]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/evp_test.c
Make string_to_hex/hex_to_string public
[thirdparty/openssl.git] / test / evp_test.c
1 /*
2 * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ====================================================================
6 * Copyright (c) 2015 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 */
53
54 #include <stdio.h>
55 #include <string.h>
56 #include <stdlib.h>
57 #include <ctype.h>
58 #include <openssl/evp.h>
59 #include <openssl/pem.h>
60 #include <openssl/err.h>
61 #include <openssl/x509v3.h>
62 #include <openssl/pkcs12.h>
63 #include <openssl/kdf.h>
64 #include "internal/numbers.h"
65
66 /* Remove spaces from beginning and end of a string */
67
68 static void remove_space(char **pval)
69 {
70 unsigned char *p = (unsigned char *)*pval;
71
72 while (isspace(*p))
73 p++;
74
75 *pval = (char *)p;
76
77 p = p + strlen(*pval) - 1;
78
79 /* Remove trailing space */
80 while (isspace(*p))
81 *p-- = 0;
82 }
83
84 /*
85 * Given a line of the form:
86 * name = value # comment
87 * extract name and value. NB: modifies passed buffer.
88 */
89
90 static int parse_line(char **pkw, char **pval, char *linebuf)
91 {
92 char *p;
93
94 p = linebuf + strlen(linebuf) - 1;
95
96 if (*p != '\n') {
97 fprintf(stderr, "FATAL: missing EOL\n");
98 exit(1);
99 }
100
101 /* Look for # */
102
103 p = strchr(linebuf, '#');
104
105 if (p)
106 *p = '\0';
107
108 /* Look for = sign */
109 p = strchr(linebuf, '=');
110
111 /* If no '=' exit */
112 if (!p)
113 return 0;
114
115 *p++ = '\0';
116
117 *pkw = linebuf;
118 *pval = p;
119
120 /* Remove spaces from keyword and value */
121 remove_space(pkw);
122 remove_space(pval);
123
124 return 1;
125 }
126
127 /*
128 * Unescape some escape sequences in string literals.
129 * Return the result in a newly allocated buffer.
130 * Currently only supports '\n'.
131 * If the input length is 0, returns a valid 1-byte buffer, but sets
132 * the length to 0.
133 */
134 static unsigned char* unescape(const char *input, size_t input_len,
135 size_t *out_len)
136 {
137 unsigned char *ret, *p;
138 size_t i;
139 if (input_len == 0) {
140 *out_len = 0;
141 return OPENSSL_zalloc(1);
142 }
143
144 /* Escaping is non-expanding; over-allocate original size for simplicity. */
145 ret = p = OPENSSL_malloc(input_len);
146 if (ret == NULL)
147 return NULL;
148
149 for (i = 0; i < input_len; i++) {
150 if (input[i] == '\\') {
151 if (i == input_len - 1 || input[i+1] != 'n')
152 goto err;
153 *p++ = '\n';
154 i++;
155 } else {
156 *p++ = input[i];
157 }
158 }
159
160 *out_len = p - ret;
161 return ret;
162
163 err:
164 OPENSSL_free(ret);
165 return NULL;
166 }
167
168 /* For a hex string "value" convert to a binary allocated buffer */
169 static int test_bin(const char *value, unsigned char **buf, size_t *buflen)
170 {
171 long len;
172
173 *buflen = 0;
174 if (!*value) {
175 /*
176 * Don't return NULL for zero length buffer.
177 * This is needed for some tests with empty keys: HMAC_Init_ex() expects
178 * a non-NULL key buffer even if the key length is 0, in order to detect
179 * key reset.
180 */
181 *buf = OPENSSL_malloc(1);
182 if (!*buf)
183 return 0;
184 **buf = 0;
185 *buflen = 0;
186 return 1;
187 }
188 /* Check for string literal */
189 if (value[0] == '"') {
190 size_t vlen;
191 value++;
192 vlen = strlen(value);
193 if (value[vlen - 1] != '"')
194 return 0;
195 vlen--;
196 *buf = unescape(value, vlen, buflen);
197 if (*buf == NULL)
198 return 0;
199 return 1;
200 }
201
202 *buf = OPENSSL_hexstr2buf(value, &len);
203 if (!*buf) {
204 fprintf(stderr, "Value=%s\n", value);
205 ERR_print_errors_fp(stderr);
206 return -1;
207 }
208 /* Size of input buffer means we'll never overflow */
209 *buflen = len;
210 return 1;
211 }
212 #ifndef OPENSSL_NO_SCRYPT
213 /* Currently only used by scrypt tests */
214 /* Parse unsigned decimal 64 bit integer value */
215 static int test_uint64(const char *value, uint64_t *pr)
216 {
217 const char *p = value;
218 if (!*p) {
219 fprintf(stderr, "Invalid empty integer value\n");
220 return -1;
221 }
222 *pr = 0;
223 while (*p) {
224 if (*pr > UINT64_MAX/10) {
225 fprintf(stderr, "Integer string overflow value=%s\n", value);
226 return -1;
227 }
228 *pr *= 10;
229 if (*p < '0' || *p > '9') {
230 fprintf(stderr, "Invalid integer string value=%s\n", value);
231 return -1;
232 }
233 *pr += *p - '0';
234 p++;
235 }
236 return 1;
237 }
238 #endif
239
240 /* Structure holding test information */
241 struct evp_test {
242 /* file being read */
243 BIO *in;
244 /* List of public and private keys */
245 struct key_list *private;
246 struct key_list *public;
247 /* method for this test */
248 const struct evp_test_method *meth;
249 /* current line being processed */
250 unsigned int line;
251 /* start line of current test */
252 unsigned int start_line;
253 /* Error string for test */
254 const char *err;
255 /* Expected error value of test */
256 char *expected_err;
257 /* Number of tests */
258 int ntests;
259 /* Error count */
260 int errors;
261 /* Number of tests skipped */
262 int nskip;
263 /* If output mismatch expected and got value */
264 unsigned char *out_received;
265 size_t out_received_len;
266 unsigned char *out_expected;
267 size_t out_expected_len;
268 /* test specific data */
269 void *data;
270 /* Current test should be skipped */
271 int skip;
272 };
273
274 struct key_list {
275 char *name;
276 EVP_PKEY *key;
277 struct key_list *next;
278 };
279
280 /* Test method structure */
281 struct evp_test_method {
282 /* Name of test as it appears in file */
283 const char *name;
284 /* Initialise test for "alg" */
285 int (*init) (struct evp_test * t, const char *alg);
286 /* Clean up method */
287 void (*cleanup) (struct evp_test * t);
288 /* Test specific name value pair processing */
289 int (*parse) (struct evp_test * t, const char *name, const char *value);
290 /* Run the test itself */
291 int (*run_test) (struct evp_test * t);
292 };
293
294 static const struct evp_test_method digest_test_method, cipher_test_method;
295 static const struct evp_test_method mac_test_method;
296 static const struct evp_test_method psign_test_method, pverify_test_method;
297 static const struct evp_test_method pdecrypt_test_method;
298 static const struct evp_test_method pverify_recover_test_method;
299 static const struct evp_test_method pderive_test_method;
300 static const struct evp_test_method pbe_test_method;
301 static const struct evp_test_method encode_test_method;
302 static const struct evp_test_method kdf_test_method;
303
304 static const struct evp_test_method *evp_test_list[] = {
305 &digest_test_method,
306 &cipher_test_method,
307 &mac_test_method,
308 &psign_test_method,
309 &pverify_test_method,
310 &pdecrypt_test_method,
311 &pverify_recover_test_method,
312 &pderive_test_method,
313 &pbe_test_method,
314 &encode_test_method,
315 &kdf_test_method,
316 NULL
317 };
318
319 static const struct evp_test_method *evp_find_test(const char *name)
320 {
321 const struct evp_test_method **tt;
322
323 for (tt = evp_test_list; *tt; tt++) {
324 if (strcmp(name, (*tt)->name) == 0)
325 return *tt;
326 }
327 return NULL;
328 }
329
330 static void hex_print(const char *name, const unsigned char *buf, size_t len)
331 {
332 size_t i;
333 fprintf(stderr, "%s ", name);
334 for (i = 0; i < len; i++)
335 fprintf(stderr, "%02X", buf[i]);
336 fputs("\n", stderr);
337 }
338
339 static void free_expected(struct evp_test *t)
340 {
341 OPENSSL_free(t->expected_err);
342 t->expected_err = NULL;
343 OPENSSL_free(t->out_expected);
344 OPENSSL_free(t->out_received);
345 t->out_expected = NULL;
346 t->out_received = NULL;
347 t->out_expected_len = 0;
348 t->out_received_len = 0;
349 /* Literals. */
350 t->err = NULL;
351 }
352
353 static void print_expected(struct evp_test *t)
354 {
355 if (t->out_expected == NULL && t->out_received == NULL)
356 return;
357 hex_print("Expected:", t->out_expected, t->out_expected_len);
358 hex_print("Got: ", t->out_received, t->out_received_len);
359 free_expected(t);
360 }
361
362 static int check_test_error(struct evp_test *t)
363 {
364 if (!t->err && !t->expected_err)
365 return 1;
366 if (t->err && !t->expected_err) {
367 fprintf(stderr, "Test line %d: unexpected error %s\n",
368 t->start_line, t->err);
369 print_expected(t);
370 return 0;
371 }
372 if (!t->err && t->expected_err) {
373 fprintf(stderr, "Test line %d: succeeded expecting %s\n",
374 t->start_line, t->expected_err);
375 return 0;
376 }
377 if (strcmp(t->err, t->expected_err) == 0)
378 return 1;
379
380 fprintf(stderr, "Test line %d: expecting %s got %s\n",
381 t->start_line, t->expected_err, t->err);
382 return 0;
383 }
384
385 /* Setup a new test, run any existing test */
386
387 static int setup_test(struct evp_test *t, const struct evp_test_method *tmeth)
388 {
389 /* If we already have a test set up run it */
390 if (t->meth) {
391 t->ntests++;
392 if (t->skip) {
393 t->meth = tmeth;
394 t->nskip++;
395 return 1;
396 }
397 t->err = NULL;
398 if (t->meth->run_test(t) != 1) {
399 fprintf(stderr, "%s test error line %d\n",
400 t->meth->name, t->start_line);
401 return 0;
402 }
403 if (!check_test_error(t)) {
404 if (t->err)
405 ERR_print_errors_fp(stderr);
406 t->errors++;
407 }
408 ERR_clear_error();
409 t->meth->cleanup(t);
410 OPENSSL_free(t->data);
411 t->data = NULL;
412 OPENSSL_free(t->expected_err);
413 t->expected_err = NULL;
414 free_expected(t);
415 }
416 t->meth = tmeth;
417 return 1;
418 }
419
420 static int find_key(EVP_PKEY **ppk, const char *name, struct key_list *lst)
421 {
422 for (; lst; lst = lst->next) {
423 if (strcmp(lst->name, name) == 0) {
424 if (ppk)
425 *ppk = lst->key;
426 return 1;
427 }
428 }
429 return 0;
430 }
431
432 static void free_key_list(struct key_list *lst)
433 {
434 while (lst != NULL) {
435 struct key_list *ltmp;
436 EVP_PKEY_free(lst->key);
437 OPENSSL_free(lst->name);
438 ltmp = lst->next;
439 OPENSSL_free(lst);
440 lst = ltmp;
441 }
442 }
443
444 static int check_unsupported()
445 {
446 long err = ERR_peek_error();
447 if (ERR_GET_LIB(err) == ERR_LIB_EVP
448 && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
449 ERR_clear_error();
450 return 1;
451 }
452 return 0;
453 }
454
455 static int process_test(struct evp_test *t, char *buf, int verbose)
456 {
457 char *keyword = NULL, *value = NULL;
458 int rv = 0, add_key = 0;
459 long save_pos = 0;
460 struct key_list **lst = NULL, *key = NULL;
461 EVP_PKEY *pk = NULL;
462 const struct evp_test_method *tmeth = NULL;
463 if (verbose)
464 fputs(buf, stdout);
465 if (!parse_line(&keyword, &value, buf))
466 return 1;
467 if (strcmp(keyword, "PrivateKey") == 0) {
468 save_pos = BIO_tell(t->in);
469 pk = PEM_read_bio_PrivateKey(t->in, NULL, 0, NULL);
470 if (pk == NULL && !check_unsupported()) {
471 fprintf(stderr, "Error reading private key %s\n", value);
472 ERR_print_errors_fp(stderr);
473 return 0;
474 }
475 lst = &t->private;
476 add_key = 1;
477 }
478 if (strcmp(keyword, "PublicKey") == 0) {
479 save_pos = BIO_tell(t->in);
480 pk = PEM_read_bio_PUBKEY(t->in, NULL, 0, NULL);
481 if (pk == NULL && !check_unsupported()) {
482 fprintf(stderr, "Error reading public key %s\n", value);
483 ERR_print_errors_fp(stderr);
484 return 0;
485 }
486 lst = &t->public;
487 add_key = 1;
488 }
489 /* If we have a key add to list */
490 if (add_key) {
491 char tmpbuf[80];
492 if (find_key(NULL, value, *lst)) {
493 fprintf(stderr, "Duplicate key %s\n", value);
494 return 0;
495 }
496 key = OPENSSL_malloc(sizeof(*key));
497 if (!key)
498 return 0;
499 key->name = OPENSSL_strdup(value);
500 key->key = pk;
501 key->next = *lst;
502 *lst = key;
503 /* Rewind input, read to end and update line numbers */
504 (void)BIO_seek(t->in, save_pos);
505 while (BIO_gets(t->in,tmpbuf, sizeof(tmpbuf))) {
506 t->line++;
507 if (strncmp(tmpbuf, "-----END", 8) == 0)
508 return 1;
509 }
510 fprintf(stderr, "Can't find key end\n");
511 return 0;
512 }
513
514 /* See if keyword corresponds to a test start */
515 tmeth = evp_find_test(keyword);
516 if (tmeth) {
517 if (!setup_test(t, tmeth))
518 return 0;
519 t->start_line = t->line;
520 t->skip = 0;
521 if (!tmeth->init(t, value)) {
522 fprintf(stderr, "Unknown %s: %s\n", keyword, value);
523 return 0;
524 }
525 return 1;
526 } else if (t->skip) {
527 return 1;
528 } else if (strcmp(keyword, "Result") == 0) {
529 if (t->expected_err) {
530 fprintf(stderr, "Line %d: multiple result lines\n", t->line);
531 return 0;
532 }
533 t->expected_err = OPENSSL_strdup(value);
534 if (!t->expected_err)
535 return 0;
536 } else {
537 /* Must be test specific line: try to parse it */
538 if (t->meth)
539 rv = t->meth->parse(t, keyword, value);
540
541 if (rv == 0)
542 fprintf(stderr, "line %d: unexpected keyword %s\n",
543 t->line, keyword);
544
545 if (rv < 0)
546 fprintf(stderr, "line %d: error processing keyword %s\n",
547 t->line, keyword);
548 if (rv <= 0)
549 return 0;
550 }
551 return 1;
552 }
553
554 static int check_var_length_output(struct evp_test *t,
555 const unsigned char *expected,
556 size_t expected_len,
557 const unsigned char *received,
558 size_t received_len)
559 {
560 if (expected_len == received_len &&
561 memcmp(expected, received, expected_len) == 0) {
562 return 0;
563 }
564
565 /* The result printing code expects a non-NULL buffer. */
566 t->out_expected = OPENSSL_memdup(expected, expected_len ? expected_len : 1);
567 t->out_expected_len = expected_len;
568 t->out_received = OPENSSL_memdup(received, received_len ? received_len : 1);
569 t->out_received_len = received_len;
570 if (t->out_expected == NULL || t->out_received == NULL) {
571 fprintf(stderr, "Memory allocation error!\n");
572 exit(1);
573 }
574 return 1;
575 }
576
577 static int check_output(struct evp_test *t,
578 const unsigned char *expected,
579 const unsigned char *received,
580 size_t len)
581 {
582 return check_var_length_output(t, expected, len, received, len);
583 }
584
585 int main(int argc, char **argv)
586 {
587 BIO *in = NULL;
588 char buf[10240];
589 struct evp_test t;
590
591 if (argc != 2) {
592 fprintf(stderr, "usage: evp_test testfile.txt\n");
593 return 1;
594 }
595
596 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
597
598 memset(&t, 0, sizeof(t));
599 t.start_line = -1;
600 in = BIO_new_file(argv[1], "r");
601 t.in = in;
602 while (BIO_gets(in, buf, sizeof(buf))) {
603 t.line++;
604 if (!process_test(&t, buf, 0))
605 exit(1);
606 }
607 /* Run any final test we have */
608 if (!setup_test(&t, NULL))
609 exit(1);
610 fprintf(stderr, "%d tests completed with %d errors, %d skipped\n",
611 t.ntests, t.errors, t.nskip);
612 free_key_list(t.public);
613 free_key_list(t.private);
614 BIO_free(in);
615
616 #ifndef OPENSSL_NO_CRYPTO_MDEBUG
617 if (CRYPTO_mem_leaks_fp(stderr) <= 0)
618 return 1;
619 #endif
620 if (t.errors)
621 return 1;
622 return 0;
623 }
624
625 static void test_free(void *d)
626 {
627 OPENSSL_free(d);
628 }
629
630 /* Message digest tests */
631
632 struct digest_data {
633 /* Digest this test is for */
634 const EVP_MD *digest;
635 /* Input to digest */
636 unsigned char *input;
637 size_t input_len;
638 /* Repeat count for input */
639 size_t nrpt;
640 /* Expected output */
641 unsigned char *output;
642 size_t output_len;
643 };
644
645 static int digest_test_init(struct evp_test *t, const char *alg)
646 {
647 const EVP_MD *digest;
648 struct digest_data *mdat;
649 digest = EVP_get_digestbyname(alg);
650 if (!digest) {
651 /* If alg has an OID assume disabled algorithm */
652 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
653 t->skip = 1;
654 return 1;
655 }
656 return 0;
657 }
658 mdat = OPENSSL_malloc(sizeof(*mdat));
659 mdat->digest = digest;
660 mdat->input = NULL;
661 mdat->output = NULL;
662 mdat->nrpt = 1;
663 t->data = mdat;
664 return 1;
665 }
666
667 static void digest_test_cleanup(struct evp_test *t)
668 {
669 struct digest_data *mdat = t->data;
670 test_free(mdat->input);
671 test_free(mdat->output);
672 }
673
674 static int digest_test_parse(struct evp_test *t,
675 const char *keyword, const char *value)
676 {
677 struct digest_data *mdata = t->data;
678 if (strcmp(keyword, "Input") == 0)
679 return test_bin(value, &mdata->input, &mdata->input_len);
680 if (strcmp(keyword, "Output") == 0)
681 return test_bin(value, &mdata->output, &mdata->output_len);
682 if (strcmp(keyword, "Count") == 0) {
683 long nrpt = atoi(value);
684 if (nrpt <= 0)
685 return 0;
686 mdata->nrpt = (size_t)nrpt;
687 return 1;
688 }
689 return 0;
690 }
691
692 static int digest_test_run(struct evp_test *t)
693 {
694 struct digest_data *mdata = t->data;
695 size_t i;
696 const char *err = "INTERNAL_ERROR";
697 EVP_MD_CTX *mctx;
698 unsigned char md[EVP_MAX_MD_SIZE];
699 unsigned int md_len;
700 mctx = EVP_MD_CTX_new();
701 if (!mctx)
702 goto err;
703 err = "DIGESTINIT_ERROR";
704 if (!EVP_DigestInit_ex(mctx, mdata->digest, NULL))
705 goto err;
706 err = "DIGESTUPDATE_ERROR";
707 for (i = 0; i < mdata->nrpt; i++) {
708 if (!EVP_DigestUpdate(mctx, mdata->input, mdata->input_len))
709 goto err;
710 }
711 err = "DIGESTFINAL_ERROR";
712 if (!EVP_DigestFinal(mctx, md, &md_len))
713 goto err;
714 err = "DIGEST_LENGTH_MISMATCH";
715 if (md_len != mdata->output_len)
716 goto err;
717 err = "DIGEST_MISMATCH";
718 if (check_output(t, mdata->output, md, md_len))
719 goto err;
720 err = NULL;
721 err:
722 EVP_MD_CTX_free(mctx);
723 t->err = err;
724 return 1;
725 }
726
727 static const struct evp_test_method digest_test_method = {
728 "Digest",
729 digest_test_init,
730 digest_test_cleanup,
731 digest_test_parse,
732 digest_test_run
733 };
734
735 /* Cipher tests */
736 struct cipher_data {
737 const EVP_CIPHER *cipher;
738 int enc;
739 /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
740 int aead;
741 unsigned char *key;
742 size_t key_len;
743 unsigned char *iv;
744 size_t iv_len;
745 unsigned char *plaintext;
746 size_t plaintext_len;
747 unsigned char *ciphertext;
748 size_t ciphertext_len;
749 /* GCM, CCM only */
750 unsigned char *aad;
751 size_t aad_len;
752 unsigned char *tag;
753 size_t tag_len;
754 };
755
756 static int cipher_test_init(struct evp_test *t, const char *alg)
757 {
758 const EVP_CIPHER *cipher;
759 struct cipher_data *cdat = t->data;
760 cipher = EVP_get_cipherbyname(alg);
761 if (!cipher) {
762 /* If alg has an OID assume disabled algorithm */
763 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
764 t->skip = 1;
765 return 1;
766 }
767 return 0;
768 }
769 cdat = OPENSSL_malloc(sizeof(*cdat));
770 cdat->cipher = cipher;
771 cdat->enc = -1;
772 cdat->key = NULL;
773 cdat->iv = NULL;
774 cdat->ciphertext = NULL;
775 cdat->plaintext = NULL;
776 cdat->aad = NULL;
777 cdat->tag = NULL;
778 t->data = cdat;
779 if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE
780 || EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE
781 || EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE)
782 cdat->aead = EVP_CIPHER_mode(cipher);
783 else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
784 cdat->aead = -1;
785 else
786 cdat->aead = 0;
787
788 return 1;
789 }
790
791 static void cipher_test_cleanup(struct evp_test *t)
792 {
793 struct cipher_data *cdat = t->data;
794 test_free(cdat->key);
795 test_free(cdat->iv);
796 test_free(cdat->ciphertext);
797 test_free(cdat->plaintext);
798 test_free(cdat->aad);
799 test_free(cdat->tag);
800 }
801
802 static int cipher_test_parse(struct evp_test *t, const char *keyword,
803 const char *value)
804 {
805 struct cipher_data *cdat = t->data;
806 if (strcmp(keyword, "Key") == 0)
807 return test_bin(value, &cdat->key, &cdat->key_len);
808 if (strcmp(keyword, "IV") == 0)
809 return test_bin(value, &cdat->iv, &cdat->iv_len);
810 if (strcmp(keyword, "Plaintext") == 0)
811 return test_bin(value, &cdat->plaintext, &cdat->plaintext_len);
812 if (strcmp(keyword, "Ciphertext") == 0)
813 return test_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
814 if (cdat->aead) {
815 if (strcmp(keyword, "AAD") == 0)
816 return test_bin(value, &cdat->aad, &cdat->aad_len);
817 if (strcmp(keyword, "Tag") == 0)
818 return test_bin(value, &cdat->tag, &cdat->tag_len);
819 }
820
821 if (strcmp(keyword, "Operation") == 0) {
822 if (strcmp(value, "ENCRYPT") == 0)
823 cdat->enc = 1;
824 else if (strcmp(value, "DECRYPT") == 0)
825 cdat->enc = 0;
826 else
827 return 0;
828 return 1;
829 }
830 return 0;
831 }
832
833 static int cipher_test_enc(struct evp_test *t, int enc)
834 {
835 struct cipher_data *cdat = t->data;
836 unsigned char *in, *out, *tmp = NULL;
837 size_t in_len, out_len;
838 int tmplen, tmpflen;
839 EVP_CIPHER_CTX *ctx = NULL;
840 const char *err;
841 err = "INTERNAL_ERROR";
842 ctx = EVP_CIPHER_CTX_new();
843 if (!ctx)
844 goto err;
845 EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
846 if (enc) {
847 in = cdat->plaintext;
848 in_len = cdat->plaintext_len;
849 out = cdat->ciphertext;
850 out_len = cdat->ciphertext_len;
851 } else {
852 in = cdat->ciphertext;
853 in_len = cdat->ciphertext_len;
854 out = cdat->plaintext;
855 out_len = cdat->plaintext_len;
856 }
857 tmp = OPENSSL_malloc(in_len + 2 * EVP_MAX_BLOCK_LENGTH);
858 if (!tmp)
859 goto err;
860 err = "CIPHERINIT_ERROR";
861 if (!EVP_CipherInit_ex(ctx, cdat->cipher, NULL, NULL, NULL, enc))
862 goto err;
863 err = "INVALID_IV_LENGTH";
864 if (cdat->iv) {
865 if (cdat->aead) {
866 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
867 cdat->iv_len, 0))
868 goto err;
869 } else if (cdat->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx))
870 goto err;
871 }
872 if (cdat->aead) {
873 unsigned char *tag;
874 /*
875 * If encrypting or OCB just set tag length initially, otherwise
876 * set tag length and value.
877 */
878 if (enc || cdat->aead == EVP_CIPH_OCB_MODE) {
879 err = "TAG_LENGTH_SET_ERROR";
880 tag = NULL;
881 } else {
882 err = "TAG_SET_ERROR";
883 tag = cdat->tag;
884 }
885 if (tag || cdat->aead != EVP_CIPH_GCM_MODE) {
886 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
887 cdat->tag_len, tag))
888 goto err;
889 }
890 }
891
892 err = "INVALID_KEY_LENGTH";
893 if (!EVP_CIPHER_CTX_set_key_length(ctx, cdat->key_len))
894 goto err;
895 err = "KEY_SET_ERROR";
896 if (!EVP_CipherInit_ex(ctx, NULL, NULL, cdat->key, cdat->iv, -1))
897 goto err;
898
899 if (!enc && cdat->aead == EVP_CIPH_OCB_MODE) {
900 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
901 cdat->tag_len, cdat->tag)) {
902 err = "TAG_SET_ERROR";
903 goto err;
904 }
905 }
906
907 if (cdat->aead == EVP_CIPH_CCM_MODE) {
908 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
909 err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
910 goto err;
911 }
912 }
913 if (cdat->aad) {
914 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, cdat->aad, cdat->aad_len)) {
915 err = "AAD_SET_ERROR";
916 goto err;
917 }
918 }
919 EVP_CIPHER_CTX_set_padding(ctx, 0);
920 err = "CIPHERUPDATE_ERROR";
921 if (!EVP_CipherUpdate(ctx, tmp, &tmplen, in, in_len))
922 goto err;
923 if (cdat->aead == EVP_CIPH_CCM_MODE)
924 tmpflen = 0;
925 else {
926 err = "CIPHERFINAL_ERROR";
927 if (!EVP_CipherFinal_ex(ctx, tmp + tmplen, &tmpflen))
928 goto err;
929 }
930 err = "LENGTH_MISMATCH";
931 if (out_len != (size_t)(tmplen + tmpflen))
932 goto err;
933 err = "VALUE_MISMATCH";
934 if (check_output(t, out, tmp, out_len))
935 goto err;
936 if (enc && cdat->aead) {
937 unsigned char rtag[16];
938 if (cdat->tag_len > sizeof(rtag)) {
939 err = "TAG_LENGTH_INTERNAL_ERROR";
940 goto err;
941 }
942 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
943 cdat->tag_len, rtag)) {
944 err = "TAG_RETRIEVE_ERROR";
945 goto err;
946 }
947 if (check_output(t, cdat->tag, rtag, cdat->tag_len)) {
948 err = "TAG_VALUE_MISMATCH";
949 goto err;
950 }
951 }
952 err = NULL;
953 err:
954 OPENSSL_free(tmp);
955 EVP_CIPHER_CTX_free(ctx);
956 t->err = err;
957 return err ? 0 : 1;
958 }
959
960 static int cipher_test_run(struct evp_test *t)
961 {
962 struct cipher_data *cdat = t->data;
963 int rv;
964 if (!cdat->key) {
965 t->err = "NO_KEY";
966 return 0;
967 }
968 if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
969 /* IV is optional and usually omitted in wrap mode */
970 if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
971 t->err = "NO_IV";
972 return 0;
973 }
974 }
975 if (cdat->aead && !cdat->tag) {
976 t->err = "NO_TAG";
977 return 0;
978 }
979 if (cdat->enc) {
980 rv = cipher_test_enc(t, 1);
981 /* Not fatal errors: return */
982 if (rv != 1) {
983 if (rv < 0)
984 return 0;
985 return 1;
986 }
987 }
988 if (cdat->enc != 1) {
989 rv = cipher_test_enc(t, 0);
990 /* Not fatal errors: return */
991 if (rv != 1) {
992 if (rv < 0)
993 return 0;
994 return 1;
995 }
996 }
997 return 1;
998 }
999
1000 static const struct evp_test_method cipher_test_method = {
1001 "Cipher",
1002 cipher_test_init,
1003 cipher_test_cleanup,
1004 cipher_test_parse,
1005 cipher_test_run
1006 };
1007
1008 struct mac_data {
1009 /* MAC type */
1010 int type;
1011 /* Algorithm string for this MAC */
1012 char *alg;
1013 /* MAC key */
1014 unsigned char *key;
1015 size_t key_len;
1016 /* Input to MAC */
1017 unsigned char *input;
1018 size_t input_len;
1019 /* Expected output */
1020 unsigned char *output;
1021 size_t output_len;
1022 };
1023
1024 static int mac_test_init(struct evp_test *t, const char *alg)
1025 {
1026 int type;
1027 struct mac_data *mdat;
1028 if (strcmp(alg, "HMAC") == 0) {
1029 type = EVP_PKEY_HMAC;
1030 } else if (strcmp(alg, "CMAC") == 0) {
1031 #ifndef OPENSSL_NO_CMAC
1032 type = EVP_PKEY_CMAC;
1033 #else
1034 t->skip = 1;
1035 return 1;
1036 #endif
1037 } else
1038 return 0;
1039
1040 mdat = OPENSSL_malloc(sizeof(*mdat));
1041 mdat->type = type;
1042 mdat->alg = NULL;
1043 mdat->key = NULL;
1044 mdat->input = NULL;
1045 mdat->output = NULL;
1046 t->data = mdat;
1047 return 1;
1048 }
1049
1050 static void mac_test_cleanup(struct evp_test *t)
1051 {
1052 struct mac_data *mdat = t->data;
1053 test_free(mdat->alg);
1054 test_free(mdat->key);
1055 test_free(mdat->input);
1056 test_free(mdat->output);
1057 }
1058
1059 static int mac_test_parse(struct evp_test *t,
1060 const char *keyword, const char *value)
1061 {
1062 struct mac_data *mdata = t->data;
1063 if (strcmp(keyword, "Key") == 0)
1064 return test_bin(value, &mdata->key, &mdata->key_len);
1065 if (strcmp(keyword, "Algorithm") == 0) {
1066 mdata->alg = OPENSSL_strdup(value);
1067 if (!mdata->alg)
1068 return 0;
1069 return 1;
1070 }
1071 if (strcmp(keyword, "Input") == 0)
1072 return test_bin(value, &mdata->input, &mdata->input_len);
1073 if (strcmp(keyword, "Output") == 0)
1074 return test_bin(value, &mdata->output, &mdata->output_len);
1075 return 0;
1076 }
1077
1078 static int mac_test_run(struct evp_test *t)
1079 {
1080 struct mac_data *mdata = t->data;
1081 const char *err = "INTERNAL_ERROR";
1082 EVP_MD_CTX *mctx = NULL;
1083 EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
1084 EVP_PKEY *key = NULL;
1085 const EVP_MD *md = NULL;
1086 unsigned char *mac = NULL;
1087 size_t mac_len;
1088
1089 #ifdef OPENSSL_NO_DES
1090 if (strstr(mdata->alg, "DES") != NULL) {
1091 /* Skip DES */
1092 err = NULL;
1093 goto err;
1094 }
1095 #endif
1096
1097 err = "MAC_PKEY_CTX_ERROR";
1098 genctx = EVP_PKEY_CTX_new_id(mdata->type, NULL);
1099 if (!genctx)
1100 goto err;
1101
1102 err = "MAC_KEYGEN_INIT_ERROR";
1103 if (EVP_PKEY_keygen_init(genctx) <= 0)
1104 goto err;
1105 if (mdata->type == EVP_PKEY_CMAC) {
1106 err = "MAC_ALGORITHM_SET_ERROR";
1107 if (EVP_PKEY_CTX_ctrl_str(genctx, "cipher", mdata->alg) <= 0)
1108 goto err;
1109 }
1110
1111 err = "MAC_KEY_SET_ERROR";
1112 if (EVP_PKEY_CTX_set_mac_key(genctx, mdata->key, mdata->key_len) <= 0)
1113 goto err;
1114
1115 err = "MAC_KEY_GENERATE_ERROR";
1116 if (EVP_PKEY_keygen(genctx, &key) <= 0)
1117 goto err;
1118 if (mdata->type == EVP_PKEY_HMAC) {
1119 err = "MAC_ALGORITHM_SET_ERROR";
1120 md = EVP_get_digestbyname(mdata->alg);
1121 if (!md)
1122 goto err;
1123 }
1124 mctx = EVP_MD_CTX_new();
1125 if (!mctx)
1126 goto err;
1127 err = "DIGESTSIGNINIT_ERROR";
1128 if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key))
1129 goto err;
1130
1131 err = "DIGESTSIGNUPDATE_ERROR";
1132 if (!EVP_DigestSignUpdate(mctx, mdata->input, mdata->input_len))
1133 goto err;
1134 err = "DIGESTSIGNFINAL_LENGTH_ERROR";
1135 if (!EVP_DigestSignFinal(mctx, NULL, &mac_len))
1136 goto err;
1137 mac = OPENSSL_malloc(mac_len);
1138 if (!mac) {
1139 fprintf(stderr, "Error allocating mac buffer!\n");
1140 exit(1);
1141 }
1142 if (!EVP_DigestSignFinal(mctx, mac, &mac_len))
1143 goto err;
1144 err = "MAC_LENGTH_MISMATCH";
1145 if (mac_len != mdata->output_len)
1146 goto err;
1147 err = "MAC_MISMATCH";
1148 if (check_output(t, mdata->output, mac, mac_len))
1149 goto err;
1150 err = NULL;
1151 err:
1152 EVP_MD_CTX_free(mctx);
1153 OPENSSL_free(mac);
1154 EVP_PKEY_CTX_free(genctx);
1155 EVP_PKEY_free(key);
1156 t->err = err;
1157 return 1;
1158 }
1159
1160 static const struct evp_test_method mac_test_method = {
1161 "MAC",
1162 mac_test_init,
1163 mac_test_cleanup,
1164 mac_test_parse,
1165 mac_test_run
1166 };
1167
1168 /*
1169 * Public key operations. These are all very similar and can share
1170 * a lot of common code.
1171 */
1172
1173 struct pkey_data {
1174 /* Context for this operation */
1175 EVP_PKEY_CTX *ctx;
1176 /* Key operation to perform */
1177 int (*keyop) (EVP_PKEY_CTX *ctx,
1178 unsigned char *sig, size_t *siglen,
1179 const unsigned char *tbs, size_t tbslen);
1180 /* Input to MAC */
1181 unsigned char *input;
1182 size_t input_len;
1183 /* Expected output */
1184 unsigned char *output;
1185 size_t output_len;
1186 };
1187
1188 /*
1189 * Perform public key operation setup: lookup key, allocated ctx and call
1190 * the appropriate initialisation function
1191 */
1192 static int pkey_test_init(struct evp_test *t, const char *name,
1193 int use_public,
1194 int (*keyopinit) (EVP_PKEY_CTX *ctx),
1195 int (*keyop) (EVP_PKEY_CTX *ctx,
1196 unsigned char *sig, size_t *siglen,
1197 const unsigned char *tbs,
1198 size_t tbslen)
1199 )
1200 {
1201 struct pkey_data *kdata;
1202 EVP_PKEY *pkey = NULL;
1203 int rv = 0;
1204 if (use_public)
1205 rv = find_key(&pkey, name, t->public);
1206 if (!rv)
1207 rv = find_key(&pkey, name, t->private);
1208 if (!rv)
1209 return 0;
1210 if (!pkey) {
1211 t->skip = 1;
1212 return 1;
1213 }
1214
1215 kdata = OPENSSL_malloc(sizeof(*kdata));
1216 if (!kdata) {
1217 EVP_PKEY_free(pkey);
1218 return 0;
1219 }
1220 kdata->ctx = NULL;
1221 kdata->input = NULL;
1222 kdata->output = NULL;
1223 kdata->keyop = keyop;
1224 t->data = kdata;
1225 kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL);
1226 if (!kdata->ctx)
1227 return 0;
1228 if (keyopinit(kdata->ctx) <= 0)
1229 return 0;
1230 return 1;
1231 }
1232
1233 static void pkey_test_cleanup(struct evp_test *t)
1234 {
1235 struct pkey_data *kdata = t->data;
1236
1237 OPENSSL_free(kdata->input);
1238 OPENSSL_free(kdata->output);
1239 EVP_PKEY_CTX_free(kdata->ctx);
1240 }
1241
1242 static int pkey_test_ctrl(EVP_PKEY_CTX *pctx, const char *value)
1243 {
1244 int rv;
1245 char *p, *tmpval;
1246
1247 tmpval = OPENSSL_strdup(value);
1248 if (tmpval == NULL)
1249 return 0;
1250 p = strchr(tmpval, ':');
1251 if (p != NULL)
1252 *p++ = 0;
1253 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1254 OPENSSL_free(tmpval);
1255 return rv > 0;
1256 }
1257
1258 static int pkey_test_parse(struct evp_test *t,
1259 const char *keyword, const char *value)
1260 {
1261 struct pkey_data *kdata = t->data;
1262 if (strcmp(keyword, "Input") == 0)
1263 return test_bin(value, &kdata->input, &kdata->input_len);
1264 if (strcmp(keyword, "Output") == 0)
1265 return test_bin(value, &kdata->output, &kdata->output_len);
1266 if (strcmp(keyword, "Ctrl") == 0)
1267 return pkey_test_ctrl(kdata->ctx, value);
1268 return 0;
1269 }
1270
1271 static int pkey_test_run(struct evp_test *t)
1272 {
1273 struct pkey_data *kdata = t->data;
1274 unsigned char *out = NULL;
1275 size_t out_len;
1276 const char *err = "KEYOP_LENGTH_ERROR";
1277 if (kdata->keyop(kdata->ctx, NULL, &out_len, kdata->input,
1278 kdata->input_len) <= 0)
1279 goto err;
1280 out = OPENSSL_malloc(out_len);
1281 if (!out) {
1282 fprintf(stderr, "Error allocating output buffer!\n");
1283 exit(1);
1284 }
1285 err = "KEYOP_ERROR";
1286 if (kdata->keyop
1287 (kdata->ctx, out, &out_len, kdata->input, kdata->input_len) <= 0)
1288 goto err;
1289 err = "KEYOP_LENGTH_MISMATCH";
1290 if (out_len != kdata->output_len)
1291 goto err;
1292 err = "KEYOP_MISMATCH";
1293 if (check_output(t, kdata->output, out, out_len))
1294 goto err;
1295 err = NULL;
1296 err:
1297 OPENSSL_free(out);
1298 t->err = err;
1299 return 1;
1300 }
1301
1302 static int sign_test_init(struct evp_test *t, const char *name)
1303 {
1304 return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
1305 }
1306
1307 static const struct evp_test_method psign_test_method = {
1308 "Sign",
1309 sign_test_init,
1310 pkey_test_cleanup,
1311 pkey_test_parse,
1312 pkey_test_run
1313 };
1314
1315 static int verify_recover_test_init(struct evp_test *t, const char *name)
1316 {
1317 return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
1318 EVP_PKEY_verify_recover);
1319 }
1320
1321 static const struct evp_test_method pverify_recover_test_method = {
1322 "VerifyRecover",
1323 verify_recover_test_init,
1324 pkey_test_cleanup,
1325 pkey_test_parse,
1326 pkey_test_run
1327 };
1328
1329 static int decrypt_test_init(struct evp_test *t, const char *name)
1330 {
1331 return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
1332 EVP_PKEY_decrypt);
1333 }
1334
1335 static const struct evp_test_method pdecrypt_test_method = {
1336 "Decrypt",
1337 decrypt_test_init,
1338 pkey_test_cleanup,
1339 pkey_test_parse,
1340 pkey_test_run
1341 };
1342
1343 static int verify_test_init(struct evp_test *t, const char *name)
1344 {
1345 return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
1346 }
1347
1348 static int verify_test_run(struct evp_test *t)
1349 {
1350 struct pkey_data *kdata = t->data;
1351 if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
1352 kdata->input, kdata->input_len) <= 0)
1353 t->err = "VERIFY_ERROR";
1354 return 1;
1355 }
1356
1357 static const struct evp_test_method pverify_test_method = {
1358 "Verify",
1359 verify_test_init,
1360 pkey_test_cleanup,
1361 pkey_test_parse,
1362 verify_test_run
1363 };
1364
1365
1366 static int pderive_test_init(struct evp_test *t, const char *name)
1367 {
1368 return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
1369 }
1370
1371 static int pderive_test_parse(struct evp_test *t,
1372 const char *keyword, const char *value)
1373 {
1374 struct pkey_data *kdata = t->data;
1375
1376 if (strcmp(keyword, "PeerKey") == 0) {
1377 EVP_PKEY *peer;
1378 if (find_key(&peer, value, t->public) == 0)
1379 return 0;
1380 if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
1381 return 0;
1382 return 1;
1383 }
1384 if (strcmp(keyword, "SharedSecret") == 0)
1385 return test_bin(value, &kdata->output, &kdata->output_len);
1386 if (strcmp(keyword, "Ctrl") == 0)
1387 return pkey_test_ctrl(kdata->ctx, value);
1388 return 0;
1389 }
1390
1391 static int pderive_test_run(struct evp_test *t)
1392 {
1393 struct pkey_data *kdata = t->data;
1394 unsigned char *out = NULL;
1395 size_t out_len;
1396 const char *err = "INTERNAL_ERROR";
1397
1398 out_len = kdata->output_len;
1399 out = OPENSSL_malloc(out_len);
1400 if (!out) {
1401 fprintf(stderr, "Error allocating output buffer!\n");
1402 exit(1);
1403 }
1404 err = "DERIVE_ERROR";
1405 if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
1406 goto err;
1407 err = "SHARED_SECRET_LENGTH_MISMATCH";
1408 if (out_len != kdata->output_len)
1409 goto err;
1410 err = "SHARED_SECRET_MISMATCH";
1411 if (check_output(t, kdata->output, out, out_len))
1412 goto err;
1413 err = NULL;
1414 err:
1415 OPENSSL_free(out);
1416 t->err = err;
1417 return 1;
1418 }
1419
1420 static const struct evp_test_method pderive_test_method = {
1421 "Derive",
1422 pderive_test_init,
1423 pkey_test_cleanup,
1424 pderive_test_parse,
1425 pderive_test_run
1426 };
1427
1428 /* PBE tests */
1429
1430 #define PBE_TYPE_SCRYPT 1
1431 #define PBE_TYPE_PBKDF2 2
1432 #define PBE_TYPE_PKCS12 3
1433
1434 struct pbe_data {
1435
1436 int pbe_type;
1437
1438 /* scrypt parameters */
1439 uint64_t N, r, p, maxmem;
1440
1441 /* PKCS#12 parameters */
1442 int id, iter;
1443 const EVP_MD *md;
1444
1445 /* password */
1446 unsigned char *pass;
1447 size_t pass_len;
1448
1449 /* salt */
1450 unsigned char *salt;
1451 size_t salt_len;
1452
1453 /* Expected output */
1454 unsigned char *key;
1455 size_t key_len;
1456 };
1457
1458 #ifndef OPENSSL_NO_SCRYPT
1459 static int scrypt_test_parse(struct evp_test *t,
1460 const char *keyword, const char *value)
1461 {
1462 struct pbe_data *pdata = t->data;
1463
1464 if (strcmp(keyword, "N") == 0)
1465 return test_uint64(value, &pdata->N);
1466 if (strcmp(keyword, "p") == 0)
1467 return test_uint64(value, &pdata->p);
1468 if (strcmp(keyword, "r") == 0)
1469 return test_uint64(value, &pdata->r);
1470 if (strcmp(keyword, "maxmem") == 0)
1471 return test_uint64(value, &pdata->maxmem);
1472 return 0;
1473 }
1474 #endif
1475
1476 static int pbkdf2_test_parse(struct evp_test *t,
1477 const char *keyword, const char *value)
1478 {
1479 struct pbe_data *pdata = t->data;
1480
1481 if (strcmp(keyword, "iter") == 0) {
1482 pdata->iter = atoi(value);
1483 if (pdata->iter <= 0)
1484 return 0;
1485 return 1;
1486 }
1487 if (strcmp(keyword, "MD") == 0) {
1488 pdata->md = EVP_get_digestbyname(value);
1489 if (pdata->md == NULL)
1490 return 0;
1491 return 1;
1492 }
1493 return 0;
1494 }
1495
1496 static int pkcs12_test_parse(struct evp_test *t,
1497 const char *keyword, const char *value)
1498 {
1499 struct pbe_data *pdata = t->data;
1500
1501 if (strcmp(keyword, "id") == 0) {
1502 pdata->id = atoi(value);
1503 if (pdata->id <= 0)
1504 return 0;
1505 return 1;
1506 }
1507 return pbkdf2_test_parse(t, keyword, value);
1508 }
1509
1510 static int pbe_test_init(struct evp_test *t, const char *alg)
1511 {
1512 struct pbe_data *pdat;
1513 int pbe_type = 0;
1514
1515 if (strcmp(alg, "scrypt") == 0) {
1516 #ifndef OPENSSL_NO_SCRYPT
1517 pbe_type = PBE_TYPE_SCRYPT;
1518 #else
1519 t->skip = 1;
1520 return 1;
1521 #endif
1522 } else if (strcmp(alg, "pbkdf2") == 0) {
1523 pbe_type = PBE_TYPE_PBKDF2;
1524 } else if (strcmp(alg, "pkcs12") == 0) {
1525 pbe_type = PBE_TYPE_PKCS12;
1526 } else {
1527 fprintf(stderr, "Unknown pbe algorithm %s\n", alg);
1528 }
1529 pdat = OPENSSL_malloc(sizeof(*pdat));
1530 pdat->pbe_type = pbe_type;
1531 pdat->pass = NULL;
1532 pdat->salt = NULL;
1533 pdat->N = 0;
1534 pdat->r = 0;
1535 pdat->p = 0;
1536 pdat->maxmem = 0;
1537 pdat->id = 0;
1538 pdat->iter = 0;
1539 pdat->md = NULL;
1540 t->data = pdat;
1541 return 1;
1542 }
1543
1544 static void pbe_test_cleanup(struct evp_test *t)
1545 {
1546 struct pbe_data *pdat = t->data;
1547 test_free(pdat->pass);
1548 test_free(pdat->salt);
1549 test_free(pdat->key);
1550 }
1551
1552 static int pbe_test_parse(struct evp_test *t,
1553 const char *keyword, const char *value)
1554 {
1555 struct pbe_data *pdata = t->data;
1556
1557 if (strcmp(keyword, "Password") == 0)
1558 return test_bin(value, &pdata->pass, &pdata->pass_len);
1559 if (strcmp(keyword, "Salt") == 0)
1560 return test_bin(value, &pdata->salt, &pdata->salt_len);
1561 if (strcmp(keyword, "Key") == 0)
1562 return test_bin(value, &pdata->key, &pdata->key_len);
1563 if (pdata->pbe_type == PBE_TYPE_PBKDF2)
1564 return pbkdf2_test_parse(t, keyword, value);
1565 else if (pdata->pbe_type == PBE_TYPE_PKCS12)
1566 return pkcs12_test_parse(t, keyword, value);
1567 #ifndef OPENSSL_NO_SCRYPT
1568 else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
1569 return scrypt_test_parse(t, keyword, value);
1570 #endif
1571 return 0;
1572 }
1573
1574 static int pbe_test_run(struct evp_test *t)
1575 {
1576 struct pbe_data *pdata = t->data;
1577 const char *err = "INTERNAL_ERROR";
1578 unsigned char *key;
1579
1580 key = OPENSSL_malloc(pdata->key_len);
1581 if (!key)
1582 goto err;
1583 if (pdata->pbe_type == PBE_TYPE_PBKDF2) {
1584 err = "PBKDF2_ERROR";
1585 if (PKCS5_PBKDF2_HMAC((char *)pdata->pass, pdata->pass_len,
1586 pdata->salt, pdata->salt_len,
1587 pdata->iter, pdata->md,
1588 pdata->key_len, key) == 0)
1589 goto err;
1590 #ifndef OPENSSL_NO_SCRYPT
1591 } else if (pdata->pbe_type == PBE_TYPE_SCRYPT) {
1592 err = "SCRYPT_ERROR";
1593 if (EVP_PBE_scrypt((const char *)pdata->pass, pdata->pass_len,
1594 pdata->salt, pdata->salt_len,
1595 pdata->N, pdata->r, pdata->p, pdata->maxmem,
1596 key, pdata->key_len) == 0)
1597 goto err;
1598 #endif
1599 } else if (pdata->pbe_type == PBE_TYPE_PKCS12) {
1600 err = "PKCS12_ERROR";
1601 if (PKCS12_key_gen_uni(pdata->pass, pdata->pass_len,
1602 pdata->salt, pdata->salt_len,
1603 pdata->id, pdata->iter, pdata->key_len,
1604 key, pdata->md) == 0)
1605 goto err;
1606 }
1607 err = "KEY_MISMATCH";
1608 if (check_output(t, pdata->key, key, pdata->key_len))
1609 goto err;
1610 err = NULL;
1611 err:
1612 OPENSSL_free(key);
1613 t->err = err;
1614 return 1;
1615 }
1616
1617 static const struct evp_test_method pbe_test_method = {
1618 "PBE",
1619 pbe_test_init,
1620 pbe_test_cleanup,
1621 pbe_test_parse,
1622 pbe_test_run
1623 };
1624
1625 /* Base64 tests */
1626
1627 typedef enum {
1628 BASE64_CANONICAL_ENCODING = 0,
1629 BASE64_VALID_ENCODING = 1,
1630 BASE64_INVALID_ENCODING = 2
1631 } base64_encoding_type;
1632
1633 struct encode_data {
1634 /* Input to encoding */
1635 unsigned char *input;
1636 size_t input_len;
1637 /* Expected output */
1638 unsigned char *output;
1639 size_t output_len;
1640 base64_encoding_type encoding;
1641 };
1642
1643 static int encode_test_init(struct evp_test *t, const char *encoding)
1644 {
1645 struct encode_data *edata = OPENSSL_zalloc(sizeof(*edata));
1646
1647 if (strcmp(encoding, "canonical") == 0) {
1648 edata->encoding = BASE64_CANONICAL_ENCODING;
1649 } else if (strcmp(encoding, "valid") == 0) {
1650 edata->encoding = BASE64_VALID_ENCODING;
1651 } else if (strcmp(encoding, "invalid") == 0) {
1652 edata->encoding = BASE64_INVALID_ENCODING;
1653 t->expected_err = OPENSSL_strdup("DECODE_ERROR");
1654 if (t->expected_err == NULL)
1655 return 0;
1656 } else {
1657 fprintf(stderr, "Bad encoding: %s. Should be one of "
1658 "{canonical, valid, invalid}\n", encoding);
1659 return 0;
1660 }
1661 t->data = edata;
1662 return 1;
1663 }
1664
1665 static void encode_test_cleanup(struct evp_test *t)
1666 {
1667 struct encode_data *edata = t->data;
1668 test_free(edata->input);
1669 test_free(edata->output);
1670 memset(edata, 0, sizeof(*edata));
1671 }
1672
1673 static int encode_test_parse(struct evp_test *t,
1674 const char *keyword, const char *value)
1675 {
1676 struct encode_data *edata = t->data;
1677 if (strcmp(keyword, "Input") == 0)
1678 return test_bin(value, &edata->input, &edata->input_len);
1679 if (strcmp(keyword, "Output") == 0)
1680 return test_bin(value, &edata->output, &edata->output_len);
1681 return 0;
1682 }
1683
1684 static int encode_test_run(struct evp_test *t)
1685 {
1686 struct encode_data *edata = t->data;
1687 unsigned char *encode_out = NULL, *decode_out = NULL;
1688 int output_len, chunk_len;
1689 const char *err = "INTERNAL_ERROR";
1690 EVP_ENCODE_CTX *decode_ctx = EVP_ENCODE_CTX_new();
1691
1692 if (decode_ctx == NULL)
1693 goto err;
1694
1695 if (edata->encoding == BASE64_CANONICAL_ENCODING) {
1696 EVP_ENCODE_CTX *encode_ctx = EVP_ENCODE_CTX_new();
1697 if (encode_ctx == NULL)
1698 goto err;
1699 encode_out = OPENSSL_malloc(EVP_ENCODE_LENGTH(edata->input_len));
1700 if (encode_out == NULL)
1701 goto err;
1702
1703 EVP_EncodeInit(encode_ctx);
1704 EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
1705 edata->input, edata->input_len);
1706 output_len = chunk_len;
1707
1708 EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
1709 output_len += chunk_len;
1710
1711 EVP_ENCODE_CTX_free(encode_ctx);
1712
1713 if (check_var_length_output(t, edata->output, edata->output_len,
1714 encode_out, output_len)) {
1715 err = "BAD_ENCODING";
1716 goto err;
1717 }
1718 }
1719
1720 decode_out = OPENSSL_malloc(EVP_DECODE_LENGTH(edata->output_len));
1721 if (decode_out == NULL)
1722 goto err;
1723
1724 EVP_DecodeInit(decode_ctx);
1725 if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, edata->output,
1726 edata->output_len) < 0) {
1727 err = "DECODE_ERROR";
1728 goto err;
1729 }
1730 output_len = chunk_len;
1731
1732 if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
1733 err = "DECODE_ERROR";
1734 goto err;
1735 }
1736 output_len += chunk_len;
1737
1738 if (edata->encoding != BASE64_INVALID_ENCODING &&
1739 check_var_length_output(t, edata->input, edata->input_len,
1740 decode_out, output_len)) {
1741 err = "BAD_DECODING";
1742 goto err;
1743 }
1744
1745 err = NULL;
1746 err:
1747 t->err = err;
1748 OPENSSL_free(encode_out);
1749 OPENSSL_free(decode_out);
1750 EVP_ENCODE_CTX_free(decode_ctx);
1751 return 1;
1752 }
1753
1754 static const struct evp_test_method encode_test_method = {
1755 "Encoding",
1756 encode_test_init,
1757 encode_test_cleanup,
1758 encode_test_parse,
1759 encode_test_run,
1760 };
1761
1762 /* KDF operations */
1763
1764 struct kdf_data {
1765 /* Context for this operation */
1766 EVP_PKEY_CTX *ctx;
1767 /* Expected output */
1768 unsigned char *output;
1769 size_t output_len;
1770 };
1771
1772 /*
1773 * Perform public key operation setup: lookup key, allocated ctx and call
1774 * the appropriate initialisation function
1775 */
1776 static int kdf_test_init(struct evp_test *t, const char *name)
1777 {
1778 struct kdf_data *kdata;
1779
1780 kdata = OPENSSL_malloc(sizeof(*kdata));
1781 if (kdata == NULL)
1782 return 0;
1783 kdata->ctx = NULL;
1784 kdata->output = NULL;
1785 t->data = kdata;
1786 kdata->ctx = EVP_PKEY_CTX_new_id(OBJ_sn2nid(name), NULL);
1787 if (kdata->ctx == NULL)
1788 return 0;
1789 if (EVP_PKEY_derive_init(kdata->ctx) <= 0)
1790 return 0;
1791 return 1;
1792 }
1793
1794 static void kdf_test_cleanup(struct evp_test *t)
1795 {
1796 struct kdf_data *kdata = t->data;
1797 OPENSSL_free(kdata->output);
1798 EVP_PKEY_CTX_free(kdata->ctx);
1799 }
1800
1801 static int kdf_test_parse(struct evp_test *t,
1802 const char *keyword, const char *value)
1803 {
1804 struct kdf_data *kdata = t->data;
1805 if (strcmp(keyword, "Output") == 0)
1806 return test_bin(value, &kdata->output, &kdata->output_len);
1807 if (strncmp(keyword, "Ctrl", 4) == 0)
1808 return pkey_test_ctrl(kdata->ctx, value);
1809 return 0;
1810 }
1811
1812 static int kdf_test_run(struct evp_test *t)
1813 {
1814 struct kdf_data *kdata = t->data;
1815 unsigned char *out = NULL;
1816 size_t out_len = kdata->output_len;
1817 const char *err = "INTERNAL_ERROR";
1818 out = OPENSSL_malloc(out_len);
1819 if (!out) {
1820 fprintf(stderr, "Error allocating output buffer!\n");
1821 exit(1);
1822 }
1823 err = "KDF_DERIVE_ERROR";
1824 if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
1825 goto err;
1826 err = "KDF_LENGTH_MISMATCH";
1827 if (out_len != kdata->output_len)
1828 goto err;
1829 err = "KDF_MISMATCH";
1830 if (check_output(t, kdata->output, out, out_len))
1831 goto err;
1832 err = NULL;
1833 err:
1834 OPENSSL_free(out);
1835 t->err = err;
1836 return 1;
1837 }
1838
1839 static const struct evp_test_method kdf_test_method = {
1840 "KDF",
1841 kdf_test_init,
1842 kdf_test_cleanup,
1843 kdf_test_parse,
1844 kdf_test_run
1845 };