]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Add spare disks information to array description
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 unsigned index;
234 };
235
236 struct intel_hba {
237 enum sys_dev_type type;
238 char *path;
239 char *pci_id;
240 struct intel_hba *next;
241 };
242
243 enum action {
244 DISK_REMOVE = 1,
245 DISK_ADD
246 };
247 /* internal representation of IMSM metadata */
248 struct intel_super {
249 union {
250 void *buf; /* O_DIRECT buffer for reading/writing metadata */
251 struct imsm_super *anchor; /* immovable parameters */
252 };
253 size_t len; /* size of the 'buf' allocation */
254 void *next_buf; /* for realloc'ing buf from the manager */
255 size_t next_len;
256 int updates_pending; /* count of pending updates for mdmon */
257 int current_vol; /* index of raid device undergoing creation */
258 __u32 create_offset; /* common start for 'current_vol' */
259 __u32 random; /* random data for seeding new family numbers */
260 struct intel_dev *devlist;
261 struct dl {
262 struct dl *next;
263 int index;
264 __u8 serial[MAX_RAID_SERIAL_LEN];
265 int major, minor;
266 char *devname;
267 struct imsm_disk disk;
268 int fd;
269 int extent_cnt;
270 struct extent *e; /* for determining freespace @ create */
271 int raiddisk; /* slot to fill in autolayout */
272 enum action action;
273 } *disks;
274 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
275 active */
276 struct dl *missing; /* disks removed while we weren't looking */
277 struct bbm_log *bbm_log;
278 struct intel_hba *hba; /* device path of the raid controller for this metadata */
279 const struct imsm_orom *orom; /* platform firmware support */
280 struct intel_super *next; /* (temp) list for disambiguating family_num */
281 };
282
283 struct intel_disk {
284 struct imsm_disk disk;
285 #define IMSM_UNKNOWN_OWNER (-1)
286 int owner;
287 struct intel_disk *next;
288 };
289
290 struct extent {
291 unsigned long long start, size;
292 };
293
294 /* definitions of reshape process types */
295 enum imsm_reshape_type {
296 CH_TAKEOVER,
297 CH_MIGRATION,
298 };
299
300 /* definition of messages passed to imsm_process_update */
301 enum imsm_update_type {
302 update_activate_spare,
303 update_create_array,
304 update_kill_array,
305 update_rename_array,
306 update_add_remove_disk,
307 update_reshape_container_disks,
308 update_takeover
309 };
310
311 struct imsm_update_activate_spare {
312 enum imsm_update_type type;
313 struct dl *dl;
314 int slot;
315 int array;
316 struct imsm_update_activate_spare *next;
317 };
318
319 struct geo_params {
320 int dev_id;
321 char *dev_name;
322 long long size;
323 int level;
324 int layout;
325 int chunksize;
326 int raid_disks;
327 };
328
329 enum takeover_direction {
330 R10_TO_R0,
331 R0_TO_R10
332 };
333 struct imsm_update_takeover {
334 enum imsm_update_type type;
335 int subarray;
336 enum takeover_direction direction;
337 };
338
339 struct imsm_update_reshape {
340 enum imsm_update_type type;
341 int old_raid_disks;
342 int new_raid_disks;
343 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
344 };
345
346 struct disk_info {
347 __u8 serial[MAX_RAID_SERIAL_LEN];
348 };
349
350 struct imsm_update_create_array {
351 enum imsm_update_type type;
352 int dev_idx;
353 struct imsm_dev dev;
354 };
355
356 struct imsm_update_kill_array {
357 enum imsm_update_type type;
358 int dev_idx;
359 };
360
361 struct imsm_update_rename_array {
362 enum imsm_update_type type;
363 __u8 name[MAX_RAID_SERIAL_LEN];
364 int dev_idx;
365 };
366
367 struct imsm_update_add_remove_disk {
368 enum imsm_update_type type;
369 };
370
371
372 static const char *_sys_dev_type[] = {
373 [SYS_DEV_UNKNOWN] = "Unknown",
374 [SYS_DEV_SAS] = "SAS",
375 [SYS_DEV_SATA] = "SATA"
376 };
377
378 const char *get_sys_dev_type(enum sys_dev_type type)
379 {
380 if (type >= SYS_DEV_MAX)
381 type = SYS_DEV_UNKNOWN;
382
383 return _sys_dev_type[type];
384 }
385
386 #ifndef MDASSEMBLE
387 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
388 {
389 struct intel_hba *result = malloc(sizeof(*result));
390 if (result) {
391 result->type = device->type;
392 result->path = strdup(device->path);
393 result->next = NULL;
394 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
395 result->pci_id++;
396 }
397 return result;
398 }
399
400 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
401 {
402 struct intel_hba *result=NULL;
403 for (result = hba; result; result = result->next) {
404 if (result->type == device->type && strcmp(result->path, device->path) == 0)
405 break;
406 }
407 return result;
408 }
409
410
411 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device,
412 const char *devname)
413 {
414 struct intel_hba *hba;
415
416 /* check if disk attached to Intel HBA */
417 hba = find_intel_hba(super->hba, device);
418 if (hba != NULL)
419 return 1;
420 /* Check if HBA is already attached to super */
421 if (super->hba == NULL) {
422 super->hba = alloc_intel_hba(device);
423 return 1;
424 }
425
426 hba = super->hba;
427 /* Intel metadata allows for all disks attached to the same type HBA.
428 * Do not sypport odf HBA types mixing
429 */
430 if (device->type != hba->type)
431 return 2;
432
433 while (hba->next)
434 hba = hba->next;
435
436 hba->next = alloc_intel_hba(device);
437 return 1;
438 }
439
440 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
441 {
442 struct sys_dev *list, *elem, *prev;
443 char *disk_path;
444
445 if ((list = find_intel_devices()) == NULL)
446 return 0;
447
448 if (fd < 0)
449 disk_path = (char *) devname;
450 else
451 disk_path = diskfd_to_devpath(fd);
452
453 if (!disk_path) {
454 free_sys_dev(&list);
455 return 0;
456 }
457
458 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
459 if (path_attached_to_hba(disk_path, elem->path)) {
460 if (prev == NULL)
461 list = list->next;
462 else
463 prev->next = elem->next;
464 elem->next = NULL;
465 if (disk_path != devname)
466 free(disk_path);
467 free_sys_dev(&list);
468 return elem;
469 }
470 }
471 if (disk_path != devname)
472 free(disk_path);
473 free_sys_dev(&list);
474
475 return NULL;
476 }
477 #endif /* MDASSEMBLE */
478
479
480 static struct supertype *match_metadata_desc_imsm(char *arg)
481 {
482 struct supertype *st;
483
484 if (strcmp(arg, "imsm") != 0 &&
485 strcmp(arg, "default") != 0
486 )
487 return NULL;
488
489 st = malloc(sizeof(*st));
490 if (!st)
491 return NULL;
492 memset(st, 0, sizeof(*st));
493 st->container_dev = NoMdDev;
494 st->ss = &super_imsm;
495 st->max_devs = IMSM_MAX_DEVICES;
496 st->minor_version = 0;
497 st->sb = NULL;
498 return st;
499 }
500
501 #ifndef MDASSEMBLE
502 static __u8 *get_imsm_version(struct imsm_super *mpb)
503 {
504 return &mpb->sig[MPB_SIG_LEN];
505 }
506 #endif
507
508 /* retrieve a disk directly from the anchor when the anchor is known to be
509 * up-to-date, currently only at load time
510 */
511 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
512 {
513 if (index >= mpb->num_disks)
514 return NULL;
515 return &mpb->disk[index];
516 }
517
518 /* retrieve the disk description based on a index of the disk
519 * in the sub-array
520 */
521 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
522 {
523 struct dl *d;
524
525 for (d = super->disks; d; d = d->next)
526 if (d->index == index)
527 return d;
528
529 return NULL;
530 }
531 /* retrieve a disk from the parsed metadata */
532 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
533 {
534 struct dl *dl;
535
536 dl = get_imsm_dl_disk(super, index);
537 if (dl)
538 return &dl->disk;
539
540 return NULL;
541 }
542
543 /* generate a checksum directly from the anchor when the anchor is known to be
544 * up-to-date, currently only at load or write_super after coalescing
545 */
546 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
547 {
548 __u32 end = mpb->mpb_size / sizeof(end);
549 __u32 *p = (__u32 *) mpb;
550 __u32 sum = 0;
551
552 while (end--) {
553 sum += __le32_to_cpu(*p);
554 p++;
555 }
556
557 return sum - __le32_to_cpu(mpb->check_sum);
558 }
559
560 static size_t sizeof_imsm_map(struct imsm_map *map)
561 {
562 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
563 }
564
565 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
566 {
567 /* A device can have 2 maps if it is in the middle of a migration.
568 * If second_map is:
569 * 0 - we return the first map
570 * 1 - we return the second map if it exists, else NULL
571 * -1 - we return the second map if it exists, else the first
572 */
573 struct imsm_map *map = &dev->vol.map[0];
574
575 if (second_map == 1 && !dev->vol.migr_state)
576 return NULL;
577 else if (second_map == 1 ||
578 (second_map < 0 && dev->vol.migr_state)) {
579 void *ptr = map;
580
581 return ptr + sizeof_imsm_map(map);
582 } else
583 return map;
584
585 }
586
587 /* return the size of the device.
588 * migr_state increases the returned size if map[0] were to be duplicated
589 */
590 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
591 {
592 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
593 sizeof_imsm_map(get_imsm_map(dev, 0));
594
595 /* migrating means an additional map */
596 if (dev->vol.migr_state)
597 size += sizeof_imsm_map(get_imsm_map(dev, 1));
598 else if (migr_state)
599 size += sizeof_imsm_map(get_imsm_map(dev, 0));
600
601 return size;
602 }
603
604 #ifndef MDASSEMBLE
605 /* retrieve disk serial number list from a metadata update */
606 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
607 {
608 void *u = update;
609 struct disk_info *inf;
610
611 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
612 sizeof_imsm_dev(&update->dev, 0);
613
614 return inf;
615 }
616 #endif
617
618 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
619 {
620 int offset;
621 int i;
622 void *_mpb = mpb;
623
624 if (index >= mpb->num_raid_devs)
625 return NULL;
626
627 /* devices start after all disks */
628 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
629
630 for (i = 0; i <= index; i++)
631 if (i == index)
632 return _mpb + offset;
633 else
634 offset += sizeof_imsm_dev(_mpb + offset, 0);
635
636 return NULL;
637 }
638
639 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
640 {
641 struct intel_dev *dv;
642
643 if (index >= super->anchor->num_raid_devs)
644 return NULL;
645 for (dv = super->devlist; dv; dv = dv->next)
646 if (dv->index == index)
647 return dv->dev;
648 return NULL;
649 }
650
651 /*
652 * for second_map:
653 * == 0 get first map
654 * == 1 get second map
655 * == -1 than get map according to the current migr_state
656 */
657 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
658 int slot,
659 int second_map)
660 {
661 struct imsm_map *map;
662
663 map = get_imsm_map(dev, second_map);
664
665 /* top byte identifies disk under rebuild */
666 return __le32_to_cpu(map->disk_ord_tbl[slot]);
667 }
668
669 #define ord_to_idx(ord) (((ord) << 8) >> 8)
670 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
671 {
672 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
673
674 return ord_to_idx(ord);
675 }
676
677 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
678 {
679 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
680 }
681
682 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
683 {
684 int slot;
685 __u32 ord;
686
687 for (slot = 0; slot < map->num_members; slot++) {
688 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
689 if (ord_to_idx(ord) == idx)
690 return slot;
691 }
692
693 return -1;
694 }
695
696 static int get_imsm_raid_level(struct imsm_map *map)
697 {
698 if (map->raid_level == 1) {
699 if (map->num_members == 2)
700 return 1;
701 else
702 return 10;
703 }
704
705 return map->raid_level;
706 }
707
708 static int cmp_extent(const void *av, const void *bv)
709 {
710 const struct extent *a = av;
711 const struct extent *b = bv;
712 if (a->start < b->start)
713 return -1;
714 if (a->start > b->start)
715 return 1;
716 return 0;
717 }
718
719 static int count_memberships(struct dl *dl, struct intel_super *super)
720 {
721 int memberships = 0;
722 int i;
723
724 for (i = 0; i < super->anchor->num_raid_devs; i++) {
725 struct imsm_dev *dev = get_imsm_dev(super, i);
726 struct imsm_map *map = get_imsm_map(dev, 0);
727
728 if (get_imsm_disk_slot(map, dl->index) >= 0)
729 memberships++;
730 }
731
732 return memberships;
733 }
734
735 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
736 {
737 /* find a list of used extents on the given physical device */
738 struct extent *rv, *e;
739 int i;
740 int memberships = count_memberships(dl, super);
741 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
742
743 rv = malloc(sizeof(struct extent) * (memberships + 1));
744 if (!rv)
745 return NULL;
746 e = rv;
747
748 for (i = 0; i < super->anchor->num_raid_devs; i++) {
749 struct imsm_dev *dev = get_imsm_dev(super, i);
750 struct imsm_map *map = get_imsm_map(dev, 0);
751
752 if (get_imsm_disk_slot(map, dl->index) >= 0) {
753 e->start = __le32_to_cpu(map->pba_of_lba0);
754 e->size = __le32_to_cpu(map->blocks_per_member);
755 e++;
756 }
757 }
758 qsort(rv, memberships, sizeof(*rv), cmp_extent);
759
760 /* determine the start of the metadata
761 * when no raid devices are defined use the default
762 * ...otherwise allow the metadata to truncate the value
763 * as is the case with older versions of imsm
764 */
765 if (memberships) {
766 struct extent *last = &rv[memberships - 1];
767 __u32 remainder;
768
769 remainder = __le32_to_cpu(dl->disk.total_blocks) -
770 (last->start + last->size);
771 /* round down to 1k block to satisfy precision of the kernel
772 * 'size' interface
773 */
774 remainder &= ~1UL;
775 /* make sure remainder is still sane */
776 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
777 remainder = ROUND_UP(super->len, 512) >> 9;
778 if (reservation > remainder)
779 reservation = remainder;
780 }
781 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
782 e->size = 0;
783 return rv;
784 }
785
786 /* try to determine how much space is reserved for metadata from
787 * the last get_extents() entry, otherwise fallback to the
788 * default
789 */
790 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
791 {
792 struct extent *e;
793 int i;
794 __u32 rv;
795
796 /* for spares just return a minimal reservation which will grow
797 * once the spare is picked up by an array
798 */
799 if (dl->index == -1)
800 return MPB_SECTOR_CNT;
801
802 e = get_extents(super, dl);
803 if (!e)
804 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
805
806 /* scroll to last entry */
807 for (i = 0; e[i].size; i++)
808 continue;
809
810 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
811
812 free(e);
813
814 return rv;
815 }
816
817 static int is_spare(struct imsm_disk *disk)
818 {
819 return (disk->status & SPARE_DISK) == SPARE_DISK;
820 }
821
822 static int is_configured(struct imsm_disk *disk)
823 {
824 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
825 }
826
827 static int is_failed(struct imsm_disk *disk)
828 {
829 return (disk->status & FAILED_DISK) == FAILED_DISK;
830 }
831
832 /* Return minimum size of a spare that can be used in this array*/
833 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
834 {
835 struct intel_super *super = st->sb;
836 struct dl *dl;
837 struct extent *e;
838 int i;
839 unsigned long long rv = 0;
840
841 if (!super)
842 return rv;
843 /* find first active disk in array */
844 dl = super->disks;
845 while (dl && (is_failed(&dl->disk) || dl->index == -1))
846 dl = dl->next;
847 if (!dl)
848 return rv;
849 /* find last lba used by subarrays */
850 e = get_extents(super, dl);
851 if (!e)
852 return rv;
853 for (i = 0; e[i].size; i++)
854 continue;
855 if (i > 0)
856 rv = e[i-1].start + e[i-1].size;
857 free(e);
858 /* add the amount of space needed for metadata */
859 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
860 return rv * 512;
861 }
862
863 #ifndef MDASSEMBLE
864 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
865
866 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
867 {
868 __u64 sz;
869 int slot, i;
870 struct imsm_map *map = get_imsm_map(dev, 0);
871 struct imsm_map *map2 = get_imsm_map(dev, 1);
872 __u32 ord;
873
874 printf("\n");
875 printf("[%.16s]:\n", dev->volume);
876 printf(" UUID : %s\n", uuid);
877 printf(" RAID Level : %d", get_imsm_raid_level(map));
878 if (map2)
879 printf(" <-- %d", get_imsm_raid_level(map2));
880 printf("\n");
881 printf(" Members : %d", map->num_members);
882 if (map2)
883 printf(" <-- %d", map2->num_members);
884 printf("\n");
885 printf(" Slots : [");
886 for (i = 0; i < map->num_members; i++) {
887 ord = get_imsm_ord_tbl_ent(dev, i, 0);
888 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
889 }
890 printf("]");
891 if (map2) {
892 printf(" <-- [");
893 for (i = 0; i < map2->num_members; i++) {
894 ord = get_imsm_ord_tbl_ent(dev, i, 1);
895 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
896 }
897 printf("]");
898 }
899 printf("\n");
900 printf(" Failed disk : ");
901 if (map->failed_disk_num == 0xff)
902 printf("none");
903 else
904 printf("%i", map->failed_disk_num);
905 printf("\n");
906 slot = get_imsm_disk_slot(map, disk_idx);
907 if (slot >= 0) {
908 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
909 printf(" This Slot : %d%s\n", slot,
910 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
911 } else
912 printf(" This Slot : ?\n");
913 sz = __le32_to_cpu(dev->size_high);
914 sz <<= 32;
915 sz += __le32_to_cpu(dev->size_low);
916 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
917 human_size(sz * 512));
918 sz = __le32_to_cpu(map->blocks_per_member);
919 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
920 human_size(sz * 512));
921 printf(" Sector Offset : %u\n",
922 __le32_to_cpu(map->pba_of_lba0));
923 printf(" Num Stripes : %u\n",
924 __le32_to_cpu(map->num_data_stripes));
925 printf(" Chunk Size : %u KiB",
926 __le16_to_cpu(map->blocks_per_strip) / 2);
927 if (map2)
928 printf(" <-- %u KiB",
929 __le16_to_cpu(map2->blocks_per_strip) / 2);
930 printf("\n");
931 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
932 printf(" Migrate State : ");
933 if (dev->vol.migr_state) {
934 if (migr_type(dev) == MIGR_INIT)
935 printf("initialize\n");
936 else if (migr_type(dev) == MIGR_REBUILD)
937 printf("rebuild\n");
938 else if (migr_type(dev) == MIGR_VERIFY)
939 printf("check\n");
940 else if (migr_type(dev) == MIGR_GEN_MIGR)
941 printf("general migration\n");
942 else if (migr_type(dev) == MIGR_STATE_CHANGE)
943 printf("state change\n");
944 else if (migr_type(dev) == MIGR_REPAIR)
945 printf("repair\n");
946 else
947 printf("<unknown:%d>\n", migr_type(dev));
948 } else
949 printf("idle\n");
950 printf(" Map State : %s", map_state_str[map->map_state]);
951 if (dev->vol.migr_state) {
952 struct imsm_map *map = get_imsm_map(dev, 1);
953
954 printf(" <-- %s", map_state_str[map->map_state]);
955 printf("\n Checkpoint : %u (%llu)",
956 __le32_to_cpu(dev->vol.curr_migr_unit),
957 (unsigned long long)blocks_per_migr_unit(dev));
958 }
959 printf("\n");
960 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
961 }
962
963 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
964 {
965 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
966 char str[MAX_RAID_SERIAL_LEN + 1];
967 __u64 sz;
968
969 if (index < 0 || !disk)
970 return;
971
972 printf("\n");
973 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
974 printf(" Disk%02d Serial : %s\n", index, str);
975 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
976 is_configured(disk) ? " active" : "",
977 is_failed(disk) ? " failed" : "");
978 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
979 sz = __le32_to_cpu(disk->total_blocks) - reserved;
980 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
981 human_size(sz * 512));
982 }
983
984 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
985
986 static void examine_super_imsm(struct supertype *st, char *homehost)
987 {
988 struct intel_super *super = st->sb;
989 struct imsm_super *mpb = super->anchor;
990 char str[MAX_SIGNATURE_LENGTH];
991 int i;
992 struct mdinfo info;
993 char nbuf[64];
994 __u32 sum;
995 __u32 reserved = imsm_reserved_sectors(super, super->disks);
996 struct dl *dl;
997
998 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
999 printf(" Magic : %s\n", str);
1000 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1001 printf(" Version : %s\n", get_imsm_version(mpb));
1002 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1003 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1004 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1005 getinfo_super_imsm(st, &info, NULL);
1006 fname_from_uuid(st, &info, nbuf, ':');
1007 printf(" UUID : %s\n", nbuf + 5);
1008 sum = __le32_to_cpu(mpb->check_sum);
1009 printf(" Checksum : %08x %s\n", sum,
1010 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1011 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1012 printf(" Disks : %d\n", mpb->num_disks);
1013 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1014 print_imsm_disk(mpb, super->disks->index, reserved);
1015 if (super->bbm_log) {
1016 struct bbm_log *log = super->bbm_log;
1017
1018 printf("\n");
1019 printf("Bad Block Management Log:\n");
1020 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1021 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1022 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1023 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1024 printf(" First Spare : %llx\n",
1025 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1026 }
1027 for (i = 0; i < mpb->num_raid_devs; i++) {
1028 struct mdinfo info;
1029 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1030
1031 super->current_vol = i;
1032 getinfo_super_imsm(st, &info, NULL);
1033 fname_from_uuid(st, &info, nbuf, ':');
1034 print_imsm_dev(dev, nbuf + 5, super->disks->index);
1035 }
1036 for (i = 0; i < mpb->num_disks; i++) {
1037 if (i == super->disks->index)
1038 continue;
1039 print_imsm_disk(mpb, i, reserved);
1040 }
1041 for (dl = super->disks ; dl; dl = dl->next) {
1042 struct imsm_disk *disk;
1043 char str[MAX_RAID_SERIAL_LEN + 1];
1044 __u64 sz;
1045
1046 if (dl->index >= 0)
1047 continue;
1048
1049 disk = &dl->disk;
1050 printf("\n");
1051 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1052 printf(" Disk Serial : %s\n", str);
1053 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1054 is_configured(disk) ? " active" : "",
1055 is_failed(disk) ? " failed" : "");
1056 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1057 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1058 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1059 human_size(sz * 512));
1060 }
1061 }
1062
1063 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1064 {
1065 /* We just write a generic IMSM ARRAY entry */
1066 struct mdinfo info;
1067 char nbuf[64];
1068 struct intel_super *super = st->sb;
1069
1070 if (!super->anchor->num_raid_devs) {
1071 printf("ARRAY metadata=imsm\n");
1072 return;
1073 }
1074
1075 getinfo_super_imsm(st, &info, NULL);
1076 fname_from_uuid(st, &info, nbuf, ':');
1077 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1078 }
1079
1080 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1081 {
1082 /* We just write a generic IMSM ARRAY entry */
1083 struct mdinfo info;
1084 char nbuf[64];
1085 char nbuf1[64];
1086 struct intel_super *super = st->sb;
1087 int i;
1088
1089 if (!super->anchor->num_raid_devs)
1090 return;
1091
1092 getinfo_super_imsm(st, &info, NULL);
1093 fname_from_uuid(st, &info, nbuf, ':');
1094 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1095 struct imsm_dev *dev = get_imsm_dev(super, i);
1096
1097 super->current_vol = i;
1098 getinfo_super_imsm(st, &info, NULL);
1099 fname_from_uuid(st, &info, nbuf1, ':');
1100 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1101 dev->volume, nbuf + 5, i, nbuf1 + 5);
1102 }
1103 }
1104
1105 static void export_examine_super_imsm(struct supertype *st)
1106 {
1107 struct intel_super *super = st->sb;
1108 struct imsm_super *mpb = super->anchor;
1109 struct mdinfo info;
1110 char nbuf[64];
1111
1112 getinfo_super_imsm(st, &info, NULL);
1113 fname_from_uuid(st, &info, nbuf, ':');
1114 printf("MD_METADATA=imsm\n");
1115 printf("MD_LEVEL=container\n");
1116 printf("MD_UUID=%s\n", nbuf+5);
1117 printf("MD_DEVICES=%u\n", mpb->num_disks);
1118 }
1119
1120 static void detail_super_imsm(struct supertype *st, char *homehost)
1121 {
1122 struct mdinfo info;
1123 char nbuf[64];
1124
1125 getinfo_super_imsm(st, &info, NULL);
1126 fname_from_uuid(st, &info, nbuf, ':');
1127 printf("\n UUID : %s\n", nbuf + 5);
1128 }
1129
1130 static void brief_detail_super_imsm(struct supertype *st)
1131 {
1132 struct mdinfo info;
1133 char nbuf[64];
1134 getinfo_super_imsm(st, &info, NULL);
1135 fname_from_uuid(st, &info, nbuf, ':');
1136 printf(" UUID=%s", nbuf + 5);
1137 }
1138
1139 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1140 static void fd2devname(int fd, char *name);
1141
1142 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1143 {
1144 /* dump an unsorted list of devices attached to AHCI Intel storage
1145 * controller, as well as non-connected ports
1146 */
1147 int hba_len = strlen(hba_path) + 1;
1148 struct dirent *ent;
1149 DIR *dir;
1150 char *path = NULL;
1151 int err = 0;
1152 unsigned long port_mask = (1 << port_count) - 1;
1153
1154 if (port_count > (int)sizeof(port_mask) * 8) {
1155 if (verbose)
1156 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1157 return 2;
1158 }
1159
1160 /* scroll through /sys/dev/block looking for devices attached to
1161 * this hba
1162 */
1163 dir = opendir("/sys/dev/block");
1164 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1165 int fd;
1166 char model[64];
1167 char vendor[64];
1168 char buf[1024];
1169 int major, minor;
1170 char *device;
1171 char *c;
1172 int port;
1173 int type;
1174
1175 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1176 continue;
1177 path = devt_to_devpath(makedev(major, minor));
1178 if (!path)
1179 continue;
1180 if (!path_attached_to_hba(path, hba_path)) {
1181 free(path);
1182 path = NULL;
1183 continue;
1184 }
1185
1186 /* retrieve the scsi device type */
1187 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1188 if (verbose)
1189 fprintf(stderr, Name ": failed to allocate 'device'\n");
1190 err = 2;
1191 break;
1192 }
1193 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1194 if (load_sys(device, buf) != 0) {
1195 if (verbose)
1196 fprintf(stderr, Name ": failed to read device type for %s\n",
1197 path);
1198 err = 2;
1199 free(device);
1200 break;
1201 }
1202 type = strtoul(buf, NULL, 10);
1203
1204 /* if it's not a disk print the vendor and model */
1205 if (!(type == 0 || type == 7 || type == 14)) {
1206 vendor[0] = '\0';
1207 model[0] = '\0';
1208 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1209 if (load_sys(device, buf) == 0) {
1210 strncpy(vendor, buf, sizeof(vendor));
1211 vendor[sizeof(vendor) - 1] = '\0';
1212 c = (char *) &vendor[sizeof(vendor) - 1];
1213 while (isspace(*c) || *c == '\0')
1214 *c-- = '\0';
1215
1216 }
1217 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1218 if (load_sys(device, buf) == 0) {
1219 strncpy(model, buf, sizeof(model));
1220 model[sizeof(model) - 1] = '\0';
1221 c = (char *) &model[sizeof(model) - 1];
1222 while (isspace(*c) || *c == '\0')
1223 *c-- = '\0';
1224 }
1225
1226 if (vendor[0] && model[0])
1227 sprintf(buf, "%.64s %.64s", vendor, model);
1228 else
1229 switch (type) { /* numbers from hald/linux/device.c */
1230 case 1: sprintf(buf, "tape"); break;
1231 case 2: sprintf(buf, "printer"); break;
1232 case 3: sprintf(buf, "processor"); break;
1233 case 4:
1234 case 5: sprintf(buf, "cdrom"); break;
1235 case 6: sprintf(buf, "scanner"); break;
1236 case 8: sprintf(buf, "media_changer"); break;
1237 case 9: sprintf(buf, "comm"); break;
1238 case 12: sprintf(buf, "raid"); break;
1239 default: sprintf(buf, "unknown");
1240 }
1241 } else
1242 buf[0] = '\0';
1243 free(device);
1244
1245 /* chop device path to 'host%d' and calculate the port number */
1246 c = strchr(&path[hba_len], '/');
1247 if (!c) {
1248 if (verbose)
1249 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1250 err = 2;
1251 break;
1252 }
1253 *c = '\0';
1254 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1255 port -= host_base;
1256 else {
1257 if (verbose) {
1258 *c = '/'; /* repair the full string */
1259 fprintf(stderr, Name ": failed to determine port number for %s\n",
1260 path);
1261 }
1262 err = 2;
1263 break;
1264 }
1265
1266 /* mark this port as used */
1267 port_mask &= ~(1 << port);
1268
1269 /* print out the device information */
1270 if (buf[0]) {
1271 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1272 continue;
1273 }
1274
1275 fd = dev_open(ent->d_name, O_RDONLY);
1276 if (fd < 0)
1277 printf(" Port%d : - disk info unavailable -\n", port);
1278 else {
1279 fd2devname(fd, buf);
1280 printf(" Port%d : %s", port, buf);
1281 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1282 printf(" (%s)\n", buf);
1283 else
1284 printf("()\n");
1285 }
1286 close(fd);
1287 free(path);
1288 path = NULL;
1289 }
1290 if (path)
1291 free(path);
1292 if (dir)
1293 closedir(dir);
1294 if (err == 0) {
1295 int i;
1296
1297 for (i = 0; i < port_count; i++)
1298 if (port_mask & (1 << i))
1299 printf(" Port%d : - no device attached -\n", i);
1300 }
1301
1302 return err;
1303 }
1304
1305
1306
1307 static void print_found_intel_controllers(struct sys_dev *elem)
1308 {
1309 for (; elem; elem = elem->next) {
1310 fprintf(stderr, Name ": found Intel(R) ");
1311 if (elem->type == SYS_DEV_SATA)
1312 fprintf(stderr, "SATA ");
1313 else if (elem->type == SYS_DEV_SAS)
1314 fprintf(stderr, "SAS ");
1315 fprintf(stderr, "RAID controller");
1316 if (elem->pci_id)
1317 fprintf(stderr, " at %s", elem->pci_id);
1318 fprintf(stderr, ".\n");
1319 }
1320 fflush(stderr);
1321 }
1322
1323 static int ahci_get_port_count(const char *hba_path, int *port_count)
1324 {
1325 struct dirent *ent;
1326 DIR *dir;
1327 int host_base = -1;
1328
1329 *port_count = 0;
1330 if ((dir = opendir(hba_path)) == NULL)
1331 return -1;
1332
1333 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1334 int host;
1335
1336 if (sscanf(ent->d_name, "host%d", &host) != 1)
1337 continue;
1338 if (*port_count == 0)
1339 host_base = host;
1340 else if (host < host_base)
1341 host_base = host;
1342
1343 if (host + 1 > *port_count + host_base)
1344 *port_count = host + 1 - host_base;
1345 }
1346 closedir(dir);
1347 return host_base;
1348 }
1349
1350 static int detail_platform_imsm(int verbose, int enumerate_only)
1351 {
1352 /* There are two components to imsm platform support, the ahci SATA
1353 * controller and the option-rom. To find the SATA controller we
1354 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1355 * controller with the Intel vendor id is present. This approach
1356 * allows mdadm to leverage the kernel's ahci detection logic, with the
1357 * caveat that if ahci.ko is not loaded mdadm will not be able to
1358 * detect platform raid capabilities. The option-rom resides in a
1359 * platform "Adapter ROM". We scan for its signature to retrieve the
1360 * platform capabilities. If raid support is disabled in the BIOS the
1361 * option-rom capability structure will not be available.
1362 */
1363 const struct imsm_orom *orom;
1364 struct sys_dev *list, *hba;
1365 int host_base = 0;
1366 int port_count = 0;
1367 int result=0;
1368
1369 if (enumerate_only) {
1370 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1371 return 0;
1372 return 2;
1373 }
1374
1375 list = find_intel_devices();
1376 if (!list) {
1377 if (verbose)
1378 fprintf(stderr, Name ": no active Intel(R) RAID "
1379 "controller found.\n");
1380 free_sys_dev(&list);
1381 return 2;
1382 } else if (verbose)
1383 print_found_intel_controllers(list);
1384
1385 orom = find_imsm_orom();
1386 if (!orom) {
1387 free_sys_dev(&list);
1388 if (verbose)
1389 fprintf(stderr, Name ": imsm option-rom not found\n");
1390 return 2;
1391 }
1392
1393 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1394 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1395 orom->hotfix_ver, orom->build);
1396 printf(" RAID Levels :%s%s%s%s%s\n",
1397 imsm_orom_has_raid0(orom) ? " raid0" : "",
1398 imsm_orom_has_raid1(orom) ? " raid1" : "",
1399 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1400 imsm_orom_has_raid10(orom) ? " raid10" : "",
1401 imsm_orom_has_raid5(orom) ? " raid5" : "");
1402 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1403 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1404 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1405 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1406 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1407 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1408 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1409 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1410 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1411 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1412 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1413 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1414 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1415 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1416 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1417 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1418 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1419 printf(" Max Disks : %d\n", orom->tds);
1420 printf(" Max Volumes : %d\n", orom->vpa);
1421
1422 for (hba = list; hba; hba = hba->next) {
1423 printf(" I/O Controller : %s (%s)\n",
1424 hba->path, get_sys_dev_type(hba->type));
1425
1426 if (hba->type == SYS_DEV_SATA) {
1427 host_base = ahci_get_port_count(hba->path, &port_count);
1428 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1429 if (verbose)
1430 fprintf(stderr, Name ": failed to enumerate "
1431 "ports on SATA controller at %s.", hba->pci_id);
1432 result |= 2;
1433 }
1434 } else if (hba->type == SYS_DEV_SAS) {
1435 if (verbose)
1436 fprintf(stderr, Name ": failed to enumerate "
1437 "devices on SAS controller at %s.", hba->pci_id);
1438 result |= 2;
1439 }
1440 }
1441
1442 free_sys_dev(&list);
1443 return result;
1444 }
1445 #endif
1446
1447 static int match_home_imsm(struct supertype *st, char *homehost)
1448 {
1449 /* the imsm metadata format does not specify any host
1450 * identification information. We return -1 since we can never
1451 * confirm nor deny whether a given array is "meant" for this
1452 * host. We rely on compare_super and the 'family_num' fields to
1453 * exclude member disks that do not belong, and we rely on
1454 * mdadm.conf to specify the arrays that should be assembled.
1455 * Auto-assembly may still pick up "foreign" arrays.
1456 */
1457
1458 return -1;
1459 }
1460
1461 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1462 {
1463 /* The uuid returned here is used for:
1464 * uuid to put into bitmap file (Create, Grow)
1465 * uuid for backup header when saving critical section (Grow)
1466 * comparing uuids when re-adding a device into an array
1467 * In these cases the uuid required is that of the data-array,
1468 * not the device-set.
1469 * uuid to recognise same set when adding a missing device back
1470 * to an array. This is a uuid for the device-set.
1471 *
1472 * For each of these we can make do with a truncated
1473 * or hashed uuid rather than the original, as long as
1474 * everyone agrees.
1475 * In each case the uuid required is that of the data-array,
1476 * not the device-set.
1477 */
1478 /* imsm does not track uuid's so we synthesis one using sha1 on
1479 * - The signature (Which is constant for all imsm array, but no matter)
1480 * - the orig_family_num of the container
1481 * - the index number of the volume
1482 * - the 'serial' number of the volume.
1483 * Hopefully these are all constant.
1484 */
1485 struct intel_super *super = st->sb;
1486
1487 char buf[20];
1488 struct sha1_ctx ctx;
1489 struct imsm_dev *dev = NULL;
1490 __u32 family_num;
1491
1492 /* some mdadm versions failed to set ->orig_family_num, in which
1493 * case fall back to ->family_num. orig_family_num will be
1494 * fixed up with the first metadata update.
1495 */
1496 family_num = super->anchor->orig_family_num;
1497 if (family_num == 0)
1498 family_num = super->anchor->family_num;
1499 sha1_init_ctx(&ctx);
1500 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1501 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1502 if (super->current_vol >= 0)
1503 dev = get_imsm_dev(super, super->current_vol);
1504 if (dev) {
1505 __u32 vol = super->current_vol;
1506 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1507 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1508 }
1509 sha1_finish_ctx(&ctx, buf);
1510 memcpy(uuid, buf, 4*4);
1511 }
1512
1513 #if 0
1514 static void
1515 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1516 {
1517 __u8 *v = get_imsm_version(mpb);
1518 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1519 char major[] = { 0, 0, 0 };
1520 char minor[] = { 0 ,0, 0 };
1521 char patch[] = { 0, 0, 0 };
1522 char *ver_parse[] = { major, minor, patch };
1523 int i, j;
1524
1525 i = j = 0;
1526 while (*v != '\0' && v < end) {
1527 if (*v != '.' && j < 2)
1528 ver_parse[i][j++] = *v;
1529 else {
1530 i++;
1531 j = 0;
1532 }
1533 v++;
1534 }
1535
1536 *m = strtol(minor, NULL, 0);
1537 *p = strtol(patch, NULL, 0);
1538 }
1539 #endif
1540
1541 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1542 {
1543 /* migr_strip_size when repairing or initializing parity */
1544 struct imsm_map *map = get_imsm_map(dev, 0);
1545 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1546
1547 switch (get_imsm_raid_level(map)) {
1548 case 5:
1549 case 10:
1550 return chunk;
1551 default:
1552 return 128*1024 >> 9;
1553 }
1554 }
1555
1556 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1557 {
1558 /* migr_strip_size when rebuilding a degraded disk, no idea why
1559 * this is different than migr_strip_size_resync(), but it's good
1560 * to be compatible
1561 */
1562 struct imsm_map *map = get_imsm_map(dev, 1);
1563 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1564
1565 switch (get_imsm_raid_level(map)) {
1566 case 1:
1567 case 10:
1568 if (map->num_members % map->num_domains == 0)
1569 return 128*1024 >> 9;
1570 else
1571 return chunk;
1572 case 5:
1573 return max((__u32) 64*1024 >> 9, chunk);
1574 default:
1575 return 128*1024 >> 9;
1576 }
1577 }
1578
1579 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1580 {
1581 struct imsm_map *lo = get_imsm_map(dev, 0);
1582 struct imsm_map *hi = get_imsm_map(dev, 1);
1583 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1584 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1585
1586 return max((__u32) 1, hi_chunk / lo_chunk);
1587 }
1588
1589 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1590 {
1591 struct imsm_map *lo = get_imsm_map(dev, 0);
1592 int level = get_imsm_raid_level(lo);
1593
1594 if (level == 1 || level == 10) {
1595 struct imsm_map *hi = get_imsm_map(dev, 1);
1596
1597 return hi->num_domains;
1598 } else
1599 return num_stripes_per_unit_resync(dev);
1600 }
1601
1602 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1603 {
1604 /* named 'imsm_' because raid0, raid1 and raid10
1605 * counter-intuitively have the same number of data disks
1606 */
1607 struct imsm_map *map = get_imsm_map(dev, second_map);
1608
1609 switch (get_imsm_raid_level(map)) {
1610 case 0:
1611 case 1:
1612 case 10:
1613 return map->num_members;
1614 case 5:
1615 return map->num_members - 1;
1616 default:
1617 dprintf("%s: unsupported raid level\n", __func__);
1618 return 0;
1619 }
1620 }
1621
1622 static __u32 parity_segment_depth(struct imsm_dev *dev)
1623 {
1624 struct imsm_map *map = get_imsm_map(dev, 0);
1625 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1626
1627 switch(get_imsm_raid_level(map)) {
1628 case 1:
1629 case 10:
1630 return chunk * map->num_domains;
1631 case 5:
1632 return chunk * map->num_members;
1633 default:
1634 return chunk;
1635 }
1636 }
1637
1638 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1639 {
1640 struct imsm_map *map = get_imsm_map(dev, 1);
1641 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1642 __u32 strip = block / chunk;
1643
1644 switch (get_imsm_raid_level(map)) {
1645 case 1:
1646 case 10: {
1647 __u32 vol_strip = (strip * map->num_domains) + 1;
1648 __u32 vol_stripe = vol_strip / map->num_members;
1649
1650 return vol_stripe * chunk + block % chunk;
1651 } case 5: {
1652 __u32 stripe = strip / (map->num_members - 1);
1653
1654 return stripe * chunk + block % chunk;
1655 }
1656 default:
1657 return 0;
1658 }
1659 }
1660
1661 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1662 {
1663 /* calculate the conversion factor between per member 'blocks'
1664 * (md/{resync,rebuild}_start) and imsm migration units, return
1665 * 0 for the 'not migrating' and 'unsupported migration' cases
1666 */
1667 if (!dev->vol.migr_state)
1668 return 0;
1669
1670 switch (migr_type(dev)) {
1671 case MIGR_GEN_MIGR:
1672 case MIGR_VERIFY:
1673 case MIGR_REPAIR:
1674 case MIGR_INIT: {
1675 struct imsm_map *map = get_imsm_map(dev, 0);
1676 __u32 stripes_per_unit;
1677 __u32 blocks_per_unit;
1678 __u32 parity_depth;
1679 __u32 migr_chunk;
1680 __u32 block_map;
1681 __u32 block_rel;
1682 __u32 segment;
1683 __u32 stripe;
1684 __u8 disks;
1685
1686 /* yes, this is really the translation of migr_units to
1687 * per-member blocks in the 'resync' case
1688 */
1689 stripes_per_unit = num_stripes_per_unit_resync(dev);
1690 migr_chunk = migr_strip_blocks_resync(dev);
1691 disks = imsm_num_data_members(dev, 0);
1692 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1693 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1694 segment = blocks_per_unit / stripe;
1695 block_rel = blocks_per_unit - segment * stripe;
1696 parity_depth = parity_segment_depth(dev);
1697 block_map = map_migr_block(dev, block_rel);
1698 return block_map + parity_depth * segment;
1699 }
1700 case MIGR_REBUILD: {
1701 __u32 stripes_per_unit;
1702 __u32 migr_chunk;
1703
1704 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1705 migr_chunk = migr_strip_blocks_rebuild(dev);
1706 return migr_chunk * stripes_per_unit;
1707 }
1708 case MIGR_STATE_CHANGE:
1709 default:
1710 return 0;
1711 }
1712 }
1713
1714 static int imsm_level_to_layout(int level)
1715 {
1716 switch (level) {
1717 case 0:
1718 case 1:
1719 return 0;
1720 case 5:
1721 case 6:
1722 return ALGORITHM_LEFT_ASYMMETRIC;
1723 case 10:
1724 return 0x102;
1725 }
1726 return UnSet;
1727 }
1728
1729 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1730 {
1731 struct intel_super *super = st->sb;
1732 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1733 struct imsm_map *map = get_imsm_map(dev, 0);
1734 struct imsm_map *prev_map = get_imsm_map(dev, 1);
1735 struct imsm_map *map_to_analyse = map;
1736 struct dl *dl;
1737 char *devname;
1738 int map_disks = info->array.raid_disks;
1739
1740 if (prev_map)
1741 map_to_analyse = prev_map;
1742
1743 for (dl = super->disks; dl; dl = dl->next)
1744 if (dl->raiddisk == info->disk.raid_disk)
1745 break;
1746 info->container_member = super->current_vol;
1747 info->array.raid_disks = map_to_analyse->num_members;
1748 info->array.level = get_imsm_raid_level(map_to_analyse);
1749 info->array.layout = imsm_level_to_layout(info->array.level);
1750 info->array.md_minor = -1;
1751 info->array.ctime = 0;
1752 info->array.utime = 0;
1753 info->array.chunk_size =
1754 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
1755 info->array.state = !dev->vol.dirty;
1756 info->custom_array_size = __le32_to_cpu(dev->size_high);
1757 info->custom_array_size <<= 32;
1758 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1759 if (prev_map) {
1760 info->new_level = get_imsm_raid_level(map);
1761 info->new_layout = imsm_level_to_layout(info->new_level);
1762 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
1763 } else {
1764 info->new_level = UnSet;
1765 info->new_layout = UnSet;
1766 info->new_chunk = info->array.chunk_size;
1767 }
1768 info->disk.major = 0;
1769 info->disk.minor = 0;
1770 if (dl) {
1771 info->disk.major = dl->major;
1772 info->disk.minor = dl->minor;
1773 }
1774
1775 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
1776 info->component_size =
1777 __le32_to_cpu(map_to_analyse->blocks_per_member);
1778 memset(info->uuid, 0, sizeof(info->uuid));
1779 info->recovery_start = MaxSector;
1780 info->reshape_active = (prev_map != NULL) &&
1781 (map->map_state == prev_map->map_state);
1782 if (info->reshape_active)
1783 info->delta_disks = map->num_members - prev_map->num_members;
1784 else
1785 info->delta_disks = 0;
1786
1787 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
1788 dev->vol.dirty) {
1789 info->resync_start = 0;
1790 } else if (dev->vol.migr_state) {
1791 switch (migr_type(dev)) {
1792 case MIGR_REPAIR:
1793 case MIGR_INIT: {
1794 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1795 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1796
1797 info->resync_start = blocks_per_unit * units;
1798 break;
1799 }
1800 case MIGR_VERIFY:
1801 /* we could emulate the checkpointing of
1802 * 'sync_action=check' migrations, but for now
1803 * we just immediately complete them
1804 */
1805 case MIGR_REBUILD:
1806 /* this is handled by container_content_imsm() */
1807 case MIGR_GEN_MIGR:
1808 case MIGR_STATE_CHANGE:
1809 /* FIXME handle other migrations */
1810 default:
1811 /* we are not dirty, so... */
1812 info->resync_start = MaxSector;
1813 }
1814 } else
1815 info->resync_start = MaxSector;
1816
1817 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1818 info->name[MAX_RAID_SERIAL_LEN] = 0;
1819
1820 info->array.major_version = -1;
1821 info->array.minor_version = -2;
1822 devname = devnum2devname(st->container_dev);
1823 *info->text_version = '\0';
1824 if (devname)
1825 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1826 free(devname);
1827 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1828 uuid_from_super_imsm(st, info->uuid);
1829
1830 if (dmap) {
1831 int i, j;
1832 for (i=0; i<map_disks; i++) {
1833 dmap[i] = 0;
1834 if (i < info->array.raid_disks) {
1835 struct imsm_disk *dsk;
1836 j = get_imsm_disk_idx(dev, i, -1);
1837 dsk = get_imsm_disk(super, j);
1838 if (dsk && (dsk->status & CONFIGURED_DISK))
1839 dmap[i] = 1;
1840 }
1841 }
1842 }
1843 }
1844
1845 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1846 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1847
1848 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1849 {
1850 struct dl *d;
1851
1852 for (d = super->missing; d; d = d->next)
1853 if (d->index == index)
1854 return &d->disk;
1855 return NULL;
1856 }
1857
1858 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
1859 {
1860 struct intel_super *super = st->sb;
1861 struct imsm_disk *disk;
1862 int map_disks = info->array.raid_disks;
1863 int max_enough = -1;
1864 int i;
1865 struct imsm_super *mpb;
1866
1867 if (super->current_vol >= 0) {
1868 getinfo_super_imsm_volume(st, info, map);
1869 return;
1870 }
1871
1872 /* Set raid_disks to zero so that Assemble will always pull in valid
1873 * spares
1874 */
1875 info->array.raid_disks = 0;
1876 info->array.level = LEVEL_CONTAINER;
1877 info->array.layout = 0;
1878 info->array.md_minor = -1;
1879 info->array.ctime = 0; /* N/A for imsm */
1880 info->array.utime = 0;
1881 info->array.chunk_size = 0;
1882
1883 info->disk.major = 0;
1884 info->disk.minor = 0;
1885 info->disk.raid_disk = -1;
1886 info->reshape_active = 0;
1887 info->array.major_version = -1;
1888 info->array.minor_version = -2;
1889 strcpy(info->text_version, "imsm");
1890 info->safe_mode_delay = 0;
1891 info->disk.number = -1;
1892 info->disk.state = 0;
1893 info->name[0] = 0;
1894 info->recovery_start = MaxSector;
1895
1896 /* do we have the all the insync disks that we expect? */
1897 mpb = super->anchor;
1898
1899 for (i = 0; i < mpb->num_raid_devs; i++) {
1900 struct imsm_dev *dev = get_imsm_dev(super, i);
1901 int failed, enough, j, missing = 0;
1902 struct imsm_map *map;
1903 __u8 state;
1904
1905 failed = imsm_count_failed(super, dev);
1906 state = imsm_check_degraded(super, dev, failed);
1907 map = get_imsm_map(dev, dev->vol.migr_state);
1908
1909 /* any newly missing disks?
1910 * (catches single-degraded vs double-degraded)
1911 */
1912 for (j = 0; j < map->num_members; j++) {
1913 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
1914 __u32 idx = ord_to_idx(ord);
1915
1916 if (!(ord & IMSM_ORD_REBUILD) &&
1917 get_imsm_missing(super, idx)) {
1918 missing = 1;
1919 break;
1920 }
1921 }
1922
1923 if (state == IMSM_T_STATE_FAILED)
1924 enough = -1;
1925 else if (state == IMSM_T_STATE_DEGRADED &&
1926 (state != map->map_state || missing))
1927 enough = 0;
1928 else /* we're normal, or already degraded */
1929 enough = 1;
1930
1931 /* in the missing/failed disk case check to see
1932 * if at least one array is runnable
1933 */
1934 max_enough = max(max_enough, enough);
1935 }
1936 dprintf("%s: enough: %d\n", __func__, max_enough);
1937 info->container_enough = max_enough;
1938
1939 if (super->disks) {
1940 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1941
1942 disk = &super->disks->disk;
1943 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1944 info->component_size = reserved;
1945 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
1946 /* we don't change info->disk.raid_disk here because
1947 * this state will be finalized in mdmon after we have
1948 * found the 'most fresh' version of the metadata
1949 */
1950 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1951 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1952 }
1953
1954 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1955 * ->compare_super may have updated the 'num_raid_devs' field for spares
1956 */
1957 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1958 uuid_from_super_imsm(st, info->uuid);
1959 else
1960 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
1961
1962 /* I don't know how to compute 'map' on imsm, so use safe default */
1963 if (map) {
1964 int i;
1965 for (i = 0; i < map_disks; i++)
1966 map[i] = 1;
1967 }
1968
1969 }
1970
1971 /* allocates memory and fills disk in mdinfo structure
1972 * for each disk in array */
1973 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
1974 {
1975 struct mdinfo *mddev = NULL;
1976 struct intel_super *super = st->sb;
1977 struct imsm_disk *disk;
1978 int count = 0;
1979 struct dl *dl;
1980 if (!super || !super->disks)
1981 return NULL;
1982 dl = super->disks;
1983 mddev = malloc(sizeof(*mddev));
1984 if (!mddev) {
1985 fprintf(stderr, Name ": Failed to allocate memory.\n");
1986 return NULL;
1987 }
1988 memset(mddev, 0, sizeof(*mddev));
1989 while (dl) {
1990 struct mdinfo *tmp;
1991 disk = &dl->disk;
1992 tmp = malloc(sizeof(*tmp));
1993 if (!tmp) {
1994 fprintf(stderr, Name ": Failed to allocate memory.\n");
1995 if (mddev)
1996 sysfs_free(mddev);
1997 return NULL;
1998 }
1999 memset(tmp, 0, sizeof(*tmp));
2000 if (mddev->devs)
2001 tmp->next = mddev->devs;
2002 mddev->devs = tmp;
2003 tmp->disk.number = count++;
2004 tmp->disk.major = dl->major;
2005 tmp->disk.minor = dl->minor;
2006 tmp->disk.state = is_configured(disk) ?
2007 (1 << MD_DISK_ACTIVE) : 0;
2008 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2009 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2010 tmp->disk.raid_disk = -1;
2011 dl = dl->next;
2012 }
2013 return mddev;
2014 }
2015
2016 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2017 char *update, char *devname, int verbose,
2018 int uuid_set, char *homehost)
2019 {
2020 /* For 'assemble' and 'force' we need to return non-zero if any
2021 * change was made. For others, the return value is ignored.
2022 * Update options are:
2023 * force-one : This device looks a bit old but needs to be included,
2024 * update age info appropriately.
2025 * assemble: clear any 'faulty' flag to allow this device to
2026 * be assembled.
2027 * force-array: Array is degraded but being forced, mark it clean
2028 * if that will be needed to assemble it.
2029 *
2030 * newdev: not used ????
2031 * grow: Array has gained a new device - this is currently for
2032 * linear only
2033 * resync: mark as dirty so a resync will happen.
2034 * name: update the name - preserving the homehost
2035 * uuid: Change the uuid of the array to match watch is given
2036 *
2037 * Following are not relevant for this imsm:
2038 * sparc2.2 : update from old dodgey metadata
2039 * super-minor: change the preferred_minor number
2040 * summaries: update redundant counters.
2041 * homehost: update the recorded homehost
2042 * _reshape_progress: record new reshape_progress position.
2043 */
2044 int rv = 1;
2045 struct intel_super *super = st->sb;
2046 struct imsm_super *mpb;
2047
2048 /* we can only update container info */
2049 if (!super || super->current_vol >= 0 || !super->anchor)
2050 return 1;
2051
2052 mpb = super->anchor;
2053
2054 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2055 rv = -1;
2056 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2057 mpb->orig_family_num = *((__u32 *) info->update_private);
2058 rv = 0;
2059 } else if (strcmp(update, "uuid") == 0) {
2060 __u32 *new_family = malloc(sizeof(*new_family));
2061
2062 /* update orig_family_number with the incoming random
2063 * data, report the new effective uuid, and store the
2064 * new orig_family_num for future updates.
2065 */
2066 if (new_family) {
2067 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2068 uuid_from_super_imsm(st, info->uuid);
2069 *new_family = mpb->orig_family_num;
2070 info->update_private = new_family;
2071 rv = 0;
2072 }
2073 } else if (strcmp(update, "assemble") == 0)
2074 rv = 0;
2075 else
2076 rv = -1;
2077
2078 /* successful update? recompute checksum */
2079 if (rv == 0)
2080 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2081
2082 return rv;
2083 }
2084
2085 static size_t disks_to_mpb_size(int disks)
2086 {
2087 size_t size;
2088
2089 size = sizeof(struct imsm_super);
2090 size += (disks - 1) * sizeof(struct imsm_disk);
2091 size += 2 * sizeof(struct imsm_dev);
2092 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2093 size += (4 - 2) * sizeof(struct imsm_map);
2094 /* 4 possible disk_ord_tbl's */
2095 size += 4 * (disks - 1) * sizeof(__u32);
2096
2097 return size;
2098 }
2099
2100 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2101 {
2102 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2103 return 0;
2104
2105 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2106 }
2107
2108 static void free_devlist(struct intel_super *super)
2109 {
2110 struct intel_dev *dv;
2111
2112 while (super->devlist) {
2113 dv = super->devlist->next;
2114 free(super->devlist->dev);
2115 free(super->devlist);
2116 super->devlist = dv;
2117 }
2118 }
2119
2120 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2121 {
2122 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2123 }
2124
2125 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2126 {
2127 /*
2128 * return:
2129 * 0 same, or first was empty, and second was copied
2130 * 1 second had wrong number
2131 * 2 wrong uuid
2132 * 3 wrong other info
2133 */
2134 struct intel_super *first = st->sb;
2135 struct intel_super *sec = tst->sb;
2136
2137 if (!first) {
2138 st->sb = tst->sb;
2139 tst->sb = NULL;
2140 return 0;
2141 }
2142
2143 /* if an anchor does not have num_raid_devs set then it is a free
2144 * floating spare
2145 */
2146 if (first->anchor->num_raid_devs > 0 &&
2147 sec->anchor->num_raid_devs > 0) {
2148 /* Determine if these disks might ever have been
2149 * related. Further disambiguation can only take place
2150 * in load_super_imsm_all
2151 */
2152 __u32 first_family = first->anchor->orig_family_num;
2153 __u32 sec_family = sec->anchor->orig_family_num;
2154
2155 if (memcmp(first->anchor->sig, sec->anchor->sig,
2156 MAX_SIGNATURE_LENGTH) != 0)
2157 return 3;
2158
2159 if (first_family == 0)
2160 first_family = first->anchor->family_num;
2161 if (sec_family == 0)
2162 sec_family = sec->anchor->family_num;
2163
2164 if (first_family != sec_family)
2165 return 3;
2166
2167 }
2168
2169
2170 /* if 'first' is a spare promote it to a populated mpb with sec's
2171 * family number
2172 */
2173 if (first->anchor->num_raid_devs == 0 &&
2174 sec->anchor->num_raid_devs > 0) {
2175 int i;
2176 struct intel_dev *dv;
2177 struct imsm_dev *dev;
2178
2179 /* we need to copy raid device info from sec if an allocation
2180 * fails here we don't associate the spare
2181 */
2182 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2183 dv = malloc(sizeof(*dv));
2184 if (!dv)
2185 break;
2186 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2187 if (!dev) {
2188 free(dv);
2189 break;
2190 }
2191 dv->dev = dev;
2192 dv->index = i;
2193 dv->next = first->devlist;
2194 first->devlist = dv;
2195 }
2196 if (i < sec->anchor->num_raid_devs) {
2197 /* allocation failure */
2198 free_devlist(first);
2199 fprintf(stderr, "imsm: failed to associate spare\n");
2200 return 3;
2201 }
2202 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2203 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2204 first->anchor->family_num = sec->anchor->family_num;
2205 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2206 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2207 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2208 }
2209
2210 return 0;
2211 }
2212
2213 static void fd2devname(int fd, char *name)
2214 {
2215 struct stat st;
2216 char path[256];
2217 char dname[PATH_MAX];
2218 char *nm;
2219 int rv;
2220
2221 name[0] = '\0';
2222 if (fstat(fd, &st) != 0)
2223 return;
2224 sprintf(path, "/sys/dev/block/%d:%d",
2225 major(st.st_rdev), minor(st.st_rdev));
2226
2227 rv = readlink(path, dname, sizeof(dname));
2228 if (rv <= 0)
2229 return;
2230
2231 dname[rv] = '\0';
2232 nm = strrchr(dname, '/');
2233 nm++;
2234 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2235 }
2236
2237 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2238
2239 static int imsm_read_serial(int fd, char *devname,
2240 __u8 serial[MAX_RAID_SERIAL_LEN])
2241 {
2242 unsigned char scsi_serial[255];
2243 int rv;
2244 int rsp_len;
2245 int len;
2246 char *dest;
2247 char *src;
2248 char *rsp_buf;
2249 int i;
2250
2251 memset(scsi_serial, 0, sizeof(scsi_serial));
2252
2253 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2254
2255 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2256 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2257 fd2devname(fd, (char *) serial);
2258 return 0;
2259 }
2260
2261 if (rv != 0) {
2262 if (devname)
2263 fprintf(stderr,
2264 Name ": Failed to retrieve serial for %s\n",
2265 devname);
2266 return rv;
2267 }
2268
2269 rsp_len = scsi_serial[3];
2270 if (!rsp_len) {
2271 if (devname)
2272 fprintf(stderr,
2273 Name ": Failed to retrieve serial for %s\n",
2274 devname);
2275 return 2;
2276 }
2277 rsp_buf = (char *) &scsi_serial[4];
2278
2279 /* trim all whitespace and non-printable characters and convert
2280 * ':' to ';'
2281 */
2282 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2283 src = &rsp_buf[i];
2284 if (*src > 0x20) {
2285 /* ':' is reserved for use in placeholder serial
2286 * numbers for missing disks
2287 */
2288 if (*src == ':')
2289 *dest++ = ';';
2290 else
2291 *dest++ = *src;
2292 }
2293 }
2294 len = dest - rsp_buf;
2295 dest = rsp_buf;
2296
2297 /* truncate leading characters */
2298 if (len > MAX_RAID_SERIAL_LEN) {
2299 dest += len - MAX_RAID_SERIAL_LEN;
2300 len = MAX_RAID_SERIAL_LEN;
2301 }
2302
2303 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2304 memcpy(serial, dest, len);
2305
2306 return 0;
2307 }
2308
2309 static int serialcmp(__u8 *s1, __u8 *s2)
2310 {
2311 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2312 }
2313
2314 static void serialcpy(__u8 *dest, __u8 *src)
2315 {
2316 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2317 }
2318
2319 #ifndef MDASSEMBLE
2320 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2321 {
2322 struct dl *dl;
2323
2324 for (dl = super->disks; dl; dl = dl->next)
2325 if (serialcmp(dl->serial, serial) == 0)
2326 break;
2327
2328 return dl;
2329 }
2330 #endif
2331
2332 static struct imsm_disk *
2333 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2334 {
2335 int i;
2336
2337 for (i = 0; i < mpb->num_disks; i++) {
2338 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2339
2340 if (serialcmp(disk->serial, serial) == 0) {
2341 if (idx)
2342 *idx = i;
2343 return disk;
2344 }
2345 }
2346
2347 return NULL;
2348 }
2349
2350 static int
2351 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2352 {
2353 struct imsm_disk *disk;
2354 struct dl *dl;
2355 struct stat stb;
2356 int rv;
2357 char name[40];
2358 __u8 serial[MAX_RAID_SERIAL_LEN];
2359
2360 rv = imsm_read_serial(fd, devname, serial);
2361
2362 if (rv != 0)
2363 return 2;
2364
2365 dl = calloc(1, sizeof(*dl));
2366 if (!dl) {
2367 if (devname)
2368 fprintf(stderr,
2369 Name ": failed to allocate disk buffer for %s\n",
2370 devname);
2371 return 2;
2372 }
2373
2374 fstat(fd, &stb);
2375 dl->major = major(stb.st_rdev);
2376 dl->minor = minor(stb.st_rdev);
2377 dl->next = super->disks;
2378 dl->fd = keep_fd ? fd : -1;
2379 assert(super->disks == NULL);
2380 super->disks = dl;
2381 serialcpy(dl->serial, serial);
2382 dl->index = -2;
2383 dl->e = NULL;
2384 fd2devname(fd, name);
2385 if (devname)
2386 dl->devname = strdup(devname);
2387 else
2388 dl->devname = strdup(name);
2389
2390 /* look up this disk's index in the current anchor */
2391 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2392 if (disk) {
2393 dl->disk = *disk;
2394 /* only set index on disks that are a member of a
2395 * populated contianer, i.e. one with raid_devs
2396 */
2397 if (is_failed(&dl->disk))
2398 dl->index = -2;
2399 else if (is_spare(&dl->disk))
2400 dl->index = -1;
2401 }
2402
2403 return 0;
2404 }
2405
2406 #ifndef MDASSEMBLE
2407 /* When migrating map0 contains the 'destination' state while map1
2408 * contains the current state. When not migrating map0 contains the
2409 * current state. This routine assumes that map[0].map_state is set to
2410 * the current array state before being called.
2411 *
2412 * Migration is indicated by one of the following states
2413 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2414 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2415 * map1state=unitialized)
2416 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2417 * map1state=normal)
2418 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2419 * map1state=degraded)
2420 */
2421 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2422 {
2423 struct imsm_map *dest;
2424 struct imsm_map *src = get_imsm_map(dev, 0);
2425
2426 dev->vol.migr_state = 1;
2427 set_migr_type(dev, migr_type);
2428 dev->vol.curr_migr_unit = 0;
2429 dest = get_imsm_map(dev, 1);
2430
2431 /* duplicate and then set the target end state in map[0] */
2432 memcpy(dest, src, sizeof_imsm_map(src));
2433 if ((migr_type == MIGR_REBUILD) ||
2434 (migr_type == MIGR_GEN_MIGR)) {
2435 __u32 ord;
2436 int i;
2437
2438 for (i = 0; i < src->num_members; i++) {
2439 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2440 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2441 }
2442 }
2443
2444 src->map_state = to_state;
2445 }
2446
2447 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2448 {
2449 struct imsm_map *map = get_imsm_map(dev, 0);
2450 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2451 int i, j;
2452
2453 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2454 * completed in the last migration.
2455 *
2456 * FIXME add support for raid-level-migration
2457 */
2458 for (i = 0; i < prev->num_members; i++)
2459 for (j = 0; j < map->num_members; j++)
2460 /* during online capacity expansion
2461 * disks position can be changed if takeover is used
2462 */
2463 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2464 ord_to_idx(prev->disk_ord_tbl[i])) {
2465 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2466 break;
2467 }
2468
2469 dev->vol.migr_state = 0;
2470 dev->vol.migr_type = 0;
2471 dev->vol.curr_migr_unit = 0;
2472 map->map_state = map_state;
2473 }
2474 #endif
2475
2476 static int parse_raid_devices(struct intel_super *super)
2477 {
2478 int i;
2479 struct imsm_dev *dev_new;
2480 size_t len, len_migr;
2481 size_t max_len = 0;
2482 size_t space_needed = 0;
2483 struct imsm_super *mpb = super->anchor;
2484
2485 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2486 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2487 struct intel_dev *dv;
2488
2489 len = sizeof_imsm_dev(dev_iter, 0);
2490 len_migr = sizeof_imsm_dev(dev_iter, 1);
2491 if (len_migr > len)
2492 space_needed += len_migr - len;
2493
2494 dv = malloc(sizeof(*dv));
2495 if (!dv)
2496 return 1;
2497 if (max_len < len_migr)
2498 max_len = len_migr;
2499 if (max_len > len_migr)
2500 space_needed += max_len - len_migr;
2501 dev_new = malloc(max_len);
2502 if (!dev_new) {
2503 free(dv);
2504 return 1;
2505 }
2506 imsm_copy_dev(dev_new, dev_iter);
2507 dv->dev = dev_new;
2508 dv->index = i;
2509 dv->next = super->devlist;
2510 super->devlist = dv;
2511 }
2512
2513 /* ensure that super->buf is large enough when all raid devices
2514 * are migrating
2515 */
2516 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2517 void *buf;
2518
2519 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2520 if (posix_memalign(&buf, 512, len) != 0)
2521 return 1;
2522
2523 memcpy(buf, super->buf, super->len);
2524 memset(buf + super->len, 0, len - super->len);
2525 free(super->buf);
2526 super->buf = buf;
2527 super->len = len;
2528 }
2529
2530 return 0;
2531 }
2532
2533 /* retrieve a pointer to the bbm log which starts after all raid devices */
2534 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2535 {
2536 void *ptr = NULL;
2537
2538 if (__le32_to_cpu(mpb->bbm_log_size)) {
2539 ptr = mpb;
2540 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2541 }
2542
2543 return ptr;
2544 }
2545
2546 static void __free_imsm(struct intel_super *super, int free_disks);
2547
2548 /* load_imsm_mpb - read matrix metadata
2549 * allocates super->mpb to be freed by free_super
2550 */
2551 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2552 {
2553 unsigned long long dsize;
2554 unsigned long long sectors;
2555 struct stat;
2556 struct imsm_super *anchor;
2557 __u32 check_sum;
2558
2559 get_dev_size(fd, NULL, &dsize);
2560 if (dsize < 1024) {
2561 if (devname)
2562 fprintf(stderr,
2563 Name ": %s: device to small for imsm\n",
2564 devname);
2565 return 1;
2566 }
2567
2568 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2569 if (devname)
2570 fprintf(stderr,
2571 Name ": Cannot seek to anchor block on %s: %s\n",
2572 devname, strerror(errno));
2573 return 1;
2574 }
2575
2576 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2577 if (devname)
2578 fprintf(stderr,
2579 Name ": Failed to allocate imsm anchor buffer"
2580 " on %s\n", devname);
2581 return 1;
2582 }
2583 if (read(fd, anchor, 512) != 512) {
2584 if (devname)
2585 fprintf(stderr,
2586 Name ": Cannot read anchor block on %s: %s\n",
2587 devname, strerror(errno));
2588 free(anchor);
2589 return 1;
2590 }
2591
2592 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2593 if (devname)
2594 fprintf(stderr,
2595 Name ": no IMSM anchor on %s\n", devname);
2596 free(anchor);
2597 return 2;
2598 }
2599
2600 __free_imsm(super, 0);
2601 super->len = ROUND_UP(anchor->mpb_size, 512);
2602 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2603 if (devname)
2604 fprintf(stderr,
2605 Name ": unable to allocate %zu byte mpb buffer\n",
2606 super->len);
2607 free(anchor);
2608 return 2;
2609 }
2610 memcpy(super->buf, anchor, 512);
2611
2612 sectors = mpb_sectors(anchor) - 1;
2613 free(anchor);
2614 if (!sectors) {
2615 check_sum = __gen_imsm_checksum(super->anchor);
2616 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2617 if (devname)
2618 fprintf(stderr,
2619 Name ": IMSM checksum %x != %x on %s\n",
2620 check_sum,
2621 __le32_to_cpu(super->anchor->check_sum),
2622 devname);
2623 return 2;
2624 }
2625
2626 return 0;
2627 }
2628
2629 /* read the extended mpb */
2630 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2631 if (devname)
2632 fprintf(stderr,
2633 Name ": Cannot seek to extended mpb on %s: %s\n",
2634 devname, strerror(errno));
2635 return 1;
2636 }
2637
2638 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2639 if (devname)
2640 fprintf(stderr,
2641 Name ": Cannot read extended mpb on %s: %s\n",
2642 devname, strerror(errno));
2643 return 2;
2644 }
2645
2646 check_sum = __gen_imsm_checksum(super->anchor);
2647 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2648 if (devname)
2649 fprintf(stderr,
2650 Name ": IMSM checksum %x != %x on %s\n",
2651 check_sum, __le32_to_cpu(super->anchor->check_sum),
2652 devname);
2653 return 3;
2654 }
2655
2656 /* FIXME the BBM log is disk specific so we cannot use this global
2657 * buffer for all disks. Ok for now since we only look at the global
2658 * bbm_log_size parameter to gate assembly
2659 */
2660 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2661
2662 return 0;
2663 }
2664
2665 static int
2666 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2667 {
2668 int err;
2669
2670 err = load_imsm_mpb(fd, super, devname);
2671 if (err)
2672 return err;
2673 err = load_imsm_disk(fd, super, devname, keep_fd);
2674 if (err)
2675 return err;
2676 err = parse_raid_devices(super);
2677
2678 return err;
2679 }
2680
2681 static void __free_imsm_disk(struct dl *d)
2682 {
2683 if (d->fd >= 0)
2684 close(d->fd);
2685 if (d->devname)
2686 free(d->devname);
2687 if (d->e)
2688 free(d->e);
2689 free(d);
2690
2691 }
2692
2693 static void free_imsm_disks(struct intel_super *super)
2694 {
2695 struct dl *d;
2696
2697 while (super->disks) {
2698 d = super->disks;
2699 super->disks = d->next;
2700 __free_imsm_disk(d);
2701 }
2702 while (super->disk_mgmt_list) {
2703 d = super->disk_mgmt_list;
2704 super->disk_mgmt_list = d->next;
2705 __free_imsm_disk(d);
2706 }
2707 while (super->missing) {
2708 d = super->missing;
2709 super->missing = d->next;
2710 __free_imsm_disk(d);
2711 }
2712
2713 }
2714
2715 /* free all the pieces hanging off of a super pointer */
2716 static void __free_imsm(struct intel_super *super, int free_disks)
2717 {
2718 struct intel_hba *elem, *next;
2719
2720 if (super->buf) {
2721 free(super->buf);
2722 super->buf = NULL;
2723 }
2724 if (free_disks)
2725 free_imsm_disks(super);
2726 free_devlist(super);
2727 elem = super->hba;
2728 while (elem) {
2729 if (elem->path)
2730 free((void *)elem->path);
2731 next = elem->next;
2732 free(elem);
2733 elem = next;
2734 }
2735 super->hba = NULL;
2736 }
2737
2738 static void free_imsm(struct intel_super *super)
2739 {
2740 __free_imsm(super, 1);
2741 free(super);
2742 }
2743
2744 static void free_super_imsm(struct supertype *st)
2745 {
2746 struct intel_super *super = st->sb;
2747
2748 if (!super)
2749 return;
2750
2751 free_imsm(super);
2752 st->sb = NULL;
2753 }
2754
2755 static struct intel_super *alloc_super(void)
2756 {
2757 struct intel_super *super = malloc(sizeof(*super));
2758
2759 if (super) {
2760 memset(super, 0, sizeof(*super));
2761 super->current_vol = -1;
2762 super->create_offset = ~((__u32 ) 0);
2763 if (!check_env("IMSM_NO_PLATFORM"))
2764 super->orom = find_imsm_orom();
2765 }
2766
2767 return super;
2768 }
2769
2770 #ifndef MDASSEMBLE
2771 /* find_missing - helper routine for load_super_imsm_all that identifies
2772 * disks that have disappeared from the system. This routine relies on
2773 * the mpb being uptodate, which it is at load time.
2774 */
2775 static int find_missing(struct intel_super *super)
2776 {
2777 int i;
2778 struct imsm_super *mpb = super->anchor;
2779 struct dl *dl;
2780 struct imsm_disk *disk;
2781
2782 for (i = 0; i < mpb->num_disks; i++) {
2783 disk = __get_imsm_disk(mpb, i);
2784 dl = serial_to_dl(disk->serial, super);
2785 if (dl)
2786 continue;
2787
2788 dl = malloc(sizeof(*dl));
2789 if (!dl)
2790 return 1;
2791 dl->major = 0;
2792 dl->minor = 0;
2793 dl->fd = -1;
2794 dl->devname = strdup("missing");
2795 dl->index = i;
2796 serialcpy(dl->serial, disk->serial);
2797 dl->disk = *disk;
2798 dl->e = NULL;
2799 dl->next = super->missing;
2800 super->missing = dl;
2801 }
2802
2803 return 0;
2804 }
2805
2806 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2807 {
2808 struct intel_disk *idisk = disk_list;
2809
2810 while (idisk) {
2811 if (serialcmp(idisk->disk.serial, serial) == 0)
2812 break;
2813 idisk = idisk->next;
2814 }
2815
2816 return idisk;
2817 }
2818
2819 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2820 struct intel_super *super,
2821 struct intel_disk **disk_list)
2822 {
2823 struct imsm_disk *d = &super->disks->disk;
2824 struct imsm_super *mpb = super->anchor;
2825 int i, j;
2826
2827 for (i = 0; i < tbl_size; i++) {
2828 struct imsm_super *tbl_mpb = table[i]->anchor;
2829 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2830
2831 if (tbl_mpb->family_num == mpb->family_num) {
2832 if (tbl_mpb->check_sum == mpb->check_sum) {
2833 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2834 __func__, super->disks->major,
2835 super->disks->minor,
2836 table[i]->disks->major,
2837 table[i]->disks->minor);
2838 break;
2839 }
2840
2841 if (((is_configured(d) && !is_configured(tbl_d)) ||
2842 is_configured(d) == is_configured(tbl_d)) &&
2843 tbl_mpb->generation_num < mpb->generation_num) {
2844 /* current version of the mpb is a
2845 * better candidate than the one in
2846 * super_table, but copy over "cross
2847 * generational" status
2848 */
2849 struct intel_disk *idisk;
2850
2851 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2852 __func__, super->disks->major,
2853 super->disks->minor,
2854 table[i]->disks->major,
2855 table[i]->disks->minor);
2856
2857 idisk = disk_list_get(tbl_d->serial, *disk_list);
2858 if (idisk && is_failed(&idisk->disk))
2859 tbl_d->status |= FAILED_DISK;
2860 break;
2861 } else {
2862 struct intel_disk *idisk;
2863 struct imsm_disk *disk;
2864
2865 /* tbl_mpb is more up to date, but copy
2866 * over cross generational status before
2867 * returning
2868 */
2869 disk = __serial_to_disk(d->serial, mpb, NULL);
2870 if (disk && is_failed(disk))
2871 d->status |= FAILED_DISK;
2872
2873 idisk = disk_list_get(d->serial, *disk_list);
2874 if (idisk) {
2875 idisk->owner = i;
2876 if (disk && is_configured(disk))
2877 idisk->disk.status |= CONFIGURED_DISK;
2878 }
2879
2880 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2881 __func__, super->disks->major,
2882 super->disks->minor,
2883 table[i]->disks->major,
2884 table[i]->disks->minor);
2885
2886 return tbl_size;
2887 }
2888 }
2889 }
2890
2891 if (i >= tbl_size)
2892 table[tbl_size++] = super;
2893 else
2894 table[i] = super;
2895
2896 /* update/extend the merged list of imsm_disk records */
2897 for (j = 0; j < mpb->num_disks; j++) {
2898 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2899 struct intel_disk *idisk;
2900
2901 idisk = disk_list_get(disk->serial, *disk_list);
2902 if (idisk) {
2903 idisk->disk.status |= disk->status;
2904 if (is_configured(&idisk->disk) ||
2905 is_failed(&idisk->disk))
2906 idisk->disk.status &= ~(SPARE_DISK);
2907 } else {
2908 idisk = calloc(1, sizeof(*idisk));
2909 if (!idisk)
2910 return -1;
2911 idisk->owner = IMSM_UNKNOWN_OWNER;
2912 idisk->disk = *disk;
2913 idisk->next = *disk_list;
2914 *disk_list = idisk;
2915 }
2916
2917 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2918 idisk->owner = i;
2919 }
2920
2921 return tbl_size;
2922 }
2923
2924 static struct intel_super *
2925 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2926 const int owner)
2927 {
2928 struct imsm_super *mpb = super->anchor;
2929 int ok_count = 0;
2930 int i;
2931
2932 for (i = 0; i < mpb->num_disks; i++) {
2933 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2934 struct intel_disk *idisk;
2935
2936 idisk = disk_list_get(disk->serial, disk_list);
2937 if (idisk) {
2938 if (idisk->owner == owner ||
2939 idisk->owner == IMSM_UNKNOWN_OWNER)
2940 ok_count++;
2941 else
2942 dprintf("%s: '%.16s' owner %d != %d\n",
2943 __func__, disk->serial, idisk->owner,
2944 owner);
2945 } else {
2946 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2947 __func__, __le32_to_cpu(mpb->family_num), i,
2948 disk->serial);
2949 break;
2950 }
2951 }
2952
2953 if (ok_count == mpb->num_disks)
2954 return super;
2955 return NULL;
2956 }
2957
2958 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2959 {
2960 struct intel_super *s;
2961
2962 for (s = super_list; s; s = s->next) {
2963 if (family_num != s->anchor->family_num)
2964 continue;
2965 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2966 __le32_to_cpu(family_num), s->disks->devname);
2967 }
2968 }
2969
2970 static struct intel_super *
2971 imsm_thunderdome(struct intel_super **super_list, int len)
2972 {
2973 struct intel_super *super_table[len];
2974 struct intel_disk *disk_list = NULL;
2975 struct intel_super *champion, *spare;
2976 struct intel_super *s, **del;
2977 int tbl_size = 0;
2978 int conflict;
2979 int i;
2980
2981 memset(super_table, 0, sizeof(super_table));
2982 for (s = *super_list; s; s = s->next)
2983 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2984
2985 for (i = 0; i < tbl_size; i++) {
2986 struct imsm_disk *d;
2987 struct intel_disk *idisk;
2988 struct imsm_super *mpb = super_table[i]->anchor;
2989
2990 s = super_table[i];
2991 d = &s->disks->disk;
2992
2993 /* 'd' must appear in merged disk list for its
2994 * configuration to be valid
2995 */
2996 idisk = disk_list_get(d->serial, disk_list);
2997 if (idisk && idisk->owner == i)
2998 s = validate_members(s, disk_list, i);
2999 else
3000 s = NULL;
3001
3002 if (!s)
3003 dprintf("%s: marking family: %#x from %d:%d offline\n",
3004 __func__, mpb->family_num,
3005 super_table[i]->disks->major,
3006 super_table[i]->disks->minor);
3007 super_table[i] = s;
3008 }
3009
3010 /* This is where the mdadm implementation differs from the Windows
3011 * driver which has no strict concept of a container. We can only
3012 * assemble one family from a container, so when returning a prodigal
3013 * array member to this system the code will not be able to disambiguate
3014 * the container contents that should be assembled ("foreign" versus
3015 * "local"). It requires user intervention to set the orig_family_num
3016 * to a new value to establish a new container. The Windows driver in
3017 * this situation fixes up the volume name in place and manages the
3018 * foreign array as an independent entity.
3019 */
3020 s = NULL;
3021 spare = NULL;
3022 conflict = 0;
3023 for (i = 0; i < tbl_size; i++) {
3024 struct intel_super *tbl_ent = super_table[i];
3025 int is_spare = 0;
3026
3027 if (!tbl_ent)
3028 continue;
3029
3030 if (tbl_ent->anchor->num_raid_devs == 0) {
3031 spare = tbl_ent;
3032 is_spare = 1;
3033 }
3034
3035 if (s && !is_spare) {
3036 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3037 conflict++;
3038 } else if (!s && !is_spare)
3039 s = tbl_ent;
3040 }
3041
3042 if (!s)
3043 s = spare;
3044 if (!s) {
3045 champion = NULL;
3046 goto out;
3047 }
3048 champion = s;
3049
3050 if (conflict)
3051 fprintf(stderr, "Chose family %#x on '%s', "
3052 "assemble conflicts to new container with '--update=uuid'\n",
3053 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3054
3055 /* collect all dl's onto 'champion', and update them to
3056 * champion's version of the status
3057 */
3058 for (s = *super_list; s; s = s->next) {
3059 struct imsm_super *mpb = champion->anchor;
3060 struct dl *dl = s->disks;
3061
3062 if (s == champion)
3063 continue;
3064
3065 for (i = 0; i < mpb->num_disks; i++) {
3066 struct imsm_disk *disk;
3067
3068 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3069 if (disk) {
3070 dl->disk = *disk;
3071 /* only set index on disks that are a member of
3072 * a populated contianer, i.e. one with
3073 * raid_devs
3074 */
3075 if (is_failed(&dl->disk))
3076 dl->index = -2;
3077 else if (is_spare(&dl->disk))
3078 dl->index = -1;
3079 break;
3080 }
3081 }
3082
3083 if (i >= mpb->num_disks) {
3084 struct intel_disk *idisk;
3085
3086 idisk = disk_list_get(dl->serial, disk_list);
3087 if (idisk && is_spare(&idisk->disk) &&
3088 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3089 dl->index = -1;
3090 else {
3091 dl->index = -2;
3092 continue;
3093 }
3094 }
3095
3096 dl->next = champion->disks;
3097 champion->disks = dl;
3098 s->disks = NULL;
3099 }
3100
3101 /* delete 'champion' from super_list */
3102 for (del = super_list; *del; ) {
3103 if (*del == champion) {
3104 *del = (*del)->next;
3105 break;
3106 } else
3107 del = &(*del)->next;
3108 }
3109 champion->next = NULL;
3110
3111 out:
3112 while (disk_list) {
3113 struct intel_disk *idisk = disk_list;
3114
3115 disk_list = disk_list->next;
3116 free(idisk);
3117 }
3118
3119 return champion;
3120 }
3121
3122 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3123 char *devname)
3124 {
3125 struct mdinfo *sra;
3126 struct intel_super *super_list = NULL;
3127 struct intel_super *super = NULL;
3128 int devnum = fd2devnum(fd);
3129 struct mdinfo *sd;
3130 int retry;
3131 int err = 0;
3132 int i;
3133
3134 /* check if 'fd' an opened container */
3135 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3136 if (!sra)
3137 return 1;
3138
3139 if (sra->array.major_version != -1 ||
3140 sra->array.minor_version != -2 ||
3141 strcmp(sra->text_version, "imsm") != 0) {
3142 err = 1;
3143 goto error;
3144 }
3145 /* load all mpbs */
3146 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3147 struct intel_super *s = alloc_super();
3148 char nm[32];
3149 int dfd;
3150
3151 err = 1;
3152 if (!s)
3153 goto error;
3154 s->next = super_list;
3155 super_list = s;
3156
3157 err = 2;
3158 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3159 dfd = dev_open(nm, O_RDWR);
3160 if (dfd < 0)
3161 goto error;
3162
3163 err = load_and_parse_mpb(dfd, s, NULL, 1);
3164
3165 /* retry the load if we might have raced against mdmon */
3166 if (err == 3 && mdmon_running(devnum))
3167 for (retry = 0; retry < 3; retry++) {
3168 usleep(3000);
3169 err = load_and_parse_mpb(dfd, s, NULL, 1);
3170 if (err != 3)
3171 break;
3172 }
3173 if (err)
3174 goto error;
3175 }
3176
3177 /* all mpbs enter, maybe one leaves */
3178 super = imsm_thunderdome(&super_list, i);
3179 if (!super) {
3180 err = 1;
3181 goto error;
3182 }
3183
3184 if (find_missing(super) != 0) {
3185 free_imsm(super);
3186 err = 2;
3187 goto error;
3188 }
3189 err = 0;
3190
3191 error:
3192 while (super_list) {
3193 struct intel_super *s = super_list;
3194
3195 super_list = super_list->next;
3196 free_imsm(s);
3197 }
3198 sysfs_free(sra);
3199
3200 if (err)
3201 return err;
3202
3203 *sbp = super;
3204 st->container_dev = devnum;
3205 if (err == 0 && st->ss == NULL) {
3206 st->ss = &super_imsm;
3207 st->minor_version = 0;
3208 st->max_devs = IMSM_MAX_DEVICES;
3209 }
3210 return 0;
3211 }
3212
3213 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3214 {
3215 return load_super_imsm_all(st, fd, &st->sb, devname);
3216 }
3217 #endif
3218
3219 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3220 {
3221 struct intel_super *super;
3222 int rv;
3223
3224 if (test_partition(fd))
3225 /* IMSM not allowed on partitions */
3226 return 1;
3227
3228 free_super_imsm(st);
3229
3230 super = alloc_super();
3231 if (!super) {
3232 fprintf(stderr,
3233 Name ": malloc of %zu failed.\n",
3234 sizeof(*super));
3235 return 1;
3236 }
3237
3238 rv = load_and_parse_mpb(fd, super, devname, 0);
3239
3240 if (rv) {
3241 if (devname)
3242 fprintf(stderr,
3243 Name ": Failed to load all information "
3244 "sections on %s\n", devname);
3245 free_imsm(super);
3246 return rv;
3247 }
3248
3249 st->sb = super;
3250 if (st->ss == NULL) {
3251 st->ss = &super_imsm;
3252 st->minor_version = 0;
3253 st->max_devs = IMSM_MAX_DEVICES;
3254 }
3255 return 0;
3256 }
3257
3258 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3259 {
3260 if (info->level == 1)
3261 return 128;
3262 return info->chunk_size >> 9;
3263 }
3264
3265 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3266 {
3267 __u32 num_stripes;
3268
3269 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3270 num_stripes /= num_domains;
3271
3272 return num_stripes;
3273 }
3274
3275 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3276 {
3277 if (info->level == 1)
3278 return info->size * 2;
3279 else
3280 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3281 }
3282
3283 static void imsm_update_version_info(struct intel_super *super)
3284 {
3285 /* update the version and attributes */
3286 struct imsm_super *mpb = super->anchor;
3287 char *version;
3288 struct imsm_dev *dev;
3289 struct imsm_map *map;
3290 int i;
3291
3292 for (i = 0; i < mpb->num_raid_devs; i++) {
3293 dev = get_imsm_dev(super, i);
3294 map = get_imsm_map(dev, 0);
3295 if (__le32_to_cpu(dev->size_high) > 0)
3296 mpb->attributes |= MPB_ATTRIB_2TB;
3297
3298 /* FIXME detect when an array spans a port multiplier */
3299 #if 0
3300 mpb->attributes |= MPB_ATTRIB_PM;
3301 #endif
3302
3303 if (mpb->num_raid_devs > 1 ||
3304 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3305 version = MPB_VERSION_ATTRIBS;
3306 switch (get_imsm_raid_level(map)) {
3307 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3308 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3309 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3310 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3311 }
3312 } else {
3313 if (map->num_members >= 5)
3314 version = MPB_VERSION_5OR6_DISK_ARRAY;
3315 else if (dev->status == DEV_CLONE_N_GO)
3316 version = MPB_VERSION_CNG;
3317 else if (get_imsm_raid_level(map) == 5)
3318 version = MPB_VERSION_RAID5;
3319 else if (map->num_members >= 3)
3320 version = MPB_VERSION_3OR4_DISK_ARRAY;
3321 else if (get_imsm_raid_level(map) == 1)
3322 version = MPB_VERSION_RAID1;
3323 else
3324 version = MPB_VERSION_RAID0;
3325 }
3326 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3327 }
3328 }
3329
3330 static int check_name(struct intel_super *super, char *name, int quiet)
3331 {
3332 struct imsm_super *mpb = super->anchor;
3333 char *reason = NULL;
3334 int i;
3335
3336 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3337 reason = "must be 16 characters or less";
3338
3339 for (i = 0; i < mpb->num_raid_devs; i++) {
3340 struct imsm_dev *dev = get_imsm_dev(super, i);
3341
3342 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3343 reason = "already exists";
3344 break;
3345 }
3346 }
3347
3348 if (reason && !quiet)
3349 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3350
3351 return !reason;
3352 }
3353
3354 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3355 unsigned long long size, char *name,
3356 char *homehost, int *uuid)
3357 {
3358 /* We are creating a volume inside a pre-existing container.
3359 * so st->sb is already set.
3360 */
3361 struct intel_super *super = st->sb;
3362 struct imsm_super *mpb = super->anchor;
3363 struct intel_dev *dv;
3364 struct imsm_dev *dev;
3365 struct imsm_vol *vol;
3366 struct imsm_map *map;
3367 int idx = mpb->num_raid_devs;
3368 int i;
3369 unsigned long long array_blocks;
3370 size_t size_old, size_new;
3371 __u32 num_data_stripes;
3372
3373 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3374 fprintf(stderr, Name": This imsm-container already has the "
3375 "maximum of %d volumes\n", super->orom->vpa);
3376 return 0;
3377 }
3378
3379 /* ensure the mpb is large enough for the new data */
3380 size_old = __le32_to_cpu(mpb->mpb_size);
3381 size_new = disks_to_mpb_size(info->nr_disks);
3382 if (size_new > size_old) {
3383 void *mpb_new;
3384 size_t size_round = ROUND_UP(size_new, 512);
3385
3386 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3387 fprintf(stderr, Name": could not allocate new mpb\n");
3388 return 0;
3389 }
3390 memcpy(mpb_new, mpb, size_old);
3391 free(mpb);
3392 mpb = mpb_new;
3393 super->anchor = mpb_new;
3394 mpb->mpb_size = __cpu_to_le32(size_new);
3395 memset(mpb_new + size_old, 0, size_round - size_old);
3396 }
3397 super->current_vol = idx;
3398 /* when creating the first raid device in this container set num_disks
3399 * to zero, i.e. delete this spare and add raid member devices in
3400 * add_to_super_imsm_volume()
3401 */
3402 if (super->current_vol == 0)
3403 mpb->num_disks = 0;
3404
3405 if (!check_name(super, name, 0))
3406 return 0;
3407 dv = malloc(sizeof(*dv));
3408 if (!dv) {
3409 fprintf(stderr, Name ": failed to allocate device list entry\n");
3410 return 0;
3411 }
3412 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3413 if (!dev) {
3414 free(dv);
3415 fprintf(stderr, Name": could not allocate raid device\n");
3416 return 0;
3417 }
3418 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3419 if (info->level == 1)
3420 array_blocks = info_to_blocks_per_member(info);
3421 else
3422 array_blocks = calc_array_size(info->level, info->raid_disks,
3423 info->layout, info->chunk_size,
3424 info->size*2);
3425 /* round array size down to closest MB */
3426 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3427
3428 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3429 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3430 dev->status = __cpu_to_le32(0);
3431 dev->reserved_blocks = __cpu_to_le32(0);
3432 vol = &dev->vol;
3433 vol->migr_state = 0;
3434 set_migr_type(dev, MIGR_INIT);
3435 vol->dirty = 0;
3436 vol->curr_migr_unit = 0;
3437 map = get_imsm_map(dev, 0);
3438 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3439 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3440 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3441 map->failed_disk_num = ~0;
3442 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3443 IMSM_T_STATE_NORMAL;
3444 map->ddf = 1;
3445
3446 if (info->level == 1 && info->raid_disks > 2) {
3447 free(dev);
3448 free(dv);
3449 fprintf(stderr, Name": imsm does not support more than 2 disks"
3450 "in a raid1 volume\n");
3451 return 0;
3452 }
3453
3454 map->raid_level = info->level;
3455 if (info->level == 10) {
3456 map->raid_level = 1;
3457 map->num_domains = info->raid_disks / 2;
3458 } else if (info->level == 1)
3459 map->num_domains = info->raid_disks;
3460 else
3461 map->num_domains = 1;
3462
3463 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3464 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3465
3466 map->num_members = info->raid_disks;
3467 for (i = 0; i < map->num_members; i++) {
3468 /* initialized in add_to_super */
3469 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3470 }
3471 mpb->num_raid_devs++;
3472
3473 dv->dev = dev;
3474 dv->index = super->current_vol;
3475 dv->next = super->devlist;
3476 super->devlist = dv;
3477
3478 imsm_update_version_info(super);
3479
3480 return 1;
3481 }
3482
3483 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3484 unsigned long long size, char *name,
3485 char *homehost, int *uuid)
3486 {
3487 /* This is primarily called by Create when creating a new array.
3488 * We will then get add_to_super called for each component, and then
3489 * write_init_super called to write it out to each device.
3490 * For IMSM, Create can create on fresh devices or on a pre-existing
3491 * array.
3492 * To create on a pre-existing array a different method will be called.
3493 * This one is just for fresh drives.
3494 */
3495 struct intel_super *super;
3496 struct imsm_super *mpb;
3497 size_t mpb_size;
3498 char *version;
3499
3500 if (st->sb)
3501 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3502
3503 if (info)
3504 mpb_size = disks_to_mpb_size(info->nr_disks);
3505 else
3506 mpb_size = 512;
3507
3508 super = alloc_super();
3509 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3510 free(super);
3511 super = NULL;
3512 }
3513 if (!super) {
3514 fprintf(stderr, Name
3515 ": %s could not allocate superblock\n", __func__);
3516 return 0;
3517 }
3518 memset(super->buf, 0, mpb_size);
3519 mpb = super->buf;
3520 mpb->mpb_size = __cpu_to_le32(mpb_size);
3521 st->sb = super;
3522
3523 if (info == NULL) {
3524 /* zeroing superblock */
3525 return 0;
3526 }
3527
3528 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3529
3530 version = (char *) mpb->sig;
3531 strcpy(version, MPB_SIGNATURE);
3532 version += strlen(MPB_SIGNATURE);
3533 strcpy(version, MPB_VERSION_RAID0);
3534
3535 return 1;
3536 }
3537
3538 #ifndef MDASSEMBLE
3539 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3540 int fd, char *devname)
3541 {
3542 struct intel_super *super = st->sb;
3543 struct imsm_super *mpb = super->anchor;
3544 struct dl *dl;
3545 struct imsm_dev *dev;
3546 struct imsm_map *map;
3547 int slot;
3548
3549 dev = get_imsm_dev(super, super->current_vol);
3550 map = get_imsm_map(dev, 0);
3551
3552 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3553 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3554 devname);
3555 return 1;
3556 }
3557
3558 if (fd == -1) {
3559 /* we're doing autolayout so grab the pre-marked (in
3560 * validate_geometry) raid_disk
3561 */
3562 for (dl = super->disks; dl; dl = dl->next)
3563 if (dl->raiddisk == dk->raid_disk)
3564 break;
3565 } else {
3566 for (dl = super->disks; dl ; dl = dl->next)
3567 if (dl->major == dk->major &&
3568 dl->minor == dk->minor)
3569 break;
3570 }
3571
3572 if (!dl) {
3573 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3574 return 1;
3575 }
3576
3577 /* add a pristine spare to the metadata */
3578 if (dl->index < 0) {
3579 dl->index = super->anchor->num_disks;
3580 super->anchor->num_disks++;
3581 }
3582 /* Check the device has not already been added */
3583 slot = get_imsm_disk_slot(map, dl->index);
3584 if (slot >= 0 &&
3585 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
3586 fprintf(stderr, Name ": %s has been included in this array twice\n",
3587 devname);
3588 return 1;
3589 }
3590 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3591 dl->disk.status = CONFIGURED_DISK;
3592
3593 /* if we are creating the first raid device update the family number */
3594 if (super->current_vol == 0) {
3595 __u32 sum;
3596 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3597 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3598
3599 if (!_dev || !_disk) {
3600 fprintf(stderr, Name ": BUG mpb setup error\n");
3601 return 1;
3602 }
3603 *_dev = *dev;
3604 *_disk = dl->disk;
3605 sum = random32();
3606 sum += __gen_imsm_checksum(mpb);
3607 mpb->family_num = __cpu_to_le32(sum);
3608 mpb->orig_family_num = mpb->family_num;
3609 }
3610
3611 return 0;
3612 }
3613
3614
3615 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3616 int fd, char *devname)
3617 {
3618 struct intel_super *super = st->sb;
3619 struct dl *dd;
3620 unsigned long long size;
3621 __u32 id;
3622 int rv;
3623 struct stat stb;
3624
3625 /* If we are on an RAID enabled platform check that the disk is
3626 * attached to the raid controller.
3627 * We do not need to test disks attachment for container based additions,
3628 * they shall be already tested when container was created/assembled.
3629 */
3630 if ((fd != -1) && !check_env("IMSM_NO_PLATFORM")) {
3631 struct sys_dev *hba_name;
3632 struct intel_hba *hba;
3633
3634 hba_name = find_disk_attached_hba(fd, NULL);
3635 if (!hba_name) {
3636 fprintf(stderr,
3637 Name ": %s is not attached to Intel(R) RAID controller.\n",
3638 devname ? : "disk");
3639 return 1;
3640 }
3641 rv = attach_hba_to_super(super, hba_name, devname);
3642 switch (rv) {
3643 case 2:
3644 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3645 "controller (%s),\n but the container is assigned to Intel(R) "
3646 "%s RAID controller (",
3647 devname,
3648 get_sys_dev_type(hba_name->type),
3649 hba_name->pci_id ? : "Err!",
3650 get_sys_dev_type(hba_name->type));
3651
3652 hba = super->hba;
3653 while (hba) {
3654 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3655 if (hba->next)
3656 fprintf(stderr, ", ");
3657 hba = hba->next;
3658 }
3659
3660 fprintf(stderr, ").\n"
3661 " Mixing devices attached to different controllers "
3662 "is not allowed.\n");
3663 free_sys_dev(&hba_name);
3664 return 1;
3665 }
3666 free_sys_dev(&hba_name);
3667 }
3668
3669 if (super->current_vol >= 0)
3670 return add_to_super_imsm_volume(st, dk, fd, devname);
3671
3672 fstat(fd, &stb);
3673 dd = malloc(sizeof(*dd));
3674 if (!dd) {
3675 fprintf(stderr,
3676 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3677 return 1;
3678 }
3679 memset(dd, 0, sizeof(*dd));
3680 dd->major = major(stb.st_rdev);
3681 dd->minor = minor(stb.st_rdev);
3682 dd->index = -1;
3683 dd->devname = devname ? strdup(devname) : NULL;
3684 dd->fd = fd;
3685 dd->e = NULL;
3686 dd->action = DISK_ADD;
3687 rv = imsm_read_serial(fd, devname, dd->serial);
3688 if (rv) {
3689 fprintf(stderr,
3690 Name ": failed to retrieve scsi serial, aborting\n");
3691 free(dd);
3692 abort();
3693 }
3694
3695 get_dev_size(fd, NULL, &size);
3696 size /= 512;
3697 serialcpy(dd->disk.serial, dd->serial);
3698 dd->disk.total_blocks = __cpu_to_le32(size);
3699 dd->disk.status = SPARE_DISK;
3700 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3701 dd->disk.scsi_id = __cpu_to_le32(id);
3702 else
3703 dd->disk.scsi_id = __cpu_to_le32(0);
3704
3705 if (st->update_tail) {
3706 dd->next = super->disk_mgmt_list;
3707 super->disk_mgmt_list = dd;
3708 } else {
3709 dd->next = super->disks;
3710 super->disks = dd;
3711 }
3712
3713 return 0;
3714 }
3715
3716
3717 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
3718 {
3719 struct intel_super *super = st->sb;
3720 struct dl *dd;
3721
3722 /* remove from super works only in mdmon - for communication
3723 * manager - monitor. Check if communication memory buffer
3724 * is prepared.
3725 */
3726 if (!st->update_tail) {
3727 fprintf(stderr,
3728 Name ": %s shall be used in mdmon context only"
3729 "(line %d).\n", __func__, __LINE__);
3730 return 1;
3731 }
3732 dd = malloc(sizeof(*dd));
3733 if (!dd) {
3734 fprintf(stderr,
3735 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3736 return 1;
3737 }
3738 memset(dd, 0, sizeof(*dd));
3739 dd->major = dk->major;
3740 dd->minor = dk->minor;
3741 dd->index = -1;
3742 dd->fd = -1;
3743 dd->disk.status = SPARE_DISK;
3744 dd->action = DISK_REMOVE;
3745
3746 dd->next = super->disk_mgmt_list;
3747 super->disk_mgmt_list = dd;
3748
3749
3750 return 0;
3751 }
3752
3753 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3754
3755 static union {
3756 char buf[512];
3757 struct imsm_super anchor;
3758 } spare_record __attribute__ ((aligned(512)));
3759
3760 /* spare records have their own family number and do not have any defined raid
3761 * devices
3762 */
3763 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3764 {
3765 struct imsm_super *mpb = super->anchor;
3766 struct imsm_super *spare = &spare_record.anchor;
3767 __u32 sum;
3768 struct dl *d;
3769
3770 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3771 spare->generation_num = __cpu_to_le32(1UL),
3772 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3773 spare->num_disks = 1,
3774 spare->num_raid_devs = 0,
3775 spare->cache_size = mpb->cache_size,
3776 spare->pwr_cycle_count = __cpu_to_le32(1),
3777
3778 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3779 MPB_SIGNATURE MPB_VERSION_RAID0);
3780
3781 for (d = super->disks; d; d = d->next) {
3782 if (d->index != -1)
3783 continue;
3784
3785 spare->disk[0] = d->disk;
3786 sum = __gen_imsm_checksum(spare);
3787 spare->family_num = __cpu_to_le32(sum);
3788 spare->orig_family_num = 0;
3789 sum = __gen_imsm_checksum(spare);
3790 spare->check_sum = __cpu_to_le32(sum);
3791
3792 if (store_imsm_mpb(d->fd, spare)) {
3793 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3794 __func__, d->major, d->minor, strerror(errno));
3795 return 1;
3796 }
3797 if (doclose) {
3798 close(d->fd);
3799 d->fd = -1;
3800 }
3801 }
3802
3803 return 0;
3804 }
3805
3806 static int write_super_imsm(struct supertype *st, int doclose)
3807 {
3808 struct intel_super *super = st->sb;
3809 struct imsm_super *mpb = super->anchor;
3810 struct dl *d;
3811 __u32 generation;
3812 __u32 sum;
3813 int spares = 0;
3814 int i;
3815 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3816 int num_disks = 0;
3817
3818 /* 'generation' is incremented everytime the metadata is written */
3819 generation = __le32_to_cpu(mpb->generation_num);
3820 generation++;
3821 mpb->generation_num = __cpu_to_le32(generation);
3822
3823 /* fix up cases where previous mdadm releases failed to set
3824 * orig_family_num
3825 */
3826 if (mpb->orig_family_num == 0)
3827 mpb->orig_family_num = mpb->family_num;
3828
3829 for (d = super->disks; d; d = d->next) {
3830 if (d->index == -1)
3831 spares++;
3832 else {
3833 mpb->disk[d->index] = d->disk;
3834 num_disks++;
3835 }
3836 }
3837 for (d = super->missing; d; d = d->next) {
3838 mpb->disk[d->index] = d->disk;
3839 num_disks++;
3840 }
3841 mpb->num_disks = num_disks;
3842 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3843
3844 for (i = 0; i < mpb->num_raid_devs; i++) {
3845 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3846 struct imsm_dev *dev2 = get_imsm_dev(super, i);
3847 if (dev && dev2) {
3848 imsm_copy_dev(dev, dev2);
3849 mpb_size += sizeof_imsm_dev(dev, 0);
3850 }
3851 }
3852 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3853 mpb->mpb_size = __cpu_to_le32(mpb_size);
3854
3855 /* recalculate checksum */
3856 sum = __gen_imsm_checksum(mpb);
3857 mpb->check_sum = __cpu_to_le32(sum);
3858
3859 /* write the mpb for disks that compose raid devices */
3860 for (d = super->disks; d ; d = d->next) {
3861 if (d->index < 0)
3862 continue;
3863 if (store_imsm_mpb(d->fd, mpb))
3864 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3865 __func__, d->major, d->minor, strerror(errno));
3866 if (doclose) {
3867 close(d->fd);
3868 d->fd = -1;
3869 }
3870 }
3871
3872 if (spares)
3873 return write_super_imsm_spares(super, doclose);
3874
3875 return 0;
3876 }
3877
3878
3879 static int create_array(struct supertype *st, int dev_idx)
3880 {
3881 size_t len;
3882 struct imsm_update_create_array *u;
3883 struct intel_super *super = st->sb;
3884 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3885 struct imsm_map *map = get_imsm_map(dev, 0);
3886 struct disk_info *inf;
3887 struct imsm_disk *disk;
3888 int i;
3889
3890 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3891 sizeof(*inf) * map->num_members;
3892 u = malloc(len);
3893 if (!u) {
3894 fprintf(stderr, "%s: failed to allocate update buffer\n",
3895 __func__);
3896 return 1;
3897 }
3898
3899 u->type = update_create_array;
3900 u->dev_idx = dev_idx;
3901 imsm_copy_dev(&u->dev, dev);
3902 inf = get_disk_info(u);
3903 for (i = 0; i < map->num_members; i++) {
3904 int idx = get_imsm_disk_idx(dev, i, -1);
3905
3906 disk = get_imsm_disk(super, idx);
3907 serialcpy(inf[i].serial, disk->serial);
3908 }
3909 append_metadata_update(st, u, len);
3910
3911 return 0;
3912 }
3913
3914 static int mgmt_disk(struct supertype *st)
3915 {
3916 struct intel_super *super = st->sb;
3917 size_t len;
3918 struct imsm_update_add_remove_disk *u;
3919
3920 if (!super->disk_mgmt_list)
3921 return 0;
3922
3923 len = sizeof(*u);
3924 u = malloc(len);
3925 if (!u) {
3926 fprintf(stderr, "%s: failed to allocate update buffer\n",
3927 __func__);
3928 return 1;
3929 }
3930
3931 u->type = update_add_remove_disk;
3932 append_metadata_update(st, u, len);
3933
3934 return 0;
3935 }
3936
3937 static int write_init_super_imsm(struct supertype *st)
3938 {
3939 struct intel_super *super = st->sb;
3940 int current_vol = super->current_vol;
3941
3942 /* we are done with current_vol reset it to point st at the container */
3943 super->current_vol = -1;
3944
3945 if (st->update_tail) {
3946 /* queue the recently created array / added disk
3947 * as a metadata update */
3948 int rv;
3949
3950 /* determine if we are creating a volume or adding a disk */
3951 if (current_vol < 0) {
3952 /* in the mgmt (add/remove) disk case we are running
3953 * in mdmon context, so don't close fd's
3954 */
3955 return mgmt_disk(st);
3956 } else
3957 rv = create_array(st, current_vol);
3958
3959 return rv;
3960 } else {
3961 struct dl *d;
3962 for (d = super->disks; d; d = d->next)
3963 Kill(d->devname, NULL, 0, 1, 1);
3964 return write_super_imsm(st, 1);
3965 }
3966 }
3967 #endif
3968
3969 static int store_super_imsm(struct supertype *st, int fd)
3970 {
3971 struct intel_super *super = st->sb;
3972 struct imsm_super *mpb = super ? super->anchor : NULL;
3973
3974 if (!mpb)
3975 return 1;
3976
3977 #ifndef MDASSEMBLE
3978 return store_imsm_mpb(fd, mpb);
3979 #else
3980 return 1;
3981 #endif
3982 }
3983
3984 static int imsm_bbm_log_size(struct imsm_super *mpb)
3985 {
3986 return __le32_to_cpu(mpb->bbm_log_size);
3987 }
3988
3989 #ifndef MDASSEMBLE
3990 static int validate_geometry_imsm_container(struct supertype *st, int level,
3991 int layout, int raiddisks, int chunk,
3992 unsigned long long size, char *dev,
3993 unsigned long long *freesize,
3994 int verbose)
3995 {
3996 int fd;
3997 unsigned long long ldsize;
3998 const struct imsm_orom *orom;
3999
4000 if (level != LEVEL_CONTAINER)
4001 return 0;
4002 if (!dev)
4003 return 1;
4004
4005 if (check_env("IMSM_NO_PLATFORM"))
4006 orom = NULL;
4007 else
4008 orom = find_imsm_orom();
4009 if (orom && raiddisks > orom->tds) {
4010 if (verbose)
4011 fprintf(stderr, Name ": %d exceeds maximum number of"
4012 " platform supported disks: %d\n",
4013 raiddisks, orom->tds);
4014 return 0;
4015 }
4016
4017 fd = open(dev, O_RDONLY|O_EXCL, 0);
4018 if (fd < 0) {
4019 if (verbose)
4020 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4021 dev, strerror(errno));
4022 return 0;
4023 }
4024 if (!get_dev_size(fd, dev, &ldsize)) {
4025 close(fd);
4026 return 0;
4027 }
4028 close(fd);
4029
4030 *freesize = avail_size_imsm(st, ldsize >> 9);
4031
4032 return 1;
4033 }
4034
4035 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4036 {
4037 const unsigned long long base_start = e[*idx].start;
4038 unsigned long long end = base_start + e[*idx].size;
4039 int i;
4040
4041 if (base_start == end)
4042 return 0;
4043
4044 *idx = *idx + 1;
4045 for (i = *idx; i < num_extents; i++) {
4046 /* extend overlapping extents */
4047 if (e[i].start >= base_start &&
4048 e[i].start <= end) {
4049 if (e[i].size == 0)
4050 return 0;
4051 if (e[i].start + e[i].size > end)
4052 end = e[i].start + e[i].size;
4053 } else if (e[i].start > end) {
4054 *idx = i;
4055 break;
4056 }
4057 }
4058
4059 return end - base_start;
4060 }
4061
4062 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4063 {
4064 /* build a composite disk with all known extents and generate a new
4065 * 'maxsize' given the "all disks in an array must share a common start
4066 * offset" constraint
4067 */
4068 struct extent *e = calloc(sum_extents, sizeof(*e));
4069 struct dl *dl;
4070 int i, j;
4071 int start_extent;
4072 unsigned long long pos;
4073 unsigned long long start = 0;
4074 unsigned long long maxsize;
4075 unsigned long reserve;
4076
4077 if (!e)
4078 return 0;
4079
4080 /* coalesce and sort all extents. also, check to see if we need to
4081 * reserve space between member arrays
4082 */
4083 j = 0;
4084 for (dl = super->disks; dl; dl = dl->next) {
4085 if (!dl->e)
4086 continue;
4087 for (i = 0; i < dl->extent_cnt; i++)
4088 e[j++] = dl->e[i];
4089 }
4090 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4091
4092 /* merge extents */
4093 i = 0;
4094 j = 0;
4095 while (i < sum_extents) {
4096 e[j].start = e[i].start;
4097 e[j].size = find_size(e, &i, sum_extents);
4098 j++;
4099 if (e[j-1].size == 0)
4100 break;
4101 }
4102
4103 pos = 0;
4104 maxsize = 0;
4105 start_extent = 0;
4106 i = 0;
4107 do {
4108 unsigned long long esize;
4109
4110 esize = e[i].start - pos;
4111 if (esize >= maxsize) {
4112 maxsize = esize;
4113 start = pos;
4114 start_extent = i;
4115 }
4116 pos = e[i].start + e[i].size;
4117 i++;
4118 } while (e[i-1].size);
4119 free(e);
4120
4121 if (maxsize == 0)
4122 return 0;
4123
4124 /* FIXME assumes volume at offset 0 is the first volume in a
4125 * container
4126 */
4127 if (start_extent > 0)
4128 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4129 else
4130 reserve = 0;
4131
4132 if (maxsize < reserve)
4133 return 0;
4134
4135 super->create_offset = ~((__u32) 0);
4136 if (start + reserve > super->create_offset)
4137 return 0; /* start overflows create_offset */
4138 super->create_offset = start + reserve;
4139
4140 return maxsize - reserve;
4141 }
4142
4143 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4144 {
4145 if (level < 0 || level == 6 || level == 4)
4146 return 0;
4147
4148 /* if we have an orom prevent invalid raid levels */
4149 if (orom)
4150 switch (level) {
4151 case 0: return imsm_orom_has_raid0(orom);
4152 case 1:
4153 if (raiddisks > 2)
4154 return imsm_orom_has_raid1e(orom);
4155 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4156 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4157 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4158 }
4159 else
4160 return 1; /* not on an Intel RAID platform so anything goes */
4161
4162 return 0;
4163 }
4164
4165 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4166 static int
4167 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4168 int raiddisks, int chunk, int verbose)
4169 {
4170 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
4171 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4172 level, raiddisks, raiddisks > 1 ? "s" : "");
4173 return 0;
4174 }
4175 if (super->orom && level != 1 &&
4176 !imsm_orom_has_chunk(super->orom, chunk)) {
4177 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
4178 return 0;
4179 }
4180 if (layout != imsm_level_to_layout(level)) {
4181 if (level == 5)
4182 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4183 else if (level == 10)
4184 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4185 else
4186 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4187 layout, level);
4188 return 0;
4189 }
4190
4191 return 1;
4192 }
4193
4194 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4195 * FIX ME add ahci details
4196 */
4197 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4198 int layout, int raiddisks, int chunk,
4199 unsigned long long size, char *dev,
4200 unsigned long long *freesize,
4201 int verbose)
4202 {
4203 struct stat stb;
4204 struct intel_super *super = st->sb;
4205 struct imsm_super *mpb = super->anchor;
4206 struct dl *dl;
4207 unsigned long long pos = 0;
4208 unsigned long long maxsize;
4209 struct extent *e;
4210 int i;
4211
4212 /* We must have the container info already read in. */
4213 if (!super)
4214 return 0;
4215
4216 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
4217 return 0;
4218
4219 if (!dev) {
4220 /* General test: make sure there is space for
4221 * 'raiddisks' device extents of size 'size' at a given
4222 * offset
4223 */
4224 unsigned long long minsize = size;
4225 unsigned long long start_offset = MaxSector;
4226 int dcnt = 0;
4227 if (minsize == 0)
4228 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4229 for (dl = super->disks; dl ; dl = dl->next) {
4230 int found = 0;
4231
4232 pos = 0;
4233 i = 0;
4234 e = get_extents(super, dl);
4235 if (!e) continue;
4236 do {
4237 unsigned long long esize;
4238 esize = e[i].start - pos;
4239 if (esize >= minsize)
4240 found = 1;
4241 if (found && start_offset == MaxSector) {
4242 start_offset = pos;
4243 break;
4244 } else if (found && pos != start_offset) {
4245 found = 0;
4246 break;
4247 }
4248 pos = e[i].start + e[i].size;
4249 i++;
4250 } while (e[i-1].size);
4251 if (found)
4252 dcnt++;
4253 free(e);
4254 }
4255 if (dcnt < raiddisks) {
4256 if (verbose)
4257 fprintf(stderr, Name ": imsm: Not enough "
4258 "devices with space for this array "
4259 "(%d < %d)\n",
4260 dcnt, raiddisks);
4261 return 0;
4262 }
4263 return 1;
4264 }
4265
4266 /* This device must be a member of the set */
4267 if (stat(dev, &stb) < 0)
4268 return 0;
4269 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4270 return 0;
4271 for (dl = super->disks ; dl ; dl = dl->next) {
4272 if (dl->major == (int)major(stb.st_rdev) &&
4273 dl->minor == (int)minor(stb.st_rdev))
4274 break;
4275 }
4276 if (!dl) {
4277 if (verbose)
4278 fprintf(stderr, Name ": %s is not in the "
4279 "same imsm set\n", dev);
4280 return 0;
4281 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4282 /* If a volume is present then the current creation attempt
4283 * cannot incorporate new spares because the orom may not
4284 * understand this configuration (all member disks must be
4285 * members of each array in the container).
4286 */
4287 fprintf(stderr, Name ": %s is a spare and a volume"
4288 " is already defined for this container\n", dev);
4289 fprintf(stderr, Name ": The option-rom requires all member"
4290 " disks to be a member of all volumes\n");
4291 return 0;
4292 }
4293
4294 /* retrieve the largest free space block */
4295 e = get_extents(super, dl);
4296 maxsize = 0;
4297 i = 0;
4298 if (e) {
4299 do {
4300 unsigned long long esize;
4301
4302 esize = e[i].start - pos;
4303 if (esize >= maxsize)
4304 maxsize = esize;
4305 pos = e[i].start + e[i].size;
4306 i++;
4307 } while (e[i-1].size);
4308 dl->e = e;
4309 dl->extent_cnt = i;
4310 } else {
4311 if (verbose)
4312 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4313 dev);
4314 return 0;
4315 }
4316 if (maxsize < size) {
4317 if (verbose)
4318 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4319 dev, maxsize, size);
4320 return 0;
4321 }
4322
4323 /* count total number of extents for merge */
4324 i = 0;
4325 for (dl = super->disks; dl; dl = dl->next)
4326 if (dl->e)
4327 i += dl->extent_cnt;
4328
4329 maxsize = merge_extents(super, i);
4330 if (maxsize < size || maxsize == 0) {
4331 if (verbose)
4332 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4333 maxsize, size);
4334 return 0;
4335 }
4336
4337 *freesize = maxsize;
4338
4339 return 1;
4340 }
4341
4342 static int reserve_space(struct supertype *st, int raiddisks,
4343 unsigned long long size, int chunk,
4344 unsigned long long *freesize)
4345 {
4346 struct intel_super *super = st->sb;
4347 struct imsm_super *mpb = super->anchor;
4348 struct dl *dl;
4349 int i;
4350 int extent_cnt;
4351 struct extent *e;
4352 unsigned long long maxsize;
4353 unsigned long long minsize;
4354 int cnt;
4355 int used;
4356
4357 /* find the largest common start free region of the possible disks */
4358 used = 0;
4359 extent_cnt = 0;
4360 cnt = 0;
4361 for (dl = super->disks; dl; dl = dl->next) {
4362 dl->raiddisk = -1;
4363
4364 if (dl->index >= 0)
4365 used++;
4366
4367 /* don't activate new spares if we are orom constrained
4368 * and there is already a volume active in the container
4369 */
4370 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4371 continue;
4372
4373 e = get_extents(super, dl);
4374 if (!e)
4375 continue;
4376 for (i = 1; e[i-1].size; i++)
4377 ;
4378 dl->e = e;
4379 dl->extent_cnt = i;
4380 extent_cnt += i;
4381 cnt++;
4382 }
4383
4384 maxsize = merge_extents(super, extent_cnt);
4385 minsize = size;
4386 if (size == 0)
4387 /* chunk is in K */
4388 minsize = chunk * 2;
4389
4390 if (cnt < raiddisks ||
4391 (super->orom && used && used != raiddisks) ||
4392 maxsize < minsize ||
4393 maxsize == 0) {
4394 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4395 return 0; /* No enough free spaces large enough */
4396 }
4397
4398 if (size == 0) {
4399 size = maxsize;
4400 if (chunk) {
4401 size /= 2 * chunk;
4402 size *= 2 * chunk;
4403 }
4404 }
4405
4406 cnt = 0;
4407 for (dl = super->disks; dl; dl = dl->next)
4408 if (dl->e)
4409 dl->raiddisk = cnt++;
4410
4411 *freesize = size;
4412
4413 return 1;
4414 }
4415
4416 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4417 int raiddisks, int chunk, unsigned long long size,
4418 char *dev, unsigned long long *freesize,
4419 int verbose)
4420 {
4421 int fd, cfd;
4422 struct mdinfo *sra;
4423 int is_member = 0;
4424
4425 /* if given unused devices create a container
4426 * if given given devices in a container create a member volume
4427 */
4428 if (level == LEVEL_CONTAINER) {
4429 /* Must be a fresh device to add to a container */
4430 return validate_geometry_imsm_container(st, level, layout,
4431 raiddisks, chunk, size,
4432 dev, freesize,
4433 verbose);
4434 }
4435
4436 if (!dev) {
4437 if (st->sb && freesize) {
4438 /* we are being asked to automatically layout a
4439 * new volume based on the current contents of
4440 * the container. If the the parameters can be
4441 * satisfied reserve_space will record the disks,
4442 * start offset, and size of the volume to be
4443 * created. add_to_super and getinfo_super
4444 * detect when autolayout is in progress.
4445 */
4446 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4447 raiddisks, chunk,
4448 verbose))
4449 return 0;
4450 return reserve_space(st, raiddisks, size, chunk, freesize);
4451 }
4452 return 1;
4453 }
4454 if (st->sb) {
4455 /* creating in a given container */
4456 return validate_geometry_imsm_volume(st, level, layout,
4457 raiddisks, chunk, size,
4458 dev, freesize, verbose);
4459 }
4460
4461 /* This device needs to be a device in an 'imsm' container */
4462 fd = open(dev, O_RDONLY|O_EXCL, 0);
4463 if (fd >= 0) {
4464 if (verbose)
4465 fprintf(stderr,
4466 Name ": Cannot create this array on device %s\n",
4467 dev);
4468 close(fd);
4469 return 0;
4470 }
4471 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4472 if (verbose)
4473 fprintf(stderr, Name ": Cannot open %s: %s\n",
4474 dev, strerror(errno));
4475 return 0;
4476 }
4477 /* Well, it is in use by someone, maybe an 'imsm' container. */
4478 cfd = open_container(fd);
4479 close(fd);
4480 if (cfd < 0) {
4481 if (verbose)
4482 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4483 dev);
4484 return 0;
4485 }
4486 sra = sysfs_read(cfd, 0, GET_VERSION);
4487 if (sra && sra->array.major_version == -1 &&
4488 strcmp(sra->text_version, "imsm") == 0)
4489 is_member = 1;
4490 sysfs_free(sra);
4491 if (is_member) {
4492 /* This is a member of a imsm container. Load the container
4493 * and try to create a volume
4494 */
4495 struct intel_super *super;
4496
4497 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4498 st->sb = super;
4499 st->container_dev = fd2devnum(cfd);
4500 close(cfd);
4501 return validate_geometry_imsm_volume(st, level, layout,
4502 raiddisks, chunk,
4503 size, dev,
4504 freesize, verbose);
4505 }
4506 }
4507
4508 if (verbose)
4509 fprintf(stderr, Name ": failed container membership check\n");
4510
4511 close(cfd);
4512 return 0;
4513 }
4514
4515 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
4516 {
4517 struct intel_super *super = st->sb;
4518
4519 if (level && *level == UnSet)
4520 *level = LEVEL_CONTAINER;
4521
4522 if (level && layout && *layout == UnSet)
4523 *layout = imsm_level_to_layout(*level);
4524
4525 if (chunk && (*chunk == UnSet || *chunk == 0) &&
4526 super && super->orom)
4527 *chunk = imsm_orom_default_chunk(super->orom);
4528 }
4529
4530 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4531
4532 static int kill_subarray_imsm(struct supertype *st)
4533 {
4534 /* remove the subarray currently referenced by ->current_vol */
4535 __u8 i;
4536 struct intel_dev **dp;
4537 struct intel_super *super = st->sb;
4538 __u8 current_vol = super->current_vol;
4539 struct imsm_super *mpb = super->anchor;
4540
4541 if (super->current_vol < 0)
4542 return 2;
4543 super->current_vol = -1; /* invalidate subarray cursor */
4544
4545 /* block deletions that would change the uuid of active subarrays
4546 *
4547 * FIXME when immutable ids are available, but note that we'll
4548 * also need to fixup the invalidated/active subarray indexes in
4549 * mdstat
4550 */
4551 for (i = 0; i < mpb->num_raid_devs; i++) {
4552 char subarray[4];
4553
4554 if (i < current_vol)
4555 continue;
4556 sprintf(subarray, "%u", i);
4557 if (is_subarray_active(subarray, st->devname)) {
4558 fprintf(stderr,
4559 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4560 current_vol, i);
4561
4562 return 2;
4563 }
4564 }
4565
4566 if (st->update_tail) {
4567 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4568
4569 if (!u)
4570 return 2;
4571 u->type = update_kill_array;
4572 u->dev_idx = current_vol;
4573 append_metadata_update(st, u, sizeof(*u));
4574
4575 return 0;
4576 }
4577
4578 for (dp = &super->devlist; *dp;)
4579 if ((*dp)->index == current_vol) {
4580 *dp = (*dp)->next;
4581 } else {
4582 handle_missing(super, (*dp)->dev);
4583 if ((*dp)->index > current_vol)
4584 (*dp)->index--;
4585 dp = &(*dp)->next;
4586 }
4587
4588 /* no more raid devices, all active components are now spares,
4589 * but of course failed are still failed
4590 */
4591 if (--mpb->num_raid_devs == 0) {
4592 struct dl *d;
4593
4594 for (d = super->disks; d; d = d->next)
4595 if (d->index > -2) {
4596 d->index = -1;
4597 d->disk.status = SPARE_DISK;
4598 }
4599 }
4600
4601 super->updates_pending++;
4602
4603 return 0;
4604 }
4605
4606 static int update_subarray_imsm(struct supertype *st, char *subarray,
4607 char *update, struct mddev_ident *ident)
4608 {
4609 /* update the subarray currently referenced by ->current_vol */
4610 struct intel_super *super = st->sb;
4611 struct imsm_super *mpb = super->anchor;
4612
4613 if (strcmp(update, "name") == 0) {
4614 char *name = ident->name;
4615 char *ep;
4616 int vol;
4617
4618 if (is_subarray_active(subarray, st->devname)) {
4619 fprintf(stderr,
4620 Name ": Unable to update name of active subarray\n");
4621 return 2;
4622 }
4623
4624 if (!check_name(super, name, 0))
4625 return 2;
4626
4627 vol = strtoul(subarray, &ep, 10);
4628 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4629 return 2;
4630
4631 if (st->update_tail) {
4632 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4633
4634 if (!u)
4635 return 2;
4636 u->type = update_rename_array;
4637 u->dev_idx = vol;
4638 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4639 append_metadata_update(st, u, sizeof(*u));
4640 } else {
4641 struct imsm_dev *dev;
4642 int i;
4643
4644 dev = get_imsm_dev(super, vol);
4645 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4646 for (i = 0; i < mpb->num_raid_devs; i++) {
4647 dev = get_imsm_dev(super, i);
4648 handle_missing(super, dev);
4649 }
4650 super->updates_pending++;
4651 }
4652 } else
4653 return 2;
4654
4655 return 0;
4656 }
4657
4658 static int is_gen_migration(struct imsm_dev *dev)
4659 {
4660 if (!dev->vol.migr_state)
4661 return 0;
4662
4663 if (migr_type(dev) == MIGR_GEN_MIGR)
4664 return 1;
4665
4666 return 0;
4667 }
4668 #endif /* MDASSEMBLE */
4669
4670 static int is_rebuilding(struct imsm_dev *dev)
4671 {
4672 struct imsm_map *migr_map;
4673
4674 if (!dev->vol.migr_state)
4675 return 0;
4676
4677 if (migr_type(dev) != MIGR_REBUILD)
4678 return 0;
4679
4680 migr_map = get_imsm_map(dev, 1);
4681
4682 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4683 return 1;
4684 else
4685 return 0;
4686 }
4687
4688 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4689 {
4690 struct mdinfo *rebuild = NULL;
4691 struct mdinfo *d;
4692 __u32 units;
4693
4694 if (!is_rebuilding(dev))
4695 return;
4696
4697 /* Find the rebuild target, but punt on the dual rebuild case */
4698 for (d = array->devs; d; d = d->next)
4699 if (d->recovery_start == 0) {
4700 if (rebuild)
4701 return;
4702 rebuild = d;
4703 }
4704
4705 if (!rebuild) {
4706 /* (?) none of the disks are marked with
4707 * IMSM_ORD_REBUILD, so assume they are missing and the
4708 * disk_ord_tbl was not correctly updated
4709 */
4710 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4711 return;
4712 }
4713
4714 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4715 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4716 }
4717
4718
4719 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
4720 {
4721 /* Given a container loaded by load_super_imsm_all,
4722 * extract information about all the arrays into
4723 * an mdinfo tree.
4724 * If 'subarray' is given, just extract info about that array.
4725 *
4726 * For each imsm_dev create an mdinfo, fill it in,
4727 * then look for matching devices in super->disks
4728 * and create appropriate device mdinfo.
4729 */
4730 struct intel_super *super = st->sb;
4731 struct imsm_super *mpb = super->anchor;
4732 struct mdinfo *rest = NULL;
4733 unsigned int i;
4734 int bbm_errors = 0;
4735 struct dl *d;
4736 int spare_disks = 0;
4737
4738 /* check for bad blocks */
4739 if (imsm_bbm_log_size(super->anchor))
4740 bbm_errors = 1;
4741
4742 /* count spare devices, not used in maps
4743 */
4744 for (d = super->disks; d; d = d->next)
4745 if (d->index == -1)
4746 spare_disks++;
4747
4748 for (i = 0; i < mpb->num_raid_devs; i++) {
4749 struct imsm_dev *dev;
4750 struct imsm_map *map;
4751 struct imsm_map *map2;
4752 struct mdinfo *this;
4753 int slot;
4754 char *ep;
4755
4756 if (subarray &&
4757 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4758 continue;
4759
4760 dev = get_imsm_dev(super, i);
4761 map = get_imsm_map(dev, 0);
4762 map2 = get_imsm_map(dev, 1);
4763
4764 /* do not publish arrays that are in the middle of an
4765 * unsupported migration
4766 */
4767 if (dev->vol.migr_state &&
4768 (migr_type(dev) == MIGR_STATE_CHANGE)) {
4769 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4770 " unsupported migration in progress\n",
4771 dev->volume);
4772 continue;
4773 }
4774
4775 this = malloc(sizeof(*this));
4776 if (!this) {
4777 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4778 sizeof(*this));
4779 break;
4780 }
4781 memset(this, 0, sizeof(*this));
4782 this->next = rest;
4783
4784 super->current_vol = i;
4785 getinfo_super_imsm_volume(st, this, NULL);
4786 for (slot = 0 ; slot < map->num_members; slot++) {
4787 unsigned long long recovery_start;
4788 struct mdinfo *info_d;
4789 struct dl *d;
4790 int idx;
4791 int skip;
4792 __u32 ord;
4793
4794 skip = 0;
4795 idx = get_imsm_disk_idx(dev, slot, 0);
4796 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4797 for (d = super->disks; d ; d = d->next)
4798 if (d->index == idx)
4799 break;
4800
4801 recovery_start = MaxSector;
4802 if (d == NULL)
4803 skip = 1;
4804 if (d && is_failed(&d->disk))
4805 skip = 1;
4806 if (ord & IMSM_ORD_REBUILD)
4807 recovery_start = 0;
4808
4809 /*
4810 * if we skip some disks the array will be assmebled degraded;
4811 * reset resync start to avoid a dirty-degraded
4812 * situation when performing the intial sync
4813 *
4814 * FIXME handle dirty degraded
4815 */
4816 if ((skip || recovery_start == 0) && !dev->vol.dirty)
4817 this->resync_start = MaxSector;
4818 if (skip)
4819 continue;
4820
4821 info_d = calloc(1, sizeof(*info_d));
4822 if (!info_d) {
4823 fprintf(stderr, Name ": failed to allocate disk"
4824 " for volume %.16s\n", dev->volume);
4825 info_d = this->devs;
4826 while (info_d) {
4827 struct mdinfo *d = info_d->next;
4828
4829 free(info_d);
4830 info_d = d;
4831 }
4832 free(this);
4833 this = rest;
4834 break;
4835 }
4836 info_d->next = this->devs;
4837 this->devs = info_d;
4838
4839 info_d->disk.number = d->index;
4840 info_d->disk.major = d->major;
4841 info_d->disk.minor = d->minor;
4842 info_d->disk.raid_disk = slot;
4843 info_d->recovery_start = recovery_start;
4844 if (map2) {
4845 if (slot < map2->num_members)
4846 info_d->disk.state = (1 << MD_DISK_ACTIVE);
4847 else
4848 this->array.spare_disks++;
4849 } else {
4850 if (slot < map->num_members)
4851 info_d->disk.state = (1 << MD_DISK_ACTIVE);
4852 else
4853 this->array.spare_disks++;
4854 }
4855 if (info_d->recovery_start == MaxSector)
4856 this->array.working_disks++;
4857
4858 info_d->events = __le32_to_cpu(mpb->generation_num);
4859 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4860 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4861 }
4862 /* now that the disk list is up-to-date fixup recovery_start */
4863 update_recovery_start(dev, this);
4864 this->array.spare_disks += spare_disks;
4865 rest = this;
4866 }
4867
4868 /* if array has bad blocks, set suitable bit in array status */
4869 if (bbm_errors)
4870 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
4871
4872 return rest;
4873 }
4874
4875
4876 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
4877 {
4878 struct imsm_map *map = get_imsm_map(dev, 0);
4879
4880 if (!failed)
4881 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4882 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
4883
4884 switch (get_imsm_raid_level(map)) {
4885 case 0:
4886 return IMSM_T_STATE_FAILED;
4887 break;
4888 case 1:
4889 if (failed < map->num_members)
4890 return IMSM_T_STATE_DEGRADED;
4891 else
4892 return IMSM_T_STATE_FAILED;
4893 break;
4894 case 10:
4895 {
4896 /**
4897 * check to see if any mirrors have failed, otherwise we
4898 * are degraded. Even numbered slots are mirrored on
4899 * slot+1
4900 */
4901 int i;
4902 /* gcc -Os complains that this is unused */
4903 int insync = insync;
4904
4905 for (i = 0; i < map->num_members; i++) {
4906 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
4907 int idx = ord_to_idx(ord);
4908 struct imsm_disk *disk;
4909
4910 /* reset the potential in-sync count on even-numbered
4911 * slots. num_copies is always 2 for imsm raid10
4912 */
4913 if ((i & 1) == 0)
4914 insync = 2;
4915
4916 disk = get_imsm_disk(super, idx);
4917 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4918 insync--;
4919
4920 /* no in-sync disks left in this mirror the
4921 * array has failed
4922 */
4923 if (insync == 0)
4924 return IMSM_T_STATE_FAILED;
4925 }
4926
4927 return IMSM_T_STATE_DEGRADED;
4928 }
4929 case 5:
4930 if (failed < 2)
4931 return IMSM_T_STATE_DEGRADED;
4932 else
4933 return IMSM_T_STATE_FAILED;
4934 break;
4935 default:
4936 break;
4937 }
4938
4939 return map->map_state;
4940 }
4941
4942 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
4943 {
4944 int i;
4945 int failed = 0;
4946 struct imsm_disk *disk;
4947 struct imsm_map *map = get_imsm_map(dev, 0);
4948 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
4949 __u32 ord;
4950 int idx;
4951
4952 /* at the beginning of migration we set IMSM_ORD_REBUILD on
4953 * disks that are being rebuilt. New failures are recorded to
4954 * map[0]. So we look through all the disks we started with and
4955 * see if any failures are still present, or if any new ones
4956 * have arrived
4957 *
4958 * FIXME add support for online capacity expansion and
4959 * raid-level-migration
4960 */
4961 for (i = 0; i < prev->num_members; i++) {
4962 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4963 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4964 idx = ord_to_idx(ord);
4965
4966 disk = get_imsm_disk(super, idx);
4967 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4968 failed++;
4969 }
4970
4971 return failed;
4972 }
4973
4974 #ifndef MDASSEMBLE
4975 static int imsm_open_new(struct supertype *c, struct active_array *a,
4976 char *inst)
4977 {
4978 struct intel_super *super = c->sb;
4979 struct imsm_super *mpb = super->anchor;
4980
4981 if (atoi(inst) >= mpb->num_raid_devs) {
4982 fprintf(stderr, "%s: subarry index %d, out of range\n",
4983 __func__, atoi(inst));
4984 return -ENODEV;
4985 }
4986
4987 dprintf("imsm: open_new %s\n", inst);
4988 a->info.container_member = atoi(inst);
4989 return 0;
4990 }
4991
4992 static int is_resyncing(struct imsm_dev *dev)
4993 {
4994 struct imsm_map *migr_map;
4995
4996 if (!dev->vol.migr_state)
4997 return 0;
4998
4999 if (migr_type(dev) == MIGR_INIT ||
5000 migr_type(dev) == MIGR_REPAIR)
5001 return 1;
5002
5003 if (migr_type(dev) == MIGR_GEN_MIGR)
5004 return 0;
5005
5006 migr_map = get_imsm_map(dev, 1);
5007
5008 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5009 (dev->vol.migr_type != MIGR_GEN_MIGR))
5010 return 1;
5011 else
5012 return 0;
5013 }
5014
5015 /* return true if we recorded new information */
5016 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5017 {
5018 __u32 ord;
5019 int slot;
5020 struct imsm_map *map;
5021
5022 /* new failures are always set in map[0] */
5023 map = get_imsm_map(dev, 0);
5024
5025 slot = get_imsm_disk_slot(map, idx);
5026 if (slot < 0)
5027 return 0;
5028
5029 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5030 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5031 return 0;
5032
5033 disk->status |= FAILED_DISK;
5034 disk->status &= ~CONFIGURED_DISK;
5035 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5036 if (map->failed_disk_num == 0xff)
5037 map->failed_disk_num = slot;
5038 return 1;
5039 }
5040
5041 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5042 {
5043 mark_failure(dev, disk, idx);
5044
5045 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5046 return;
5047
5048 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5049 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5050 }
5051
5052 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5053 {
5054 __u8 map_state;
5055 struct dl *dl;
5056 int failed;
5057
5058 if (!super->missing)
5059 return;
5060 failed = imsm_count_failed(super, dev);
5061 map_state = imsm_check_degraded(super, dev, failed);
5062
5063 dprintf("imsm: mark missing\n");
5064 end_migration(dev, map_state);
5065 for (dl = super->missing; dl; dl = dl->next)
5066 mark_missing(dev, &dl->disk, dl->index);
5067 super->updates_pending++;
5068 }
5069
5070 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5071 {
5072 int used_disks = imsm_num_data_members(dev, 0);
5073 unsigned long long array_blocks;
5074 struct imsm_map *map;
5075
5076 if (used_disks == 0) {
5077 /* when problems occures
5078 * return current array_blocks value
5079 */
5080 array_blocks = __le32_to_cpu(dev->size_high);
5081 array_blocks = array_blocks << 32;
5082 array_blocks += __le32_to_cpu(dev->size_low);
5083
5084 return array_blocks;
5085 }
5086
5087 /* set array size in metadata
5088 */
5089 map = get_imsm_map(dev, 0);
5090 array_blocks = map->blocks_per_member * used_disks;
5091
5092 /* round array size down to closest MB
5093 */
5094 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5095 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5096 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5097
5098 return array_blocks;
5099 }
5100
5101 static void imsm_set_disk(struct active_array *a, int n, int state);
5102
5103 static void imsm_progress_container_reshape(struct intel_super *super)
5104 {
5105 /* if no device has a migr_state, but some device has a
5106 * different number of members than the previous device, start
5107 * changing the number of devices in this device to match
5108 * previous.
5109 */
5110 struct imsm_super *mpb = super->anchor;
5111 int prev_disks = -1;
5112 int i;
5113 int copy_map_size;
5114
5115 for (i = 0; i < mpb->num_raid_devs; i++) {
5116 struct imsm_dev *dev = get_imsm_dev(super, i);
5117 struct imsm_map *map = get_imsm_map(dev, 0);
5118 struct imsm_map *map2;
5119 int prev_num_members;
5120
5121 if (dev->vol.migr_state)
5122 return;
5123
5124 if (prev_disks == -1)
5125 prev_disks = map->num_members;
5126 if (prev_disks == map->num_members)
5127 continue;
5128
5129 /* OK, this array needs to enter reshape mode.
5130 * i.e it needs a migr_state
5131 */
5132
5133 copy_map_size = sizeof_imsm_map(map);
5134 prev_num_members = map->num_members;
5135 map->num_members = prev_disks;
5136 dev->vol.migr_state = 1;
5137 dev->vol.curr_migr_unit = 0;
5138 dev->vol.migr_type = MIGR_GEN_MIGR;
5139 for (i = prev_num_members;
5140 i < map->num_members; i++)
5141 set_imsm_ord_tbl_ent(map, i, i);
5142 map2 = get_imsm_map(dev, 1);
5143 /* Copy the current map */
5144 memcpy(map2, map, copy_map_size);
5145 map2->num_members = prev_num_members;
5146
5147 imsm_set_array_size(dev);
5148 super->updates_pending++;
5149 }
5150 }
5151
5152 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5153 * states are handled in imsm_set_disk() with one exception, when a
5154 * resync is stopped due to a new failure this routine will set the
5155 * 'degraded' state for the array.
5156 */
5157 static int imsm_set_array_state(struct active_array *a, int consistent)
5158 {
5159 int inst = a->info.container_member;
5160 struct intel_super *super = a->container->sb;
5161 struct imsm_dev *dev = get_imsm_dev(super, inst);
5162 struct imsm_map *map = get_imsm_map(dev, 0);
5163 int failed = imsm_count_failed(super, dev);
5164 __u8 map_state = imsm_check_degraded(super, dev, failed);
5165 __u32 blocks_per_unit;
5166
5167 if (dev->vol.migr_state &&
5168 dev->vol.migr_type == MIGR_GEN_MIGR) {
5169 /* array state change is blocked due to reshape action
5170 * We might need to
5171 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5172 * - finish the reshape (if last_checkpoint is big and action != reshape)
5173 * - update curr_migr_unit
5174 */
5175 if (a->curr_action == reshape) {
5176 /* still reshaping, maybe update curr_migr_unit */
5177 long long blocks_per_unit = blocks_per_migr_unit(dev);
5178 long long unit = a->last_checkpoint;
5179 if (blocks_per_unit) {
5180 unit /= blocks_per_unit;
5181 if (unit >
5182 __le32_to_cpu(dev->vol.curr_migr_unit)) {
5183 dev->vol.curr_migr_unit =
5184 __cpu_to_le32(unit);
5185 super->updates_pending++;
5186 }
5187 }
5188 return 0;
5189 } else {
5190 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5191 /* for some reason we aborted the reshape.
5192 * Better clean up
5193 */
5194 struct imsm_map *map2 = get_imsm_map(dev, 1);
5195 dev->vol.migr_state = 0;
5196 dev->vol.migr_type = 0;
5197 dev->vol.curr_migr_unit = 0;
5198 memcpy(map, map2, sizeof_imsm_map(map2));
5199 super->updates_pending++;
5200 }
5201 if (a->last_checkpoint >= a->info.component_size) {
5202 unsigned long long array_blocks;
5203 int used_disks;
5204 struct mdinfo *mdi;
5205
5206 used_disks = imsm_num_data_members(dev, 0);
5207 if (used_disks > 0) {
5208 array_blocks =
5209 map->blocks_per_member *
5210 used_disks;
5211 /* round array size down to closest MB
5212 */
5213 array_blocks = (array_blocks
5214 >> SECT_PER_MB_SHIFT)
5215 << SECT_PER_MB_SHIFT;
5216 a->info.custom_array_size = array_blocks;
5217 /* encourage manager to update array
5218 * size
5219 */
5220
5221 a->check_reshape = 1;
5222 }
5223 /* finalize online capacity expansion/reshape */
5224 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5225 imsm_set_disk(a,
5226 mdi->disk.raid_disk,
5227 mdi->curr_state);
5228
5229 imsm_progress_container_reshape(super);
5230 }
5231 }
5232 }
5233
5234 /* before we activate this array handle any missing disks */
5235 if (consistent == 2)
5236 handle_missing(super, dev);
5237
5238 if (consistent == 2 &&
5239 (!is_resync_complete(&a->info) ||
5240 map_state != IMSM_T_STATE_NORMAL ||
5241 dev->vol.migr_state))
5242 consistent = 0;
5243
5244 if (is_resync_complete(&a->info)) {
5245 /* complete intialization / resync,
5246 * recovery and interrupted recovery is completed in
5247 * ->set_disk
5248 */
5249 if (is_resyncing(dev)) {
5250 dprintf("imsm: mark resync done\n");
5251 end_migration(dev, map_state);
5252 super->updates_pending++;
5253 a->last_checkpoint = 0;
5254 }
5255 } else if (!is_resyncing(dev) && !failed) {
5256 /* mark the start of the init process if nothing is failed */
5257 dprintf("imsm: mark resync start\n");
5258 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
5259 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
5260 else
5261 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
5262 super->updates_pending++;
5263 }
5264
5265 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5266 blocks_per_unit = blocks_per_migr_unit(dev);
5267 if (blocks_per_unit) {
5268 __u32 units32;
5269 __u64 units;
5270
5271 units = a->last_checkpoint / blocks_per_unit;
5272 units32 = units;
5273
5274 /* check that we did not overflow 32-bits, and that
5275 * curr_migr_unit needs updating
5276 */
5277 if (units32 == units &&
5278 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5279 dprintf("imsm: mark checkpoint (%u)\n", units32);
5280 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5281 super->updates_pending++;
5282 }
5283 }
5284
5285 /* mark dirty / clean */
5286 if (dev->vol.dirty != !consistent) {
5287 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
5288 if (consistent)
5289 dev->vol.dirty = 0;
5290 else
5291 dev->vol.dirty = 1;
5292 super->updates_pending++;
5293 }
5294
5295 return consistent;
5296 }
5297
5298 static void imsm_set_disk(struct active_array *a, int n, int state)
5299 {
5300 int inst = a->info.container_member;
5301 struct intel_super *super = a->container->sb;
5302 struct imsm_dev *dev = get_imsm_dev(super, inst);
5303 struct imsm_map *map = get_imsm_map(dev, 0);
5304 struct imsm_disk *disk;
5305 int failed;
5306 __u32 ord;
5307 __u8 map_state;
5308
5309 if (n > map->num_members)
5310 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5311 n, map->num_members - 1);
5312
5313 if (n < 0)
5314 return;
5315
5316 dprintf("imsm: set_disk %d:%x\n", n, state);
5317
5318 ord = get_imsm_ord_tbl_ent(dev, n, -1);
5319 disk = get_imsm_disk(super, ord_to_idx(ord));
5320
5321 /* check for new failures */
5322 if (state & DS_FAULTY) {
5323 if (mark_failure(dev, disk, ord_to_idx(ord)))
5324 super->updates_pending++;
5325 }
5326
5327 /* check if in_sync */
5328 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
5329 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5330
5331 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
5332 super->updates_pending++;
5333 }
5334
5335 failed = imsm_count_failed(super, dev);
5336 map_state = imsm_check_degraded(super, dev, failed);
5337
5338 /* check if recovery complete, newly degraded, or failed */
5339 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
5340 end_migration(dev, map_state);
5341 map = get_imsm_map(dev, 0);
5342 map->failed_disk_num = ~0;
5343 super->updates_pending++;
5344 a->last_checkpoint = 0;
5345 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5346 map->map_state != map_state &&
5347 !dev->vol.migr_state) {
5348 dprintf("imsm: mark degraded\n");
5349 map->map_state = map_state;
5350 super->updates_pending++;
5351 a->last_checkpoint = 0;
5352 } else if (map_state == IMSM_T_STATE_FAILED &&
5353 map->map_state != map_state) {
5354 dprintf("imsm: mark failed\n");
5355 end_migration(dev, map_state);
5356 super->updates_pending++;
5357 a->last_checkpoint = 0;
5358 } else if (is_gen_migration(dev)) {
5359 dprintf("imsm: Detected General Migration in state: ");
5360 if (map_state == IMSM_T_STATE_NORMAL) {
5361 end_migration(dev, map_state);
5362 map = get_imsm_map(dev, 0);
5363 map->failed_disk_num = ~0;
5364 dprintf("normal\n");
5365 } else {
5366 if (map_state == IMSM_T_STATE_DEGRADED) {
5367 printf("degraded\n");
5368 end_migration(dev, map_state);
5369 } else {
5370 dprintf("failed\n");
5371 }
5372 map->map_state = map_state;
5373 }
5374 super->updates_pending++;
5375 }
5376 }
5377
5378 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
5379 {
5380 void *buf = mpb;
5381 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5382 unsigned long long dsize;
5383 unsigned long long sectors;
5384
5385 get_dev_size(fd, NULL, &dsize);
5386
5387 if (mpb_size > 512) {
5388 /* -1 to account for anchor */
5389 sectors = mpb_sectors(mpb) - 1;
5390
5391 /* write the extended mpb to the sectors preceeding the anchor */
5392 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5393 return 1;
5394
5395 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5396 != 512 * sectors)
5397 return 1;
5398 }
5399
5400 /* first block is stored on second to last sector of the disk */
5401 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
5402 return 1;
5403
5404 if (write(fd, buf, 512) != 512)
5405 return 1;
5406
5407 return 0;
5408 }
5409
5410 static void imsm_sync_metadata(struct supertype *container)
5411 {
5412 struct intel_super *super = container->sb;
5413
5414 dprintf("sync metadata: %d\n", super->updates_pending);
5415 if (!super->updates_pending)
5416 return;
5417
5418 write_super_imsm(container, 0);
5419
5420 super->updates_pending = 0;
5421 }
5422
5423 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5424 {
5425 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5426 int i = get_imsm_disk_idx(dev, idx, -1);
5427 struct dl *dl;
5428
5429 for (dl = super->disks; dl; dl = dl->next)
5430 if (dl->index == i)
5431 break;
5432
5433 if (dl && is_failed(&dl->disk))
5434 dl = NULL;
5435
5436 if (dl)
5437 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5438
5439 return dl;
5440 }
5441
5442 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
5443 struct active_array *a, int activate_new,
5444 struct mdinfo *additional_test_list)
5445 {
5446 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5447 int idx = get_imsm_disk_idx(dev, slot, -1);
5448 struct imsm_super *mpb = super->anchor;
5449 struct imsm_map *map;
5450 unsigned long long pos;
5451 struct mdinfo *d;
5452 struct extent *ex;
5453 int i, j;
5454 int found;
5455 __u32 array_start = 0;
5456 __u32 array_end = 0;
5457 struct dl *dl;
5458 struct mdinfo *test_list;
5459
5460 for (dl = super->disks; dl; dl = dl->next) {
5461 /* If in this array, skip */
5462 for (d = a->info.devs ; d ; d = d->next)
5463 if (d->state_fd >= 0 &&
5464 d->disk.major == dl->major &&
5465 d->disk.minor == dl->minor) {
5466 dprintf("%x:%x already in array\n",
5467 dl->major, dl->minor);
5468 break;
5469 }
5470 if (d)
5471 continue;
5472 test_list = additional_test_list;
5473 while (test_list) {
5474 if (test_list->disk.major == dl->major &&
5475 test_list->disk.minor == dl->minor) {
5476 dprintf("%x:%x already in additional test list\n",
5477 dl->major, dl->minor);
5478 break;
5479 }
5480 test_list = test_list->next;
5481 }
5482 if (test_list)
5483 continue;
5484
5485 /* skip in use or failed drives */
5486 if (is_failed(&dl->disk) || idx == dl->index ||
5487 dl->index == -2) {
5488 dprintf("%x:%x status (failed: %d index: %d)\n",
5489 dl->major, dl->minor, is_failed(&dl->disk), idx);
5490 continue;
5491 }
5492
5493 /* skip pure spares when we are looking for partially
5494 * assimilated drives
5495 */
5496 if (dl->index == -1 && !activate_new)
5497 continue;
5498
5499 /* Does this unused device have the requisite free space?
5500 * It needs to be able to cover all member volumes
5501 */
5502 ex = get_extents(super, dl);
5503 if (!ex) {
5504 dprintf("cannot get extents\n");
5505 continue;
5506 }
5507 for (i = 0; i < mpb->num_raid_devs; i++) {
5508 dev = get_imsm_dev(super, i);
5509 map = get_imsm_map(dev, 0);
5510
5511 /* check if this disk is already a member of
5512 * this array
5513 */
5514 if (get_imsm_disk_slot(map, dl->index) >= 0)
5515 continue;
5516
5517 found = 0;
5518 j = 0;
5519 pos = 0;
5520 array_start = __le32_to_cpu(map->pba_of_lba0);
5521 array_end = array_start +
5522 __le32_to_cpu(map->blocks_per_member) - 1;
5523
5524 do {
5525 /* check that we can start at pba_of_lba0 with
5526 * blocks_per_member of space
5527 */
5528 if (array_start >= pos && array_end < ex[j].start) {
5529 found = 1;
5530 break;
5531 }
5532 pos = ex[j].start + ex[j].size;
5533 j++;
5534 } while (ex[j-1].size);
5535
5536 if (!found)
5537 break;
5538 }
5539
5540 free(ex);
5541 if (i < mpb->num_raid_devs) {
5542 dprintf("%x:%x does not have %u to %u available\n",
5543 dl->major, dl->minor, array_start, array_end);
5544 /* No room */
5545 continue;
5546 }
5547 return dl;
5548 }
5549
5550 return dl;
5551 }
5552
5553
5554 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
5555 {
5556 struct imsm_dev *dev2;
5557 struct imsm_map *map;
5558 struct dl *idisk;
5559 int slot;
5560 int idx;
5561 __u8 state;
5562
5563 dev2 = get_imsm_dev(cont->sb, dev_idx);
5564 if (dev2) {
5565 state = imsm_check_degraded(cont->sb, dev2, failed);
5566 if (state == IMSM_T_STATE_FAILED) {
5567 map = get_imsm_map(dev2, 0);
5568 if (!map)
5569 return 1;
5570 for (slot = 0; slot < map->num_members; slot++) {
5571 /*
5572 * Check if failed disks are deleted from intel
5573 * disk list or are marked to be deleted
5574 */
5575 idx = get_imsm_disk_idx(dev2, slot, -1);
5576 idisk = get_imsm_dl_disk(cont->sb, idx);
5577 /*
5578 * Do not rebuild the array if failed disks
5579 * from failed sub-array are not removed from
5580 * container.
5581 */
5582 if (idisk &&
5583 is_failed(&idisk->disk) &&
5584 (idisk->action != DISK_REMOVE))
5585 return 0;
5586 }
5587 }
5588 }
5589 return 1;
5590 }
5591
5592 static struct mdinfo *imsm_activate_spare(struct active_array *a,
5593 struct metadata_update **updates)
5594 {
5595 /**
5596 * Find a device with unused free space and use it to replace a
5597 * failed/vacant region in an array. We replace failed regions one a
5598 * array at a time. The result is that a new spare disk will be added
5599 * to the first failed array and after the monitor has finished
5600 * propagating failures the remainder will be consumed.
5601 *
5602 * FIXME add a capability for mdmon to request spares from another
5603 * container.
5604 */
5605
5606 struct intel_super *super = a->container->sb;
5607 int inst = a->info.container_member;
5608 struct imsm_dev *dev = get_imsm_dev(super, inst);
5609 struct imsm_map *map = get_imsm_map(dev, 0);
5610 int failed = a->info.array.raid_disks;
5611 struct mdinfo *rv = NULL;
5612 struct mdinfo *d;
5613 struct mdinfo *di;
5614 struct metadata_update *mu;
5615 struct dl *dl;
5616 struct imsm_update_activate_spare *u;
5617 int num_spares = 0;
5618 int i;
5619 int allowed;
5620
5621 for (d = a->info.devs ; d ; d = d->next) {
5622 if ((d->curr_state & DS_FAULTY) &&
5623 d->state_fd >= 0)
5624 /* wait for Removal to happen */
5625 return NULL;
5626 if (d->state_fd >= 0)
5627 failed--;
5628 }
5629
5630 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
5631 inst, failed, a->info.array.raid_disks, a->info.array.level);
5632
5633 if (dev->vol.migr_state &&
5634 dev->vol.migr_type == MIGR_GEN_MIGR)
5635 /* No repair during migration */
5636 return NULL;
5637
5638 if (a->info.array.level == 4)
5639 /* No repair for takeovered array
5640 * imsm doesn't support raid4
5641 */
5642 return NULL;
5643
5644 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
5645 return NULL;
5646
5647 /*
5648 * If there are any failed disks check state of the other volume.
5649 * Block rebuild if the another one is failed until failed disks
5650 * are removed from container.
5651 */
5652 if (failed) {
5653 dprintf("found failed disks in %s, check if there another"
5654 "failed sub-array.\n",
5655 dev->volume);
5656 /* check if states of the other volumes allow for rebuild */
5657 for (i = 0; i < super->anchor->num_raid_devs; i++) {
5658 if (i != inst) {
5659 allowed = imsm_rebuild_allowed(a->container,
5660 i, failed);
5661 if (!allowed)
5662 return NULL;
5663 }
5664 }
5665 }
5666
5667 /* For each slot, if it is not working, find a spare */
5668 for (i = 0; i < a->info.array.raid_disks; i++) {
5669 for (d = a->info.devs ; d ; d = d->next)
5670 if (d->disk.raid_disk == i)
5671 break;
5672 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5673 if (d && (d->state_fd >= 0))
5674 continue;
5675
5676 /*
5677 * OK, this device needs recovery. Try to re-add the
5678 * previous occupant of this slot, if this fails see if
5679 * we can continue the assimilation of a spare that was
5680 * partially assimilated, finally try to activate a new
5681 * spare.
5682 */
5683 dl = imsm_readd(super, i, a);
5684 if (!dl)
5685 dl = imsm_add_spare(super, i, a, 0, NULL);
5686 if (!dl)
5687 dl = imsm_add_spare(super, i, a, 1, NULL);
5688 if (!dl)
5689 continue;
5690
5691 /* found a usable disk with enough space */
5692 di = malloc(sizeof(*di));
5693 if (!di)
5694 continue;
5695 memset(di, 0, sizeof(*di));
5696
5697 /* dl->index will be -1 in the case we are activating a
5698 * pristine spare. imsm_process_update() will create a
5699 * new index in this case. Once a disk is found to be
5700 * failed in all member arrays it is kicked from the
5701 * metadata
5702 */
5703 di->disk.number = dl->index;
5704
5705 /* (ab)use di->devs to store a pointer to the device
5706 * we chose
5707 */
5708 di->devs = (struct mdinfo *) dl;
5709
5710 di->disk.raid_disk = i;
5711 di->disk.major = dl->major;
5712 di->disk.minor = dl->minor;
5713 di->disk.state = 0;
5714 di->recovery_start = 0;
5715 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5716 di->component_size = a->info.component_size;
5717 di->container_member = inst;
5718 super->random = random32();
5719 di->next = rv;
5720 rv = di;
5721 num_spares++;
5722 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5723 i, di->data_offset);
5724
5725 break;
5726 }
5727
5728 if (!rv)
5729 /* No spares found */
5730 return rv;
5731 /* Now 'rv' has a list of devices to return.
5732 * Create a metadata_update record to update the
5733 * disk_ord_tbl for the array
5734 */
5735 mu = malloc(sizeof(*mu));
5736 if (mu) {
5737 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5738 if (mu->buf == NULL) {
5739 free(mu);
5740 mu = NULL;
5741 }
5742 }
5743 if (!mu) {
5744 while (rv) {
5745 struct mdinfo *n = rv->next;
5746
5747 free(rv);
5748 rv = n;
5749 }
5750 return NULL;
5751 }
5752
5753 mu->space = NULL;
5754 mu->space_list = NULL;
5755 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5756 mu->next = *updates;
5757 u = (struct imsm_update_activate_spare *) mu->buf;
5758
5759 for (di = rv ; di ; di = di->next) {
5760 u->type = update_activate_spare;
5761 u->dl = (struct dl *) di->devs;
5762 di->devs = NULL;
5763 u->slot = di->disk.raid_disk;
5764 u->array = inst;
5765 u->next = u + 1;
5766 u++;
5767 }
5768 (u-1)->next = NULL;
5769 *updates = mu;
5770
5771 return rv;
5772 }
5773
5774 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
5775 {
5776 struct imsm_dev *dev = get_imsm_dev(super, idx);
5777 struct imsm_map *map = get_imsm_map(dev, 0);
5778 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5779 struct disk_info *inf = get_disk_info(u);
5780 struct imsm_disk *disk;
5781 int i;
5782 int j;
5783
5784 for (i = 0; i < map->num_members; i++) {
5785 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
5786 for (j = 0; j < new_map->num_members; j++)
5787 if (serialcmp(disk->serial, inf[j].serial) == 0)
5788 return 1;
5789 }
5790
5791 return 0;
5792 }
5793
5794
5795 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
5796 {
5797 struct dl *dl = NULL;
5798 for (dl = super->disks; dl; dl = dl->next)
5799 if ((dl->major == major) && (dl->minor == minor))
5800 return dl;
5801 return NULL;
5802 }
5803
5804 static int remove_disk_super(struct intel_super *super, int major, int minor)
5805 {
5806 struct dl *prev = NULL;
5807 struct dl *dl;
5808
5809 prev = NULL;
5810 for (dl = super->disks; dl; dl = dl->next) {
5811 if ((dl->major == major) && (dl->minor == minor)) {
5812 /* remove */
5813 if (prev)
5814 prev->next = dl->next;
5815 else
5816 super->disks = dl->next;
5817 dl->next = NULL;
5818 __free_imsm_disk(dl);
5819 dprintf("%s: removed %x:%x\n",
5820 __func__, major, minor);
5821 break;
5822 }
5823 prev = dl;
5824 }
5825 return 0;
5826 }
5827
5828 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
5829
5830 static int add_remove_disk_update(struct intel_super *super)
5831 {
5832 int check_degraded = 0;
5833 struct dl *disk = NULL;
5834 /* add/remove some spares to/from the metadata/contrainer */
5835 while (super->disk_mgmt_list) {
5836 struct dl *disk_cfg;
5837
5838 disk_cfg = super->disk_mgmt_list;
5839 super->disk_mgmt_list = disk_cfg->next;
5840 disk_cfg->next = NULL;
5841
5842 if (disk_cfg->action == DISK_ADD) {
5843 disk_cfg->next = super->disks;
5844 super->disks = disk_cfg;
5845 check_degraded = 1;
5846 dprintf("%s: added %x:%x\n",
5847 __func__, disk_cfg->major,
5848 disk_cfg->minor);
5849 } else if (disk_cfg->action == DISK_REMOVE) {
5850 dprintf("Disk remove action processed: %x.%x\n",
5851 disk_cfg->major, disk_cfg->minor);
5852 disk = get_disk_super(super,
5853 disk_cfg->major,
5854 disk_cfg->minor);
5855 if (disk) {
5856 /* store action status */
5857 disk->action = DISK_REMOVE;
5858 /* remove spare disks only */
5859 if (disk->index == -1) {
5860 remove_disk_super(super,
5861 disk_cfg->major,
5862 disk_cfg->minor);
5863 }
5864 }
5865 /* release allocate disk structure */
5866 __free_imsm_disk(disk_cfg);
5867 }
5868 }
5869 return check_degraded;
5870 }
5871
5872 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
5873 struct intel_super *super,
5874 void ***space_list)
5875 {
5876 struct dl *new_disk;
5877 struct intel_dev *id;
5878 int i;
5879 int delta_disks = u->new_raid_disks - u->old_raid_disks;
5880 int disk_count = u->old_raid_disks;
5881 void **tofree = NULL;
5882 int devices_to_reshape = 1;
5883 struct imsm_super *mpb = super->anchor;
5884 int ret_val = 0;
5885 unsigned int dev_id;
5886
5887 dprintf("imsm: apply_reshape_container_disks_update()\n");
5888
5889 /* enable spares to use in array */
5890 for (i = 0; i < delta_disks; i++) {
5891 new_disk = get_disk_super(super,
5892 major(u->new_disks[i]),
5893 minor(u->new_disks[i]));
5894 dprintf("imsm: new disk for reshape is: %i:%i "
5895 "(%p, index = %i)\n",
5896 major(u->new_disks[i]), minor(u->new_disks[i]),
5897 new_disk, new_disk->index);
5898 if ((new_disk == NULL) ||
5899 ((new_disk->index >= 0) &&
5900 (new_disk->index < u->old_raid_disks)))
5901 goto update_reshape_exit;
5902 new_disk->index = disk_count++;
5903 /* slot to fill in autolayout
5904 */
5905 new_disk->raiddisk = new_disk->index;
5906 new_disk->disk.status |=
5907 CONFIGURED_DISK;
5908 new_disk->disk.status &= ~SPARE_DISK;
5909 }
5910
5911 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
5912 mpb->num_raid_devs);
5913 /* manage changes in volume
5914 */
5915 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
5916 void **sp = *space_list;
5917 struct imsm_dev *newdev;
5918 struct imsm_map *newmap, *oldmap;
5919
5920 for (id = super->devlist ; id; id = id->next) {
5921 if (id->index == dev_id)
5922 break;
5923 }
5924 if (id == NULL)
5925 break;
5926 if (!sp)
5927 continue;
5928 *space_list = *sp;
5929 newdev = (void*)sp;
5930 /* Copy the dev, but not (all of) the map */
5931 memcpy(newdev, id->dev, sizeof(*newdev));
5932 oldmap = get_imsm_map(id->dev, 0);
5933 newmap = get_imsm_map(newdev, 0);
5934 /* Copy the current map */
5935 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
5936 /* update one device only
5937 */
5938 if (devices_to_reshape) {
5939 dprintf("imsm: modifying subdev: %i\n",
5940 id->index);
5941 devices_to_reshape--;
5942 newdev->vol.migr_state = 1;
5943 newdev->vol.curr_migr_unit = 0;
5944 newdev->vol.migr_type = MIGR_GEN_MIGR;
5945 newmap->num_members = u->new_raid_disks;
5946 for (i = 0; i < delta_disks; i++) {
5947 set_imsm_ord_tbl_ent(newmap,
5948 u->old_raid_disks + i,
5949 u->old_raid_disks + i);
5950 }
5951 /* New map is correct, now need to save old map
5952 */
5953 newmap = get_imsm_map(newdev, 1);
5954 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
5955
5956 imsm_set_array_size(newdev);
5957 }
5958
5959 sp = (void **)id->dev;
5960 id->dev = newdev;
5961 *sp = tofree;
5962 tofree = sp;
5963 }
5964 if (tofree)
5965 *space_list = tofree;
5966 ret_val = 1;
5967
5968 update_reshape_exit:
5969
5970 return ret_val;
5971 }
5972
5973 static int apply_takeover_update(struct imsm_update_takeover *u,
5974 struct intel_super *super,
5975 void ***space_list)
5976 {
5977 struct imsm_dev *dev = NULL;
5978 struct intel_dev *dv;
5979 struct imsm_dev *dev_new;
5980 struct imsm_map *map;
5981 struct dl *dm, *du;
5982 int i;
5983
5984 for (dv = super->devlist; dv; dv = dv->next)
5985 if (dv->index == (unsigned int)u->subarray) {
5986 dev = dv->dev;
5987 break;
5988 }
5989
5990 if (dev == NULL)
5991 return 0;
5992
5993 map = get_imsm_map(dev, 0);
5994
5995 if (u->direction == R10_TO_R0) {
5996 /* Number of failed disks must be half of initial disk number */
5997 if (imsm_count_failed(super, dev) != (map->num_members / 2))
5998 return 0;
5999
6000 /* iterate through devices to mark removed disks as spare */
6001 for (dm = super->disks; dm; dm = dm->next) {
6002 if (dm->disk.status & FAILED_DISK) {
6003 int idx = dm->index;
6004 /* update indexes on the disk list */
6005 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6006 the index values will end up being correct.... NB */
6007 for (du = super->disks; du; du = du->next)
6008 if (du->index > idx)
6009 du->index--;
6010 /* mark as spare disk */
6011 dm->disk.status = SPARE_DISK;
6012 dm->index = -1;
6013 }
6014 }
6015 /* update map */
6016 map->num_members = map->num_members / 2;
6017 map->map_state = IMSM_T_STATE_NORMAL;
6018 map->num_domains = 1;
6019 map->raid_level = 0;
6020 map->failed_disk_num = -1;
6021 }
6022
6023 if (u->direction == R0_TO_R10) {
6024 void **space;
6025 /* update slots in current disk list */
6026 for (dm = super->disks; dm; dm = dm->next) {
6027 if (dm->index >= 0)
6028 dm->index *= 2;
6029 }
6030 /* create new *missing* disks */
6031 for (i = 0; i < map->num_members; i++) {
6032 space = *space_list;
6033 if (!space)
6034 continue;
6035 *space_list = *space;
6036 du = (void *)space;
6037 memcpy(du, super->disks, sizeof(*du));
6038 du->disk.status = FAILED_DISK;
6039 du->disk.scsi_id = 0;
6040 du->fd = -1;
6041 du->minor = 0;
6042 du->major = 0;
6043 du->index = (i * 2) + 1;
6044 sprintf((char *)du->disk.serial,
6045 " MISSING_%d", du->index);
6046 sprintf((char *)du->serial,
6047 "MISSING_%d", du->index);
6048 du->next = super->missing;
6049 super->missing = du;
6050 }
6051 /* create new dev and map */
6052 space = *space_list;
6053 if (!space)
6054 return 0;
6055 *space_list = *space;
6056 dev_new = (void *)space;
6057 memcpy(dev_new, dev, sizeof(*dev));
6058 /* update new map */
6059 map = get_imsm_map(dev_new, 0);
6060 map->failed_disk_num = map->num_members;
6061 map->num_members = map->num_members * 2;
6062 map->map_state = IMSM_T_STATE_NORMAL;
6063 map->num_domains = 2;
6064 map->raid_level = 1;
6065 /* replace dev<->dev_new */
6066 dv->dev = dev_new;
6067 }
6068 /* update disk order table */
6069 for (du = super->disks; du; du = du->next)
6070 if (du->index >= 0)
6071 set_imsm_ord_tbl_ent(map, du->index, du->index);
6072 for (du = super->missing; du; du = du->next)
6073 if (du->index >= 0)
6074 set_imsm_ord_tbl_ent(map, du->index,
6075 du->index | IMSM_ORD_REBUILD);
6076
6077 return 1;
6078 }
6079
6080 static void imsm_process_update(struct supertype *st,
6081 struct metadata_update *update)
6082 {
6083 /**
6084 * crack open the metadata_update envelope to find the update record
6085 * update can be one of:
6086 * update_reshape_container_disks - all the arrays in the container
6087 * are being reshaped to have more devices. We need to mark
6088 * the arrays for general migration and convert selected spares
6089 * into active devices.
6090 * update_activate_spare - a spare device has replaced a failed
6091 * device in an array, update the disk_ord_tbl. If this disk is
6092 * present in all member arrays then also clear the SPARE_DISK
6093 * flag
6094 * update_create_array
6095 * update_kill_array
6096 * update_rename_array
6097 * update_add_remove_disk
6098 */
6099 struct intel_super *super = st->sb;
6100 struct imsm_super *mpb;
6101 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6102
6103 /* update requires a larger buf but the allocation failed */
6104 if (super->next_len && !super->next_buf) {
6105 super->next_len = 0;
6106 return;
6107 }
6108
6109 if (super->next_buf) {
6110 memcpy(super->next_buf, super->buf, super->len);
6111 free(super->buf);
6112 super->len = super->next_len;
6113 super->buf = super->next_buf;
6114
6115 super->next_len = 0;
6116 super->next_buf = NULL;
6117 }
6118
6119 mpb = super->anchor;
6120
6121 switch (type) {
6122 case update_takeover: {
6123 struct imsm_update_takeover *u = (void *)update->buf;
6124 if (apply_takeover_update(u, super, &update->space_list))
6125 super->updates_pending++;
6126 break;
6127 }
6128
6129 case update_reshape_container_disks: {
6130 struct imsm_update_reshape *u = (void *)update->buf;
6131 if (apply_reshape_container_disks_update(
6132 u, super, &update->space_list))
6133 super->updates_pending++;
6134 break;
6135 }
6136 case update_activate_spare: {
6137 struct imsm_update_activate_spare *u = (void *) update->buf;
6138 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6139 struct imsm_map *map = get_imsm_map(dev, 0);
6140 struct imsm_map *migr_map;
6141 struct active_array *a;
6142 struct imsm_disk *disk;
6143 __u8 to_state;
6144 struct dl *dl;
6145 unsigned int found;
6146 int failed;
6147 int victim = get_imsm_disk_idx(dev, u->slot, -1);
6148 int i;
6149
6150 for (dl = super->disks; dl; dl = dl->next)
6151 if (dl == u->dl)
6152 break;
6153
6154 if (!dl) {
6155 fprintf(stderr, "error: imsm_activate_spare passed "
6156 "an unknown disk (index: %d)\n",
6157 u->dl->index);
6158 return;
6159 }
6160
6161 super->updates_pending++;
6162
6163 /* count failures (excluding rebuilds and the victim)
6164 * to determine map[0] state
6165 */
6166 failed = 0;
6167 for (i = 0; i < map->num_members; i++) {
6168 if (i == u->slot)
6169 continue;
6170 disk = get_imsm_disk(super,
6171 get_imsm_disk_idx(dev, i, -1));
6172 if (!disk || is_failed(disk))
6173 failed++;
6174 }
6175
6176 /* adding a pristine spare, assign a new index */
6177 if (dl->index < 0) {
6178 dl->index = super->anchor->num_disks;
6179 super->anchor->num_disks++;
6180 }
6181 disk = &dl->disk;
6182 disk->status |= CONFIGURED_DISK;
6183 disk->status &= ~SPARE_DISK;
6184
6185 /* mark rebuild */
6186 to_state = imsm_check_degraded(super, dev, failed);
6187 map->map_state = IMSM_T_STATE_DEGRADED;
6188 migrate(dev, to_state, MIGR_REBUILD);
6189 migr_map = get_imsm_map(dev, 1);
6190 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6191 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6192
6193 /* update the family_num to mark a new container
6194 * generation, being careful to record the existing
6195 * family_num in orig_family_num to clean up after
6196 * earlier mdadm versions that neglected to set it.
6197 */
6198 if (mpb->orig_family_num == 0)
6199 mpb->orig_family_num = mpb->family_num;
6200 mpb->family_num += super->random;
6201
6202 /* count arrays using the victim in the metadata */
6203 found = 0;
6204 for (a = st->arrays; a ; a = a->next) {
6205 dev = get_imsm_dev(super, a->info.container_member);
6206 map = get_imsm_map(dev, 0);
6207
6208 if (get_imsm_disk_slot(map, victim) >= 0)
6209 found++;
6210 }
6211
6212 /* delete the victim if it is no longer being
6213 * utilized anywhere
6214 */
6215 if (!found) {
6216 struct dl **dlp;
6217
6218 /* We know that 'manager' isn't touching anything,
6219 * so it is safe to delete
6220 */
6221 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
6222 if ((*dlp)->index == victim)
6223 break;
6224
6225 /* victim may be on the missing list */
6226 if (!*dlp)
6227 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6228 if ((*dlp)->index == victim)
6229 break;
6230 imsm_delete(super, dlp, victim);
6231 }
6232 break;
6233 }
6234 case update_create_array: {
6235 /* someone wants to create a new array, we need to be aware of
6236 * a few races/collisions:
6237 * 1/ 'Create' called by two separate instances of mdadm
6238 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6239 * devices that have since been assimilated via
6240 * activate_spare.
6241 * In the event this update can not be carried out mdadm will
6242 * (FIX ME) notice that its update did not take hold.
6243 */
6244 struct imsm_update_create_array *u = (void *) update->buf;
6245 struct intel_dev *dv;
6246 struct imsm_dev *dev;
6247 struct imsm_map *map, *new_map;
6248 unsigned long long start, end;
6249 unsigned long long new_start, new_end;
6250 int i;
6251 struct disk_info *inf;
6252 struct dl *dl;
6253
6254 /* handle racing creates: first come first serve */
6255 if (u->dev_idx < mpb->num_raid_devs) {
6256 dprintf("%s: subarray %d already defined\n",
6257 __func__, u->dev_idx);
6258 goto create_error;
6259 }
6260
6261 /* check update is next in sequence */
6262 if (u->dev_idx != mpb->num_raid_devs) {
6263 dprintf("%s: can not create array %d expected index %d\n",
6264 __func__, u->dev_idx, mpb->num_raid_devs);
6265 goto create_error;
6266 }
6267
6268 new_map = get_imsm_map(&u->dev, 0);
6269 new_start = __le32_to_cpu(new_map->pba_of_lba0);
6270 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
6271 inf = get_disk_info(u);
6272
6273 /* handle activate_spare versus create race:
6274 * check to make sure that overlapping arrays do not include
6275 * overalpping disks
6276 */
6277 for (i = 0; i < mpb->num_raid_devs; i++) {
6278 dev = get_imsm_dev(super, i);
6279 map = get_imsm_map(dev, 0);
6280 start = __le32_to_cpu(map->pba_of_lba0);
6281 end = start + __le32_to_cpu(map->blocks_per_member);
6282 if ((new_start >= start && new_start <= end) ||
6283 (start >= new_start && start <= new_end))
6284 /* overlap */;
6285 else
6286 continue;
6287
6288 if (disks_overlap(super, i, u)) {
6289 dprintf("%s: arrays overlap\n", __func__);
6290 goto create_error;
6291 }
6292 }
6293
6294 /* check that prepare update was successful */
6295 if (!update->space) {
6296 dprintf("%s: prepare update failed\n", __func__);
6297 goto create_error;
6298 }
6299
6300 /* check that all disks are still active before committing
6301 * changes. FIXME: could we instead handle this by creating a
6302 * degraded array? That's probably not what the user expects,
6303 * so better to drop this update on the floor.
6304 */
6305 for (i = 0; i < new_map->num_members; i++) {
6306 dl = serial_to_dl(inf[i].serial, super);
6307 if (!dl) {
6308 dprintf("%s: disk disappeared\n", __func__);
6309 goto create_error;
6310 }
6311 }
6312
6313 super->updates_pending++;
6314
6315 /* convert spares to members and fixup ord_tbl */
6316 for (i = 0; i < new_map->num_members; i++) {
6317 dl = serial_to_dl(inf[i].serial, super);
6318 if (dl->index == -1) {
6319 dl->index = mpb->num_disks;
6320 mpb->num_disks++;
6321 dl->disk.status |= CONFIGURED_DISK;
6322 dl->disk.status &= ~SPARE_DISK;
6323 }
6324 set_imsm_ord_tbl_ent(new_map, i, dl->index);
6325 }
6326
6327 dv = update->space;
6328 dev = dv->dev;
6329 update->space = NULL;
6330 imsm_copy_dev(dev, &u->dev);
6331 dv->index = u->dev_idx;
6332 dv->next = super->devlist;
6333 super->devlist = dv;
6334 mpb->num_raid_devs++;
6335
6336 imsm_update_version_info(super);
6337 break;
6338 create_error:
6339 /* mdmon knows how to release update->space, but not
6340 * ((struct intel_dev *) update->space)->dev
6341 */
6342 if (update->space) {
6343 dv = update->space;
6344 free(dv->dev);
6345 }
6346 break;
6347 }
6348 case update_kill_array: {
6349 struct imsm_update_kill_array *u = (void *) update->buf;
6350 int victim = u->dev_idx;
6351 struct active_array *a;
6352 struct intel_dev **dp;
6353 struct imsm_dev *dev;
6354
6355 /* sanity check that we are not affecting the uuid of
6356 * active arrays, or deleting an active array
6357 *
6358 * FIXME when immutable ids are available, but note that
6359 * we'll also need to fixup the invalidated/active
6360 * subarray indexes in mdstat
6361 */
6362 for (a = st->arrays; a; a = a->next)
6363 if (a->info.container_member >= victim)
6364 break;
6365 /* by definition if mdmon is running at least one array
6366 * is active in the container, so checking
6367 * mpb->num_raid_devs is just extra paranoia
6368 */
6369 dev = get_imsm_dev(super, victim);
6370 if (a || !dev || mpb->num_raid_devs == 1) {
6371 dprintf("failed to delete subarray-%d\n", victim);
6372 break;
6373 }
6374
6375 for (dp = &super->devlist; *dp;)
6376 if ((*dp)->index == (unsigned)super->current_vol) {
6377 *dp = (*dp)->next;
6378 } else {
6379 if ((*dp)->index > (unsigned)victim)
6380 (*dp)->index--;
6381 dp = &(*dp)->next;
6382 }
6383 mpb->num_raid_devs--;
6384 super->updates_pending++;
6385 break;
6386 }
6387 case update_rename_array: {
6388 struct imsm_update_rename_array *u = (void *) update->buf;
6389 char name[MAX_RAID_SERIAL_LEN+1];
6390 int target = u->dev_idx;
6391 struct active_array *a;
6392 struct imsm_dev *dev;
6393
6394 /* sanity check that we are not affecting the uuid of
6395 * an active array
6396 */
6397 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
6398 name[MAX_RAID_SERIAL_LEN] = '\0';
6399 for (a = st->arrays; a; a = a->next)
6400 if (a->info.container_member == target)
6401 break;
6402 dev = get_imsm_dev(super, u->dev_idx);
6403 if (a || !dev || !check_name(super, name, 1)) {
6404 dprintf("failed to rename subarray-%d\n", target);
6405 break;
6406 }
6407
6408 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6409 super->updates_pending++;
6410 break;
6411 }
6412 case update_add_remove_disk: {
6413 /* we may be able to repair some arrays if disks are
6414 * being added, check teh status of add_remove_disk
6415 * if discs has been added.
6416 */
6417 if (add_remove_disk_update(super)) {
6418 struct active_array *a;
6419
6420 super->updates_pending++;
6421 for (a = st->arrays; a; a = a->next)
6422 a->check_degraded = 1;
6423 }
6424 break;
6425 }
6426 default:
6427 fprintf(stderr, "error: unsuported process update type:"
6428 "(type: %d)\n", type);
6429 }
6430 }
6431
6432 static void imsm_prepare_update(struct supertype *st,
6433 struct metadata_update *update)
6434 {
6435 /**
6436 * Allocate space to hold new disk entries, raid-device entries or a new
6437 * mpb if necessary. The manager synchronously waits for updates to
6438 * complete in the monitor, so new mpb buffers allocated here can be
6439 * integrated by the monitor thread without worrying about live pointers
6440 * in the manager thread.
6441 */
6442 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6443 struct intel_super *super = st->sb;
6444 struct imsm_super *mpb = super->anchor;
6445 size_t buf_len;
6446 size_t len = 0;
6447
6448 switch (type) {
6449 case update_takeover: {
6450 struct imsm_update_takeover *u = (void *)update->buf;
6451 if (u->direction == R0_TO_R10) {
6452 void **tail = (void **)&update->space_list;
6453 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
6454 struct imsm_map *map = get_imsm_map(dev, 0);
6455 int num_members = map->num_members;
6456 void *space;
6457 int size, i;
6458 int err = 0;
6459 /* allocate memory for added disks */
6460 for (i = 0; i < num_members; i++) {
6461 size = sizeof(struct dl);
6462 space = malloc(size);
6463 if (!space) {
6464 err++;
6465 break;
6466 }
6467 *tail = space;
6468 tail = space;
6469 *tail = NULL;
6470 }
6471 /* allocate memory for new device */
6472 size = sizeof_imsm_dev(super->devlist->dev, 0) +
6473 (num_members * sizeof(__u32));
6474 space = malloc(size);
6475 if (!space)
6476 err++;
6477 else {
6478 *tail = space;
6479 tail = space;
6480 *tail = NULL;
6481 }
6482 if (!err) {
6483 len = disks_to_mpb_size(num_members * 2);
6484 } else {
6485 /* if allocation didn't success, free buffer */
6486 while (update->space_list) {
6487 void **sp = update->space_list;
6488 update->space_list = *sp;
6489 free(sp);
6490 }
6491 }
6492 }
6493
6494 break;
6495 }
6496 case update_reshape_container_disks: {
6497 /* Every raid device in the container is about to
6498 * gain some more devices, and we will enter a
6499 * reconfiguration.
6500 * So each 'imsm_map' will be bigger, and the imsm_vol
6501 * will now hold 2 of them.
6502 * Thus we need new 'struct imsm_dev' allocations sized
6503 * as sizeof_imsm_dev but with more devices in both maps.
6504 */
6505 struct imsm_update_reshape *u = (void *)update->buf;
6506 struct intel_dev *dl;
6507 void **space_tail = (void**)&update->space_list;
6508
6509 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
6510
6511 for (dl = super->devlist; dl; dl = dl->next) {
6512 int size = sizeof_imsm_dev(dl->dev, 1);
6513 void *s;
6514 if (u->new_raid_disks > u->old_raid_disks)
6515 size += sizeof(__u32)*2*
6516 (u->new_raid_disks - u->old_raid_disks);
6517 s = malloc(size);
6518 if (!s)
6519 break;
6520 *space_tail = s;
6521 space_tail = s;
6522 *space_tail = NULL;
6523 }
6524
6525 len = disks_to_mpb_size(u->new_raid_disks);
6526 dprintf("New anchor length is %llu\n", (unsigned long long)len);
6527 break;
6528 }
6529 case update_create_array: {
6530 struct imsm_update_create_array *u = (void *) update->buf;
6531 struct intel_dev *dv;
6532 struct imsm_dev *dev = &u->dev;
6533 struct imsm_map *map = get_imsm_map(dev, 0);
6534 struct dl *dl;
6535 struct disk_info *inf;
6536 int i;
6537 int activate = 0;
6538
6539 inf = get_disk_info(u);
6540 len = sizeof_imsm_dev(dev, 1);
6541 /* allocate a new super->devlist entry */
6542 dv = malloc(sizeof(*dv));
6543 if (dv) {
6544 dv->dev = malloc(len);
6545 if (dv->dev)
6546 update->space = dv;
6547 else {
6548 free(dv);
6549 update->space = NULL;
6550 }
6551 }
6552
6553 /* count how many spares will be converted to members */
6554 for (i = 0; i < map->num_members; i++) {
6555 dl = serial_to_dl(inf[i].serial, super);
6556 if (!dl) {
6557 /* hmm maybe it failed?, nothing we can do about
6558 * it here
6559 */
6560 continue;
6561 }
6562 if (count_memberships(dl, super) == 0)
6563 activate++;
6564 }
6565 len += activate * sizeof(struct imsm_disk);
6566 break;
6567 default:
6568 break;
6569 }
6570 }
6571
6572 /* check if we need a larger metadata buffer */
6573 if (super->next_buf)
6574 buf_len = super->next_len;
6575 else
6576 buf_len = super->len;
6577
6578 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
6579 /* ok we need a larger buf than what is currently allocated
6580 * if this allocation fails process_update will notice that
6581 * ->next_len is set and ->next_buf is NULL
6582 */
6583 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
6584 if (super->next_buf)
6585 free(super->next_buf);
6586
6587 super->next_len = buf_len;
6588 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
6589 memset(super->next_buf, 0, buf_len);
6590 else
6591 super->next_buf = NULL;
6592 }
6593 }
6594
6595 /* must be called while manager is quiesced */
6596 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
6597 {
6598 struct imsm_super *mpb = super->anchor;
6599 struct dl *iter;
6600 struct imsm_dev *dev;
6601 struct imsm_map *map;
6602 int i, j, num_members;
6603 __u32 ord;
6604
6605 dprintf("%s: deleting device[%d] from imsm_super\n",
6606 __func__, index);
6607
6608 /* shift all indexes down one */
6609 for (iter = super->disks; iter; iter = iter->next)
6610 if (iter->index > (int)index)
6611 iter->index--;
6612 for (iter = super->missing; iter; iter = iter->next)
6613 if (iter->index > (int)index)
6614 iter->index--;
6615
6616 for (i = 0; i < mpb->num_raid_devs; i++) {
6617 dev = get_imsm_dev(super, i);
6618 map = get_imsm_map(dev, 0);
6619 num_members = map->num_members;
6620 for (j = 0; j < num_members; j++) {
6621 /* update ord entries being careful not to propagate
6622 * ord-flags to the first map
6623 */
6624 ord = get_imsm_ord_tbl_ent(dev, j, -1);
6625
6626 if (ord_to_idx(ord) <= index)
6627 continue;
6628
6629 map = get_imsm_map(dev, 0);
6630 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
6631 map = get_imsm_map(dev, 1);
6632 if (map)
6633 set_imsm_ord_tbl_ent(map, j, ord - 1);
6634 }
6635 }
6636
6637 mpb->num_disks--;
6638 super->updates_pending++;
6639 if (*dlp) {
6640 struct dl *dl = *dlp;
6641
6642 *dlp = (*dlp)->next;
6643 __free_imsm_disk(dl);
6644 }
6645 }
6646
6647 static char disk_by_path[] = "/dev/disk/by-path/";
6648
6649 static const char *imsm_get_disk_controller_domain(const char *path)
6650 {
6651 char disk_path[PATH_MAX];
6652 char *drv=NULL;
6653 struct stat st;
6654
6655 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
6656 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
6657 if (stat(disk_path, &st) == 0) {
6658 struct sys_dev* hba;
6659 char *path=NULL;
6660
6661 path = devt_to_devpath(st.st_rdev);
6662 if (path == NULL)
6663 return "unknown";
6664 hba = find_disk_attached_hba(-1, path);
6665 if (hba && hba->type == SYS_DEV_SAS)
6666 drv = "isci";
6667 else if (hba && hba->type == SYS_DEV_SATA)
6668 drv = "ahci";
6669 else
6670 drv = "unknown";
6671 dprintf("path: %s hba: %s attached: %s\n",
6672 path, (hba) ? hba->path : "NULL", drv);
6673 free(path);
6674 if (hba)
6675 free_sys_dev(&hba);
6676 }
6677 return drv;
6678 }
6679
6680 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
6681 {
6682 char subdev_name[20];
6683 struct mdstat_ent *mdstat;
6684
6685 sprintf(subdev_name, "%d", subdev);
6686 mdstat = mdstat_by_subdev(subdev_name, container);
6687 if (!mdstat)
6688 return -1;
6689
6690 *minor = mdstat->devnum;
6691 free_mdstat(mdstat);
6692 return 0;
6693 }
6694
6695 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
6696 struct geo_params *geo,
6697 int *old_raid_disks)
6698 {
6699 /* currently we only support increasing the number of devices
6700 * for a container. This increases the number of device for each
6701 * member array. They must all be RAID0 or RAID5.
6702 */
6703 int ret_val = 0;
6704 struct mdinfo *info, *member;
6705 int devices_that_can_grow = 0;
6706
6707 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
6708 "st->devnum = (%i)\n",
6709 st->devnum);
6710
6711 if (geo->size != -1 ||
6712 geo->level != UnSet ||
6713 geo->layout != UnSet ||
6714 geo->chunksize != 0 ||
6715 geo->raid_disks == UnSet) {
6716 dprintf("imsm: Container operation is allowed for "
6717 "raid disks number change only.\n");
6718 return ret_val;
6719 }
6720
6721 info = container_content_imsm(st, NULL);
6722 for (member = info; member; member = member->next) {
6723 int result;
6724 int minor;
6725
6726 dprintf("imsm: checking device_num: %i\n",
6727 member->container_member);
6728
6729 if (geo->raid_disks <= member->array.raid_disks) {
6730 /* we work on container for Online Capacity Expansion
6731 * only so raid_disks has to grow
6732 */
6733 dprintf("imsm: for container operation raid disks "
6734 "increase is required\n");
6735 break;
6736 }
6737
6738 if ((info->array.level != 0) &&
6739 (info->array.level != 5)) {
6740 /* we cannot use this container with other raid level
6741 */
6742 dprintf("imsm: for container operation wrong"
6743 " raid level (%i) detected\n",
6744 info->array.level);
6745 break;
6746 } else {
6747 /* check for platform support
6748 * for this raid level configuration
6749 */
6750 struct intel_super *super = st->sb;
6751 if (!is_raid_level_supported(super->orom,
6752 member->array.level,
6753 geo->raid_disks)) {
6754 dprintf("platform does not support raid%d with"
6755 " %d disk%s\n",
6756 info->array.level,
6757 geo->raid_disks,
6758 geo->raid_disks > 1 ? "s" : "");
6759 break;
6760 }
6761 }
6762
6763 if (*old_raid_disks &&
6764 info->array.raid_disks != *old_raid_disks)
6765 break;
6766 *old_raid_disks = info->array.raid_disks;
6767
6768 /* All raid5 and raid0 volumes in container
6769 * have to be ready for Online Capacity Expansion
6770 * so they need to be assembled. We have already
6771 * checked that no recovery etc is happening.
6772 */
6773 result = imsm_find_array_minor_by_subdev(member->container_member,
6774 st->container_dev,
6775 &minor);
6776 if (result < 0) {
6777 dprintf("imsm: cannot find array\n");
6778 break;
6779 }
6780 devices_that_can_grow++;
6781 }
6782 sysfs_free(info);
6783 if (!member && devices_that_can_grow)
6784 ret_val = 1;
6785
6786 if (ret_val)
6787 dprintf("\tContainer operation allowed\n");
6788 else
6789 dprintf("\tError: %i\n", ret_val);
6790
6791 return ret_val;
6792 }
6793
6794 /* Function: get_spares_for_grow
6795 * Description: Allocates memory and creates list of spare devices
6796 * avaliable in container. Checks if spare drive size is acceptable.
6797 * Parameters: Pointer to the supertype structure
6798 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
6799 * NULL if fail
6800 */
6801 static struct mdinfo *get_spares_for_grow(struct supertype *st)
6802 {
6803 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
6804 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
6805 }
6806
6807 /******************************************************************************
6808 * function: imsm_create_metadata_update_for_reshape
6809 * Function creates update for whole IMSM container.
6810 *
6811 ******************************************************************************/
6812 static int imsm_create_metadata_update_for_reshape(
6813 struct supertype *st,
6814 struct geo_params *geo,
6815 int old_raid_disks,
6816 struct imsm_update_reshape **updatep)
6817 {
6818 struct intel_super *super = st->sb;
6819 struct imsm_super *mpb = super->anchor;
6820 int update_memory_size = 0;
6821 struct imsm_update_reshape *u = NULL;
6822 struct mdinfo *spares = NULL;
6823 int i;
6824 int delta_disks = 0;
6825 struct mdinfo *dev;
6826
6827 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
6828 geo->raid_disks);
6829
6830 delta_disks = geo->raid_disks - old_raid_disks;
6831
6832 /* size of all update data without anchor */
6833 update_memory_size = sizeof(struct imsm_update_reshape);
6834
6835 /* now add space for spare disks that we need to add. */
6836 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
6837
6838 u = calloc(1, update_memory_size);
6839 if (u == NULL) {
6840 dprintf("error: "
6841 "cannot get memory for imsm_update_reshape update\n");
6842 return 0;
6843 }
6844 u->type = update_reshape_container_disks;
6845 u->old_raid_disks = old_raid_disks;
6846 u->new_raid_disks = geo->raid_disks;
6847
6848 /* now get spare disks list
6849 */
6850 spares = get_spares_for_grow(st);
6851
6852 if (spares == NULL
6853 || delta_disks > spares->array.spare_disks) {
6854 dprintf("imsm: ERROR: Cannot get spare devices.\n");
6855 goto abort;
6856 }
6857
6858 /* we have got spares
6859 * update disk list in imsm_disk list table in anchor
6860 */
6861 dprintf("imsm: %i spares are available.\n\n",
6862 spares->array.spare_disks);
6863
6864 dev = spares->devs;
6865 for (i = 0; i < delta_disks; i++) {
6866 struct dl *dl;
6867
6868 if (dev == NULL)
6869 break;
6870 u->new_disks[i] = makedev(dev->disk.major,
6871 dev->disk.minor);
6872 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
6873 dl->index = mpb->num_disks;
6874 mpb->num_disks++;
6875 dev = dev->next;
6876 }
6877
6878 abort:
6879 /* free spares
6880 */
6881 sysfs_free(spares);
6882
6883 dprintf("imsm: reshape update preparation :");
6884 if (i == delta_disks) {
6885 dprintf(" OK\n");
6886 *updatep = u;
6887 return update_memory_size;
6888 }
6889 free(u);
6890 dprintf(" Error\n");
6891
6892 return 0;
6893 }
6894
6895 static void imsm_update_metadata_locally(struct supertype *st,
6896 void *buf, int len)
6897 {
6898 struct metadata_update mu;
6899
6900 mu.buf = buf;
6901 mu.len = len;
6902 mu.space = NULL;
6903 mu.space_list = NULL;
6904 mu.next = NULL;
6905 imsm_prepare_update(st, &mu);
6906 imsm_process_update(st, &mu);
6907
6908 while (mu.space_list) {
6909 void **space = mu.space_list;
6910 mu.space_list = *space;
6911 free(space);
6912 }
6913 }
6914
6915 /***************************************************************************
6916 * Function: imsm_analyze_change
6917 * Description: Function analyze change for single volume
6918 * and validate if transition is supported
6919 * Parameters: Geometry parameters, supertype structure
6920 * Returns: Operation type code on success, -1 if fail
6921 ****************************************************************************/
6922 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
6923 struct geo_params *geo)
6924 {
6925 struct mdinfo info;
6926 int change = -1;
6927 int check_devs = 0;
6928
6929 getinfo_super_imsm_volume(st, &info, NULL);
6930
6931 if ((geo->level != info.array.level) &&
6932 (geo->level >= 0) &&
6933 (geo->level != UnSet)) {
6934 switch (info.array.level) {
6935 case 0:
6936 if (geo->level == 5) {
6937 change = CH_MIGRATION;
6938 check_devs = 1;
6939 }
6940 if (geo->level == 10) {
6941 change = CH_TAKEOVER;
6942 check_devs = 1;
6943 }
6944 break;
6945 case 1:
6946 if (geo->level == 0) {
6947 change = CH_TAKEOVER;
6948 check_devs = 1;
6949 }
6950 break;
6951 case 5:
6952 if (geo->level == 0)
6953 change = CH_MIGRATION;
6954 break;
6955 case 10:
6956 if (geo->level == 0) {
6957 change = CH_TAKEOVER;
6958 check_devs = 1;
6959 }
6960 break;
6961 }
6962 if (change == -1) {
6963 fprintf(stderr,
6964 Name " Error. Level Migration from %d to %d "
6965 "not supported!\n",
6966 info.array.level, geo->level);
6967 goto analyse_change_exit;
6968 }
6969 } else
6970 geo->level = info.array.level;
6971
6972 if ((geo->layout != info.array.layout)
6973 && ((geo->layout != UnSet) && (geo->layout != -1))) {
6974 change = CH_MIGRATION;
6975 if ((info.array.layout == 0)
6976 && (info.array.level == 5)
6977 && (geo->layout == 5)) {
6978 /* reshape 5 -> 4 */
6979 } else if ((info.array.layout == 5)
6980 && (info.array.level == 5)
6981 && (geo->layout == 0)) {
6982 /* reshape 4 -> 5 */
6983 geo->layout = 0;
6984 geo->level = 5;
6985 } else {
6986 fprintf(stderr,
6987 Name " Error. Layout Migration from %d to %d "
6988 "not supported!\n",
6989 info.array.layout, geo->layout);
6990 change = -1;
6991 goto analyse_change_exit;
6992 }
6993 } else
6994 geo->layout = info.array.layout;
6995
6996 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
6997 && (geo->chunksize != info.array.chunk_size))
6998 change = CH_MIGRATION;
6999 else
7000 geo->chunksize = info.array.chunk_size;
7001
7002 if (!validate_geometry_imsm(st,
7003 geo->level,
7004 geo->layout,
7005 geo->raid_disks,
7006 (geo->chunksize / 1024),
7007 geo->size,
7008 0, 0, 1))
7009 change = -1;
7010
7011 if (check_devs) {
7012 struct intel_super *super = st->sb;
7013 struct imsm_super *mpb = super->anchor;
7014
7015 if (mpb->num_raid_devs > 1) {
7016 fprintf(stderr,
7017 Name " Error. Cannot perform operation on %s"
7018 "- for this operation it MUST be single "
7019 "array in container\n",
7020 geo->dev_name);
7021 change = -1;
7022 }
7023 }
7024
7025 analyse_change_exit:
7026
7027 return change;
7028 }
7029
7030 int imsm_takeover(struct supertype *st, struct geo_params *geo)
7031 {
7032 struct intel_super *super = st->sb;
7033 struct imsm_update_takeover *u;
7034
7035 u = malloc(sizeof(struct imsm_update_takeover));
7036 if (u == NULL)
7037 return 1;
7038
7039 u->type = update_takeover;
7040 u->subarray = super->current_vol;
7041
7042 /* 10->0 transition */
7043 if (geo->level == 0)
7044 u->direction = R10_TO_R0;
7045
7046 /* 0->10 transition */
7047 if (geo->level == 10)
7048 u->direction = R0_TO_R10;
7049
7050 /* update metadata locally */
7051 imsm_update_metadata_locally(st, u,
7052 sizeof(struct imsm_update_takeover));
7053 /* and possibly remotely */
7054 if (st->update_tail)
7055 append_metadata_update(st, u,
7056 sizeof(struct imsm_update_takeover));
7057 else
7058 free(u);
7059
7060 return 0;
7061 }
7062
7063 static int imsm_reshape_super(struct supertype *st, long long size, int level,
7064 int layout, int chunksize, int raid_disks,
7065 int delta_disks, char *backup, char *dev,
7066 int verbose)
7067 {
7068 int ret_val = 1;
7069 struct geo_params geo;
7070
7071 dprintf("imsm: reshape_super called.\n");
7072
7073 memset(&geo, 0, sizeof(struct geo_params));
7074
7075 geo.dev_name = dev;
7076 geo.dev_id = st->devnum;
7077 geo.size = size;
7078 geo.level = level;
7079 geo.layout = layout;
7080 geo.chunksize = chunksize;
7081 geo.raid_disks = raid_disks;
7082 if (delta_disks != UnSet)
7083 geo.raid_disks += delta_disks;
7084
7085 dprintf("\tfor level : %i\n", geo.level);
7086 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
7087
7088 if (experimental() == 0)
7089 return ret_val;
7090
7091 if (st->container_dev == st->devnum) {
7092 /* On container level we can only increase number of devices. */
7093 dprintf("imsm: info: Container operation\n");
7094 int old_raid_disks = 0;
7095 if (imsm_reshape_is_allowed_on_container(
7096 st, &geo, &old_raid_disks)) {
7097 struct imsm_update_reshape *u = NULL;
7098 int len;
7099
7100 len = imsm_create_metadata_update_for_reshape(
7101 st, &geo, old_raid_disks, &u);
7102
7103 if (len <= 0) {
7104 dprintf("imsm: Cannot prepare update\n");
7105 goto exit_imsm_reshape_super;
7106 }
7107
7108 ret_val = 0;
7109 /* update metadata locally */
7110 imsm_update_metadata_locally(st, u, len);
7111 /* and possibly remotely */
7112 if (st->update_tail)
7113 append_metadata_update(st, u, len);
7114 else
7115 free(u);
7116
7117 } else {
7118 fprintf(stderr, Name ": (imsm) Operation "
7119 "is not allowed on this container\n");
7120 }
7121 } else {
7122 /* On volume level we support following operations
7123 * - takeover: raid10 -> raid0; raid0 -> raid10
7124 * - chunk size migration
7125 * - migration: raid5 -> raid0; raid0 -> raid5
7126 */
7127 struct intel_super *super = st->sb;
7128 struct intel_dev *dev = super->devlist;
7129 int change, devnum;
7130 dprintf("imsm: info: Volume operation\n");
7131 /* find requested device */
7132 while (dev) {
7133 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
7134 if (devnum == geo.dev_id)
7135 break;
7136 dev = dev->next;
7137 }
7138 if (dev == NULL) {
7139 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
7140 geo.dev_name, geo.dev_id);
7141 goto exit_imsm_reshape_super;
7142 }
7143 super->current_vol = dev->index;
7144 change = imsm_analyze_change(st, &geo);
7145 switch (change) {
7146 case CH_TAKEOVER:
7147 ret_val = imsm_takeover(st, &geo);
7148 break;
7149 case CH_MIGRATION:
7150 ret_val = 0;
7151 break;
7152 default:
7153 ret_val = 1;
7154 }
7155 }
7156
7157 exit_imsm_reshape_super:
7158 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
7159 return ret_val;
7160 }
7161
7162 static int imsm_manage_reshape(
7163 int afd, struct mdinfo *sra, struct reshape *reshape,
7164 struct supertype *st, unsigned long stripes,
7165 int *fds, unsigned long long *offsets,
7166 int dests, int *destfd, unsigned long long *destoffsets)
7167 {
7168 /* Just use child_monitor for now */
7169 return child_monitor(
7170 afd, sra, reshape, st, stripes,
7171 fds, offsets, dests, destfd, destoffsets);
7172 }
7173 #endif /* MDASSEMBLE */
7174
7175 struct superswitch super_imsm = {
7176 #ifndef MDASSEMBLE
7177 .examine_super = examine_super_imsm,
7178 .brief_examine_super = brief_examine_super_imsm,
7179 .brief_examine_subarrays = brief_examine_subarrays_imsm,
7180 .export_examine_super = export_examine_super_imsm,
7181 .detail_super = detail_super_imsm,
7182 .brief_detail_super = brief_detail_super_imsm,
7183 .write_init_super = write_init_super_imsm,
7184 .validate_geometry = validate_geometry_imsm,
7185 .add_to_super = add_to_super_imsm,
7186 .remove_from_super = remove_from_super_imsm,
7187 .detail_platform = detail_platform_imsm,
7188 .kill_subarray = kill_subarray_imsm,
7189 .update_subarray = update_subarray_imsm,
7190 .load_container = load_container_imsm,
7191 .default_geometry = default_geometry_imsm,
7192 .get_disk_controller_domain = imsm_get_disk_controller_domain,
7193 .reshape_super = imsm_reshape_super,
7194 .manage_reshape = imsm_manage_reshape,
7195 #endif
7196 .match_home = match_home_imsm,
7197 .uuid_from_super= uuid_from_super_imsm,
7198 .getinfo_super = getinfo_super_imsm,
7199 .getinfo_super_disks = getinfo_super_disks_imsm,
7200 .update_super = update_super_imsm,
7201
7202 .avail_size = avail_size_imsm,
7203 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
7204
7205 .compare_super = compare_super_imsm,
7206
7207 .load_super = load_super_imsm,
7208 .init_super = init_super_imsm,
7209 .store_super = store_super_imsm,
7210 .free_super = free_super_imsm,
7211 .match_metadata_desc = match_metadata_desc_imsm,
7212 .container_content = container_content_imsm,
7213
7214 .external = 1,
7215 .name = "imsm",
7216
7217 #ifndef MDASSEMBLE
7218 /* for mdmon */
7219 .open_new = imsm_open_new,
7220 .set_array_state= imsm_set_array_state,
7221 .set_disk = imsm_set_disk,
7222 .sync_metadata = imsm_sync_metadata,
7223 .activate_spare = imsm_activate_spare,
7224 .process_update = imsm_process_update,
7225 .prepare_update = imsm_prepare_update,
7226 #endif /* MDASSEMBLE */
7227 };