]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
super-intel: respect IMSM_DEVNAME_AS_SERIAL flag
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "dlink.h"
24 #include "sha1.h"
25 #include "platform-intel.h"
26 #include <values.h>
27 #include <scsi/sg.h>
28 #include <ctype.h>
29 #include <dirent.h>
30
31 /* MPB == Metadata Parameter Block */
32 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
33 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
34 #define MPB_VERSION_RAID0 "1.0.00"
35 #define MPB_VERSION_RAID1 "1.1.00"
36 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
37 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
38 #define MPB_VERSION_RAID5 "1.2.02"
39 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
40 #define MPB_VERSION_CNG "1.2.06"
41 #define MPB_VERSION_ATTRIBS "1.3.00"
42 #define MAX_SIGNATURE_LENGTH 32
43 #define MAX_RAID_SERIAL_LEN 16
44
45 /* supports RAID0 */
46 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
47 /* supports RAID1 */
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 /* supports RAID10 */
50 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
51 /* supports RAID1E */
52 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
53 /* supports RAID5 */
54 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
55 /* supports RAID CNG */
56 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
57 /* supports expanded stripe sizes of 256K, 512K and 1MB */
58 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
59
60 /* The OROM Support RST Caching of Volumes */
61 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
62 /* The OROM supports creating disks greater than 2TB */
63 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
64 /* The OROM supports Bad Block Management */
65 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
66
67 /* THe OROM Supports NVM Caching of Volumes */
68 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
69 /* The OROM supports creating volumes greater than 2TB */
70 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
71 /* originally for PMP, now it's wasted b/c. Never use this bit! */
72 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
73 /* Verify MPB contents against checksum after reading MPB */
74 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
75
76 /* Define all supported attributes that have to be accepted by mdadm
77 */
78 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
79 MPB_ATTRIB_2TB | \
80 MPB_ATTRIB_2TB_DISK | \
81 MPB_ATTRIB_RAID0 | \
82 MPB_ATTRIB_RAID1 | \
83 MPB_ATTRIB_RAID10 | \
84 MPB_ATTRIB_RAID5 | \
85 MPB_ATTRIB_EXP_STRIPE_SIZE | \
86 MPB_ATTRIB_BBM)
87
88 /* Define attributes that are unused but not harmful */
89 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
90
91 #define MPB_SECTOR_CNT 2210
92 #define IMSM_RESERVED_SECTORS 8192
93 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
94 #define SECT_PER_MB_SHIFT 11
95 #define MAX_SECTOR_SIZE 4096
96 #define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
97 * mutliple PPL area
98 */
99
100 /*
101 * Internal Write-intent bitmap is stored in the same area where PPL.
102 * Both features are mutually exclusive, so it is not an issue.
103 * The first 8KiB of the area are reserved and shall not be used.
104 */
105 #define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
106
107 #define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
108 #define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
109
110 #define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
111 #define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
112 #define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
113
114 #define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
115 #define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
116
117 /*
118 * This macro let's us ensure that no-one accidentally
119 * changes the size of a struct
120 */
121 #define ASSERT_SIZE(_struct, size) \
122 static inline void __assert_size_##_struct(void) \
123 { \
124 switch (0) { \
125 case 0: break; \
126 case (sizeof(struct _struct) == size): break; \
127 } \
128 }
129
130 /* Disk configuration info. */
131 #define IMSM_MAX_DEVICES 255
132 struct imsm_disk {
133 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
134 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
135 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
136 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
137 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
138 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
139 #define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
140 __u32 status; /* 0xF0 - 0xF3 */
141 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
142 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
143 #define IMSM_DISK_FILLERS 3
144 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
145 };
146 ASSERT_SIZE(imsm_disk, 48)
147
148 /* map selector for map managment
149 */
150 #define MAP_0 0
151 #define MAP_1 1
152 #define MAP_X -1
153
154 /* RAID map configuration infos. */
155 struct imsm_map {
156 __u32 pba_of_lba0_lo; /* start address of partition */
157 __u32 blocks_per_member_lo;/* blocks per member */
158 __u32 num_data_stripes_lo; /* number of data stripes */
159 __u16 blocks_per_strip;
160 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
161 #define IMSM_T_STATE_NORMAL 0
162 #define IMSM_T_STATE_UNINITIALIZED 1
163 #define IMSM_T_STATE_DEGRADED 2
164 #define IMSM_T_STATE_FAILED 3
165 __u8 raid_level;
166 #define IMSM_T_RAID0 0
167 #define IMSM_T_RAID1 1
168 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
169 __u8 num_members; /* number of member disks */
170 __u8 num_domains; /* number of parity domains */
171 __u8 failed_disk_num; /* valid only when state is degraded */
172 __u8 ddf;
173 __u32 pba_of_lba0_hi;
174 __u32 blocks_per_member_hi;
175 __u32 num_data_stripes_hi;
176 __u32 filler[4]; /* expansion area */
177 #define IMSM_ORD_REBUILD (1 << 24)
178 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
179 * top byte contains some flags
180 */
181 };
182 ASSERT_SIZE(imsm_map, 52)
183
184 struct imsm_vol {
185 __u32 curr_migr_unit_lo;
186 __u32 checkpoint_id; /* id to access curr_migr_unit */
187 __u8 migr_state; /* Normal or Migrating */
188 #define MIGR_INIT 0
189 #define MIGR_REBUILD 1
190 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
191 #define MIGR_GEN_MIGR 3
192 #define MIGR_STATE_CHANGE 4
193 #define MIGR_REPAIR 5
194 __u8 migr_type; /* Initializing, Rebuilding, ... */
195 #define RAIDVOL_CLEAN 0
196 #define RAIDVOL_DIRTY 1
197 #define RAIDVOL_DSRECORD_VALID 2
198 __u8 dirty;
199 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
200 __u16 verify_errors; /* number of mismatches */
201 __u16 bad_blocks; /* number of bad blocks during verify */
202 __u32 curr_migr_unit_hi;
203 __u32 filler[3];
204 struct imsm_map map[1];
205 /* here comes another one if migr_state */
206 };
207 ASSERT_SIZE(imsm_vol, 84)
208
209 struct imsm_dev {
210 __u8 volume[MAX_RAID_SERIAL_LEN];
211 __u32 size_low;
212 __u32 size_high;
213 #define DEV_BOOTABLE __cpu_to_le32(0x01)
214 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
215 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
216 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
217 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
218 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
219 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
220 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
221 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
222 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
223 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
224 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
225 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
226 __u32 status; /* Persistent RaidDev status */
227 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
228 __u8 migr_priority;
229 __u8 num_sub_vols;
230 __u8 tid;
231 __u8 cng_master_disk;
232 __u16 cache_policy;
233 __u8 cng_state;
234 __u8 cng_sub_state;
235 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
236
237 /* NVM_EN */
238 __u8 nv_cache_mode;
239 __u8 nv_cache_flags;
240
241 /* Unique Volume Id of the NvCache Volume associated with this volume */
242 __u32 nvc_vol_orig_family_num;
243 __u16 nvc_vol_raid_dev_num;
244
245 #define RWH_OFF 0
246 #define RWH_DISTRIBUTED 1
247 #define RWH_JOURNALING_DRIVE 2
248 #define RWH_MULTIPLE_DISTRIBUTED 3
249 #define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
250 #define RWH_MULTIPLE_OFF 5
251 #define RWH_BITMAP 6
252 __u8 rwh_policy; /* Raid Write Hole Policy */
253 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
254 __u8 filler1;
255
256 #define IMSM_DEV_FILLERS 3
257 __u32 filler[IMSM_DEV_FILLERS];
258 struct imsm_vol vol;
259 };
260 ASSERT_SIZE(imsm_dev, 164)
261
262 struct imsm_super {
263 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
264 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
265 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
266 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
267 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
268 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
269 __u32 attributes; /* 0x34 - 0x37 */
270 __u8 num_disks; /* 0x38 Number of configured disks */
271 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
272 __u8 error_log_pos; /* 0x3A */
273 __u8 fill[1]; /* 0x3B */
274 __u32 cache_size; /* 0x3c - 0x40 in mb */
275 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
276 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
277 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
278 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
279 * volume IDs for raid_dev created in this array
280 * (starts at 1)
281 */
282 __u16 filler1; /* 0x4E - 0x4F */
283 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
284 #define IMSM_FILLERS 32
285 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
286 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
287 /* here comes imsm_dev[num_raid_devs] */
288 /* here comes BBM logs */
289 };
290 ASSERT_SIZE(imsm_super, 264)
291
292 #define BBM_LOG_MAX_ENTRIES 254
293 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
294 #define BBM_LOG_SIGNATURE 0xabadb10c
295
296 struct bbm_log_block_addr {
297 __u16 w1;
298 __u32 dw1;
299 } __attribute__ ((__packed__));
300
301 struct bbm_log_entry {
302 __u8 marked_count; /* Number of blocks marked - 1 */
303 __u8 disk_ordinal; /* Disk entry within the imsm_super */
304 struct bbm_log_block_addr defective_block_start;
305 } __attribute__ ((__packed__));
306
307 struct bbm_log {
308 __u32 signature; /* 0xABADB10C */
309 __u32 entry_count;
310 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
311 };
312 ASSERT_SIZE(bbm_log, 2040)
313
314 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
315
316 #define BLOCKS_PER_KB (1024/512)
317
318 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
319
320 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
321
322 #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
323 #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
324 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
325 */
326
327 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
328 * be recovered using srcMap */
329 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
330 * already been migrated and must
331 * be recovered from checkpoint area */
332
333 #define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
334
335 struct migr_record {
336 __u32 rec_status; /* Status used to determine how to restart
337 * migration in case it aborts
338 * in some fashion */
339 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
340 __u32 family_num; /* Family number of MPB
341 * containing the RaidDev
342 * that is migrating */
343 __u32 ascending_migr; /* True if migrating in increasing
344 * order of lbas */
345 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
346 __u32 dest_depth_per_unit; /* Num member blocks each destMap
347 * member disk
348 * advances per unit-of-operation */
349 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
350 __u32 dest_1st_member_lba_lo; /* First member lba on first
351 * stripe of destination */
352 __u32 num_migr_units_lo; /* Total num migration units-of-op */
353 __u32 post_migr_vol_cap; /* Size of volume after
354 * migration completes */
355 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
356 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
357 * migration ckpt record was read from
358 * (for recovered migrations) */
359 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
360 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
361 * high order 32 bits */
362 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
363 * destination - high order 32 bits */
364 __u32 num_migr_units_hi; /* Total num migration units-of-op
365 * high order 32 bits */
366 __u32 filler[16];
367 };
368 ASSERT_SIZE(migr_record, 128)
369
370 /**
371 * enum imsm_status - internal IMSM return values representation.
372 * @STATUS_OK: function succeeded.
373 * @STATUS_ERROR: General error ocurred (not specified).
374 *
375 * Typedefed to imsm_status_t.
376 */
377 typedef enum imsm_status {
378 IMSM_STATUS_ERROR = -1,
379 IMSM_STATUS_OK = 0,
380 } imsm_status_t;
381
382 struct md_list {
383 /* usage marker:
384 * 1: load metadata
385 * 2: metadata does not match
386 * 4: already checked
387 */
388 int used;
389 char *devname;
390 int found;
391 int container;
392 dev_t st_rdev;
393 struct md_list *next;
394 };
395
396 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
397
398 static __u8 migr_type(struct imsm_dev *dev)
399 {
400 if (dev->vol.migr_type == MIGR_VERIFY &&
401 dev->status & DEV_VERIFY_AND_FIX)
402 return MIGR_REPAIR;
403 else
404 return dev->vol.migr_type;
405 }
406
407 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
408 {
409 /* for compatibility with older oroms convert MIGR_REPAIR, into
410 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
411 */
412 if (migr_type == MIGR_REPAIR) {
413 dev->vol.migr_type = MIGR_VERIFY;
414 dev->status |= DEV_VERIFY_AND_FIX;
415 } else {
416 dev->vol.migr_type = migr_type;
417 dev->status &= ~DEV_VERIFY_AND_FIX;
418 }
419 }
420
421 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
422 {
423 return ROUND_UP(bytes, sector_size) / sector_size;
424 }
425
426 static unsigned int mpb_sectors(struct imsm_super *mpb,
427 unsigned int sector_size)
428 {
429 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
430 }
431
432 struct intel_dev {
433 struct imsm_dev *dev;
434 struct intel_dev *next;
435 unsigned index;
436 };
437
438 struct intel_hba {
439 enum sys_dev_type type;
440 char *path;
441 char *pci_id;
442 struct intel_hba *next;
443 };
444
445 enum action {
446 DISK_REMOVE = 1,
447 DISK_ADD
448 };
449 /* internal representation of IMSM metadata */
450 struct intel_super {
451 union {
452 void *buf; /* O_DIRECT buffer for reading/writing metadata */
453 struct imsm_super *anchor; /* immovable parameters */
454 };
455 union {
456 void *migr_rec_buf; /* buffer for I/O operations */
457 struct migr_record *migr_rec; /* migration record */
458 };
459 int clean_migration_record_by_mdmon; /* when reshape is switched to next
460 array, it indicates that mdmon is allowed to clean migration
461 record */
462 size_t len; /* size of the 'buf' allocation */
463 size_t extra_space; /* extra space in 'buf' that is not used yet */
464 void *next_buf; /* for realloc'ing buf from the manager */
465 size_t next_len;
466 int updates_pending; /* count of pending updates for mdmon */
467 int current_vol; /* index of raid device undergoing creation */
468 unsigned long long create_offset; /* common start for 'current_vol' */
469 __u32 random; /* random data for seeding new family numbers */
470 struct intel_dev *devlist;
471 unsigned int sector_size; /* sector size of used member drives */
472 struct dl {
473 struct dl *next;
474 int index;
475 __u8 serial[MAX_RAID_SERIAL_LEN];
476 int major, minor;
477 char *devname;
478 struct imsm_disk disk;
479 int fd;
480 int extent_cnt;
481 struct extent *e; /* for determining freespace @ create */
482 int raiddisk; /* slot to fill in autolayout */
483 enum action action;
484 } *disks, *current_disk;
485 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
486 active */
487 struct dl *missing; /* disks removed while we weren't looking */
488 struct bbm_log *bbm_log;
489 struct intel_hba *hba; /* device path of the raid controller for this metadata */
490 const struct imsm_orom *orom; /* platform firmware support */
491 struct intel_super *next; /* (temp) list for disambiguating family_num */
492 struct md_bb bb; /* memory for get_bad_blocks call */
493 };
494
495 struct intel_disk {
496 struct imsm_disk disk;
497 #define IMSM_UNKNOWN_OWNER (-1)
498 int owner;
499 struct intel_disk *next;
500 };
501
502 /**
503 * struct extent - reserved space details.
504 * @start: start offset.
505 * @size: size of reservation, set to 0 for metadata reservation.
506 * @vol: index of the volume, meaningful if &size is set.
507 */
508 struct extent {
509 unsigned long long start, size;
510 int vol;
511 };
512
513 /* definitions of reshape process types */
514 enum imsm_reshape_type {
515 CH_TAKEOVER,
516 CH_MIGRATION,
517 CH_ARRAY_SIZE,
518 };
519
520 /* definition of messages passed to imsm_process_update */
521 enum imsm_update_type {
522 update_activate_spare,
523 update_create_array,
524 update_kill_array,
525 update_rename_array,
526 update_add_remove_disk,
527 update_reshape_container_disks,
528 update_reshape_migration,
529 update_takeover,
530 update_general_migration_checkpoint,
531 update_size_change,
532 update_prealloc_badblocks_mem,
533 update_rwh_policy,
534 };
535
536 struct imsm_update_activate_spare {
537 enum imsm_update_type type;
538 struct dl *dl;
539 int slot;
540 int array;
541 struct imsm_update_activate_spare *next;
542 };
543
544 struct geo_params {
545 char devnm[32];
546 char *dev_name;
547 unsigned long long size;
548 int level;
549 int layout;
550 int chunksize;
551 int raid_disks;
552 };
553
554 enum takeover_direction {
555 R10_TO_R0,
556 R0_TO_R10
557 };
558 struct imsm_update_takeover {
559 enum imsm_update_type type;
560 int subarray;
561 enum takeover_direction direction;
562 };
563
564 struct imsm_update_reshape {
565 enum imsm_update_type type;
566 int old_raid_disks;
567 int new_raid_disks;
568
569 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
570 };
571
572 struct imsm_update_reshape_migration {
573 enum imsm_update_type type;
574 int old_raid_disks;
575 int new_raid_disks;
576 /* fields for array migration changes
577 */
578 int subdev;
579 int new_level;
580 int new_layout;
581 int new_chunksize;
582
583 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
584 };
585
586 struct imsm_update_size_change {
587 enum imsm_update_type type;
588 int subdev;
589 long long new_size;
590 };
591
592 struct imsm_update_general_migration_checkpoint {
593 enum imsm_update_type type;
594 __u64 curr_migr_unit;
595 };
596
597 struct disk_info {
598 __u8 serial[MAX_RAID_SERIAL_LEN];
599 };
600
601 struct imsm_update_create_array {
602 enum imsm_update_type type;
603 int dev_idx;
604 struct imsm_dev dev;
605 };
606
607 struct imsm_update_kill_array {
608 enum imsm_update_type type;
609 int dev_idx;
610 };
611
612 struct imsm_update_rename_array {
613 enum imsm_update_type type;
614 __u8 name[MAX_RAID_SERIAL_LEN];
615 int dev_idx;
616 };
617
618 struct imsm_update_add_remove_disk {
619 enum imsm_update_type type;
620 };
621
622 struct imsm_update_prealloc_bb_mem {
623 enum imsm_update_type type;
624 };
625
626 struct imsm_update_rwh_policy {
627 enum imsm_update_type type;
628 int new_policy;
629 int dev_idx;
630 };
631
632 static const char *_sys_dev_type[] = {
633 [SYS_DEV_UNKNOWN] = "Unknown",
634 [SYS_DEV_SAS] = "SAS",
635 [SYS_DEV_SATA] = "SATA",
636 [SYS_DEV_NVME] = "NVMe",
637 [SYS_DEV_VMD] = "VMD",
638 [SYS_DEV_SATA_VMD] = "SATA VMD"
639 };
640
641 static int no_platform = -1;
642
643 static int check_no_platform(void)
644 {
645 static const char search[] = "mdadm.imsm.test=1";
646 FILE *fp;
647
648 if (no_platform >= 0)
649 return no_platform;
650
651 if (check_env("IMSM_NO_PLATFORM")) {
652 no_platform = 1;
653 return 1;
654 }
655 fp = fopen("/proc/cmdline", "r");
656 if (fp) {
657 char *l = conf_line(fp);
658 char *w = l;
659
660 if (l == NULL) {
661 fclose(fp);
662 return 0;
663 }
664
665 do {
666 if (strcmp(w, search) == 0)
667 no_platform = 1;
668 w = dl_next(w);
669 } while (w != l);
670 free_line(l);
671 fclose(fp);
672 if (no_platform >= 0)
673 return no_platform;
674 }
675 no_platform = 0;
676 return 0;
677 }
678
679 void imsm_set_no_platform(int v)
680 {
681 no_platform = v;
682 }
683
684 const char *get_sys_dev_type(enum sys_dev_type type)
685 {
686 if (type >= SYS_DEV_MAX)
687 type = SYS_DEV_UNKNOWN;
688
689 return _sys_dev_type[type];
690 }
691
692 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
693 {
694 struct intel_hba *result = xmalloc(sizeof(*result));
695
696 result->type = device->type;
697 result->path = xstrdup(device->path);
698 result->next = NULL;
699 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
700 result->pci_id++;
701
702 return result;
703 }
704
705 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
706 {
707 struct intel_hba *result;
708
709 for (result = hba; result; result = result->next) {
710 if (result->type == device->type && strcmp(result->path, device->path) == 0)
711 break;
712 }
713 return result;
714 }
715
716 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
717 {
718 struct intel_hba *hba;
719
720 /* check if disk attached to Intel HBA */
721 hba = find_intel_hba(super->hba, device);
722 if (hba != NULL)
723 return 1;
724 /* Check if HBA is already attached to super */
725 if (super->hba == NULL) {
726 super->hba = alloc_intel_hba(device);
727 return 1;
728 }
729
730 hba = super->hba;
731 /* Intel metadata allows for all disks attached to the same type HBA.
732 * Do not support HBA types mixing
733 */
734 if (device->type != hba->type)
735 return 2;
736
737 /* Multiple same type HBAs can be used if they share the same OROM */
738 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
739
740 if (device_orom != super->orom)
741 return 2;
742
743 while (hba->next)
744 hba = hba->next;
745
746 hba->next = alloc_intel_hba(device);
747 return 1;
748 }
749
750 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
751 {
752 struct sys_dev *list, *elem;
753 char *disk_path;
754
755 if ((list = find_intel_devices()) == NULL)
756 return 0;
757
758 if (!is_fd_valid(fd))
759 disk_path = (char *) devname;
760 else
761 disk_path = diskfd_to_devpath(fd, 1, NULL);
762
763 if (!disk_path)
764 return 0;
765
766 for (elem = list; elem; elem = elem->next)
767 if (path_attached_to_hba(disk_path, elem->path))
768 break;
769
770 if (disk_path != devname)
771 free(disk_path);
772
773 return elem;
774 }
775
776 static int find_intel_hba_capability(int fd, struct intel_super *super,
777 char *devname);
778
779 static struct supertype *match_metadata_desc_imsm(char *arg)
780 {
781 struct supertype *st;
782
783 if (strcmp(arg, "imsm") != 0 &&
784 strcmp(arg, "default") != 0
785 )
786 return NULL;
787
788 st = xcalloc(1, sizeof(*st));
789 st->ss = &super_imsm;
790 st->max_devs = IMSM_MAX_DEVICES;
791 st->minor_version = 0;
792 st->sb = NULL;
793 return st;
794 }
795
796 static __u8 *get_imsm_version(struct imsm_super *mpb)
797 {
798 return &mpb->sig[MPB_SIG_LEN];
799 }
800
801 /* retrieve a disk directly from the anchor when the anchor is known to be
802 * up-to-date, currently only at load time
803 */
804 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
805 {
806 if (index >= mpb->num_disks)
807 return NULL;
808 return &mpb->disk[index];
809 }
810
811 /* retrieve the disk description based on a index of the disk
812 * in the sub-array
813 */
814 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
815 {
816 struct dl *d;
817
818 for (d = super->disks; d; d = d->next)
819 if (d->index == index)
820 return d;
821
822 return NULL;
823 }
824 /* retrieve a disk from the parsed metadata */
825 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
826 {
827 struct dl *dl;
828
829 dl = get_imsm_dl_disk(super, index);
830 if (dl)
831 return &dl->disk;
832
833 return NULL;
834 }
835
836 /* generate a checksum directly from the anchor when the anchor is known to be
837 * up-to-date, currently only at load or write_super after coalescing
838 */
839 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
840 {
841 __u32 end = mpb->mpb_size / sizeof(end);
842 __u32 *p = (__u32 *) mpb;
843 __u32 sum = 0;
844
845 while (end--) {
846 sum += __le32_to_cpu(*p);
847 p++;
848 }
849
850 return sum - __le32_to_cpu(mpb->check_sum);
851 }
852
853 static size_t sizeof_imsm_map(struct imsm_map *map)
854 {
855 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
856 }
857
858 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
859 {
860 /* A device can have 2 maps if it is in the middle of a migration.
861 * If second_map is:
862 * MAP_0 - we return the first map
863 * MAP_1 - we return the second map if it exists, else NULL
864 * MAP_X - we return the second map if it exists, else the first
865 */
866 struct imsm_map *map = &dev->vol.map[0];
867 struct imsm_map *map2 = NULL;
868
869 if (dev->vol.migr_state)
870 map2 = (void *)map + sizeof_imsm_map(map);
871
872 switch (second_map) {
873 case MAP_0:
874 break;
875 case MAP_1:
876 map = map2;
877 break;
878 case MAP_X:
879 if (map2)
880 map = map2;
881 break;
882 default:
883 map = NULL;
884 }
885 return map;
886
887 }
888
889 /* return the size of the device.
890 * migr_state increases the returned size if map[0] were to be duplicated
891 */
892 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
893 {
894 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
895 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
896
897 /* migrating means an additional map */
898 if (dev->vol.migr_state)
899 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
900 else if (migr_state)
901 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
902
903 return size;
904 }
905
906 /* retrieve disk serial number list from a metadata update */
907 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
908 {
909 void *u = update;
910 struct disk_info *inf;
911
912 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
913 sizeof_imsm_dev(&update->dev, 0);
914
915 return inf;
916 }
917
918 /**
919 * __get_imsm_dev() - Get device with index from imsm_super.
920 * @mpb: &imsm_super pointer, not NULL.
921 * @index: Device index.
922 *
923 * Function works as non-NULL, aborting in such a case,
924 * when NULL would be returned.
925 *
926 * Device index should be in range 0 up to num_raid_devs.
927 * Function assumes the index was already verified.
928 * Index must be valid, otherwise abort() is called.
929 *
930 * Return: Pointer to corresponding imsm_dev.
931 *
932 */
933 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
934 {
935 int offset;
936 int i;
937 void *_mpb = mpb;
938
939 if (index >= mpb->num_raid_devs)
940 goto error;
941
942 /* devices start after all disks */
943 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
944
945 for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0))
946 if (i == index)
947 return _mpb + offset;
948 error:
949 pr_err("cannot find imsm_dev with index %u in imsm_super\n", index);
950 abort();
951 }
952
953 /**
954 * get_imsm_dev() - Get device with index from intel_super.
955 * @super: &intel_super pointer, not NULL.
956 * @index: Device index.
957 *
958 * Function works as non-NULL, aborting in such a case,
959 * when NULL would be returned.
960 *
961 * Device index should be in range 0 up to num_raid_devs.
962 * Function assumes the index was already verified.
963 * Index must be valid, otherwise abort() is called.
964 *
965 * Return: Pointer to corresponding imsm_dev.
966 *
967 */
968 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
969 {
970 struct intel_dev *dv;
971
972 if (index >= super->anchor->num_raid_devs)
973 goto error;
974
975 for (dv = super->devlist; dv; dv = dv->next)
976 if (dv->index == index)
977 return dv->dev;
978 error:
979 pr_err("cannot find imsm_dev with index %u in intel_super\n", index);
980 abort();
981 }
982
983 static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
984 *addr)
985 {
986 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
987 __le16_to_cpu(addr->w1));
988 }
989
990 static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
991 {
992 struct bbm_log_block_addr addr;
993
994 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
995 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
996 return addr;
997 }
998
999 /* get size of the bbm log */
1000 static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
1001 {
1002 if (!log || log->entry_count == 0)
1003 return 0;
1004
1005 return sizeof(log->signature) +
1006 sizeof(log->entry_count) +
1007 log->entry_count * sizeof(struct bbm_log_entry);
1008 }
1009
1010 /* check if bad block is not partially stored in bbm log */
1011 static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
1012 long long sector, const int length, __u32 *pos)
1013 {
1014 __u32 i;
1015
1016 for (i = *pos; i < log->entry_count; i++) {
1017 struct bbm_log_entry *entry = &log->marked_block_entries[i];
1018 unsigned long long bb_start;
1019 unsigned long long bb_end;
1020
1021 bb_start = __le48_to_cpu(&entry->defective_block_start);
1022 bb_end = bb_start + (entry->marked_count + 1);
1023
1024 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
1025 (bb_end <= sector + length)) {
1026 *pos = i;
1027 return 1;
1028 }
1029 }
1030 return 0;
1031 }
1032
1033 /* record new bad block in bbm log */
1034 static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
1035 long long sector, int length)
1036 {
1037 int new_bb = 0;
1038 __u32 pos = 0;
1039 struct bbm_log_entry *entry = NULL;
1040
1041 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
1042 struct bbm_log_entry *e = &log->marked_block_entries[pos];
1043
1044 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
1045 (__le48_to_cpu(&e->defective_block_start) == sector)) {
1046 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
1047 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
1048 pos = pos + 1;
1049 continue;
1050 }
1051 entry = e;
1052 break;
1053 }
1054
1055 if (entry) {
1056 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1057 BBM_LOG_MAX_LBA_ENTRY_VAL;
1058 entry->defective_block_start = __cpu_to_le48(sector);
1059 entry->marked_count = cnt - 1;
1060 if (cnt == length)
1061 return 1;
1062 sector += cnt;
1063 length -= cnt;
1064 }
1065
1066 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
1067 BBM_LOG_MAX_LBA_ENTRY_VAL;
1068 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
1069 return 0;
1070
1071 while (length > 0) {
1072 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1073 BBM_LOG_MAX_LBA_ENTRY_VAL;
1074 struct bbm_log_entry *entry =
1075 &log->marked_block_entries[log->entry_count];
1076
1077 entry->defective_block_start = __cpu_to_le48(sector);
1078 entry->marked_count = cnt - 1;
1079 entry->disk_ordinal = idx;
1080
1081 sector += cnt;
1082 length -= cnt;
1083
1084 log->entry_count++;
1085 }
1086
1087 return new_bb;
1088 }
1089
1090 /* clear all bad blocks for given disk */
1091 static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
1092 {
1093 __u32 i = 0;
1094
1095 while (i < log->entry_count) {
1096 struct bbm_log_entry *entries = log->marked_block_entries;
1097
1098 if (entries[i].disk_ordinal == idx) {
1099 if (i < log->entry_count - 1)
1100 entries[i] = entries[log->entry_count - 1];
1101 log->entry_count--;
1102 } else {
1103 i++;
1104 }
1105 }
1106 }
1107
1108 /* clear given bad block */
1109 static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1110 long long sector, const int length) {
1111 __u32 i = 0;
1112
1113 while (i < log->entry_count) {
1114 struct bbm_log_entry *entries = log->marked_block_entries;
1115
1116 if ((entries[i].disk_ordinal == idx) &&
1117 (__le48_to_cpu(&entries[i].defective_block_start) ==
1118 sector) && (entries[i].marked_count + 1 == length)) {
1119 if (i < log->entry_count - 1)
1120 entries[i] = entries[log->entry_count - 1];
1121 log->entry_count--;
1122 break;
1123 }
1124 i++;
1125 }
1126
1127 return 1;
1128 }
1129
1130 /* allocate and load BBM log from metadata */
1131 static int load_bbm_log(struct intel_super *super)
1132 {
1133 struct imsm_super *mpb = super->anchor;
1134 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1135
1136 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1137 if (!super->bbm_log)
1138 return 1;
1139
1140 if (bbm_log_size) {
1141 struct bbm_log *log = (void *)mpb +
1142 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1143
1144 __u32 entry_count;
1145
1146 if (bbm_log_size < sizeof(log->signature) +
1147 sizeof(log->entry_count))
1148 return 2;
1149
1150 entry_count = __le32_to_cpu(log->entry_count);
1151 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1152 (entry_count > BBM_LOG_MAX_ENTRIES))
1153 return 3;
1154
1155 if (bbm_log_size !=
1156 sizeof(log->signature) + sizeof(log->entry_count) +
1157 entry_count * sizeof(struct bbm_log_entry))
1158 return 4;
1159
1160 memcpy(super->bbm_log, log, bbm_log_size);
1161 } else {
1162 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1163 super->bbm_log->entry_count = 0;
1164 }
1165
1166 return 0;
1167 }
1168
1169 /* checks if bad block is within volume boundaries */
1170 static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1171 const unsigned long long start_sector,
1172 const unsigned long long size)
1173 {
1174 unsigned long long bb_start;
1175 unsigned long long bb_end;
1176
1177 bb_start = __le48_to_cpu(&entry->defective_block_start);
1178 bb_end = bb_start + (entry->marked_count + 1);
1179
1180 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1181 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1182 return 1;
1183
1184 return 0;
1185 }
1186
1187 /* get list of bad blocks on a drive for a volume */
1188 static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1189 const unsigned long long start_sector,
1190 const unsigned long long size,
1191 struct md_bb *bbs)
1192 {
1193 __u32 count = 0;
1194 __u32 i;
1195
1196 for (i = 0; i < log->entry_count; i++) {
1197 const struct bbm_log_entry *ent =
1198 &log->marked_block_entries[i];
1199 struct md_bb_entry *bb;
1200
1201 if ((ent->disk_ordinal == idx) &&
1202 is_bad_block_in_volume(ent, start_sector, size)) {
1203
1204 if (!bbs->entries) {
1205 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1206 sizeof(*bb));
1207 if (!bbs->entries)
1208 break;
1209 }
1210
1211 bb = &bbs->entries[count++];
1212 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1213 bb->length = ent->marked_count + 1;
1214 }
1215 }
1216 bbs->count = count;
1217 }
1218
1219 /*
1220 * for second_map:
1221 * == MAP_0 get first map
1222 * == MAP_1 get second map
1223 * == MAP_X than get map according to the current migr_state
1224 */
1225 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1226 int slot,
1227 int second_map)
1228 {
1229 struct imsm_map *map;
1230
1231 map = get_imsm_map(dev, second_map);
1232
1233 /* top byte identifies disk under rebuild */
1234 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1235 }
1236
1237 #define ord_to_idx(ord) (((ord) << 8) >> 8)
1238 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
1239 {
1240 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
1241
1242 return ord_to_idx(ord);
1243 }
1244
1245 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1246 {
1247 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1248 }
1249
1250 static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx)
1251 {
1252 int slot;
1253 __u32 ord;
1254
1255 for (slot = 0; slot < map->num_members; slot++) {
1256 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1257 if (ord_to_idx(ord) == idx)
1258 return slot;
1259 }
1260
1261 return IMSM_STATUS_ERROR;
1262 }
1263
1264 static int get_imsm_raid_level(struct imsm_map *map)
1265 {
1266 if (map->raid_level == 1) {
1267 if (map->num_members == 2)
1268 return 1;
1269 else
1270 return 10;
1271 }
1272
1273 return map->raid_level;
1274 }
1275
1276 /**
1277 * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev.
1278 * @super: &intel_super pointer, not NULL.
1279 * @dev_idx: imsm device index.
1280 * @idx: disk index.
1281 *
1282 * Return: Slot on success, IMSM_STATUS_ERROR otherwise.
1283 */
1284 static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx,
1285 const unsigned int idx)
1286 {
1287 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
1288 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1289
1290 return get_imsm_disk_slot(map, idx);
1291 }
1292
1293 static int cmp_extent(const void *av, const void *bv)
1294 {
1295 const struct extent *a = av;
1296 const struct extent *b = bv;
1297 if (a->start < b->start)
1298 return -1;
1299 if (a->start > b->start)
1300 return 1;
1301 return 0;
1302 }
1303
1304 static int count_memberships(struct dl *dl, struct intel_super *super)
1305 {
1306 int memberships = 0;
1307 int i;
1308
1309 for (i = 0; i < super->anchor->num_raid_devs; i++)
1310 if (get_disk_slot_in_dev(super, i, dl->index) >= 0)
1311 memberships++;
1312
1313 return memberships;
1314 }
1315
1316 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1317
1318 static int split_ull(unsigned long long n, void *lo, void *hi)
1319 {
1320 if (lo == 0 || hi == 0)
1321 return 1;
1322 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1323 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
1324 return 0;
1325 }
1326
1327 static unsigned long long join_u32(__u32 lo, __u32 hi)
1328 {
1329 return (unsigned long long)__le32_to_cpu(lo) |
1330 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1331 }
1332
1333 static unsigned long long total_blocks(struct imsm_disk *disk)
1334 {
1335 if (disk == NULL)
1336 return 0;
1337 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1338 }
1339
1340 /**
1341 * imsm_num_data_members() - get data drives count for an array.
1342 * @map: Map to analyze.
1343 *
1344 * num_data_members value represents minimal count of drives for level.
1345 * The name of the property could be misleading for RAID5 with asymmetric layout
1346 * because some data required to be calculated from parity.
1347 * The property is extracted from level and num_members value.
1348 *
1349 * Return: num_data_members value on success, zero otherwise.
1350 */
1351 static __u8 imsm_num_data_members(struct imsm_map *map)
1352 {
1353 switch (get_imsm_raid_level(map)) {
1354 case 0:
1355 return map->num_members;
1356 case 1:
1357 case 10:
1358 return map->num_members / 2;
1359 case 5:
1360 return map->num_members - 1;
1361 default:
1362 dprintf("unsupported raid level\n");
1363 return 0;
1364 }
1365 }
1366
1367 static unsigned long long pba_of_lba0(struct imsm_map *map)
1368 {
1369 if (map == NULL)
1370 return 0;
1371 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1372 }
1373
1374 static unsigned long long blocks_per_member(struct imsm_map *map)
1375 {
1376 if (map == NULL)
1377 return 0;
1378 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1379 }
1380
1381 static unsigned long long num_data_stripes(struct imsm_map *map)
1382 {
1383 if (map == NULL)
1384 return 0;
1385 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1386 }
1387
1388 static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1389 {
1390 if (dev == NULL)
1391 return 0;
1392
1393 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1394 }
1395
1396 static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1397 {
1398 if (dev == NULL)
1399 return 0;
1400 return join_u32(dev->size_low, dev->size_high);
1401 }
1402
1403 static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1404 {
1405 if (migr_rec == NULL)
1406 return 0;
1407 return join_u32(migr_rec->ckpt_area_pba_lo,
1408 migr_rec->ckpt_area_pba_hi);
1409 }
1410
1411 static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1412 {
1413 if (migr_rec == NULL)
1414 return 0;
1415 return join_u32(migr_rec->curr_migr_unit_lo,
1416 migr_rec->curr_migr_unit_hi);
1417 }
1418
1419 static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1420 {
1421 if (migr_rec == NULL)
1422 return 0;
1423 return join_u32(migr_rec->dest_1st_member_lba_lo,
1424 migr_rec->dest_1st_member_lba_hi);
1425 }
1426
1427 static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1428 {
1429 if (migr_rec == NULL)
1430 return 0;
1431 return join_u32(migr_rec->num_migr_units_lo,
1432 migr_rec->num_migr_units_hi);
1433 }
1434
1435 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1436 {
1437 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1438 }
1439
1440 /**
1441 * set_num_domains() - Set number of domains for an array.
1442 * @map: Map to be updated.
1443 *
1444 * num_domains property represents copies count of each data drive, thus make
1445 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1446 * raid1 and raid10.
1447 */
1448 static void set_num_domains(struct imsm_map *map)
1449 {
1450 int level = get_imsm_raid_level(map);
1451
1452 if (level == 1 || level == 10)
1453 map->num_domains = 2;
1454 else
1455 map->num_domains = 1;
1456 }
1457
1458 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1459 {
1460 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1461 }
1462
1463 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1464 {
1465 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1466 }
1467
1468 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1469 {
1470 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1471 }
1472
1473 /**
1474 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1475 * @map: map to be updated.
1476 * @dev_size: size of volume.
1477 *
1478 * num_data_stripes value is addictionally divided by num_domains, therefore for
1479 * levels where num_domains is not 1, nds is a part of real value.
1480 */
1481 static void update_num_data_stripes(struct imsm_map *map,
1482 unsigned long long dev_size)
1483 {
1484 unsigned long long nds = dev_size / imsm_num_data_members(map);
1485
1486 nds /= map->num_domains;
1487 nds /= map->blocks_per_strip;
1488 set_num_data_stripes(map, nds);
1489 }
1490
1491 static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1492 {
1493 if (dev == NULL)
1494 return;
1495
1496 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1497 }
1498
1499 static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1500 {
1501 split_ull(n, &dev->size_low, &dev->size_high);
1502 }
1503
1504 static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1505 unsigned long long n)
1506 {
1507 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1508 }
1509
1510 static void set_current_migr_unit(struct migr_record *migr_rec,
1511 unsigned long long n)
1512 {
1513 split_ull(n, &migr_rec->curr_migr_unit_lo,
1514 &migr_rec->curr_migr_unit_hi);
1515 }
1516
1517 static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1518 unsigned long long n)
1519 {
1520 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1521 &migr_rec->dest_1st_member_lba_hi);
1522 }
1523
1524 static void set_num_migr_units(struct migr_record *migr_rec,
1525 unsigned long long n)
1526 {
1527 split_ull(n, &migr_rec->num_migr_units_lo,
1528 &migr_rec->num_migr_units_hi);
1529 }
1530
1531 static unsigned long long per_dev_array_size(struct imsm_map *map)
1532 {
1533 unsigned long long array_size = 0;
1534
1535 if (map == NULL)
1536 return array_size;
1537
1538 array_size = num_data_stripes(map) * map->blocks_per_strip;
1539 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1540 array_size *= 2;
1541
1542 return array_size;
1543 }
1544
1545 static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1546 int get_minimal_reservation)
1547 {
1548 /* find a list of used extents on the given physical device */
1549 int memberships = count_memberships(dl, super);
1550 struct extent *rv = xcalloc(memberships + 1, sizeof(struct extent));
1551 struct extent *e = rv;
1552 int i;
1553 __u32 reservation;
1554
1555 /* trim the reserved area for spares, so they can join any array
1556 * regardless of whether the OROM has assigned sectors from the
1557 * IMSM_RESERVED_SECTORS region
1558 */
1559 if (dl->index == -1 || get_minimal_reservation)
1560 reservation = imsm_min_reserved_sectors(super);
1561 else
1562 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1563
1564 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1565 struct imsm_dev *dev = get_imsm_dev(super, i);
1566 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1567
1568 if (get_imsm_disk_slot(map, dl->index) >= 0) {
1569 e->start = pba_of_lba0(map);
1570 e->size = per_dev_array_size(map);
1571 e->vol = i;
1572 e++;
1573 }
1574 }
1575 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1576
1577 /* determine the start of the metadata
1578 * when no raid devices are defined use the default
1579 * ...otherwise allow the metadata to truncate the value
1580 * as is the case with older versions of imsm
1581 */
1582 if (memberships) {
1583 struct extent *last = &rv[memberships - 1];
1584 unsigned long long remainder;
1585
1586 remainder = total_blocks(&dl->disk) - (last->start + last->size);
1587 /* round down to 1k block to satisfy precision of the kernel
1588 * 'size' interface
1589 */
1590 remainder &= ~1UL;
1591 /* make sure remainder is still sane */
1592 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1593 remainder = ROUND_UP(super->len, 512) >> 9;
1594 if (reservation > remainder)
1595 reservation = remainder;
1596 }
1597 e->start = total_blocks(&dl->disk) - reservation;
1598 e->size = 0;
1599 return rv;
1600 }
1601
1602 /* try to determine how much space is reserved for metadata from
1603 * the last get_extents() entry, otherwise fallback to the
1604 * default
1605 */
1606 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1607 {
1608 struct extent *e;
1609 int i;
1610 __u32 rv;
1611
1612 /* for spares just return a minimal reservation which will grow
1613 * once the spare is picked up by an array
1614 */
1615 if (dl->index == -1)
1616 return MPB_SECTOR_CNT;
1617
1618 e = get_extents(super, dl, 0);
1619 if (!e)
1620 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1621
1622 /* scroll to last entry */
1623 for (i = 0; e[i].size; i++)
1624 continue;
1625
1626 rv = total_blocks(&dl->disk) - e[i].start;
1627
1628 free(e);
1629
1630 return rv;
1631 }
1632
1633 static int is_spare(struct imsm_disk *disk)
1634 {
1635 return (disk->status & SPARE_DISK) == SPARE_DISK;
1636 }
1637
1638 static int is_configured(struct imsm_disk *disk)
1639 {
1640 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1641 }
1642
1643 static int is_failed(struct imsm_disk *disk)
1644 {
1645 return (disk->status & FAILED_DISK) == FAILED_DISK;
1646 }
1647
1648 static int is_journal(struct imsm_disk *disk)
1649 {
1650 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1651 }
1652
1653 /**
1654 * round_member_size_to_mb()- Round given size to closest MiB.
1655 * @size: size to round in sectors.
1656 */
1657 static inline unsigned long long round_member_size_to_mb(unsigned long long size)
1658 {
1659 return (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1660 }
1661
1662 /**
1663 * round_size_to_mb()- Round given size.
1664 * @array_size: size to round in sectors.
1665 * @disk_count: count of data members.
1666 *
1667 * Get size per each data member and round it to closest MiB to ensure that data
1668 * splits evenly between members.
1669 *
1670 * Return: Array size, rounded down.
1671 */
1672 static inline unsigned long long round_size_to_mb(unsigned long long array_size,
1673 unsigned int disk_count)
1674 {
1675 return round_member_size_to_mb(array_size / disk_count) * disk_count;
1676 }
1677
1678 static int able_to_resync(int raid_level, int missing_disks)
1679 {
1680 int max_missing_disks = 0;
1681
1682 switch (raid_level) {
1683 case 10:
1684 max_missing_disks = 1;
1685 break;
1686 default:
1687 max_missing_disks = 0;
1688 }
1689 return missing_disks <= max_missing_disks;
1690 }
1691
1692 /* try to determine how much space is reserved for metadata from
1693 * the last get_extents() entry on the smallest active disk,
1694 * otherwise fallback to the default
1695 */
1696 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1697 {
1698 struct extent *e;
1699 int i;
1700 unsigned long long min_active;
1701 __u32 remainder;
1702 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1703 struct dl *dl, *dl_min = NULL;
1704
1705 if (!super)
1706 return rv;
1707
1708 min_active = 0;
1709 for (dl = super->disks; dl; dl = dl->next) {
1710 if (dl->index < 0)
1711 continue;
1712 unsigned long long blocks = total_blocks(&dl->disk);
1713 if (blocks < min_active || min_active == 0) {
1714 dl_min = dl;
1715 min_active = blocks;
1716 }
1717 }
1718 if (!dl_min)
1719 return rv;
1720
1721 /* find last lba used by subarrays on the smallest active disk */
1722 e = get_extents(super, dl_min, 0);
1723 if (!e)
1724 return rv;
1725 for (i = 0; e[i].size; i++)
1726 continue;
1727
1728 remainder = min_active - e[i].start;
1729 free(e);
1730
1731 /* to give priority to recovery we should not require full
1732 IMSM_RESERVED_SECTORS from the spare */
1733 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1734
1735 /* if real reservation is smaller use that value */
1736 return (remainder < rv) ? remainder : rv;
1737 }
1738
1739 /*
1740 * Return minimum size of a spare and sector size
1741 * that can be used in this array
1742 */
1743 int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
1744 {
1745 struct intel_super *super = st->sb;
1746 struct dl *dl;
1747 struct extent *e;
1748 int i;
1749 unsigned long long size = 0;
1750
1751 c->min_size = 0;
1752 c->sector_size = 0;
1753
1754 if (!super)
1755 return -EINVAL;
1756 /* find first active disk in array */
1757 dl = super->disks;
1758 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1759 dl = dl->next;
1760 if (!dl)
1761 return -EINVAL;
1762 /* find last lba used by subarrays */
1763 e = get_extents(super, dl, 0);
1764 if (!e)
1765 return -EINVAL;
1766 for (i = 0; e[i].size; i++)
1767 continue;
1768 if (i > 0)
1769 size = e[i-1].start + e[i-1].size;
1770 free(e);
1771
1772 /* add the amount of space needed for metadata */
1773 size += imsm_min_reserved_sectors(super);
1774
1775 c->min_size = size * 512;
1776 c->sector_size = super->sector_size;
1777
1778 return 0;
1779 }
1780
1781 static bool is_gen_migration(struct imsm_dev *dev);
1782
1783 #define IMSM_4K_DIV 8
1784
1785 static __u64 blocks_per_migr_unit(struct intel_super *super,
1786 struct imsm_dev *dev);
1787
1788 static void print_imsm_dev(struct intel_super *super,
1789 struct imsm_dev *dev,
1790 char *uuid,
1791 int disk_idx)
1792 {
1793 __u64 sz;
1794 int slot, i;
1795 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1796 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1797 __u32 ord;
1798
1799 printf("\n");
1800 printf("[%.16s]:\n", dev->volume);
1801 printf(" Subarray : %d\n", super->current_vol);
1802 printf(" UUID : %s\n", uuid);
1803 printf(" RAID Level : %d", get_imsm_raid_level(map));
1804 if (map2)
1805 printf(" <-- %d", get_imsm_raid_level(map2));
1806 printf("\n");
1807 printf(" Members : %d", map->num_members);
1808 if (map2)
1809 printf(" <-- %d", map2->num_members);
1810 printf("\n");
1811 printf(" Slots : [");
1812 for (i = 0; i < map->num_members; i++) {
1813 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1814 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1815 }
1816 printf("]");
1817 if (map2) {
1818 printf(" <-- [");
1819 for (i = 0; i < map2->num_members; i++) {
1820 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1821 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1822 }
1823 printf("]");
1824 }
1825 printf("\n");
1826 printf(" Failed disk : ");
1827 if (map->failed_disk_num == 0xff)
1828 printf(STR_COMMON_NONE);
1829 else
1830 printf("%i", map->failed_disk_num);
1831 printf("\n");
1832 slot = get_imsm_disk_slot(map, disk_idx);
1833 if (slot >= 0) {
1834 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1835 printf(" This Slot : %d%s\n", slot,
1836 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1837 } else
1838 printf(" This Slot : ?\n");
1839 printf(" Sector Size : %u\n", super->sector_size);
1840 sz = imsm_dev_size(dev);
1841 printf(" Array Size : %llu%s\n",
1842 (unsigned long long)sz * 512 / super->sector_size,
1843 human_size(sz * 512));
1844 sz = blocks_per_member(map);
1845 printf(" Per Dev Size : %llu%s\n",
1846 (unsigned long long)sz * 512 / super->sector_size,
1847 human_size(sz * 512));
1848 printf(" Sector Offset : %llu\n",
1849 pba_of_lba0(map) * 512 / super->sector_size);
1850 printf(" Num Stripes : %llu\n",
1851 num_data_stripes(map));
1852 printf(" Chunk Size : %u KiB",
1853 __le16_to_cpu(map->blocks_per_strip) / 2);
1854 if (map2)
1855 printf(" <-- %u KiB",
1856 __le16_to_cpu(map2->blocks_per_strip) / 2);
1857 printf("\n");
1858 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1859 printf(" Migrate State : ");
1860 if (dev->vol.migr_state) {
1861 if (migr_type(dev) == MIGR_INIT)
1862 printf("initialize\n");
1863 else if (migr_type(dev) == MIGR_REBUILD)
1864 printf("rebuild\n");
1865 else if (migr_type(dev) == MIGR_VERIFY)
1866 printf("check\n");
1867 else if (migr_type(dev) == MIGR_GEN_MIGR)
1868 printf("general migration\n");
1869 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1870 printf("state change\n");
1871 else if (migr_type(dev) == MIGR_REPAIR)
1872 printf("repair\n");
1873 else
1874 printf("<unknown:%d>\n", migr_type(dev));
1875 } else
1876 printf("idle\n");
1877 printf(" Map State : %s", map_state_str[map->map_state]);
1878 if (dev->vol.migr_state) {
1879 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1880
1881 printf(" <-- %s", map_state_str[map->map_state]);
1882 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
1883 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1884 printf("(N/A)");
1885 else
1886 printf("(%llu)", (unsigned long long)
1887 blocks_per_migr_unit(super, dev));
1888 }
1889 printf("\n");
1890 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1891 "dirty" : "clean");
1892 printf(" RWH Policy : ");
1893 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
1894 printf("off\n");
1895 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1896 printf("PPL distributed\n");
1897 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1898 printf("PPL journaling drive\n");
1899 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1900 printf("Multiple distributed PPLs\n");
1901 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1902 printf("Multiple PPLs on journaling drive\n");
1903 else if (dev->rwh_policy == RWH_BITMAP)
1904 printf("Write-intent bitmap\n");
1905 else
1906 printf("<unknown:%d>\n", dev->rwh_policy);
1907
1908 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
1909 }
1910
1911 static void print_imsm_disk(struct imsm_disk *disk,
1912 int index,
1913 __u32 reserved,
1914 unsigned int sector_size) {
1915 char str[MAX_RAID_SERIAL_LEN + 1];
1916 __u64 sz;
1917
1918 if (index < -1 || !disk)
1919 return;
1920
1921 printf("\n");
1922 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1923 if (index >= 0)
1924 printf(" Disk%02d Serial : %s\n", index, str);
1925 else
1926 printf(" Disk Serial : %s\n", str);
1927 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1928 is_configured(disk) ? " active" : "",
1929 is_failed(disk) ? " failed" : "",
1930 is_journal(disk) ? " journal" : "");
1931 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1932 sz = total_blocks(disk) - reserved;
1933 printf(" Usable Size : %llu%s\n",
1934 (unsigned long long)sz * 512 / sector_size,
1935 human_size(sz * 512));
1936 }
1937
1938 void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1939 {
1940 struct migr_record *migr_rec = super->migr_rec;
1941
1942 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1943 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1944 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1945 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1946 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1947 set_migr_chkp_area_pba(migr_rec,
1948 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1949 set_migr_dest_1st_member_lba(migr_rec,
1950 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
1951 }
1952
1953 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1954 {
1955 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1956 }
1957
1958 void convert_to_4k(struct intel_super *super)
1959 {
1960 struct imsm_super *mpb = super->anchor;
1961 struct imsm_disk *disk;
1962 int i;
1963 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1964
1965 for (i = 0; i < mpb->num_disks ; i++) {
1966 disk = __get_imsm_disk(mpb, i);
1967 /* disk */
1968 convert_to_4k_imsm_disk(disk);
1969 }
1970 for (i = 0; i < mpb->num_raid_devs; i++) {
1971 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1972 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1973 /* dev */
1974 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
1975 set_vol_curr_migr_unit(dev,
1976 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
1977
1978 /* map0 */
1979 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1980 map->blocks_per_strip /= IMSM_4K_DIV;
1981 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1982
1983 if (dev->vol.migr_state) {
1984 /* map1 */
1985 map = get_imsm_map(dev, MAP_1);
1986 set_blocks_per_member(map,
1987 blocks_per_member(map)/IMSM_4K_DIV);
1988 map->blocks_per_strip /= IMSM_4K_DIV;
1989 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1990 }
1991 }
1992 if (bbm_log_size) {
1993 struct bbm_log *log = (void *)mpb +
1994 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1995 __u32 i;
1996
1997 for (i = 0; i < log->entry_count; i++) {
1998 struct bbm_log_entry *entry =
1999 &log->marked_block_entries[i];
2000
2001 __u8 count = entry->marked_count + 1;
2002 unsigned long long sector =
2003 __le48_to_cpu(&entry->defective_block_start);
2004
2005 entry->defective_block_start =
2006 __cpu_to_le48(sector/IMSM_4K_DIV);
2007 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
2008 }
2009 }
2010
2011 mpb->check_sum = __gen_imsm_checksum(mpb);
2012 }
2013
2014 void examine_migr_rec_imsm(struct intel_super *super)
2015 {
2016 struct migr_record *migr_rec = super->migr_rec;
2017 struct imsm_super *mpb = super->anchor;
2018 int i;
2019
2020 for (i = 0; i < mpb->num_raid_devs; i++) {
2021 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2022 struct imsm_map *map;
2023 int slot = -1;
2024
2025 if (is_gen_migration(dev) == false)
2026 continue;
2027
2028 printf("\nMigration Record Information:");
2029
2030 /* first map under migration */
2031 map = get_imsm_map(dev, MAP_0);
2032
2033 if (map)
2034 slot = get_imsm_disk_slot(map, super->disks->index);
2035 if (map == NULL || slot > 1 || slot < 0) {
2036 printf(" Empty\n ");
2037 printf("Examine one of first two disks in array\n");
2038 break;
2039 }
2040 printf("\n Status : ");
2041 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
2042 printf("Normal\n");
2043 else
2044 printf("Contains Data\n");
2045 printf(" Current Unit : %llu\n",
2046 current_migr_unit(migr_rec));
2047 printf(" Family : %u\n",
2048 __le32_to_cpu(migr_rec->family_num));
2049 printf(" Ascending : %u\n",
2050 __le32_to_cpu(migr_rec->ascending_migr));
2051 printf(" Blocks Per Unit : %u\n",
2052 __le32_to_cpu(migr_rec->blocks_per_unit));
2053 printf(" Dest. Depth Per Unit : %u\n",
2054 __le32_to_cpu(migr_rec->dest_depth_per_unit));
2055 printf(" Checkpoint Area pba : %llu\n",
2056 migr_chkp_area_pba(migr_rec));
2057 printf(" First member lba : %llu\n",
2058 migr_dest_1st_member_lba(migr_rec));
2059 printf(" Total Number of Units : %llu\n",
2060 get_num_migr_units(migr_rec));
2061 printf(" Size of volume : %llu\n",
2062 join_u32(migr_rec->post_migr_vol_cap,
2063 migr_rec->post_migr_vol_cap_hi));
2064 printf(" Record was read from : %u\n",
2065 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
2066
2067 break;
2068 }
2069 }
2070
2071 void convert_from_4k_imsm_migr_rec(struct intel_super *super)
2072 {
2073 struct migr_record *migr_rec = super->migr_rec;
2074
2075 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
2076 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
2077 split_ull((join_u32(migr_rec->post_migr_vol_cap,
2078 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
2079 &migr_rec->post_migr_vol_cap,
2080 &migr_rec->post_migr_vol_cap_hi);
2081 set_migr_chkp_area_pba(migr_rec,
2082 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
2083 set_migr_dest_1st_member_lba(migr_rec,
2084 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
2085 }
2086
2087 void convert_from_4k(struct intel_super *super)
2088 {
2089 struct imsm_super *mpb = super->anchor;
2090 struct imsm_disk *disk;
2091 int i;
2092 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
2093
2094 for (i = 0; i < mpb->num_disks ; i++) {
2095 disk = __get_imsm_disk(mpb, i);
2096 /* disk */
2097 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
2098 }
2099
2100 for (i = 0; i < mpb->num_raid_devs; i++) {
2101 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2102 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2103 /* dev */
2104 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
2105 set_vol_curr_migr_unit(dev,
2106 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
2107
2108 /* map0 */
2109 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
2110 map->blocks_per_strip *= IMSM_4K_DIV;
2111 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2112
2113 if (dev->vol.migr_state) {
2114 /* map1 */
2115 map = get_imsm_map(dev, MAP_1);
2116 set_blocks_per_member(map,
2117 blocks_per_member(map)*IMSM_4K_DIV);
2118 map->blocks_per_strip *= IMSM_4K_DIV;
2119 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2120 }
2121 }
2122 if (bbm_log_size) {
2123 struct bbm_log *log = (void *)mpb +
2124 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2125 __u32 i;
2126
2127 for (i = 0; i < log->entry_count; i++) {
2128 struct bbm_log_entry *entry =
2129 &log->marked_block_entries[i];
2130
2131 __u8 count = entry->marked_count + 1;
2132 unsigned long long sector =
2133 __le48_to_cpu(&entry->defective_block_start);
2134
2135 entry->defective_block_start =
2136 __cpu_to_le48(sector*IMSM_4K_DIV);
2137 entry->marked_count = count*IMSM_4K_DIV - 1;
2138 }
2139 }
2140
2141 mpb->check_sum = __gen_imsm_checksum(mpb);
2142 }
2143
2144 /*******************************************************************************
2145 * function: imsm_check_attributes
2146 * Description: Function checks if features represented by attributes flags
2147 * are supported by mdadm.
2148 * Parameters:
2149 * attributes - Attributes read from metadata
2150 * Returns:
2151 * 0 - passed attributes contains unsupported features flags
2152 * 1 - all features are supported
2153 ******************************************************************************/
2154 static int imsm_check_attributes(__u32 attributes)
2155 {
2156 int ret_val = 1;
2157 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
2158
2159 not_supported &= ~MPB_ATTRIB_IGNORED;
2160
2161 not_supported &= attributes;
2162 if (not_supported) {
2163 pr_err("(IMSM): Unsupported attributes : %x\n",
2164 (unsigned)__le32_to_cpu(not_supported));
2165 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2166 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
2167 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2168 }
2169 if (not_supported & MPB_ATTRIB_2TB) {
2170 dprintf("\t\tMPB_ATTRIB_2TB\n");
2171 not_supported ^= MPB_ATTRIB_2TB;
2172 }
2173 if (not_supported & MPB_ATTRIB_RAID0) {
2174 dprintf("\t\tMPB_ATTRIB_RAID0\n");
2175 not_supported ^= MPB_ATTRIB_RAID0;
2176 }
2177 if (not_supported & MPB_ATTRIB_RAID1) {
2178 dprintf("\t\tMPB_ATTRIB_RAID1\n");
2179 not_supported ^= MPB_ATTRIB_RAID1;
2180 }
2181 if (not_supported & MPB_ATTRIB_RAID10) {
2182 dprintf("\t\tMPB_ATTRIB_RAID10\n");
2183 not_supported ^= MPB_ATTRIB_RAID10;
2184 }
2185 if (not_supported & MPB_ATTRIB_RAID1E) {
2186 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2187 not_supported ^= MPB_ATTRIB_RAID1E;
2188 }
2189 if (not_supported & MPB_ATTRIB_RAID5) {
2190 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2191 not_supported ^= MPB_ATTRIB_RAID5;
2192 }
2193 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2194 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2195 not_supported ^= MPB_ATTRIB_RAIDCNG;
2196 }
2197 if (not_supported & MPB_ATTRIB_BBM) {
2198 dprintf("\t\tMPB_ATTRIB_BBM\n");
2199 not_supported ^= MPB_ATTRIB_BBM;
2200 }
2201 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2202 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2203 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2204 }
2205 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2206 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2207 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2208 }
2209 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2210 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2211 not_supported ^= MPB_ATTRIB_2TB_DISK;
2212 }
2213 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2214 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2215 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2216 }
2217 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2218 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2219 not_supported ^= MPB_ATTRIB_NEVER_USE;
2220 }
2221
2222 if (not_supported)
2223 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
2224
2225 ret_val = 0;
2226 }
2227
2228 return ret_val;
2229 }
2230
2231 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
2232
2233 static void examine_super_imsm(struct supertype *st, char *homehost)
2234 {
2235 struct intel_super *super = st->sb;
2236 struct imsm_super *mpb = super->anchor;
2237 char str[MAX_SIGNATURE_LENGTH];
2238 int i;
2239 struct mdinfo info;
2240 char nbuf[64];
2241 __u32 sum;
2242 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2243 struct dl *dl;
2244 time_t creation_time;
2245
2246 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2247 str[MPB_SIG_LEN-1] = '\0';
2248 printf(" Magic : %s\n", str);
2249 printf(" Version : %s\n", get_imsm_version(mpb));
2250 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
2251 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2252 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
2253 creation_time = __le64_to_cpu(mpb->creation_time);
2254 printf(" Creation Time : %.24s\n",
2255 creation_time ? ctime(&creation_time) : "Unknown");
2256 printf(" Attributes : ");
2257 if (imsm_check_attributes(mpb->attributes))
2258 printf("All supported\n");
2259 else
2260 printf("not supported\n");
2261 getinfo_super_imsm(st, &info, NULL);
2262 fname_from_uuid(st, &info, nbuf, ':');
2263 printf(" UUID : %s\n", nbuf + 5);
2264 sum = __le32_to_cpu(mpb->check_sum);
2265 printf(" Checksum : %08x %s\n", sum,
2266 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
2267 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
2268 printf(" Disks : %d\n", mpb->num_disks);
2269 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
2270 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2271 super->disks->index, reserved, super->sector_size);
2272 if (get_imsm_bbm_log_size(super->bbm_log)) {
2273 struct bbm_log *log = super->bbm_log;
2274
2275 printf("\n");
2276 printf("Bad Block Management Log:\n");
2277 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2278 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2279 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
2280 }
2281 for (i = 0; i < mpb->num_raid_devs; i++) {
2282 struct mdinfo info;
2283 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2284
2285 super->current_vol = i;
2286 getinfo_super_imsm(st, &info, NULL);
2287 fname_from_uuid(st, &info, nbuf, ':');
2288 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
2289 }
2290 for (i = 0; i < mpb->num_disks; i++) {
2291 if (i == super->disks->index)
2292 continue;
2293 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2294 super->sector_size);
2295 }
2296
2297 for (dl = super->disks; dl; dl = dl->next)
2298 if (dl->index == -1)
2299 print_imsm_disk(&dl->disk, -1, reserved,
2300 super->sector_size);
2301
2302 examine_migr_rec_imsm(super);
2303 }
2304
2305 static void brief_examine_super_imsm(struct supertype *st, int verbose)
2306 {
2307 /* We just write a generic IMSM ARRAY entry */
2308 struct mdinfo info;
2309 char nbuf[64];
2310
2311 getinfo_super_imsm(st, &info, NULL);
2312 fname_from_uuid(st, &info, nbuf, ':');
2313 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2314 }
2315
2316 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2317 {
2318 /* We just write a generic IMSM ARRAY entry */
2319 struct mdinfo info;
2320 char nbuf[64];
2321 char nbuf1[64];
2322 struct intel_super *super = st->sb;
2323 int i;
2324
2325 if (!super->anchor->num_raid_devs)
2326 return;
2327
2328 getinfo_super_imsm(st, &info, NULL);
2329 fname_from_uuid(st, &info, nbuf, ':');
2330 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2331 struct imsm_dev *dev = get_imsm_dev(super, i);
2332
2333 super->current_vol = i;
2334 getinfo_super_imsm(st, &info, NULL);
2335 fname_from_uuid(st, &info, nbuf1, ':');
2336 printf("ARRAY " DEV_MD_DIR "%.16s container=%s member=%d UUID=%s\n",
2337 dev->volume, nbuf + 5, i, nbuf1 + 5);
2338 }
2339 }
2340
2341 static void export_examine_super_imsm(struct supertype *st)
2342 {
2343 struct intel_super *super = st->sb;
2344 struct imsm_super *mpb = super->anchor;
2345 struct mdinfo info;
2346 char nbuf[64];
2347
2348 getinfo_super_imsm(st, &info, NULL);
2349 fname_from_uuid(st, &info, nbuf, ':');
2350 printf("MD_METADATA=imsm\n");
2351 printf("MD_LEVEL=container\n");
2352 printf("MD_UUID=%s\n", nbuf+5);
2353 printf("MD_DEVICES=%u\n", mpb->num_disks);
2354 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
2355 }
2356
2357 static void detail_super_imsm(struct supertype *st, char *homehost,
2358 char *subarray)
2359 {
2360 struct mdinfo info;
2361 char nbuf[64];
2362 struct intel_super *super = st->sb;
2363 int temp_vol = super->current_vol;
2364
2365 if (subarray)
2366 super->current_vol = strtoul(subarray, NULL, 10);
2367
2368 getinfo_super_imsm(st, &info, NULL);
2369 fname_from_uuid(st, &info, nbuf, ':');
2370 printf("\n UUID : %s\n", nbuf + 5);
2371
2372 super->current_vol = temp_vol;
2373 }
2374
2375 static void brief_detail_super_imsm(struct supertype *st, char *subarray)
2376 {
2377 struct mdinfo info;
2378 char nbuf[64];
2379 struct intel_super *super = st->sb;
2380 int temp_vol = super->current_vol;
2381
2382 if (subarray)
2383 super->current_vol = strtoul(subarray, NULL, 10);
2384
2385 getinfo_super_imsm(st, &info, NULL);
2386 fname_from_uuid(st, &info, nbuf, ':');
2387 printf(" UUID=%s", nbuf + 5);
2388
2389 super->current_vol = temp_vol;
2390 }
2391
2392 static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2393 size_t serial_buf_len);
2394 static void fd2devname(int fd, char *name);
2395
2396 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
2397 {
2398 /* dump an unsorted list of devices attached to AHCI Intel storage
2399 * controller, as well as non-connected ports
2400 */
2401 int hba_len = strlen(hba_path) + 1;
2402 struct dirent *ent;
2403 DIR *dir;
2404 char *path = NULL;
2405 int err = 0;
2406 unsigned long port_mask = (1 << port_count) - 1;
2407
2408 if (port_count > (int)sizeof(port_mask) * 8) {
2409 if (verbose > 0)
2410 pr_err("port_count %d out of range\n", port_count);
2411 return 2;
2412 }
2413
2414 /* scroll through /sys/dev/block looking for devices attached to
2415 * this hba
2416 */
2417 dir = opendir("/sys/dev/block");
2418 if (!dir)
2419 return 1;
2420
2421 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2422 int fd;
2423 char model[64];
2424 char vendor[64];
2425 char buf[1024];
2426 int major, minor;
2427 char device[PATH_MAX];
2428 char *c;
2429 int port;
2430 int type;
2431
2432 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2433 continue;
2434 path = devt_to_devpath(makedev(major, minor), 1, NULL);
2435 if (!path)
2436 continue;
2437 if (!path_attached_to_hba(path, hba_path)) {
2438 free(path);
2439 path = NULL;
2440 continue;
2441 }
2442
2443 /* retrieve the scsi device */
2444 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
2445 if (verbose > 0)
2446 pr_err("failed to get device\n");
2447 err = 2;
2448 break;
2449 }
2450 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
2451 err = 2;
2452 break;
2453 }
2454 type = strtoul(buf, NULL, 10);
2455
2456 /* if it's not a disk print the vendor and model */
2457 if (!(type == 0 || type == 7 || type == 14)) {
2458 vendor[0] = '\0';
2459 model[0] = '\0';
2460
2461 if (devpath_to_char(device, "vendor", buf,
2462 sizeof(buf), 0) == 0) {
2463 strncpy(vendor, buf, sizeof(vendor));
2464 vendor[sizeof(vendor) - 1] = '\0';
2465 c = (char *) &vendor[sizeof(vendor) - 1];
2466 while (isspace(*c) || *c == '\0')
2467 *c-- = '\0';
2468
2469 }
2470
2471 if (devpath_to_char(device, "model", buf,
2472 sizeof(buf), 0) == 0) {
2473 strncpy(model, buf, sizeof(model));
2474 model[sizeof(model) - 1] = '\0';
2475 c = (char *) &model[sizeof(model) - 1];
2476 while (isspace(*c) || *c == '\0')
2477 *c-- = '\0';
2478 }
2479
2480 if (vendor[0] && model[0])
2481 sprintf(buf, "%.64s %.64s", vendor, model);
2482 else
2483 switch (type) { /* numbers from hald/linux/device.c */
2484 case 1: sprintf(buf, "tape"); break;
2485 case 2: sprintf(buf, "printer"); break;
2486 case 3: sprintf(buf, "processor"); break;
2487 case 4:
2488 case 5: sprintf(buf, "cdrom"); break;
2489 case 6: sprintf(buf, "scanner"); break;
2490 case 8: sprintf(buf, "media_changer"); break;
2491 case 9: sprintf(buf, "comm"); break;
2492 case 12: sprintf(buf, "raid"); break;
2493 default: sprintf(buf, "unknown");
2494 }
2495 } else
2496 buf[0] = '\0';
2497
2498 /* chop device path to 'host%d' and calculate the port number */
2499 c = strchr(&path[hba_len], '/');
2500 if (!c) {
2501 if (verbose > 0)
2502 pr_err("%s - invalid path name\n", path + hba_len);
2503 err = 2;
2504 break;
2505 }
2506 *c = '\0';
2507 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2508 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
2509 port -= host_base;
2510 else {
2511 if (verbose > 0) {
2512 *c = '/'; /* repair the full string */
2513 pr_err("failed to determine port number for %s\n",
2514 path);
2515 }
2516 err = 2;
2517 break;
2518 }
2519
2520 /* mark this port as used */
2521 port_mask &= ~(1 << port);
2522
2523 /* print out the device information */
2524 if (buf[0]) {
2525 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2526 continue;
2527 }
2528
2529 fd = dev_open(ent->d_name, O_RDONLY);
2530 if (!is_fd_valid(fd))
2531 printf(" Port%d : - disk info unavailable -\n", port);
2532 else {
2533 fd2devname(fd, buf);
2534 printf(" Port%d : %s", port, buf);
2535 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2536 sizeof(buf)) == 0)
2537 printf(" (%s)\n", buf);
2538 else
2539 printf(" ()\n");
2540 close(fd);
2541 }
2542 free(path);
2543 path = NULL;
2544 }
2545 if (path)
2546 free(path);
2547 if (dir)
2548 closedir(dir);
2549 if (err == 0) {
2550 int i;
2551
2552 for (i = 0; i < port_count; i++)
2553 if (port_mask & (1 << i))
2554 printf(" Port%d : - no device attached -\n", i);
2555 }
2556
2557 return err;
2558 }
2559
2560 static int print_nvme_info(struct sys_dev *hba)
2561 {
2562 struct dirent *ent;
2563 DIR *dir;
2564
2565 dir = opendir("/sys/block/");
2566 if (!dir)
2567 return 1;
2568
2569 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2570 char ns_path[PATH_MAX];
2571 char cntrl_path[PATH_MAX];
2572 char buf[PATH_MAX];
2573 int fd = -1;
2574
2575 if (!strstr(ent->d_name, "nvme"))
2576 goto skip;
2577
2578 fd = open_dev(ent->d_name);
2579 if (!is_fd_valid(fd))
2580 goto skip;
2581
2582 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2583 !diskfd_to_devpath(fd, 1, cntrl_path))
2584 goto skip;
2585
2586 if (!path_attached_to_hba(cntrl_path, hba->path))
2587 goto skip;
2588
2589 if (!imsm_is_nvme_namespace_supported(fd, 0))
2590 goto skip;
2591
2592 fd2devname(fd, buf);
2593 if (hba->type == SYS_DEV_VMD)
2594 printf(" NVMe under VMD : %s", buf);
2595 else if (hba->type == SYS_DEV_NVME)
2596 printf(" NVMe Device : %s", buf);
2597
2598 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2599 sizeof(buf)))
2600 printf(" (%s)\n", buf);
2601 else
2602 printf("()\n");
2603
2604 skip:
2605 close_fd(&fd);
2606 }
2607
2608 closedir(dir);
2609 return 0;
2610 }
2611
2612 static void print_found_intel_controllers(struct sys_dev *elem)
2613 {
2614 for (; elem; elem = elem->next) {
2615 pr_err("found Intel(R) ");
2616 if (elem->type == SYS_DEV_SATA)
2617 fprintf(stderr, "SATA ");
2618 else if (elem->type == SYS_DEV_SAS)
2619 fprintf(stderr, "SAS ");
2620 else if (elem->type == SYS_DEV_NVME)
2621 fprintf(stderr, "NVMe ");
2622
2623 if (elem->type == SYS_DEV_VMD)
2624 fprintf(stderr, "VMD domain");
2625 else if (elem->type == SYS_DEV_SATA_VMD)
2626 fprintf(stderr, "SATA VMD domain");
2627 else
2628 fprintf(stderr, "RAID controller");
2629
2630 if (elem->pci_id)
2631 fprintf(stderr, " at %s", elem->pci_id);
2632 fprintf(stderr, ".\n");
2633 }
2634 fflush(stderr);
2635 }
2636
2637 static int ahci_get_port_count(const char *hba_path, int *port_count)
2638 {
2639 struct dirent *ent;
2640 DIR *dir;
2641 int host_base = -1;
2642
2643 *port_count = 0;
2644 if ((dir = opendir(hba_path)) == NULL)
2645 return -1;
2646
2647 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2648 int host;
2649
2650 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2651 ((sscanf(ent->d_name, "host%d", &host) != 1)))
2652 continue;
2653 if (*port_count == 0)
2654 host_base = host;
2655 else if (host < host_base)
2656 host_base = host;
2657
2658 if (host + 1 > *port_count + host_base)
2659 *port_count = host + 1 - host_base;
2660 }
2661 closedir(dir);
2662 return host_base;
2663 }
2664
2665 static void print_imsm_capability(const struct imsm_orom *orom)
2666 {
2667 printf(" Platform : Intel(R) ");
2668 if (orom->capabilities == 0 && orom->driver_features == 0)
2669 printf("Matrix Storage Manager\n");
2670 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2671 printf("Virtual RAID on CPU\n");
2672 else
2673 printf("Rapid Storage Technology%s\n",
2674 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2675 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build) {
2676 if (imsm_orom_is_vmd_without_efi(orom))
2677 printf(" Version : %d.%d\n", orom->major_ver,
2678 orom->minor_ver);
2679 else
2680 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2681 orom->minor_ver, orom->hotfix_ver, orom->build);
2682 }
2683 printf(" RAID Levels :%s%s%s%s%s\n",
2684 imsm_orom_has_raid0(orom) ? " raid0" : "",
2685 imsm_orom_has_raid1(orom) ? " raid1" : "",
2686 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2687 imsm_orom_has_raid10(orom) ? " raid10" : "",
2688 imsm_orom_has_raid5(orom) ? " raid5" : "");
2689 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2690 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2691 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2692 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2693 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2694 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2695 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2696 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2697 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2698 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2699 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2700 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2701 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2702 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2703 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2704 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2705 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
2706 printf(" 2TB volumes :%s supported\n",
2707 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2708 printf(" 2TB disks :%s supported\n",
2709 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2710 printf(" Max Disks : %d\n", orom->tds);
2711 printf(" Max Volumes : %d per array, %d per %s\n",
2712 orom->vpa, orom->vphba,
2713 imsm_orom_is_nvme(orom) ? "platform" : "controller");
2714 return;
2715 }
2716
2717 static void print_imsm_capability_export(const struct imsm_orom *orom)
2718 {
2719 printf("MD_FIRMWARE_TYPE=imsm\n");
2720 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2721 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2722 orom->hotfix_ver, orom->build);
2723 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2724 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2725 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2726 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2727 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2728 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2729 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2730 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2731 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2732 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2733 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2734 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2735 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2736 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2737 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2738 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2739 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2740 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2741 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2742 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2743 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2744 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2745 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2746 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2747 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2748 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2749 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2750 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2751 }
2752
2753 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2754 {
2755 /* There are two components to imsm platform support, the ahci SATA
2756 * controller and the option-rom. To find the SATA controller we
2757 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2758 * controller with the Intel vendor id is present. This approach
2759 * allows mdadm to leverage the kernel's ahci detection logic, with the
2760 * caveat that if ahci.ko is not loaded mdadm will not be able to
2761 * detect platform raid capabilities. The option-rom resides in a
2762 * platform "Adapter ROM". We scan for its signature to retrieve the
2763 * platform capabilities. If raid support is disabled in the BIOS the
2764 * option-rom capability structure will not be available.
2765 */
2766 struct sys_dev *list, *hba;
2767 int host_base = 0;
2768 int port_count = 0;
2769 int result=1;
2770
2771 if (enumerate_only) {
2772 if (check_no_platform())
2773 return 0;
2774 list = find_intel_devices();
2775 if (!list)
2776 return 2;
2777 for (hba = list; hba; hba = hba->next) {
2778 if (find_imsm_capability(hba)) {
2779 result = 0;
2780 break;
2781 }
2782 else
2783 result = 2;
2784 }
2785 return result;
2786 }
2787
2788 list = find_intel_devices();
2789 if (!list) {
2790 if (verbose > 0)
2791 pr_err("no active Intel(R) RAID controller found.\n");
2792 return 2;
2793 } else if (verbose > 0)
2794 print_found_intel_controllers(list);
2795
2796 for (hba = list; hba; hba = hba->next) {
2797 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2798 continue;
2799 if (!find_imsm_capability(hba)) {
2800 char buf[PATH_MAX];
2801 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2802 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2803 vmd_domain_to_controller(hba, buf) :
2804 hba->path, get_sys_dev_type(hba->type));
2805 continue;
2806 }
2807 result = 0;
2808 }
2809
2810 if (controller_path && result == 1) {
2811 pr_err("no active Intel(R) RAID controller found under %s\n",
2812 controller_path);
2813 return result;
2814 }
2815
2816 const struct orom_entry *entry;
2817
2818 for (entry = orom_entries; entry; entry = entry->next) {
2819 if (entry->type == SYS_DEV_VMD) {
2820 print_imsm_capability(&entry->orom);
2821 printf(" 3rd party NVMe :%s supported\n",
2822 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
2823 for (hba = list; hba; hba = hba->next) {
2824 if (hba->type == SYS_DEV_VMD) {
2825 char buf[PATH_MAX];
2826 printf(" I/O Controller : %s (%s)\n",
2827 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2828 if (print_nvme_info(hba)) {
2829 if (verbose > 0)
2830 pr_err("failed to get devices attached to VMD domain.\n");
2831 result |= 2;
2832 }
2833 }
2834 }
2835 printf("\n");
2836 continue;
2837 }
2838
2839 print_imsm_capability(&entry->orom);
2840 if (entry->type == SYS_DEV_NVME) {
2841 for (hba = list; hba; hba = hba->next) {
2842 if (hba->type == SYS_DEV_NVME)
2843 print_nvme_info(hba);
2844 }
2845 printf("\n");
2846 continue;
2847 }
2848
2849 struct devid_list *devid;
2850 for (devid = entry->devid_list; devid; devid = devid->next) {
2851 hba = device_by_id(devid->devid);
2852 if (!hba)
2853 continue;
2854
2855 printf(" I/O Controller : %s (%s)\n",
2856 hba->path, get_sys_dev_type(hba->type));
2857 if (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD) {
2858 host_base = ahci_get_port_count(hba->path, &port_count);
2859 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2860 if (verbose > 0)
2861 pr_err("failed to enumerate ports on %s controller at %s.\n",
2862 get_sys_dev_type(hba->type), hba->pci_id);
2863 result |= 2;
2864 }
2865 }
2866 }
2867 printf("\n");
2868 }
2869
2870 return result;
2871 }
2872
2873 static int export_detail_platform_imsm(int verbose, char *controller_path)
2874 {
2875 struct sys_dev *list, *hba;
2876 int result=1;
2877
2878 list = find_intel_devices();
2879 if (!list) {
2880 if (verbose > 0)
2881 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2882 result = 2;
2883 return result;
2884 }
2885
2886 for (hba = list; hba; hba = hba->next) {
2887 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2888 continue;
2889 if (!find_imsm_capability(hba) && verbose > 0) {
2890 char buf[PATH_MAX];
2891 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2892 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2893 vmd_domain_to_controller(hba, buf) : hba->path);
2894 }
2895 else
2896 result = 0;
2897 }
2898
2899 const struct orom_entry *entry;
2900
2901 for (entry = orom_entries; entry; entry = entry->next) {
2902 if (entry->type == SYS_DEV_VMD || entry->type == SYS_DEV_SATA_VMD) {
2903 for (hba = list; hba; hba = hba->next)
2904 print_imsm_capability_export(&entry->orom);
2905 continue;
2906 }
2907 print_imsm_capability_export(&entry->orom);
2908 }
2909
2910 return result;
2911 }
2912
2913 static int match_home_imsm(struct supertype *st, char *homehost)
2914 {
2915 /* the imsm metadata format does not specify any host
2916 * identification information. We return -1 since we can never
2917 * confirm nor deny whether a given array is "meant" for this
2918 * host. We rely on compare_super and the 'family_num' fields to
2919 * exclude member disks that do not belong, and we rely on
2920 * mdadm.conf to specify the arrays that should be assembled.
2921 * Auto-assembly may still pick up "foreign" arrays.
2922 */
2923
2924 return -1;
2925 }
2926
2927 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2928 {
2929 /* The uuid returned here is used for:
2930 * uuid to put into bitmap file (Create, Grow)
2931 * uuid for backup header when saving critical section (Grow)
2932 * comparing uuids when re-adding a device into an array
2933 * In these cases the uuid required is that of the data-array,
2934 * not the device-set.
2935 * uuid to recognise same set when adding a missing device back
2936 * to an array. This is a uuid for the device-set.
2937 *
2938 * For each of these we can make do with a truncated
2939 * or hashed uuid rather than the original, as long as
2940 * everyone agrees.
2941 * In each case the uuid required is that of the data-array,
2942 * not the device-set.
2943 */
2944 /* imsm does not track uuid's so we synthesis one using sha1 on
2945 * - The signature (Which is constant for all imsm array, but no matter)
2946 * - the orig_family_num of the container
2947 * - the index number of the volume
2948 * - the 'serial' number of the volume.
2949 * Hopefully these are all constant.
2950 */
2951 struct intel_super *super = st->sb;
2952
2953 char buf[20];
2954 struct sha1_ctx ctx;
2955 struct imsm_dev *dev = NULL;
2956 __u32 family_num;
2957
2958 /* some mdadm versions failed to set ->orig_family_num, in which
2959 * case fall back to ->family_num. orig_family_num will be
2960 * fixed up with the first metadata update.
2961 */
2962 family_num = super->anchor->orig_family_num;
2963 if (family_num == 0)
2964 family_num = super->anchor->family_num;
2965 sha1_init_ctx(&ctx);
2966 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2967 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2968 if (super->current_vol >= 0)
2969 dev = get_imsm_dev(super, super->current_vol);
2970 if (dev) {
2971 __u32 vol = super->current_vol;
2972 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2973 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2974 }
2975 sha1_finish_ctx(&ctx, buf);
2976 memcpy(uuid, buf, 4*4);
2977 }
2978
2979 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2980 {
2981 /* migr_strip_size when repairing or initializing parity */
2982 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2983 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2984
2985 switch (get_imsm_raid_level(map)) {
2986 case 5:
2987 case 10:
2988 return chunk;
2989 default:
2990 return 128*1024 >> 9;
2991 }
2992 }
2993
2994 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2995 {
2996 /* migr_strip_size when rebuilding a degraded disk, no idea why
2997 * this is different than migr_strip_size_resync(), but it's good
2998 * to be compatible
2999 */
3000 struct imsm_map *map = get_imsm_map(dev, MAP_1);
3001 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3002
3003 switch (get_imsm_raid_level(map)) {
3004 case 1:
3005 case 10:
3006 if (map->num_members % map->num_domains == 0)
3007 return 128*1024 >> 9;
3008 else
3009 return chunk;
3010 case 5:
3011 return max((__u32) 64*1024 >> 9, chunk);
3012 default:
3013 return 128*1024 >> 9;
3014 }
3015 }
3016
3017 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
3018 {
3019 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
3020 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
3021 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
3022 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
3023
3024 return max((__u32) 1, hi_chunk / lo_chunk);
3025 }
3026
3027 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
3028 {
3029 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
3030 int level = get_imsm_raid_level(lo);
3031
3032 if (level == 1 || level == 10) {
3033 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
3034
3035 return hi->num_domains;
3036 } else
3037 return num_stripes_per_unit_resync(dev);
3038 }
3039
3040 static unsigned long long calc_component_size(struct imsm_map *map,
3041 struct imsm_dev *dev)
3042 {
3043 unsigned long long component_size;
3044 unsigned long long dev_size = imsm_dev_size(dev);
3045 long long calc_dev_size = 0;
3046 unsigned int member_disks = imsm_num_data_members(map);
3047
3048 if (member_disks == 0)
3049 return 0;
3050
3051 component_size = per_dev_array_size(map);
3052 calc_dev_size = component_size * member_disks;
3053
3054 /* Component size is rounded to 1MB so difference between size from
3055 * metadata and size calculated from num_data_stripes equals up to
3056 * 2048 blocks per each device. If the difference is higher it means
3057 * that array size was expanded and num_data_stripes was not updated.
3058 */
3059 if (llabs(calc_dev_size - (long long)dev_size) >
3060 (1 << SECT_PER_MB_SHIFT) * member_disks) {
3061 component_size = dev_size / member_disks;
3062 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
3063 component_size / map->blocks_per_strip,
3064 num_data_stripes(map));
3065 }
3066
3067 return component_size;
3068 }
3069
3070 static __u32 parity_segment_depth(struct imsm_dev *dev)
3071 {
3072 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3073 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3074
3075 switch(get_imsm_raid_level(map)) {
3076 case 1:
3077 case 10:
3078 return chunk * map->num_domains;
3079 case 5:
3080 return chunk * map->num_members;
3081 default:
3082 return chunk;
3083 }
3084 }
3085
3086 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
3087 {
3088 struct imsm_map *map = get_imsm_map(dev, MAP_1);
3089 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3090 __u32 strip = block / chunk;
3091
3092 switch (get_imsm_raid_level(map)) {
3093 case 1:
3094 case 10: {
3095 __u32 vol_strip = (strip * map->num_domains) + 1;
3096 __u32 vol_stripe = vol_strip / map->num_members;
3097
3098 return vol_stripe * chunk + block % chunk;
3099 } case 5: {
3100 __u32 stripe = strip / (map->num_members - 1);
3101
3102 return stripe * chunk + block % chunk;
3103 }
3104 default:
3105 return 0;
3106 }
3107 }
3108
3109 static __u64 blocks_per_migr_unit(struct intel_super *super,
3110 struct imsm_dev *dev)
3111 {
3112 /* calculate the conversion factor between per member 'blocks'
3113 * (md/{resync,rebuild}_start) and imsm migration units, return
3114 * 0 for the 'not migrating' and 'unsupported migration' cases
3115 */
3116 if (!dev->vol.migr_state)
3117 return 0;
3118
3119 switch (migr_type(dev)) {
3120 case MIGR_GEN_MIGR: {
3121 struct migr_record *migr_rec = super->migr_rec;
3122 return __le32_to_cpu(migr_rec->blocks_per_unit);
3123 }
3124 case MIGR_VERIFY:
3125 case MIGR_REPAIR:
3126 case MIGR_INIT: {
3127 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3128 __u32 stripes_per_unit;
3129 __u32 blocks_per_unit;
3130 __u32 parity_depth;
3131 __u32 migr_chunk;
3132 __u32 block_map;
3133 __u32 block_rel;
3134 __u32 segment;
3135 __u32 stripe;
3136 __u8 disks;
3137
3138 /* yes, this is really the translation of migr_units to
3139 * per-member blocks in the 'resync' case
3140 */
3141 stripes_per_unit = num_stripes_per_unit_resync(dev);
3142 migr_chunk = migr_strip_blocks_resync(dev);
3143 disks = imsm_num_data_members(map);
3144 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
3145 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
3146 segment = blocks_per_unit / stripe;
3147 block_rel = blocks_per_unit - segment * stripe;
3148 parity_depth = parity_segment_depth(dev);
3149 block_map = map_migr_block(dev, block_rel);
3150 return block_map + parity_depth * segment;
3151 }
3152 case MIGR_REBUILD: {
3153 __u32 stripes_per_unit;
3154 __u32 migr_chunk;
3155
3156 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3157 migr_chunk = migr_strip_blocks_rebuild(dev);
3158 return migr_chunk * stripes_per_unit;
3159 }
3160 case MIGR_STATE_CHANGE:
3161 default:
3162 return 0;
3163 }
3164 }
3165
3166 static int imsm_level_to_layout(int level)
3167 {
3168 switch (level) {
3169 case 0:
3170 case 1:
3171 return 0;
3172 case 5:
3173 case 6:
3174 return ALGORITHM_LEFT_ASYMMETRIC;
3175 case 10:
3176 return 0x102;
3177 }
3178 return UnSet;
3179 }
3180
3181 /*******************************************************************************
3182 * Function: read_imsm_migr_rec
3183 * Description: Function reads imsm migration record from last sector of disk
3184 * Parameters:
3185 * fd : disk descriptor
3186 * super : metadata info
3187 * Returns:
3188 * 0 : success,
3189 * -1 : fail
3190 ******************************************************************************/
3191 static int read_imsm_migr_rec(int fd, struct intel_super *super)
3192 {
3193 int ret_val = -1;
3194 unsigned int sector_size = super->sector_size;
3195 unsigned long long dsize;
3196
3197 get_dev_size(fd, NULL, &dsize);
3198 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3199 SEEK_SET) < 0) {
3200 pr_err("Cannot seek to anchor block: %s\n",
3201 strerror(errno));
3202 goto out;
3203 }
3204 if ((unsigned int)read(fd, super->migr_rec_buf,
3205 MIGR_REC_BUF_SECTORS*sector_size) !=
3206 MIGR_REC_BUF_SECTORS*sector_size) {
3207 pr_err("Cannot read migr record block: %s\n",
3208 strerror(errno));
3209 goto out;
3210 }
3211 ret_val = 0;
3212 if (sector_size == 4096)
3213 convert_from_4k_imsm_migr_rec(super);
3214
3215 out:
3216 return ret_val;
3217 }
3218
3219 static struct imsm_dev *imsm_get_device_during_migration(
3220 struct intel_super *super)
3221 {
3222
3223 struct intel_dev *dv;
3224
3225 for (dv = super->devlist; dv; dv = dv->next) {
3226 if (is_gen_migration(dv->dev))
3227 return dv->dev;
3228 }
3229 return NULL;
3230 }
3231
3232 /*******************************************************************************
3233 * Function: load_imsm_migr_rec
3234 * Description: Function reads imsm migration record (it is stored at the last
3235 * sector of disk)
3236 * Parameters:
3237 * super : imsm internal array info
3238 * Returns:
3239 * 0 : success
3240 * -1 : fail
3241 * -2 : no migration in progress
3242 ******************************************************************************/
3243 static int load_imsm_migr_rec(struct intel_super *super)
3244 {
3245 struct dl *dl;
3246 char nm[30];
3247 int retval = -1;
3248 int fd = -1;
3249 struct imsm_dev *dev;
3250 struct imsm_map *map;
3251 int slot = -1;
3252 int keep_fd = 1;
3253
3254 /* find map under migration */
3255 dev = imsm_get_device_during_migration(super);
3256 /* nothing to load,no migration in progress?
3257 */
3258 if (dev == NULL)
3259 return -2;
3260
3261 map = get_imsm_map(dev, MAP_0);
3262 if (!map)
3263 return -1;
3264
3265 for (dl = super->disks; dl; dl = dl->next) {
3266 /* skip spare and failed disks
3267 */
3268 if (dl->index < 0)
3269 continue;
3270 /* read only from one of the first two slots
3271 */
3272 slot = get_imsm_disk_slot(map, dl->index);
3273 if (slot > 1 || slot < 0)
3274 continue;
3275
3276 if (!is_fd_valid(dl->fd)) {
3277 sprintf(nm, "%d:%d", dl->major, dl->minor);
3278 fd = dev_open(nm, O_RDONLY);
3279
3280 if (is_fd_valid(fd)) {
3281 keep_fd = 0;
3282 break;
3283 }
3284 } else {
3285 fd = dl->fd;
3286 break;
3287 }
3288 }
3289
3290 if (!is_fd_valid(fd))
3291 return retval;
3292 retval = read_imsm_migr_rec(fd, super);
3293 if (!keep_fd)
3294 close(fd);
3295
3296 return retval;
3297 }
3298
3299 /*******************************************************************************
3300 * function: imsm_create_metadata_checkpoint_update
3301 * Description: It creates update for checkpoint change.
3302 * Parameters:
3303 * super : imsm internal array info
3304 * u : pointer to prepared update
3305 * Returns:
3306 * Uptate length.
3307 * If length is equal to 0, input pointer u contains no update
3308 ******************************************************************************/
3309 static int imsm_create_metadata_checkpoint_update(
3310 struct intel_super *super,
3311 struct imsm_update_general_migration_checkpoint **u)
3312 {
3313
3314 int update_memory_size = 0;
3315
3316 dprintf("(enter)\n");
3317
3318 if (u == NULL)
3319 return 0;
3320 *u = NULL;
3321
3322 /* size of all update data without anchor */
3323 update_memory_size =
3324 sizeof(struct imsm_update_general_migration_checkpoint);
3325
3326 *u = xcalloc(1, update_memory_size);
3327 if (*u == NULL) {
3328 dprintf("error: cannot get memory\n");
3329 return 0;
3330 }
3331 (*u)->type = update_general_migration_checkpoint;
3332 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
3333 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
3334
3335 return update_memory_size;
3336 }
3337
3338 static void imsm_update_metadata_locally(struct supertype *st,
3339 void *buf, int len);
3340
3341 /*******************************************************************************
3342 * Function: write_imsm_migr_rec
3343 * Description: Function writes imsm migration record
3344 * (at the last sector of disk)
3345 * Parameters:
3346 * super : imsm internal array info
3347 * Returns:
3348 * 0 : success
3349 * -1 : if fail
3350 ******************************************************************************/
3351 static int write_imsm_migr_rec(struct supertype *st)
3352 {
3353 struct intel_super *super = st->sb;
3354 unsigned int sector_size = super->sector_size;
3355 unsigned long long dsize;
3356 int retval = -1;
3357 struct dl *sd;
3358 int len;
3359 struct imsm_update_general_migration_checkpoint *u;
3360 struct imsm_dev *dev;
3361 struct imsm_map *map;
3362
3363 /* find map under migration */
3364 dev = imsm_get_device_during_migration(super);
3365 /* if no migration, write buffer anyway to clear migr_record
3366 * on disk based on first available device
3367 */
3368 if (dev == NULL)
3369 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3370 super->current_vol);
3371
3372 map = get_imsm_map(dev, MAP_0);
3373
3374 if (sector_size == 4096)
3375 convert_to_4k_imsm_migr_rec(super);
3376 for (sd = super->disks ; sd ; sd = sd->next) {
3377 int slot = -1;
3378
3379 /* skip failed and spare devices */
3380 if (sd->index < 0)
3381 continue;
3382 /* write to 2 first slots only */
3383 if (map)
3384 slot = get_imsm_disk_slot(map, sd->index);
3385 if (map == NULL || slot > 1 || slot < 0)
3386 continue;
3387
3388 get_dev_size(sd->fd, NULL, &dsize);
3389 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3390 sector_size),
3391 SEEK_SET) < 0) {
3392 pr_err("Cannot seek to anchor block: %s\n",
3393 strerror(errno));
3394 goto out;
3395 }
3396 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
3397 MIGR_REC_BUF_SECTORS*sector_size) !=
3398 MIGR_REC_BUF_SECTORS*sector_size) {
3399 pr_err("Cannot write migr record block: %s\n",
3400 strerror(errno));
3401 goto out;
3402 }
3403 }
3404 if (sector_size == 4096)
3405 convert_from_4k_imsm_migr_rec(super);
3406 /* update checkpoint information in metadata */
3407 len = imsm_create_metadata_checkpoint_update(super, &u);
3408 if (len <= 0) {
3409 dprintf("imsm: Cannot prepare update\n");
3410 goto out;
3411 }
3412 /* update metadata locally */
3413 imsm_update_metadata_locally(st, u, len);
3414 /* and possibly remotely */
3415 if (st->update_tail) {
3416 append_metadata_update(st, u, len);
3417 /* during reshape we do all work inside metadata handler
3418 * manage_reshape(), so metadata update has to be triggered
3419 * insida it
3420 */
3421 flush_metadata_updates(st);
3422 st->update_tail = &st->updates;
3423 } else
3424 free(u);
3425
3426 retval = 0;
3427 out:
3428 return retval;
3429 }
3430
3431 /* spare/missing disks activations are not allowe when
3432 * array/container performs reshape operation, because
3433 * all arrays in container works on the same disks set
3434 */
3435 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3436 {
3437 int rv = 0;
3438 struct intel_dev *i_dev;
3439 struct imsm_dev *dev;
3440
3441 /* check whole container
3442 */
3443 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3444 dev = i_dev->dev;
3445 if (is_gen_migration(dev)) {
3446 /* No repair during any migration in container
3447 */
3448 rv = 1;
3449 break;
3450 }
3451 }
3452 return rv;
3453 }
3454 static unsigned long long imsm_component_size_alignment_check(int level,
3455 int chunk_size,
3456 unsigned int sector_size,
3457 unsigned long long component_size)
3458 {
3459 unsigned int component_size_alignment;
3460
3461 /* check component size alignment
3462 */
3463 component_size_alignment = component_size % (chunk_size/sector_size);
3464
3465 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
3466 level, chunk_size, component_size,
3467 component_size_alignment);
3468
3469 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3470 dprintf("imsm: reported component size aligned from %llu ",
3471 component_size);
3472 component_size -= component_size_alignment;
3473 dprintf_cont("to %llu (%i).\n",
3474 component_size, component_size_alignment);
3475 }
3476
3477 return component_size;
3478 }
3479
3480 /*******************************************************************************
3481 * Function: get_bitmap_header_sector
3482 * Description: Returns the sector where the bitmap header is placed.
3483 * Parameters:
3484 * st : supertype information
3485 * dev_idx : index of the device with bitmap
3486 *
3487 * Returns:
3488 * The sector where the bitmap header is placed
3489 ******************************************************************************/
3490 static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3491 int dev_idx)
3492 {
3493 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3494 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3495
3496 if (!super->sector_size) {
3497 dprintf("sector size is not set\n");
3498 return 0;
3499 }
3500
3501 return pba_of_lba0(map) + calc_component_size(map, dev) +
3502 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3503 }
3504
3505 /*******************************************************************************
3506 * Function: get_bitmap_sector
3507 * Description: Returns the sector where the bitmap is placed.
3508 * Parameters:
3509 * st : supertype information
3510 * dev_idx : index of the device with bitmap
3511 *
3512 * Returns:
3513 * The sector where the bitmap is placed
3514 ******************************************************************************/
3515 static unsigned long long get_bitmap_sector(struct intel_super *super,
3516 int dev_idx)
3517 {
3518 if (!super->sector_size) {
3519 dprintf("sector size is not set\n");
3520 return 0;
3521 }
3522
3523 return get_bitmap_header_sector(super, dev_idx) +
3524 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3525 }
3526
3527 static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3528 {
3529 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3530 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3531
3532 return pba_of_lba0(map) +
3533 (num_data_stripes(map) * map->blocks_per_strip);
3534 }
3535
3536 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
3537 {
3538 struct intel_super *super = st->sb;
3539 struct migr_record *migr_rec = super->migr_rec;
3540 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
3541 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3542 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
3543 struct imsm_map *map_to_analyse = map;
3544 struct dl *dl;
3545 int map_disks = info->array.raid_disks;
3546
3547 memset(info, 0, sizeof(*info));
3548 if (prev_map)
3549 map_to_analyse = prev_map;
3550
3551 dl = super->current_disk;
3552
3553 info->container_member = super->current_vol;
3554 info->array.raid_disks = map->num_members;
3555 info->array.level = get_imsm_raid_level(map_to_analyse);
3556 info->array.layout = imsm_level_to_layout(info->array.level);
3557 info->array.md_minor = -1;
3558 info->array.ctime = 0;
3559 info->array.utime = 0;
3560 info->array.chunk_size =
3561 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
3562 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
3563 info->custom_array_size = imsm_dev_size(dev);
3564 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3565
3566 if (is_gen_migration(dev)) {
3567 /*
3568 * device prev_map should be added if it is in the middle
3569 * of migration
3570 */
3571 assert(prev_map);
3572
3573 info->reshape_active = 1;
3574 info->new_level = get_imsm_raid_level(map);
3575 info->new_layout = imsm_level_to_layout(info->new_level);
3576 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3577 info->delta_disks = map->num_members - prev_map->num_members;
3578 if (info->delta_disks) {
3579 /* this needs to be applied to every array
3580 * in the container.
3581 */
3582 info->reshape_active = CONTAINER_RESHAPE;
3583 }
3584 /* We shape information that we give to md might have to be
3585 * modify to cope with md's requirement for reshaping arrays.
3586 * For example, when reshaping a RAID0, md requires it to be
3587 * presented as a degraded RAID4.
3588 * Also if a RAID0 is migrating to a RAID5 we need to specify
3589 * the array as already being RAID5, but the 'before' layout
3590 * is a RAID4-like layout.
3591 */
3592 switch (info->array.level) {
3593 case 0:
3594 switch(info->new_level) {
3595 case 0:
3596 /* conversion is happening as RAID4 */
3597 info->array.level = 4;
3598 info->array.raid_disks += 1;
3599 break;
3600 case 5:
3601 /* conversion is happening as RAID5 */
3602 info->array.level = 5;
3603 info->array.layout = ALGORITHM_PARITY_N;
3604 info->delta_disks -= 1;
3605 break;
3606 default:
3607 /* FIXME error message */
3608 info->array.level = UnSet;
3609 break;
3610 }
3611 break;
3612 }
3613 } else {
3614 info->new_level = UnSet;
3615 info->new_layout = UnSet;
3616 info->new_chunk = info->array.chunk_size;
3617 info->delta_disks = 0;
3618 }
3619
3620 if (dl) {
3621 info->disk.major = dl->major;
3622 info->disk.minor = dl->minor;
3623 info->disk.number = dl->index;
3624 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3625 dl->index);
3626 }
3627
3628 info->data_offset = pba_of_lba0(map_to_analyse);
3629 info->component_size = calc_component_size(map, dev);
3630 info->component_size = imsm_component_size_alignment_check(
3631 info->array.level,
3632 info->array.chunk_size,
3633 super->sector_size,
3634 info->component_size);
3635 info->bb.supported = 1;
3636
3637 memset(info->uuid, 0, sizeof(info->uuid));
3638 info->recovery_start = MaxSector;
3639
3640 if (info->array.level == 5 &&
3641 (dev->rwh_policy == RWH_DISTRIBUTED ||
3642 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
3643 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3644 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3645 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3646 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3647 else
3648 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3649 >> 9;
3650 } else if (info->array.level <= 0) {
3651 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3652 } else {
3653 if (dev->rwh_policy == RWH_BITMAP) {
3654 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3655 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3656 } else {
3657 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3658 }
3659 }
3660
3661 info->reshape_progress = 0;
3662 info->resync_start = MaxSector;
3663 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3664 !(info->array.state & 1)) &&
3665 imsm_reshape_blocks_arrays_changes(super) == 0) {
3666 info->resync_start = 0;
3667 }
3668 if (dev->vol.migr_state) {
3669 switch (migr_type(dev)) {
3670 case MIGR_REPAIR:
3671 case MIGR_INIT: {
3672 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3673 dev);
3674 __u64 units = vol_curr_migr_unit(dev);
3675
3676 info->resync_start = blocks_per_unit * units;
3677 break;
3678 }
3679 case MIGR_GEN_MIGR: {
3680 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3681 dev);
3682 __u64 units = current_migr_unit(migr_rec);
3683 int used_disks;
3684
3685 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3686 (units <
3687 (get_num_migr_units(migr_rec)-1)) &&
3688 (super->migr_rec->rec_status ==
3689 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3690 units++;
3691
3692 info->reshape_progress = blocks_per_unit * units;
3693
3694 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
3695 (unsigned long long)units,
3696 (unsigned long long)blocks_per_unit,
3697 info->reshape_progress);
3698
3699 used_disks = imsm_num_data_members(prev_map);
3700 if (used_disks > 0) {
3701 info->custom_array_size = per_dev_array_size(map) *
3702 used_disks;
3703 }
3704 }
3705 case MIGR_VERIFY:
3706 /* we could emulate the checkpointing of
3707 * 'sync_action=check' migrations, but for now
3708 * we just immediately complete them
3709 */
3710 case MIGR_REBUILD:
3711 /* this is handled by container_content_imsm() */
3712 case MIGR_STATE_CHANGE:
3713 /* FIXME handle other migrations */
3714 default:
3715 /* we are not dirty, so... */
3716 info->resync_start = MaxSector;
3717 }
3718 }
3719
3720 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3721 info->name[MAX_RAID_SERIAL_LEN] = 0;
3722
3723 info->array.major_version = -1;
3724 info->array.minor_version = -2;
3725 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
3726 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
3727 uuid_from_super_imsm(st, info->uuid);
3728
3729 if (dmap) {
3730 int i, j;
3731 for (i=0; i<map_disks; i++) {
3732 dmap[i] = 0;
3733 if (i < info->array.raid_disks) {
3734 struct imsm_disk *dsk;
3735 j = get_imsm_disk_idx(dev, i, MAP_X);
3736 dsk = get_imsm_disk(super, j);
3737 if (dsk && (dsk->status & CONFIGURED_DISK))
3738 dmap[i] = 1;
3739 }
3740 }
3741 }
3742 }
3743
3744 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3745 int failed, int look_in_map);
3746
3747 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3748 int look_in_map);
3749
3750 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3751 {
3752 if (is_gen_migration(dev)) {
3753 int failed;
3754 __u8 map_state;
3755 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3756
3757 failed = imsm_count_failed(super, dev, MAP_1);
3758 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3759 if (map2->map_state != map_state) {
3760 map2->map_state = map_state;
3761 super->updates_pending++;
3762 }
3763 }
3764 }
3765
3766 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3767 {
3768 struct dl *d;
3769
3770 for (d = super->missing; d; d = d->next)
3771 if (d->index == index)
3772 return &d->disk;
3773 return NULL;
3774 }
3775
3776 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3777 {
3778 struct intel_super *super = st->sb;
3779 struct imsm_disk *disk;
3780 int map_disks = info->array.raid_disks;
3781 int max_enough = -1;
3782 int i;
3783 struct imsm_super *mpb;
3784
3785 if (super->current_vol >= 0) {
3786 getinfo_super_imsm_volume(st, info, map);
3787 return;
3788 }
3789 memset(info, 0, sizeof(*info));
3790
3791 /* Set raid_disks to zero so that Assemble will always pull in valid
3792 * spares
3793 */
3794 info->array.raid_disks = 0;
3795 info->array.level = LEVEL_CONTAINER;
3796 info->array.layout = 0;
3797 info->array.md_minor = -1;
3798 info->array.ctime = 0; /* N/A for imsm */
3799 info->array.utime = 0;
3800 info->array.chunk_size = 0;
3801
3802 info->disk.major = 0;
3803 info->disk.minor = 0;
3804 info->disk.raid_disk = -1;
3805 info->reshape_active = 0;
3806 info->array.major_version = -1;
3807 info->array.minor_version = -2;
3808 strcpy(info->text_version, "imsm");
3809 info->safe_mode_delay = 0;
3810 info->disk.number = -1;
3811 info->disk.state = 0;
3812 info->name[0] = 0;
3813 info->recovery_start = MaxSector;
3814 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3815 info->bb.supported = 1;
3816
3817 /* do we have the all the insync disks that we expect? */
3818 mpb = super->anchor;
3819 info->events = __le32_to_cpu(mpb->generation_num);
3820
3821 for (i = 0; i < mpb->num_raid_devs; i++) {
3822 struct imsm_dev *dev = get_imsm_dev(super, i);
3823 int failed, enough, j, missing = 0;
3824 struct imsm_map *map;
3825 __u8 state;
3826
3827 failed = imsm_count_failed(super, dev, MAP_0);
3828 state = imsm_check_degraded(super, dev, failed, MAP_0);
3829 map = get_imsm_map(dev, MAP_0);
3830
3831 /* any newly missing disks?
3832 * (catches single-degraded vs double-degraded)
3833 */
3834 for (j = 0; j < map->num_members; j++) {
3835 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3836 __u32 idx = ord_to_idx(ord);
3837
3838 if (super->disks && super->disks->index == (int)idx)
3839 info->disk.raid_disk = j;
3840
3841 if (!(ord & IMSM_ORD_REBUILD) &&
3842 get_imsm_missing(super, idx)) {
3843 missing = 1;
3844 break;
3845 }
3846 }
3847
3848 if (state == IMSM_T_STATE_FAILED)
3849 enough = -1;
3850 else if (state == IMSM_T_STATE_DEGRADED &&
3851 (state != map->map_state || missing))
3852 enough = 0;
3853 else /* we're normal, or already degraded */
3854 enough = 1;
3855 if (is_gen_migration(dev) && missing) {
3856 /* during general migration we need all disks
3857 * that process is running on.
3858 * No new missing disk is allowed.
3859 */
3860 max_enough = -1;
3861 enough = -1;
3862 /* no more checks necessary
3863 */
3864 break;
3865 }
3866 /* in the missing/failed disk case check to see
3867 * if at least one array is runnable
3868 */
3869 max_enough = max(max_enough, enough);
3870 }
3871
3872 info->container_enough = max_enough;
3873
3874 if (super->disks) {
3875 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3876
3877 disk = &super->disks->disk;
3878 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3879 info->component_size = reserved;
3880 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3881 /* we don't change info->disk.raid_disk here because
3882 * this state will be finalized in mdmon after we have
3883 * found the 'most fresh' version of the metadata
3884 */
3885 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3886 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3887 0 : (1 << MD_DISK_SYNC);
3888 }
3889
3890 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3891 * ->compare_super may have updated the 'num_raid_devs' field for spares
3892 */
3893 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3894 uuid_from_super_imsm(st, info->uuid);
3895 else
3896 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3897
3898 /* I don't know how to compute 'map' on imsm, so use safe default */
3899 if (map) {
3900 int i;
3901 for (i = 0; i < map_disks; i++)
3902 map[i] = 1;
3903 }
3904
3905 }
3906
3907 /* allocates memory and fills disk in mdinfo structure
3908 * for each disk in array */
3909 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3910 {
3911 struct mdinfo *mddev;
3912 struct intel_super *super = st->sb;
3913 struct imsm_disk *disk;
3914 int count = 0;
3915 struct dl *dl;
3916 if (!super || !super->disks)
3917 return NULL;
3918 dl = super->disks;
3919 mddev = xcalloc(1, sizeof(*mddev));
3920 while (dl) {
3921 struct mdinfo *tmp;
3922 disk = &dl->disk;
3923 tmp = xcalloc(1, sizeof(*tmp));
3924 if (mddev->devs)
3925 tmp->next = mddev->devs;
3926 mddev->devs = tmp;
3927 tmp->disk.number = count++;
3928 tmp->disk.major = dl->major;
3929 tmp->disk.minor = dl->minor;
3930 tmp->disk.state = is_configured(disk) ?
3931 (1 << MD_DISK_ACTIVE) : 0;
3932 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3933 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3934 tmp->disk.raid_disk = -1;
3935 dl = dl->next;
3936 }
3937 return mddev;
3938 }
3939
3940 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3941 enum update_opt update, char *devname,
3942 int verbose, int uuid_set, char *homehost)
3943 {
3944 /* For 'assemble' and 'force' we need to return non-zero if any
3945 * change was made. For others, the return value is ignored.
3946 * Update options are:
3947 * force-one : This device looks a bit old but needs to be included,
3948 * update age info appropriately.
3949 * assemble: clear any 'faulty' flag to allow this device to
3950 * be assembled.
3951 * force-array: Array is degraded but being forced, mark it clean
3952 * if that will be needed to assemble it.
3953 *
3954 * newdev: not used ????
3955 * grow: Array has gained a new device - this is currently for
3956 * linear only
3957 * resync: mark as dirty so a resync will happen.
3958 * name: update the name - preserving the homehost
3959 * uuid: Change the uuid of the array to match watch is given
3960 *
3961 * Following are not relevant for this imsm:
3962 * sparc2.2 : update from old dodgey metadata
3963 * super-minor: change the preferred_minor number
3964 * summaries: update redundant counters.
3965 * homehost: update the recorded homehost
3966 * _reshape_progress: record new reshape_progress position.
3967 */
3968 int rv = 1;
3969 struct intel_super *super = st->sb;
3970 struct imsm_super *mpb;
3971
3972 /* we can only update container info */
3973 if (!super || super->current_vol >= 0 || !super->anchor)
3974 return 1;
3975
3976 mpb = super->anchor;
3977
3978 switch (update) {
3979 case UOPT_UUID:
3980 /* We take this to mean that the family_num should be updated.
3981 * However that is much smaller than the uuid so we cannot really
3982 * allow an explicit uuid to be given. And it is hard to reliably
3983 * know if one was.
3984 * So if !uuid_set we know the current uuid is random and just used
3985 * the first 'int' and copy it to the other 3 positions.
3986 * Otherwise we require the 4 'int's to be the same as would be the
3987 * case if we are using a random uuid. So an explicit uuid will be
3988 * accepted as long as all for ints are the same... which shouldn't hurt
3989 */
3990 if (!uuid_set) {
3991 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3992 rv = 0;
3993 } else {
3994 if (info->uuid[0] != info->uuid[1] ||
3995 info->uuid[1] != info->uuid[2] ||
3996 info->uuid[2] != info->uuid[3])
3997 rv = -1;
3998 else
3999 rv = 0;
4000 }
4001 if (rv == 0)
4002 mpb->orig_family_num = info->uuid[0];
4003 break;
4004 case UOPT_SPEC_ASSEMBLE:
4005 rv = 0;
4006 break;
4007 default:
4008 rv = -1;
4009 break;
4010 }
4011
4012 /* successful update? recompute checksum */
4013 if (rv == 0)
4014 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
4015
4016 return rv;
4017 }
4018
4019 static size_t disks_to_mpb_size(int disks)
4020 {
4021 size_t size;
4022
4023 size = sizeof(struct imsm_super);
4024 size += (disks - 1) * sizeof(struct imsm_disk);
4025 size += 2 * sizeof(struct imsm_dev);
4026 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
4027 size += (4 - 2) * sizeof(struct imsm_map);
4028 /* 4 possible disk_ord_tbl's */
4029 size += 4 * (disks - 1) * sizeof(__u32);
4030 /* maximum bbm log */
4031 size += sizeof(struct bbm_log);
4032
4033 return size;
4034 }
4035
4036 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
4037 unsigned long long data_offset)
4038 {
4039 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
4040 return 0;
4041
4042 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
4043 }
4044
4045 static void free_devlist(struct intel_super *super)
4046 {
4047 struct intel_dev *dv;
4048
4049 while (super->devlist) {
4050 dv = super->devlist->next;
4051 free(super->devlist->dev);
4052 free(super->devlist);
4053 super->devlist = dv;
4054 }
4055 }
4056
4057 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
4058 {
4059 memcpy(dest, src, sizeof_imsm_dev(src, 0));
4060 }
4061
4062 static int compare_super_imsm(struct supertype *st, struct supertype *tst,
4063 int verbose)
4064 {
4065 /* return:
4066 * 0 same, or first was empty, and second was copied
4067 * 1 sb are different
4068 */
4069 struct intel_super *first = st->sb;
4070 struct intel_super *sec = tst->sb;
4071
4072 if (!first) {
4073 st->sb = tst->sb;
4074 tst->sb = NULL;
4075 return 0;
4076 }
4077
4078 /* in platform dependent environment test if the disks
4079 * use the same Intel hba
4080 * if not on Intel hba at all, allow anything.
4081 * doesn't check HBAs if num_raid_devs is not set, as it means
4082 * it is a free floating spare, and all spares regardless of HBA type
4083 * will fall into separate container during the assembly
4084 */
4085 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
4086 if (first->hba->type != sec->hba->type) {
4087 if (verbose)
4088 pr_err("HBAs of devices do not match %s != %s\n",
4089 get_sys_dev_type(first->hba->type),
4090 get_sys_dev_type(sec->hba->type));
4091 return 1;
4092 }
4093 if (first->orom != sec->orom) {
4094 if (verbose)
4095 pr_err("HBAs of devices do not match %s != %s\n",
4096 first->hba->pci_id, sec->hba->pci_id);
4097 return 1;
4098 }
4099 }
4100
4101 if (first->anchor->num_raid_devs > 0 &&
4102 sec->anchor->num_raid_devs > 0) {
4103 /* Determine if these disks might ever have been
4104 * related. Further disambiguation can only take place
4105 * in load_super_imsm_all
4106 */
4107 __u32 first_family = first->anchor->orig_family_num;
4108 __u32 sec_family = sec->anchor->orig_family_num;
4109
4110 if (memcmp(first->anchor->sig, sec->anchor->sig,
4111 MAX_SIGNATURE_LENGTH) != 0)
4112 return 1;
4113
4114 if (first_family == 0)
4115 first_family = first->anchor->family_num;
4116 if (sec_family == 0)
4117 sec_family = sec->anchor->family_num;
4118
4119 if (first_family != sec_family)
4120 return 1;
4121
4122 }
4123
4124 /* if an anchor does not have num_raid_devs set then it is a free
4125 * floating spare. don't assosiate spare with any array, as during assembly
4126 * spares shall fall into separate container, from which they can be moved
4127 * when necessary
4128 */
4129 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4130 return 1;
4131
4132 return 0;
4133 }
4134
4135 static void fd2devname(int fd, char *name)
4136 {
4137 char *nm;
4138
4139 nm = fd2kname(fd);
4140 if (!nm)
4141 return;
4142
4143 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
4144 }
4145
4146 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4147 {
4148 char path[PATH_MAX];
4149 char *name = fd2kname(fd);
4150
4151 if (!name)
4152 return 1;
4153
4154 if (strncmp(name, "nvme", 4) != 0)
4155 return 1;
4156
4157 if (!diskfd_to_devpath(fd, 1, path))
4158 return 1;
4159
4160 return devpath_to_char(path, "serial", buf, buf_len, 0);
4161 }
4162
4163 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4164
4165 static int imsm_read_serial(int fd, char *devname,
4166 __u8 *serial, size_t serial_buf_len)
4167 {
4168 char buf[50];
4169 int rv;
4170 size_t len;
4171 char *dest;
4172 char *src;
4173 unsigned int i;
4174
4175 memset(buf, 0, sizeof(buf));
4176
4177 if (check_env("IMSM_DEVNAME_AS_SERIAL")) {
4178 memset(serial, 0, serial_buf_len);
4179 fd2devname(fd, (char *) serial);
4180 return 0;
4181 }
4182
4183 rv = nvme_get_serial(fd, buf, sizeof(buf));
4184
4185 if (rv)
4186 rv = scsi_get_serial(fd, buf, sizeof(buf));
4187
4188 if (rv != 0) {
4189 if (devname)
4190 pr_err("Failed to retrieve serial for %s\n",
4191 devname);
4192 return rv;
4193 }
4194
4195 /* trim all whitespace and non-printable characters and convert
4196 * ':' to ';'
4197 */
4198 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4199 src = &buf[i];
4200 if (*src > 0x20) {
4201 /* ':' is reserved for use in placeholder serial
4202 * numbers for missing disks
4203 */
4204 if (*src == ':')
4205 *dest++ = ';';
4206 else
4207 *dest++ = *src;
4208 }
4209 }
4210 len = dest - buf;
4211 dest = buf;
4212
4213 if (len > serial_buf_len) {
4214 /* truncate leading characters */
4215 dest += len - serial_buf_len;
4216 len = serial_buf_len;
4217 }
4218
4219 memset(serial, 0, serial_buf_len);
4220 memcpy(serial, dest, len);
4221
4222 return 0;
4223 }
4224
4225 static int serialcmp(__u8 *s1, __u8 *s2)
4226 {
4227 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4228 }
4229
4230 static void serialcpy(__u8 *dest, __u8 *src)
4231 {
4232 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4233 }
4234
4235 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4236 {
4237 struct dl *dl;
4238
4239 for (dl = super->disks; dl; dl = dl->next)
4240 if (serialcmp(dl->serial, serial) == 0)
4241 break;
4242
4243 return dl;
4244 }
4245
4246 static struct imsm_disk *
4247 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4248 {
4249 int i;
4250
4251 for (i = 0; i < mpb->num_disks; i++) {
4252 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4253
4254 if (serialcmp(disk->serial, serial) == 0) {
4255 if (idx)
4256 *idx = i;
4257 return disk;
4258 }
4259 }
4260
4261 return NULL;
4262 }
4263
4264 static int
4265 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4266 {
4267 struct imsm_disk *disk;
4268 struct dl *dl;
4269 struct stat stb;
4270 int rv;
4271 char name[40];
4272 __u8 serial[MAX_RAID_SERIAL_LEN];
4273
4274 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
4275
4276 if (rv != 0)
4277 return 2;
4278
4279 dl = xcalloc(1, sizeof(*dl));
4280
4281 fstat(fd, &stb);
4282 dl->major = major(stb.st_rdev);
4283 dl->minor = minor(stb.st_rdev);
4284 dl->next = super->disks;
4285 dl->fd = keep_fd ? fd : -1;
4286 assert(super->disks == NULL);
4287 super->disks = dl;
4288 serialcpy(dl->serial, serial);
4289 dl->index = -2;
4290 dl->e = NULL;
4291 fd2devname(fd, name);
4292 if (devname)
4293 dl->devname = xstrdup(devname);
4294 else
4295 dl->devname = xstrdup(name);
4296
4297 /* look up this disk's index in the current anchor */
4298 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4299 if (disk) {
4300 dl->disk = *disk;
4301 /* only set index on disks that are a member of a
4302 * populated contianer, i.e. one with raid_devs
4303 */
4304 if (is_failed(&dl->disk))
4305 dl->index = -2;
4306 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
4307 dl->index = -1;
4308 }
4309
4310 return 0;
4311 }
4312
4313 /* When migrating map0 contains the 'destination' state while map1
4314 * contains the current state. When not migrating map0 contains the
4315 * current state. This routine assumes that map[0].map_state is set to
4316 * the current array state before being called.
4317 *
4318 * Migration is indicated by one of the following states
4319 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
4320 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
4321 * map1state=unitialized)
4322 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
4323 * map1state=normal)
4324 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
4325 * map1state=degraded)
4326 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4327 * map1state=normal)
4328 */
4329 static void migrate(struct imsm_dev *dev, struct intel_super *super,
4330 __u8 to_state, int migr_type)
4331 {
4332 struct imsm_map *dest;
4333 struct imsm_map *src = get_imsm_map(dev, MAP_0);
4334
4335 dev->vol.migr_state = 1;
4336 set_migr_type(dev, migr_type);
4337 set_vol_curr_migr_unit(dev, 0);
4338 dest = get_imsm_map(dev, MAP_1);
4339
4340 /* duplicate and then set the target end state in map[0] */
4341 memcpy(dest, src, sizeof_imsm_map(src));
4342 if (migr_type == MIGR_GEN_MIGR) {
4343 __u32 ord;
4344 int i;
4345
4346 for (i = 0; i < src->num_members; i++) {
4347 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4348 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4349 }
4350 }
4351
4352 if (migr_type == MIGR_GEN_MIGR)
4353 /* Clear migration record */
4354 memset(super->migr_rec, 0, sizeof(struct migr_record));
4355
4356 src->map_state = to_state;
4357 }
4358
4359 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4360 __u8 map_state)
4361 {
4362 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4363 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4364 MAP_0 : MAP_1);
4365 int i, j;
4366
4367 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4368 * completed in the last migration.
4369 *
4370 * FIXME add support for raid-level-migration
4371 */
4372 if (map_state != map->map_state && (is_gen_migration(dev) == false) &&
4373 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
4374 /* when final map state is other than expected
4375 * merge maps (not for migration)
4376 */
4377 int failed;
4378
4379 for (i = 0; i < prev->num_members; i++)
4380 for (j = 0; j < map->num_members; j++)
4381 /* during online capacity expansion
4382 * disks position can be changed
4383 * if takeover is used
4384 */
4385 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4386 ord_to_idx(prev->disk_ord_tbl[i])) {
4387 map->disk_ord_tbl[j] |=
4388 prev->disk_ord_tbl[i];
4389 break;
4390 }
4391 failed = imsm_count_failed(super, dev, MAP_0);
4392 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4393 }
4394
4395 dev->vol.migr_state = 0;
4396 set_migr_type(dev, 0);
4397 set_vol_curr_migr_unit(dev, 0);
4398 map->map_state = map_state;
4399 }
4400
4401 static int parse_raid_devices(struct intel_super *super)
4402 {
4403 int i;
4404 struct imsm_dev *dev_new;
4405 size_t len, len_migr;
4406 size_t max_len = 0;
4407 size_t space_needed = 0;
4408 struct imsm_super *mpb = super->anchor;
4409
4410 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4411 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4412 struct intel_dev *dv;
4413
4414 len = sizeof_imsm_dev(dev_iter, 0);
4415 len_migr = sizeof_imsm_dev(dev_iter, 1);
4416 if (len_migr > len)
4417 space_needed += len_migr - len;
4418
4419 dv = xmalloc(sizeof(*dv));
4420 if (max_len < len_migr)
4421 max_len = len_migr;
4422 if (max_len > len_migr)
4423 space_needed += max_len - len_migr;
4424 dev_new = xmalloc(max_len);
4425 imsm_copy_dev(dev_new, dev_iter);
4426 dv->dev = dev_new;
4427 dv->index = i;
4428 dv->next = super->devlist;
4429 super->devlist = dv;
4430 }
4431
4432 /* ensure that super->buf is large enough when all raid devices
4433 * are migrating
4434 */
4435 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4436 void *buf;
4437
4438 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4439 super->sector_size);
4440 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4441 return 1;
4442
4443 memcpy(buf, super->buf, super->len);
4444 memset(buf + super->len, 0, len - super->len);
4445 free(super->buf);
4446 super->buf = buf;
4447 super->len = len;
4448 }
4449
4450 super->extra_space += space_needed;
4451
4452 return 0;
4453 }
4454
4455 /*******************************************************************************
4456 * Function: check_mpb_migr_compatibility
4457 * Description: Function checks for unsupported migration features:
4458 * - migration optimization area (pba_of_lba0)
4459 * - descending reshape (ascending_migr)
4460 * Parameters:
4461 * super : imsm metadata information
4462 * Returns:
4463 * 0 : migration is compatible
4464 * -1 : migration is not compatible
4465 ******************************************************************************/
4466 int check_mpb_migr_compatibility(struct intel_super *super)
4467 {
4468 struct imsm_map *map0, *map1;
4469 struct migr_record *migr_rec = super->migr_rec;
4470 int i;
4471
4472 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4473 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4474
4475 if (dev_iter->vol.migr_state == 1 &&
4476 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4477 /* This device is migrating */
4478 map0 = get_imsm_map(dev_iter, MAP_0);
4479 map1 = get_imsm_map(dev_iter, MAP_1);
4480 if (pba_of_lba0(map0) != pba_of_lba0(map1))
4481 /* migration optimization area was used */
4482 return -1;
4483 if (migr_rec->ascending_migr == 0 &&
4484 migr_rec->dest_depth_per_unit > 0)
4485 /* descending reshape not supported yet */
4486 return -1;
4487 }
4488 }
4489 return 0;
4490 }
4491
4492 static void __free_imsm(struct intel_super *super, int free_disks);
4493
4494 /* load_imsm_mpb - read matrix metadata
4495 * allocates super->mpb to be freed by free_imsm
4496 */
4497 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4498 {
4499 unsigned long long dsize;
4500 unsigned long long sectors;
4501 unsigned int sector_size = super->sector_size;
4502 struct stat;
4503 struct imsm_super *anchor;
4504 __u32 check_sum;
4505
4506 get_dev_size(fd, NULL, &dsize);
4507 if (dsize < 2*sector_size) {
4508 if (devname)
4509 pr_err("%s: device to small for imsm\n",
4510 devname);
4511 return 1;
4512 }
4513
4514 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
4515 if (devname)
4516 pr_err("Cannot seek to anchor block on %s: %s\n",
4517 devname, strerror(errno));
4518 return 1;
4519 }
4520
4521 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
4522 if (devname)
4523 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
4524 return 1;
4525 }
4526 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
4527 if (devname)
4528 pr_err("Cannot read anchor block on %s: %s\n",
4529 devname, strerror(errno));
4530 free(anchor);
4531 return 1;
4532 }
4533
4534 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
4535 if (devname)
4536 pr_err("no IMSM anchor on %s\n", devname);
4537 free(anchor);
4538 return 2;
4539 }
4540
4541 __free_imsm(super, 0);
4542 /* reload capability and hba */
4543
4544 /* capability and hba must be updated with new super allocation */
4545 find_intel_hba_capability(fd, super, devname);
4546 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4547 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
4548 if (devname)
4549 pr_err("unable to allocate %zu byte mpb buffer\n",
4550 super->len);
4551 free(anchor);
4552 return 2;
4553 }
4554 memcpy(super->buf, anchor, sector_size);
4555
4556 sectors = mpb_sectors(anchor, sector_size) - 1;
4557 free(anchor);
4558
4559 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4560 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
4561 pr_err("could not allocate migr_rec buffer\n");
4562 free(super->buf);
4563 super->buf = NULL;
4564 return 2;
4565 }
4566 super->clean_migration_record_by_mdmon = 0;
4567
4568 if (!sectors) {
4569 check_sum = __gen_imsm_checksum(super->anchor);
4570 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4571 if (devname)
4572 pr_err("IMSM checksum %x != %x on %s\n",
4573 check_sum,
4574 __le32_to_cpu(super->anchor->check_sum),
4575 devname);
4576 return 2;
4577 }
4578
4579 return 0;
4580 }
4581
4582 /* read the extended mpb */
4583 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
4584 if (devname)
4585 pr_err("Cannot seek to extended mpb on %s: %s\n",
4586 devname, strerror(errno));
4587 return 1;
4588 }
4589
4590 if ((unsigned int)read(fd, super->buf + sector_size,
4591 super->len - sector_size) != super->len - sector_size) {
4592 if (devname)
4593 pr_err("Cannot read extended mpb on %s: %s\n",
4594 devname, strerror(errno));
4595 return 2;
4596 }
4597
4598 check_sum = __gen_imsm_checksum(super->anchor);
4599 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4600 if (devname)
4601 pr_err("IMSM checksum %x != %x on %s\n",
4602 check_sum, __le32_to_cpu(super->anchor->check_sum),
4603 devname);
4604 return 3;
4605 }
4606
4607 return 0;
4608 }
4609
4610 static int read_imsm_migr_rec(int fd, struct intel_super *super);
4611
4612 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4613 static void clear_hi(struct intel_super *super)
4614 {
4615 struct imsm_super *mpb = super->anchor;
4616 int i, n;
4617 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4618 return;
4619 for (i = 0; i < mpb->num_disks; ++i) {
4620 struct imsm_disk *disk = &mpb->disk[i];
4621 disk->total_blocks_hi = 0;
4622 }
4623 for (i = 0; i < mpb->num_raid_devs; ++i) {
4624 struct imsm_dev *dev = get_imsm_dev(super, i);
4625 for (n = 0; n < 2; ++n) {
4626 struct imsm_map *map = get_imsm_map(dev, n);
4627 if (!map)
4628 continue;
4629 map->pba_of_lba0_hi = 0;
4630 map->blocks_per_member_hi = 0;
4631 map->num_data_stripes_hi = 0;
4632 }
4633 }
4634 }
4635
4636 static int
4637 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4638 {
4639 int err;
4640
4641 err = load_imsm_mpb(fd, super, devname);
4642 if (err)
4643 return err;
4644 if (super->sector_size == 4096)
4645 convert_from_4k(super);
4646 err = load_imsm_disk(fd, super, devname, keep_fd);
4647 if (err)
4648 return err;
4649 err = parse_raid_devices(super);
4650 if (err)
4651 return err;
4652 err = load_bbm_log(super);
4653 clear_hi(super);
4654 return err;
4655 }
4656
4657 static void __free_imsm_disk(struct dl *d, int do_close)
4658 {
4659 if (do_close)
4660 close_fd(&d->fd);
4661 if (d->devname)
4662 free(d->devname);
4663 if (d->e)
4664 free(d->e);
4665 free(d);
4666
4667 }
4668
4669 static void free_imsm_disks(struct intel_super *super)
4670 {
4671 struct dl *d;
4672
4673 while (super->disks) {
4674 d = super->disks;
4675 super->disks = d->next;
4676 __free_imsm_disk(d, 1);
4677 }
4678 while (super->disk_mgmt_list) {
4679 d = super->disk_mgmt_list;
4680 super->disk_mgmt_list = d->next;
4681 __free_imsm_disk(d, 1);
4682 }
4683 while (super->missing) {
4684 d = super->missing;
4685 super->missing = d->next;
4686 __free_imsm_disk(d, 1);
4687 }
4688
4689 }
4690
4691 /* free all the pieces hanging off of a super pointer */
4692 static void __free_imsm(struct intel_super *super, int free_disks)
4693 {
4694 struct intel_hba *elem, *next;
4695
4696 if (super->buf) {
4697 free(super->buf);
4698 super->buf = NULL;
4699 }
4700 /* unlink capability description */
4701 super->orom = NULL;
4702 if (super->migr_rec_buf) {
4703 free(super->migr_rec_buf);
4704 super->migr_rec_buf = NULL;
4705 }
4706 if (free_disks)
4707 free_imsm_disks(super);
4708 free_devlist(super);
4709 elem = super->hba;
4710 while (elem) {
4711 if (elem->path)
4712 free((void *)elem->path);
4713 next = elem->next;
4714 free(elem);
4715 elem = next;
4716 }
4717 if (super->bbm_log)
4718 free(super->bbm_log);
4719 super->hba = NULL;
4720 }
4721
4722 static void free_imsm(struct intel_super *super)
4723 {
4724 __free_imsm(super, 1);
4725 free(super->bb.entries);
4726 free(super);
4727 }
4728
4729 static void free_super_imsm(struct supertype *st)
4730 {
4731 struct intel_super *super = st->sb;
4732
4733 if (!super)
4734 return;
4735
4736 free_imsm(super);
4737 st->sb = NULL;
4738 }
4739
4740 static struct intel_super *alloc_super(void)
4741 {
4742 struct intel_super *super = xcalloc(1, sizeof(*super));
4743
4744 super->current_vol = -1;
4745 super->create_offset = ~((unsigned long long) 0);
4746
4747 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4748 sizeof(struct md_bb_entry));
4749 if (!super->bb.entries) {
4750 free(super);
4751 return NULL;
4752 }
4753
4754 return super;
4755 }
4756
4757 /*
4758 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4759 */
4760 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4761 {
4762 struct sys_dev *hba_name;
4763 int rv = 0;
4764
4765 if (is_fd_valid(fd) && test_partition(fd)) {
4766 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4767 devname);
4768 return 1;
4769 }
4770 if (!is_fd_valid(fd) || check_no_platform()) {
4771 super->orom = NULL;
4772 super->hba = NULL;
4773 return 0;
4774 }
4775 hba_name = find_disk_attached_hba(fd, NULL);
4776 if (!hba_name) {
4777 if (devname)
4778 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4779 devname);
4780 return 1;
4781 }
4782 rv = attach_hba_to_super(super, hba_name);
4783 if (rv == 2) {
4784 if (devname) {
4785 struct intel_hba *hba = super->hba;
4786
4787 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4788 " but the container is assigned to Intel(R) %s %s (",
4789 devname,
4790 get_sys_dev_type(hba_name->type),
4791 hba_name->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4792 "domain" : "RAID controller",
4793 hba_name->pci_id ? : "Err!",
4794 get_sys_dev_type(super->hba->type),
4795 hba->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4796 "domain" : "RAID controller");
4797
4798 while (hba) {
4799 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4800 if (hba->next)
4801 fprintf(stderr, ", ");
4802 hba = hba->next;
4803 }
4804 fprintf(stderr, ").\n"
4805 " Mixing devices attached to different controllers is not allowed.\n");
4806 }
4807 return 2;
4808 }
4809 super->orom = find_imsm_capability(hba_name);
4810 if (!super->orom)
4811 return 3;
4812
4813 return 0;
4814 }
4815
4816 /* find_missing - helper routine for load_super_imsm_all that identifies
4817 * disks that have disappeared from the system. This routine relies on
4818 * the mpb being uptodate, which it is at load time.
4819 */
4820 static int find_missing(struct intel_super *super)
4821 {
4822 int i;
4823 struct imsm_super *mpb = super->anchor;
4824 struct dl *dl;
4825 struct imsm_disk *disk;
4826
4827 for (i = 0; i < mpb->num_disks; i++) {
4828 disk = __get_imsm_disk(mpb, i);
4829 dl = serial_to_dl(disk->serial, super);
4830 if (dl)
4831 continue;
4832
4833 dl = xmalloc(sizeof(*dl));
4834 dl->major = 0;
4835 dl->minor = 0;
4836 dl->fd = -1;
4837 dl->devname = xstrdup("missing");
4838 dl->index = i;
4839 serialcpy(dl->serial, disk->serial);
4840 dl->disk = *disk;
4841 dl->e = NULL;
4842 dl->next = super->missing;
4843 super->missing = dl;
4844 }
4845
4846 return 0;
4847 }
4848
4849 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4850 {
4851 struct intel_disk *idisk = disk_list;
4852
4853 while (idisk) {
4854 if (serialcmp(idisk->disk.serial, serial) == 0)
4855 break;
4856 idisk = idisk->next;
4857 }
4858
4859 return idisk;
4860 }
4861
4862 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4863 struct intel_super *super,
4864 struct intel_disk **disk_list)
4865 {
4866 struct imsm_disk *d = &super->disks->disk;
4867 struct imsm_super *mpb = super->anchor;
4868 int i, j;
4869
4870 for (i = 0; i < tbl_size; i++) {
4871 struct imsm_super *tbl_mpb = table[i]->anchor;
4872 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4873
4874 if (tbl_mpb->family_num == mpb->family_num) {
4875 if (tbl_mpb->check_sum == mpb->check_sum) {
4876 dprintf("mpb from %d:%d matches %d:%d\n",
4877 super->disks->major,
4878 super->disks->minor,
4879 table[i]->disks->major,
4880 table[i]->disks->minor);
4881 break;
4882 }
4883
4884 if (((is_configured(d) && !is_configured(tbl_d)) ||
4885 is_configured(d) == is_configured(tbl_d)) &&
4886 tbl_mpb->generation_num < mpb->generation_num) {
4887 /* current version of the mpb is a
4888 * better candidate than the one in
4889 * super_table, but copy over "cross
4890 * generational" status
4891 */
4892 struct intel_disk *idisk;
4893
4894 dprintf("mpb from %d:%d replaces %d:%d\n",
4895 super->disks->major,
4896 super->disks->minor,
4897 table[i]->disks->major,
4898 table[i]->disks->minor);
4899
4900 idisk = disk_list_get(tbl_d->serial, *disk_list);
4901 if (idisk && is_failed(&idisk->disk))
4902 tbl_d->status |= FAILED_DISK;
4903 break;
4904 } else {
4905 struct intel_disk *idisk;
4906 struct imsm_disk *disk;
4907
4908 /* tbl_mpb is more up to date, but copy
4909 * over cross generational status before
4910 * returning
4911 */
4912 disk = __serial_to_disk(d->serial, mpb, NULL);
4913 if (disk && is_failed(disk))
4914 d->status |= FAILED_DISK;
4915
4916 idisk = disk_list_get(d->serial, *disk_list);
4917 if (idisk) {
4918 idisk->owner = i;
4919 if (disk && is_configured(disk))
4920 idisk->disk.status |= CONFIGURED_DISK;
4921 }
4922
4923 dprintf("mpb from %d:%d prefer %d:%d\n",
4924 super->disks->major,
4925 super->disks->minor,
4926 table[i]->disks->major,
4927 table[i]->disks->minor);
4928
4929 return tbl_size;
4930 }
4931 }
4932 }
4933
4934 if (i >= tbl_size)
4935 table[tbl_size++] = super;
4936 else
4937 table[i] = super;
4938
4939 /* update/extend the merged list of imsm_disk records */
4940 for (j = 0; j < mpb->num_disks; j++) {
4941 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4942 struct intel_disk *idisk;
4943
4944 idisk = disk_list_get(disk->serial, *disk_list);
4945 if (idisk) {
4946 idisk->disk.status |= disk->status;
4947 if (is_configured(&idisk->disk) ||
4948 is_failed(&idisk->disk))
4949 idisk->disk.status &= ~(SPARE_DISK);
4950 } else {
4951 idisk = xcalloc(1, sizeof(*idisk));
4952 idisk->owner = IMSM_UNKNOWN_OWNER;
4953 idisk->disk = *disk;
4954 idisk->next = *disk_list;
4955 *disk_list = idisk;
4956 }
4957
4958 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4959 idisk->owner = i;
4960 }
4961
4962 return tbl_size;
4963 }
4964
4965 static struct intel_super *
4966 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4967 const int owner)
4968 {
4969 struct imsm_super *mpb = super->anchor;
4970 int ok_count = 0;
4971 int i;
4972
4973 for (i = 0; i < mpb->num_disks; i++) {
4974 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4975 struct intel_disk *idisk;
4976
4977 idisk = disk_list_get(disk->serial, disk_list);
4978 if (idisk) {
4979 if (idisk->owner == owner ||
4980 idisk->owner == IMSM_UNKNOWN_OWNER)
4981 ok_count++;
4982 else
4983 dprintf("'%.16s' owner %d != %d\n",
4984 disk->serial, idisk->owner,
4985 owner);
4986 } else {
4987 dprintf("unknown disk %x [%d]: %.16s\n",
4988 __le32_to_cpu(mpb->family_num), i,
4989 disk->serial);
4990 break;
4991 }
4992 }
4993
4994 if (ok_count == mpb->num_disks)
4995 return super;
4996 return NULL;
4997 }
4998
4999 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
5000 {
5001 struct intel_super *s;
5002
5003 for (s = super_list; s; s = s->next) {
5004 if (family_num != s->anchor->family_num)
5005 continue;
5006 pr_err("Conflict, offlining family %#x on '%s'\n",
5007 __le32_to_cpu(family_num), s->disks->devname);
5008 }
5009 }
5010
5011 static struct intel_super *
5012 imsm_thunderdome(struct intel_super **super_list, int len)
5013 {
5014 struct intel_super *super_table[len];
5015 struct intel_disk *disk_list = NULL;
5016 struct intel_super *champion, *spare;
5017 struct intel_super *s, **del;
5018 int tbl_size = 0;
5019 int conflict;
5020 int i;
5021
5022 memset(super_table, 0, sizeof(super_table));
5023 for (s = *super_list; s; s = s->next)
5024 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
5025
5026 for (i = 0; i < tbl_size; i++) {
5027 struct imsm_disk *d;
5028 struct intel_disk *idisk;
5029 struct imsm_super *mpb = super_table[i]->anchor;
5030
5031 s = super_table[i];
5032 d = &s->disks->disk;
5033
5034 /* 'd' must appear in merged disk list for its
5035 * configuration to be valid
5036 */
5037 idisk = disk_list_get(d->serial, disk_list);
5038 if (idisk && idisk->owner == i)
5039 s = validate_members(s, disk_list, i);
5040 else
5041 s = NULL;
5042
5043 if (!s)
5044 dprintf("marking family: %#x from %d:%d offline\n",
5045 mpb->family_num,
5046 super_table[i]->disks->major,
5047 super_table[i]->disks->minor);
5048 super_table[i] = s;
5049 }
5050
5051 /* This is where the mdadm implementation differs from the Windows
5052 * driver which has no strict concept of a container. We can only
5053 * assemble one family from a container, so when returning a prodigal
5054 * array member to this system the code will not be able to disambiguate
5055 * the container contents that should be assembled ("foreign" versus
5056 * "local"). It requires user intervention to set the orig_family_num
5057 * to a new value to establish a new container. The Windows driver in
5058 * this situation fixes up the volume name in place and manages the
5059 * foreign array as an independent entity.
5060 */
5061 s = NULL;
5062 spare = NULL;
5063 conflict = 0;
5064 for (i = 0; i < tbl_size; i++) {
5065 struct intel_super *tbl_ent = super_table[i];
5066 int is_spare = 0;
5067
5068 if (!tbl_ent)
5069 continue;
5070
5071 if (tbl_ent->anchor->num_raid_devs == 0) {
5072 spare = tbl_ent;
5073 is_spare = 1;
5074 }
5075
5076 if (s && !is_spare) {
5077 show_conflicts(tbl_ent->anchor->family_num, *super_list);
5078 conflict++;
5079 } else if (!s && !is_spare)
5080 s = tbl_ent;
5081 }
5082
5083 if (!s)
5084 s = spare;
5085 if (!s) {
5086 champion = NULL;
5087 goto out;
5088 }
5089 champion = s;
5090
5091 if (conflict)
5092 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
5093 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
5094
5095 /* collect all dl's onto 'champion', and update them to
5096 * champion's version of the status
5097 */
5098 for (s = *super_list; s; s = s->next) {
5099 struct imsm_super *mpb = champion->anchor;
5100 struct dl *dl = s->disks;
5101
5102 if (s == champion)
5103 continue;
5104
5105 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
5106
5107 for (i = 0; i < mpb->num_disks; i++) {
5108 struct imsm_disk *disk;
5109
5110 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
5111 if (disk) {
5112 dl->disk = *disk;
5113 /* only set index on disks that are a member of
5114 * a populated contianer, i.e. one with
5115 * raid_devs
5116 */
5117 if (is_failed(&dl->disk))
5118 dl->index = -2;
5119 else if (is_spare(&dl->disk))
5120 dl->index = -1;
5121 break;
5122 }
5123 }
5124
5125 if (i >= mpb->num_disks) {
5126 struct intel_disk *idisk;
5127
5128 idisk = disk_list_get(dl->serial, disk_list);
5129 if (idisk && is_spare(&idisk->disk) &&
5130 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5131 dl->index = -1;
5132 else {
5133 dl->index = -2;
5134 continue;
5135 }
5136 }
5137
5138 dl->next = champion->disks;
5139 champion->disks = dl;
5140 s->disks = NULL;
5141 }
5142
5143 /* delete 'champion' from super_list */
5144 for (del = super_list; *del; ) {
5145 if (*del == champion) {
5146 *del = (*del)->next;
5147 break;
5148 } else
5149 del = &(*del)->next;
5150 }
5151 champion->next = NULL;
5152
5153 out:
5154 while (disk_list) {
5155 struct intel_disk *idisk = disk_list;
5156
5157 disk_list = disk_list->next;
5158 free(idisk);
5159 }
5160
5161 return champion;
5162 }
5163
5164 static int
5165 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
5166 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
5167 int major, int minor, int keep_fd);
5168 static int
5169 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5170 int *max, int keep_fd);
5171
5172 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
5173 char *devname, struct md_list *devlist,
5174 int keep_fd)
5175 {
5176 struct intel_super *super_list = NULL;
5177 struct intel_super *super = NULL;
5178 int err = 0;
5179 int i = 0;
5180
5181 if (is_fd_valid(fd))
5182 /* 'fd' is an opened container */
5183 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5184 else
5185 /* get super block from devlist devices */
5186 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
5187 if (err)
5188 goto error;
5189 /* all mpbs enter, maybe one leaves */
5190 super = imsm_thunderdome(&super_list, i);
5191 if (!super) {
5192 err = 1;
5193 goto error;
5194 }
5195
5196 if (find_missing(super) != 0) {
5197 free_imsm(super);
5198 err = 2;
5199 goto error;
5200 }
5201
5202 /* load migration record */
5203 err = load_imsm_migr_rec(super);
5204 if (err == -1) {
5205 /* migration is in progress,
5206 * but migr_rec cannot be loaded,
5207 */
5208 err = 4;
5209 goto error;
5210 }
5211
5212 /* Check migration compatibility */
5213 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
5214 pr_err("Unsupported migration detected");
5215 if (devname)
5216 fprintf(stderr, " on %s\n", devname);
5217 else
5218 fprintf(stderr, " (IMSM).\n");
5219
5220 err = 5;
5221 goto error;
5222 }
5223
5224 err = 0;
5225
5226 error:
5227 while (super_list) {
5228 struct intel_super *s = super_list;
5229
5230 super_list = super_list->next;
5231 free_imsm(s);
5232 }
5233
5234 if (err)
5235 return err;
5236
5237 *sbp = super;
5238 if (is_fd_valid(fd))
5239 strcpy(st->container_devnm, fd2devnm(fd));
5240 else
5241 st->container_devnm[0] = 0;
5242 if (err == 0 && st->ss == NULL) {
5243 st->ss = &super_imsm;
5244 st->minor_version = 0;
5245 st->max_devs = IMSM_MAX_DEVICES;
5246 }
5247 return 0;
5248 }
5249
5250 static int
5251 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5252 int *max, int keep_fd)
5253 {
5254 struct md_list *tmpdev;
5255 int err = 0;
5256 int i = 0;
5257
5258 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5259 if (tmpdev->used != 1)
5260 continue;
5261 if (tmpdev->container == 1) {
5262 int lmax = 0;
5263 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
5264 if (!is_fd_valid(fd)) {
5265 pr_err("cannot open device %s: %s\n",
5266 tmpdev->devname, strerror(errno));
5267 err = 8;
5268 goto error;
5269 }
5270 err = get_sra_super_block(fd, super_list,
5271 tmpdev->devname, &lmax,
5272 keep_fd);
5273 i += lmax;
5274 close(fd);
5275 if (err) {
5276 err = 7;
5277 goto error;
5278 }
5279 } else {
5280 int major = major(tmpdev->st_rdev);
5281 int minor = minor(tmpdev->st_rdev);
5282 err = get_super_block(super_list,
5283 NULL,
5284 tmpdev->devname,
5285 major, minor,
5286 keep_fd);
5287 i++;
5288 if (err) {
5289 err = 6;
5290 goto error;
5291 }
5292 }
5293 }
5294 error:
5295 *max = i;
5296 return err;
5297 }
5298
5299 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
5300 int major, int minor, int keep_fd)
5301 {
5302 struct intel_super *s;
5303 char nm[32];
5304 int dfd = -1;
5305 int err = 0;
5306 int retry;
5307
5308 s = alloc_super();
5309 if (!s) {
5310 err = 1;
5311 goto error;
5312 }
5313
5314 sprintf(nm, "%d:%d", major, minor);
5315 dfd = dev_open(nm, O_RDWR);
5316 if (!is_fd_valid(dfd)) {
5317 err = 2;
5318 goto error;
5319 }
5320
5321 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5322 err = 2;
5323 goto error;
5324 }
5325 find_intel_hba_capability(dfd, s, devname);
5326 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5327
5328 /* retry the load if we might have raced against mdmon */
5329 if (err == 3 && devnm && mdmon_running(devnm))
5330 for (retry = 0; retry < 3; retry++) {
5331 sleep_for(0, MSEC_TO_NSEC(3), true);
5332 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5333 if (err != 3)
5334 break;
5335 }
5336 error:
5337 if (!err) {
5338 s->next = *super_list;
5339 *super_list = s;
5340 } else {
5341 if (s)
5342 free_imsm(s);
5343 close_fd(&dfd);
5344 }
5345 if (!keep_fd)
5346 close_fd(&dfd);
5347 return err;
5348
5349 }
5350
5351 static int
5352 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5353 {
5354 struct mdinfo *sra;
5355 char *devnm;
5356 struct mdinfo *sd;
5357 int err = 0;
5358 int i = 0;
5359 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
5360 if (!sra)
5361 return 1;
5362
5363 if (sra->array.major_version != -1 ||
5364 sra->array.minor_version != -2 ||
5365 strcmp(sra->text_version, "imsm") != 0) {
5366 err = 1;
5367 goto error;
5368 }
5369 /* load all mpbs */
5370 devnm = fd2devnm(fd);
5371 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
5372 if (get_super_block(super_list, devnm, devname,
5373 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5374 err = 7;
5375 goto error;
5376 }
5377 }
5378 error:
5379 sysfs_free(sra);
5380 *max = i;
5381 return err;
5382 }
5383
5384 static int load_container_imsm(struct supertype *st, int fd, char *devname)
5385 {
5386 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
5387 }
5388
5389 static int load_super_imsm(struct supertype *st, int fd, char *devname)
5390 {
5391 struct intel_super *super;
5392 int rv;
5393 int retry;
5394
5395 if (test_partition(fd))
5396 /* IMSM not allowed on partitions */
5397 return 1;
5398
5399 free_super_imsm(st);
5400
5401 super = alloc_super();
5402 if (!super)
5403 return 1;
5404
5405 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5406 free_imsm(super);
5407 return 1;
5408 }
5409 /* Load hba and capabilities if they exist.
5410 * But do not preclude loading metadata in case capabilities or hba are
5411 * non-compliant and ignore_hw_compat is set.
5412 */
5413 rv = find_intel_hba_capability(fd, super, devname);
5414 /* no orom/efi or non-intel hba of the disk */
5415 if (rv != 0 && st->ignore_hw_compat == 0) {
5416 if (devname)
5417 pr_err("No OROM/EFI properties for %s\n", devname);
5418 free_imsm(super);
5419 return 2;
5420 }
5421 rv = load_and_parse_mpb(fd, super, devname, 0);
5422
5423 /* retry the load if we might have raced against mdmon */
5424 if (rv == 3) {
5425 struct mdstat_ent *mdstat = NULL;
5426 char *name = fd2kname(fd);
5427
5428 if (name)
5429 mdstat = mdstat_by_component(name);
5430
5431 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5432 for (retry = 0; retry < 3; retry++) {
5433 sleep_for(0, MSEC_TO_NSEC(3), true);
5434 rv = load_and_parse_mpb(fd, super, devname, 0);
5435 if (rv != 3)
5436 break;
5437 }
5438 }
5439
5440 free_mdstat(mdstat);
5441 }
5442
5443 if (rv) {
5444 if (devname)
5445 pr_err("Failed to load all information sections on %s\n", devname);
5446 free_imsm(super);
5447 return rv;
5448 }
5449
5450 st->sb = super;
5451 if (st->ss == NULL) {
5452 st->ss = &super_imsm;
5453 st->minor_version = 0;
5454 st->max_devs = IMSM_MAX_DEVICES;
5455 }
5456
5457 /* load migration record */
5458 if (load_imsm_migr_rec(super) == 0) {
5459 /* Check for unsupported migration features */
5460 if (check_mpb_migr_compatibility(super) != 0) {
5461 pr_err("Unsupported migration detected");
5462 if (devname)
5463 fprintf(stderr, " on %s\n", devname);
5464 else
5465 fprintf(stderr, " (IMSM).\n");
5466 return 3;
5467 }
5468 }
5469
5470 return 0;
5471 }
5472
5473 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5474 {
5475 if (info->level == 1)
5476 return 128;
5477 return info->chunk_size >> 9;
5478 }
5479
5480 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5481 unsigned long long size)
5482 {
5483 if (info->level == 1)
5484 return size * 2;
5485 else
5486 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
5487 }
5488
5489 static void imsm_update_version_info(struct intel_super *super)
5490 {
5491 /* update the version and attributes */
5492 struct imsm_super *mpb = super->anchor;
5493 char *version;
5494 struct imsm_dev *dev;
5495 struct imsm_map *map;
5496 int i;
5497
5498 for (i = 0; i < mpb->num_raid_devs; i++) {
5499 dev = get_imsm_dev(super, i);
5500 map = get_imsm_map(dev, MAP_0);
5501 if (__le32_to_cpu(dev->size_high) > 0)
5502 mpb->attributes |= MPB_ATTRIB_2TB;
5503
5504 /* FIXME detect when an array spans a port multiplier */
5505 #if 0
5506 mpb->attributes |= MPB_ATTRIB_PM;
5507 #endif
5508
5509 if (mpb->num_raid_devs > 1 ||
5510 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5511 version = MPB_VERSION_ATTRIBS;
5512 switch (get_imsm_raid_level(map)) {
5513 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5514 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5515 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5516 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5517 }
5518 } else {
5519 if (map->num_members >= 5)
5520 version = MPB_VERSION_5OR6_DISK_ARRAY;
5521 else if (dev->status == DEV_CLONE_N_GO)
5522 version = MPB_VERSION_CNG;
5523 else if (get_imsm_raid_level(map) == 5)
5524 version = MPB_VERSION_RAID5;
5525 else if (map->num_members >= 3)
5526 version = MPB_VERSION_3OR4_DISK_ARRAY;
5527 else if (get_imsm_raid_level(map) == 1)
5528 version = MPB_VERSION_RAID1;
5529 else
5530 version = MPB_VERSION_RAID0;
5531 }
5532 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5533 }
5534 }
5535
5536 /**
5537 * imsm_check_name() - check imsm naming criteria.
5538 * @super: &intel_super pointer, not NULL.
5539 * @name: name to check.
5540 * @verbose: verbose level.
5541 *
5542 * Name must be no longer than &MAX_RAID_SERIAL_LEN and must be unique across volumes.
5543 *
5544 * Returns: &true if @name matches, &false otherwise.
5545 */
5546 static bool imsm_is_name_allowed(struct intel_super *super, const char * const name,
5547 const int verbose)
5548 {
5549 struct imsm_super *mpb = super->anchor;
5550 int i;
5551
5552 if (is_string_lq(name, MAX_RAID_SERIAL_LEN + 1) == false) {
5553 pr_vrb("imsm: Name \"%s\" is too long\n", name);
5554 return false;
5555 }
5556
5557 for (i = 0; i < mpb->num_raid_devs; i++) {
5558 struct imsm_dev *dev = get_imsm_dev(super, i);
5559
5560 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5561 pr_vrb("imsm: Name \"%s\" already exists\n", name);
5562 return false;
5563 }
5564 }
5565
5566 return true;
5567 }
5568
5569 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5570 struct shape *s, char *name,
5571 char *homehost, int *uuid,
5572 long long data_offset)
5573 {
5574 /* We are creating a volume inside a pre-existing container.
5575 * so st->sb is already set.
5576 */
5577 struct intel_super *super = st->sb;
5578 unsigned int sector_size = super->sector_size;
5579 struct imsm_super *mpb = super->anchor;
5580 struct intel_dev *dv;
5581 struct imsm_dev *dev;
5582 struct imsm_vol *vol;
5583 struct imsm_map *map;
5584 int idx = mpb->num_raid_devs;
5585 int i;
5586 int namelen;
5587 unsigned long long array_blocks;
5588 size_t size_old, size_new;
5589 unsigned int data_disks;
5590 unsigned long long size_per_member;
5591
5592 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
5593 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
5594 return 0;
5595 }
5596
5597 /* ensure the mpb is large enough for the new data */
5598 size_old = __le32_to_cpu(mpb->mpb_size);
5599 size_new = disks_to_mpb_size(info->nr_disks);
5600 if (size_new > size_old) {
5601 void *mpb_new;
5602 size_t size_round = ROUND_UP(size_new, sector_size);
5603
5604 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
5605 pr_err("could not allocate new mpb\n");
5606 return 0;
5607 }
5608 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5609 MIGR_REC_BUF_SECTORS*
5610 MAX_SECTOR_SIZE) != 0) {
5611 pr_err("could not allocate migr_rec buffer\n");
5612 free(super->buf);
5613 free(super);
5614 free(mpb_new);
5615 return 0;
5616 }
5617 memcpy(mpb_new, mpb, size_old);
5618 free(mpb);
5619 mpb = mpb_new;
5620 super->anchor = mpb_new;
5621 mpb->mpb_size = __cpu_to_le32(size_new);
5622 memset(mpb_new + size_old, 0, size_round - size_old);
5623 super->len = size_round;
5624 }
5625 super->current_vol = idx;
5626
5627 /* handle 'failed_disks' by either:
5628 * a) create dummy disk entries in the table if this the first
5629 * volume in the array. We add them here as this is the only
5630 * opportunity to add them. add_to_super_imsm_volume()
5631 * handles the non-failed disks and continues incrementing
5632 * mpb->num_disks.
5633 * b) validate that 'failed_disks' matches the current number
5634 * of missing disks if the container is populated
5635 */
5636 if (super->current_vol == 0) {
5637 mpb->num_disks = 0;
5638 for (i = 0; i < info->failed_disks; i++) {
5639 struct imsm_disk *disk;
5640
5641 mpb->num_disks++;
5642 disk = __get_imsm_disk(mpb, i);
5643 disk->status = CONFIGURED_DISK | FAILED_DISK;
5644 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5645 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5646 "missing:%d", (__u8)i);
5647 }
5648 find_missing(super);
5649 } else {
5650 int missing = 0;
5651 struct dl *d;
5652
5653 for (d = super->missing; d; d = d->next)
5654 missing++;
5655 if (info->failed_disks > missing) {
5656 pr_err("unable to add 'missing' disk to container\n");
5657 return 0;
5658 }
5659 }
5660
5661 if (imsm_is_name_allowed(super, name, 1) == false)
5662 return 0;
5663
5664 dv = xmalloc(sizeof(*dv));
5665 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
5666 /*
5667 * Explicitly allow truncating to not confuse gcc's
5668 * -Werror=stringop-truncation
5669 */
5670 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5671 memcpy(dev->volume, name, namelen);
5672 array_blocks = calc_array_size(info->level, info->raid_disks,
5673 info->layout, info->chunk_size,
5674 s->size * BLOCKS_PER_KB);
5675 data_disks = get_data_disks(info->level, info->layout,
5676 info->raid_disks);
5677 array_blocks = round_size_to_mb(array_blocks, data_disks);
5678 size_per_member = array_blocks / data_disks;
5679
5680 set_imsm_dev_size(dev, array_blocks);
5681 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
5682 vol = &dev->vol;
5683 vol->migr_state = 0;
5684 set_migr_type(dev, MIGR_INIT);
5685 vol->dirty = !info->state;
5686 set_vol_curr_migr_unit(dev, 0);
5687 map = get_imsm_map(dev, MAP_0);
5688 set_pba_of_lba0(map, super->create_offset);
5689 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
5690 map->failed_disk_num = ~0;
5691 if (info->level > 0)
5692 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5693 : IMSM_T_STATE_UNINITIALIZED);
5694 else
5695 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5696 IMSM_T_STATE_NORMAL;
5697 map->ddf = 1;
5698
5699 if (info->level == 1 && info->raid_disks > 2) {
5700 free(dev);
5701 free(dv);
5702 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
5703 return 0;
5704 }
5705
5706 map->raid_level = info->level;
5707 if (info->level == 10)
5708 map->raid_level = 1;
5709 set_num_domains(map);
5710
5711 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5712 set_blocks_per_member(map, info_to_blocks_per_member(info,
5713 size_per_member /
5714 BLOCKS_PER_KB));
5715
5716 map->num_members = info->raid_disks;
5717 update_num_data_stripes(map, array_blocks);
5718 for (i = 0; i < map->num_members; i++) {
5719 /* initialized in add_to_super */
5720 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
5721 }
5722 mpb->num_raid_devs++;
5723 mpb->num_raid_devs_created++;
5724 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
5725
5726 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
5727 dev->rwh_policy = RWH_MULTIPLE_OFF;
5728 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5729 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
5730 } else {
5731 free(dev);
5732 free(dv);
5733 pr_err("imsm does not support consistency policy %s\n",
5734 map_num_s(consistency_policies, s->consistency_policy));
5735 return 0;
5736 }
5737
5738 dv->dev = dev;
5739 dv->index = super->current_vol;
5740 dv->next = super->devlist;
5741 super->devlist = dv;
5742
5743 imsm_update_version_info(super);
5744
5745 return 1;
5746 }
5747
5748 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5749 struct shape *s, char *name,
5750 char *homehost, int *uuid,
5751 unsigned long long data_offset)
5752 {
5753 /* This is primarily called by Create when creating a new array.
5754 * We will then get add_to_super called for each component, and then
5755 * write_init_super called to write it out to each device.
5756 * For IMSM, Create can create on fresh devices or on a pre-existing
5757 * array.
5758 * To create on a pre-existing array a different method will be called.
5759 * This one is just for fresh drives.
5760 */
5761 struct intel_super *super;
5762 struct imsm_super *mpb;
5763 size_t mpb_size;
5764 char *version;
5765
5766 if (data_offset != INVALID_SECTORS) {
5767 pr_err("data-offset not supported by imsm\n");
5768 return 0;
5769 }
5770
5771 if (st->sb)
5772 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
5773 data_offset);
5774
5775 if (info)
5776 mpb_size = disks_to_mpb_size(info->nr_disks);
5777 else
5778 mpb_size = MAX_SECTOR_SIZE;
5779
5780 super = alloc_super();
5781 if (super &&
5782 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5783 free_imsm(super);
5784 super = NULL;
5785 }
5786 if (!super) {
5787 pr_err("could not allocate superblock\n");
5788 return 0;
5789 }
5790 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5791 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
5792 pr_err("could not allocate migr_rec buffer\n");
5793 free(super->buf);
5794 free_imsm(super);
5795 return 0;
5796 }
5797 memset(super->buf, 0, mpb_size);
5798 mpb = super->buf;
5799 mpb->mpb_size = __cpu_to_le32(mpb_size);
5800 st->sb = super;
5801
5802 if (info == NULL) {
5803 /* zeroing superblock */
5804 return 0;
5805 }
5806
5807 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5808
5809 version = (char *) mpb->sig;
5810 strcpy(version, MPB_SIGNATURE);
5811 version += strlen(MPB_SIGNATURE);
5812 strcpy(version, MPB_VERSION_RAID0);
5813
5814 return 1;
5815 }
5816
5817 static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5818 {
5819 unsigned int member_sector_size;
5820
5821 if (!is_fd_valid(dl->fd)) {
5822 pr_err("Invalid file descriptor for %s\n", dl->devname);
5823 return 0;
5824 }
5825
5826 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5827 return 0;
5828 if (member_sector_size != super->sector_size)
5829 return 0;
5830 return 1;
5831 }
5832
5833 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5834 int fd, char *devname)
5835 {
5836 struct intel_super *super = st->sb;
5837 struct imsm_super *mpb = super->anchor;
5838 struct imsm_disk *_disk;
5839 struct imsm_dev *dev;
5840 struct imsm_map *map;
5841 struct dl *dl, *df;
5842 int slot;
5843 int autolayout = 0;
5844
5845 if (!is_fd_valid(fd))
5846 autolayout = 1;
5847
5848 dev = get_imsm_dev(super, super->current_vol);
5849 map = get_imsm_map(dev, MAP_0);
5850
5851 if (! (dk->state & (1<<MD_DISK_SYNC))) {
5852 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5853 devname);
5854 return 1;
5855 }
5856
5857 for (dl = super->disks; dl ; dl = dl->next) {
5858 if (autolayout) {
5859 if (dl->raiddisk == dk->raid_disk)
5860 break;
5861 } else if (dl->major == dk->major && dl->minor == dk->minor)
5862 break;
5863 }
5864
5865 if (!dl) {
5866 if (!autolayout)
5867 pr_err("%s is not a member of the same container.\n",
5868 devname);
5869 return 1;
5870 }
5871
5872 if (!autolayout && super->current_vol > 0) {
5873 int _slot = get_disk_slot_in_dev(super, 0, dl->index);
5874
5875 if (_slot != dk->raid_disk) {
5876 pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n",
5877 dl->devname, _slot, dk->raid_disk);
5878 pr_err("Raid members are in different order than for the first volume, aborting.\n");
5879 return 1;
5880 }
5881 }
5882
5883 if (mpb->num_disks == 0)
5884 if (!get_dev_sector_size(dl->fd, dl->devname,
5885 &super->sector_size))
5886 return 1;
5887
5888 if (!drive_validate_sector_size(super, dl)) {
5889 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5890 return 1;
5891 }
5892
5893 /* add a pristine spare to the metadata */
5894 if (dl->index < 0) {
5895 dl->index = super->anchor->num_disks;
5896 super->anchor->num_disks++;
5897 }
5898 /* Check the device has not already been added */
5899 slot = get_imsm_disk_slot(map, dl->index);
5900 if (slot >= 0 &&
5901 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5902 pr_err("%s has been included in this array twice\n",
5903 devname);
5904 return 1;
5905 }
5906 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5907 dl->disk.status = CONFIGURED_DISK;
5908
5909 /* update size of 'missing' disks to be at least as large as the
5910 * largest acitve member (we only have dummy missing disks when
5911 * creating the first volume)
5912 */
5913 if (super->current_vol == 0) {
5914 for (df = super->missing; df; df = df->next) {
5915 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5916 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5917 _disk = __get_imsm_disk(mpb, df->index);
5918 *_disk = df->disk;
5919 }
5920 }
5921
5922 /* refresh unset/failed slots to point to valid 'missing' entries */
5923 for (df = super->missing; df; df = df->next)
5924 for (slot = 0; slot < mpb->num_disks; slot++) {
5925 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5926
5927 if ((ord & IMSM_ORD_REBUILD) == 0)
5928 continue;
5929 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5930 if (is_gen_migration(dev)) {
5931 struct imsm_map *map2 = get_imsm_map(dev,
5932 MAP_1);
5933 int slot2 = get_imsm_disk_slot(map2, df->index);
5934 if (slot2 < map2->num_members && slot2 >= 0) {
5935 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5936 slot2,
5937 MAP_1);
5938 if ((unsigned)df->index ==
5939 ord_to_idx(ord2))
5940 set_imsm_ord_tbl_ent(map2,
5941 slot2,
5942 df->index |
5943 IMSM_ORD_REBUILD);
5944 }
5945 }
5946 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5947 break;
5948 }
5949
5950 /* if we are creating the first raid device update the family number */
5951 if (super->current_vol == 0) {
5952 __u32 sum;
5953 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5954
5955 _disk = __get_imsm_disk(mpb, dl->index);
5956 if (!_disk) {
5957 pr_err("BUG mpb setup error\n");
5958 return 1;
5959 }
5960 *_dev = *dev;
5961 *_disk = dl->disk;
5962 sum = random32();
5963 sum += __gen_imsm_checksum(mpb);
5964 mpb->family_num = __cpu_to_le32(sum);
5965 mpb->orig_family_num = mpb->family_num;
5966 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
5967 }
5968 super->current_disk = dl;
5969 return 0;
5970 }
5971
5972 /* mark_spare()
5973 * Function marks disk as spare and restores disk serial
5974 * in case it was previously marked as failed by takeover operation
5975 * reruns:
5976 * -1 : critical error
5977 * 0 : disk is marked as spare but serial is not set
5978 * 1 : success
5979 */
5980 int mark_spare(struct dl *disk)
5981 {
5982 __u8 serial[MAX_RAID_SERIAL_LEN];
5983 int ret_val = -1;
5984
5985 if (!disk)
5986 return ret_val;
5987
5988 ret_val = 0;
5989 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
5990 /* Restore disk serial number, because takeover marks disk
5991 * as failed and adds to serial ':0' before it becomes
5992 * a spare disk.
5993 */
5994 serialcpy(disk->serial, serial);
5995 serialcpy(disk->disk.serial, serial);
5996 ret_val = 1;
5997 }
5998 disk->disk.status = SPARE_DISK;
5999 disk->index = -1;
6000
6001 return ret_val;
6002 }
6003
6004
6005 static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
6006
6007 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
6008 int fd, char *devname,
6009 unsigned long long data_offset)
6010 {
6011 struct intel_super *super = st->sb;
6012 struct dl *dd;
6013 unsigned long long size;
6014 unsigned int member_sector_size;
6015 __u32 id;
6016 int rv;
6017 struct stat stb;
6018
6019 /* If we are on an RAID enabled platform check that the disk is
6020 * attached to the raid controller.
6021 * We do not need to test disks attachment for container based additions,
6022 * they shall be already tested when container was created/assembled.
6023 */
6024 rv = find_intel_hba_capability(fd, super, devname);
6025 /* no orom/efi or non-intel hba of the disk */
6026 if (rv != 0) {
6027 dprintf("capability: %p fd: %d ret: %d\n",
6028 super->orom, fd, rv);
6029 return 1;
6030 }
6031
6032 if (super->current_vol >= 0)
6033 return add_to_super_imsm_volume(st, dk, fd, devname);
6034
6035 fstat(fd, &stb);
6036 dd = xcalloc(sizeof(*dd), 1);
6037 dd->major = major(stb.st_rdev);
6038 dd->minor = minor(stb.st_rdev);
6039 dd->devname = devname ? xstrdup(devname) : NULL;
6040 dd->fd = fd;
6041 dd->e = NULL;
6042 dd->action = DISK_ADD;
6043 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
6044 if (rv) {
6045 pr_err("failed to retrieve scsi serial, aborting\n");
6046 __free_imsm_disk(dd, 0);
6047 abort();
6048 }
6049
6050 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
6051 (super->hba->type == SYS_DEV_VMD))) {
6052 int i;
6053 char cntrl_path[PATH_MAX];
6054 char *cntrl_name;
6055 char pci_dev_path[PATH_MAX];
6056
6057 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
6058 !diskfd_to_devpath(fd, 1, cntrl_path)) {
6059 pr_err("failed to get dev paths, aborting\n");
6060 __free_imsm_disk(dd, 0);
6061 return 1;
6062 }
6063
6064 cntrl_name = basename(cntrl_path);
6065 if (is_multipath_nvme(fd))
6066 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
6067 cntrl_name);
6068
6069 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
6070 /*
6071 * If Intel's NVMe drive has serial ended with
6072 * "-A","-B","-1" or "-2" it means that this is "x8"
6073 * device (double drive on single PCIe card).
6074 * User should be warned about potential data loss.
6075 */
6076 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
6077 /* Skip empty character at the end */
6078 if (dd->serial[i] == 0)
6079 continue;
6080
6081 if (((dd->serial[i] == 'A') ||
6082 (dd->serial[i] == 'B') ||
6083 (dd->serial[i] == '1') ||
6084 (dd->serial[i] == '2')) &&
6085 (dd->serial[i-1] == '-'))
6086 pr_err("\tThe action you are about to take may put your data at risk.\n"
6087 "\tPlease note that x8 devices may consist of two separate x4 devices "
6088 "located on a single PCIe port.\n"
6089 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
6090 break;
6091 }
6092 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
6093 !imsm_orom_has_tpv_support(super->orom)) {
6094 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
6095 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
6096 __free_imsm_disk(dd, 0);
6097 return 1;
6098 }
6099 }
6100
6101 get_dev_size(fd, NULL, &size);
6102 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
6103 __free_imsm_disk(dd, 0);
6104 return 1;
6105 }
6106
6107 if (super->sector_size == 0) {
6108 /* this a first device, so sector_size is not set yet */
6109 super->sector_size = member_sector_size;
6110 }
6111
6112 /* clear migr_rec when adding disk to container */
6113 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6114 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
6115 SEEK_SET) >= 0) {
6116 if ((unsigned int)write(fd, super->migr_rec_buf,
6117 MIGR_REC_BUF_SECTORS*member_sector_size) !=
6118 MIGR_REC_BUF_SECTORS*member_sector_size)
6119 perror("Write migr_rec failed");
6120 }
6121
6122 size /= 512;
6123 serialcpy(dd->disk.serial, dd->serial);
6124 set_total_blocks(&dd->disk, size);
6125 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6126 struct imsm_super *mpb = super->anchor;
6127 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6128 }
6129 mark_spare(dd);
6130 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
6131 dd->disk.scsi_id = __cpu_to_le32(id);
6132 else
6133 dd->disk.scsi_id = __cpu_to_le32(0);
6134
6135 if (st->update_tail) {
6136 dd->next = super->disk_mgmt_list;
6137 super->disk_mgmt_list = dd;
6138 } else {
6139 /* this is called outside of mdmon
6140 * write initial spare metadata
6141 * mdmon will overwrite it.
6142 */
6143 dd->next = super->disks;
6144 super->disks = dd;
6145 write_super_imsm_spare(super, dd);
6146 }
6147
6148 return 0;
6149 }
6150
6151 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6152 {
6153 struct intel_super *super = st->sb;
6154 struct dl *dd;
6155
6156 /* remove from super works only in mdmon - for communication
6157 * manager - monitor. Check if communication memory buffer
6158 * is prepared.
6159 */
6160 if (!st->update_tail) {
6161 pr_err("shall be used in mdmon context only\n");
6162 return 1;
6163 }
6164 dd = xcalloc(1, sizeof(*dd));
6165 dd->major = dk->major;
6166 dd->minor = dk->minor;
6167 dd->fd = -1;
6168 mark_spare(dd);
6169 dd->action = DISK_REMOVE;
6170
6171 dd->next = super->disk_mgmt_list;
6172 super->disk_mgmt_list = dd;
6173
6174 return 0;
6175 }
6176
6177 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6178
6179 static union {
6180 char buf[MAX_SECTOR_SIZE];
6181 struct imsm_super anchor;
6182 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
6183
6184
6185 static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
6186 {
6187 struct imsm_super *mpb = super->anchor;
6188 struct imsm_super *spare = &spare_record.anchor;
6189 __u32 sum;
6190
6191 if (d->index != -1)
6192 return 1;
6193
6194 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6195 spare->generation_num = __cpu_to_le32(1UL);
6196 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
6197 spare->num_disks = 1;
6198 spare->num_raid_devs = 0;
6199 spare->cache_size = mpb->cache_size;
6200 spare->pwr_cycle_count = __cpu_to_le32(1);
6201
6202 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6203 MPB_SIGNATURE MPB_VERSION_RAID0);
6204
6205 spare->disk[0] = d->disk;
6206 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6207 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6208
6209 if (super->sector_size == 4096)
6210 convert_to_4k_imsm_disk(&spare->disk[0]);
6211
6212 sum = __gen_imsm_checksum(spare);
6213 spare->family_num = __cpu_to_le32(sum);
6214 spare->orig_family_num = 0;
6215 sum = __gen_imsm_checksum(spare);
6216 spare->check_sum = __cpu_to_le32(sum);
6217
6218 if (store_imsm_mpb(d->fd, spare)) {
6219 pr_err("failed for device %d:%d %s\n",
6220 d->major, d->minor, strerror(errno));
6221 return 1;
6222 }
6223
6224 return 0;
6225 }
6226 /* spare records have their own family number and do not have any defined raid
6227 * devices
6228 */
6229 static int write_super_imsm_spares(struct intel_super *super, int doclose)
6230 {
6231 struct dl *d;
6232
6233 for (d = super->disks; d; d = d->next) {
6234 if (d->index != -1)
6235 continue;
6236
6237 if (write_super_imsm_spare(super, d))
6238 return 1;
6239
6240 if (doclose)
6241 close_fd(&d->fd);
6242 }
6243
6244 return 0;
6245 }
6246
6247 static int write_super_imsm(struct supertype *st, int doclose)
6248 {
6249 struct intel_super *super = st->sb;
6250 unsigned int sector_size = super->sector_size;
6251 struct imsm_super *mpb = super->anchor;
6252 struct dl *d;
6253 __u32 generation;
6254 __u32 sum;
6255 int spares = 0;
6256 int i;
6257 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
6258 int num_disks = 0;
6259 int clear_migration_record = 1;
6260 __u32 bbm_log_size;
6261
6262 /* 'generation' is incremented everytime the metadata is written */
6263 generation = __le32_to_cpu(mpb->generation_num);
6264 generation++;
6265 mpb->generation_num = __cpu_to_le32(generation);
6266
6267 /* fix up cases where previous mdadm releases failed to set
6268 * orig_family_num
6269 */
6270 if (mpb->orig_family_num == 0)
6271 mpb->orig_family_num = mpb->family_num;
6272
6273 for (d = super->disks; d; d = d->next) {
6274 if (d->index == -1)
6275 spares++;
6276 else {
6277 mpb->disk[d->index] = d->disk;
6278 num_disks++;
6279 }
6280 }
6281 for (d = super->missing; d; d = d->next) {
6282 mpb->disk[d->index] = d->disk;
6283 num_disks++;
6284 }
6285 mpb->num_disks = num_disks;
6286 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
6287
6288 for (i = 0; i < mpb->num_raid_devs; i++) {
6289 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
6290 struct imsm_dev *dev2 = get_imsm_dev(super, i);
6291
6292 imsm_copy_dev(dev, dev2);
6293 mpb_size += sizeof_imsm_dev(dev, 0);
6294
6295 if (is_gen_migration(dev2))
6296 clear_migration_record = 0;
6297 }
6298
6299 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6300
6301 if (bbm_log_size) {
6302 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6303 mpb->attributes |= MPB_ATTRIB_BBM;
6304 } else
6305 mpb->attributes &= ~MPB_ATTRIB_BBM;
6306
6307 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6308 mpb_size += bbm_log_size;
6309 mpb->mpb_size = __cpu_to_le32(mpb_size);
6310
6311 #ifdef DEBUG
6312 assert(super->len == 0 || mpb_size <= super->len);
6313 #endif
6314
6315 /* recalculate checksum */
6316 sum = __gen_imsm_checksum(mpb);
6317 mpb->check_sum = __cpu_to_le32(sum);
6318
6319 if (super->clean_migration_record_by_mdmon) {
6320 clear_migration_record = 1;
6321 super->clean_migration_record_by_mdmon = 0;
6322 }
6323 if (clear_migration_record)
6324 memset(super->migr_rec_buf, 0,
6325 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6326
6327 if (sector_size == 4096)
6328 convert_to_4k(super);
6329
6330 /* write the mpb for disks that compose raid devices */
6331 for (d = super->disks; d ; d = d->next) {
6332 if (d->index < 0 || is_failed(&d->disk))
6333 continue;
6334
6335 if (clear_migration_record) {
6336 unsigned long long dsize;
6337
6338 get_dev_size(d->fd, NULL, &dsize);
6339 if (lseek64(d->fd, dsize - sector_size,
6340 SEEK_SET) >= 0) {
6341 if ((unsigned int)write(d->fd,
6342 super->migr_rec_buf,
6343 MIGR_REC_BUF_SECTORS*sector_size) !=
6344 MIGR_REC_BUF_SECTORS*sector_size)
6345 perror("Write migr_rec failed");
6346 }
6347 }
6348
6349 if (store_imsm_mpb(d->fd, mpb))
6350 fprintf(stderr,
6351 "failed for device %d:%d (fd: %d)%s\n",
6352 d->major, d->minor,
6353 d->fd, strerror(errno));
6354
6355 if (doclose)
6356 close_fd(&d->fd);
6357 }
6358
6359 if (spares)
6360 return write_super_imsm_spares(super, doclose);
6361
6362 return 0;
6363 }
6364
6365 static int create_array(struct supertype *st, int dev_idx)
6366 {
6367 size_t len;
6368 struct imsm_update_create_array *u;
6369 struct intel_super *super = st->sb;
6370 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
6371 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6372 struct disk_info *inf;
6373 struct imsm_disk *disk;
6374 int i;
6375
6376 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6377 sizeof(*inf) * map->num_members;
6378 u = xmalloc(len);
6379 u->type = update_create_array;
6380 u->dev_idx = dev_idx;
6381 imsm_copy_dev(&u->dev, dev);
6382 inf = get_disk_info(u);
6383 for (i = 0; i < map->num_members; i++) {
6384 int idx = get_imsm_disk_idx(dev, i, MAP_X);
6385
6386 disk = get_imsm_disk(super, idx);
6387 if (!disk)
6388 disk = get_imsm_missing(super, idx);
6389 serialcpy(inf[i].serial, disk->serial);
6390 }
6391 append_metadata_update(st, u, len);
6392
6393 return 0;
6394 }
6395
6396 static int mgmt_disk(struct supertype *st)
6397 {
6398 struct intel_super *super = st->sb;
6399 size_t len;
6400 struct imsm_update_add_remove_disk *u;
6401
6402 if (!super->disk_mgmt_list)
6403 return 0;
6404
6405 len = sizeof(*u);
6406 u = xmalloc(len);
6407 u->type = update_add_remove_disk;
6408 append_metadata_update(st, u, len);
6409
6410 return 0;
6411 }
6412
6413 __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6414
6415 static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6416 {
6417 struct ppl_header *ppl_hdr = buf;
6418 int ret;
6419
6420 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6421
6422 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6423 ret = -errno;
6424 perror("Failed to seek to PPL header location");
6425 return ret;
6426 }
6427
6428 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6429 ret = -errno;
6430 perror("Write PPL header failed");
6431 return ret;
6432 }
6433
6434 fsync(fd);
6435
6436 return 0;
6437 }
6438
6439 static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6440 {
6441 struct intel_super *super = st->sb;
6442 void *buf;
6443 struct ppl_header *ppl_hdr;
6444 int ret;
6445
6446 /* first clear entire ppl space */
6447 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6448 if (ret)
6449 return ret;
6450
6451 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
6452 if (ret) {
6453 pr_err("Failed to allocate PPL header buffer\n");
6454 return -ret;
6455 }
6456
6457 memset(buf, 0, PPL_HEADER_SIZE);
6458 ppl_hdr = buf;
6459 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6460 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6461
6462 if (info->mismatch_cnt) {
6463 /*
6464 * We are overwriting an invalid ppl. Make one entry with wrong
6465 * checksum to prevent the kernel from skipping resync.
6466 */
6467 ppl_hdr->entries_count = __cpu_to_le32(1);
6468 ppl_hdr->entries[0].checksum = ~0;
6469 }
6470
6471 ret = write_ppl_header(info->ppl_sector, fd, buf);
6472
6473 free(buf);
6474 return ret;
6475 }
6476
6477 static int is_rebuilding(struct imsm_dev *dev);
6478
6479 static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6480 struct mdinfo *disk)
6481 {
6482 struct intel_super *super = st->sb;
6483 struct dl *d;
6484 void *buf_orig, *buf, *buf_prev = NULL;
6485 int ret = 0;
6486 struct ppl_header *ppl_hdr = NULL;
6487 __u32 crc;
6488 struct imsm_dev *dev;
6489 __u32 idx;
6490 unsigned int i;
6491 unsigned long long ppl_offset = 0;
6492 unsigned long long prev_gen_num = 0;
6493
6494 if (disk->disk.raid_disk < 0)
6495 return 0;
6496
6497 dev = get_imsm_dev(super, info->container_member);
6498 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
6499 d = get_imsm_dl_disk(super, idx);
6500
6501 if (!d || d->index < 0 || is_failed(&d->disk))
6502 return 0;
6503
6504 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6505 pr_err("Failed to allocate PPL header buffer\n");
6506 return -1;
6507 }
6508 buf = buf_orig;
6509
6510 ret = 1;
6511 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
6512 void *tmp;
6513
6514 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
6515
6516 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6517 SEEK_SET) < 0) {
6518 perror("Failed to seek to PPL header location");
6519 ret = -1;
6520 break;
6521 }
6522
6523 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6524 perror("Read PPL header failed");
6525 ret = -1;
6526 break;
6527 }
6528
6529 ppl_hdr = buf;
6530
6531 crc = __le32_to_cpu(ppl_hdr->checksum);
6532 ppl_hdr->checksum = 0;
6533
6534 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6535 dprintf("Wrong PPL header checksum on %s\n",
6536 d->devname);
6537 break;
6538 }
6539
6540 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6541 /* previous was newest, it was already checked */
6542 break;
6543 }
6544
6545 if ((__le32_to_cpu(ppl_hdr->signature) !=
6546 super->anchor->orig_family_num)) {
6547 dprintf("Wrong PPL header signature on %s\n",
6548 d->devname);
6549 ret = 1;
6550 break;
6551 }
6552
6553 ret = 0;
6554 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
6555
6556 ppl_offset += PPL_HEADER_SIZE;
6557 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6558 ppl_offset +=
6559 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
6560
6561 if (!buf_prev)
6562 buf_prev = buf + PPL_HEADER_SIZE;
6563 tmp = buf_prev;
6564 buf_prev = buf;
6565 buf = tmp;
6566 }
6567
6568 if (buf_prev) {
6569 buf = buf_prev;
6570 ppl_hdr = buf_prev;
6571 }
6572
6573 /*
6574 * Update metadata to use mutliple PPLs area (1MB).
6575 * This is done once for all RAID members
6576 */
6577 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6578 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6579 char subarray[20];
6580 struct mdinfo *member_dev;
6581
6582 sprintf(subarray, "%d", info->container_member);
6583
6584 if (mdmon_running(st->container_devnm))
6585 st->update_tail = &st->updates;
6586
6587 if (st->ss->update_subarray(st, subarray, UOPT_PPL, NULL)) {
6588 pr_err("Failed to update subarray %s\n",
6589 subarray);
6590 } else {
6591 if (st->update_tail)
6592 flush_metadata_updates(st);
6593 else
6594 st->ss->sync_metadata(st);
6595 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6596 for (member_dev = info->devs; member_dev;
6597 member_dev = member_dev->next)
6598 member_dev->ppl_size =
6599 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6600 }
6601 }
6602
6603 if (ret == 1) {
6604 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6605
6606 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6607 (map->map_state == IMSM_T_STATE_NORMAL &&
6608 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
6609 (is_rebuilding(dev) &&
6610 vol_curr_migr_unit(dev) == 0 &&
6611 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
6612 ret = st->ss->write_init_ppl(st, info, d->fd);
6613 else
6614 info->mismatch_cnt++;
6615 } else if (ret == 0 &&
6616 ppl_hdr->entries_count == 0 &&
6617 is_rebuilding(dev) &&
6618 info->resync_start == 0) {
6619 /*
6620 * The header has no entries - add a single empty entry and
6621 * rewrite the header to prevent the kernel from going into
6622 * resync after an interrupted rebuild.
6623 */
6624 ppl_hdr->entries_count = __cpu_to_le32(1);
6625 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
6626 }
6627
6628 free(buf_orig);
6629
6630 return ret;
6631 }
6632
6633 static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6634 {
6635 struct intel_super *super = st->sb;
6636 struct dl *d;
6637 int ret = 0;
6638
6639 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6640 info->array.level != 5)
6641 return 0;
6642
6643 for (d = super->disks; d ; d = d->next) {
6644 if (d->index < 0 || is_failed(&d->disk))
6645 continue;
6646
6647 ret = st->ss->write_init_ppl(st, info, d->fd);
6648 if (ret)
6649 break;
6650 }
6651
6652 return ret;
6653 }
6654
6655 /*******************************************************************************
6656 * Function: write_init_bitmap_imsm_vol
6657 * Description: Write a bitmap header and prepares the area for the bitmap.
6658 * Parameters:
6659 * st : supertype information
6660 * vol_idx : the volume index to use
6661 *
6662 * Returns:
6663 * 0 : success
6664 * -1 : fail
6665 ******************************************************************************/
6666 static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6667 {
6668 struct intel_super *super = st->sb;
6669 int prev_current_vol = super->current_vol;
6670 struct dl *d;
6671 int ret = 0;
6672
6673 super->current_vol = vol_idx;
6674 for (d = super->disks; d; d = d->next) {
6675 if (d->index < 0 || is_failed(&d->disk))
6676 continue;
6677 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6678 if (ret)
6679 break;
6680 }
6681 super->current_vol = prev_current_vol;
6682 return ret;
6683 }
6684
6685 /*******************************************************************************
6686 * Function: write_init_bitmap_imsm_all
6687 * Description: Write a bitmap header and prepares the area for the bitmap.
6688 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6689 * Parameters:
6690 * st : supertype information
6691 * info : info about the volume where the bitmap should be written
6692 * vol_idx : the volume index to use
6693 *
6694 * Returns:
6695 * 0 : success
6696 * -1 : fail
6697 ******************************************************************************/
6698 static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6699 int vol_idx)
6700 {
6701 int ret = 0;
6702
6703 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6704 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6705
6706 return ret;
6707 }
6708
6709 static int write_init_super_imsm(struct supertype *st)
6710 {
6711 struct intel_super *super = st->sb;
6712 int current_vol = super->current_vol;
6713 int rv = 0;
6714 struct mdinfo info;
6715
6716 getinfo_super_imsm(st, &info, NULL);
6717
6718 /* we are done with current_vol reset it to point st at the container */
6719 super->current_vol = -1;
6720
6721 if (st->update_tail) {
6722 /* queue the recently created array / added disk
6723 * as a metadata update */
6724
6725 /* determine if we are creating a volume or adding a disk */
6726 if (current_vol < 0) {
6727 /* in the mgmt (add/remove) disk case we are running
6728 * in mdmon context, so don't close fd's
6729 */
6730 rv = mgmt_disk(st);
6731 } else {
6732 /* adding the second volume to the array */
6733 rv = write_init_ppl_imsm_all(st, &info);
6734 if (!rv)
6735 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6736 if (!rv)
6737 rv = create_array(st, current_vol);
6738 }
6739 } else {
6740 struct dl *d;
6741 for (d = super->disks; d; d = d->next)
6742 Kill(d->devname, NULL, 0, -1, 1);
6743 if (current_vol >= 0) {
6744 rv = write_init_ppl_imsm_all(st, &info);
6745 if (!rv)
6746 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6747 }
6748
6749 if (!rv)
6750 rv = write_super_imsm(st, 1);
6751 }
6752
6753 return rv;
6754 }
6755
6756 static int store_super_imsm(struct supertype *st, int fd)
6757 {
6758 struct intel_super *super = st->sb;
6759 struct imsm_super *mpb = super ? super->anchor : NULL;
6760
6761 if (!mpb)
6762 return 1;
6763
6764 if (super->sector_size == 4096)
6765 convert_to_4k(super);
6766 return store_imsm_mpb(fd, mpb);
6767 }
6768
6769 static int validate_geometry_imsm_container(struct supertype *st, int level,
6770 int raiddisks,
6771 unsigned long long data_offset,
6772 char *dev,
6773 unsigned long long *freesize,
6774 int verbose)
6775 {
6776 int fd;
6777 unsigned long long ldsize;
6778 struct intel_super *super = NULL;
6779 int rv = 0;
6780
6781 if (!is_container(level))
6782 return 0;
6783 if (!dev)
6784 return 1;
6785
6786 fd = dev_open(dev, O_RDONLY|O_EXCL);
6787 if (!is_fd_valid(fd)) {
6788 pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno));
6789 return 0;
6790 }
6791 if (!get_dev_size(fd, dev, &ldsize))
6792 goto exit;
6793
6794 /* capabilities retrieve could be possible
6795 * note that there is no fd for the disks in array.
6796 */
6797 super = alloc_super();
6798 if (!super)
6799 goto exit;
6800
6801 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6802 goto exit;
6803
6804 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
6805 if (rv != 0) {
6806 #if DEBUG
6807 char str[256];
6808 fd2devname(fd, str);
6809 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
6810 fd, str, super->orom, rv, raiddisks);
6811 #endif
6812 /* no orom/efi or non-intel hba of the disk */
6813 rv = 0;
6814 goto exit;
6815 }
6816 if (super->orom) {
6817 if (raiddisks > super->orom->tds) {
6818 if (verbose)
6819 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
6820 raiddisks, super->orom->tds);
6821 goto exit;
6822 }
6823 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6824 (ldsize >> 9) >> 32 > 0) {
6825 if (verbose)
6826 pr_err("%s exceeds maximum platform supported size\n", dev);
6827 goto exit;
6828 }
6829
6830 if (super->hba->type == SYS_DEV_VMD ||
6831 super->hba->type == SYS_DEV_NVME) {
6832 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6833 if (verbose)
6834 pr_err("NVMe namespace %s is not supported by IMSM\n",
6835 basename(dev));
6836 goto exit;
6837 }
6838 }
6839 }
6840 if (freesize)
6841 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
6842 rv = 1;
6843 exit:
6844 if (super)
6845 free_imsm(super);
6846 close(fd);
6847
6848 return rv;
6849 }
6850
6851 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6852 {
6853 const unsigned long long base_start = e[*idx].start;
6854 unsigned long long end = base_start + e[*idx].size;
6855 int i;
6856
6857 if (base_start == end)
6858 return 0;
6859
6860 *idx = *idx + 1;
6861 for (i = *idx; i < num_extents; i++) {
6862 /* extend overlapping extents */
6863 if (e[i].start >= base_start &&
6864 e[i].start <= end) {
6865 if (e[i].size == 0)
6866 return 0;
6867 if (e[i].start + e[i].size > end)
6868 end = e[i].start + e[i].size;
6869 } else if (e[i].start > end) {
6870 *idx = i;
6871 break;
6872 }
6873 }
6874
6875 return end - base_start;
6876 }
6877
6878 /** merge_extents() - analyze extents and get free size.
6879 * @super: Intel metadata, not NULL.
6880 * @expanding: if set, we are expanding &super->current_vol.
6881 *
6882 * Build a composite disk with all known extents and generate a size given the
6883 * "all disks in an array must share a common start offset" constraint.
6884 * If a volume is expanded, then return free space after the volume.
6885 *
6886 * Return: Free space or 0 on failure.
6887 */
6888 static unsigned long long merge_extents(struct intel_super *super, const bool expanding)
6889 {
6890 struct extent *e;
6891 struct dl *dl;
6892 int i, j, pos_vol_idx = -1;
6893 int extent_idx = 0;
6894 int sum_extents = 0;
6895 unsigned long long pos = 0;
6896 unsigned long long start = 0;
6897 unsigned long long free_size = 0;
6898
6899 unsigned long pre_reservation = 0;
6900 unsigned long post_reservation = IMSM_RESERVED_SECTORS;
6901 unsigned long reservation_size;
6902
6903 for (dl = super->disks; dl; dl = dl->next)
6904 if (dl->e)
6905 sum_extents += dl->extent_cnt;
6906 e = xcalloc(sum_extents, sizeof(struct extent));
6907
6908 /* coalesce and sort all extents. also, check to see if we need to
6909 * reserve space between member arrays
6910 */
6911 j = 0;
6912 for (dl = super->disks; dl; dl = dl->next) {
6913 if (!dl->e)
6914 continue;
6915 for (i = 0; i < dl->extent_cnt; i++)
6916 e[j++] = dl->e[i];
6917 }
6918 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6919
6920 /* merge extents */
6921 i = 0;
6922 j = 0;
6923 while (i < sum_extents) {
6924 e[j].start = e[i].start;
6925 e[j].vol = e[i].vol;
6926 e[j].size = find_size(e, &i, sum_extents);
6927 j++;
6928 if (e[j-1].size == 0)
6929 break;
6930 }
6931
6932 i = 0;
6933 do {
6934 unsigned long long esize = e[i].start - pos;
6935
6936 if (expanding ? pos_vol_idx == super->current_vol : esize >= free_size) {
6937 free_size = esize;
6938 start = pos;
6939 extent_idx = i;
6940 }
6941
6942 pos = e[i].start + e[i].size;
6943 pos_vol_idx = e[i].vol;
6944
6945 i++;
6946 } while (e[i-1].size);
6947
6948 if (free_size == 0) {
6949 dprintf("imsm: Cannot find free size.\n");
6950 free(e);
6951 return 0;
6952 }
6953
6954 if (!expanding && extent_idx != 0)
6955 /*
6956 * Not a real first volume in a container is created, pre_reservation is needed.
6957 */
6958 pre_reservation = IMSM_RESERVED_SECTORS;
6959
6960 if (e[extent_idx].size == 0)
6961 /*
6962 * extent_idx points to the metadata, post_reservation is allready done.
6963 */
6964 post_reservation = 0;
6965 free(e);
6966
6967 reservation_size = pre_reservation + post_reservation;
6968
6969 if (free_size < reservation_size) {
6970 dprintf("imsm: Reservation size is greater than free space.\n");
6971 return 0;
6972 }
6973
6974 super->create_offset = start + pre_reservation;
6975 return free_size - reservation_size;
6976 }
6977
6978 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6979 {
6980 if (level < 0 || level == 6 || level == 4)
6981 return 0;
6982
6983 /* if we have an orom prevent invalid raid levels */
6984 if (orom)
6985 switch (level) {
6986 case 0: return imsm_orom_has_raid0(orom);
6987 case 1:
6988 if (raiddisks > 2)
6989 return imsm_orom_has_raid1e(orom);
6990 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6991 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6992 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
6993 }
6994 else
6995 return 1; /* not on an Intel RAID platform so anything goes */
6996
6997 return 0;
6998 }
6999
7000 static int
7001 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
7002 int dpa, int verbose)
7003 {
7004 struct mdstat_ent *mdstat = mdstat_read(0, 0);
7005 struct mdstat_ent *memb;
7006 int count = 0;
7007 int num = 0;
7008 struct md_list *dv;
7009 int found;
7010
7011 for (memb = mdstat ; memb ; memb = memb->next) {
7012 if (memb->metadata_version &&
7013 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
7014 (strcmp(&memb->metadata_version[9], name) == 0) &&
7015 !is_subarray(memb->metadata_version+9) &&
7016 memb->members) {
7017 struct dev_member *dev = memb->members;
7018 int fd = -1;
7019 while (dev && !is_fd_valid(fd)) {
7020 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
7021 num = snprintf(path, PATH_MAX, "%s%s", "/dev/", dev->name);
7022 if (num > 0)
7023 fd = open(path, O_RDONLY, 0);
7024 if (num <= 0 || !is_fd_valid(fd)) {
7025 pr_vrb("Cannot open %s: %s\n",
7026 dev->name, strerror(errno));
7027 }
7028 free(path);
7029 dev = dev->next;
7030 }
7031 found = 0;
7032 if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) {
7033 struct mdstat_ent *vol;
7034 for (vol = mdstat ; vol ; vol = vol->next) {
7035 if (vol->active > 0 &&
7036 vol->metadata_version &&
7037 is_container_member(vol, memb->devnm)) {
7038 found++;
7039 count++;
7040 }
7041 }
7042 if (*devlist && (found < dpa)) {
7043 dv = xcalloc(1, sizeof(*dv));
7044 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
7045 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
7046 dv->found = found;
7047 dv->used = 0;
7048 dv->next = *devlist;
7049 *devlist = dv;
7050 }
7051 }
7052 close_fd(&fd);
7053 }
7054 }
7055 free_mdstat(mdstat);
7056 return count;
7057 }
7058
7059 #ifdef DEBUG_LOOP
7060 static struct md_list*
7061 get_loop_devices(void)
7062 {
7063 int i;
7064 struct md_list *devlist = NULL;
7065 struct md_list *dv;
7066
7067 for(i = 0; i < 12; i++) {
7068 dv = xcalloc(1, sizeof(*dv));
7069 dv->devname = xmalloc(40);
7070 sprintf(dv->devname, "/dev/loop%d", i);
7071 dv->next = devlist;
7072 devlist = dv;
7073 }
7074 return devlist;
7075 }
7076 #endif
7077
7078 static struct md_list*
7079 get_devices(const char *hba_path)
7080 {
7081 struct md_list *devlist = NULL;
7082 struct md_list *dv;
7083 struct dirent *ent;
7084 DIR *dir;
7085 int err = 0;
7086
7087 #if DEBUG_LOOP
7088 devlist = get_loop_devices();
7089 return devlist;
7090 #endif
7091 /* scroll through /sys/dev/block looking for devices attached to
7092 * this hba
7093 */
7094 dir = opendir("/sys/dev/block");
7095 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
7096 int fd;
7097 char buf[1024];
7098 int major, minor;
7099 char *path = NULL;
7100 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
7101 continue;
7102 path = devt_to_devpath(makedev(major, minor), 1, NULL);
7103 if (!path)
7104 continue;
7105 if (!path_attached_to_hba(path, hba_path)) {
7106 free(path);
7107 path = NULL;
7108 continue;
7109 }
7110 free(path);
7111 path = NULL;
7112 fd = dev_open(ent->d_name, O_RDONLY);
7113 if (is_fd_valid(fd)) {
7114 fd2devname(fd, buf);
7115 close(fd);
7116 } else {
7117 pr_err("cannot open device: %s\n",
7118 ent->d_name);
7119 continue;
7120 }
7121
7122 dv = xcalloc(1, sizeof(*dv));
7123 dv->devname = xstrdup(buf);
7124 dv->next = devlist;
7125 devlist = dv;
7126 }
7127 if (err) {
7128 while(devlist) {
7129 dv = devlist;
7130 devlist = devlist->next;
7131 free(dv->devname);
7132 free(dv);
7133 }
7134 }
7135 closedir(dir);
7136 return devlist;
7137 }
7138
7139 static int
7140 count_volumes_list(struct md_list *devlist, char *homehost,
7141 int verbose, int *found)
7142 {
7143 struct md_list *tmpdev;
7144 int count = 0;
7145 struct supertype *st;
7146
7147 /* first walk the list of devices to find a consistent set
7148 * that match the criterea, if that is possible.
7149 * We flag the ones we like with 'used'.
7150 */
7151 *found = 0;
7152 st = match_metadata_desc_imsm("imsm");
7153 if (st == NULL) {
7154 pr_vrb("cannot allocate memory for imsm supertype\n");
7155 return 0;
7156 }
7157
7158 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7159 char *devname = tmpdev->devname;
7160 dev_t rdev;
7161 struct supertype *tst;
7162 int dfd;
7163 if (tmpdev->used > 1)
7164 continue;
7165 tst = dup_super(st);
7166 if (tst == NULL) {
7167 pr_vrb("cannot allocate memory for imsm supertype\n");
7168 goto err_1;
7169 }
7170 tmpdev->container = 0;
7171 dfd = dev_open(devname, O_RDONLY|O_EXCL);
7172 if (!is_fd_valid(dfd)) {
7173 dprintf("cannot open device %s: %s\n",
7174 devname, strerror(errno));
7175 tmpdev->used = 2;
7176 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
7177 tmpdev->used = 2;
7178 } else if (must_be_container(dfd)) {
7179 struct supertype *cst;
7180 cst = super_by_fd(dfd, NULL);
7181 if (cst == NULL) {
7182 dprintf("cannot recognize container type %s\n",
7183 devname);
7184 tmpdev->used = 2;
7185 } else if (tst->ss != st->ss) {
7186 dprintf("non-imsm container - ignore it: %s\n",
7187 devname);
7188 tmpdev->used = 2;
7189 } else if (!tst->ss->load_container ||
7190 tst->ss->load_container(tst, dfd, NULL))
7191 tmpdev->used = 2;
7192 else {
7193 tmpdev->container = 1;
7194 }
7195 if (cst)
7196 cst->ss->free_super(cst);
7197 } else {
7198 tmpdev->st_rdev = rdev;
7199 if (tst->ss->load_super(tst,dfd, NULL)) {
7200 dprintf("no RAID superblock on %s\n",
7201 devname);
7202 tmpdev->used = 2;
7203 } else if (tst->ss->compare_super == NULL) {
7204 dprintf("Cannot assemble %s metadata on %s\n",
7205 tst->ss->name, devname);
7206 tmpdev->used = 2;
7207 }
7208 }
7209 close_fd(&dfd);
7210
7211 if (tmpdev->used == 2 || tmpdev->used == 4) {
7212 /* Ignore unrecognised devices during auto-assembly */
7213 goto loop;
7214 }
7215 else {
7216 struct mdinfo info;
7217 tst->ss->getinfo_super(tst, &info, NULL);
7218
7219 if (st->minor_version == -1)
7220 st->minor_version = tst->minor_version;
7221
7222 if (memcmp(info.uuid, uuid_zero,
7223 sizeof(int[4])) == 0) {
7224 /* this is a floating spare. It cannot define
7225 * an array unless there are no more arrays of
7226 * this type to be found. It can be included
7227 * in an array of this type though.
7228 */
7229 tmpdev->used = 3;
7230 goto loop;
7231 }
7232
7233 if (st->ss != tst->ss ||
7234 st->minor_version != tst->minor_version ||
7235 st->ss->compare_super(st, tst, 1) != 0) {
7236 /* Some mismatch. If exactly one array matches this host,
7237 * we can resolve on that one.
7238 * Or, if we are auto assembling, we just ignore the second
7239 * for now.
7240 */
7241 dprintf("superblock on %s doesn't match others - assembly aborted\n",
7242 devname);
7243 goto loop;
7244 }
7245 tmpdev->used = 1;
7246 *found = 1;
7247 dprintf("found: devname: %s\n", devname);
7248 }
7249 loop:
7250 if (tst)
7251 tst->ss->free_super(tst);
7252 }
7253 if (*found != 0) {
7254 int err;
7255 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7256 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7257 for (iter = head; iter; iter = iter->next) {
7258 dprintf("content->text_version: %s vol\n",
7259 iter->text_version);
7260 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7261 /* do not assemble arrays with unsupported
7262 configurations */
7263 dprintf("Cannot activate member %s.\n",
7264 iter->text_version);
7265 } else
7266 count++;
7267 }
7268 sysfs_free(head);
7269
7270 } else {
7271 dprintf("No valid super block on device list: err: %d %p\n",
7272 err, st->sb);
7273 }
7274 } else {
7275 dprintf("no more devices to examine\n");
7276 }
7277
7278 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7279 if (tmpdev->used == 1 && tmpdev->found) {
7280 if (count) {
7281 if (count < tmpdev->found)
7282 count = 0;
7283 else
7284 count -= tmpdev->found;
7285 }
7286 }
7287 if (tmpdev->used == 1)
7288 tmpdev->used = 4;
7289 }
7290 err_1:
7291 if (st)
7292 st->ss->free_super(st);
7293 return count;
7294 }
7295
7296 static int __count_volumes(char *hba_path, int dpa, int verbose,
7297 int cmp_hba_path)
7298 {
7299 struct sys_dev *idev, *intel_devices = find_intel_devices();
7300 int count = 0;
7301 const struct orom_entry *entry;
7302 struct devid_list *dv, *devid_list;
7303
7304 if (!hba_path)
7305 return 0;
7306
7307 for (idev = intel_devices; idev; idev = idev->next) {
7308 if (strstr(idev->path, hba_path))
7309 break;
7310 }
7311
7312 if (!idev || !idev->dev_id)
7313 return 0;
7314
7315 entry = get_orom_entry_by_device_id(idev->dev_id);
7316
7317 if (!entry || !entry->devid_list)
7318 return 0;
7319
7320 devid_list = entry->devid_list;
7321 for (dv = devid_list; dv; dv = dv->next) {
7322 struct md_list *devlist;
7323 struct sys_dev *device = NULL;
7324 char *hpath;
7325 int found = 0;
7326
7327 if (cmp_hba_path)
7328 device = device_by_id_and_path(dv->devid, hba_path);
7329 else
7330 device = device_by_id(dv->devid);
7331
7332 if (device)
7333 hpath = device->path;
7334 else
7335 return 0;
7336
7337 devlist = get_devices(hpath);
7338 /* if no intel devices return zero volumes */
7339 if (devlist == NULL)
7340 return 0;
7341
7342 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7343 verbose);
7344 dprintf("path: %s active arrays: %d\n", hpath, count);
7345 if (devlist == NULL)
7346 return 0;
7347 do {
7348 found = 0;
7349 count += count_volumes_list(devlist,
7350 NULL,
7351 verbose,
7352 &found);
7353 dprintf("found %d count: %d\n", found, count);
7354 } while (found);
7355
7356 dprintf("path: %s total number of volumes: %d\n", hpath, count);
7357
7358 while (devlist) {
7359 struct md_list *dv = devlist;
7360 devlist = devlist->next;
7361 free(dv->devname);
7362 free(dv);
7363 }
7364 }
7365 return count;
7366 }
7367
7368 static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7369 {
7370 if (!hba)
7371 return 0;
7372 if (hba->type == SYS_DEV_VMD) {
7373 struct sys_dev *dev;
7374 int count = 0;
7375
7376 for (dev = find_intel_devices(); dev; dev = dev->next) {
7377 if (dev->type == SYS_DEV_VMD)
7378 count += __count_volumes(dev->path, dpa,
7379 verbose, 1);
7380 }
7381 return count;
7382 }
7383 return __count_volumes(hba->path, dpa, verbose, 0);
7384 }
7385
7386 static int imsm_default_chunk(const struct imsm_orom *orom)
7387 {
7388 /* up to 512 if the plaform supports it, otherwise the platform max.
7389 * 128 if no platform detected
7390 */
7391 int fs = max(7, orom ? fls(orom->sss) : 0);
7392
7393 return min(512, (1 << fs));
7394 }
7395
7396 static int
7397 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
7398 int raiddisks, int *chunk, unsigned long long size, int verbose)
7399 {
7400 /* check/set platform and metadata limits/defaults */
7401 if (super->orom && raiddisks > super->orom->dpa) {
7402 pr_vrb("platform supports a maximum of %d disks per array\n",
7403 super->orom->dpa);
7404 return 0;
7405 }
7406
7407 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
7408 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
7409 pr_vrb("platform does not support raid%d with %d disk%s\n",
7410 level, raiddisks, raiddisks > 1 ? "s" : "");
7411 return 0;
7412 }
7413
7414 if (*chunk == 0 || *chunk == UnSet)
7415 *chunk = imsm_default_chunk(super->orom);
7416
7417 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
7418 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
7419 return 0;
7420 }
7421
7422 if (layout != imsm_level_to_layout(level)) {
7423 if (level == 5)
7424 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
7425 else if (level == 10)
7426 pr_vrb("imsm raid 10 only supports the n2 layout\n");
7427 else
7428 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
7429 layout, level);
7430 return 0;
7431 }
7432
7433 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
7434 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
7435 pr_vrb("platform does not support a volume size over 2TB\n");
7436 return 0;
7437 }
7438
7439 return 1;
7440 }
7441
7442 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
7443 * FIX ME add ahci details
7444 */
7445 static int validate_geometry_imsm_volume(struct supertype *st, int level,
7446 int layout, int raiddisks, int *chunk,
7447 unsigned long long size,
7448 unsigned long long data_offset,
7449 char *dev,
7450 unsigned long long *freesize,
7451 int verbose)
7452 {
7453 dev_t rdev;
7454 struct intel_super *super = st->sb;
7455 struct imsm_super *mpb;
7456 struct dl *dl;
7457 unsigned long long pos = 0;
7458 unsigned long long maxsize;
7459 struct extent *e;
7460 int i;
7461
7462 /* We must have the container info already read in. */
7463 if (!super)
7464 return 0;
7465
7466 mpb = super->anchor;
7467
7468 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7469 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
7470 return 0;
7471 }
7472 if (!dev) {
7473 /* General test: make sure there is space for
7474 * 'raiddisks' device extents of size 'size' at a given
7475 * offset
7476 */
7477 unsigned long long minsize = size;
7478 unsigned long long start_offset = MaxSector;
7479 int dcnt = 0;
7480 if (minsize == 0)
7481 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7482 for (dl = super->disks; dl ; dl = dl->next) {
7483 int found = 0;
7484
7485 pos = 0;
7486 i = 0;
7487 e = get_extents(super, dl, 0);
7488 if (!e) continue;
7489 do {
7490 unsigned long long esize;
7491 esize = e[i].start - pos;
7492 if (esize >= minsize)
7493 found = 1;
7494 if (found && start_offset == MaxSector) {
7495 start_offset = pos;
7496 break;
7497 } else if (found && pos != start_offset) {
7498 found = 0;
7499 break;
7500 }
7501 pos = e[i].start + e[i].size;
7502 i++;
7503 } while (e[i-1].size);
7504 if (found)
7505 dcnt++;
7506 free(e);
7507 }
7508 if (dcnt < raiddisks) {
7509 if (verbose)
7510 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
7511 dcnt, raiddisks);
7512 return 0;
7513 }
7514 return 1;
7515 }
7516
7517 /* This device must be a member of the set */
7518 if (!stat_is_blkdev(dev, &rdev))
7519 return 0;
7520 for (dl = super->disks ; dl ; dl = dl->next) {
7521 if (dl->major == (int)major(rdev) &&
7522 dl->minor == (int)minor(rdev))
7523 break;
7524 }
7525 if (!dl) {
7526 if (verbose)
7527 pr_err("%s is not in the same imsm set\n", dev);
7528 return 0;
7529 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7530 /* If a volume is present then the current creation attempt
7531 * cannot incorporate new spares because the orom may not
7532 * understand this configuration (all member disks must be
7533 * members of each array in the container).
7534 */
7535 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7536 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7537 return 0;
7538 } else if (super->orom && mpb->num_raid_devs > 0 &&
7539 mpb->num_disks != raiddisks) {
7540 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7541 return 0;
7542 }
7543
7544 /* retrieve the largest free space block */
7545 e = get_extents(super, dl, 0);
7546 maxsize = 0;
7547 i = 0;
7548 if (e) {
7549 do {
7550 unsigned long long esize;
7551
7552 esize = e[i].start - pos;
7553 if (esize >= maxsize)
7554 maxsize = esize;
7555 pos = e[i].start + e[i].size;
7556 i++;
7557 } while (e[i-1].size);
7558 dl->e = e;
7559 dl->extent_cnt = i;
7560 } else {
7561 if (verbose)
7562 pr_err("unable to determine free space for: %s\n",
7563 dev);
7564 return 0;
7565 }
7566 if (maxsize < size) {
7567 if (verbose)
7568 pr_err("%s not enough space (%llu < %llu)\n",
7569 dev, maxsize, size);
7570 return 0;
7571 }
7572
7573 maxsize = merge_extents(super, false);
7574
7575 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7576 pr_err("attempting to create a second volume with size less then remaining space.\n");
7577
7578 if (maxsize < size || maxsize == 0) {
7579 if (verbose) {
7580 if (maxsize == 0)
7581 pr_err("no free space left on device. Aborting...\n");
7582 else
7583 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
7584 maxsize, size);
7585 }
7586 return 0;
7587 }
7588
7589 *freesize = maxsize;
7590
7591 if (super->orom) {
7592 int count = count_volumes(super->hba,
7593 super->orom->dpa, verbose);
7594 if (super->orom->vphba <= count) {
7595 pr_vrb("platform does not support more than %d raid volumes.\n",
7596 super->orom->vphba);
7597 return 0;
7598 }
7599 }
7600 return 1;
7601 }
7602
7603 /**
7604 * imsm_get_free_size() - get the biggest, common free space from members.
7605 * @super: &intel_super pointer, not NULL.
7606 * @raiddisks: number of raid disks.
7607 * @size: requested size, could be 0 (means max size).
7608 * @chunk: requested chunk size in KiB.
7609 * @freesize: pointer for returned size value.
7610 *
7611 * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR.
7612 *
7613 * @freesize is set to meaningful value, this can be @size, or calculated
7614 * max free size.
7615 * super->create_offset value is modified and set appropriately in
7616 * merge_extends() for further creation.
7617 */
7618 static imsm_status_t imsm_get_free_size(struct intel_super *super,
7619 const int raiddisks,
7620 unsigned long long size,
7621 const int chunk,
7622 unsigned long long *freesize,
7623 bool expanding)
7624 {
7625 struct imsm_super *mpb = super->anchor;
7626 struct dl *dl;
7627 int i;
7628 struct extent *e;
7629 int cnt = 0;
7630 int used = 0;
7631 unsigned long long maxsize;
7632 unsigned long long minsize = size;
7633
7634 if (minsize == 0)
7635 minsize = chunk * 2;
7636
7637 /* find the largest common start free region of the possible disks */
7638 for (dl = super->disks; dl; dl = dl->next) {
7639 dl->raiddisk = -1;
7640
7641 if (dl->index >= 0)
7642 used++;
7643
7644 /* don't activate new spares if we are orom constrained
7645 * and there is already a volume active in the container
7646 */
7647 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7648 continue;
7649
7650 e = get_extents(super, dl, 0);
7651 if (!e)
7652 continue;
7653 for (i = 1; e[i-1].size; i++)
7654 ;
7655 dl->e = e;
7656 dl->extent_cnt = i;
7657 cnt++;
7658 }
7659
7660 maxsize = merge_extents(super, expanding);
7661 if (maxsize < minsize) {
7662 pr_err("imsm: Free space is %llu but must be equal or larger than %llu.\n",
7663 maxsize, minsize);
7664 return IMSM_STATUS_ERROR;
7665 }
7666
7667 if (cnt < raiddisks || (super->orom && used && used != raiddisks)) {
7668 pr_err("imsm: Not enough devices with space to create array.\n");
7669 return IMSM_STATUS_ERROR;
7670 }
7671
7672 if (size == 0) {
7673 size = maxsize;
7674 if (chunk) {
7675 size /= 2 * chunk;
7676 size *= 2 * chunk;
7677 }
7678 maxsize = size;
7679 }
7680 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7681 pr_err("attempting to create a second volume with size less then remaining space.\n");
7682 *freesize = size;
7683
7684 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7685
7686 return IMSM_STATUS_OK;
7687 }
7688
7689 /**
7690 * autolayout_imsm() - automatically layout a new volume.
7691 * @super: &intel_super pointer, not NULL.
7692 * @raiddisks: number of raid disks.
7693 * @size: requested size, could be 0 (means max size).
7694 * @chunk: requested chunk.
7695 * @freesize: pointer for returned size value.
7696 *
7697 * We are being asked to automatically layout a new volume based on the current
7698 * contents of the container. If the parameters can be satisfied autolayout_imsm
7699 * will record the disks, start offset, and will return size of the volume to
7700 * be created. See imsm_get_free_size() for details.
7701 * add_to_super() and getinfo_super() detect when autolayout is in progress.
7702 * If first volume exists, slots are set consistently to it.
7703 *
7704 * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise.
7705 *
7706 * Disks are marked for creation via dl->raiddisk.
7707 */
7708 static imsm_status_t autolayout_imsm(struct intel_super *super,
7709 const int raiddisks,
7710 unsigned long long size, const int chunk,
7711 unsigned long long *freesize)
7712 {
7713 int curr_slot = 0;
7714 struct dl *disk;
7715 int vol_cnt = super->anchor->num_raid_devs;
7716 imsm_status_t rv;
7717
7718 rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize, false);
7719 if (rv != IMSM_STATUS_OK)
7720 return IMSM_STATUS_ERROR;
7721
7722 for (disk = super->disks; disk; disk = disk->next) {
7723 if (!disk->e)
7724 continue;
7725
7726 if (curr_slot == raiddisks)
7727 break;
7728
7729 if (vol_cnt == 0) {
7730 disk->raiddisk = curr_slot;
7731 } else {
7732 int _slot = get_disk_slot_in_dev(super, 0, disk->index);
7733
7734 if (_slot == -1) {
7735 pr_err("Disk %s is not used in first volume, aborting\n",
7736 disk->devname);
7737 return IMSM_STATUS_ERROR;
7738 }
7739 disk->raiddisk = _slot;
7740 }
7741 curr_slot++;
7742 }
7743
7744 return IMSM_STATUS_OK;
7745 }
7746
7747 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
7748 int raiddisks, int *chunk, unsigned long long size,
7749 unsigned long long data_offset,
7750 char *dev, unsigned long long *freesize,
7751 int consistency_policy, int verbose)
7752 {
7753 int fd, cfd;
7754 struct mdinfo *sra;
7755 int is_member = 0;
7756
7757 /* load capability
7758 * if given unused devices create a container
7759 * if given given devices in a container create a member volume
7760 */
7761 if (is_container(level))
7762 /* Must be a fresh device to add to a container */
7763 return validate_geometry_imsm_container(st, level, raiddisks,
7764 data_offset, dev,
7765 freesize, verbose);
7766
7767 /*
7768 * Size is given in sectors.
7769 */
7770 if (size && (size < 2048)) {
7771 pr_err("Given size must be greater than 1M.\n");
7772 /* Depends on algorithm in Create.c :
7773 * if container was given (dev == NULL) return -1,
7774 * if block device was given ( dev != NULL) return 0.
7775 */
7776 return dev ? -1 : 0;
7777 }
7778
7779 if (!dev) {
7780 struct intel_super *super = st->sb;
7781
7782 /*
7783 * Autolayout mode, st->sb must be set.
7784 */
7785 if (!super) {
7786 pr_vrb("superblock must be set for autolayout, aborting\n");
7787 return 0;
7788 }
7789
7790 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7791 raiddisks, chunk, size,
7792 verbose))
7793 return 0;
7794
7795 if (super->orom && freesize) {
7796 imsm_status_t rv;
7797 int count = count_volumes(super->hba, super->orom->dpa,
7798 verbose);
7799 if (super->orom->vphba <= count) {
7800 pr_vrb("platform does not support more than %d raid volumes.\n",
7801 super->orom->vphba);
7802 return 0;
7803 }
7804
7805 rv = autolayout_imsm(super, raiddisks, size, *chunk,
7806 freesize);
7807 if (rv != IMSM_STATUS_OK)
7808 return 0;
7809 }
7810 return 1;
7811 }
7812 if (st->sb) {
7813 /* creating in a given container */
7814 return validate_geometry_imsm_volume(st, level, layout,
7815 raiddisks, chunk, size,
7816 data_offset,
7817 dev, freesize, verbose);
7818 }
7819
7820 /* This device needs to be a device in an 'imsm' container */
7821 fd = open(dev, O_RDONLY|O_EXCL, 0);
7822
7823 if (is_fd_valid(fd)) {
7824 pr_vrb("Cannot create this array on device %s\n", dev);
7825 close(fd);
7826 return 0;
7827 }
7828 if (errno == EBUSY)
7829 fd = open(dev, O_RDONLY, 0);
7830
7831 if (!is_fd_valid(fd)) {
7832 pr_vrb("Cannot open %s: %s\n", dev, strerror(errno));
7833 return 0;
7834 }
7835
7836 /* Well, it is in use by someone, maybe an 'imsm' container. */
7837 cfd = open_container(fd);
7838 close_fd(&fd);
7839
7840 if (!is_fd_valid(cfd)) {
7841 pr_vrb("Cannot use %s: It is busy\n", dev);
7842 return 0;
7843 }
7844 sra = sysfs_read(cfd, NULL, GET_VERSION);
7845 if (sra && sra->array.major_version == -1 &&
7846 strcmp(sra->text_version, "imsm") == 0)
7847 is_member = 1;
7848 sysfs_free(sra);
7849 if (is_member) {
7850 /* This is a member of a imsm container. Load the container
7851 * and try to create a volume
7852 */
7853 struct intel_super *super;
7854
7855 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
7856 st->sb = super;
7857 strcpy(st->container_devnm, fd2devnm(cfd));
7858 close(cfd);
7859 return validate_geometry_imsm_volume(st, level, layout,
7860 raiddisks, chunk,
7861 size, data_offset, dev,
7862 freesize, 1)
7863 ? 1 : -1;
7864 }
7865 }
7866
7867 if (verbose)
7868 pr_err("failed container membership check\n");
7869
7870 close(cfd);
7871 return 0;
7872 }
7873
7874 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
7875 {
7876 struct intel_super *super = st->sb;
7877
7878 if (level && *level == UnSet)
7879 *level = LEVEL_CONTAINER;
7880
7881 if (level && layout && *layout == UnSet)
7882 *layout = imsm_level_to_layout(*level);
7883
7884 if (chunk && (*chunk == UnSet || *chunk == 0))
7885 *chunk = imsm_default_chunk(super->orom);
7886 }
7887
7888 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7889
7890 static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
7891 {
7892 /* remove the subarray currently referenced by subarray_id */
7893 __u8 i;
7894 struct intel_dev **dp;
7895 struct intel_super *super = st->sb;
7896 __u8 current_vol = strtoul(subarray_id, NULL, 10);
7897 struct imsm_super *mpb = super->anchor;
7898
7899 if (mpb->num_raid_devs == 0)
7900 return 2;
7901
7902 /* block deletions that would change the uuid of active subarrays
7903 *
7904 * FIXME when immutable ids are available, but note that we'll
7905 * also need to fixup the invalidated/active subarray indexes in
7906 * mdstat
7907 */
7908 for (i = 0; i < mpb->num_raid_devs; i++) {
7909 char subarray[4];
7910
7911 if (i < current_vol)
7912 continue;
7913 snprintf(subarray, sizeof(subarray), "%u", i);
7914 if (is_subarray_active(subarray, st->devnm)) {
7915 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7916 current_vol, i);
7917
7918 return 2;
7919 }
7920 }
7921
7922 if (st->update_tail) {
7923 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
7924
7925 u->type = update_kill_array;
7926 u->dev_idx = current_vol;
7927 append_metadata_update(st, u, sizeof(*u));
7928
7929 return 0;
7930 }
7931
7932 for (dp = &super->devlist; *dp;)
7933 if ((*dp)->index == current_vol) {
7934 *dp = (*dp)->next;
7935 } else {
7936 handle_missing(super, (*dp)->dev);
7937 if ((*dp)->index > current_vol)
7938 (*dp)->index--;
7939 dp = &(*dp)->next;
7940 }
7941
7942 /* no more raid devices, all active components are now spares,
7943 * but of course failed are still failed
7944 */
7945 if (--mpb->num_raid_devs == 0) {
7946 struct dl *d;
7947
7948 for (d = super->disks; d; d = d->next)
7949 if (d->index > -2)
7950 mark_spare(d);
7951 }
7952
7953 super->updates_pending++;
7954
7955 return 0;
7956 }
7957
7958 /**
7959 * get_rwh_policy_from_update() - Get the rwh policy for update option.
7960 * @update: Update option.
7961 */
7962 static int get_rwh_policy_from_update(enum update_opt update)
7963 {
7964 switch (update) {
7965 case UOPT_PPL:
7966 return RWH_MULTIPLE_DISTRIBUTED;
7967 case UOPT_NO_PPL:
7968 return RWH_MULTIPLE_OFF;
7969 case UOPT_BITMAP:
7970 return RWH_BITMAP;
7971 case UOPT_NO_BITMAP:
7972 return RWH_OFF;
7973 default:
7974 break;
7975 }
7976 return UOPT_UNDEFINED;
7977 }
7978
7979 static int update_subarray_imsm(struct supertype *st, char *subarray,
7980 enum update_opt update, struct mddev_ident *ident)
7981 {
7982 /* update the subarray currently referenced by ->current_vol */
7983 struct intel_super *super = st->sb;
7984 struct imsm_super *mpb = super->anchor;
7985
7986 if (update == UOPT_NAME) {
7987 char *name = ident->name;
7988 char *ep;
7989 int vol;
7990
7991 if (imsm_is_name_allowed(super, name, 1) == false)
7992 return 2;
7993
7994 vol = strtoul(subarray, &ep, 10);
7995 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7996 return 2;
7997
7998 if (st->update_tail) {
7999 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
8000
8001 u->type = update_rename_array;
8002 u->dev_idx = vol;
8003 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
8004 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
8005 append_metadata_update(st, u, sizeof(*u));
8006 } else {
8007 struct imsm_dev *dev;
8008 int i, namelen;
8009
8010 dev = get_imsm_dev(super, vol);
8011 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
8012 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
8013 memcpy(dev->volume, name, namelen);
8014 for (i = 0; i < mpb->num_raid_devs; i++) {
8015 dev = get_imsm_dev(super, i);
8016 handle_missing(super, dev);
8017 }
8018 super->updates_pending++;
8019 }
8020 } else if (get_rwh_policy_from_update(update) != UOPT_UNDEFINED) {
8021 int new_policy;
8022 char *ep;
8023 int vol = strtoul(subarray, &ep, 10);
8024
8025 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
8026 return 2;
8027
8028 new_policy = get_rwh_policy_from_update(update);
8029
8030 if (st->update_tail) {
8031 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
8032
8033 u->type = update_rwh_policy;
8034 u->dev_idx = vol;
8035 u->new_policy = new_policy;
8036 append_metadata_update(st, u, sizeof(*u));
8037 } else {
8038 struct imsm_dev *dev;
8039
8040 dev = get_imsm_dev(super, vol);
8041 dev->rwh_policy = new_policy;
8042 super->updates_pending++;
8043 }
8044 if (new_policy == RWH_BITMAP)
8045 return write_init_bitmap_imsm_vol(st, vol);
8046 } else
8047 return 2;
8048
8049 return 0;
8050 }
8051
8052 static bool is_gen_migration(struct imsm_dev *dev)
8053 {
8054 if (dev && dev->vol.migr_state &&
8055 migr_type(dev) == MIGR_GEN_MIGR)
8056 return true;
8057
8058 return false;
8059 }
8060
8061 static int is_rebuilding(struct imsm_dev *dev)
8062 {
8063 struct imsm_map *migr_map;
8064
8065 if (!dev->vol.migr_state)
8066 return 0;
8067
8068 if (migr_type(dev) != MIGR_REBUILD)
8069 return 0;
8070
8071 migr_map = get_imsm_map(dev, MAP_1);
8072
8073 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
8074 return 1;
8075 else
8076 return 0;
8077 }
8078
8079 static int is_initializing(struct imsm_dev *dev)
8080 {
8081 struct imsm_map *migr_map;
8082
8083 if (!dev->vol.migr_state)
8084 return 0;
8085
8086 if (migr_type(dev) != MIGR_INIT)
8087 return 0;
8088
8089 migr_map = get_imsm_map(dev, MAP_1);
8090
8091 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
8092 return 1;
8093
8094 return 0;
8095 }
8096
8097 static void update_recovery_start(struct intel_super *super,
8098 struct imsm_dev *dev,
8099 struct mdinfo *array)
8100 {
8101 struct mdinfo *rebuild = NULL;
8102 struct mdinfo *d;
8103 __u32 units;
8104
8105 if (!is_rebuilding(dev))
8106 return;
8107
8108 /* Find the rebuild target, but punt on the dual rebuild case */
8109 for (d = array->devs; d; d = d->next)
8110 if (d->recovery_start == 0) {
8111 if (rebuild)
8112 return;
8113 rebuild = d;
8114 }
8115
8116 if (!rebuild) {
8117 /* (?) none of the disks are marked with
8118 * IMSM_ORD_REBUILD, so assume they are missing and the
8119 * disk_ord_tbl was not correctly updated
8120 */
8121 dprintf("failed to locate out-of-sync disk\n");
8122 return;
8123 }
8124
8125 units = vol_curr_migr_unit(dev);
8126 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
8127 }
8128
8129 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
8130
8131 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
8132 {
8133 /* Given a container loaded by load_super_imsm_all,
8134 * extract information about all the arrays into
8135 * an mdinfo tree.
8136 * If 'subarray' is given, just extract info about that array.
8137 *
8138 * For each imsm_dev create an mdinfo, fill it in,
8139 * then look for matching devices in super->disks
8140 * and create appropriate device mdinfo.
8141 */
8142 struct intel_super *super = st->sb;
8143 struct imsm_super *mpb = super->anchor;
8144 struct mdinfo *rest = NULL;
8145 unsigned int i;
8146 int sb_errors = 0;
8147 struct dl *d;
8148 int spare_disks = 0;
8149 int current_vol = super->current_vol;
8150
8151 /* do not assemble arrays when not all attributes are supported */
8152 if (imsm_check_attributes(mpb->attributes) == 0) {
8153 sb_errors = 1;
8154 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
8155 }
8156
8157 /* count spare devices, not used in maps
8158 */
8159 for (d = super->disks; d; d = d->next)
8160 if (d->index == -1)
8161 spare_disks++;
8162
8163 for (i = 0; i < mpb->num_raid_devs; i++) {
8164 struct imsm_dev *dev;
8165 struct imsm_map *map;
8166 struct imsm_map *map2;
8167 struct mdinfo *this;
8168 int slot;
8169 int chunk;
8170 char *ep;
8171 int level;
8172
8173 if (subarray &&
8174 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8175 continue;
8176
8177 dev = get_imsm_dev(super, i);
8178 map = get_imsm_map(dev, MAP_0);
8179 map2 = get_imsm_map(dev, MAP_1);
8180 level = get_imsm_raid_level(map);
8181
8182 /* do not publish arrays that are in the middle of an
8183 * unsupported migration
8184 */
8185 if (dev->vol.migr_state &&
8186 (migr_type(dev) == MIGR_STATE_CHANGE)) {
8187 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
8188 dev->volume);
8189 continue;
8190 }
8191 /* do not publish arrays that are not support by controller's
8192 * OROM/EFI
8193 */
8194
8195 this = xmalloc(sizeof(*this));
8196
8197 super->current_vol = i;
8198 getinfo_super_imsm_volume(st, this, NULL);
8199 this->next = rest;
8200 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
8201 /* mdadm does not support all metadata features- set the bit in all arrays state */
8202 if (!validate_geometry_imsm_orom(super,
8203 level, /* RAID level */
8204 imsm_level_to_layout(level),
8205 map->num_members, /* raid disks */
8206 &chunk, imsm_dev_size(dev),
8207 1 /* verbose */)) {
8208 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
8209 dev->volume);
8210 this->array.state |=
8211 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8212 (1<<MD_SB_BLOCK_VOLUME);
8213 }
8214
8215 /* if array has bad blocks, set suitable bit in all arrays state */
8216 if (sb_errors)
8217 this->array.state |=
8218 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8219 (1<<MD_SB_BLOCK_VOLUME);
8220
8221 for (slot = 0 ; slot < map->num_members; slot++) {
8222 unsigned long long recovery_start;
8223 struct mdinfo *info_d;
8224 struct dl *d;
8225 int idx;
8226 int skip;
8227 __u32 ord;
8228 int missing = 0;
8229
8230 skip = 0;
8231 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8232 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
8233 for (d = super->disks; d ; d = d->next)
8234 if (d->index == idx)
8235 break;
8236
8237 recovery_start = MaxSector;
8238 if (d == NULL)
8239 skip = 1;
8240 if (d && is_failed(&d->disk))
8241 skip = 1;
8242 if (!skip && (ord & IMSM_ORD_REBUILD))
8243 recovery_start = 0;
8244 if (!(ord & IMSM_ORD_REBUILD))
8245 this->array.working_disks++;
8246 /*
8247 * if we skip some disks the array will be assmebled degraded;
8248 * reset resync start to avoid a dirty-degraded
8249 * situation when performing the intial sync
8250 */
8251 if (skip)
8252 missing++;
8253
8254 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8255 if ((!able_to_resync(level, missing) ||
8256 recovery_start == 0))
8257 this->resync_start = MaxSector;
8258 }
8259
8260 if (skip)
8261 continue;
8262
8263 info_d = xcalloc(1, sizeof(*info_d));
8264 info_d->next = this->devs;
8265 this->devs = info_d;
8266
8267 info_d->disk.number = d->index;
8268 info_d->disk.major = d->major;
8269 info_d->disk.minor = d->minor;
8270 info_d->disk.raid_disk = slot;
8271 info_d->recovery_start = recovery_start;
8272 if (map2) {
8273 if (slot < map2->num_members)
8274 info_d->disk.state = (1 << MD_DISK_ACTIVE);
8275 else
8276 this->array.spare_disks++;
8277 } else {
8278 if (slot < map->num_members)
8279 info_d->disk.state = (1 << MD_DISK_ACTIVE);
8280 else
8281 this->array.spare_disks++;
8282 }
8283
8284 info_d->events = __le32_to_cpu(mpb->generation_num);
8285 info_d->data_offset = pba_of_lba0(map);
8286 info_d->component_size = calc_component_size(map, dev);
8287
8288 if (map->raid_level == 5) {
8289 info_d->ppl_sector = this->ppl_sector;
8290 info_d->ppl_size = this->ppl_size;
8291 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8292 recovery_start == 0)
8293 this->resync_start = 0;
8294 }
8295
8296 info_d->bb.supported = 1;
8297 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8298 info_d->data_offset,
8299 info_d->component_size,
8300 &info_d->bb);
8301 }
8302 /* now that the disk list is up-to-date fixup recovery_start */
8303 update_recovery_start(super, dev, this);
8304 this->array.spare_disks += spare_disks;
8305
8306 /* check for reshape */
8307 if (this->reshape_active == 1)
8308 recover_backup_imsm(st, this);
8309 rest = this;
8310 }
8311
8312 super->current_vol = current_vol;
8313 return rest;
8314 }
8315
8316 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8317 int failed, int look_in_map)
8318 {
8319 struct imsm_map *map;
8320
8321 map = get_imsm_map(dev, look_in_map);
8322
8323 if (!failed)
8324 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
8325 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
8326
8327 switch (get_imsm_raid_level(map)) {
8328 case 0:
8329 return IMSM_T_STATE_FAILED;
8330 break;
8331 case 1:
8332 if (failed < map->num_members)
8333 return IMSM_T_STATE_DEGRADED;
8334 else
8335 return IMSM_T_STATE_FAILED;
8336 break;
8337 case 10:
8338 {
8339 /**
8340 * check to see if any mirrors have failed, otherwise we
8341 * are degraded. Even numbered slots are mirrored on
8342 * slot+1
8343 */
8344 int i;
8345 /* gcc -Os complains that this is unused */
8346 int insync = insync;
8347
8348 for (i = 0; i < map->num_members; i++) {
8349 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
8350 int idx = ord_to_idx(ord);
8351 struct imsm_disk *disk;
8352
8353 /* reset the potential in-sync count on even-numbered
8354 * slots. num_copies is always 2 for imsm raid10
8355 */
8356 if ((i & 1) == 0)
8357 insync = 2;
8358
8359 disk = get_imsm_disk(super, idx);
8360 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8361 insync--;
8362
8363 /* no in-sync disks left in this mirror the
8364 * array has failed
8365 */
8366 if (insync == 0)
8367 return IMSM_T_STATE_FAILED;
8368 }
8369
8370 return IMSM_T_STATE_DEGRADED;
8371 }
8372 case 5:
8373 if (failed < 2)
8374 return IMSM_T_STATE_DEGRADED;
8375 else
8376 return IMSM_T_STATE_FAILED;
8377 break;
8378 default:
8379 break;
8380 }
8381
8382 return map->map_state;
8383 }
8384
8385 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8386 int look_in_map)
8387 {
8388 int i;
8389 int failed = 0;
8390 struct imsm_disk *disk;
8391 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8392 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
8393 struct imsm_map *map_for_loop;
8394 __u32 ord;
8395 int idx;
8396 int idx_1;
8397
8398 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8399 * disks that are being rebuilt. New failures are recorded to
8400 * map[0]. So we look through all the disks we started with and
8401 * see if any failures are still present, or if any new ones
8402 * have arrived
8403 */
8404 map_for_loop = map;
8405 if (prev && (map->num_members < prev->num_members))
8406 map_for_loop = prev;
8407
8408 for (i = 0; i < map_for_loop->num_members; i++) {
8409 idx_1 = -255;
8410 /* when MAP_X is passed both maps failures are counted
8411 */
8412 if (prev &&
8413 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8414 i < prev->num_members) {
8415 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8416 idx_1 = ord_to_idx(ord);
8417
8418 disk = get_imsm_disk(super, idx_1);
8419 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8420 failed++;
8421 }
8422 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8423 i < map->num_members) {
8424 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8425 idx = ord_to_idx(ord);
8426
8427 if (idx != idx_1) {
8428 disk = get_imsm_disk(super, idx);
8429 if (!disk || is_failed(disk) ||
8430 ord & IMSM_ORD_REBUILD)
8431 failed++;
8432 }
8433 }
8434 }
8435
8436 return failed;
8437 }
8438
8439 static int imsm_open_new(struct supertype *c, struct active_array *a,
8440 int inst)
8441 {
8442 struct intel_super *super = c->sb;
8443 struct imsm_super *mpb = super->anchor;
8444 struct imsm_update_prealloc_bb_mem u;
8445
8446 if (inst >= mpb->num_raid_devs) {
8447 pr_err("subarry index %d, out of range\n", inst);
8448 return -ENODEV;
8449 }
8450
8451 dprintf("imsm: open_new %d\n", inst);
8452 a->info.container_member = inst;
8453
8454 u.type = update_prealloc_badblocks_mem;
8455 imsm_update_metadata_locally(c, &u, sizeof(u));
8456
8457 return 0;
8458 }
8459
8460 static int is_resyncing(struct imsm_dev *dev)
8461 {
8462 struct imsm_map *migr_map;
8463
8464 if (!dev->vol.migr_state)
8465 return 0;
8466
8467 if (migr_type(dev) == MIGR_INIT ||
8468 migr_type(dev) == MIGR_REPAIR)
8469 return 1;
8470
8471 if (migr_type(dev) == MIGR_GEN_MIGR)
8472 return 0;
8473
8474 migr_map = get_imsm_map(dev, MAP_1);
8475
8476 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8477 dev->vol.migr_type != MIGR_GEN_MIGR)
8478 return 1;
8479 else
8480 return 0;
8481 }
8482
8483 /* return true if we recorded new information */
8484 static int mark_failure(struct intel_super *super,
8485 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8486 {
8487 __u32 ord;
8488 int slot;
8489 struct imsm_map *map;
8490 char buf[MAX_RAID_SERIAL_LEN+3];
8491 unsigned int len, shift = 0;
8492
8493 /* new failures are always set in map[0] */
8494 map = get_imsm_map(dev, MAP_0);
8495
8496 slot = get_imsm_disk_slot(map, idx);
8497 if (slot < 0)
8498 return 0;
8499
8500 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
8501 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
8502 return 0;
8503
8504 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8505 buf[MAX_RAID_SERIAL_LEN] = '\000';
8506 strcat(buf, ":0");
8507 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8508 shift = len - MAX_RAID_SERIAL_LEN + 1;
8509 memcpy(disk->serial, &buf[shift], len + 1 - shift);
8510
8511 disk->status |= FAILED_DISK;
8512 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
8513 /* mark failures in second map if second map exists and this disk
8514 * in this slot.
8515 * This is valid for migration, initialization and rebuild
8516 */
8517 if (dev->vol.migr_state) {
8518 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
8519 int slot2 = get_imsm_disk_slot(map2, idx);
8520
8521 if (slot2 < map2->num_members && slot2 >= 0)
8522 set_imsm_ord_tbl_ent(map2, slot2,
8523 idx | IMSM_ORD_REBUILD);
8524 }
8525 if (map->failed_disk_num == 0xff ||
8526 (!is_rebuilding(dev) && map->failed_disk_num > slot))
8527 map->failed_disk_num = slot;
8528
8529 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8530
8531 return 1;
8532 }
8533
8534 static void mark_missing(struct intel_super *super,
8535 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8536 {
8537 mark_failure(super, dev, disk, idx);
8538
8539 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8540 return;
8541
8542 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8543 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8544 }
8545
8546 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8547 {
8548 struct dl *dl;
8549
8550 if (!super->missing)
8551 return;
8552
8553 /* When orom adds replacement for missing disk it does
8554 * not remove entry of missing disk, but just updates map with
8555 * new added disk. So it is not enough just to test if there is
8556 * any missing disk, we have to look if there are any failed disks
8557 * in map to stop migration */
8558
8559 dprintf("imsm: mark missing\n");
8560 /* end process for initialization and rebuild only
8561 */
8562 if (is_gen_migration(dev) == false) {
8563 int failed = imsm_count_failed(super, dev, MAP_0);
8564
8565 if (failed) {
8566 __u8 map_state;
8567 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8568 struct imsm_map *map1;
8569 int i, ord, ord_map1;
8570 int rebuilt = 1;
8571
8572 for (i = 0; i < map->num_members; i++) {
8573 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8574 if (!(ord & IMSM_ORD_REBUILD))
8575 continue;
8576
8577 map1 = get_imsm_map(dev, MAP_1);
8578 if (!map1)
8579 continue;
8580
8581 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8582 if (ord_map1 & IMSM_ORD_REBUILD)
8583 rebuilt = 0;
8584 }
8585
8586 if (rebuilt) {
8587 map_state = imsm_check_degraded(super, dev,
8588 failed, MAP_0);
8589 end_migration(dev, super, map_state);
8590 }
8591 }
8592 }
8593 for (dl = super->missing; dl; dl = dl->next)
8594 mark_missing(super, dev, &dl->disk, dl->index);
8595 super->updates_pending++;
8596 }
8597
8598 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8599 long long new_size)
8600 {
8601 unsigned long long array_blocks;
8602 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8603 int used_disks = imsm_num_data_members(map);
8604
8605 if (used_disks == 0) {
8606 /* when problems occures
8607 * return current array_blocks value
8608 */
8609 array_blocks = imsm_dev_size(dev);
8610
8611 return array_blocks;
8612 }
8613
8614 /* set array size in metadata
8615 */
8616 if (new_size <= 0)
8617 /* OLCE size change is caused by added disks
8618 */
8619 array_blocks = per_dev_array_size(map) * used_disks;
8620 else
8621 /* Online Volume Size Change
8622 * Using available free space
8623 */
8624 array_blocks = new_size;
8625
8626 array_blocks = round_size_to_mb(array_blocks, used_disks);
8627 set_imsm_dev_size(dev, array_blocks);
8628
8629 return array_blocks;
8630 }
8631
8632 static void imsm_set_disk(struct active_array *a, int n, int state);
8633
8634 static void imsm_progress_container_reshape(struct intel_super *super)
8635 {
8636 /* if no device has a migr_state, but some device has a
8637 * different number of members than the previous device, start
8638 * changing the number of devices in this device to match
8639 * previous.
8640 */
8641 struct imsm_super *mpb = super->anchor;
8642 int prev_disks = -1;
8643 int i;
8644 int copy_map_size;
8645
8646 for (i = 0; i < mpb->num_raid_devs; i++) {
8647 struct imsm_dev *dev = get_imsm_dev(super, i);
8648 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8649 struct imsm_map *map2;
8650 int prev_num_members;
8651
8652 if (dev->vol.migr_state)
8653 return;
8654
8655 if (prev_disks == -1)
8656 prev_disks = map->num_members;
8657 if (prev_disks == map->num_members)
8658 continue;
8659
8660 /* OK, this array needs to enter reshape mode.
8661 * i.e it needs a migr_state
8662 */
8663
8664 copy_map_size = sizeof_imsm_map(map);
8665 prev_num_members = map->num_members;
8666 map->num_members = prev_disks;
8667 dev->vol.migr_state = 1;
8668 set_vol_curr_migr_unit(dev, 0);
8669 set_migr_type(dev, MIGR_GEN_MIGR);
8670 for (i = prev_num_members;
8671 i < map->num_members; i++)
8672 set_imsm_ord_tbl_ent(map, i, i);
8673 map2 = get_imsm_map(dev, MAP_1);
8674 /* Copy the current map */
8675 memcpy(map2, map, copy_map_size);
8676 map2->num_members = prev_num_members;
8677
8678 imsm_set_array_size(dev, -1);
8679 super->clean_migration_record_by_mdmon = 1;
8680 super->updates_pending++;
8681 }
8682 }
8683
8684 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
8685 * states are handled in imsm_set_disk() with one exception, when a
8686 * resync is stopped due to a new failure this routine will set the
8687 * 'degraded' state for the array.
8688 */
8689 static int imsm_set_array_state(struct active_array *a, int consistent)
8690 {
8691 int inst = a->info.container_member;
8692 struct intel_super *super = a->container->sb;
8693 struct imsm_dev *dev = get_imsm_dev(super, inst);
8694 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8695 int failed = imsm_count_failed(super, dev, MAP_0);
8696 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8697 __u32 blocks_per_unit;
8698
8699 if (dev->vol.migr_state &&
8700 dev->vol.migr_type == MIGR_GEN_MIGR) {
8701 /* array state change is blocked due to reshape action
8702 * We might need to
8703 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8704 * - finish the reshape (if last_checkpoint is big and action != reshape)
8705 * - update vol_curr_migr_unit
8706 */
8707 if (a->curr_action == reshape) {
8708 /* still reshaping, maybe update vol_curr_migr_unit */
8709 goto mark_checkpoint;
8710 } else {
8711 if (a->last_checkpoint >= a->info.component_size) {
8712 unsigned long long array_blocks;
8713 int used_disks;
8714 struct mdinfo *mdi;
8715
8716 used_disks = imsm_num_data_members(map);
8717 if (used_disks > 0) {
8718 array_blocks =
8719 per_dev_array_size(map) *
8720 used_disks;
8721 array_blocks =
8722 round_size_to_mb(array_blocks,
8723 used_disks);
8724 a->info.custom_array_size = array_blocks;
8725 /* encourage manager to update array
8726 * size
8727 */
8728
8729 a->check_reshape = 1;
8730 }
8731 /* finalize online capacity expansion/reshape */
8732 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8733 imsm_set_disk(a,
8734 mdi->disk.raid_disk,
8735 mdi->curr_state);
8736
8737 imsm_progress_container_reshape(super);
8738 }
8739 }
8740 }
8741
8742 /* before we activate this array handle any missing disks */
8743 if (consistent == 2)
8744 handle_missing(super, dev);
8745
8746 if (consistent == 2 &&
8747 (!is_resync_complete(&a->info) ||
8748 map_state != IMSM_T_STATE_NORMAL ||
8749 dev->vol.migr_state))
8750 consistent = 0;
8751
8752 if (is_resync_complete(&a->info)) {
8753 /* complete intialization / resync,
8754 * recovery and interrupted recovery is completed in
8755 * ->set_disk
8756 */
8757 if (is_resyncing(dev)) {
8758 dprintf("imsm: mark resync done\n");
8759 end_migration(dev, super, map_state);
8760 super->updates_pending++;
8761 a->last_checkpoint = 0;
8762 }
8763 } else if ((!is_resyncing(dev) && !failed) &&
8764 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
8765 /* mark the start of the init process if nothing is failed */
8766 dprintf("imsm: mark resync start\n");
8767 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8768 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
8769 else
8770 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
8771 super->updates_pending++;
8772 }
8773
8774 if (a->prev_action == idle)
8775 goto skip_mark_checkpoint;
8776
8777 mark_checkpoint:
8778 /* skip checkpointing for general migration,
8779 * it is controlled in mdadm
8780 */
8781 if (is_gen_migration(dev))
8782 goto skip_mark_checkpoint;
8783
8784 /* check if we can update vol_curr_migr_unit from resync_start,
8785 * recovery_start
8786 */
8787 blocks_per_unit = blocks_per_migr_unit(super, dev);
8788 if (blocks_per_unit) {
8789 set_vol_curr_migr_unit(dev,
8790 a->last_checkpoint / blocks_per_unit);
8791 dprintf("imsm: mark checkpoint (%llu)\n",
8792 vol_curr_migr_unit(dev));
8793 super->updates_pending++;
8794 }
8795
8796 skip_mark_checkpoint:
8797 /* mark dirty / clean */
8798 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8799 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
8800 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
8801 if (consistent) {
8802 dev->vol.dirty = RAIDVOL_CLEAN;
8803 } else {
8804 dev->vol.dirty = RAIDVOL_DIRTY;
8805 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8806 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
8807 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8808 }
8809 super->updates_pending++;
8810 }
8811
8812 return consistent;
8813 }
8814
8815 static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8816 {
8817 int inst = a->info.container_member;
8818 struct intel_super *super = a->container->sb;
8819 struct imsm_dev *dev = get_imsm_dev(super, inst);
8820 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8821
8822 if (slot > map->num_members) {
8823 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8824 slot, map->num_members - 1);
8825 return -1;
8826 }
8827
8828 if (slot < 0)
8829 return -1;
8830
8831 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8832 }
8833
8834 static void imsm_set_disk(struct active_array *a, int n, int state)
8835 {
8836 int inst = a->info.container_member;
8837 struct intel_super *super = a->container->sb;
8838 struct imsm_dev *dev = get_imsm_dev(super, inst);
8839 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8840 struct imsm_disk *disk;
8841 struct mdinfo *mdi;
8842 int recovery_not_finished = 0;
8843 int failed;
8844 int ord;
8845 __u8 map_state;
8846 int rebuild_done = 0;
8847 int i;
8848
8849 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
8850 if (ord < 0)
8851 return;
8852
8853 dprintf("imsm: set_disk %d:%x\n", n, state);
8854 disk = get_imsm_disk(super, ord_to_idx(ord));
8855
8856 /* check for new failures */
8857 if (disk && (state & DS_FAULTY)) {
8858 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
8859 super->updates_pending++;
8860 }
8861
8862 /* check if in_sync */
8863 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
8864 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8865
8866 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
8867 rebuild_done = 1;
8868 super->updates_pending++;
8869 }
8870
8871 failed = imsm_count_failed(super, dev, MAP_0);
8872 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8873
8874 /* check if recovery complete, newly degraded, or failed */
8875 dprintf("imsm: Detected transition to state ");
8876 switch (map_state) {
8877 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8878 dprintf("normal: ");
8879 if (is_rebuilding(dev)) {
8880 dprintf_cont("while rebuilding");
8881 /* check if recovery is really finished */
8882 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8883 if (mdi->recovery_start != MaxSector) {
8884 recovery_not_finished = 1;
8885 break;
8886 }
8887 if (recovery_not_finished) {
8888 dprintf_cont("\n");
8889 dprintf("Rebuild has not finished yet, state not changed");
8890 if (a->last_checkpoint < mdi->recovery_start) {
8891 a->last_checkpoint = mdi->recovery_start;
8892 super->updates_pending++;
8893 }
8894 break;
8895 }
8896 end_migration(dev, super, map_state);
8897 map->failed_disk_num = ~0;
8898 super->updates_pending++;
8899 a->last_checkpoint = 0;
8900 break;
8901 }
8902 if (is_gen_migration(dev)) {
8903 dprintf_cont("while general migration");
8904 if (a->last_checkpoint >= a->info.component_size)
8905 end_migration(dev, super, map_state);
8906 else
8907 map->map_state = map_state;
8908 map->failed_disk_num = ~0;
8909 super->updates_pending++;
8910 break;
8911 }
8912 break;
8913 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
8914 dprintf_cont("degraded: ");
8915 if (map->map_state != map_state && !dev->vol.migr_state) {
8916 dprintf_cont("mark degraded");
8917 map->map_state = map_state;
8918 super->updates_pending++;
8919 a->last_checkpoint = 0;
8920 break;
8921 }
8922 if (is_rebuilding(dev)) {
8923 dprintf_cont("while rebuilding ");
8924 if (state & DS_FAULTY) {
8925 dprintf_cont("removing failed drive ");
8926 if (n == map->failed_disk_num) {
8927 dprintf_cont("end migration");
8928 end_migration(dev, super, map_state);
8929 a->last_checkpoint = 0;
8930 } else {
8931 dprintf_cont("fail detected during rebuild, changing map state");
8932 map->map_state = map_state;
8933 }
8934 super->updates_pending++;
8935 }
8936
8937 if (!rebuild_done)
8938 break;
8939
8940 /* check if recovery is really finished */
8941 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8942 if (mdi->recovery_start != MaxSector) {
8943 recovery_not_finished = 1;
8944 break;
8945 }
8946 if (recovery_not_finished) {
8947 dprintf_cont("\n");
8948 dprintf_cont("Rebuild has not finished yet");
8949 if (a->last_checkpoint < mdi->recovery_start) {
8950 a->last_checkpoint =
8951 mdi->recovery_start;
8952 super->updates_pending++;
8953 }
8954 break;
8955 }
8956
8957 dprintf_cont(" Rebuild done, still degraded");
8958 end_migration(dev, super, map_state);
8959 a->last_checkpoint = 0;
8960 super->updates_pending++;
8961
8962 for (i = 0; i < map->num_members; i++) {
8963 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8964
8965 if (idx & IMSM_ORD_REBUILD)
8966 map->failed_disk_num = i;
8967 }
8968 super->updates_pending++;
8969 break;
8970 }
8971 if (is_gen_migration(dev)) {
8972 dprintf_cont("while general migration");
8973 if (a->last_checkpoint >= a->info.component_size)
8974 end_migration(dev, super, map_state);
8975 else {
8976 map->map_state = map_state;
8977 manage_second_map(super, dev);
8978 }
8979 super->updates_pending++;
8980 break;
8981 }
8982 if (is_initializing(dev)) {
8983 dprintf_cont("while initialization.");
8984 map->map_state = map_state;
8985 super->updates_pending++;
8986 break;
8987 }
8988 break;
8989 case IMSM_T_STATE_FAILED: /* transition to failed state */
8990 dprintf_cont("failed: ");
8991 if (is_gen_migration(dev)) {
8992 dprintf_cont("while general migration");
8993 map->map_state = map_state;
8994 super->updates_pending++;
8995 break;
8996 }
8997 if (map->map_state != map_state) {
8998 dprintf_cont("mark failed");
8999 end_migration(dev, super, map_state);
9000 super->updates_pending++;
9001 a->last_checkpoint = 0;
9002 break;
9003 }
9004 break;
9005 default:
9006 dprintf_cont("state %i\n", map_state);
9007 }
9008 dprintf_cont("\n");
9009 }
9010
9011 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
9012 {
9013 void *buf = mpb;
9014 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
9015 unsigned long long dsize;
9016 unsigned long long sectors;
9017 unsigned int sector_size;
9018
9019 if (!get_dev_sector_size(fd, NULL, &sector_size))
9020 return 1;
9021 get_dev_size(fd, NULL, &dsize);
9022
9023 if (mpb_size > sector_size) {
9024 /* -1 to account for anchor */
9025 sectors = mpb_sectors(mpb, sector_size) - 1;
9026
9027 /* write the extended mpb to the sectors preceeding the anchor */
9028 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
9029 SEEK_SET) < 0)
9030 return 1;
9031
9032 if ((unsigned long long)write(fd, buf + sector_size,
9033 sector_size * sectors) != sector_size * sectors)
9034 return 1;
9035 }
9036
9037 /* first block is stored on second to last sector of the disk */
9038 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
9039 return 1;
9040
9041 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
9042 return 1;
9043
9044 return 0;
9045 }
9046
9047 static void imsm_sync_metadata(struct supertype *container)
9048 {
9049 struct intel_super *super = container->sb;
9050
9051 dprintf("sync metadata: %d\n", super->updates_pending);
9052 if (!super->updates_pending)
9053 return;
9054
9055 write_super_imsm(container, 0);
9056
9057 super->updates_pending = 0;
9058 }
9059
9060 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
9061 {
9062 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
9063 int i = get_imsm_disk_idx(dev, idx, MAP_X);
9064 struct dl *dl;
9065
9066 for (dl = super->disks; dl; dl = dl->next)
9067 if (dl->index == i)
9068 break;
9069
9070 if (dl && is_failed(&dl->disk))
9071 dl = NULL;
9072
9073 if (dl)
9074 dprintf("found %x:%x\n", dl->major, dl->minor);
9075
9076 return dl;
9077 }
9078
9079 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
9080 struct active_array *a, int activate_new,
9081 struct mdinfo *additional_test_list)
9082 {
9083 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
9084 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
9085 struct imsm_super *mpb = super->anchor;
9086 struct imsm_map *map;
9087 unsigned long long pos;
9088 struct mdinfo *d;
9089 struct extent *ex;
9090 int i, j;
9091 int found;
9092 __u32 array_start = 0;
9093 __u32 array_end = 0;
9094 struct dl *dl;
9095 struct mdinfo *test_list;
9096
9097 for (dl = super->disks; dl; dl = dl->next) {
9098 /* If in this array, skip */
9099 for (d = a->info.devs ; d ; d = d->next)
9100 if (is_fd_valid(d->state_fd) &&
9101 d->disk.major == dl->major &&
9102 d->disk.minor == dl->minor) {
9103 dprintf("%x:%x already in array\n",
9104 dl->major, dl->minor);
9105 break;
9106 }
9107 if (d)
9108 continue;
9109 test_list = additional_test_list;
9110 while (test_list) {
9111 if (test_list->disk.major == dl->major &&
9112 test_list->disk.minor == dl->minor) {
9113 dprintf("%x:%x already in additional test list\n",
9114 dl->major, dl->minor);
9115 break;
9116 }
9117 test_list = test_list->next;
9118 }
9119 if (test_list)
9120 continue;
9121
9122 /* skip in use or failed drives */
9123 if (is_failed(&dl->disk) || idx == dl->index ||
9124 dl->index == -2) {
9125 dprintf("%x:%x status (failed: %d index: %d)\n",
9126 dl->major, dl->minor, is_failed(&dl->disk), idx);
9127 continue;
9128 }
9129
9130 /* skip pure spares when we are looking for partially
9131 * assimilated drives
9132 */
9133 if (dl->index == -1 && !activate_new)
9134 continue;
9135
9136 if (!drive_validate_sector_size(super, dl))
9137 continue;
9138
9139 /* Does this unused device have the requisite free space?
9140 * It needs to be able to cover all member volumes
9141 */
9142 ex = get_extents(super, dl, 1);
9143 if (!ex) {
9144 dprintf("cannot get extents\n");
9145 continue;
9146 }
9147 for (i = 0; i < mpb->num_raid_devs; i++) {
9148 dev = get_imsm_dev(super, i);
9149 map = get_imsm_map(dev, MAP_0);
9150
9151 /* check if this disk is already a member of
9152 * this array
9153 */
9154 if (get_imsm_disk_slot(map, dl->index) >= 0)
9155 continue;
9156
9157 found = 0;
9158 j = 0;
9159 pos = 0;
9160 array_start = pba_of_lba0(map);
9161 array_end = array_start +
9162 per_dev_array_size(map) - 1;
9163
9164 do {
9165 /* check that we can start at pba_of_lba0 with
9166 * num_data_stripes*blocks_per_stripe of space
9167 */
9168 if (array_start >= pos && array_end < ex[j].start) {
9169 found = 1;
9170 break;
9171 }
9172 pos = ex[j].start + ex[j].size;
9173 j++;
9174 } while (ex[j-1].size);
9175
9176 if (!found)
9177 break;
9178 }
9179
9180 free(ex);
9181 if (i < mpb->num_raid_devs) {
9182 dprintf("%x:%x does not have %u to %u available\n",
9183 dl->major, dl->minor, array_start, array_end);
9184 /* No room */
9185 continue;
9186 }
9187 return dl;
9188 }
9189
9190 return dl;
9191 }
9192
9193 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9194 {
9195 struct imsm_dev *dev2;
9196 struct imsm_map *map;
9197 struct dl *idisk;
9198 int slot;
9199 int idx;
9200 __u8 state;
9201
9202 dev2 = get_imsm_dev(cont->sb, dev_idx);
9203
9204 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
9205 if (state == IMSM_T_STATE_FAILED) {
9206 map = get_imsm_map(dev2, MAP_0);
9207 for (slot = 0; slot < map->num_members; slot++) {
9208 /*
9209 * Check if failed disks are deleted from intel
9210 * disk list or are marked to be deleted
9211 */
9212 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
9213 idisk = get_imsm_dl_disk(cont->sb, idx);
9214 /*
9215 * Do not rebuild the array if failed disks
9216 * from failed sub-array are not removed from
9217 * container.
9218 */
9219 if (idisk &&
9220 is_failed(&idisk->disk) &&
9221 (idisk->action != DISK_REMOVE))
9222 return 0;
9223 }
9224 }
9225 return 1;
9226 }
9227
9228 static struct mdinfo *imsm_activate_spare(struct active_array *a,
9229 struct metadata_update **updates)
9230 {
9231 /**
9232 * Find a device with unused free space and use it to replace a
9233 * failed/vacant region in an array. We replace failed regions one a
9234 * array at a time. The result is that a new spare disk will be added
9235 * to the first failed array and after the monitor has finished
9236 * propagating failures the remainder will be consumed.
9237 *
9238 * FIXME add a capability for mdmon to request spares from another
9239 * container.
9240 */
9241
9242 struct intel_super *super = a->container->sb;
9243 int inst = a->info.container_member;
9244 struct imsm_dev *dev = get_imsm_dev(super, inst);
9245 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9246 int failed = a->info.array.raid_disks;
9247 struct mdinfo *rv = NULL;
9248 struct mdinfo *d;
9249 struct mdinfo *di;
9250 struct metadata_update *mu;
9251 struct dl *dl;
9252 struct imsm_update_activate_spare *u;
9253 int num_spares = 0;
9254 int i;
9255 int allowed;
9256
9257 for (d = a->info.devs ; d; d = d->next) {
9258 if (!is_fd_valid(d->state_fd))
9259 continue;
9260
9261 if (d->curr_state & DS_FAULTY)
9262 /* wait for Removal to happen */
9263 return NULL;
9264
9265 failed--;
9266 }
9267
9268 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9269 inst, failed, a->info.array.raid_disks, a->info.array.level);
9270
9271 if (imsm_reshape_blocks_arrays_changes(super))
9272 return NULL;
9273
9274 /* Cannot activate another spare if rebuild is in progress already
9275 */
9276 if (is_rebuilding(dev)) {
9277 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
9278 return NULL;
9279 }
9280
9281 if (a->info.array.level == 4)
9282 /* No repair for takeovered array
9283 * imsm doesn't support raid4
9284 */
9285 return NULL;
9286
9287 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9288 IMSM_T_STATE_DEGRADED)
9289 return NULL;
9290
9291 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9292 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9293 return NULL;
9294 }
9295
9296 /*
9297 * If there are any failed disks check state of the other volume.
9298 * Block rebuild if the another one is failed until failed disks
9299 * are removed from container.
9300 */
9301 if (failed) {
9302 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
9303 MAX_RAID_SERIAL_LEN, dev->volume);
9304 /* check if states of the other volumes allow for rebuild */
9305 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9306 if (i != inst) {
9307 allowed = imsm_rebuild_allowed(a->container,
9308 i, failed);
9309 if (!allowed)
9310 return NULL;
9311 }
9312 }
9313 }
9314
9315 /* For each slot, if it is not working, find a spare */
9316 for (i = 0; i < a->info.array.raid_disks; i++) {
9317 for (d = a->info.devs ; d ; d = d->next)
9318 if (d->disk.raid_disk == i)
9319 break;
9320 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
9321 if (d && is_fd_valid(d->state_fd))
9322 continue;
9323
9324 /*
9325 * OK, this device needs recovery. Try to re-add the
9326 * previous occupant of this slot, if this fails see if
9327 * we can continue the assimilation of a spare that was
9328 * partially assimilated, finally try to activate a new
9329 * spare.
9330 */
9331 dl = imsm_readd(super, i, a);
9332 if (!dl)
9333 dl = imsm_add_spare(super, i, a, 0, rv);
9334 if (!dl)
9335 dl = imsm_add_spare(super, i, a, 1, rv);
9336 if (!dl)
9337 continue;
9338
9339 /* found a usable disk with enough space */
9340 di = xcalloc(1, sizeof(*di));
9341
9342 /* dl->index will be -1 in the case we are activating a
9343 * pristine spare. imsm_process_update() will create a
9344 * new index in this case. Once a disk is found to be
9345 * failed in all member arrays it is kicked from the
9346 * metadata
9347 */
9348 di->disk.number = dl->index;
9349
9350 /* (ab)use di->devs to store a pointer to the device
9351 * we chose
9352 */
9353 di->devs = (struct mdinfo *) dl;
9354
9355 di->disk.raid_disk = i;
9356 di->disk.major = dl->major;
9357 di->disk.minor = dl->minor;
9358 di->disk.state = 0;
9359 di->recovery_start = 0;
9360 di->data_offset = pba_of_lba0(map);
9361 di->component_size = a->info.component_size;
9362 di->container_member = inst;
9363 di->bb.supported = 1;
9364 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
9365 di->ppl_sector = get_ppl_sector(super, inst);
9366 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
9367 }
9368 super->random = random32();
9369 di->next = rv;
9370 rv = di;
9371 num_spares++;
9372 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9373 i, di->data_offset);
9374 }
9375
9376 if (!rv)
9377 /* No spares found */
9378 return rv;
9379 /* Now 'rv' has a list of devices to return.
9380 * Create a metadata_update record to update the
9381 * disk_ord_tbl for the array
9382 */
9383 mu = xmalloc(sizeof(*mu));
9384 mu->buf = xcalloc(num_spares,
9385 sizeof(struct imsm_update_activate_spare));
9386 mu->space = NULL;
9387 mu->space_list = NULL;
9388 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9389 mu->next = *updates;
9390 u = (struct imsm_update_activate_spare *) mu->buf;
9391
9392 for (di = rv ; di ; di = di->next) {
9393 u->type = update_activate_spare;
9394 u->dl = (struct dl *) di->devs;
9395 di->devs = NULL;
9396 u->slot = di->disk.raid_disk;
9397 u->array = inst;
9398 u->next = u + 1;
9399 u++;
9400 }
9401 (u-1)->next = NULL;
9402 *updates = mu;
9403
9404 return rv;
9405 }
9406
9407 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
9408 {
9409 struct imsm_dev *dev = get_imsm_dev(super, idx);
9410 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9411 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
9412 struct disk_info *inf = get_disk_info(u);
9413 struct imsm_disk *disk;
9414 int i;
9415 int j;
9416
9417 for (i = 0; i < map->num_members; i++) {
9418 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
9419 for (j = 0; j < new_map->num_members; j++)
9420 if (serialcmp(disk->serial, inf[j].serial) == 0)
9421 return 1;
9422 }
9423
9424 return 0;
9425 }
9426
9427 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9428 {
9429 struct dl *dl;
9430
9431 for (dl = super->disks; dl; dl = dl->next)
9432 if (dl->major == major && dl->minor == minor)
9433 return dl;
9434 return NULL;
9435 }
9436
9437 static int remove_disk_super(struct intel_super *super, int major, int minor)
9438 {
9439 struct dl *prev;
9440 struct dl *dl;
9441
9442 prev = NULL;
9443 for (dl = super->disks; dl; dl = dl->next) {
9444 if (dl->major == major && dl->minor == minor) {
9445 /* remove */
9446 if (prev)
9447 prev->next = dl->next;
9448 else
9449 super->disks = dl->next;
9450 dl->next = NULL;
9451 __free_imsm_disk(dl, 1);
9452 dprintf("removed %x:%x\n", major, minor);
9453 break;
9454 }
9455 prev = dl;
9456 }
9457 return 0;
9458 }
9459
9460 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
9461
9462 static int add_remove_disk_update(struct intel_super *super)
9463 {
9464 int check_degraded = 0;
9465 struct dl *disk;
9466
9467 /* add/remove some spares to/from the metadata/contrainer */
9468 while (super->disk_mgmt_list) {
9469 struct dl *disk_cfg;
9470
9471 disk_cfg = super->disk_mgmt_list;
9472 super->disk_mgmt_list = disk_cfg->next;
9473 disk_cfg->next = NULL;
9474
9475 if (disk_cfg->action == DISK_ADD) {
9476 disk_cfg->next = super->disks;
9477 super->disks = disk_cfg;
9478 check_degraded = 1;
9479 dprintf("added %x:%x\n",
9480 disk_cfg->major, disk_cfg->minor);
9481 } else if (disk_cfg->action == DISK_REMOVE) {
9482 dprintf("Disk remove action processed: %x.%x\n",
9483 disk_cfg->major, disk_cfg->minor);
9484 disk = get_disk_super(super,
9485 disk_cfg->major,
9486 disk_cfg->minor);
9487 if (disk) {
9488 /* store action status */
9489 disk->action = DISK_REMOVE;
9490 /* remove spare disks only */
9491 if (disk->index == -1) {
9492 remove_disk_super(super,
9493 disk_cfg->major,
9494 disk_cfg->minor);
9495 } else {
9496 disk_cfg->fd = disk->fd;
9497 disk->fd = -1;
9498 }
9499 }
9500 /* release allocate disk structure */
9501 __free_imsm_disk(disk_cfg, 1);
9502 }
9503 }
9504 return check_degraded;
9505 }
9506
9507 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9508 struct intel_super *super,
9509 void ***space_list)
9510 {
9511 struct intel_dev *id;
9512 void **tofree = NULL;
9513 int ret_val = 0;
9514
9515 dprintf("(enter)\n");
9516 if (u->subdev < 0 || u->subdev > 1) {
9517 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9518 return ret_val;
9519 }
9520 if (space_list == NULL || *space_list == NULL) {
9521 dprintf("imsm: Error: Memory is not allocated\n");
9522 return ret_val;
9523 }
9524
9525 for (id = super->devlist ; id; id = id->next) {
9526 if (id->index == (unsigned)u->subdev) {
9527 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9528 struct imsm_map *map;
9529 struct imsm_dev *new_dev =
9530 (struct imsm_dev *)*space_list;
9531 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
9532 int to_state;
9533 struct dl *new_disk;
9534
9535 if (new_dev == NULL)
9536 return ret_val;
9537 *space_list = **space_list;
9538 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
9539 map = get_imsm_map(new_dev, MAP_0);
9540 if (migr_map) {
9541 dprintf("imsm: Error: migration in progress");
9542 return ret_val;
9543 }
9544
9545 to_state = map->map_state;
9546 if ((u->new_level == 5) && (map->raid_level == 0)) {
9547 map->num_members++;
9548 /* this should not happen */
9549 if (u->new_disks[0] < 0) {
9550 map->failed_disk_num =
9551 map->num_members - 1;
9552 to_state = IMSM_T_STATE_DEGRADED;
9553 } else
9554 to_state = IMSM_T_STATE_NORMAL;
9555 }
9556 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
9557 if (u->new_level > -1)
9558 map->raid_level = u->new_level;
9559 migr_map = get_imsm_map(new_dev, MAP_1);
9560 if ((u->new_level == 5) &&
9561 (migr_map->raid_level == 0)) {
9562 int ord = map->num_members - 1;
9563 migr_map->num_members--;
9564 if (u->new_disks[0] < 0)
9565 ord |= IMSM_ORD_REBUILD;
9566 set_imsm_ord_tbl_ent(map,
9567 map->num_members - 1,
9568 ord);
9569 }
9570 id->dev = new_dev;
9571 tofree = (void **)dev;
9572
9573 /* update chunk size
9574 */
9575 if (u->new_chunksize > 0) {
9576 struct imsm_map *dest_map =
9577 get_imsm_map(dev, MAP_0);
9578 int used_disks =
9579 imsm_num_data_members(dest_map);
9580
9581 if (used_disks == 0)
9582 return ret_val;
9583
9584 map->blocks_per_strip =
9585 __cpu_to_le16(u->new_chunksize * 2);
9586 update_num_data_stripes(map, imsm_dev_size(dev));
9587 }
9588
9589 /* ensure blocks_per_member has valid value
9590 */
9591 set_blocks_per_member(map,
9592 per_dev_array_size(map) +
9593 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9594
9595 /* add disk
9596 */
9597 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9598 migr_map->raid_level == map->raid_level)
9599 goto skip_disk_add;
9600
9601 if (u->new_disks[0] >= 0) {
9602 /* use passes spare
9603 */
9604 new_disk = get_disk_super(super,
9605 major(u->new_disks[0]),
9606 minor(u->new_disks[0]));
9607 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9608 major(u->new_disks[0]),
9609 minor(u->new_disks[0]),
9610 new_disk, new_disk->index);
9611 if (new_disk == NULL)
9612 goto error_disk_add;
9613
9614 new_disk->index = map->num_members - 1;
9615 /* slot to fill in autolayout
9616 */
9617 new_disk->raiddisk = new_disk->index;
9618 new_disk->disk.status |= CONFIGURED_DISK;
9619 new_disk->disk.status &= ~SPARE_DISK;
9620 } else
9621 goto error_disk_add;
9622
9623 skip_disk_add:
9624 *tofree = *space_list;
9625 /* calculate new size
9626 */
9627 imsm_set_array_size(new_dev, -1);
9628
9629 ret_val = 1;
9630 }
9631 }
9632
9633 if (tofree)
9634 *space_list = tofree;
9635 return ret_val;
9636
9637 error_disk_add:
9638 dprintf("Error: imsm: Cannot find disk.\n");
9639 return ret_val;
9640 }
9641
9642 static int apply_size_change_update(struct imsm_update_size_change *u,
9643 struct intel_super *super)
9644 {
9645 struct intel_dev *id;
9646 int ret_val = 0;
9647
9648 dprintf("(enter)\n");
9649 if (u->subdev < 0 || u->subdev > 1) {
9650 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9651 return ret_val;
9652 }
9653
9654 for (id = super->devlist ; id; id = id->next) {
9655 if (id->index == (unsigned)u->subdev) {
9656 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9657 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9658 int used_disks = imsm_num_data_members(map);
9659 unsigned long long blocks_per_member;
9660 unsigned long long new_size_per_disk;
9661
9662 if (used_disks == 0)
9663 return 0;
9664
9665 /* calculate new size
9666 */
9667 new_size_per_disk = u->new_size / used_disks;
9668 blocks_per_member = new_size_per_disk +
9669 NUM_BLOCKS_DIRTY_STRIPE_REGION;
9670
9671 imsm_set_array_size(dev, u->new_size);
9672 set_blocks_per_member(map, blocks_per_member);
9673 update_num_data_stripes(map, u->new_size);
9674 ret_val = 1;
9675 break;
9676 }
9677 }
9678
9679 return ret_val;
9680 }
9681
9682 static int prepare_spare_to_activate(struct supertype *st,
9683 struct imsm_update_activate_spare *u)
9684 {
9685 struct intel_super *super = st->sb;
9686 int prev_current_vol = super->current_vol;
9687 struct active_array *a;
9688 int ret = 1;
9689
9690 for (a = st->arrays; a; a = a->next)
9691 /*
9692 * Additional initialization (adding bitmap header, filling
9693 * the bitmap area with '1's to force initial rebuild for a whole
9694 * data-area) is required when adding the spare to the volume
9695 * with write-intent bitmap.
9696 */
9697 if (a->info.container_member == u->array &&
9698 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9699 struct dl *dl;
9700
9701 for (dl = super->disks; dl; dl = dl->next)
9702 if (dl == u->dl)
9703 break;
9704 if (!dl)
9705 break;
9706
9707 super->current_vol = u->array;
9708 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9709 ret = 0;
9710 super->current_vol = prev_current_vol;
9711 }
9712 return ret;
9713 }
9714
9715 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
9716 struct intel_super *super,
9717 struct active_array *active_array)
9718 {
9719 struct imsm_super *mpb = super->anchor;
9720 struct imsm_dev *dev = get_imsm_dev(super, u->array);
9721 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9722 struct imsm_map *migr_map;
9723 struct active_array *a;
9724 struct imsm_disk *disk;
9725 __u8 to_state;
9726 struct dl *dl;
9727 unsigned int found;
9728 int failed;
9729 int victim;
9730 int i;
9731 int second_map_created = 0;
9732
9733 for (; u; u = u->next) {
9734 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
9735
9736 if (victim < 0)
9737 return 0;
9738
9739 for (dl = super->disks; dl; dl = dl->next)
9740 if (dl == u->dl)
9741 break;
9742
9743 if (!dl) {
9744 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
9745 u->dl->index);
9746 return 0;
9747 }
9748
9749 /* count failures (excluding rebuilds and the victim)
9750 * to determine map[0] state
9751 */
9752 failed = 0;
9753 for (i = 0; i < map->num_members; i++) {
9754 if (i == u->slot)
9755 continue;
9756 disk = get_imsm_disk(super,
9757 get_imsm_disk_idx(dev, i, MAP_X));
9758 if (!disk || is_failed(disk))
9759 failed++;
9760 }
9761
9762 /* adding a pristine spare, assign a new index */
9763 if (dl->index < 0) {
9764 dl->index = super->anchor->num_disks;
9765 super->anchor->num_disks++;
9766 }
9767 disk = &dl->disk;
9768 disk->status |= CONFIGURED_DISK;
9769 disk->status &= ~SPARE_DISK;
9770
9771 /* mark rebuild */
9772 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
9773 if (!second_map_created) {
9774 second_map_created = 1;
9775 map->map_state = IMSM_T_STATE_DEGRADED;
9776 migrate(dev, super, to_state, MIGR_REBUILD);
9777 } else
9778 map->map_state = to_state;
9779 migr_map = get_imsm_map(dev, MAP_1);
9780 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9781 set_imsm_ord_tbl_ent(migr_map, u->slot,
9782 dl->index | IMSM_ORD_REBUILD);
9783
9784 /* update the family_num to mark a new container
9785 * generation, being careful to record the existing
9786 * family_num in orig_family_num to clean up after
9787 * earlier mdadm versions that neglected to set it.
9788 */
9789 if (mpb->orig_family_num == 0)
9790 mpb->orig_family_num = mpb->family_num;
9791 mpb->family_num += super->random;
9792
9793 /* count arrays using the victim in the metadata */
9794 found = 0;
9795 for (a = active_array; a ; a = a->next) {
9796 int dev_idx = a->info.container_member;
9797
9798 if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0)
9799 found++;
9800 }
9801
9802 /* delete the victim if it is no longer being
9803 * utilized anywhere
9804 */
9805 if (!found) {
9806 struct dl **dlp;
9807
9808 /* We know that 'manager' isn't touching anything,
9809 * so it is safe to delete
9810 */
9811 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
9812 if ((*dlp)->index == victim)
9813 break;
9814
9815 /* victim may be on the missing list */
9816 if (!*dlp)
9817 for (dlp = &super->missing; *dlp;
9818 dlp = &(*dlp)->next)
9819 if ((*dlp)->index == victim)
9820 break;
9821 imsm_delete(super, dlp, victim);
9822 }
9823 }
9824
9825 return 1;
9826 }
9827
9828 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9829 struct intel_super *super,
9830 void ***space_list)
9831 {
9832 struct dl *new_disk;
9833 struct intel_dev *id;
9834 int i;
9835 int delta_disks = u->new_raid_disks - u->old_raid_disks;
9836 int disk_count = u->old_raid_disks;
9837 void **tofree = NULL;
9838 int devices_to_reshape = 1;
9839 struct imsm_super *mpb = super->anchor;
9840 int ret_val = 0;
9841 unsigned int dev_id;
9842
9843 dprintf("(enter)\n");
9844
9845 /* enable spares to use in array */
9846 for (i = 0; i < delta_disks; i++) {
9847 new_disk = get_disk_super(super,
9848 major(u->new_disks[i]),
9849 minor(u->new_disks[i]));
9850 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9851 major(u->new_disks[i]), minor(u->new_disks[i]),
9852 new_disk, new_disk->index);
9853 if (new_disk == NULL ||
9854 (new_disk->index >= 0 &&
9855 new_disk->index < u->old_raid_disks))
9856 goto update_reshape_exit;
9857 new_disk->index = disk_count++;
9858 /* slot to fill in autolayout
9859 */
9860 new_disk->raiddisk = new_disk->index;
9861 new_disk->disk.status |=
9862 CONFIGURED_DISK;
9863 new_disk->disk.status &= ~SPARE_DISK;
9864 }
9865
9866 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9867 mpb->num_raid_devs);
9868 /* manage changes in volume
9869 */
9870 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
9871 void **sp = *space_list;
9872 struct imsm_dev *newdev;
9873 struct imsm_map *newmap, *oldmap;
9874
9875 for (id = super->devlist ; id; id = id->next) {
9876 if (id->index == dev_id)
9877 break;
9878 }
9879 if (id == NULL)
9880 break;
9881 if (!sp)
9882 continue;
9883 *space_list = *sp;
9884 newdev = (void*)sp;
9885 /* Copy the dev, but not (all of) the map */
9886 memcpy(newdev, id->dev, sizeof(*newdev));
9887 oldmap = get_imsm_map(id->dev, MAP_0);
9888 newmap = get_imsm_map(newdev, MAP_0);
9889 /* Copy the current map */
9890 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9891 /* update one device only
9892 */
9893 if (devices_to_reshape) {
9894 dprintf("imsm: modifying subdev: %i\n",
9895 id->index);
9896 devices_to_reshape--;
9897 newdev->vol.migr_state = 1;
9898 set_vol_curr_migr_unit(newdev, 0);
9899 set_migr_type(newdev, MIGR_GEN_MIGR);
9900 newmap->num_members = u->new_raid_disks;
9901 for (i = 0; i < delta_disks; i++) {
9902 set_imsm_ord_tbl_ent(newmap,
9903 u->old_raid_disks + i,
9904 u->old_raid_disks + i);
9905 }
9906 /* New map is correct, now need to save old map
9907 */
9908 newmap = get_imsm_map(newdev, MAP_1);
9909 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9910
9911 imsm_set_array_size(newdev, -1);
9912 }
9913
9914 sp = (void **)id->dev;
9915 id->dev = newdev;
9916 *sp = tofree;
9917 tofree = sp;
9918
9919 /* Clear migration record */
9920 memset(super->migr_rec, 0, sizeof(struct migr_record));
9921 }
9922 if (tofree)
9923 *space_list = tofree;
9924 ret_val = 1;
9925
9926 update_reshape_exit:
9927
9928 return ret_val;
9929 }
9930
9931 static int apply_takeover_update(struct imsm_update_takeover *u,
9932 struct intel_super *super,
9933 void ***space_list)
9934 {
9935 struct imsm_dev *dev = NULL;
9936 struct intel_dev *dv;
9937 struct imsm_dev *dev_new;
9938 struct imsm_map *map;
9939 struct dl *dm, *du;
9940 int i;
9941
9942 for (dv = super->devlist; dv; dv = dv->next)
9943 if (dv->index == (unsigned int)u->subarray) {
9944 dev = dv->dev;
9945 break;
9946 }
9947
9948 if (dev == NULL)
9949 return 0;
9950
9951 map = get_imsm_map(dev, MAP_0);
9952
9953 if (u->direction == R10_TO_R0) {
9954 /* Number of failed disks must be half of initial disk number */
9955 if (imsm_count_failed(super, dev, MAP_0) !=
9956 (map->num_members / 2))
9957 return 0;
9958
9959 /* iterate through devices to mark removed disks as spare */
9960 for (dm = super->disks; dm; dm = dm->next) {
9961 if (dm->disk.status & FAILED_DISK) {
9962 int idx = dm->index;
9963 /* update indexes on the disk list */
9964 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9965 the index values will end up being correct.... NB */
9966 for (du = super->disks; du; du = du->next)
9967 if (du->index > idx)
9968 du->index--;
9969 /* mark as spare disk */
9970 mark_spare(dm);
9971 }
9972 }
9973 /* update map */
9974 map->num_members /= map->num_domains;
9975 map->map_state = IMSM_T_STATE_NORMAL;
9976 map->raid_level = 0;
9977 set_num_domains(map);
9978 update_num_data_stripes(map, imsm_dev_size(dev));
9979 map->failed_disk_num = -1;
9980 }
9981
9982 if (u->direction == R0_TO_R10) {
9983 void **space;
9984
9985 /* update slots in current disk list */
9986 for (dm = super->disks; dm; dm = dm->next) {
9987 if (dm->index >= 0)
9988 dm->index *= 2;
9989 }
9990 /* create new *missing* disks */
9991 for (i = 0; i < map->num_members; i++) {
9992 space = *space_list;
9993 if (!space)
9994 continue;
9995 *space_list = *space;
9996 du = (void *)space;
9997 memcpy(du, super->disks, sizeof(*du));
9998 du->fd = -1;
9999 du->minor = 0;
10000 du->major = 0;
10001 du->index = (i * 2) + 1;
10002 sprintf((char *)du->disk.serial,
10003 " MISSING_%d", du->index);
10004 sprintf((char *)du->serial,
10005 "MISSING_%d", du->index);
10006 du->next = super->missing;
10007 super->missing = du;
10008 }
10009 /* create new dev and map */
10010 space = *space_list;
10011 if (!space)
10012 return 0;
10013 *space_list = *space;
10014 dev_new = (void *)space;
10015 memcpy(dev_new, dev, sizeof(*dev));
10016 /* update new map */
10017 map = get_imsm_map(dev_new, MAP_0);
10018
10019 map->map_state = IMSM_T_STATE_DEGRADED;
10020 map->raid_level = 1;
10021 set_num_domains(map);
10022 map->num_members = map->num_members * map->num_domains;
10023 update_num_data_stripes(map, imsm_dev_size(dev));
10024
10025 /* replace dev<->dev_new */
10026 dv->dev = dev_new;
10027 }
10028 /* update disk order table */
10029 for (du = super->disks; du; du = du->next)
10030 if (du->index >= 0)
10031 set_imsm_ord_tbl_ent(map, du->index, du->index);
10032 for (du = super->missing; du; du = du->next)
10033 if (du->index >= 0) {
10034 set_imsm_ord_tbl_ent(map, du->index, du->index);
10035 mark_missing(super, dv->dev, &du->disk, du->index);
10036 }
10037
10038 return 1;
10039 }
10040
10041 static void imsm_process_update(struct supertype *st,
10042 struct metadata_update *update)
10043 {
10044 /**
10045 * crack open the metadata_update envelope to find the update record
10046 * update can be one of:
10047 * update_reshape_container_disks - all the arrays in the container
10048 * are being reshaped to have more devices. We need to mark
10049 * the arrays for general migration and convert selected spares
10050 * into active devices.
10051 * update_activate_spare - a spare device has replaced a failed
10052 * device in an array, update the disk_ord_tbl. If this disk is
10053 * present in all member arrays then also clear the SPARE_DISK
10054 * flag
10055 * update_create_array
10056 * update_kill_array
10057 * update_rename_array
10058 * update_add_remove_disk
10059 */
10060 struct intel_super *super = st->sb;
10061 struct imsm_super *mpb;
10062 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
10063
10064 /* update requires a larger buf but the allocation failed */
10065 if (super->next_len && !super->next_buf) {
10066 super->next_len = 0;
10067 return;
10068 }
10069
10070 if (super->next_buf) {
10071 memcpy(super->next_buf, super->buf, super->len);
10072 free(super->buf);
10073 super->len = super->next_len;
10074 super->buf = super->next_buf;
10075
10076 super->next_len = 0;
10077 super->next_buf = NULL;
10078 }
10079
10080 mpb = super->anchor;
10081
10082 switch (type) {
10083 case update_general_migration_checkpoint: {
10084 struct intel_dev *id;
10085 struct imsm_update_general_migration_checkpoint *u =
10086 (void *)update->buf;
10087
10088 dprintf("called for update_general_migration_checkpoint\n");
10089
10090 /* find device under general migration */
10091 for (id = super->devlist ; id; id = id->next) {
10092 if (is_gen_migration(id->dev)) {
10093 set_vol_curr_migr_unit(id->dev,
10094 u->curr_migr_unit);
10095 super->updates_pending++;
10096 }
10097 }
10098 break;
10099 }
10100 case update_takeover: {
10101 struct imsm_update_takeover *u = (void *)update->buf;
10102 if (apply_takeover_update(u, super, &update->space_list)) {
10103 imsm_update_version_info(super);
10104 super->updates_pending++;
10105 }
10106 break;
10107 }
10108
10109 case update_reshape_container_disks: {
10110 struct imsm_update_reshape *u = (void *)update->buf;
10111 if (apply_reshape_container_disks_update(
10112 u, super, &update->space_list))
10113 super->updates_pending++;
10114 break;
10115 }
10116 case update_reshape_migration: {
10117 struct imsm_update_reshape_migration *u = (void *)update->buf;
10118 if (apply_reshape_migration_update(
10119 u, super, &update->space_list))
10120 super->updates_pending++;
10121 break;
10122 }
10123 case update_size_change: {
10124 struct imsm_update_size_change *u = (void *)update->buf;
10125 if (apply_size_change_update(u, super))
10126 super->updates_pending++;
10127 break;
10128 }
10129 case update_activate_spare: {
10130 struct imsm_update_activate_spare *u = (void *) update->buf;
10131
10132 if (prepare_spare_to_activate(st, u) &&
10133 apply_update_activate_spare(u, super, st->arrays))
10134 super->updates_pending++;
10135 break;
10136 }
10137 case update_create_array: {
10138 /* someone wants to create a new array, we need to be aware of
10139 * a few races/collisions:
10140 * 1/ 'Create' called by two separate instances of mdadm
10141 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10142 * devices that have since been assimilated via
10143 * activate_spare.
10144 * In the event this update can not be carried out mdadm will
10145 * (FIX ME) notice that its update did not take hold.
10146 */
10147 struct imsm_update_create_array *u = (void *) update->buf;
10148 struct intel_dev *dv;
10149 struct imsm_dev *dev;
10150 struct imsm_map *map, *new_map;
10151 unsigned long long start, end;
10152 unsigned long long new_start, new_end;
10153 int i;
10154 struct disk_info *inf;
10155 struct dl *dl;
10156
10157 /* handle racing creates: first come first serve */
10158 if (u->dev_idx < mpb->num_raid_devs) {
10159 dprintf("subarray %d already defined\n", u->dev_idx);
10160 goto create_error;
10161 }
10162
10163 /* check update is next in sequence */
10164 if (u->dev_idx != mpb->num_raid_devs) {
10165 dprintf("can not create array %d expected index %d\n",
10166 u->dev_idx, mpb->num_raid_devs);
10167 goto create_error;
10168 }
10169
10170 new_map = get_imsm_map(&u->dev, MAP_0);
10171 new_start = pba_of_lba0(new_map);
10172 new_end = new_start + per_dev_array_size(new_map);
10173 inf = get_disk_info(u);
10174
10175 /* handle activate_spare versus create race:
10176 * check to make sure that overlapping arrays do not include
10177 * overalpping disks
10178 */
10179 for (i = 0; i < mpb->num_raid_devs; i++) {
10180 dev = get_imsm_dev(super, i);
10181 map = get_imsm_map(dev, MAP_0);
10182 start = pba_of_lba0(map);
10183 end = start + per_dev_array_size(map);
10184 if ((new_start >= start && new_start <= end) ||
10185 (start >= new_start && start <= new_end))
10186 /* overlap */;
10187 else
10188 continue;
10189
10190 if (disks_overlap(super, i, u)) {
10191 dprintf("arrays overlap\n");
10192 goto create_error;
10193 }
10194 }
10195
10196 /* check that prepare update was successful */
10197 if (!update->space) {
10198 dprintf("prepare update failed\n");
10199 goto create_error;
10200 }
10201
10202 /* check that all disks are still active before committing
10203 * changes. FIXME: could we instead handle this by creating a
10204 * degraded array? That's probably not what the user expects,
10205 * so better to drop this update on the floor.
10206 */
10207 for (i = 0; i < new_map->num_members; i++) {
10208 dl = serial_to_dl(inf[i].serial, super);
10209 if (!dl) {
10210 dprintf("disk disappeared\n");
10211 goto create_error;
10212 }
10213 }
10214
10215 super->updates_pending++;
10216
10217 /* convert spares to members and fixup ord_tbl */
10218 for (i = 0; i < new_map->num_members; i++) {
10219 dl = serial_to_dl(inf[i].serial, super);
10220 if (dl->index == -1) {
10221 dl->index = mpb->num_disks;
10222 mpb->num_disks++;
10223 dl->disk.status |= CONFIGURED_DISK;
10224 dl->disk.status &= ~SPARE_DISK;
10225 }
10226 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10227 }
10228
10229 dv = update->space;
10230 dev = dv->dev;
10231 update->space = NULL;
10232 imsm_copy_dev(dev, &u->dev);
10233 dv->index = u->dev_idx;
10234 dv->next = super->devlist;
10235 super->devlist = dv;
10236 mpb->num_raid_devs++;
10237
10238 imsm_update_version_info(super);
10239 break;
10240 create_error:
10241 /* mdmon knows how to release update->space, but not
10242 * ((struct intel_dev *) update->space)->dev
10243 */
10244 if (update->space) {
10245 dv = update->space;
10246 free(dv->dev);
10247 }
10248 break;
10249 }
10250 case update_kill_array: {
10251 struct imsm_update_kill_array *u = (void *) update->buf;
10252 int victim = u->dev_idx;
10253 struct active_array *a;
10254 struct intel_dev **dp;
10255
10256 /* sanity check that we are not affecting the uuid of
10257 * active arrays, or deleting an active array
10258 *
10259 * FIXME when immutable ids are available, but note that
10260 * we'll also need to fixup the invalidated/active
10261 * subarray indexes in mdstat
10262 */
10263 for (a = st->arrays; a; a = a->next)
10264 if (a->info.container_member >= victim)
10265 break;
10266 /* by definition if mdmon is running at least one array
10267 * is active in the container, so checking
10268 * mpb->num_raid_devs is just extra paranoia
10269 */
10270 if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) {
10271 dprintf("failed to delete subarray-%d\n", victim);
10272 break;
10273 }
10274
10275 for (dp = &super->devlist; *dp;)
10276 if ((*dp)->index == (unsigned)super->current_vol) {
10277 *dp = (*dp)->next;
10278 } else {
10279 if ((*dp)->index > (unsigned)victim)
10280 (*dp)->index--;
10281 dp = &(*dp)->next;
10282 }
10283 mpb->num_raid_devs--;
10284 super->updates_pending++;
10285 break;
10286 }
10287 case update_rename_array: {
10288 struct imsm_update_rename_array *u = (void *) update->buf;
10289 char name[MAX_RAID_SERIAL_LEN+1];
10290 int target = u->dev_idx;
10291 struct active_array *a;
10292 struct imsm_dev *dev;
10293
10294 /* sanity check that we are not affecting the uuid of
10295 * an active array
10296 */
10297 memset(name, 0, sizeof(name));
10298 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10299 name[MAX_RAID_SERIAL_LEN] = '\0';
10300 for (a = st->arrays; a; a = a->next)
10301 if (a->info.container_member == target)
10302 break;
10303 dev = get_imsm_dev(super, u->dev_idx);
10304
10305 if (a || !dev || imsm_is_name_allowed(super, name, 0) == false) {
10306 dprintf("failed to rename subarray-%d\n", target);
10307 break;
10308 }
10309
10310 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
10311 super->updates_pending++;
10312 break;
10313 }
10314 case update_add_remove_disk: {
10315 /* we may be able to repair some arrays if disks are
10316 * being added, check the status of add_remove_disk
10317 * if discs has been added.
10318 */
10319 if (add_remove_disk_update(super)) {
10320 struct active_array *a;
10321
10322 super->updates_pending++;
10323 for (a = st->arrays; a; a = a->next)
10324 a->check_degraded = 1;
10325 }
10326 break;
10327 }
10328 case update_prealloc_badblocks_mem:
10329 break;
10330 case update_rwh_policy: {
10331 struct imsm_update_rwh_policy *u = (void *)update->buf;
10332 int target = u->dev_idx;
10333 struct imsm_dev *dev = get_imsm_dev(super, target);
10334
10335 if (dev->rwh_policy != u->new_policy) {
10336 dev->rwh_policy = u->new_policy;
10337 super->updates_pending++;
10338 }
10339 break;
10340 }
10341 default:
10342 pr_err("error: unsupported process update type:(type: %d)\n", type);
10343 }
10344 }
10345
10346 static struct mdinfo *get_spares_for_grow(struct supertype *st);
10347
10348 static int imsm_prepare_update(struct supertype *st,
10349 struct metadata_update *update)
10350 {
10351 /**
10352 * Allocate space to hold new disk entries, raid-device entries or a new
10353 * mpb if necessary. The manager synchronously waits for updates to
10354 * complete in the monitor, so new mpb buffers allocated here can be
10355 * integrated by the monitor thread without worrying about live pointers
10356 * in the manager thread.
10357 */
10358 enum imsm_update_type type;
10359 struct intel_super *super = st->sb;
10360 unsigned int sector_size = super->sector_size;
10361 struct imsm_super *mpb = super->anchor;
10362 size_t buf_len;
10363 size_t len = 0;
10364
10365 if (update->len < (int)sizeof(type))
10366 return 0;
10367
10368 type = *(enum imsm_update_type *) update->buf;
10369
10370 switch (type) {
10371 case update_general_migration_checkpoint:
10372 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10373 return 0;
10374 dprintf("called for update_general_migration_checkpoint\n");
10375 break;
10376 case update_takeover: {
10377 struct imsm_update_takeover *u = (void *)update->buf;
10378 if (update->len < (int)sizeof(*u))
10379 return 0;
10380 if (u->direction == R0_TO_R10) {
10381 void **tail = (void **)&update->space_list;
10382 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
10383 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10384 int num_members = map->num_members;
10385 void *space;
10386 int size, i;
10387 /* allocate memory for added disks */
10388 for (i = 0; i < num_members; i++) {
10389 size = sizeof(struct dl);
10390 space = xmalloc(size);
10391 *tail = space;
10392 tail = space;
10393 *tail = NULL;
10394 }
10395 /* allocate memory for new device */
10396 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10397 (num_members * sizeof(__u32));
10398 space = xmalloc(size);
10399 *tail = space;
10400 tail = space;
10401 *tail = NULL;
10402 len = disks_to_mpb_size(num_members * 2);
10403 }
10404
10405 break;
10406 }
10407 case update_reshape_container_disks: {
10408 /* Every raid device in the container is about to
10409 * gain some more devices, and we will enter a
10410 * reconfiguration.
10411 * So each 'imsm_map' will be bigger, and the imsm_vol
10412 * will now hold 2 of them.
10413 * Thus we need new 'struct imsm_dev' allocations sized
10414 * as sizeof_imsm_dev but with more devices in both maps.
10415 */
10416 struct imsm_update_reshape *u = (void *)update->buf;
10417 struct intel_dev *dl;
10418 void **space_tail = (void**)&update->space_list;
10419
10420 if (update->len < (int)sizeof(*u))
10421 return 0;
10422
10423 dprintf("for update_reshape\n");
10424
10425 for (dl = super->devlist; dl; dl = dl->next) {
10426 int size = sizeof_imsm_dev(dl->dev, 1);
10427 void *s;
10428 if (u->new_raid_disks > u->old_raid_disks)
10429 size += sizeof(__u32)*2*
10430 (u->new_raid_disks - u->old_raid_disks);
10431 s = xmalloc(size);
10432 *space_tail = s;
10433 space_tail = s;
10434 *space_tail = NULL;
10435 }
10436
10437 len = disks_to_mpb_size(u->new_raid_disks);
10438 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10439 break;
10440 }
10441 case update_reshape_migration: {
10442 /* for migration level 0->5 we need to add disks
10443 * so the same as for container operation we will copy
10444 * device to the bigger location.
10445 * in memory prepared device and new disk area are prepared
10446 * for usage in process update
10447 */
10448 struct imsm_update_reshape_migration *u = (void *)update->buf;
10449 struct intel_dev *id;
10450 void **space_tail = (void **)&update->space_list;
10451 int size;
10452 void *s;
10453 int current_level = -1;
10454
10455 if (update->len < (int)sizeof(*u))
10456 return 0;
10457
10458 dprintf("for update_reshape\n");
10459
10460 /* add space for bigger array in update
10461 */
10462 for (id = super->devlist; id; id = id->next) {
10463 if (id->index == (unsigned)u->subdev) {
10464 size = sizeof_imsm_dev(id->dev, 1);
10465 if (u->new_raid_disks > u->old_raid_disks)
10466 size += sizeof(__u32)*2*
10467 (u->new_raid_disks - u->old_raid_disks);
10468 s = xmalloc(size);
10469 *space_tail = s;
10470 space_tail = s;
10471 *space_tail = NULL;
10472 break;
10473 }
10474 }
10475 if (update->space_list == NULL)
10476 break;
10477
10478 /* add space for disk in update
10479 */
10480 size = sizeof(struct dl);
10481 s = xmalloc(size);
10482 *space_tail = s;
10483 space_tail = s;
10484 *space_tail = NULL;
10485
10486 /* add spare device to update
10487 */
10488 for (id = super->devlist ; id; id = id->next)
10489 if (id->index == (unsigned)u->subdev) {
10490 struct imsm_dev *dev;
10491 struct imsm_map *map;
10492
10493 dev = get_imsm_dev(super, u->subdev);
10494 map = get_imsm_map(dev, MAP_0);
10495 current_level = map->raid_level;
10496 break;
10497 }
10498 if (u->new_level == 5 && u->new_level != current_level) {
10499 struct mdinfo *spares;
10500
10501 spares = get_spares_for_grow(st);
10502 if (spares) {
10503 struct dl *dl;
10504 struct mdinfo *dev;
10505
10506 dev = spares->devs;
10507 if (dev) {
10508 u->new_disks[0] =
10509 makedev(dev->disk.major,
10510 dev->disk.minor);
10511 dl = get_disk_super(super,
10512 dev->disk.major,
10513 dev->disk.minor);
10514 dl->index = u->old_raid_disks;
10515 dev = dev->next;
10516 }
10517 sysfs_free(spares);
10518 }
10519 }
10520 len = disks_to_mpb_size(u->new_raid_disks);
10521 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10522 break;
10523 }
10524 case update_size_change: {
10525 if (update->len < (int)sizeof(struct imsm_update_size_change))
10526 return 0;
10527 break;
10528 }
10529 case update_activate_spare: {
10530 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10531 return 0;
10532 break;
10533 }
10534 case update_create_array: {
10535 struct imsm_update_create_array *u = (void *) update->buf;
10536 struct intel_dev *dv;
10537 struct imsm_dev *dev = &u->dev;
10538 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10539 struct dl *dl;
10540 struct disk_info *inf;
10541 int i;
10542 int activate = 0;
10543
10544 if (update->len < (int)sizeof(*u))
10545 return 0;
10546
10547 inf = get_disk_info(u);
10548 len = sizeof_imsm_dev(dev, 1);
10549 /* allocate a new super->devlist entry */
10550 dv = xmalloc(sizeof(*dv));
10551 dv->dev = xmalloc(len);
10552 update->space = dv;
10553
10554 /* count how many spares will be converted to members */
10555 for (i = 0; i < map->num_members; i++) {
10556 dl = serial_to_dl(inf[i].serial, super);
10557 if (!dl) {
10558 /* hmm maybe it failed?, nothing we can do about
10559 * it here
10560 */
10561 continue;
10562 }
10563 if (count_memberships(dl, super) == 0)
10564 activate++;
10565 }
10566 len += activate * sizeof(struct imsm_disk);
10567 break;
10568 }
10569 case update_kill_array: {
10570 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10571 return 0;
10572 break;
10573 }
10574 case update_rename_array: {
10575 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10576 return 0;
10577 break;
10578 }
10579 case update_add_remove_disk:
10580 /* no update->len needed */
10581 break;
10582 case update_prealloc_badblocks_mem:
10583 super->extra_space += sizeof(struct bbm_log) -
10584 get_imsm_bbm_log_size(super->bbm_log);
10585 break;
10586 case update_rwh_policy: {
10587 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10588 return 0;
10589 break;
10590 }
10591 default:
10592 return 0;
10593 }
10594
10595 /* check if we need a larger metadata buffer */
10596 if (super->next_buf)
10597 buf_len = super->next_len;
10598 else
10599 buf_len = super->len;
10600
10601 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
10602 /* ok we need a larger buf than what is currently allocated
10603 * if this allocation fails process_update will notice that
10604 * ->next_len is set and ->next_buf is NULL
10605 */
10606 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10607 super->extra_space + len, sector_size);
10608 if (super->next_buf)
10609 free(super->next_buf);
10610
10611 super->next_len = buf_len;
10612 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
10613 memset(super->next_buf, 0, buf_len);
10614 else
10615 super->next_buf = NULL;
10616 }
10617 return 1;
10618 }
10619
10620 /* must be called while manager is quiesced */
10621 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
10622 {
10623 struct imsm_super *mpb = super->anchor;
10624 struct dl *iter;
10625 struct imsm_dev *dev;
10626 struct imsm_map *map;
10627 unsigned int i, j, num_members;
10628 __u32 ord, ord_map0;
10629 struct bbm_log *log = super->bbm_log;
10630
10631 dprintf("deleting device[%d] from imsm_super\n", index);
10632
10633 /* shift all indexes down one */
10634 for (iter = super->disks; iter; iter = iter->next)
10635 if (iter->index > (int)index)
10636 iter->index--;
10637 for (iter = super->missing; iter; iter = iter->next)
10638 if (iter->index > (int)index)
10639 iter->index--;
10640
10641 for (i = 0; i < mpb->num_raid_devs; i++) {
10642 dev = get_imsm_dev(super, i);
10643 map = get_imsm_map(dev, MAP_0);
10644 num_members = map->num_members;
10645 for (j = 0; j < num_members; j++) {
10646 /* update ord entries being careful not to propagate
10647 * ord-flags to the first map
10648 */
10649 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
10650 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
10651
10652 if (ord_to_idx(ord) <= index)
10653 continue;
10654
10655 map = get_imsm_map(dev, MAP_0);
10656 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
10657 map = get_imsm_map(dev, MAP_1);
10658 if (map)
10659 set_imsm_ord_tbl_ent(map, j, ord - 1);
10660 }
10661 }
10662
10663 for (i = 0; i < log->entry_count; i++) {
10664 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10665
10666 if (entry->disk_ordinal <= index)
10667 continue;
10668 entry->disk_ordinal--;
10669 }
10670
10671 mpb->num_disks--;
10672 super->updates_pending++;
10673 if (*dlp) {
10674 struct dl *dl = *dlp;
10675
10676 *dlp = (*dlp)->next;
10677 __free_imsm_disk(dl, 1);
10678 }
10679 }
10680
10681 static int imsm_get_allowed_degradation(int level, int raid_disks,
10682 struct intel_super *super,
10683 struct imsm_dev *dev)
10684 {
10685 switch (level) {
10686 case 1:
10687 case 10:{
10688 int ret_val = 0;
10689 struct imsm_map *map;
10690 int i;
10691
10692 ret_val = raid_disks/2;
10693 /* check map if all disks pairs not failed
10694 * in both maps
10695 */
10696 map = get_imsm_map(dev, MAP_0);
10697 for (i = 0; i < ret_val; i++) {
10698 int degradation = 0;
10699 if (get_imsm_disk(super, i) == NULL)
10700 degradation++;
10701 if (get_imsm_disk(super, i + 1) == NULL)
10702 degradation++;
10703 if (degradation == 2)
10704 return 0;
10705 }
10706 map = get_imsm_map(dev, MAP_1);
10707 /* if there is no second map
10708 * result can be returned
10709 */
10710 if (map == NULL)
10711 return ret_val;
10712 /* check degradation in second map
10713 */
10714 for (i = 0; i < ret_val; i++) {
10715 int degradation = 0;
10716 if (get_imsm_disk(super, i) == NULL)
10717 degradation++;
10718 if (get_imsm_disk(super, i + 1) == NULL)
10719 degradation++;
10720 if (degradation == 2)
10721 return 0;
10722 }
10723 return ret_val;
10724 }
10725 case 5:
10726 return 1;
10727 case 6:
10728 return 2;
10729 default:
10730 return 0;
10731 }
10732 }
10733
10734 /*******************************************************************************
10735 * Function: validate_container_imsm
10736 * Description: This routine validates container after assemble,
10737 * eg. if devices in container are under the same controller.
10738 *
10739 * Parameters:
10740 * info : linked list with info about devices used in array
10741 * Returns:
10742 * 1 : HBA mismatch
10743 * 0 : Success
10744 ******************************************************************************/
10745 int validate_container_imsm(struct mdinfo *info)
10746 {
10747 if (check_no_platform())
10748 return 0;
10749
10750 struct sys_dev *idev;
10751 struct sys_dev *hba = NULL;
10752 struct sys_dev *intel_devices = find_intel_devices();
10753 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10754 info->disk.minor), 1, NULL);
10755
10756 for (idev = intel_devices; idev; idev = idev->next) {
10757 if (dev_path && strstr(dev_path, idev->path)) {
10758 hba = idev;
10759 break;
10760 }
10761 }
10762 if (dev_path)
10763 free(dev_path);
10764
10765 if (!hba) {
10766 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10767 devid2kname(makedev(info->disk.major, info->disk.minor)));
10768 return 1;
10769 }
10770
10771 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10772 struct mdinfo *dev;
10773
10774 for (dev = info->next; dev; dev = dev->next) {
10775 dev_path = devt_to_devpath(makedev(dev->disk.major,
10776 dev->disk.minor), 1, NULL);
10777
10778 struct sys_dev *hba2 = NULL;
10779 for (idev = intel_devices; idev; idev = idev->next) {
10780 if (dev_path && strstr(dev_path, idev->path)) {
10781 hba2 = idev;
10782 break;
10783 }
10784 }
10785 if (dev_path)
10786 free(dev_path);
10787
10788 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10789 get_orom_by_device_id(hba2->dev_id);
10790
10791 if (hba2 && hba->type != hba2->type) {
10792 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10793 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10794 return 1;
10795 }
10796
10797 if (orom != orom2) {
10798 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10799 " This operation is not supported and can lead to data loss.\n");
10800 return 1;
10801 }
10802
10803 if (!orom) {
10804 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10805 " This operation is not supported and can lead to data loss.\n");
10806 return 1;
10807 }
10808 }
10809
10810 return 0;
10811 }
10812
10813 /*******************************************************************************
10814 * Function: imsm_record_badblock
10815 * Description: This routine stores new bad block record in BBM log
10816 *
10817 * Parameters:
10818 * a : array containing a bad block
10819 * slot : disk number containing a bad block
10820 * sector : bad block sector
10821 * length : bad block sectors range
10822 * Returns:
10823 * 1 : Success
10824 * 0 : Error
10825 ******************************************************************************/
10826 static int imsm_record_badblock(struct active_array *a, int slot,
10827 unsigned long long sector, int length)
10828 {
10829 struct intel_super *super = a->container->sb;
10830 int ord;
10831 int ret;
10832
10833 ord = imsm_disk_slot_to_ord(a, slot);
10834 if (ord < 0)
10835 return 0;
10836
10837 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10838 length);
10839 if (ret)
10840 super->updates_pending++;
10841
10842 return ret;
10843 }
10844 /*******************************************************************************
10845 * Function: imsm_clear_badblock
10846 * Description: This routine clears bad block record from BBM log
10847 *
10848 * Parameters:
10849 * a : array containing a bad block
10850 * slot : disk number containing a bad block
10851 * sector : bad block sector
10852 * length : bad block sectors range
10853 * Returns:
10854 * 1 : Success
10855 * 0 : Error
10856 ******************************************************************************/
10857 static int imsm_clear_badblock(struct active_array *a, int slot,
10858 unsigned long long sector, int length)
10859 {
10860 struct intel_super *super = a->container->sb;
10861 int ord;
10862 int ret;
10863
10864 ord = imsm_disk_slot_to_ord(a, slot);
10865 if (ord < 0)
10866 return 0;
10867
10868 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10869 if (ret)
10870 super->updates_pending++;
10871
10872 return ret;
10873 }
10874 /*******************************************************************************
10875 * Function: imsm_get_badblocks
10876 * Description: This routine get list of bad blocks for an array
10877 *
10878 * Parameters:
10879 * a : array
10880 * slot : disk number
10881 * Returns:
10882 * bb : structure containing bad blocks
10883 * NULL : error
10884 ******************************************************************************/
10885 static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10886 {
10887 int inst = a->info.container_member;
10888 struct intel_super *super = a->container->sb;
10889 struct imsm_dev *dev = get_imsm_dev(super, inst);
10890 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10891 int ord;
10892
10893 ord = imsm_disk_slot_to_ord(a, slot);
10894 if (ord < 0)
10895 return NULL;
10896
10897 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10898 per_dev_array_size(map), &super->bb);
10899
10900 return &super->bb;
10901 }
10902 /*******************************************************************************
10903 * Function: examine_badblocks_imsm
10904 * Description: Prints list of bad blocks on a disk to the standard output
10905 *
10906 * Parameters:
10907 * st : metadata handler
10908 * fd : open file descriptor for device
10909 * devname : device name
10910 * Returns:
10911 * 0 : Success
10912 * 1 : Error
10913 ******************************************************************************/
10914 static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10915 {
10916 struct intel_super *super = st->sb;
10917 struct bbm_log *log = super->bbm_log;
10918 struct dl *d = NULL;
10919 int any = 0;
10920
10921 for (d = super->disks; d ; d = d->next) {
10922 if (strcmp(d->devname, devname) == 0)
10923 break;
10924 }
10925
10926 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10927 pr_err("%s doesn't appear to be part of a raid array\n",
10928 devname);
10929 return 1;
10930 }
10931
10932 if (log != NULL) {
10933 unsigned int i;
10934 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10935
10936 for (i = 0; i < log->entry_count; i++) {
10937 if (entry[i].disk_ordinal == d->index) {
10938 unsigned long long sector = __le48_to_cpu(
10939 &entry[i].defective_block_start);
10940 int cnt = entry[i].marked_count + 1;
10941
10942 if (!any) {
10943 printf("Bad-blocks on %s:\n", devname);
10944 any = 1;
10945 }
10946
10947 printf("%20llu for %d sectors\n", sector, cnt);
10948 }
10949 }
10950 }
10951
10952 if (!any)
10953 printf("No bad-blocks list configured on %s\n", devname);
10954
10955 return 0;
10956 }
10957 /*******************************************************************************
10958 * Function: init_migr_record_imsm
10959 * Description: Function inits imsm migration record
10960 * Parameters:
10961 * super : imsm internal array info
10962 * dev : device under migration
10963 * info : general array info to find the smallest device
10964 * Returns:
10965 * none
10966 ******************************************************************************/
10967 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10968 struct mdinfo *info)
10969 {
10970 struct intel_super *super = st->sb;
10971 struct migr_record *migr_rec = super->migr_rec;
10972 int new_data_disks;
10973 unsigned long long dsize, dev_sectors;
10974 long long unsigned min_dev_sectors = -1LLU;
10975 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10976 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
10977 unsigned long long num_migr_units;
10978 unsigned long long array_blocks;
10979 struct dl *dl_disk = NULL;
10980
10981 memset(migr_rec, 0, sizeof(struct migr_record));
10982 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10983
10984 /* only ascending reshape supported now */
10985 migr_rec->ascending_migr = __cpu_to_le32(1);
10986
10987 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10988 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10989 migr_rec->dest_depth_per_unit *=
10990 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10991 new_data_disks = imsm_num_data_members(map_dest);
10992 migr_rec->blocks_per_unit =
10993 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10994 migr_rec->dest_depth_per_unit =
10995 __cpu_to_le32(migr_rec->dest_depth_per_unit);
10996 array_blocks = info->component_size * new_data_disks;
10997 num_migr_units =
10998 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10999
11000 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
11001 num_migr_units++;
11002 set_num_migr_units(migr_rec, num_migr_units);
11003
11004 migr_rec->post_migr_vol_cap = dev->size_low;
11005 migr_rec->post_migr_vol_cap_hi = dev->size_high;
11006
11007 /* Find the smallest dev */
11008 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
11009 /* ignore spares in container */
11010 if (dl_disk->index < 0)
11011 continue;
11012 get_dev_size(dl_disk->fd, NULL, &dsize);
11013 dev_sectors = dsize / 512;
11014 if (dev_sectors < min_dev_sectors)
11015 min_dev_sectors = dev_sectors;
11016 }
11017 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
11018 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
11019
11020 write_imsm_migr_rec(st);
11021
11022 return;
11023 }
11024
11025 /*******************************************************************************
11026 * Function: save_backup_imsm
11027 * Description: Function saves critical data stripes to Migration Copy Area
11028 * and updates the current migration unit status.
11029 * Use restore_stripes() to form a destination stripe,
11030 * and to write it to the Copy Area.
11031 * Parameters:
11032 * st : supertype information
11033 * dev : imsm device that backup is saved for
11034 * info : general array info
11035 * buf : input buffer
11036 * length : length of data to backup (blocks_per_unit)
11037 * Returns:
11038 * 0 : success
11039 *, -1 : fail
11040 ******************************************************************************/
11041 int save_backup_imsm(struct supertype *st,
11042 struct imsm_dev *dev,
11043 struct mdinfo *info,
11044 void *buf,
11045 int length)
11046 {
11047 int rv = -1;
11048 struct intel_super *super = st->sb;
11049 int i;
11050 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
11051 int new_disks = map_dest->num_members;
11052 int dest_layout = 0;
11053 int dest_chunk, targets[new_disks];
11054 unsigned long long start, target_offsets[new_disks];
11055 int data_disks = imsm_num_data_members(map_dest);
11056
11057 for (i = 0; i < new_disks; i++) {
11058 struct dl *dl_disk = get_imsm_dl_disk(super, i);
11059 if (dl_disk && is_fd_valid(dl_disk->fd))
11060 targets[i] = dl_disk->fd;
11061 else
11062 goto abort;
11063 }
11064
11065 start = info->reshape_progress * 512;
11066 for (i = 0; i < new_disks; i++) {
11067 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
11068 /* move back copy area adderss, it will be moved forward
11069 * in restore_stripes() using start input variable
11070 */
11071 target_offsets[i] -= start/data_disks;
11072 }
11073
11074 dest_layout = imsm_level_to_layout(map_dest->raid_level);
11075 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
11076
11077 if (restore_stripes(targets, /* list of dest devices */
11078 target_offsets, /* migration record offsets */
11079 new_disks,
11080 dest_chunk,
11081 map_dest->raid_level,
11082 dest_layout,
11083 -1, /* source backup file descriptor */
11084 0, /* input buf offset
11085 * always 0 buf is already offseted */
11086 start,
11087 length,
11088 buf) != 0) {
11089 pr_err("Error restoring stripes\n");
11090 goto abort;
11091 }
11092
11093 rv = 0;
11094
11095 abort:
11096 return rv;
11097 }
11098
11099 /*******************************************************************************
11100 * Function: save_checkpoint_imsm
11101 * Description: Function called for current unit status update
11102 * in the migration record. It writes it to disk.
11103 * Parameters:
11104 * super : imsm internal array info
11105 * info : general array info
11106 * Returns:
11107 * 0: success
11108 * 1: failure
11109 * 2: failure, means no valid migration record
11110 * / no general migration in progress /
11111 ******************************************************************************/
11112 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11113 {
11114 struct intel_super *super = st->sb;
11115 unsigned long long blocks_per_unit;
11116 unsigned long long curr_migr_unit;
11117
11118 if (load_imsm_migr_rec(super) != 0) {
11119 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
11120 return 1;
11121 }
11122
11123 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11124 if (blocks_per_unit == 0) {
11125 dprintf("imsm: no migration in progress.\n");
11126 return 2;
11127 }
11128 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11129 /* check if array is alligned to copy area
11130 * if it is not alligned, add one to current migration unit value
11131 * this can happend on array reshape finish only
11132 */
11133 if (info->reshape_progress % blocks_per_unit)
11134 curr_migr_unit++;
11135
11136 set_current_migr_unit(super->migr_rec, curr_migr_unit);
11137 super->migr_rec->rec_status = __cpu_to_le32(state);
11138 set_migr_dest_1st_member_lba(super->migr_rec,
11139 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11140
11141 if (write_imsm_migr_rec(st) < 0) {
11142 dprintf("imsm: Cannot write migration record outside backup area\n");
11143 return 1;
11144 }
11145
11146 return 0;
11147 }
11148
11149 /*******************************************************************************
11150 * Function: recover_backup_imsm
11151 * Description: Function recovers critical data from the Migration Copy Area
11152 * while assembling an array.
11153 * Parameters:
11154 * super : imsm internal array info
11155 * info : general array info
11156 * Returns:
11157 * 0 : success (or there is no data to recover)
11158 * 1 : fail
11159 ******************************************************************************/
11160 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11161 {
11162 struct intel_super *super = st->sb;
11163 struct migr_record *migr_rec = super->migr_rec;
11164 struct imsm_map *map_dest;
11165 struct intel_dev *id = NULL;
11166 unsigned long long read_offset;
11167 unsigned long long write_offset;
11168 unsigned unit_len;
11169 int new_disks, err;
11170 char *buf = NULL;
11171 int retval = 1;
11172 unsigned int sector_size = super->sector_size;
11173 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11174 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
11175 char buffer[SYSFS_MAX_BUF_SIZE];
11176 int skipped_disks = 0;
11177 struct dl *dl_disk;
11178
11179 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, sizeof(buffer));
11180 if (err < 1)
11181 return 1;
11182
11183 /* recover data only during assemblation */
11184 if (strncmp(buffer, "inactive", 8) != 0)
11185 return 0;
11186 /* no data to recover */
11187 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11188 return 0;
11189 if (curr_migr_unit >= num_migr_units)
11190 return 1;
11191
11192 /* find device during reshape */
11193 for (id = super->devlist; id; id = id->next)
11194 if (is_gen_migration(id->dev))
11195 break;
11196 if (id == NULL)
11197 return 1;
11198
11199 map_dest = get_imsm_map(id->dev, MAP_0);
11200 new_disks = map_dest->num_members;
11201
11202 read_offset = migr_chkp_area_pba(migr_rec) * 512;
11203
11204 write_offset = (migr_dest_1st_member_lba(migr_rec) +
11205 pba_of_lba0(map_dest)) * 512;
11206
11207 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11208 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
11209 goto abort;
11210
11211 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11212 if (dl_disk->index < 0)
11213 continue;
11214
11215 if (!is_fd_valid(dl_disk->fd)) {
11216 skipped_disks++;
11217 continue;
11218 }
11219 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
11220 pr_err("Cannot seek to block: %s\n",
11221 strerror(errno));
11222 skipped_disks++;
11223 continue;
11224 }
11225 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
11226 pr_err("Cannot read copy area block: %s\n",
11227 strerror(errno));
11228 skipped_disks++;
11229 continue;
11230 }
11231 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
11232 pr_err("Cannot seek to block: %s\n",
11233 strerror(errno));
11234 skipped_disks++;
11235 continue;
11236 }
11237 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
11238 pr_err("Cannot restore block: %s\n",
11239 strerror(errno));
11240 skipped_disks++;
11241 continue;
11242 }
11243 }
11244
11245 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11246 new_disks,
11247 super,
11248 id->dev)) {
11249 pr_err("Cannot restore data from backup. Too many failed disks\n");
11250 goto abort;
11251 }
11252
11253 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11254 /* ignore error == 2, this can mean end of reshape here
11255 */
11256 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
11257 } else
11258 retval = 0;
11259
11260 abort:
11261 free(buf);
11262 return retval;
11263 }
11264
11265 static char disk_by_path[] = "/dev/disk/by-path/";
11266
11267 static const char *imsm_get_disk_controller_domain(const char *path)
11268 {
11269 char disk_path[PATH_MAX];
11270 char *drv=NULL;
11271 struct stat st;
11272
11273 strncpy(disk_path, disk_by_path, PATH_MAX);
11274 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
11275 if (stat(disk_path, &st) == 0) {
11276 struct sys_dev* hba;
11277 char *path;
11278
11279 path = devt_to_devpath(st.st_rdev, 1, NULL);
11280 if (path == NULL)
11281 return "unknown";
11282 hba = find_disk_attached_hba(-1, path);
11283 if (hba && hba->type == SYS_DEV_SAS)
11284 drv = "isci";
11285 else if (hba && (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD))
11286 drv = "ahci";
11287 else if (hba && hba->type == SYS_DEV_VMD)
11288 drv = "vmd";
11289 else if (hba && hba->type == SYS_DEV_NVME)
11290 drv = "nvme";
11291 else
11292 drv = "unknown";
11293 dprintf("path: %s hba: %s attached: %s\n",
11294 path, (hba) ? hba->path : "NULL", drv);
11295 free(path);
11296 }
11297 return drv;
11298 }
11299
11300 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
11301 {
11302 static char devnm[32];
11303 char subdev_name[20];
11304 struct mdstat_ent *mdstat;
11305
11306 sprintf(subdev_name, "%d", subdev);
11307 mdstat = mdstat_by_subdev(subdev_name, container);
11308 if (!mdstat)
11309 return NULL;
11310
11311 strcpy(devnm, mdstat->devnm);
11312 free_mdstat(mdstat);
11313 return devnm;
11314 }
11315
11316 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11317 struct geo_params *geo,
11318 int *old_raid_disks,
11319 int direction)
11320 {
11321 /* currently we only support increasing the number of devices
11322 * for a container. This increases the number of device for each
11323 * member array. They must all be RAID0 or RAID5.
11324 */
11325 int ret_val = 0;
11326 struct mdinfo *info, *member;
11327 int devices_that_can_grow = 0;
11328
11329 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
11330
11331 if (geo->size > 0 ||
11332 geo->level != UnSet ||
11333 geo->layout != UnSet ||
11334 geo->chunksize != 0 ||
11335 geo->raid_disks == UnSet) {
11336 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
11337 return ret_val;
11338 }
11339
11340 if (direction == ROLLBACK_METADATA_CHANGES) {
11341 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
11342 return ret_val;
11343 }
11344
11345 info = container_content_imsm(st, NULL);
11346 for (member = info; member; member = member->next) {
11347 char *result;
11348
11349 dprintf("imsm: checking device_num: %i\n",
11350 member->container_member);
11351
11352 if (geo->raid_disks <= member->array.raid_disks) {
11353 /* we work on container for Online Capacity Expansion
11354 * only so raid_disks has to grow
11355 */
11356 dprintf("imsm: for container operation raid disks increase is required\n");
11357 break;
11358 }
11359
11360 if (info->array.level != 0 && info->array.level != 5) {
11361 /* we cannot use this container with other raid level
11362 */
11363 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
11364 info->array.level);
11365 break;
11366 } else {
11367 /* check for platform support
11368 * for this raid level configuration
11369 */
11370 struct intel_super *super = st->sb;
11371 if (!is_raid_level_supported(super->orom,
11372 member->array.level,
11373 geo->raid_disks)) {
11374 dprintf("platform does not support raid%d with %d disk%s\n",
11375 info->array.level,
11376 geo->raid_disks,
11377 geo->raid_disks > 1 ? "s" : "");
11378 break;
11379 }
11380 /* check if component size is aligned to chunk size
11381 */
11382 if (info->component_size %
11383 (info->array.chunk_size/512)) {
11384 dprintf("Component size is not aligned to chunk size\n");
11385 break;
11386 }
11387 }
11388
11389 if (*old_raid_disks &&
11390 info->array.raid_disks != *old_raid_disks)
11391 break;
11392 *old_raid_disks = info->array.raid_disks;
11393
11394 /* All raid5 and raid0 volumes in container
11395 * have to be ready for Online Capacity Expansion
11396 * so they need to be assembled. We have already
11397 * checked that no recovery etc is happening.
11398 */
11399 result = imsm_find_array_devnm_by_subdev(member->container_member,
11400 st->container_devnm);
11401 if (result == NULL) {
11402 dprintf("imsm: cannot find array\n");
11403 break;
11404 }
11405 devices_that_can_grow++;
11406 }
11407 sysfs_free(info);
11408 if (!member && devices_that_can_grow)
11409 ret_val = 1;
11410
11411 if (ret_val)
11412 dprintf("Container operation allowed\n");
11413 else
11414 dprintf("Error: %i\n", ret_val);
11415
11416 return ret_val;
11417 }
11418
11419 /* Function: get_spares_for_grow
11420 * Description: Allocates memory and creates list of spare devices
11421 * avaliable in container. Checks if spare drive size is acceptable.
11422 * Parameters: Pointer to the supertype structure
11423 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
11424 * NULL if fail
11425 */
11426 static struct mdinfo *get_spares_for_grow(struct supertype *st)
11427 {
11428 struct spare_criteria sc;
11429
11430 get_spare_criteria_imsm(st, &sc);
11431 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
11432 }
11433
11434 /******************************************************************************
11435 * function: imsm_create_metadata_update_for_reshape
11436 * Function creates update for whole IMSM container.
11437 *
11438 ******************************************************************************/
11439 static int imsm_create_metadata_update_for_reshape(
11440 struct supertype *st,
11441 struct geo_params *geo,
11442 int old_raid_disks,
11443 struct imsm_update_reshape **updatep)
11444 {
11445 struct intel_super *super = st->sb;
11446 struct imsm_super *mpb = super->anchor;
11447 int update_memory_size;
11448 struct imsm_update_reshape *u;
11449 struct mdinfo *spares;
11450 int i;
11451 int delta_disks;
11452 struct mdinfo *dev;
11453
11454 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
11455
11456 delta_disks = geo->raid_disks - old_raid_disks;
11457
11458 /* size of all update data without anchor */
11459 update_memory_size = sizeof(struct imsm_update_reshape);
11460
11461 /* now add space for spare disks that we need to add. */
11462 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11463
11464 u = xcalloc(1, update_memory_size);
11465 u->type = update_reshape_container_disks;
11466 u->old_raid_disks = old_raid_disks;
11467 u->new_raid_disks = geo->raid_disks;
11468
11469 /* now get spare disks list
11470 */
11471 spares = get_spares_for_grow(st);
11472
11473 if (spares == NULL || delta_disks > spares->array.spare_disks) {
11474 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
11475 i = -1;
11476 goto abort;
11477 }
11478
11479 /* we have got spares
11480 * update disk list in imsm_disk list table in anchor
11481 */
11482 dprintf("imsm: %i spares are available.\n\n",
11483 spares->array.spare_disks);
11484
11485 dev = spares->devs;
11486 for (i = 0; i < delta_disks; i++) {
11487 struct dl *dl;
11488
11489 if (dev == NULL)
11490 break;
11491 u->new_disks[i] = makedev(dev->disk.major,
11492 dev->disk.minor);
11493 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
11494 dl->index = mpb->num_disks;
11495 mpb->num_disks++;
11496 dev = dev->next;
11497 }
11498
11499 abort:
11500 /* free spares
11501 */
11502 sysfs_free(spares);
11503
11504 dprintf("imsm: reshape update preparation :");
11505 if (i == delta_disks) {
11506 dprintf_cont(" OK\n");
11507 *updatep = u;
11508 return update_memory_size;
11509 }
11510 free(u);
11511 dprintf_cont(" Error\n");
11512
11513 return 0;
11514 }
11515
11516 /******************************************************************************
11517 * function: imsm_create_metadata_update_for_size_change()
11518 * Creates update for IMSM array for array size change.
11519 *
11520 ******************************************************************************/
11521 static int imsm_create_metadata_update_for_size_change(
11522 struct supertype *st,
11523 struct geo_params *geo,
11524 struct imsm_update_size_change **updatep)
11525 {
11526 struct intel_super *super = st->sb;
11527 int update_memory_size;
11528 struct imsm_update_size_change *u;
11529
11530 dprintf("(enter) New size = %llu\n", geo->size);
11531
11532 /* size of all update data without anchor */
11533 update_memory_size = sizeof(struct imsm_update_size_change);
11534
11535 u = xcalloc(1, update_memory_size);
11536 u->type = update_size_change;
11537 u->subdev = super->current_vol;
11538 u->new_size = geo->size;
11539
11540 dprintf("imsm: reshape update preparation : OK\n");
11541 *updatep = u;
11542
11543 return update_memory_size;
11544 }
11545
11546 /******************************************************************************
11547 * function: imsm_create_metadata_update_for_migration()
11548 * Creates update for IMSM array.
11549 *
11550 ******************************************************************************/
11551 static int imsm_create_metadata_update_for_migration(
11552 struct supertype *st,
11553 struct geo_params *geo,
11554 struct imsm_update_reshape_migration **updatep)
11555 {
11556 struct intel_super *super = st->sb;
11557 int update_memory_size;
11558 int current_chunk_size;
11559 struct imsm_update_reshape_migration *u;
11560 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11561 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11562 int previous_level = -1;
11563
11564 dprintf("(enter) New Level = %i\n", geo->level);
11565
11566 /* size of all update data without anchor */
11567 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11568
11569 u = xcalloc(1, update_memory_size);
11570 u->type = update_reshape_migration;
11571 u->subdev = super->current_vol;
11572 u->new_level = geo->level;
11573 u->new_layout = geo->layout;
11574 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11575 u->new_disks[0] = -1;
11576 u->new_chunksize = -1;
11577
11578 current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2;
11579
11580 if (geo->chunksize != current_chunk_size) {
11581 u->new_chunksize = geo->chunksize / 1024;
11582 dprintf("imsm: chunk size change from %i to %i\n",
11583 current_chunk_size, u->new_chunksize);
11584 }
11585 previous_level = map->raid_level;
11586
11587 if (geo->level == 5 && previous_level == 0) {
11588 struct mdinfo *spares = NULL;
11589
11590 u->new_raid_disks++;
11591 spares = get_spares_for_grow(st);
11592 if (spares == NULL || spares->array.spare_disks < 1) {
11593 free(u);
11594 sysfs_free(spares);
11595 update_memory_size = 0;
11596 pr_err("cannot get spare device for requested migration\n");
11597 return 0;
11598 }
11599 sysfs_free(spares);
11600 }
11601 dprintf("imsm: reshape update preparation : OK\n");
11602 *updatep = u;
11603
11604 return update_memory_size;
11605 }
11606
11607 static void imsm_update_metadata_locally(struct supertype *st,
11608 void *buf, int len)
11609 {
11610 struct metadata_update mu;
11611
11612 mu.buf = buf;
11613 mu.len = len;
11614 mu.space = NULL;
11615 mu.space_list = NULL;
11616 mu.next = NULL;
11617 if (imsm_prepare_update(st, &mu))
11618 imsm_process_update(st, &mu);
11619
11620 while (mu.space_list) {
11621 void **space = mu.space_list;
11622 mu.space_list = *space;
11623 free(space);
11624 }
11625 }
11626
11627 /**
11628 * imsm_analyze_expand() - check expand properties and calculate new size.
11629 * @st: imsm supertype.
11630 * @geo: new geometry params.
11631 * @array: array info.
11632 * @direction: reshape direction.
11633 *
11634 * Obtain free space after the &array and verify if expand to requested size is
11635 * possible. If geo->size is set to %MAX_SIZE, assume that max free size is
11636 * requested.
11637 *
11638 * Return:
11639 * On success %IMSM_STATUS_OK is returned, geo->size and geo->raid_disks are
11640 * updated.
11641 * On error, %IMSM_STATUS_ERROR is returned.
11642 */
11643 static imsm_status_t imsm_analyze_expand(struct supertype *st,
11644 struct geo_params *geo,
11645 struct mdinfo *array,
11646 int direction)
11647 {
11648 struct intel_super *super = st->sb;
11649 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11650 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11651 int data_disks = imsm_num_data_members(map);
11652
11653 unsigned long long current_size;
11654 unsigned long long free_size;
11655 unsigned long long new_size;
11656 unsigned long long max_size;
11657
11658 const int chunk_kib = geo->chunksize / 1024;
11659 imsm_status_t rv;
11660
11661 if (direction == ROLLBACK_METADATA_CHANGES) {
11662 /**
11663 * Accept size for rollback only.
11664 */
11665 new_size = geo->size * 2;
11666 goto success;
11667 }
11668
11669 if (data_disks == 0) {
11670 pr_err("imsm: Cannot retrieve data disks.\n");
11671 return IMSM_STATUS_ERROR;
11672 }
11673 current_size = array->custom_array_size / data_disks;
11674
11675 rv = imsm_get_free_size(super, dev->vol.map->num_members, 0, chunk_kib, &free_size, true);
11676 if (rv != IMSM_STATUS_OK) {
11677 pr_err("imsm: Cannot find free space for expand.\n");
11678 return IMSM_STATUS_ERROR;
11679 }
11680 max_size = round_member_size_to_mb(free_size + current_size);
11681
11682 if (geo->size == MAX_SIZE)
11683 new_size = max_size;
11684 else
11685 new_size = round_member_size_to_mb(geo->size * 2);
11686
11687 if (new_size == 0) {
11688 pr_err("imsm: Rounded requested size is 0.\n");
11689 return IMSM_STATUS_ERROR;
11690 }
11691
11692 if (new_size > max_size) {
11693 pr_err("imsm: Rounded requested size (%llu) is larger than free space available (%llu).\n",
11694 new_size, max_size);
11695 return IMSM_STATUS_ERROR;
11696 }
11697
11698 if (new_size == current_size) {
11699 pr_err("imsm: Rounded requested size (%llu) is same as current size (%llu).\n",
11700 new_size, current_size);
11701 return IMSM_STATUS_ERROR;
11702 }
11703
11704 if (new_size < current_size) {
11705 pr_err("imsm: Size reduction is not supported, rounded requested size (%llu) is smaller than current (%llu).\n",
11706 new_size, current_size);
11707 return IMSM_STATUS_ERROR;
11708 }
11709
11710 success:
11711 dprintf("imsm: New size per member is %llu.\n", new_size);
11712 geo->size = data_disks * new_size;
11713 geo->raid_disks = dev->vol.map->num_members;
11714 return IMSM_STATUS_OK;
11715 }
11716
11717 /***************************************************************************
11718 * Function: imsm_analyze_change
11719 * Description: Function analyze change for single volume
11720 * and validate if transition is supported
11721 * Parameters: Geometry parameters, supertype structure,
11722 * metadata change direction (apply/rollback)
11723 * Returns: Operation type code on success, -1 if fail
11724 ****************************************************************************/
11725 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
11726 struct geo_params *geo,
11727 int direction)
11728 {
11729 struct mdinfo info;
11730 int change = -1;
11731 int check_devs = 0;
11732 int chunk;
11733 /* number of added/removed disks in operation result */
11734 int devNumChange = 0;
11735 /* imsm compatible layout value for array geometry verification */
11736 int imsm_layout = -1;
11737 imsm_status_t rv;
11738
11739 getinfo_super_imsm_volume(st, &info, NULL);
11740 if (geo->level != info.array.level && geo->level >= 0 &&
11741 geo->level != UnSet) {
11742 switch (info.array.level) {
11743 case 0:
11744 if (geo->level == 5) {
11745 change = CH_MIGRATION;
11746 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
11747 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
11748 change = -1;
11749 goto analyse_change_exit;
11750 }
11751 imsm_layout = geo->layout;
11752 check_devs = 1;
11753 devNumChange = 1; /* parity disk added */
11754 } else if (geo->level == 10) {
11755 change = CH_TAKEOVER;
11756 check_devs = 1;
11757 devNumChange = 2; /* two mirrors added */
11758 imsm_layout = 0x102; /* imsm supported layout */
11759 }
11760 break;
11761 case 1:
11762 case 10:
11763 if (geo->level == 0) {
11764 change = CH_TAKEOVER;
11765 check_devs = 1;
11766 devNumChange = -(geo->raid_disks/2);
11767 imsm_layout = 0; /* imsm raid0 layout */
11768 }
11769 break;
11770 }
11771 if (change == -1) {
11772 pr_err("Error. Level Migration from %d to %d not supported!\n",
11773 info.array.level, geo->level);
11774 goto analyse_change_exit;
11775 }
11776 } else
11777 geo->level = info.array.level;
11778
11779 if (geo->layout != info.array.layout &&
11780 (geo->layout != UnSet && geo->layout != -1)) {
11781 change = CH_MIGRATION;
11782 if (info.array.layout == 0 && info.array.level == 5 &&
11783 geo->layout == 5) {
11784 /* reshape 5 -> 4 */
11785 } else if (info.array.layout == 5 && info.array.level == 5 &&
11786 geo->layout == 0) {
11787 /* reshape 4 -> 5 */
11788 geo->layout = 0;
11789 geo->level = 5;
11790 } else {
11791 pr_err("Error. Layout Migration from %d to %d not supported!\n",
11792 info.array.layout, geo->layout);
11793 change = -1;
11794 goto analyse_change_exit;
11795 }
11796 } else {
11797 geo->layout = info.array.layout;
11798 if (imsm_layout == -1)
11799 imsm_layout = info.array.layout;
11800 }
11801
11802 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11803 geo->chunksize != info.array.chunk_size) {
11804 if (info.array.level == 10) {
11805 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11806 change = -1;
11807 goto analyse_change_exit;
11808 } else if (info.component_size % (geo->chunksize/512)) {
11809 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11810 geo->chunksize/1024, info.component_size/2);
11811 change = -1;
11812 goto analyse_change_exit;
11813 }
11814 change = CH_MIGRATION;
11815 } else {
11816 geo->chunksize = info.array.chunk_size;
11817 }
11818
11819 if (geo->size > 0) {
11820 if (change != -1) {
11821 pr_err("Error. Size change should be the only one at a time.\n");
11822 change = -1;
11823 goto analyse_change_exit;
11824 }
11825
11826 rv = imsm_analyze_expand(st, geo, &info, direction);
11827 if (rv != IMSM_STATUS_OK)
11828 goto analyse_change_exit;
11829 change = CH_ARRAY_SIZE;
11830 }
11831
11832 chunk = geo->chunksize / 1024;
11833 if (!validate_geometry_imsm(st,
11834 geo->level,
11835 imsm_layout,
11836 geo->raid_disks + devNumChange,
11837 &chunk,
11838 geo->size, INVALID_SECTORS,
11839 0, 0, info.consistency_policy, 1))
11840 change = -1;
11841
11842 if (check_devs) {
11843 struct intel_super *super = st->sb;
11844 struct imsm_super *mpb = super->anchor;
11845
11846 if (mpb->num_raid_devs > 1) {
11847 pr_err("Error. Cannot perform operation on %s- for this operation "
11848 "it MUST be single array in container\n", geo->dev_name);
11849 change = -1;
11850 }
11851 }
11852
11853 analyse_change_exit:
11854 if (direction == ROLLBACK_METADATA_CHANGES &&
11855 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
11856 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
11857 change = -1;
11858 }
11859 return change;
11860 }
11861
11862 int imsm_takeover(struct supertype *st, struct geo_params *geo)
11863 {
11864 struct intel_super *super = st->sb;
11865 struct imsm_update_takeover *u;
11866
11867 u = xmalloc(sizeof(struct imsm_update_takeover));
11868
11869 u->type = update_takeover;
11870 u->subarray = super->current_vol;
11871
11872 /* 10->0 transition */
11873 if (geo->level == 0)
11874 u->direction = R10_TO_R0;
11875
11876 /* 0->10 transition */
11877 if (geo->level == 10)
11878 u->direction = R0_TO_R10;
11879
11880 /* update metadata locally */
11881 imsm_update_metadata_locally(st, u,
11882 sizeof(struct imsm_update_takeover));
11883 /* and possibly remotely */
11884 if (st->update_tail)
11885 append_metadata_update(st, u,
11886 sizeof(struct imsm_update_takeover));
11887 else
11888 free(u);
11889
11890 return 0;
11891 }
11892
11893 /* Flush size update if size calculated by num_data_stripes is higher than
11894 * imsm_dev_size to eliminate differences during reshape.
11895 * Mdmon will recalculate them correctly.
11896 * If subarray index is not set then check whole container.
11897 * Returns:
11898 * 0 - no error occurred
11899 * 1 - error detected
11900 */
11901 static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11902 {
11903 struct intel_super *super = st->sb;
11904 int tmp = super->current_vol;
11905 int ret_val = 1;
11906 int i;
11907
11908 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11909 if (subarray_index >= 0 && i != subarray_index)
11910 continue;
11911 super->current_vol = i;
11912 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11913 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11914 unsigned int disc_count = imsm_num_data_members(map);
11915 struct geo_params geo;
11916 struct imsm_update_size_change *update;
11917 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11918 unsigned long long d_size = imsm_dev_size(dev);
11919 int u_size;
11920
11921 if (calc_size == d_size)
11922 continue;
11923
11924 /* There is a difference, confirm that imsm_dev_size is
11925 * smaller and push update.
11926 */
11927 if (d_size > calc_size) {
11928 pr_err("imsm: dev size of subarray %d is incorrect\n",
11929 i);
11930 goto exit;
11931 }
11932 memset(&geo, 0, sizeof(struct geo_params));
11933 geo.size = d_size;
11934 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11935 &update);
11936 imsm_update_metadata_locally(st, update, u_size);
11937 if (st->update_tail) {
11938 append_metadata_update(st, update, u_size);
11939 flush_metadata_updates(st);
11940 st->update_tail = &st->updates;
11941 } else {
11942 imsm_sync_metadata(st);
11943 free(update);
11944 }
11945 }
11946 ret_val = 0;
11947 exit:
11948 super->current_vol = tmp;
11949 return ret_val;
11950 }
11951
11952 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11953 int level,
11954 int layout, int chunksize, int raid_disks,
11955 int delta_disks, char *backup, char *dev,
11956 int direction, int verbose)
11957 {
11958 int ret_val = 1;
11959 struct geo_params geo;
11960
11961 dprintf("(enter)\n");
11962
11963 memset(&geo, 0, sizeof(struct geo_params));
11964
11965 geo.dev_name = dev;
11966 strcpy(geo.devnm, st->devnm);
11967 geo.size = size;
11968 geo.level = level;
11969 geo.layout = layout;
11970 geo.chunksize = chunksize;
11971 geo.raid_disks = raid_disks;
11972 if (delta_disks != UnSet)
11973 geo.raid_disks += delta_disks;
11974
11975 dprintf("for level : %i\n", geo.level);
11976 dprintf("for raid_disks : %i\n", geo.raid_disks);
11977
11978 if (strcmp(st->container_devnm, st->devnm) == 0) {
11979 /* On container level we can only increase number of devices. */
11980 dprintf("imsm: info: Container operation\n");
11981 int old_raid_disks = 0;
11982
11983 if (imsm_reshape_is_allowed_on_container(
11984 st, &geo, &old_raid_disks, direction)) {
11985 struct imsm_update_reshape *u = NULL;
11986 int len;
11987
11988 if (imsm_fix_size_mismatch(st, -1)) {
11989 dprintf("imsm: Cannot fix size mismatch\n");
11990 goto exit_imsm_reshape_super;
11991 }
11992
11993 len = imsm_create_metadata_update_for_reshape(
11994 st, &geo, old_raid_disks, &u);
11995
11996 if (len <= 0) {
11997 dprintf("imsm: Cannot prepare update\n");
11998 goto exit_imsm_reshape_super;
11999 }
12000
12001 ret_val = 0;
12002 /* update metadata locally */
12003 imsm_update_metadata_locally(st, u, len);
12004 /* and possibly remotely */
12005 if (st->update_tail)
12006 append_metadata_update(st, u, len);
12007 else
12008 free(u);
12009
12010 } else {
12011 pr_err("(imsm) Operation is not allowed on this container\n");
12012 }
12013 } else {
12014 /* On volume level we support following operations
12015 * - takeover: raid10 -> raid0; raid0 -> raid10
12016 * - chunk size migration
12017 * - migration: raid5 -> raid0; raid0 -> raid5
12018 */
12019 struct intel_super *super = st->sb;
12020 struct intel_dev *dev = super->devlist;
12021 int change;
12022 dprintf("imsm: info: Volume operation\n");
12023 /* find requested device */
12024 while (dev) {
12025 char *devnm =
12026 imsm_find_array_devnm_by_subdev(
12027 dev->index, st->container_devnm);
12028 if (devnm && strcmp(devnm, geo.devnm) == 0)
12029 break;
12030 dev = dev->next;
12031 }
12032 if (dev == NULL) {
12033 pr_err("Cannot find %s (%s) subarray\n",
12034 geo.dev_name, geo.devnm);
12035 goto exit_imsm_reshape_super;
12036 }
12037 super->current_vol = dev->index;
12038 change = imsm_analyze_change(st, &geo, direction);
12039 switch (change) {
12040 case CH_TAKEOVER:
12041 ret_val = imsm_takeover(st, &geo);
12042 break;
12043 case CH_MIGRATION: {
12044 struct imsm_update_reshape_migration *u = NULL;
12045 int len =
12046 imsm_create_metadata_update_for_migration(
12047 st, &geo, &u);
12048 if (len < 1) {
12049 dprintf("imsm: Cannot prepare update\n");
12050 break;
12051 }
12052 ret_val = 0;
12053 /* update metadata locally */
12054 imsm_update_metadata_locally(st, u, len);
12055 /* and possibly remotely */
12056 if (st->update_tail)
12057 append_metadata_update(st, u, len);
12058 else
12059 free(u);
12060 }
12061 break;
12062 case CH_ARRAY_SIZE: {
12063 struct imsm_update_size_change *u = NULL;
12064 int len =
12065 imsm_create_metadata_update_for_size_change(
12066 st, &geo, &u);
12067 if (len < 1) {
12068 dprintf("imsm: Cannot prepare update\n");
12069 break;
12070 }
12071 ret_val = 0;
12072 /* update metadata locally */
12073 imsm_update_metadata_locally(st, u, len);
12074 /* and possibly remotely */
12075 if (st->update_tail)
12076 append_metadata_update(st, u, len);
12077 else
12078 free(u);
12079 }
12080 break;
12081 default:
12082 ret_val = 1;
12083 }
12084 }
12085
12086 exit_imsm_reshape_super:
12087 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
12088 return ret_val;
12089 }
12090
12091 #define COMPLETED_OK 0
12092 #define COMPLETED_NONE 1
12093 #define COMPLETED_DELAYED 2
12094
12095 static int read_completed(int fd, unsigned long long *val)
12096 {
12097 int ret;
12098 char buf[SYSFS_MAX_BUF_SIZE];
12099
12100 ret = sysfs_fd_get_str(fd, buf, sizeof(buf));
12101 if (ret < 0)
12102 return ret;
12103
12104 ret = COMPLETED_OK;
12105 if (str_is_none(buf) == true) {
12106 ret = COMPLETED_NONE;
12107 } else if (strncmp(buf, "delayed", 7) == 0) {
12108 ret = COMPLETED_DELAYED;
12109 } else {
12110 char *ep;
12111 *val = strtoull(buf, &ep, 0);
12112 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12113 ret = -1;
12114 }
12115 return ret;
12116 }
12117
12118 /*******************************************************************************
12119 * Function: wait_for_reshape_imsm
12120 * Description: Function writes new sync_max value and waits until
12121 * reshape process reach new position
12122 * Parameters:
12123 * sra : general array info
12124 * ndata : number of disks in new array's layout
12125 * Returns:
12126 * 0 : success,
12127 * 1 : there is no reshape in progress,
12128 * -1 : fail
12129 ******************************************************************************/
12130 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
12131 {
12132 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
12133 int retry = 3;
12134 unsigned long long completed;
12135 /* to_complete : new sync_max position */
12136 unsigned long long to_complete = sra->reshape_progress;
12137 unsigned long long position_to_set = to_complete / ndata;
12138
12139 if (!is_fd_valid(fd)) {
12140 dprintf("cannot open reshape_position\n");
12141 return 1;
12142 }
12143
12144 do {
12145 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12146 if (!retry) {
12147 dprintf("cannot read reshape_position (no reshape in progres)\n");
12148 close(fd);
12149 return 1;
12150 }
12151 sleep_for(0, MSEC_TO_NSEC(30), true);
12152 } else
12153 break;
12154 } while (retry--);
12155
12156 if (completed > position_to_set) {
12157 dprintf("wrong next position to set %llu (%llu)\n",
12158 to_complete, position_to_set);
12159 close(fd);
12160 return -1;
12161 }
12162 dprintf("Position set: %llu\n", position_to_set);
12163 if (sysfs_set_num(sra, NULL, "sync_max",
12164 position_to_set) != 0) {
12165 dprintf("cannot set reshape position to %llu\n",
12166 position_to_set);
12167 close(fd);
12168 return -1;
12169 }
12170
12171 do {
12172 int rc;
12173 char action[SYSFS_MAX_BUF_SIZE];
12174 int timeout = 3000;
12175
12176 sysfs_wait(fd, &timeout);
12177 if (sysfs_get_str(sra, NULL, "sync_action",
12178 action, sizeof(action)) > 0 &&
12179 strncmp(action, "reshape", 7) != 0) {
12180 if (strncmp(action, "idle", 4) == 0)
12181 break;
12182 close(fd);
12183 return -1;
12184 }
12185
12186 rc = read_completed(fd, &completed);
12187 if (rc < 0) {
12188 dprintf("cannot read reshape_position (in loop)\n");
12189 close(fd);
12190 return 1;
12191 } else if (rc == COMPLETED_NONE)
12192 break;
12193 } while (completed < position_to_set);
12194
12195 close(fd);
12196 return 0;
12197 }
12198
12199 /*******************************************************************************
12200 * Function: check_degradation_change
12201 * Description: Check that array hasn't become failed.
12202 * Parameters:
12203 * info : for sysfs access
12204 * sources : source disks descriptors
12205 * degraded: previous degradation level
12206 * Returns:
12207 * degradation level
12208 ******************************************************************************/
12209 int check_degradation_change(struct mdinfo *info,
12210 int *sources,
12211 int degraded)
12212 {
12213 unsigned long long new_degraded;
12214 int rv;
12215
12216 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
12217 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
12218 /* check each device to ensure it is still working */
12219 struct mdinfo *sd;
12220 new_degraded = 0;
12221 for (sd = info->devs ; sd ; sd = sd->next) {
12222 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12223 continue;
12224 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
12225 char sbuf[SYSFS_MAX_BUF_SIZE];
12226 int raid_disk = sd->disk.raid_disk;
12227
12228 if (sysfs_get_str(info,
12229 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
12230 strstr(sbuf, "faulty") ||
12231 strstr(sbuf, "in_sync") == NULL) {
12232 /* this device is dead */
12233 sd->disk.state = (1<<MD_DISK_FAULTY);
12234 if (raid_disk >= 0)
12235 close_fd(&sources[raid_disk]);
12236 new_degraded++;
12237 }
12238 }
12239 }
12240 }
12241
12242 return new_degraded;
12243 }
12244
12245 /*******************************************************************************
12246 * Function: imsm_manage_reshape
12247 * Description: Function finds array under reshape and it manages reshape
12248 * process. It creates stripes backups (if required) and sets
12249 * checkpoints.
12250 * Parameters:
12251 * afd : Backup handle (nattive) - not used
12252 * sra : general array info
12253 * reshape : reshape parameters - not used
12254 * st : supertype structure
12255 * blocks : size of critical section [blocks]
12256 * fds : table of source device descriptor
12257 * offsets : start of array (offest per devices)
12258 * dests : not used
12259 * destfd : table of destination device descriptor
12260 * destoffsets : table of destination offsets (per device)
12261 * Returns:
12262 * 1 : success, reshape is done
12263 * 0 : fail
12264 ******************************************************************************/
12265 static int imsm_manage_reshape(
12266 int afd, struct mdinfo *sra, struct reshape *reshape,
12267 struct supertype *st, unsigned long backup_blocks,
12268 int *fds, unsigned long long *offsets,
12269 int dests, int *destfd, unsigned long long *destoffsets)
12270 {
12271 int ret_val = 0;
12272 struct intel_super *super = st->sb;
12273 struct intel_dev *dv;
12274 unsigned int sector_size = super->sector_size;
12275 struct imsm_dev *dev = NULL;
12276 struct imsm_map *map_src, *map_dest;
12277 int migr_vol_qan = 0;
12278 int ndata, odata; /* [bytes] */
12279 int chunk; /* [bytes] */
12280 struct migr_record *migr_rec;
12281 char *buf = NULL;
12282 unsigned int buf_size; /* [bytes] */
12283 unsigned long long max_position; /* array size [bytes] */
12284 unsigned long long next_step; /* [blocks]/[bytes] */
12285 unsigned long long old_data_stripe_length;
12286 unsigned long long start_src; /* [bytes] */
12287 unsigned long long start; /* [bytes] */
12288 unsigned long long start_buf_shift; /* [bytes] */
12289 int degraded = 0;
12290 int source_layout = 0;
12291 int subarray_index = -1;
12292
12293 if (!sra)
12294 return ret_val;
12295
12296 if (!fds || !offsets)
12297 goto abort;
12298
12299 /* Find volume during the reshape */
12300 for (dv = super->devlist; dv; dv = dv->next) {
12301 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12302 dv->dev->vol.migr_state == 1) {
12303 dev = dv->dev;
12304 migr_vol_qan++;
12305 subarray_index = dv->index;
12306 }
12307 }
12308 /* Only one volume can migrate at the same time */
12309 if (migr_vol_qan != 1) {
12310 pr_err("%s", migr_vol_qan ?
12311 "Number of migrating volumes greater than 1\n" :
12312 "There is no volume during migrationg\n");
12313 goto abort;
12314 }
12315
12316 map_dest = get_imsm_map(dev, MAP_0);
12317 map_src = get_imsm_map(dev, MAP_1);
12318 if (map_src == NULL)
12319 goto abort;
12320
12321 ndata = imsm_num_data_members(map_dest);
12322 odata = imsm_num_data_members(map_src);
12323
12324 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
12325 old_data_stripe_length = odata * chunk;
12326
12327 migr_rec = super->migr_rec;
12328
12329 /* initialize migration record for start condition */
12330 if (sra->reshape_progress == 0)
12331 init_migr_record_imsm(st, dev, sra);
12332 else {
12333 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
12334 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
12335 goto abort;
12336 }
12337 /* Save checkpoint to update migration record for current
12338 * reshape position (in md). It can be farther than current
12339 * reshape position in metadata.
12340 */
12341 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12342 /* ignore error == 2, this can mean end of reshape here
12343 */
12344 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
12345 goto abort;
12346 }
12347 }
12348
12349 /* size for data */
12350 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12351 /* extend buffer size for parity disk */
12352 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
12353 /* add space for stripe alignment */
12354 buf_size += old_data_stripe_length;
12355 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12356 dprintf("imsm: Cannot allocate checkpoint buffer\n");
12357 goto abort;
12358 }
12359
12360 max_position = sra->component_size * ndata;
12361 source_layout = imsm_level_to_layout(map_src->raid_level);
12362
12363 while (current_migr_unit(migr_rec) <
12364 get_num_migr_units(migr_rec)) {
12365 /* current reshape position [blocks] */
12366 unsigned long long current_position =
12367 __le32_to_cpu(migr_rec->blocks_per_unit)
12368 * current_migr_unit(migr_rec);
12369 unsigned long long border;
12370
12371 /* Check that array hasn't become failed.
12372 */
12373 degraded = check_degradation_change(sra, fds, degraded);
12374 if (degraded > 1) {
12375 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
12376 goto abort;
12377 }
12378
12379 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12380
12381 if ((current_position + next_step) > max_position)
12382 next_step = max_position - current_position;
12383
12384 start = current_position * 512;
12385
12386 /* align reading start to old geometry */
12387 start_buf_shift = start % old_data_stripe_length;
12388 start_src = start - start_buf_shift;
12389
12390 border = (start_src / odata) - (start / ndata);
12391 border /= 512;
12392 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12393 /* save critical stripes to buf
12394 * start - start address of current unit
12395 * to backup [bytes]
12396 * start_src - start address of current unit
12397 * to backup alligned to source array
12398 * [bytes]
12399 */
12400 unsigned long long next_step_filler;
12401 unsigned long long copy_length = next_step * 512;
12402
12403 /* allign copy area length to stripe in old geometry */
12404 next_step_filler = ((copy_length + start_buf_shift)
12405 % old_data_stripe_length);
12406 if (next_step_filler)
12407 next_step_filler = (old_data_stripe_length
12408 - next_step_filler);
12409 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
12410 start, start_src, copy_length,
12411 start_buf_shift, next_step_filler);
12412
12413 if (save_stripes(fds, offsets, map_src->num_members,
12414 chunk, map_src->raid_level,
12415 source_layout, 0, NULL, start_src,
12416 copy_length +
12417 next_step_filler + start_buf_shift,
12418 buf)) {
12419 dprintf("imsm: Cannot save stripes to buffer\n");
12420 goto abort;
12421 }
12422 /* Convert data to destination format and store it
12423 * in backup general migration area
12424 */
12425 if (save_backup_imsm(st, dev, sra,
12426 buf + start_buf_shift, copy_length)) {
12427 dprintf("imsm: Cannot save stripes to target devices\n");
12428 goto abort;
12429 }
12430 if (save_checkpoint_imsm(st, sra,
12431 UNIT_SRC_IN_CP_AREA)) {
12432 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
12433 goto abort;
12434 }
12435 } else {
12436 /* set next step to use whole border area */
12437 border /= next_step;
12438 if (border > 1)
12439 next_step *= border;
12440 }
12441 /* When data backed up, checkpoint stored,
12442 * kick the kernel to reshape unit of data
12443 */
12444 next_step = next_step + sra->reshape_progress;
12445 /* limit next step to array max position */
12446 if (next_step > max_position)
12447 next_step = max_position;
12448 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12449 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
12450 sra->reshape_progress = next_step;
12451
12452 /* wait until reshape finish */
12453 if (wait_for_reshape_imsm(sra, ndata)) {
12454 dprintf("wait_for_reshape_imsm returned error!\n");
12455 goto abort;
12456 }
12457 if (sigterm)
12458 goto abort;
12459
12460 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12461 /* ignore error == 2, this can mean end of reshape here
12462 */
12463 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
12464 goto abort;
12465 }
12466
12467 }
12468
12469 /* clear migr_rec on disks after successful migration */
12470 struct dl *d;
12471
12472 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
12473 for (d = super->disks; d; d = d->next) {
12474 if (d->index < 0 || is_failed(&d->disk))
12475 continue;
12476 unsigned long long dsize;
12477
12478 get_dev_size(d->fd, NULL, &dsize);
12479 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
12480 SEEK_SET) >= 0) {
12481 if ((unsigned int)write(d->fd, super->migr_rec_buf,
12482 MIGR_REC_BUF_SECTORS*sector_size) !=
12483 MIGR_REC_BUF_SECTORS*sector_size)
12484 perror("Write migr_rec failed");
12485 }
12486 }
12487
12488 /* return '1' if done */
12489 ret_val = 1;
12490
12491 /* After the reshape eliminate size mismatch in metadata.
12492 * Don't update md/component_size here, volume hasn't
12493 * to take whole space. It is allowed by kernel.
12494 * md/component_size will be set propoperly after next assembly.
12495 */
12496 imsm_fix_size_mismatch(st, subarray_index);
12497
12498 abort:
12499 free(buf);
12500 /* See Grow.c: abort_reshape() for further explanation */
12501 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12502 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12503 sysfs_set_num(sra, NULL, "suspend_lo", 0);
12504
12505 return ret_val;
12506 }
12507
12508 /*******************************************************************************
12509 * Function: calculate_bitmap_min_chunksize
12510 * Description: Calculates the minimal valid bitmap chunk size
12511 * Parameters:
12512 * max_bits : indicate how many bits can be used for the bitmap
12513 * data_area_size : the size of the data area covered by the bitmap
12514 *
12515 * Returns:
12516 * The bitmap chunk size
12517 ******************************************************************************/
12518 static unsigned long long
12519 calculate_bitmap_min_chunksize(unsigned long long max_bits,
12520 unsigned long long data_area_size)
12521 {
12522 unsigned long long min_chunk =
12523 4096; /* sub-page chunks don't work yet.. */
12524 unsigned long long bits = data_area_size / min_chunk + 1;
12525
12526 while (bits > max_bits) {
12527 min_chunk *= 2;
12528 bits = (bits + 1) / 2;
12529 }
12530 return min_chunk;
12531 }
12532
12533 /*******************************************************************************
12534 * Function: calculate_bitmap_chunksize
12535 * Description: Calculates the bitmap chunk size for the given device
12536 * Parameters:
12537 * st : supertype information
12538 * dev : device for the bitmap
12539 *
12540 * Returns:
12541 * The bitmap chunk size
12542 ******************************************************************************/
12543 static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12544 struct imsm_dev *dev)
12545 {
12546 struct intel_super *super = st->sb;
12547 unsigned long long min_chunksize;
12548 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12549 size_t dev_size = imsm_dev_size(dev);
12550
12551 min_chunksize = calculate_bitmap_min_chunksize(
12552 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12553
12554 if (result < min_chunksize)
12555 result = min_chunksize;
12556
12557 return result;
12558 }
12559
12560 /*******************************************************************************
12561 * Function: init_bitmap_header
12562 * Description: Initialize the bitmap header structure
12563 * Parameters:
12564 * st : supertype information
12565 * bms : bitmap header struct to initialize
12566 * dev : device for the bitmap
12567 *
12568 * Returns:
12569 * 0 : success
12570 * -1 : fail
12571 ******************************************************************************/
12572 static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12573 struct imsm_dev *dev)
12574 {
12575 int vol_uuid[4];
12576
12577 if (!bms || !dev)
12578 return -1;
12579
12580 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12581 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12582 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12583 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12584 bms->write_behind = __cpu_to_le32(0);
12585
12586 uuid_from_super_imsm(st, vol_uuid);
12587 memcpy(bms->uuid, vol_uuid, 16);
12588
12589 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12590
12591 return 0;
12592 }
12593
12594 /*******************************************************************************
12595 * Function: validate_internal_bitmap_for_drive
12596 * Description: Verify if the bitmap header for a given drive.
12597 * Parameters:
12598 * st : supertype information
12599 * offset : The offset from the beginning of the drive where to look for
12600 * the bitmap header.
12601 * d : the drive info
12602 *
12603 * Returns:
12604 * 0 : success
12605 * -1 : fail
12606 ******************************************************************************/
12607 static int validate_internal_bitmap_for_drive(struct supertype *st,
12608 unsigned long long offset,
12609 struct dl *d)
12610 {
12611 struct intel_super *super = st->sb;
12612 int ret = -1;
12613 int vol_uuid[4];
12614 bitmap_super_t *bms;
12615 int fd;
12616
12617 if (!d)
12618 return -1;
12619
12620 void *read_buf;
12621
12622 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12623 return -1;
12624
12625 fd = d->fd;
12626 if (!is_fd_valid(fd)) {
12627 fd = open(d->devname, O_RDONLY, 0);
12628
12629 if (!is_fd_valid(fd)) {
12630 dprintf("cannot open the device %s\n", d->devname);
12631 goto abort;
12632 }
12633 }
12634
12635 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12636 goto abort;
12637 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12638 IMSM_BITMAP_HEADER_SIZE)
12639 goto abort;
12640
12641 uuid_from_super_imsm(st, vol_uuid);
12642
12643 bms = read_buf;
12644 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12645 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12646 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12647 dprintf("wrong bitmap header detected\n");
12648 goto abort;
12649 }
12650
12651 ret = 0;
12652 abort:
12653 if (!is_fd_valid(d->fd))
12654 close_fd(&fd);
12655
12656 if (read_buf)
12657 free(read_buf);
12658
12659 return ret;
12660 }
12661
12662 /*******************************************************************************
12663 * Function: validate_internal_bitmap_imsm
12664 * Description: Verify if the bitmap header is in place and with proper data.
12665 * Parameters:
12666 * st : supertype information
12667 *
12668 * Returns:
12669 * 0 : success or device w/o RWH_BITMAP
12670 * -1 : fail
12671 ******************************************************************************/
12672 static int validate_internal_bitmap_imsm(struct supertype *st)
12673 {
12674 struct intel_super *super = st->sb;
12675 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12676 unsigned long long offset;
12677 struct dl *d;
12678
12679 if (dev->rwh_policy != RWH_BITMAP)
12680 return 0;
12681
12682 offset = get_bitmap_header_sector(super, super->current_vol);
12683 for (d = super->disks; d; d = d->next) {
12684 if (d->index < 0 || is_failed(&d->disk))
12685 continue;
12686
12687 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12688 pr_err("imsm: bitmap validation failed\n");
12689 return -1;
12690 }
12691 }
12692 return 0;
12693 }
12694
12695 /*******************************************************************************
12696 * Function: add_internal_bitmap_imsm
12697 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12698 * Parameters:
12699 * st : supertype information
12700 * chunkp : bitmap chunk size
12701 * delay : not used for imsm
12702 * write_behind : not used for imsm
12703 * size : not used for imsm
12704 * may_change : not used for imsm
12705 * amajor : not used for imsm
12706 *
12707 * Returns:
12708 * 0 : success
12709 * -1 : fail
12710 ******************************************************************************/
12711 static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12712 int delay, int write_behind,
12713 unsigned long long size, int may_change,
12714 int amajor)
12715 {
12716 struct intel_super *super = st->sb;
12717 int vol_idx = super->current_vol;
12718 struct imsm_dev *dev;
12719
12720 if (!super->devlist || vol_idx == -1 || !chunkp)
12721 return -1;
12722
12723 dev = get_imsm_dev(super, vol_idx);
12724 dev->rwh_policy = RWH_BITMAP;
12725 *chunkp = calculate_bitmap_chunksize(st, dev);
12726 return 0;
12727 }
12728
12729 /*******************************************************************************
12730 * Function: locate_bitmap_imsm
12731 * Description: Seek 'fd' to start of write-intent-bitmap.
12732 * Parameters:
12733 * st : supertype information
12734 * fd : file descriptor for the device
12735 * node_num : not used for imsm
12736 *
12737 * Returns:
12738 * 0 : success
12739 * -1 : fail
12740 ******************************************************************************/
12741 static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12742 {
12743 struct intel_super *super = st->sb;
12744 unsigned long long offset;
12745 int vol_idx = super->current_vol;
12746
12747 if (!super->devlist || vol_idx == -1)
12748 return -1;
12749
12750 offset = get_bitmap_header_sector(super, super->current_vol);
12751 dprintf("bitmap header offset is %llu\n", offset);
12752
12753 lseek64(fd, offset << 9, 0);
12754
12755 return 0;
12756 }
12757
12758 /*******************************************************************************
12759 * Function: write_init_bitmap_imsm
12760 * Description: Write a bitmap header and prepares the area for the bitmap.
12761 * Parameters:
12762 * st : supertype information
12763 * fd : file descriptor for the device
12764 * update : not used for imsm
12765 *
12766 * Returns:
12767 * 0 : success
12768 * -1 : fail
12769 ******************************************************************************/
12770 static int write_init_bitmap_imsm(struct supertype *st, int fd,
12771 enum bitmap_update update)
12772 {
12773 struct intel_super *super = st->sb;
12774 int vol_idx = super->current_vol;
12775 int ret = 0;
12776 unsigned long long offset;
12777 bitmap_super_t bms = { 0 };
12778 size_t written = 0;
12779 size_t to_write;
12780 ssize_t rv_num;
12781 void *buf;
12782
12783 if (!super->devlist || !super->sector_size || vol_idx == -1)
12784 return -1;
12785
12786 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12787
12788 /* first clear the space for bitmap header */
12789 unsigned long long bitmap_area_start =
12790 get_bitmap_header_sector(super, vol_idx);
12791
12792 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12793 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12794 if (zero_disk_range(fd, bitmap_area_start,
12795 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12796 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12797 return -1;
12798 }
12799
12800 /* The bitmap area should be filled with "1"s to perform initial
12801 * synchronization.
12802 */
12803 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12804 return -1;
12805 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12806 offset = get_bitmap_sector(super, vol_idx);
12807 lseek64(fd, offset << 9, 0);
12808 while (written < IMSM_BITMAP_AREA_SIZE) {
12809 to_write = IMSM_BITMAP_AREA_SIZE - written;
12810 if (to_write > MAX_SECTOR_SIZE)
12811 to_write = MAX_SECTOR_SIZE;
12812 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12813 if (rv_num != MAX_SECTOR_SIZE) {
12814 ret = -1;
12815 dprintf("cannot initialize bitmap area\n");
12816 goto abort;
12817 }
12818 written += rv_num;
12819 }
12820
12821 /* write a bitmap header */
12822 init_bitmap_header(st, &bms, dev);
12823 memset(buf, 0, MAX_SECTOR_SIZE);
12824 memcpy(buf, &bms, sizeof(bitmap_super_t));
12825 if (locate_bitmap_imsm(st, fd, 0)) {
12826 ret = -1;
12827 dprintf("cannot locate the bitmap\n");
12828 goto abort;
12829 }
12830 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12831 ret = -1;
12832 dprintf("cannot write the bitmap header\n");
12833 goto abort;
12834 }
12835 fsync(fd);
12836
12837 abort:
12838 free(buf);
12839
12840 return ret;
12841 }
12842
12843 /*******************************************************************************
12844 * Function: is_vol_to_setup_bitmap
12845 * Description: Checks if a bitmap should be activated on the dev.
12846 * Parameters:
12847 * info : info about the volume to setup the bitmap
12848 * dev : the device to check against bitmap creation
12849 *
12850 * Returns:
12851 * 0 : bitmap should be set up on the device
12852 * -1 : otherwise
12853 ******************************************************************************/
12854 static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12855 {
12856 if (!dev || !info)
12857 return -1;
12858
12859 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12860 (dev->rwh_policy == RWH_BITMAP))
12861 return -1;
12862
12863 return 0;
12864 }
12865
12866 /*******************************************************************************
12867 * Function: set_bitmap_sysfs
12868 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12869 * Parameters:
12870 * info : info about the volume where the bitmap should be setup
12871 * chunksize : bitmap chunk size
12872 * location : location of the bitmap
12873 *
12874 * Returns:
12875 * 0 : success
12876 * -1 : fail
12877 ******************************************************************************/
12878 static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12879 char *location)
12880 {
12881 /* The bitmap/metadata is set to external to allow changing of value for
12882 * bitmap/location. When external is used, the kernel will treat an offset
12883 * related to the device's first lba (in opposition to the "internal" case
12884 * when this value is related to the beginning of the superblock).
12885 */
12886 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12887 dprintf("failed to set bitmap/metadata\n");
12888 return -1;
12889 }
12890
12891 /* It can only be changed when no bitmap is active.
12892 * Should be bigger than 512 and must be power of 2.
12893 * It is expecting the value in bytes.
12894 */
12895 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12896 __cpu_to_le32(chunksize))) {
12897 dprintf("failed to set bitmap/chunksize\n");
12898 return -1;
12899 }
12900
12901 /* It is expecting the value in sectors. */
12902 if (sysfs_set_num(info, NULL, "bitmap/space",
12903 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
12904 dprintf("failed to set bitmap/space\n");
12905 return -1;
12906 }
12907
12908 /* Determines the delay between the bitmap updates.
12909 * It is expecting the value in seconds.
12910 */
12911 if (sysfs_set_num(info, NULL, "bitmap/time_base",
12912 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
12913 dprintf("failed to set bitmap/time_base\n");
12914 return -1;
12915 }
12916
12917 /* It is expecting the value in sectors with a sign at the beginning. */
12918 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
12919 dprintf("failed to set bitmap/location\n");
12920 return -1;
12921 }
12922
12923 return 0;
12924 }
12925
12926 /*******************************************************************************
12927 * Function: set_bitmap_imsm
12928 * Description: Setup the bitmap for the given volume
12929 * Parameters:
12930 * st : supertype information
12931 * info : info about the volume where the bitmap should be setup
12932 *
12933 * Returns:
12934 * 0 : success
12935 * -1 : fail
12936 ******************************************************************************/
12937 static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
12938 {
12939 struct intel_super *super = st->sb;
12940 int prev_current_vol = super->current_vol;
12941 struct imsm_dev *dev;
12942 int ret = -1;
12943 char location[16] = "";
12944 unsigned long long chunksize;
12945 struct intel_dev *dev_it;
12946
12947 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
12948 super->current_vol = dev_it->index;
12949 dev = get_imsm_dev(super, super->current_vol);
12950
12951 if (is_vol_to_setup_bitmap(info, dev)) {
12952 if (validate_internal_bitmap_imsm(st)) {
12953 dprintf("bitmap header validation failed\n");
12954 goto abort;
12955 }
12956
12957 chunksize = calculate_bitmap_chunksize(st, dev);
12958 dprintf("chunk size is %llu\n", chunksize);
12959
12960 snprintf(location, sizeof(location), "+%llu",
12961 get_bitmap_sector(super, super->current_vol));
12962 dprintf("bitmap offset is %s\n", location);
12963
12964 if (set_bitmap_sysfs(info, chunksize, location)) {
12965 dprintf("cannot setup the bitmap\n");
12966 goto abort;
12967 }
12968 }
12969 }
12970 ret = 0;
12971 abort:
12972 super->current_vol = prev_current_vol;
12973 return ret;
12974 }
12975
12976 struct superswitch super_imsm = {
12977 .examine_super = examine_super_imsm,
12978 .brief_examine_super = brief_examine_super_imsm,
12979 .brief_examine_subarrays = brief_examine_subarrays_imsm,
12980 .export_examine_super = export_examine_super_imsm,
12981 .detail_super = detail_super_imsm,
12982 .brief_detail_super = brief_detail_super_imsm,
12983 .write_init_super = write_init_super_imsm,
12984 .validate_geometry = validate_geometry_imsm,
12985 .add_to_super = add_to_super_imsm,
12986 .remove_from_super = remove_from_super_imsm,
12987 .detail_platform = detail_platform_imsm,
12988 .export_detail_platform = export_detail_platform_imsm,
12989 .kill_subarray = kill_subarray_imsm,
12990 .update_subarray = update_subarray_imsm,
12991 .load_container = load_container_imsm,
12992 .default_geometry = default_geometry_imsm,
12993 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12994 .reshape_super = imsm_reshape_super,
12995 .manage_reshape = imsm_manage_reshape,
12996 .recover_backup = recover_backup_imsm,
12997 .examine_badblocks = examine_badblocks_imsm,
12998 .match_home = match_home_imsm,
12999 .uuid_from_super= uuid_from_super_imsm,
13000 .getinfo_super = getinfo_super_imsm,
13001 .getinfo_super_disks = getinfo_super_disks_imsm,
13002 .update_super = update_super_imsm,
13003
13004 .avail_size = avail_size_imsm,
13005 .get_spare_criteria = get_spare_criteria_imsm,
13006
13007 .compare_super = compare_super_imsm,
13008
13009 .load_super = load_super_imsm,
13010 .init_super = init_super_imsm,
13011 .store_super = store_super_imsm,
13012 .free_super = free_super_imsm,
13013 .match_metadata_desc = match_metadata_desc_imsm,
13014 .container_content = container_content_imsm,
13015 .validate_container = validate_container_imsm,
13016
13017 .add_internal_bitmap = add_internal_bitmap_imsm,
13018 .locate_bitmap = locate_bitmap_imsm,
13019 .write_bitmap = write_init_bitmap_imsm,
13020 .set_bitmap = set_bitmap_imsm,
13021
13022 .write_init_ppl = write_init_ppl_imsm,
13023 .validate_ppl = validate_ppl_imsm,
13024
13025 .external = 1,
13026 .name = "imsm",
13027
13028 /* for mdmon */
13029 .open_new = imsm_open_new,
13030 .set_array_state= imsm_set_array_state,
13031 .set_disk = imsm_set_disk,
13032 .sync_metadata = imsm_sync_metadata,
13033 .activate_spare = imsm_activate_spare,
13034 .process_update = imsm_process_update,
13035 .prepare_update = imsm_prepare_update,
13036 .record_bad_block = imsm_record_badblock,
13037 .clear_bad_block = imsm_clear_badblock,
13038 .get_bad_blocks = imsm_get_badblocks,
13039 };