cmp_extent);
387
388 e->start = __le32_to_cpu(disk->total_blocks) -
389 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
390 e->size = 0;
391 return rv;
392 }
393
394 #ifndef MDASSEMBLE
395 static void print_imsm_dev(struct imsm_dev *dev, int index)
396 {
397 __u64 sz;
398 int slot;
399 struct imsm_map *map = dev->vol.map;
400
401 printf("\n");
402 printf("[%s]:\n", dev->volume);
403 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
404 printf(" Members : %d\n", map->num_members);
405 for (slot = 0; slot < map->num_members; slot++)
406 if (index == get_imsm_disk_idx(map, slot))
407 break;
408 if (slot < map->num_members)
409 printf(" This Slot : %d\n", slot);
410 else
411 printf(" This Slot : ?\n");
412 sz = __le32_to_cpu(dev->size_high);
413 sz <<= 32;
414 sz += __le32_to_cpu(dev->size_low);
415 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
416 human_size(sz * 512));
417 sz = __le32_to_cpu(map->blocks_per_member);
418 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
419 human_size(sz * 512));
420 printf(" Sector Offset : %u\n",
421 __le32_to_cpu(map->pba_of_lba0));
422 printf(" Num Stripes : %u\n",
423 __le32_to_cpu(map->num_data_stripes));
424 printf(" Chunk Size : %u KiB\n",
425 __le16_to_cpu(map->blocks_per_strip) / 2);
426 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
427 printf(" Migrate State : %s\n", dev->vol.migr_state ? "migrating" : "idle");
428 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
429 printf(" Map State : %s\n", map_state_str[map->map_state]);
430 }
431
432 static void print_imsm_disk(struct imsm_super *mpb, int index)
433 {
434 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
435 char str[MAX_RAID_SERIAL_LEN];
436 __u32 s;
437 __u64 sz;
438
439 if (index < 0)
440 return;
441
442 printf("\n");
443 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
444 printf(" Disk%02d Serial : %s\n", index, str);
445 s = __le32_to_cpu(disk->status);
446 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
447 s&CONFIGURED_DISK ? " active" : "",
448 s&FAILED_DISK ? " failed" : "",
449 s&USABLE_DISK ? " usable" : "");
450 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
451 sz = __le32_to_cpu(disk->total_blocks) -
452 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
453 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
454 human_size(sz * 512));
455 }
456
457 static void examine_super_imsm(struct supertype *st, char *homehost)
458 {
459 struct intel_super *super = st->sb;
460 struct imsm_super *mpb = super->anchor;
461 char str[MAX_SIGNATURE_LENGTH];
462 int i;
463 __u32 sum;
464
465 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
466 printf(" Magic : %s\n", str);
467 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
468 printf(" Version : %s\n", get_imsm_version(mpb));
469 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
470 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
471 sum = __le32_to_cpu(mpb->check_sum);
472 printf(" Checksum : %08x %s\n", sum,
473 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
474 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
475 printf(" Disks : %d\n", mpb->num_disks);
476 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
477 print_imsm_disk(mpb, super->disks->index);
478 if (super->bbm_log) {
479 struct bbm_log *log = super->bbm_log;
480
481 printf("\n");
482 printf("Bad Block Management Log:\n");
483 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
484 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
485 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
486 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
487 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
488 }
489 for (i = 0; i < mpb->num_raid_devs; i++)
490 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
491 for (i = 0; i < mpb->num_disks; i++) {
492 if (i == super->disks->index)
493 continue;
494 print_imsm_disk(mpb, i);
495 }
496 }
497
498 static void brief_examine_super_imsm(struct supertype *st)
499 {
500 struct intel_super *super = st->sb;
501
502 printf("ARRAY /dev/imsm family=%08x metadata=external:imsm\n",
503 __le32_to_cpu(super->anchor->family_num));
504 }
505
506 static void detail_super_imsm(struct supertype *st, char *homehost)
507 {
508 printf("%s\n", __FUNCTION__);
509 }
510
511 static void brief_detail_super_imsm(struct supertype *st)
512 {
513 printf("%s\n", __FUNCTION__);
514 }
515 #endif
516
517 static int match_home_imsm(struct supertype *st, char *homehost)
518 {
519 printf("%s\n", __FUNCTION__);
520
521 return 0;
522 }
523
524 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
525 {
526 printf("%s\n", __FUNCTION__);
527 }
528
529 #if 0
530 static void
531 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
532 {
533 __u8 *v = get_imsm_version(mpb);
534 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
535 char major[] = { 0, 0, 0 };
536 char minor[] = { 0 ,0, 0 };
537 char patch[] = { 0, 0, 0 };
538 char *ver_parse[] = { major, minor, patch };
539 int i, j;
540
541 i = j = 0;
542 while (*v != '\0' && v < end) {
543 if (*v != '.' && j < 2)
544 ver_parse[i][j++] = *v;
545 else {
546 i++;
547 j = 0;
548 }
549 v++;
550 }
551
552 *m = strtol(minor, NULL, 0);
553 *p = strtol(patch, NULL, 0);
554 }
555 #endif
556
557 static int imsm_level_to_layout(int level)
558 {
559 switch (level) {
560 case 0:
561 case 1:
562 return 0;
563 case 5:
564 case 6:
565 return ALGORITHM_LEFT_ASYMMETRIC;
566 case 10:
567 return 0x102; //FIXME is this correct?
568 }
569 return -1;
570 }
571
572 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
573 {
574 struct intel_super *super = st->sb;
575 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
576 struct imsm_map *map = &dev->vol.map[0];
577
578 info->container_member = super->current_vol;
579 info->array.raid_disks = map->num_members;
580 info->array.level = get_imsm_raid_level(map);
581 info->array.layout = imsm_level_to_layout(info->array.level);
582 info->array.md_minor = -1;
583 info->array.ctime = 0;
584 info->array.utime = 0;
585 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
586
587 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
588 info->component_size = __le32_to_cpu(map->blocks_per_member);
589
590 info->disk.major = 0;
591 info->disk.minor = 0;
592
593 sprintf(info->text_version, "/%s/%d",
594 devnum2devname(st->container_dev),
595 info->container_member);
596 }
597
598
599 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
600 {
601 struct intel_super *super = st->sb;
602 struct imsm_disk *disk;
603 __u32 s;
604
605 if (super->current_vol >= 0) {
606 getinfo_super_imsm_volume(st, info);
607 return;
608 }
609 info->array.raid_disks = super->anchor->num_disks;
610 info->array.level = LEVEL_CONTAINER;
611 info->array.layout = 0;
612 info->array.md_minor = -1;
613 info->array.ctime = 0; /* N/A for imsm */
614 info->array.utime = 0;
615 info->array.chunk_size = 0;
616
617 info->disk.major = 0;
618 info->disk.minor = 0;
619 info->disk.raid_disk = -1;
620 info->reshape_active = 0;
621 strcpy(info->text_version, "imsm");
622 info->disk.number = -1;
623 info->disk.state = 0;
624
625 if (super->disks) {
626 disk = get_imsm_disk(super, super->disks->index);
627 if (!disk) {
628 info->disk.number = -1;
629 info->disk.raid_disk = -1;
630 return;
631 }
632 info->disk.number = super->disks->index;
633 info->disk.raid_disk = super->disks->index;
634 info->data_offset = __le32_to_cpu(disk->total_blocks) -
635 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
636 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
637 s = __le32_to_cpu(disk->status);
638 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
639 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
640 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
641 }
642 }
643
644 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
645 char *update, char *devname, int verbose,
646 int uuid_set, char *homehost)
647 {
648 /* FIXME */
649
650 /* For 'assemble' and 'force' we need to return non-zero if any
651 * change was made. For others, the return value is ignored.
652 * Update options are:
653 * force-one : This device looks a bit old but needs to be included,
654 * update age info appropriately.
655 * assemble: clear any 'faulty' flag to allow this device to
656 * be assembled.
657 * force-array: Array is degraded but being forced, mark it clean
658 * if that will be needed to assemble it.
659 *
660 * newdev: not used ????
661 * grow: Array has gained a new device - this is currently for
662 * linear only
663 * resync: mark as dirty so a resync will happen.
664 * name: update the name - preserving the homehost
665 *
666 * Following are not relevant for this imsm:
667 * sparc2.2 : update from old dodgey metadata
668 * super-minor: change the preferred_minor number
669 * summaries: update redundant counters.
670 * uuid: Change the uuid of the array to match watch is given
671 * homehost: update the recorded homehost
672 * _reshape_progress: record new reshape_progress position.
673 */
674 int rv = 0;
675 //struct intel_super *super = st->sb;
676 //struct imsm_super *mpb = super->mpb;
677
678 if (strcmp(update, "grow") == 0) {
679 }
680 if (strcmp(update, "resync") == 0) {
681 /* dev->vol.dirty = 1; */
682 }
683
684 /* IMSM has no concept of UUID or homehost */
685
686 return rv;
687 }
688
689 static size_t disks_to_mpb_size(int disks)
690 {
691 size_t size;
692
693 size = sizeof(struct imsm_super);
694 size += (disks - 1) * sizeof(struct imsm_disk);
695 size += 2 * sizeof(struct imsm_dev);
696 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
697 size += (4 - 2) * sizeof(struct imsm_map);
698 /* 4 possible disk_ord_tbl's */
699 size += 4 * (disks - 1) * sizeof(__u32);
700
701 return size;
702 }
703
704 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
705 {
706 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
707 return 0;
708
709 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
710 }
711
712 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
713 {
714 /*
715 * return:
716 * 0 same, or first was empty, and second was copied
717 * 1 second had wrong number
718 * 2 wrong uuid
719 * 3 wrong other info
720 */
721 struct intel_super *first = st->sb;
722 struct intel_super *sec = tst->sb;
723
724 if (!first) {
725 st->sb = tst->sb;
726 tst->sb = NULL;
727 return 0;
728 }
729
730 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
731 return 3;
732 if (first->anchor->family_num != sec->anchor->family_num)
733 return 3;
734 if (first->anchor->mpb_size != sec->anchor->mpb_size)
735 return 3;
736 if (first->anchor->check_sum != sec->anchor->check_sum)
737 return 3;
738
739 return 0;
740 }
741
742 static void fd2devname(int fd, char *name)
743 {
744 struct stat st;
745 char path[256];
746 char dname[100];
747 char *nm;
748 int rv;
749
750 name[0] = '\0';
751 if (fstat(fd, &st) != 0)
752 return;
753 sprintf(path, "/sys/dev/block/%d:%d",
754 major(st.st_rdev), minor(st.st_rdev));
755
756 rv = readlink(path, dname, sizeof(dname));
757 if (rv <= 0)
758 return;
759
760 dname[rv] = '\0';
761 nm = strrchr(dname, '/');
762 nm++;
763 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
764 }
765
766
767 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
768
769 static int imsm_read_serial(int fd, char *devname,
770 __u8 serial[MAX_RAID_SERIAL_LEN])
771 {
772 unsigned char scsi_serial[255];
773 int rv;
774 int rsp_len;
775 int i, cnt;
776
777 memset(scsi_serial, 0, sizeof(scsi_serial));
778
779 if (imsm_env_devname_as_serial()) {
780 char name[MAX_RAID_SERIAL_LEN];
781
782 fd2devname(fd, name);
783 strcpy((char *) serial, name);
784 return 0;
785 }
786
787 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
788
789 if (rv != 0) {
790 if (devname)
791 fprintf(stderr,
792 Name ": Failed to retrieve serial for %s\n",
793 devname);
794 return rv;
795 }
796
797 rsp_len = scsi_serial[3];
798 for (i = 0, cnt = 0; i < rsp_len; i++) {
799 if (!isspace(scsi_serial[4 + i]))
800 serial[cnt++] = scsi_serial[4 + i];
801 if (cnt == MAX_RAID_SERIAL_LEN)
802 break;
803 }
804
805 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
806
807 return 0;
808 }
809
810 static int
811 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
812 {
813 struct dl *dl;
814 struct stat stb;
815 struct imsm_disk *disk;
816 int rv;
817 int i;
818
819 dl = malloc(sizeof(*dl));
820 disk = malloc(sizeof(*disk));
821 if (!dl || !disk) {
822 if (devname)
823 fprintf(stderr,
824 Name ": failed to allocate disk buffer for %s\n",
825 devname);
826 if (disk)
827 free(disk);
828 if (dl)
829 free(dl);
830 return 2;
831 }
832 memset(dl, 0, sizeof(*dl));
833 memset(disk, 0, sizeof(*disk));
834
835 fstat(fd, &stb);
836 dl->major = major(stb.st_rdev);
837 dl->minor = minor(stb.st_rdev);
838 dl->next = super->disks;
839 dl->fd = keep_fd ? fd : -1;
840 dl->devname = devname ? strdup(devname) : NULL;
841 dl->index = -1;
842 super->disks = dl;
843 rv = imsm_read_serial(fd, devname, dl->serial);
844
845 if (rv != 0)
846 return 2;
847
848 /* look up this disk's index */
849 for (i = 0; i < super->anchor->num_disks; i++) {
850 struct imsm_disk *disk_iter;
851
852 disk_iter = __get_imsm_disk(super->anchor, i);
853
854 if (memcmp(disk_iter->serial, dl->serial,
855 MAX_RAID_SERIAL_LEN) == 0) {
856 *disk = *disk_iter;
857 super->disk_tbl[i] = disk;
858 dl->index = i;
859 break;
860 }
861 }
862
863 if (i == super->anchor->num_disks) {
864 if (devname)
865 fprintf(stderr,
866 Name ": failed to match serial \'%s\' for %s\n",
867 dl->serial, devname);
868 free(disk);
869 return 0;
870 }
871
872 return 0;
873 }
874
875 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
876 {
877 int i;
878
879 *dest = *src;
880
881 for (i = 0; i < src->vol.map[0].num_members; i++)
882 dest->vol.map[0].disk_ord_tbl[i] = src->vol.map[0].disk_ord_tbl[i];
883
884 if (!src->vol.migr_state)
885 return;
886
887 dest->vol.map[1] = src->vol.map[1];
888 for (i = 0; i < src->vol.map[1].num_members; i++)
889 dest->vol.map[1].disk_ord_tbl[i] = src->vol.map[1].disk_ord_tbl[i];
890 }
891
892 static int parse_raid_devices(struct intel_super *super)
893 {
894 int i;
895 struct imsm_dev *dev_new;
896 size_t len;
897
898 for (i = 0; i < super->anchor->num_raid_devs; i++) {
899 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
900
901 len = sizeof_imsm_dev(dev_iter);
902 dev_new = malloc(len);
903 if (!dev_new)
904 return 1;
905 imsm_copy_dev(dev_new, dev_iter);
906 super->dev_tbl[i] = dev_new;
907 }
908
909 return 0;
910 }
911
912 /* retrieve a pointer to the bbm log which starts after all raid devices */
913 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
914 {
915 void *ptr = NULL;
916
917 if (__le32_to_cpu(mpb->bbm_log_size)) {
918 ptr = mpb;
919 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
920 }
921
922 return ptr;
923 }
924
925 static void __free_imsm(struct intel_super *super);
926
927 /* load_imsm_mpb - read matrix metadata
928 * allocates super->mpb to be freed by free_super
929 */
930 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
931 {
932 unsigned long long dsize;
933 unsigned long long sectors;
934 struct stat;
935 struct imsm_super *anchor;
936 __u32 check_sum;
937 int rc;
938
939 get_dev_size(fd, NULL, &dsize);
940
941 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
942 if (devname)
943 fprintf(stderr,
944 Name ": Cannot seek to anchor block on %s: %s\n",
945 devname, strerror(errno));
946 return 1;
947 }
948
949 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
950 if (devname)
951 fprintf(stderr,
952 Name ": Failed to allocate imsm anchor buffer"
953 " on %s\n", devname);
954 return 1;
955 }
956 if (read(fd, anchor, 512) != 512) {
957 if (devname)
958 fprintf(stderr,
959 Name ": Cannot read anchor block on %s: %s\n",
960 devname, strerror(errno));
961 free(anchor);
962 return 1;
963 }
964
965 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
966 if (devname)
967 fprintf(stderr,
968 Name ": no IMSM anchor on %s\n", devname);
969 free(anchor);
970 return 2;
971 }
972
973 __free_imsm(super);
974 super->len = __le32_to_cpu(anchor->mpb_size);
975 super->len = ROUND_UP(anchor->mpb_size, 512);
976 if (posix_memalign(&super->buf, 512, super->len) != 0) {
977 if (devname)
978 fprintf(stderr,
979 Name ": unable to allocate %zu byte mpb buffer\n",
980 super->len);
981 free(anchor);
982 return 2;
983 }
984 memcpy(super->buf, anchor, 512);
985
986 sectors = mpb_sectors(anchor) - 1;
987 free(anchor);
988 if (!sectors) {
989 rc = load_imsm_disk(fd, super, devname, 0);
990 if (rc == 0)
991 rc = parse_raid_devices(super);
992 return rc;
993 }
994
995 /* read the extended mpb */
996 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
997 if (devname)
998 fprintf(stderr,
999 Name ": Cannot seek to extended mpb on %s: %s\n",
1000 devname, strerror(errno));
1001 return 1;
1002 }
1003
1004 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1005 if (devname)
1006 fprintf(stderr,
1007 Name ": Cannot read extended mpb on %s: %s\n",
1008 devname, strerror(errno));
1009 return 2;
1010 }
1011
1012 check_sum = __gen_imsm_checksum(super->anchor);
1013 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1014 if (devname)
1015 fprintf(stderr,
1016 Name ": IMSM checksum %x != %x on %s\n",
1017 check_sum, __le32_to_cpu(super->anchor->check_sum),
1018 devname);
1019 return 2;
1020 }
1021
1022 /* FIXME the BBM log is disk specific so we cannot use this global
1023 * buffer for all disks. Ok for now since we only look at the global
1024 * bbm_log_size parameter to gate assembly
1025 */
1026 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1027
1028 rc = load_imsm_disk(fd, super, devname, 0);
1029 if (rc == 0)
1030 rc = parse_raid_devices(super);
1031 return rc;
1032 }
1033
1034 static void free_imsm_disks(struct intel_super *super)
1035 {
1036 int i;
1037
1038 while (super->disks) {
1039 struct dl *d = super->disks;
1040
1041 super->disks = d->next;
1042 if (d->fd >= 0)
1043 close(d->fd);
1044 if (d->devname)
1045 free(d->devname);
1046 free(d);
1047 }
1048 for (i = 0; i < IMSM_MAX_DISKS; i++)
1049 if (super->disk_tbl[i]) {
1050 free(super->disk_tbl[i]);
1051 super->disk_tbl[i] = NULL;
1052 }
1053 }
1054
1055 /* free all the pieces hanging off of a super pointer */
1056 static void __free_imsm(struct intel_super *super)
1057 {
1058 int i;
1059
1060 if (super->buf) {
1061 free(super->buf);
1062 super->buf = NULL;
1063 }
1064 free_imsm_disks(super);
1065 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1066 if (super->dev_tbl[i]) {
1067 free(super->dev_tbl[i]);
1068 super->dev_tbl[i] = NULL;
1069 }
1070 }
1071
1072 static void free_imsm(struct intel_super *super)
1073 {
1074 __free_imsm(super);
1075 free(super);
1076 }
1077
1078 static void free_super_imsm(struct supertype *st)
1079 {
1080 struct intel_super *super = st->sb;
1081
1082 if (!super)
1083 return;
1084
1085 free_imsm(super);
1086 st->sb = NULL;
1087 }
1088
1089 static struct intel_super *alloc_super(int creating_imsm)
1090 {
1091 struct intel_super *super = malloc(sizeof(*super));
1092
1093 if (super) {
1094 memset(super, 0, sizeof(*super));
1095 super->creating_imsm = creating_imsm;
1096 super->current_vol = -1;
1097 }
1098
1099 return super;
1100 }
1101
1102 #ifndef MDASSEMBLE
1103 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1104 char *devname, int keep_fd)
1105 {
1106 struct mdinfo *sra;
1107 struct intel_super *super;
1108 struct mdinfo *sd, *best = NULL;
1109 __u32 bestgen = 0;
1110 __u32 gen;
1111 char nm[20];
1112 int dfd;
1113 int rv;
1114
1115 /* check if this disk is a member of an active array */
1116 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1117 if (!sra)
1118 return 1;
1119
1120 if (sra->array.major_version != -1 ||
1121 sra->array.minor_version != -2 ||
1122 strcmp(sra->text_version, "imsm") != 0)
1123 return 1;
1124
1125 super = alloc_super(0);
1126 if (!super)
1127 return 1;
1128
1129 /* find the most up to date disk in this array */
1130 for (sd = sra->devs; sd; sd = sd->next) {
1131 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1132 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1133 if (!dfd) {
1134 free_imsm(super);
1135 return 2;
1136 }
1137 rv = load_imsm_mpb(dfd, super, NULL);
1138 if (!keep_fd)
1139 close(dfd);
1140 if (rv == 0) {
1141 gen = __le32_to_cpu(super->anchor->generation_num);
1142 if (!best || gen > bestgen) {
1143 bestgen = gen;
1144 best = sd;
1145 }
1146 } else {
1147 free_imsm(super);
1148 return 2;
1149 }
1150 }
1151
1152 if (!best) {
1153 free_imsm(super);
1154 return 1;
1155 }
1156
1157 /* load the most up to date anchor */
1158 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1159 dfd = dev_open(nm, O_RDONLY);
1160 if (!dfd) {
1161 free_imsm(super);
1162 return 1;
1163 }
1164 rv = load_imsm_mpb(dfd, super, NULL);
1165 close(dfd);
1166 if (rv != 0) {
1167 free_imsm(super);
1168 return 2;
1169 }
1170
1171 /* reset the disk list */
1172 free_imsm_disks(super);
1173
1174 /* populate disk list */
1175 for (sd = sra->devs ; sd ; sd = sd->next) {
1176 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1177 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1178 if (!dfd) {
1179 free_imsm(super);
1180 return 2;
1181 }
1182 load_imsm_disk(dfd, super, NULL, keep_fd);
1183 if (!keep_fd)
1184 close(dfd);
1185 }
1186
1187 if (st->subarray[0]) {
1188 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1189 super->current_vol = atoi(st->subarray);
1190 else
1191 return 1;
1192 }
1193
1194 *sbp = super;
1195 if (st->ss == NULL) {
1196 st->ss = &super_imsm;
1197 st->minor_version = 0;
1198 st->max_devs = IMSM_MAX_DEVICES;
1199 st->container_dev = fd2devnum(fd);
1200 }
1201
1202 return 0;
1203 }
1204 #endif
1205
1206 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1207 {
1208 struct intel_super *super;
1209 int rv;
1210
1211 #ifndef MDASSEMBLE
1212 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1213 return 0;
1214 #endif
1215 if (st->subarray[0])
1216 return 1; /* FIXME */
1217
1218 super = alloc_super(0);
1219 if (!super) {
1220 fprintf(stderr,
1221 Name ": malloc of %zu failed.\n",
1222 sizeof(*super));
1223 return 1;
1224 }
1225
1226 rv = load_imsm_mpb(fd, super, devname);
1227
1228 if (rv) {
1229 if (devname)
1230 fprintf(stderr,
1231 Name ": Failed to load all information "
1232 "sections on %s\n", devname);
1233 free_imsm(super);
1234 return rv;
1235 }
1236
1237 st->sb = super;
1238 if (st->ss == NULL) {
1239 st->ss = &super_imsm;
1240 st->minor_version = 0;
1241 st->max_devs = IMSM_MAX_DEVICES;
1242 }
1243
1244 return 0;
1245 }
1246
1247 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1248 {
1249 if (info->level == 1)
1250 return 128;
1251 return info->chunk_size >> 9;
1252 }
1253
1254 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1255 {
1256 __u32 num_stripes;
1257
1258 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1259 if (info->level == 1)
1260 num_stripes /= 2;
1261
1262 return num_stripes;
1263 }
1264
1265 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1266 {
1267 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1268 }
1269
1270 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1271 unsigned long long size, char *name,
1272 char *homehost, int *uuid)
1273 {
1274 /* We are creating a volume inside a pre-existing container.
1275 * so st->sb is already set.
1276 */
1277 struct intel_super *super = st->sb;
1278 struct imsm_super *mpb = super->anchor;
1279 struct imsm_dev *dev;
1280 struct imsm_vol *vol;
1281 struct imsm_map *map;
1282 int idx = mpb->num_raid_devs;
1283 int i;
1284 unsigned long long array_blocks;
1285 __u32 offset = 0;
1286 size_t size_old, size_new;
1287
1288 if (mpb->num_raid_devs >= 2) {
1289 fprintf(stderr, Name": This imsm-container already has the "
1290 "maximum of 2 volumes\n");
1291 return 0;
1292 }
1293
1294 /* ensure the mpb is large enough for the new data */
1295 size_old = __le32_to_cpu(mpb->mpb_size);
1296 size_new = disks_to_mpb_size(info->nr_disks);
1297 if (size_new > size_old) {
1298 void *mpb_new;
1299 size_t size_round = ROUND_UP(size_new, 512);
1300
1301 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1302 fprintf(stderr, Name": could not allocate new mpb\n");
1303 return 0;
1304 }
1305 memcpy(mpb_new, mpb, size_old);
1306 free(mpb);
1307 mpb = mpb_new;
1308 super->anchor = mpb_new;
1309 mpb->mpb_size = __cpu_to_le32(size_new);
1310 memset(mpb_new + size_old, 0, size_round - size_old);
1311 }
1312 super->current_vol = idx;
1313 sprintf(st->subarray, "%d", idx);
1314 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1315 if (!dev) {
1316 fprintf(stderr, Name": could not allocate raid device\n");
1317 return 0;
1318 }
1319 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1320 array_blocks = calc_array_size(info->level, info->raid_disks,
1321 info->layout, info->chunk_size,
1322 info->size*2);
1323 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1324 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1325 dev->status = __cpu_to_le32(0);
1326 dev->reserved_blocks = __cpu_to_le32(0);
1327 vol = &dev->vol;
1328 vol->migr_state = 0;
1329 vol->migr_type = 0;
1330 vol->dirty = 0;
1331 for (i = 0; i < idx; i++) {
1332 struct imsm_dev *prev = get_imsm_dev(super, i);
1333 struct imsm_map *pmap = &prev->vol.map[0];
1334
1335 offset += __le32_to_cpu(pmap->blocks_per_member);
1336 offset += IMSM_RESERVED_SECTORS;
1337 }
1338 map = &vol->map[0];
1339 map->pba_of_lba0 = __cpu_to_le32(offset);
1340 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1341 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1342 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1343 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1344 IMSM_T_STATE_NORMAL;
1345
1346 if (info->level == 1 && info->raid_disks > 2) {
1347 fprintf(stderr, Name": imsm does not support more than 2 disks"
1348 "in a raid1 volume\n");
1349 return 0;
1350 }
1351 if (info->level == 10)
1352 map->raid_level = 1;
1353 else
1354 map->raid_level = info->level;
1355
1356 map->num_members = info->raid_disks;
1357 for (i = 0; i < map->num_members; i++) {
1358 /* initialized in add_to_super */
1359 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1360 }
1361 mpb->num_raid_devs++;
1362 super->dev_tbl[super->current_vol] = dev;
1363
1364 return 1;
1365 }
1366
1367 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1368 unsigned long long size, char *name,
1369 char *homehost, int *uuid)
1370 {
1371 /* This is primarily called by Create when creating a new array.
1372 * We will then get add_to_super called for each component, and then
1373 * write_init_super called to write it out to each device.
1374 * For IMSM, Create can create on fresh devices or on a pre-existing
1375 * array.
1376 * To create on a pre-existing array a different method will be called.
1377 * This one is just for fresh drives.
1378 */
1379 struct intel_super *super;
1380 struct imsm_super *mpb;
1381 size_t mpb_size;
1382
1383 if (!info) {
1384 st->sb = NULL;
1385 return 0;
1386 }
1387 if (st->sb)
1388 return init_super_imsm_volume(st, info, size, name, homehost,
1389 uuid);
1390
1391 super = alloc_super(1);
1392 if (!super)
1393 return 0;
1394 mpb_size = disks_to_mpb_size(info->nr_disks);
1395 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1396 free(super);
1397 return 0;
1398 }
1399 mpb = super->buf;
1400 memset(mpb, 0, mpb_size);
1401
1402 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1403 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1404 strlen(MPB_VERSION_RAID5));
1405 mpb->mpb_size = mpb_size;
1406
1407 st->sb = super;
1408 return 1;
1409 }
1410
1411 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1412 int fd, char *devname)
1413 {
1414 struct intel_super *super = st->sb;
1415 struct dl *dl;
1416 struct imsm_dev *dev;
1417 struct imsm_map *map;
1418 struct imsm_disk *disk;
1419 __u32 status;
1420
1421 dev = get_imsm_dev(super, super->current_vol);
1422 map = &dev->vol.map[0];
1423
1424 for (dl = super->disks; dl ; dl = dl->next)
1425 if (dl->major == dk->major &&
1426 dl->minor == dk->minor)
1427 break;
1428 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1429 return;
1430
1431 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1432
1433 disk = get_imsm_disk(super, dl->index);
1434 status = CONFIGURED_DISK | USABLE_DISK;
1435 disk->status = __cpu_to_le32(status);
1436 }
1437
1438 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1439 int fd, char *devname)
1440 {
1441 struct intel_super *super = st->sb;
1442 struct imsm_super *mpb = super->anchor;
1443 struct imsm_disk *disk;
1444 struct dl *dd;
1445 unsigned long long size;
1446 __u32 status, id;
1447 int rv;
1448 struct stat stb;
1449
1450 if (super->current_vol >= 0) {
1451 add_to_super_imsm_volume(st, dk, fd, devname);
1452 return;
1453 }
1454
1455 fstat(fd, &stb);
1456 dd = malloc(sizeof(*dd));
1457 disk = malloc(sizeof(*disk));
1458 if (!dd || !disk) {
1459 fprintf(stderr,
1460 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1461 if (!dd)
1462 free(dd);
1463 if (!disk)
1464 free(disk);
1465 abort();
1466 }
1467 memset(dd, 0, sizeof(*dd));
1468 memset(disk, 0, sizeof(*disk));
1469 dd->major = major(stb.st_rdev);
1470 dd->minor = minor(stb.st_rdev);
1471 dd->index = dk->number;
1472 dd->devname = devname ? strdup(devname) : NULL;
1473 dd->next = super->disks;
1474 dd->fd = fd;
1475 rv = imsm_read_serial(fd, devname, dd->serial);
1476 if (rv) {
1477 fprintf(stderr,
1478 Name ": failed to retrieve scsi serial, aborting\n");
1479 free(dd);
1480 free(disk);
1481 abort();
1482 }
1483
1484 if (mpb->num_disks <= dk->number)
1485 mpb->num_disks = dk->number + 1;
1486
1487 get_dev_size(fd, NULL, &size);
1488 size /= 512;
1489 status = USABLE_DISK | SPARE_DISK;
1490 strcpy((char *) disk->serial, (char *) dd->serial);
1491 disk->total_blocks = __cpu_to_le32(size);
1492 disk->status = __cpu_to_le32(status);
1493 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1494 disk->scsi_id = __cpu_to_le32(id);
1495 else
1496 disk->scsi_id = __cpu_to_le32(0);
1497 super->disk_tbl[dd->index] = disk;
1498
1499 /* update the family number if we are creating a container */
1500 if (super->creating_imsm) {
1501 disk = __get_imsm_disk(mpb, dd->index);
1502 *disk = *super->disk_tbl[dd->index]; /* copy in new disk */
1503 mpb->family_num = __cpu_to_le32(__gen_imsm_checksum(mpb));
1504 }
1505
1506 super->disks = dd;
1507 }
1508
1509 static int store_imsm_mpb(int fd, struct intel_super *super);
1510
1511 static int write_super_imsm(struct intel_super *super, int doclose)
1512 {
1513 struct imsm_super *mpb = super->anchor;
1514 struct dl *d;
1515 __u32 generation;
1516 __u32 sum;
1517 int i;
1518
1519 /* 'generation' is incremented everytime the metadata is written */
1520 generation = __le32_to_cpu(mpb->generation_num);
1521 generation++;
1522 mpb->generation_num = __cpu_to_le32(generation);
1523
1524 for (i = 0; i < mpb->num_disks; i++)
1525 mpb->disk[i] = *super->disk_tbl[i];
1526 for (i = 0; i < mpb->num_raid_devs; i++) {
1527 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1528
1529 imsm_copy_dev(dev, super->dev_tbl[i]);
1530 }
1531
1532 /* recalculate checksum */
1533 sum = __gen_imsm_checksum(mpb);
1534 mpb->check_sum = __cpu_to_le32(sum);
1535
1536 for (d = super->disks; d ; d = d->next) {
1537 if (store_imsm_mpb(d->fd, super)) {
1538 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1539 __func__, d->major, d->minor, strerror(errno));
1540 return 0;
1541 }
1542 if (doclose) {
1543 close(d->fd);
1544 d->fd = -1;
1545 }
1546 }
1547
1548 return 1;
1549 }
1550
1551 static int write_init_super_imsm(struct supertype *st)
1552 {
1553 if (st->update_tail) {
1554 /* queue the recently created array as a metadata update */
1555 size_t len;
1556 struct imsm_update_create_array *u;
1557 struct intel_super *super = st->sb;
1558 struct imsm_dev *dev;
1559 struct dl *d;
1560
1561 if (super->current_vol < 0 ||
1562 !(dev = get_imsm_dev(super, super->current_vol))) {
1563 fprintf(stderr, "%s: could not determine sub-array\n",
1564 __func__);
1565 return 1;
1566 }
1567
1568
1569 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev);
1570 u = malloc(len);
1571 if (!u) {
1572 fprintf(stderr, "%s: failed to allocate update buffer\n",
1573 __func__);
1574 return 1;
1575 }
1576
1577 u->type = update_create_array;
1578 u->dev_idx = super->current_vol;
1579 imsm_copy_dev(&u->dev, dev);
1580 append_metadata_update(st, u, len);
1581
1582 for (d = super->disks; d ; d = d->next) {
1583 close(d->fd);
1584 d->fd = -1;
1585 }
1586
1587 return 0;
1588 } else
1589 return write_super_imsm(st->sb, 1);
1590 }
1591
1592 static int store_zero_imsm(struct supertype *st, int fd)
1593 {
1594 unsigned long long dsize;
1595 void *buf;
1596
1597 get_dev_size(fd, NULL, &dsize);
1598
1599 /* first block is stored on second to last sector of the disk */
1600 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1601 return 1;
1602
1603 if (posix_memalign(&buf, 512, 512) != 0)
1604 return 1;
1605
1606 memset(buf, 0, 512);
1607 if (write(fd, buf, 512) != 512)
1608 return 1;
1609 return 0;
1610 }
1611
1612 static int validate_geometry_imsm_container(struct supertype *st, int level,
1613 int layout, int raiddisks, int chunk,
1614 unsigned long long size, char *dev,
1615 unsigned long long *freesize,
1616 int verbose)
1617 {
1618 int fd;
1619 unsigned long long ldsize;
1620
1621 if (level != LEVEL_CONTAINER)
1622 return 0;
1623 if (!dev)
1624 return 1;
1625
1626 fd = open(dev, O_RDONLY|O_EXCL, 0);
1627 if (fd < 0) {
1628 if (verbose)
1629 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1630 dev, strerror(errno));
1631 return 0;
1632 }
1633 if (!get_dev_size(fd, dev, &ldsize)) {
1634 close(fd);
1635 return 0;
1636 }
1637 close(fd);
1638
1639 *freesize = avail_size_imsm(st, ldsize >> 9);
1640
1641 return 1;
1642 }
1643
1644 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1645 * FIX ME add ahci details
1646 */
1647 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1648 int layout, int raiddisks, int chunk,
1649 unsigned long long size, char *dev,
1650 unsigned long long *freesize,
1651 int verbose)
1652 {
1653 struct stat stb;
1654 struct intel_super *super = st->sb;
1655 struct dl *dl;
1656 unsigned long long pos = 0;
1657 unsigned long long maxsize;
1658 struct extent *e;
1659 int i;
1660
1661 if (level == LEVEL_CONTAINER)
1662 return 0;
1663
1664 if (level == 1 && raiddisks > 2) {
1665 if (verbose)
1666 fprintf(stderr, Name ": imsm does not support more "
1667 "than 2 in a raid1 configuration\n");
1668 return 0;
1669 }
1670
1671 /* We must have the container info already read in. */
1672 if (!super)
1673 return 0;
1674
1675 if (!dev) {
1676 /* General test: make sure there is space for
1677 * 'raiddisks' device extents of size 'size' at a given
1678 * offset
1679 */
1680 unsigned long long minsize = size*2 /* convert to blocks */;
1681 unsigned long long start_offset = ~0ULL;
1682 int dcnt = 0;
1683 if (minsize == 0)
1684 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1685 for (dl = super->disks; dl ; dl = dl->next) {
1686 int found = 0;
1687
1688 pos = 0;
1689 i = 0;
1690 e = get_extents(super, dl);
1691 if (!e) continue;
1692 do {
1693 unsigned long long esize;
1694 esize = e[i].start - pos;
1695 if (esize >= minsize)
1696 found = 1;
1697 if (found && start_offset == ~0ULL) {
1698 start_offset = pos;
1699 break;
1700 } else if (found && pos != start_offset) {
1701 found = 0;
1702 break;
1703 }
1704 pos = e[i].start + e[i].size;
1705 i++;
1706 } while (e[i-1].size);
1707 if (found)
1708 dcnt++;
1709 free(e);
1710 }
1711 if (dcnt < raiddisks) {
1712 if (verbose)
1713 fprintf(stderr, Name ": imsm: Not enough "
1714 "devices with space for this array "
1715 "(%d < %d)\n",
1716 dcnt, raiddisks);
1717 return 0;
1718 }
1719 return 1;
1720 }
1721 /* This device must be a member of the set */
1722 if (stat(dev, &stb) < 0)
1723 return 0;
1724 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1725 return 0;
1726 for (dl = super->disks ; dl ; dl = dl->next) {
1727 if (dl->major == major(stb.st_rdev) &&
1728 dl->minor == minor(stb.st_rdev))
1729 break;
1730 }
1731 if (!dl) {
1732 if (verbose)
1733 fprintf(stderr, Name ": %s is not in the "
1734 "same imsm set\n", dev);
1735 return 0;
1736 }
1737 e = get_extents(super, dl);
1738 maxsize = 0;
1739 i = 0;
1740 if (e) do {
1741 unsigned long long esize;
1742 esize = e[i].start - pos;
1743 if (esize >= maxsize)
1744 maxsize = esize;
1745 pos = e[i].start + e[i].size;
1746 i++;
1747 } while (e[i-1].size);
1748 *freesize = maxsize;
1749
1750 return 1;
1751 }
1752
1753 int imsm_bbm_log_size(struct imsm_super *mpb)
1754 {
1755 return __le32_to_cpu(mpb->bbm_log_size);
1756 }
1757
1758 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1759 int raiddisks, int chunk, unsigned long long size,
1760 char *dev, unsigned long long *freesize,
1761 int verbose)
1762 {
1763 int fd, cfd;
1764 struct mdinfo *sra;
1765
1766 /* if given unused devices create a container
1767 * if given given devices in a container create a member volume
1768 */
1769 if (level == LEVEL_CONTAINER) {
1770 /* Must be a fresh device to add to a container */
1771 return validate_geometry_imsm_container(st, level, layout,
1772 raiddisks, chunk, size,
1773 dev, freesize,
1774 verbose);
1775 }
1776
1777 if (st->sb) {
1778 /* creating in a given container */
1779 return validate_geometry_imsm_volume(st, level, layout,
1780 raiddisks, chunk, size,
1781 dev, freesize, verbose);
1782 }
1783
1784 /* limit creation to the following levels */
1785 if (!dev)
1786 switch (level) {
1787 case 0:
1788 case 1:
1789 case 10:
1790 case 5:
1791 break;
1792 default:
1793 return 1;
1794 }
1795
1796 /* This device needs to be a device in an 'imsm' container */
1797 fd = open(dev, O_RDONLY|O_EXCL, 0);
1798 if (fd >= 0) {
1799 if (verbose)
1800 fprintf(stderr,
1801 Name ": Cannot create this array on device %s\n",
1802 dev);
1803 close(fd);
1804 return 0;
1805 }
1806 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1807 if (verbose)
1808 fprintf(stderr, Name ": Cannot open %s: %s\n",
1809 dev, strerror(errno));
1810 return 0;
1811 }
1812 /* Well, it is in use by someone, maybe an 'imsm' container. */
1813 cfd = open_container(fd);
1814 if (cfd < 0) {
1815 close(fd);
1816 if (verbose)
1817 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1818 dev);
1819 return 0;
1820 }
1821 sra = sysfs_read(cfd, 0, GET_VERSION);
1822 close(fd);
1823 if (sra && sra->array.major_version == -1 &&
1824 strcmp(sra->text_version, "imsm") == 0) {
1825 /* This is a member of a imsm container. Load the container
1826 * and try to create a volume
1827 */
1828 struct intel_super *super;
1829
1830 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
1831 st->sb = super;
1832 st->container_dev = fd2devnum(cfd);
1833 close(cfd);
1834 return validate_geometry_imsm_volume(st, level, layout,
1835 raiddisks, chunk,
1836 size, dev,
1837 freesize, verbose);
1838 }
1839 close(cfd);
1840 } else /* may belong to another container */
1841 return 0;
1842
1843 return 1;
1844 }
1845
1846 static struct mdinfo *container_content_imsm(struct supertype *st)
1847 {
1848 /* Given a container loaded by load_super_imsm_all,
1849 * extract information about all the arrays into
1850 * an mdinfo tree.
1851 *
1852 * For each imsm_dev create an mdinfo, fill it in,
1853 * then look for matching devices in super->disks
1854 * and create appropriate device mdinfo.
1855 */
1856 struct intel_super *super = st->sb;
1857 struct imsm_super *mpb = super->anchor;
1858 struct mdinfo *rest = NULL;
1859 int i;
1860
1861 /* do not assemble arrays that might have bad blocks */
1862 if (imsm_bbm_log_size(super->anchor)) {
1863 fprintf(stderr, Name ": BBM log found in metadata. "
1864 "Cannot activate array(s).\n");
1865 return NULL;
1866 }
1867
1868 for (i = 0; i < mpb->num_raid_devs; i++) {
1869 struct imsm_dev *dev = get_imsm_dev(super, i);
1870 struct imsm_vol *vol = &dev->vol;
1871 struct imsm_map *map = vol->map;
1872 struct mdinfo *this;
1873 int slot;
1874
1875 this = malloc(sizeof(*this));
1876 memset(this, 0, sizeof(*this));
1877 this->next = rest;
1878 rest = this;
1879
1880 this->array.level = get_imsm_raid_level(map);
1881 this->array.raid_disks = map->num_members;
1882 this->array.layout = imsm_level_to_layout(this->array.level);
1883 this->array.md_minor = -1;
1884 this->array.ctime = 0;
1885 this->array.utime = 0;
1886 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1887 this->array.state = !vol->dirty;
1888 this->container_member = i;
1889 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1890 this->resync_start = 0;
1891 else
1892 this->resync_start = ~0ULL;
1893
1894 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1895 this->name[MAX_RAID_SERIAL_LEN] = 0;
1896
1897 sprintf(this->text_version, "/%s/%d",
1898 devnum2devname(st->container_dev),
1899 this->container_member);
1900
1901 memset(this->uuid, 0, sizeof(this->uuid));
1902
1903 this->component_size = __le32_to_cpu(map->blocks_per_member);
1904
1905 for (slot = 0 ; slot < map->num_members; slot++) {
1906 struct imsm_disk *disk;
1907 struct mdinfo *info_d;
1908 struct dl *d;
1909 int idx;
1910 __u32 s;
1911
1912 idx = __le32_to_cpu(map->disk_ord_tbl[slot] & ~(0xff << 24));
1913 for (d = super->disks; d ; d = d->next)
1914 if (d->index == idx)
1915 break;
1916
1917 if (d == NULL)
1918 break; /* shouldn't this be continue ?? */
1919
1920 info_d = malloc(sizeof(*info_d));
1921 if (!info_d)
1922 break; /* ditto ?? */
1923 memset(info_d, 0, sizeof(*info_d));
1924 info_d->next = this->devs;
1925 this->devs = info_d;
1926
1927 disk = get_imsm_disk(super, idx);
1928 s = __le32_to_cpu(disk->status);
1929
1930 info_d->disk.number = d->index;
1931 info_d->disk.major = d->major;
1932 info_d->disk.minor = d->minor;
1933 info_d->disk.raid_disk = slot;
1934 info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
1935 info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
1936 info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
1937
1938 this->array.working_disks++;
1939
1940 info_d->events = __le32_to_cpu(mpb->generation_num);
1941 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
1942 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
1943 if (d->devname)
1944 strcpy(info_d->name, d->devname);
1945 }
1946 }
1947
1948 return rest;
1949 }
1950
1951
1952 static int imsm_open_new(struct supertype *c, struct active_array *a,
1953 char *inst)
1954 {
1955 struct intel_super *super = c->sb;
1956 struct imsm_super *mpb = super->anchor;
1957
1958 if (atoi(inst) >= mpb->num_raid_devs) {
1959 fprintf(stderr, "%s: subarry index %d, out of range\n",
1960 __func__, atoi(inst));
1961 return -ENODEV;
1962 }
1963
1964 dprintf("imsm: open_new %s\n", inst);
1965 a->info.container_member = atoi(inst);
1966 return 0;
1967 }
1968
1969 static __u8 imsm_check_degraded(struct intel_super *super, int n, int failed)
1970 {
1971 struct imsm_dev *dev = get_imsm_dev(super, n);
1972 struct imsm_map *map = dev->vol.map;
1973
1974 if (!failed)
1975 return map->map_state;
1976
1977 switch (get_imsm_raid_level(map)) {
1978 case 0:
1979 return IMSM_T_STATE_FAILED;
1980 break;
1981 case 1:
1982 if (failed < map->num_members)
1983 return IMSM_T_STATE_DEGRADED;
1984 else
1985 return IMSM_T_STATE_FAILED;
1986 break;
1987 case 10:
1988 {
1989 /**
1990 * check to see if any mirrors have failed,
1991 * otherwise we are degraded
1992 */
1993 int device_per_mirror = 2; /* FIXME is this always the case?
1994 * and are they always adjacent?
1995 */
1996 int failed = 0;
1997 int i;
1998
1999 for (i = 0; i < map->num_members; i++) {
2000 int idx = get_imsm_disk_idx(map, i);
2001 struct imsm_disk *disk = get_imsm_disk(super, idx);
2002
2003 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2004 failed++;
2005
2006 if (failed >= device_per_mirror)
2007 return IMSM_T_STATE_FAILED;
2008
2009 /* reset 'failed' for next mirror set */
2010 if (!((i + 1) % device_per_mirror))
2011 failed = 0;
2012 }
2013
2014 return IMSM_T_STATE_DEGRADED;
2015 }
2016 case 5:
2017 if (failed < 2)
2018 return IMSM_T_STATE_DEGRADED;
2019 else
2020 return IMSM_T_STATE_FAILED;
2021 break;
2022 default:
2023 break;
2024 }
2025
2026 return map->map_state;
2027 }
2028
2029 static int imsm_count_failed(struct intel_super *super, struct imsm_map *map)
2030 {
2031 int i;
2032 int failed = 0;
2033 struct imsm_disk *disk;
2034
2035 for (i = 0; i < map->num_members; i++) {
2036 int idx = get_imsm_disk_idx(map, i);
2037
2038 disk = get_imsm_disk(super, idx);
2039 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2040 failed++;
2041 }
2042
2043 return failed;
2044 }
2045
2046 static void imsm_set_array_state(struct active_array *a, int consistent)
2047 {
2048 int inst = a->info.container_member;
2049 struct intel_super *super = a->container->sb;
2050 struct imsm_dev *dev = get_imsm_dev(super, inst);
2051 struct imsm_map *map = &dev->vol.map[0];
2052 int dirty = !consistent;
2053 int failed;
2054 __u8 map_state;
2055
2056 if (a->resync_start == ~0ULL) {
2057 failed = imsm_count_failed(super, map);
2058 map_state = imsm_check_degraded(super, inst, failed);
2059 /* complete recovery or initial resync */
2060 if (!failed)
2061 map_state = IMSM_T_STATE_NORMAL;
2062 if (map->map_state != map_state) {
2063 dprintf("imsm: map_state %d: %d\n",
2064 inst, map_state);
2065 map->map_state = map_state;
2066 super->updates_pending++;
2067 }
2068
2069 /* complete resync */
2070 if (!dirty && dev->vol.dirty) {
2071 dprintf("imsm: mark 'clean'\n");
2072 dev->vol.dirty = 0;
2073 super->updates_pending++;
2074
2075 }
2076 }
2077
2078 /* mark dirty */
2079 if (dirty && !dev->vol.dirty) {
2080 dprintf("imsm: mark 'dirty' (%llu)\n", a->resync_start);
2081 dev->vol.dirty = 1;
2082 super->updates_pending++;
2083 }
2084 }
2085
2086 static void imsm_set_disk(struct active_array *a, int n, int state)
2087 {
2088 int inst = a->info.container_member;
2089 struct intel_super *super = a->container->sb;
2090 struct imsm_dev *dev = get_imsm_dev(super, inst);
2091 struct imsm_map *map = dev->vol.map;
2092 struct imsm_disk *disk;
2093 __u32 status;
2094 int failed = 0;
2095 int new_failure = 0;
2096
2097 if (n > map->num_members)
2098 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2099 n, map->num_members - 1);
2100
2101 if (n < 0)
2102 return;
2103
2104 dprintf("imsm: set_disk %d:%x\n", n, state);
2105
2106 disk = get_imsm_disk(super, get_imsm_disk_idx(map, n));
2107
2108 /* check for new failures */
2109 status = __le32_to_cpu(disk->status);
2110 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2111 status |= FAILED_DISK;
2112 disk->status = __cpu_to_le32(status);
2113 new_failure = 1;
2114 super->updates_pending++;
2115 }
2116
2117 /* the number of failures have changed, count up 'failed' to determine
2118 * degraded / failed status
2119 */
2120 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
2121 failed = imsm_count_failed(super, map);
2122
2123 /* determine map_state based on failed or in_sync count */
2124 if (failed)
2125 map->map_state = imsm_check_degraded(super, inst, failed);
2126 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2127 struct mdinfo *d;
2128 int working = 0;
2129
2130 for (d = a->info.devs ; d ; d = d->next)
2131 if (d->curr_state & DS_INSYNC)
2132 working++;
2133
2134 if (working == a->info.array.raid_disks) {
2135 map->map_state = IMSM_T_STATE_NORMAL;
2136 super->updates_pending++;
2137 }
2138 }
2139 }
2140
2141 static int store_imsm_mpb(int fd, struct intel_super *super)
2142 {
2143 struct imsm_super *mpb = super->anchor;
2144 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2145 unsigned long long dsize;
2146 unsigned long long sectors;
2147
2148 get_dev_size(fd, NULL, &dsize);
2149
2150 if (mpb_size > 512) {
2151 /* -1 to account for anchor */
2152 sectors = mpb_sectors(mpb) - 1;
2153
2154 /* write the extended mpb to the sectors preceeding the anchor */
2155 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2156 return 1;
2157
2158 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2159 return 1;
2160 }
2161
2162 /* first block is stored on second to last sector of the disk */
2163 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2164 return 1;
2165
2166 if (write(fd, super->buf, 512) != 512)
2167 return 1;
2168
2169 return 0;
2170 }
2171
2172 static void imsm_sync_metadata(struct supertype *container)
2173 {
2174 struct intel_super *super = container->sb;
2175
2176 if (!super->updates_pending)
2177 return;
2178
2179 write_super_imsm(super, 0);
2180
2181 super->updates_pending = 0;
2182 }
2183
2184 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2185 struct metadata_update **updates)
2186 {
2187 /**
2188 * Take a device that is marked spare in the metadata and use it to
2189 * replace a failed/vacant slot in an array. There may be a case where
2190 * a device is failed in one array but active in a second.
2191 * imsm_process_update catches this case and does not clear the SPARE_DISK
2192 * flag, allowing the second array to start using the device on failure.
2193 * SPARE_DISK is cleared when all arrays are using a device.
2194 *
2195 * FIXME: is this a valid use of SPARE_DISK?
2196 */
2197
2198 struct intel_super *super = a->container->sb;
2199 int inst = a->info.container_member;
2200 struct imsm_dev *dev = get_imsm_dev(super, inst);
2201 struct imsm_map *map = dev->vol.map;
2202 int failed = a->info.array.raid_disks;
2203 struct mdinfo *rv = NULL;
2204 struct mdinfo *d;
2205 struct mdinfo *di;
2206 struct metadata_update *mu;
2207 struct dl *dl;
2208 struct imsm_update_activate_spare *u;
2209 int num_spares = 0;
2210 int i;
2211
2212 for (d = a->info.devs ; d ; d = d->next) {
2213 if ((d->curr_state & DS_FAULTY) &&
2214 d->state_fd >= 0)
2215 /* wait for Removal to happen */
2216 return NULL;
2217 if (d->state_fd >= 0)
2218 failed--;
2219 }
2220
2221 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2222 inst, failed, a->info.array.raid_disks, a->info.array.level);
2223 if (imsm_check_degraded(super, inst, failed) != IMSM_T_STATE_DEGRADED)
2224 return NULL;
2225
2226 /* For each slot, if it is not working, find a spare */
2227 dl = super->disks;
2228 for (i = 0; i < a->info.array.raid_disks; i++) {
2229 for (d = a->info.devs ; d ; d = d->next)
2230 if (d->disk.raid_disk == i)
2231 break;
2232 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2233 if (d && (d->state_fd >= 0))
2234 continue;
2235
2236 /* OK, this device needs recovery. Find a spare */
2237 for ( ; dl ; dl = dl->next) {
2238 unsigned long long esize;
2239 unsigned long long pos;
2240 struct mdinfo *d2;
2241 struct extent *ex;
2242 struct imsm_disk *disk;
2243 int j;
2244 int found;
2245 __u32 array_start;
2246
2247 /* If in this array, skip */
2248 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2249 if (d2->disk.major == dl->major &&
2250 d2->disk.minor == dl->minor) {
2251 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2252 break;
2253 }
2254 if (d2)
2255 continue;
2256
2257 /* is this unused device marked as a spare? */
2258 disk = get_imsm_disk(super, dl->index);
2259 if (!(__le32_to_cpu(disk->status) & SPARE_DISK))
2260 continue;
2261
2262 /* We are allowed to use this device - is there space?
2263 * We need a->info.component_size sectors */
2264 ex = get_extents(super, dl);
2265 if (!ex) {
2266 dprintf("cannot get extents\n");
2267 continue;
2268 }
2269 found = 0;
2270 j = 0;
2271 pos = 0;
2272 array_start = __le32_to_cpu(map->pba_of_lba0);
2273
2274 do {
2275 /* check that we can start at pba_of_lba0 with
2276 * a->info.component_size of space
2277 */
2278 esize = ex[j].start - pos;
2279 if (array_start >= pos &&
2280 array_start + a->info.component_size < ex[j].start) {
2281 found = 1;
2282 break;
2283 }
2284 pos = ex[j].start + ex[j].size;
2285 j++;
2286
2287 } while (ex[j-1].size);
2288
2289 free(ex);
2290 if (!found) {
2291 dprintf("%x:%x does not have %llu at %d\n",
2292 dl->major, dl->minor,
2293 a->info.component_size,
2294 __le32_to_cpu(map->pba_of_lba0));
2295 /* No room */
2296 continue;
2297 }
2298
2299 /* found a usable disk with enough space */
2300 di = malloc(sizeof(*di));
2301 memset(di, 0, sizeof(*di));
2302 di->disk.number = dl->index;
2303 di->disk.raid_disk = i;
2304 di->disk.major = dl->major;
2305 di->disk.minor = dl->minor;
2306 di->disk.state = 0;
2307 di->data_offset = array_start;
2308 di->component_size = a->info.component_size;
2309 di->container_member = inst;
2310 di->next = rv;
2311 rv = di;
2312 num_spares++;
2313 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2314 i, pos);
2315
2316 break;
2317 }
2318 }
2319
2320 if (!rv)
2321 /* No spares found */
2322 return rv;
2323 /* Now 'rv' has a list of devices to return.
2324 * Create a metadata_update record to update the
2325 * disk_ord_tbl for the array
2326 */
2327 mu = malloc(sizeof(*mu));
2328 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2329 mu->space = NULL;
2330 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2331 mu->next = *updates;
2332 u = (struct imsm_update_activate_spare *) mu->buf;
2333
2334 for (di = rv ; di ; di = di->next) {
2335 u->type = update_activate_spare;
2336 u->disk_idx = di->disk.number;
2337 u->slot = di->disk.raid_disk;
2338 u->array = inst;
2339 u->next = u + 1;
2340 u++;
2341 }
2342 (u-1)->next = NULL;
2343 *updates = mu;
2344
2345 return rv;
2346 }
2347
2348 static int weight(unsigned int field)
2349 {
2350 int weight;
2351
2352 for (weight = 0; field; weight++)
2353 field &= field - 1;
2354
2355 return weight;
2356 }
2357
2358 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2359 {
2360 int i;
2361 int j;
2362 int idx;
2363
2364 for (i = 0; i < m1->num_members; i++) {
2365 idx = get_imsm_disk_idx(m1, i);
2366 for (j = 0; j < m2->num_members; j++)
2367 if (idx == get_imsm_disk_idx(m2, j))
2368 return 1;
2369 }
2370
2371 return 0;
2372 }
2373
2374 static void imsm_process_update(struct supertype *st,
2375 struct metadata_update *update)
2376 {
2377 /**
2378 * crack open the metadata_update envelope to find the update record
2379 * update can be one of:
2380 * update_activate_spare - a spare device has replaced a failed
2381 * device in an array, update the disk_ord_tbl. If this disk is
2382 * present in all member arrays then also clear the SPARE_DISK
2383 * flag
2384 */
2385 struct intel_super *super = st->sb;
2386 struct imsm_super *mpb = super->anchor;
2387 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2388
2389 switch (type) {
2390 case update_activate_spare: {
2391 struct imsm_update_activate_spare *u = (void *) update->buf;
2392 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2393 struct imsm_map *map = &dev->vol.map[0];
2394 struct active_array *a;
2395 struct imsm_disk *disk;
2396 __u32 status;
2397 struct dl *dl;
2398 struct mdinfo *d;
2399 unsigned int members;
2400 unsigned int found;
2401 int victim;
2402 int i;
2403
2404 for (dl = super->disks; dl; dl = dl->next)
2405 if (dl->index == u->disk_idx)
2406 break;
2407
2408 if (!dl) {
2409 fprintf(stderr, "error: imsm_activate_spare passed "
2410 "an unknown disk_idx: %d\n", u->disk_idx);
2411 return;
2412 }
2413
2414 super->updates_pending++;
2415
2416 victim = get_imsm_disk_idx(map, u->slot);
2417 map->disk_ord_tbl[u->slot] = __cpu_to_le32(u->disk_idx);
2418 disk = get_imsm_disk(super, u->disk_idx);
2419 status = __le32_to_cpu(disk->status);
2420 status |= CONFIGURED_DISK;
2421 disk->status = __cpu_to_le32(status);
2422
2423 /* map unique/live arrays using the spare */
2424 members = 0;
2425 found = 0;
2426 for (a = st->arrays; a; a = a->next) {
2427 int inst = a->info.container_member;
2428
2429 dev = get_imsm_dev(super, inst);
2430 map = &dev->vol.map[0];
2431 if (map->raid_level > 0)
2432 members |= 1 << inst;
2433 for (d = a->info.devs; d; d = d->next)
2434 if (d->disk.major == dl->major &&
2435 d->disk.minor == dl->minor)
2436 found |= 1 << inst;
2437 }
2438
2439 /* until all arrays that can absorb this disk have absorbed
2440 * this disk it can still be considered a spare
2441 */
2442 if (weight(found) >= weight(members)) {
2443 status = __le32_to_cpu(disk->status);
2444 status &= ~SPARE_DISK;
2445 disk->status = __cpu_to_le32(status);
2446 }
2447
2448 /* count arrays using the victim in the metadata */
2449 found = 0;
2450 for (a = st->arrays; a ; a = a->next) {
2451 dev = get_imsm_dev(super, a->info.container_member);
2452 map = &dev->vol.map[0];
2453 for (i = 0; i < map->num_members; i++)
2454 if (victim == get_imsm_disk_idx(map, i))
2455 found++;
2456 }
2457
2458 /* clear some flags if the victim is no longer being
2459 * utilized anywhere
2460 */
2461 disk = get_imsm_disk(super, victim);
2462 if (!found) {
2463 status = __le32_to_cpu(disk->status);
2464 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2465 disk->status = __cpu_to_le32(status);
2466 }
2467 break;
2468 }
2469 case update_create_array: {
2470 /* someone wants to create a new array, we need to be aware of
2471 * a few races/collisions:
2472 * 1/ 'Create' called by two separate instances of mdadm
2473 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2474 * devices that have since been assimilated via
2475 * activate_spare.
2476 * In the event this update can not be carried out mdadm will
2477 * (FIX ME) notice that its update did not take hold.
2478 */
2479 struct imsm_update_create_array *u = (void *) update->buf;
2480 struct imsm_dev *dev;
2481 struct imsm_map *map, *new_map;
2482 unsigned long long start, end;
2483 unsigned long long new_start, new_end;
2484 int i;
2485 int overlap = 0;
2486
2487 /* handle racing creates: first come first serve */
2488 if (u->dev_idx < mpb->num_raid_devs) {
2489 dprintf("%s: subarray %d already defined\n",
2490 __func__, u->dev_idx);
2491 return;
2492 }
2493
2494 /* check update is next in sequence */
2495 if (u->dev_idx != mpb->num_raid_devs) {
2496 dprintf("%s: can not create arrays out of sequence\n",
2497 __func__);
2498 return;
2499 }
2500
2501 new_map = &u->dev.vol.map[0];
2502 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2503 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2504
2505 /* handle activate_spare versus create race:
2506 * check to make sure that overlapping arrays do not include
2507 * overalpping disks
2508 */
2509 for (i = 0; i < mpb->num_raid_devs; i++) {
2510 dev = get_imsm_dev(super, i);
2511 map = &dev->vol.map[0];
2512 start = __le32_to_cpu(map->pba_of_lba0);
2513 end = start + __le32_to_cpu(map->blocks_per_member);
2514 if ((new_start >= start && new_start <= end) ||
2515 (start >= new_start && start <= new_end))
2516 overlap = 1;
2517 if (overlap && disks_overlap(map, new_map)) {
2518 dprintf("%s: arrays overlap\n", __func__);
2519 return;
2520 }
2521 }
2522 /* check num_members sanity */
2523 if (new_map->num_members > mpb->num_disks) {
2524 dprintf("%s: num_disks out of range\n", __func__);
2525 return;
2526 }
2527
2528 /* check that prepare update was successful */
2529 if (!update->space) {
2530 dprintf("%s: prepare update failed\n", __func__);
2531 return;
2532 }
2533
2534 super->updates_pending++;
2535 dev = update->space;
2536 update->space = NULL;
2537 imsm_copy_dev(dev, &u->dev);
2538 super->dev_tbl[u->dev_idx] = dev;
2539 mpb->num_raid_devs++;
2540
2541 /* fix up flags, if arrays overlap then the drives can not be
2542 * spares
2543 */
2544 for (i = 0; i < map->num_members; i++) {
2545 struct imsm_disk *disk;
2546 __u32 status;
2547
2548 disk = get_imsm_disk(super, get_imsm_disk_idx(map, i));
2549 status = __le32_to_cpu(disk->status);
2550 status |= CONFIGURED_DISK;
2551 if (overlap)
2552 status &= ~SPARE_DISK;
2553 disk->status = __cpu_to_le32(status);
2554 }
2555 break;
2556 }
2557 }
2558 }
2559
2560 static void imsm_prepare_update(struct supertype *st,
2561 struct metadata_update *update)
2562 {
2563 /**
2564 * Allocate space to hold new disk entries, raid-device entries or a
2565 * new mpb if necessary. We currently maintain an mpb large enough to
2566 * hold 2 subarrays for the given number of disks. This may not be
2567 * sufficient when reshaping.
2568 *
2569 * FIX ME handle the reshape case.
2570 *
2571 * The monitor will be able to safely change super->mpb by arranging
2572 * for it to be freed in check_update_queue(). I.e. the monitor thread
2573 * will start using the new pointer and the manager can continue to use
2574 * the old value until check_update_queue() runs.
2575 */
2576 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2577
2578 switch (type) {
2579 case update_create_array: {
2580 struct imsm_update_create_array *u = (void *) update->buf;
2581 size_t len = sizeof_imsm_dev(&u->dev);
2582
2583 update->space = malloc(len);
2584 break;
2585 default:
2586 break;
2587 }
2588 }
2589
2590 return;
2591 }
2592
2593 struct superswitch super_imsm = {
2594 #ifndef MDASSEMBLE
2595 .examine_super = examine_super_imsm,
2596 .brief_examine_super = brief_examine_super_imsm,
2597 .detail_super = detail_super_imsm,
2598 .brief_detail_super = brief_detail_super_imsm,
2599 .write_init_super = write_init_super_imsm,
2600 #endif
2601 .match_home = match_home_imsm,
2602 .uuid_from_super= uuid_from_super_imsm,
2603 .getinfo_super = getinfo_super_imsm,
2604 .update_super = update_super_imsm,
2605
2606 .avail_size = avail_size_imsm,
2607
2608 .compare_super = compare_super_imsm,
2609
2610 .load_super = load_super_imsm,
2611 .init_super = init_super_imsm,
2612 .add_to_super = add_to_super_imsm,
2613 .store_super = store_zero_imsm,
2614 .free_super = free_super_imsm,
2615 .match_metadata_desc = match_metadata_desc_imsm,
2616 .container_content = container_content_imsm,
2617
2618 .validate_geometry = validate_geometry_imsm,
2619 .external = 1,
2620
2621 /* for mdmon */
2622 .open_new = imsm_open_new,
2623 .load_super = load_super_imsm,
2624 .set_array_state= imsm_set_array_state,
2625 .set_disk = imsm_set_disk,
2626 .sync_metadata = imsm_sync_metadata,
2627 .activate_spare = imsm_activate_spare,
2628 .process_update = imsm_process_update,
2629 .prepare_update = imsm_prepare_update,
2630 };