]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/evp_test.c
test/evp_test.c: If no algorithm was specified, don't try to check for DES
[thirdparty/openssl.git] / test / evp_test.c
1 /*
2 * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <ctype.h>
14 #include <openssl/evp.h>
15 #include <openssl/pem.h>
16 #include <openssl/err.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/pkcs12.h>
19 #include <openssl/kdf.h>
20 #include "internal/numbers.h"
21
22 /* Remove spaces from beginning and end of a string */
23
24 static void remove_space(char **pval)
25 {
26 unsigned char *p = (unsigned char *)*pval;
27
28 while (isspace(*p))
29 p++;
30
31 *pval = (char *)p;
32
33 p = p + strlen(*pval) - 1;
34
35 /* Remove trailing space */
36 while (isspace(*p))
37 *p-- = 0;
38 }
39
40 /*
41 * Given a line of the form:
42 * name = value # comment
43 * extract name and value. NB: modifies passed buffer.
44 */
45
46 static int parse_line(char **pkw, char **pval, char *linebuf)
47 {
48 char *p;
49
50 p = linebuf + strlen(linebuf) - 1;
51
52 if (*p != '\n') {
53 fprintf(stderr, "FATAL: missing EOL\n");
54 exit(1);
55 }
56
57 /* Look for # */
58
59 p = strchr(linebuf, '#');
60
61 if (p)
62 *p = '\0';
63
64 /* Look for = sign */
65 p = strchr(linebuf, '=');
66
67 /* If no '=' exit */
68 if (!p)
69 return 0;
70
71 *p++ = '\0';
72
73 *pkw = linebuf;
74 *pval = p;
75
76 /* Remove spaces from keyword and value */
77 remove_space(pkw);
78 remove_space(pval);
79
80 return 1;
81 }
82
83 /*
84 * Unescape some escape sequences in string literals.
85 * Return the result in a newly allocated buffer.
86 * Currently only supports '\n'.
87 * If the input length is 0, returns a valid 1-byte buffer, but sets
88 * the length to 0.
89 */
90 static unsigned char* unescape(const char *input, size_t input_len,
91 size_t *out_len)
92 {
93 unsigned char *ret, *p;
94 size_t i;
95 if (input_len == 0) {
96 *out_len = 0;
97 return OPENSSL_zalloc(1);
98 }
99
100 /* Escaping is non-expanding; over-allocate original size for simplicity. */
101 ret = p = OPENSSL_malloc(input_len);
102 if (ret == NULL)
103 return NULL;
104
105 for (i = 0; i < input_len; i++) {
106 if (input[i] == '\\') {
107 if (i == input_len - 1 || input[i+1] != 'n')
108 goto err;
109 *p++ = '\n';
110 i++;
111 } else {
112 *p++ = input[i];
113 }
114 }
115
116 *out_len = p - ret;
117 return ret;
118
119 err:
120 OPENSSL_free(ret);
121 return NULL;
122 }
123
124 /* For a hex string "value" convert to a binary allocated buffer */
125 static int test_bin(const char *value, unsigned char **buf, size_t *buflen)
126 {
127 long len;
128
129 *buflen = 0;
130 if (!*value) {
131 /*
132 * Don't return NULL for zero length buffer.
133 * This is needed for some tests with empty keys: HMAC_Init_ex() expects
134 * a non-NULL key buffer even if the key length is 0, in order to detect
135 * key reset.
136 */
137 *buf = OPENSSL_malloc(1);
138 if (!*buf)
139 return 0;
140 **buf = 0;
141 *buflen = 0;
142 return 1;
143 }
144 /* Check for string literal */
145 if (value[0] == '"') {
146 size_t vlen;
147 value++;
148 vlen = strlen(value);
149 if (value[vlen - 1] != '"')
150 return 0;
151 vlen--;
152 *buf = unescape(value, vlen, buflen);
153 if (*buf == NULL)
154 return 0;
155 return 1;
156 }
157
158 *buf = OPENSSL_hexstr2buf(value, &len);
159 if (!*buf) {
160 fprintf(stderr, "Value=%s\n", value);
161 ERR_print_errors_fp(stderr);
162 return -1;
163 }
164 /* Size of input buffer means we'll never overflow */
165 *buflen = len;
166 return 1;
167 }
168 #ifndef OPENSSL_NO_SCRYPT
169 /* Currently only used by scrypt tests */
170 /* Parse unsigned decimal 64 bit integer value */
171 static int test_uint64(const char *value, uint64_t *pr)
172 {
173 const char *p = value;
174 if (!*p) {
175 fprintf(stderr, "Invalid empty integer value\n");
176 return -1;
177 }
178 *pr = 0;
179 while (*p) {
180 if (*pr > UINT64_MAX/10) {
181 fprintf(stderr, "Integer string overflow value=%s\n", value);
182 return -1;
183 }
184 *pr *= 10;
185 if (*p < '0' || *p > '9') {
186 fprintf(stderr, "Invalid integer string value=%s\n", value);
187 return -1;
188 }
189 *pr += *p - '0';
190 p++;
191 }
192 return 1;
193 }
194 #endif
195
196 /* Structure holding test information */
197 struct evp_test {
198 /* file being read */
199 BIO *in;
200 /* temp memory BIO for reading in keys */
201 BIO *key;
202 /* List of public and private keys */
203 struct key_list *private;
204 struct key_list *public;
205 /* method for this test */
206 const struct evp_test_method *meth;
207 /* current line being processed */
208 unsigned int line;
209 /* start line of current test */
210 unsigned int start_line;
211 /* Error string for test */
212 const char *err, *aux_err;
213 /* Expected error value of test */
214 char *expected_err;
215 /* Expected error function string */
216 char *func;
217 /* Expected error reason string */
218 char *reason;
219 /* Number of tests */
220 int ntests;
221 /* Error count */
222 int errors;
223 /* Number of tests skipped */
224 int nskip;
225 /* If output mismatch expected and got value */
226 unsigned char *out_received;
227 size_t out_received_len;
228 unsigned char *out_expected;
229 size_t out_expected_len;
230 /* test specific data */
231 void *data;
232 /* Current test should be skipped */
233 int skip;
234 };
235
236 struct key_list {
237 char *name;
238 EVP_PKEY *key;
239 struct key_list *next;
240 };
241
242 /* Test method structure */
243 struct evp_test_method {
244 /* Name of test as it appears in file */
245 const char *name;
246 /* Initialise test for "alg" */
247 int (*init) (struct evp_test * t, const char *alg);
248 /* Clean up method */
249 void (*cleanup) (struct evp_test * t);
250 /* Test specific name value pair processing */
251 int (*parse) (struct evp_test * t, const char *name, const char *value);
252 /* Run the test itself */
253 int (*run_test) (struct evp_test * t);
254 };
255
256 static const struct evp_test_method digest_test_method, cipher_test_method;
257 static const struct evp_test_method mac_test_method;
258 static const struct evp_test_method psign_test_method, pverify_test_method;
259 static const struct evp_test_method pdecrypt_test_method;
260 static const struct evp_test_method pverify_recover_test_method;
261 static const struct evp_test_method pderive_test_method;
262 static const struct evp_test_method pbe_test_method;
263 static const struct evp_test_method encode_test_method;
264 static const struct evp_test_method kdf_test_method;
265
266 static const struct evp_test_method *evp_test_list[] = {
267 &digest_test_method,
268 &cipher_test_method,
269 &mac_test_method,
270 &psign_test_method,
271 &pverify_test_method,
272 &pdecrypt_test_method,
273 &pverify_recover_test_method,
274 &pderive_test_method,
275 &pbe_test_method,
276 &encode_test_method,
277 &kdf_test_method,
278 NULL
279 };
280
281 static const struct evp_test_method *evp_find_test(const char *name)
282 {
283 const struct evp_test_method **tt;
284
285 for (tt = evp_test_list; *tt; tt++) {
286 if (strcmp(name, (*tt)->name) == 0)
287 return *tt;
288 }
289 return NULL;
290 }
291
292 static void hex_print(const char *name, const unsigned char *buf, size_t len)
293 {
294 size_t i;
295 fprintf(stderr, "%s ", name);
296 for (i = 0; i < len; i++)
297 fprintf(stderr, "%02X", buf[i]);
298 fputs("\n", stderr);
299 }
300
301 static void free_expected(struct evp_test *t)
302 {
303 OPENSSL_free(t->expected_err);
304 t->expected_err = NULL;
305 OPENSSL_free(t->func);
306 t->func = NULL;
307 OPENSSL_free(t->reason);
308 t->reason = NULL;
309 OPENSSL_free(t->out_expected);
310 OPENSSL_free(t->out_received);
311 t->out_expected = NULL;
312 t->out_received = NULL;
313 t->out_expected_len = 0;
314 t->out_received_len = 0;
315 /* Literals. */
316 t->err = NULL;
317 }
318
319 static void print_expected(struct evp_test *t)
320 {
321 if (t->out_expected == NULL && t->out_received == NULL)
322 return;
323 hex_print("Expected:", t->out_expected, t->out_expected_len);
324 hex_print("Got: ", t->out_received, t->out_received_len);
325 free_expected(t);
326 }
327
328 static int check_test_error(struct evp_test *t)
329 {
330 unsigned long err;
331 const char *func;
332 const char *reason;
333 if (!t->err && !t->expected_err)
334 return 1;
335 if (t->err && !t->expected_err) {
336 if (t->aux_err != NULL) {
337 fprintf(stderr, "Test line %d(%s): unexpected error %s\n",
338 t->start_line, t->aux_err, t->err);
339 } else {
340 fprintf(stderr, "Test line %d: unexpected error %s\n",
341 t->start_line, t->err);
342 }
343 print_expected(t);
344 return 0;
345 }
346 if (!t->err && t->expected_err) {
347 fprintf(stderr, "Test line %d: succeeded expecting %s\n",
348 t->start_line, t->expected_err);
349 return 0;
350 }
351
352 if (strcmp(t->err, t->expected_err) != 0) {
353 fprintf(stderr, "Test line %d: expecting %s got %s\n",
354 t->start_line, t->expected_err, t->err);
355 return 0;
356 }
357
358 if (t->func == NULL && t->reason == NULL)
359 return 1;
360
361 if (t->func == NULL || t->reason == NULL) {
362 fprintf(stderr, "Test line %d: missing function or reason code\n",
363 t->start_line);
364 return 0;
365 }
366
367 err = ERR_peek_error();
368 if (err == 0) {
369 fprintf(stderr, "Test line %d, expected error \"%s:%s\" not set\n",
370 t->start_line, t->func, t->reason);
371 return 0;
372 }
373
374 func = ERR_func_error_string(err);
375 reason = ERR_reason_error_string(err);
376
377 if (func == NULL && reason == NULL) {
378 fprintf(stderr, "Test line %d: expected error \"%s:%s\", no strings available. Skipping...\n",
379 t->start_line, t->func, t->reason);
380 return 1;
381 }
382
383 if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0)
384 return 1;
385
386 fprintf(stderr, "Test line %d: expected error \"%s:%s\", got \"%s:%s\"\n",
387 t->start_line, t->func, t->reason, func, reason);
388
389 return 0;
390 }
391
392 /* Setup a new test, run any existing test */
393
394 static int setup_test(struct evp_test *t, const struct evp_test_method *tmeth)
395 {
396 /* If we already have a test set up run it */
397 if (t->meth) {
398 t->ntests++;
399 if (t->skip) {
400 t->nskip++;
401 } else {
402 /* run the test */
403 if (t->err == NULL && t->meth->run_test(t) != 1) {
404 fprintf(stderr, "%s test error line %d\n",
405 t->meth->name, t->start_line);
406 return 0;
407 }
408 if (!check_test_error(t)) {
409 if (t->err)
410 ERR_print_errors_fp(stderr);
411 t->errors++;
412 }
413 }
414 /* clean it up */
415 ERR_clear_error();
416 if (t->data != NULL) {
417 t->meth->cleanup(t);
418 OPENSSL_free(t->data);
419 t->data = NULL;
420 }
421 OPENSSL_free(t->expected_err);
422 t->expected_err = NULL;
423 free_expected(t);
424 }
425 t->meth = tmeth;
426 return 1;
427 }
428
429 static int find_key(EVP_PKEY **ppk, const char *name, struct key_list *lst)
430 {
431 for (; lst; lst = lst->next) {
432 if (strcmp(lst->name, name) == 0) {
433 if (ppk)
434 *ppk = lst->key;
435 return 1;
436 }
437 }
438 return 0;
439 }
440
441 static void free_key_list(struct key_list *lst)
442 {
443 while (lst != NULL) {
444 struct key_list *ltmp;
445 EVP_PKEY_free(lst->key);
446 OPENSSL_free(lst->name);
447 ltmp = lst->next;
448 OPENSSL_free(lst);
449 lst = ltmp;
450 }
451 }
452
453 static int check_unsupported()
454 {
455 long err = ERR_peek_error();
456 if (ERR_GET_LIB(err) == ERR_LIB_EVP
457 && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
458 ERR_clear_error();
459 return 1;
460 }
461 return 0;
462 }
463
464
465 static int read_key(struct evp_test *t)
466 {
467 char tmpbuf[80];
468 if (t->key == NULL)
469 t->key = BIO_new(BIO_s_mem());
470 else if (BIO_reset(t->key) <= 0)
471 return 0;
472 if (t->key == NULL) {
473 fprintf(stderr, "Error allocating key memory BIO\n");
474 return 0;
475 }
476 /* Read to PEM end line and place content in memory BIO */
477 while (BIO_gets(t->in, tmpbuf, sizeof(tmpbuf))) {
478 t->line++;
479 if (BIO_puts(t->key, tmpbuf) <= 0) {
480 fprintf(stderr, "Error writing to key memory BIO\n");
481 return 0;
482 }
483 if (strncmp(tmpbuf, "-----END", 8) == 0)
484 return 1;
485 }
486 fprintf(stderr, "Can't find key end\n");
487 return 0;
488 }
489
490 static int process_test(struct evp_test *t, char *buf, int verbose)
491 {
492 char *keyword = NULL, *value = NULL;
493 int rv = 0, add_key = 0;
494 struct key_list **lst = NULL, *key = NULL;
495 EVP_PKEY *pk = NULL;
496 const struct evp_test_method *tmeth = NULL;
497 if (verbose)
498 fputs(buf, stdout);
499 if (!parse_line(&keyword, &value, buf))
500 return 1;
501 if (strcmp(keyword, "PrivateKey") == 0) {
502 if (!read_key(t))
503 return 0;
504 pk = PEM_read_bio_PrivateKey(t->key, NULL, 0, NULL);
505 if (pk == NULL && !check_unsupported()) {
506 fprintf(stderr, "Error reading private key %s\n", value);
507 ERR_print_errors_fp(stderr);
508 return 0;
509 }
510 lst = &t->private;
511 add_key = 1;
512 }
513 if (strcmp(keyword, "PublicKey") == 0) {
514 if (!read_key(t))
515 return 0;
516 pk = PEM_read_bio_PUBKEY(t->key, NULL, 0, NULL);
517 if (pk == NULL && !check_unsupported()) {
518 fprintf(stderr, "Error reading public key %s\n", value);
519 ERR_print_errors_fp(stderr);
520 return 0;
521 }
522 lst = &t->public;
523 add_key = 1;
524 }
525 /* If we have a key add to list */
526 if (add_key) {
527 if (find_key(NULL, value, *lst)) {
528 fprintf(stderr, "Duplicate key %s\n", value);
529 return 0;
530 }
531 key = OPENSSL_malloc(sizeof(*key));
532 if (!key)
533 return 0;
534 key->name = OPENSSL_strdup(value);
535 key->key = pk;
536 key->next = *lst;
537 *lst = key;
538 return 1;
539 }
540
541 /* See if keyword corresponds to a test start */
542 tmeth = evp_find_test(keyword);
543 if (tmeth) {
544 if (!setup_test(t, tmeth))
545 return 0;
546 t->start_line = t->line;
547 t->skip = 0;
548 if (!tmeth->init(t, value)) {
549 fprintf(stderr, "Unknown %s: %s\n", keyword, value);
550 return 0;
551 }
552 return 1;
553 } else if (t->skip) {
554 return 1;
555 } else if (strcmp(keyword, "Result") == 0) {
556 if (t->expected_err) {
557 fprintf(stderr, "Line %d: multiple result lines\n", t->line);
558 return 0;
559 }
560 t->expected_err = OPENSSL_strdup(value);
561 if (t->expected_err == NULL)
562 return 0;
563 } else if (strcmp(keyword, "Function") == 0) {
564 if (t->func != NULL) {
565 fprintf(stderr, "Line %d: multiple function lines\n", t->line);
566 return 0;
567 }
568 t->func = OPENSSL_strdup(value);
569 if (t->func == NULL)
570 return 0;
571 } else if (strcmp(keyword, "Reason") == 0) {
572 if (t->reason != NULL) {
573 fprintf(stderr, "Line %d: multiple reason lines\n", t->line);
574 return 0;
575 }
576 t->reason = OPENSSL_strdup(value);
577 if (t->reason == NULL)
578 return 0;
579 } else {
580 /* Must be test specific line: try to parse it */
581 if (t->meth)
582 rv = t->meth->parse(t, keyword, value);
583
584 if (rv == 0)
585 fprintf(stderr, "line %d: unexpected keyword %s\n",
586 t->line, keyword);
587
588 if (rv < 0)
589 fprintf(stderr, "line %d: error processing keyword %s\n",
590 t->line, keyword);
591 if (rv <= 0)
592 return 0;
593 }
594 return 1;
595 }
596
597 static int check_var_length_output(struct evp_test *t,
598 const unsigned char *expected,
599 size_t expected_len,
600 const unsigned char *received,
601 size_t received_len)
602 {
603 if (expected_len == received_len &&
604 memcmp(expected, received, expected_len) == 0) {
605 return 0;
606 }
607
608 /* The result printing code expects a non-NULL buffer. */
609 t->out_expected = OPENSSL_memdup(expected, expected_len ? expected_len : 1);
610 t->out_expected_len = expected_len;
611 t->out_received = OPENSSL_memdup(received, received_len ? received_len : 1);
612 t->out_received_len = received_len;
613 if (t->out_expected == NULL || t->out_received == NULL) {
614 fprintf(stderr, "Memory allocation error!\n");
615 exit(1);
616 }
617 return 1;
618 }
619
620 static int check_output(struct evp_test *t,
621 const unsigned char *expected,
622 const unsigned char *received,
623 size_t len)
624 {
625 return check_var_length_output(t, expected, len, received, len);
626 }
627
628 int main(int argc, char **argv)
629 {
630 BIO *in = NULL;
631 char buf[10240];
632 struct evp_test t;
633
634 if (argc != 2) {
635 fprintf(stderr, "usage: evp_test testfile.txt\n");
636 return 1;
637 }
638
639 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
640
641 memset(&t, 0, sizeof(t));
642 t.start_line = -1;
643 in = BIO_new_file(argv[1], "r");
644 if (in == NULL) {
645 fprintf(stderr, "Can't open %s for reading\n", argv[1]);
646 return 1;
647 }
648 t.in = in;
649 t.err = NULL;
650 while (BIO_gets(in, buf, sizeof(buf))) {
651 t.line++;
652 if (!process_test(&t, buf, 0))
653 exit(1);
654 }
655 /* Run any final test we have */
656 if (!setup_test(&t, NULL))
657 exit(1);
658 fprintf(stderr, "%d tests completed with %d errors, %d skipped\n",
659 t.ntests, t.errors, t.nskip);
660 free_key_list(t.public);
661 free_key_list(t.private);
662 BIO_free(t.key);
663 BIO_free(in);
664
665 #ifndef OPENSSL_NO_CRYPTO_MDEBUG
666 if (CRYPTO_mem_leaks_fp(stderr) <= 0)
667 return 1;
668 #endif
669 if (t.errors)
670 return 1;
671 return 0;
672 }
673
674 static void test_free(void *d)
675 {
676 OPENSSL_free(d);
677 }
678
679 /* Message digest tests */
680
681 struct digest_data {
682 /* Digest this test is for */
683 const EVP_MD *digest;
684 /* Input to digest */
685 unsigned char *input;
686 size_t input_len;
687 /* Repeat count for input */
688 size_t nrpt;
689 /* Expected output */
690 unsigned char *output;
691 size_t output_len;
692 };
693
694 static int digest_test_init(struct evp_test *t, const char *alg)
695 {
696 const EVP_MD *digest;
697 struct digest_data *mdat;
698 digest = EVP_get_digestbyname(alg);
699 if (!digest) {
700 /* If alg has an OID assume disabled algorithm */
701 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
702 t->skip = 1;
703 return 1;
704 }
705 return 0;
706 }
707 mdat = OPENSSL_malloc(sizeof(*mdat));
708 mdat->digest = digest;
709 mdat->input = NULL;
710 mdat->output = NULL;
711 mdat->nrpt = 1;
712 t->data = mdat;
713 return 1;
714 }
715
716 static void digest_test_cleanup(struct evp_test *t)
717 {
718 struct digest_data *mdat = t->data;
719 test_free(mdat->input);
720 test_free(mdat->output);
721 }
722
723 static int digest_test_parse(struct evp_test *t,
724 const char *keyword, const char *value)
725 {
726 struct digest_data *mdata = t->data;
727 if (strcmp(keyword, "Input") == 0)
728 return test_bin(value, &mdata->input, &mdata->input_len);
729 if (strcmp(keyword, "Output") == 0)
730 return test_bin(value, &mdata->output, &mdata->output_len);
731 if (strcmp(keyword, "Count") == 0) {
732 long nrpt = atoi(value);
733 if (nrpt <= 0)
734 return 0;
735 mdata->nrpt = (size_t)nrpt;
736 return 1;
737 }
738 return 0;
739 }
740
741 static int digest_test_run(struct evp_test *t)
742 {
743 struct digest_data *mdata = t->data;
744 size_t i;
745 const char *err = "INTERNAL_ERROR";
746 EVP_MD_CTX *mctx;
747 unsigned char md[EVP_MAX_MD_SIZE];
748 unsigned int md_len;
749 mctx = EVP_MD_CTX_new();
750 if (!mctx)
751 goto err;
752 err = "DIGESTINIT_ERROR";
753 if (!EVP_DigestInit_ex(mctx, mdata->digest, NULL))
754 goto err;
755 err = "DIGESTUPDATE_ERROR";
756 for (i = 0; i < mdata->nrpt; i++) {
757 if (!EVP_DigestUpdate(mctx, mdata->input, mdata->input_len))
758 goto err;
759 }
760 err = "DIGESTFINAL_ERROR";
761 if (!EVP_DigestFinal(mctx, md, &md_len))
762 goto err;
763 err = "DIGEST_LENGTH_MISMATCH";
764 if (md_len != mdata->output_len)
765 goto err;
766 err = "DIGEST_MISMATCH";
767 if (check_output(t, mdata->output, md, md_len))
768 goto err;
769 err = NULL;
770 err:
771 EVP_MD_CTX_free(mctx);
772 t->err = err;
773 return 1;
774 }
775
776 static const struct evp_test_method digest_test_method = {
777 "Digest",
778 digest_test_init,
779 digest_test_cleanup,
780 digest_test_parse,
781 digest_test_run
782 };
783
784 /* Cipher tests */
785 struct cipher_data {
786 const EVP_CIPHER *cipher;
787 int enc;
788 /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
789 int aead;
790 unsigned char *key;
791 size_t key_len;
792 unsigned char *iv;
793 size_t iv_len;
794 unsigned char *plaintext;
795 size_t plaintext_len;
796 unsigned char *ciphertext;
797 size_t ciphertext_len;
798 /* GCM, CCM only */
799 unsigned char *aad;
800 size_t aad_len;
801 unsigned char *tag;
802 size_t tag_len;
803 };
804
805 static int cipher_test_init(struct evp_test *t, const char *alg)
806 {
807 const EVP_CIPHER *cipher;
808 struct cipher_data *cdat = t->data;
809 cipher = EVP_get_cipherbyname(alg);
810 if (!cipher) {
811 /* If alg has an OID assume disabled algorithm */
812 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
813 t->skip = 1;
814 return 1;
815 }
816 return 0;
817 }
818 cdat = OPENSSL_malloc(sizeof(*cdat));
819 cdat->cipher = cipher;
820 cdat->enc = -1;
821 cdat->key = NULL;
822 cdat->iv = NULL;
823 cdat->ciphertext = NULL;
824 cdat->plaintext = NULL;
825 cdat->aad = NULL;
826 cdat->tag = NULL;
827 t->data = cdat;
828 if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE
829 || EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE
830 || EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE)
831 cdat->aead = EVP_CIPHER_mode(cipher);
832 else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
833 cdat->aead = -1;
834 else
835 cdat->aead = 0;
836
837 return 1;
838 }
839
840 static void cipher_test_cleanup(struct evp_test *t)
841 {
842 struct cipher_data *cdat = t->data;
843 test_free(cdat->key);
844 test_free(cdat->iv);
845 test_free(cdat->ciphertext);
846 test_free(cdat->plaintext);
847 test_free(cdat->aad);
848 test_free(cdat->tag);
849 }
850
851 static int cipher_test_parse(struct evp_test *t, const char *keyword,
852 const char *value)
853 {
854 struct cipher_data *cdat = t->data;
855 if (strcmp(keyword, "Key") == 0)
856 return test_bin(value, &cdat->key, &cdat->key_len);
857 if (strcmp(keyword, "IV") == 0)
858 return test_bin(value, &cdat->iv, &cdat->iv_len);
859 if (strcmp(keyword, "Plaintext") == 0)
860 return test_bin(value, &cdat->plaintext, &cdat->plaintext_len);
861 if (strcmp(keyword, "Ciphertext") == 0)
862 return test_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
863 if (cdat->aead) {
864 if (strcmp(keyword, "AAD") == 0)
865 return test_bin(value, &cdat->aad, &cdat->aad_len);
866 if (strcmp(keyword, "Tag") == 0)
867 return test_bin(value, &cdat->tag, &cdat->tag_len);
868 }
869
870 if (strcmp(keyword, "Operation") == 0) {
871 if (strcmp(value, "ENCRYPT") == 0)
872 cdat->enc = 1;
873 else if (strcmp(value, "DECRYPT") == 0)
874 cdat->enc = 0;
875 else
876 return 0;
877 return 1;
878 }
879 return 0;
880 }
881
882 static int cipher_test_enc(struct evp_test *t, int enc,
883 size_t out_misalign, size_t inp_misalign, int frag)
884 {
885 struct cipher_data *cdat = t->data;
886 unsigned char *in, *out, *tmp = NULL;
887 size_t in_len, out_len, donelen = 0;
888 int tmplen, chunklen, tmpflen;
889 EVP_CIPHER_CTX *ctx = NULL;
890 const char *err;
891 err = "INTERNAL_ERROR";
892 ctx = EVP_CIPHER_CTX_new();
893 if (!ctx)
894 goto err;
895 EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
896 if (enc) {
897 in = cdat->plaintext;
898 in_len = cdat->plaintext_len;
899 out = cdat->ciphertext;
900 out_len = cdat->ciphertext_len;
901 } else {
902 in = cdat->ciphertext;
903 in_len = cdat->ciphertext_len;
904 out = cdat->plaintext;
905 out_len = cdat->plaintext_len;
906 }
907 if (inp_misalign == (size_t)-1) {
908 /*
909 * Exercise in-place encryption
910 */
911 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
912 if (!tmp)
913 goto err;
914 in = memcpy(tmp + out_misalign, in, in_len);
915 } else {
916 inp_misalign += 16 - ((out_misalign + in_len) & 15);
917 /*
918 * 'tmp' will store both output and copy of input. We make the copy
919 * of input to specifically aligned part of 'tmp'. So we just
920 * figured out how much padding would ensure the required alignment,
921 * now we allocate extended buffer and finally copy the input just
922 * past inp_misalign in expression below. Output will be written
923 * past out_misalign...
924 */
925 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
926 inp_misalign + in_len);
927 if (!tmp)
928 goto err;
929 in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
930 inp_misalign, in, in_len);
931 }
932 err = "CIPHERINIT_ERROR";
933 if (!EVP_CipherInit_ex(ctx, cdat->cipher, NULL, NULL, NULL, enc))
934 goto err;
935 err = "INVALID_IV_LENGTH";
936 if (cdat->iv) {
937 if (cdat->aead) {
938 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
939 cdat->iv_len, 0))
940 goto err;
941 } else if (cdat->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx))
942 goto err;
943 }
944 if (cdat->aead) {
945 unsigned char *tag;
946 /*
947 * If encrypting or OCB just set tag length initially, otherwise
948 * set tag length and value.
949 */
950 if (enc || cdat->aead == EVP_CIPH_OCB_MODE) {
951 err = "TAG_LENGTH_SET_ERROR";
952 tag = NULL;
953 } else {
954 err = "TAG_SET_ERROR";
955 tag = cdat->tag;
956 }
957 if (tag || cdat->aead != EVP_CIPH_GCM_MODE) {
958 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
959 cdat->tag_len, tag))
960 goto err;
961 }
962 }
963
964 err = "INVALID_KEY_LENGTH";
965 if (!EVP_CIPHER_CTX_set_key_length(ctx, cdat->key_len))
966 goto err;
967 err = "KEY_SET_ERROR";
968 if (!EVP_CipherInit_ex(ctx, NULL, NULL, cdat->key, cdat->iv, -1))
969 goto err;
970
971 if (!enc && cdat->aead == EVP_CIPH_OCB_MODE) {
972 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
973 cdat->tag_len, cdat->tag)) {
974 err = "TAG_SET_ERROR";
975 goto err;
976 }
977 }
978
979 if (cdat->aead == EVP_CIPH_CCM_MODE) {
980 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
981 err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
982 goto err;
983 }
984 }
985 if (cdat->aad) {
986 err = "AAD_SET_ERROR";
987 if (!frag) {
988 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad,
989 cdat->aad_len))
990 goto err;
991 } else {
992 /*
993 * Supply the AAD in chunks less than the block size where possible
994 */
995 if (cdat->aad_len > 0) {
996 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad, 1))
997 goto err;
998 donelen++;
999 }
1000 if (cdat->aad_len > 2) {
1001 if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad + donelen,
1002 cdat->aad_len - 2))
1003 goto err;
1004 donelen += cdat->aad_len - 2;
1005 }
1006 if (cdat->aad_len > 1
1007 && !EVP_CipherUpdate(ctx, NULL, &chunklen,
1008 cdat->aad + donelen, 1))
1009 goto err;
1010 }
1011 }
1012 EVP_CIPHER_CTX_set_padding(ctx, 0);
1013 err = "CIPHERUPDATE_ERROR";
1014 tmplen = 0;
1015 if (!frag) {
1016 /* We supply the data all in one go */
1017 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
1018 goto err;
1019 } else {
1020 /* Supply the data in chunks less than the block size where possible */
1021 if (in_len > 0) {
1022 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
1023 goto err;
1024 tmplen += chunklen;
1025 in++;
1026 in_len--;
1027 }
1028 if (in_len > 1) {
1029 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
1030 in, in_len - 1))
1031 goto err;
1032 tmplen += chunklen;
1033 in += in_len - 1;
1034 in_len = 1;
1035 }
1036 if (in_len > 0 ) {
1037 if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
1038 in, 1))
1039 goto err;
1040 tmplen += chunklen;
1041 }
1042 }
1043 if (cdat->aead == EVP_CIPH_CCM_MODE)
1044 tmpflen = 0;
1045 else {
1046 err = "CIPHERFINAL_ERROR";
1047 if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen))
1048 goto err;
1049 }
1050 err = "LENGTH_MISMATCH";
1051 if (out_len != (size_t)(tmplen + tmpflen))
1052 goto err;
1053 err = "VALUE_MISMATCH";
1054 if (check_output(t, out, tmp + out_misalign, out_len))
1055 goto err;
1056 if (enc && cdat->aead) {
1057 unsigned char rtag[16];
1058 if (cdat->tag_len > sizeof(rtag)) {
1059 err = "TAG_LENGTH_INTERNAL_ERROR";
1060 goto err;
1061 }
1062 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
1063 cdat->tag_len, rtag)) {
1064 err = "TAG_RETRIEVE_ERROR";
1065 goto err;
1066 }
1067 if (check_output(t, cdat->tag, rtag, cdat->tag_len)) {
1068 err = "TAG_VALUE_MISMATCH";
1069 goto err;
1070 }
1071 }
1072 err = NULL;
1073 err:
1074 OPENSSL_free(tmp);
1075 EVP_CIPHER_CTX_free(ctx);
1076 t->err = err;
1077 return err ? 0 : 1;
1078 }
1079
1080 static int cipher_test_run(struct evp_test *t)
1081 {
1082 struct cipher_data *cdat = t->data;
1083 int rv, frag = 0;
1084 size_t out_misalign, inp_misalign;
1085
1086 if (!cdat->key) {
1087 t->err = "NO_KEY";
1088 return 0;
1089 }
1090 if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
1091 /* IV is optional and usually omitted in wrap mode */
1092 if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
1093 t->err = "NO_IV";
1094 return 0;
1095 }
1096 }
1097 if (cdat->aead && !cdat->tag) {
1098 t->err = "NO_TAG";
1099 return 0;
1100 }
1101 for (out_misalign = 0; out_misalign <= 1;) {
1102 static char aux_err[64];
1103 t->aux_err = aux_err;
1104 for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
1105 if (inp_misalign == (size_t)-1) {
1106 /* kludge: inp_misalign == -1 means "exercise in-place" */
1107 BIO_snprintf(aux_err, sizeof(aux_err),
1108 "%s in-place, %sfragmented",
1109 out_misalign ? "misaligned" : "aligned",
1110 frag ? "" : "not ");
1111 } else {
1112 BIO_snprintf(aux_err, sizeof(aux_err),
1113 "%s output and %s input, %sfragmented",
1114 out_misalign ? "misaligned" : "aligned",
1115 inp_misalign ? "misaligned" : "aligned",
1116 frag ? "" : "not ");
1117 }
1118 if (cdat->enc) {
1119 rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
1120 /* Not fatal errors: return */
1121 if (rv != 1) {
1122 if (rv < 0)
1123 return 0;
1124 return 1;
1125 }
1126 }
1127 if (cdat->enc != 1) {
1128 rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
1129 /* Not fatal errors: return */
1130 if (rv != 1) {
1131 if (rv < 0)
1132 return 0;
1133 return 1;
1134 }
1135 }
1136 }
1137
1138 if (out_misalign == 1 && frag == 0) {
1139 /*
1140 * XTS, CCM and Wrap modes have special requirements about input
1141 * lengths so we don't fragment for those
1142 */
1143 if (cdat->aead == EVP_CIPH_CCM_MODE
1144 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
1145 || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
1146 break;
1147 out_misalign = 0;
1148 frag++;
1149 } else {
1150 out_misalign++;
1151 }
1152 }
1153 t->aux_err = NULL;
1154
1155 return 1;
1156 }
1157
1158 static const struct evp_test_method cipher_test_method = {
1159 "Cipher",
1160 cipher_test_init,
1161 cipher_test_cleanup,
1162 cipher_test_parse,
1163 cipher_test_run
1164 };
1165
1166 struct mac_data {
1167 /* MAC type */
1168 int type;
1169 /* Algorithm string for this MAC */
1170 char *alg;
1171 /* MAC key */
1172 unsigned char *key;
1173 size_t key_len;
1174 /* Input to MAC */
1175 unsigned char *input;
1176 size_t input_len;
1177 /* Expected output */
1178 unsigned char *output;
1179 size_t output_len;
1180 };
1181
1182 static int mac_test_init(struct evp_test *t, const char *alg)
1183 {
1184 int type;
1185 struct mac_data *mdat;
1186 if (strcmp(alg, "HMAC") == 0) {
1187 type = EVP_PKEY_HMAC;
1188 } else if (strcmp(alg, "CMAC") == 0) {
1189 #ifndef OPENSSL_NO_CMAC
1190 type = EVP_PKEY_CMAC;
1191 #else
1192 t->skip = 1;
1193 return 1;
1194 #endif
1195 } else if (strcmp(alg, "Poly1305") == 0) {
1196 #ifndef OPENSSL_NO_POLY1305
1197 type = EVP_PKEY_POLY1305;
1198 #else
1199 t->skip = 1;
1200 return 1;
1201 #endif
1202 } else
1203 return 0;
1204
1205 mdat = OPENSSL_malloc(sizeof(*mdat));
1206 mdat->type = type;
1207 mdat->alg = NULL;
1208 mdat->key = NULL;
1209 mdat->input = NULL;
1210 mdat->output = NULL;
1211 t->data = mdat;
1212 return 1;
1213 }
1214
1215 static void mac_test_cleanup(struct evp_test *t)
1216 {
1217 struct mac_data *mdat = t->data;
1218 test_free(mdat->alg);
1219 test_free(mdat->key);
1220 test_free(mdat->input);
1221 test_free(mdat->output);
1222 }
1223
1224 static int mac_test_parse(struct evp_test *t,
1225 const char *keyword, const char *value)
1226 {
1227 struct mac_data *mdata = t->data;
1228 if (strcmp(keyword, "Key") == 0)
1229 return test_bin(value, &mdata->key, &mdata->key_len);
1230 if (strcmp(keyword, "Algorithm") == 0) {
1231 mdata->alg = OPENSSL_strdup(value);
1232 if (!mdata->alg)
1233 return 0;
1234 return 1;
1235 }
1236 if (strcmp(keyword, "Input") == 0)
1237 return test_bin(value, &mdata->input, &mdata->input_len);
1238 if (strcmp(keyword, "Output") == 0)
1239 return test_bin(value, &mdata->output, &mdata->output_len);
1240 return 0;
1241 }
1242
1243 static int mac_test_run(struct evp_test *t)
1244 {
1245 struct mac_data *mdata = t->data;
1246 const char *err = "INTERNAL_ERROR";
1247 EVP_MD_CTX *mctx = NULL;
1248 EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
1249 EVP_PKEY *key = NULL;
1250 const EVP_MD *md = NULL;
1251 unsigned char *mac = NULL;
1252 size_t mac_len;
1253
1254 #ifdef OPENSSL_NO_DES
1255 if (mdata->alg != NULL && strstr(mdata->alg, "DES") != NULL) {
1256 /* Skip DES */
1257 err = NULL;
1258 goto err;
1259 }
1260 #endif
1261
1262 err = "MAC_PKEY_CTX_ERROR";
1263 genctx = EVP_PKEY_CTX_new_id(mdata->type, NULL);
1264 if (!genctx)
1265 goto err;
1266
1267 err = "MAC_KEYGEN_INIT_ERROR";
1268 if (EVP_PKEY_keygen_init(genctx) <= 0)
1269 goto err;
1270 if (mdata->type == EVP_PKEY_CMAC) {
1271 err = "MAC_ALGORITHM_SET_ERROR";
1272 if (EVP_PKEY_CTX_ctrl_str(genctx, "cipher", mdata->alg) <= 0)
1273 goto err;
1274 }
1275
1276 err = "MAC_KEY_SET_ERROR";
1277 if (EVP_PKEY_CTX_set_mac_key(genctx, mdata->key, mdata->key_len) <= 0)
1278 goto err;
1279
1280 err = "MAC_KEY_GENERATE_ERROR";
1281 if (EVP_PKEY_keygen(genctx, &key) <= 0)
1282 goto err;
1283 if (mdata->type == EVP_PKEY_HMAC) {
1284 err = "MAC_ALGORITHM_SET_ERROR";
1285 md = EVP_get_digestbyname(mdata->alg);
1286 if (!md)
1287 goto err;
1288 }
1289 mctx = EVP_MD_CTX_new();
1290 if (!mctx)
1291 goto err;
1292 err = "DIGESTSIGNINIT_ERROR";
1293 if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key))
1294 goto err;
1295
1296 err = "DIGESTSIGNUPDATE_ERROR";
1297 if (!EVP_DigestSignUpdate(mctx, mdata->input, mdata->input_len))
1298 goto err;
1299 err = "DIGESTSIGNFINAL_LENGTH_ERROR";
1300 if (!EVP_DigestSignFinal(mctx, NULL, &mac_len))
1301 goto err;
1302 mac = OPENSSL_malloc(mac_len);
1303 if (!mac) {
1304 fprintf(stderr, "Error allocating mac buffer!\n");
1305 exit(1);
1306 }
1307 if (!EVP_DigestSignFinal(mctx, mac, &mac_len))
1308 goto err;
1309 err = "MAC_LENGTH_MISMATCH";
1310 if (mac_len != mdata->output_len)
1311 goto err;
1312 err = "MAC_MISMATCH";
1313 if (check_output(t, mdata->output, mac, mac_len))
1314 goto err;
1315 err = NULL;
1316 err:
1317 EVP_MD_CTX_free(mctx);
1318 OPENSSL_free(mac);
1319 EVP_PKEY_CTX_free(genctx);
1320 EVP_PKEY_free(key);
1321 t->err = err;
1322 return 1;
1323 }
1324
1325 static const struct evp_test_method mac_test_method = {
1326 "MAC",
1327 mac_test_init,
1328 mac_test_cleanup,
1329 mac_test_parse,
1330 mac_test_run
1331 };
1332
1333 /*
1334 * Public key operations. These are all very similar and can share
1335 * a lot of common code.
1336 */
1337
1338 struct pkey_data {
1339 /* Context for this operation */
1340 EVP_PKEY_CTX *ctx;
1341 /* Key operation to perform */
1342 int (*keyop) (EVP_PKEY_CTX *ctx,
1343 unsigned char *sig, size_t *siglen,
1344 const unsigned char *tbs, size_t tbslen);
1345 /* Input to MAC */
1346 unsigned char *input;
1347 size_t input_len;
1348 /* Expected output */
1349 unsigned char *output;
1350 size_t output_len;
1351 };
1352
1353 /*
1354 * Perform public key operation setup: lookup key, allocated ctx and call
1355 * the appropriate initialisation function
1356 */
1357 static int pkey_test_init(struct evp_test *t, const char *name,
1358 int use_public,
1359 int (*keyopinit) (EVP_PKEY_CTX *ctx),
1360 int (*keyop) (EVP_PKEY_CTX *ctx,
1361 unsigned char *sig, size_t *siglen,
1362 const unsigned char *tbs,
1363 size_t tbslen)
1364 )
1365 {
1366 struct pkey_data *kdata;
1367 EVP_PKEY *pkey = NULL;
1368 int rv = 0;
1369 if (use_public)
1370 rv = find_key(&pkey, name, t->public);
1371 if (!rv)
1372 rv = find_key(&pkey, name, t->private);
1373 if (!rv || pkey == NULL) {
1374 t->skip = 1;
1375 return 1;
1376 }
1377
1378 kdata = OPENSSL_malloc(sizeof(*kdata));
1379 if (!kdata) {
1380 EVP_PKEY_free(pkey);
1381 return 0;
1382 }
1383 kdata->ctx = NULL;
1384 kdata->input = NULL;
1385 kdata->output = NULL;
1386 kdata->keyop = keyop;
1387 t->data = kdata;
1388 kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL);
1389 if (!kdata->ctx)
1390 return 0;
1391 if (keyopinit(kdata->ctx) <= 0)
1392 t->err = "KEYOP_INIT_ERROR";
1393 return 1;
1394 }
1395
1396 static void pkey_test_cleanup(struct evp_test *t)
1397 {
1398 struct pkey_data *kdata = t->data;
1399
1400 OPENSSL_free(kdata->input);
1401 OPENSSL_free(kdata->output);
1402 EVP_PKEY_CTX_free(kdata->ctx);
1403 }
1404
1405 static int pkey_test_ctrl(struct evp_test *t, EVP_PKEY_CTX *pctx,
1406 const char *value)
1407 {
1408 int rv;
1409 char *p, *tmpval;
1410
1411 tmpval = OPENSSL_strdup(value);
1412 if (tmpval == NULL)
1413 return 0;
1414 p = strchr(tmpval, ':');
1415 if (p != NULL)
1416 *p++ = 0;
1417 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1418 if (rv == -2) {
1419 t->err = "PKEY_CTRL_INVALID";
1420 rv = 1;
1421 } else if (p != NULL && rv <= 0) {
1422 /* If p has an OID and lookup fails assume disabled algorithm */
1423 int nid = OBJ_sn2nid(p);
1424 if (nid == NID_undef)
1425 nid = OBJ_ln2nid(p);
1426 if ((nid != NID_undef) && EVP_get_digestbynid(nid) == NULL &&
1427 EVP_get_cipherbynid(nid) == NULL) {
1428 t->skip = 1;
1429 rv = 1;
1430 } else {
1431 t->err = "PKEY_CTRL_ERROR";
1432 rv = 1;
1433 }
1434 }
1435 OPENSSL_free(tmpval);
1436 return rv > 0;
1437 }
1438
1439 static int pkey_test_parse(struct evp_test *t,
1440 const char *keyword, const char *value)
1441 {
1442 struct pkey_data *kdata = t->data;
1443 if (strcmp(keyword, "Input") == 0)
1444 return test_bin(value, &kdata->input, &kdata->input_len);
1445 if (strcmp(keyword, "Output") == 0)
1446 return test_bin(value, &kdata->output, &kdata->output_len);
1447 if (strcmp(keyword, "Ctrl") == 0)
1448 return pkey_test_ctrl(t, kdata->ctx, value);
1449 return 0;
1450 }
1451
1452 static int pkey_test_run(struct evp_test *t)
1453 {
1454 struct pkey_data *kdata = t->data;
1455 unsigned char *out = NULL;
1456 size_t out_len;
1457 const char *err = "KEYOP_LENGTH_ERROR";
1458 if (kdata->keyop(kdata->ctx, NULL, &out_len, kdata->input,
1459 kdata->input_len) <= 0)
1460 goto err;
1461 out = OPENSSL_malloc(out_len);
1462 if (!out) {
1463 fprintf(stderr, "Error allocating output buffer!\n");
1464 exit(1);
1465 }
1466 err = "KEYOP_ERROR";
1467 if (kdata->keyop
1468 (kdata->ctx, out, &out_len, kdata->input, kdata->input_len) <= 0)
1469 goto err;
1470 err = "KEYOP_LENGTH_MISMATCH";
1471 if (out_len != kdata->output_len)
1472 goto err;
1473 err = "KEYOP_MISMATCH";
1474 if (check_output(t, kdata->output, out, out_len))
1475 goto err;
1476 err = NULL;
1477 err:
1478 OPENSSL_free(out);
1479 t->err = err;
1480 return 1;
1481 }
1482
1483 static int sign_test_init(struct evp_test *t, const char *name)
1484 {
1485 return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
1486 }
1487
1488 static const struct evp_test_method psign_test_method = {
1489 "Sign",
1490 sign_test_init,
1491 pkey_test_cleanup,
1492 pkey_test_parse,
1493 pkey_test_run
1494 };
1495
1496 static int verify_recover_test_init(struct evp_test *t, const char *name)
1497 {
1498 return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
1499 EVP_PKEY_verify_recover);
1500 }
1501
1502 static const struct evp_test_method pverify_recover_test_method = {
1503 "VerifyRecover",
1504 verify_recover_test_init,
1505 pkey_test_cleanup,
1506 pkey_test_parse,
1507 pkey_test_run
1508 };
1509
1510 static int decrypt_test_init(struct evp_test *t, const char *name)
1511 {
1512 return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
1513 EVP_PKEY_decrypt);
1514 }
1515
1516 static const struct evp_test_method pdecrypt_test_method = {
1517 "Decrypt",
1518 decrypt_test_init,
1519 pkey_test_cleanup,
1520 pkey_test_parse,
1521 pkey_test_run
1522 };
1523
1524 static int verify_test_init(struct evp_test *t, const char *name)
1525 {
1526 return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
1527 }
1528
1529 static int verify_test_run(struct evp_test *t)
1530 {
1531 struct pkey_data *kdata = t->data;
1532 if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
1533 kdata->input, kdata->input_len) <= 0)
1534 t->err = "VERIFY_ERROR";
1535 return 1;
1536 }
1537
1538 static const struct evp_test_method pverify_test_method = {
1539 "Verify",
1540 verify_test_init,
1541 pkey_test_cleanup,
1542 pkey_test_parse,
1543 verify_test_run
1544 };
1545
1546
1547 static int pderive_test_init(struct evp_test *t, const char *name)
1548 {
1549 return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
1550 }
1551
1552 static int pderive_test_parse(struct evp_test *t,
1553 const char *keyword, const char *value)
1554 {
1555 struct pkey_data *kdata = t->data;
1556
1557 if (strcmp(keyword, "PeerKey") == 0) {
1558 EVP_PKEY *peer;
1559 if (find_key(&peer, value, t->public) == 0)
1560 return 0;
1561 if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
1562 return 0;
1563 return 1;
1564 }
1565 if (strcmp(keyword, "SharedSecret") == 0)
1566 return test_bin(value, &kdata->output, &kdata->output_len);
1567 if (strcmp(keyword, "Ctrl") == 0)
1568 return pkey_test_ctrl(t, kdata->ctx, value);
1569 return 0;
1570 }
1571
1572 static int pderive_test_run(struct evp_test *t)
1573 {
1574 struct pkey_data *kdata = t->data;
1575 unsigned char *out = NULL;
1576 size_t out_len;
1577 const char *err = "INTERNAL_ERROR";
1578
1579 out_len = kdata->output_len;
1580 out = OPENSSL_malloc(out_len);
1581 if (!out) {
1582 fprintf(stderr, "Error allocating output buffer!\n");
1583 exit(1);
1584 }
1585 err = "DERIVE_ERROR";
1586 if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
1587 goto err;
1588 err = "SHARED_SECRET_LENGTH_MISMATCH";
1589 if (out_len != kdata->output_len)
1590 goto err;
1591 err = "SHARED_SECRET_MISMATCH";
1592 if (check_output(t, kdata->output, out, out_len))
1593 goto err;
1594 err = NULL;
1595 err:
1596 OPENSSL_free(out);
1597 t->err = err;
1598 return 1;
1599 }
1600
1601 static const struct evp_test_method pderive_test_method = {
1602 "Derive",
1603 pderive_test_init,
1604 pkey_test_cleanup,
1605 pderive_test_parse,
1606 pderive_test_run
1607 };
1608
1609 /* PBE tests */
1610
1611 #define PBE_TYPE_SCRYPT 1
1612 #define PBE_TYPE_PBKDF2 2
1613 #define PBE_TYPE_PKCS12 3
1614
1615 struct pbe_data {
1616
1617 int pbe_type;
1618
1619 /* scrypt parameters */
1620 uint64_t N, r, p, maxmem;
1621
1622 /* PKCS#12 parameters */
1623 int id, iter;
1624 const EVP_MD *md;
1625
1626 /* password */
1627 unsigned char *pass;
1628 size_t pass_len;
1629
1630 /* salt */
1631 unsigned char *salt;
1632 size_t salt_len;
1633
1634 /* Expected output */
1635 unsigned char *key;
1636 size_t key_len;
1637 };
1638
1639 #ifndef OPENSSL_NO_SCRYPT
1640 static int scrypt_test_parse(struct evp_test *t,
1641 const char *keyword, const char *value)
1642 {
1643 struct pbe_data *pdata = t->data;
1644
1645 if (strcmp(keyword, "N") == 0)
1646 return test_uint64(value, &pdata->N);
1647 if (strcmp(keyword, "p") == 0)
1648 return test_uint64(value, &pdata->p);
1649 if (strcmp(keyword, "r") == 0)
1650 return test_uint64(value, &pdata->r);
1651 if (strcmp(keyword, "maxmem") == 0)
1652 return test_uint64(value, &pdata->maxmem);
1653 return 0;
1654 }
1655 #endif
1656
1657 static int pbkdf2_test_parse(struct evp_test *t,
1658 const char *keyword, const char *value)
1659 {
1660 struct pbe_data *pdata = t->data;
1661
1662 if (strcmp(keyword, "iter") == 0) {
1663 pdata->iter = atoi(value);
1664 if (pdata->iter <= 0)
1665 return 0;
1666 return 1;
1667 }
1668 if (strcmp(keyword, "MD") == 0) {
1669 pdata->md = EVP_get_digestbyname(value);
1670 if (pdata->md == NULL)
1671 return 0;
1672 return 1;
1673 }
1674 return 0;
1675 }
1676
1677 static int pkcs12_test_parse(struct evp_test *t,
1678 const char *keyword, const char *value)
1679 {
1680 struct pbe_data *pdata = t->data;
1681
1682 if (strcmp(keyword, "id") == 0) {
1683 pdata->id = atoi(value);
1684 if (pdata->id <= 0)
1685 return 0;
1686 return 1;
1687 }
1688 return pbkdf2_test_parse(t, keyword, value);
1689 }
1690
1691 static int pbe_test_init(struct evp_test *t, const char *alg)
1692 {
1693 struct pbe_data *pdat;
1694 int pbe_type = 0;
1695
1696 if (strcmp(alg, "scrypt") == 0) {
1697 #ifndef OPENSSL_NO_SCRYPT
1698 pbe_type = PBE_TYPE_SCRYPT;
1699 #else
1700 t->skip = 1;
1701 return 1;
1702 #endif
1703 } else if (strcmp(alg, "pbkdf2") == 0) {
1704 pbe_type = PBE_TYPE_PBKDF2;
1705 } else if (strcmp(alg, "pkcs12") == 0) {
1706 pbe_type = PBE_TYPE_PKCS12;
1707 } else {
1708 fprintf(stderr, "Unknown pbe algorithm %s\n", alg);
1709 }
1710 pdat = OPENSSL_malloc(sizeof(*pdat));
1711 pdat->pbe_type = pbe_type;
1712 pdat->pass = NULL;
1713 pdat->salt = NULL;
1714 pdat->N = 0;
1715 pdat->r = 0;
1716 pdat->p = 0;
1717 pdat->maxmem = 0;
1718 pdat->id = 0;
1719 pdat->iter = 0;
1720 pdat->md = NULL;
1721 t->data = pdat;
1722 return 1;
1723 }
1724
1725 static void pbe_test_cleanup(struct evp_test *t)
1726 {
1727 struct pbe_data *pdat = t->data;
1728 test_free(pdat->pass);
1729 test_free(pdat->salt);
1730 test_free(pdat->key);
1731 }
1732
1733 static int pbe_test_parse(struct evp_test *t,
1734 const char *keyword, const char *value)
1735 {
1736 struct pbe_data *pdata = t->data;
1737
1738 if (strcmp(keyword, "Password") == 0)
1739 return test_bin(value, &pdata->pass, &pdata->pass_len);
1740 if (strcmp(keyword, "Salt") == 0)
1741 return test_bin(value, &pdata->salt, &pdata->salt_len);
1742 if (strcmp(keyword, "Key") == 0)
1743 return test_bin(value, &pdata->key, &pdata->key_len);
1744 if (pdata->pbe_type == PBE_TYPE_PBKDF2)
1745 return pbkdf2_test_parse(t, keyword, value);
1746 else if (pdata->pbe_type == PBE_TYPE_PKCS12)
1747 return pkcs12_test_parse(t, keyword, value);
1748 #ifndef OPENSSL_NO_SCRYPT
1749 else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
1750 return scrypt_test_parse(t, keyword, value);
1751 #endif
1752 return 0;
1753 }
1754
1755 static int pbe_test_run(struct evp_test *t)
1756 {
1757 struct pbe_data *pdata = t->data;
1758 const char *err = "INTERNAL_ERROR";
1759 unsigned char *key;
1760
1761 key = OPENSSL_malloc(pdata->key_len);
1762 if (!key)
1763 goto err;
1764 if (pdata->pbe_type == PBE_TYPE_PBKDF2) {
1765 err = "PBKDF2_ERROR";
1766 if (PKCS5_PBKDF2_HMAC((char *)pdata->pass, pdata->pass_len,
1767 pdata->salt, pdata->salt_len,
1768 pdata->iter, pdata->md,
1769 pdata->key_len, key) == 0)
1770 goto err;
1771 #ifndef OPENSSL_NO_SCRYPT
1772 } else if (pdata->pbe_type == PBE_TYPE_SCRYPT) {
1773 err = "SCRYPT_ERROR";
1774 if (EVP_PBE_scrypt((const char *)pdata->pass, pdata->pass_len,
1775 pdata->salt, pdata->salt_len,
1776 pdata->N, pdata->r, pdata->p, pdata->maxmem,
1777 key, pdata->key_len) == 0)
1778 goto err;
1779 #endif
1780 } else if (pdata->pbe_type == PBE_TYPE_PKCS12) {
1781 err = "PKCS12_ERROR";
1782 if (PKCS12_key_gen_uni(pdata->pass, pdata->pass_len,
1783 pdata->salt, pdata->salt_len,
1784 pdata->id, pdata->iter, pdata->key_len,
1785 key, pdata->md) == 0)
1786 goto err;
1787 }
1788 err = "KEY_MISMATCH";
1789 if (check_output(t, pdata->key, key, pdata->key_len))
1790 goto err;
1791 err = NULL;
1792 err:
1793 OPENSSL_free(key);
1794 t->err = err;
1795 return 1;
1796 }
1797
1798 static const struct evp_test_method pbe_test_method = {
1799 "PBE",
1800 pbe_test_init,
1801 pbe_test_cleanup,
1802 pbe_test_parse,
1803 pbe_test_run
1804 };
1805
1806 /* Base64 tests */
1807
1808 typedef enum {
1809 BASE64_CANONICAL_ENCODING = 0,
1810 BASE64_VALID_ENCODING = 1,
1811 BASE64_INVALID_ENCODING = 2
1812 } base64_encoding_type;
1813
1814 struct encode_data {
1815 /* Input to encoding */
1816 unsigned char *input;
1817 size_t input_len;
1818 /* Expected output */
1819 unsigned char *output;
1820 size_t output_len;
1821 base64_encoding_type encoding;
1822 };
1823
1824 static int encode_test_init(struct evp_test *t, const char *encoding)
1825 {
1826 struct encode_data *edata = OPENSSL_zalloc(sizeof(*edata));
1827
1828 if (strcmp(encoding, "canonical") == 0) {
1829 edata->encoding = BASE64_CANONICAL_ENCODING;
1830 } else if (strcmp(encoding, "valid") == 0) {
1831 edata->encoding = BASE64_VALID_ENCODING;
1832 } else if (strcmp(encoding, "invalid") == 0) {
1833 edata->encoding = BASE64_INVALID_ENCODING;
1834 t->expected_err = OPENSSL_strdup("DECODE_ERROR");
1835 if (t->expected_err == NULL)
1836 return 0;
1837 } else {
1838 fprintf(stderr, "Bad encoding: %s. Should be one of "
1839 "{canonical, valid, invalid}\n", encoding);
1840 return 0;
1841 }
1842 t->data = edata;
1843 return 1;
1844 }
1845
1846 static void encode_test_cleanup(struct evp_test *t)
1847 {
1848 struct encode_data *edata = t->data;
1849 test_free(edata->input);
1850 test_free(edata->output);
1851 memset(edata, 0, sizeof(*edata));
1852 }
1853
1854 static int encode_test_parse(struct evp_test *t,
1855 const char *keyword, const char *value)
1856 {
1857 struct encode_data *edata = t->data;
1858 if (strcmp(keyword, "Input") == 0)
1859 return test_bin(value, &edata->input, &edata->input_len);
1860 if (strcmp(keyword, "Output") == 0)
1861 return test_bin(value, &edata->output, &edata->output_len);
1862 return 0;
1863 }
1864
1865 static int encode_test_run(struct evp_test *t)
1866 {
1867 struct encode_data *edata = t->data;
1868 unsigned char *encode_out = NULL, *decode_out = NULL;
1869 int output_len, chunk_len;
1870 const char *err = "INTERNAL_ERROR";
1871 EVP_ENCODE_CTX *decode_ctx = EVP_ENCODE_CTX_new();
1872
1873 if (decode_ctx == NULL)
1874 goto err;
1875
1876 if (edata->encoding == BASE64_CANONICAL_ENCODING) {
1877 EVP_ENCODE_CTX *encode_ctx = EVP_ENCODE_CTX_new();
1878 if (encode_ctx == NULL)
1879 goto err;
1880 encode_out = OPENSSL_malloc(EVP_ENCODE_LENGTH(edata->input_len));
1881 if (encode_out == NULL)
1882 goto err;
1883
1884 EVP_EncodeInit(encode_ctx);
1885 EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
1886 edata->input, edata->input_len);
1887 output_len = chunk_len;
1888
1889 EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
1890 output_len += chunk_len;
1891
1892 EVP_ENCODE_CTX_free(encode_ctx);
1893
1894 if (check_var_length_output(t, edata->output, edata->output_len,
1895 encode_out, output_len)) {
1896 err = "BAD_ENCODING";
1897 goto err;
1898 }
1899 }
1900
1901 decode_out = OPENSSL_malloc(EVP_DECODE_LENGTH(edata->output_len));
1902 if (decode_out == NULL)
1903 goto err;
1904
1905 EVP_DecodeInit(decode_ctx);
1906 if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, edata->output,
1907 edata->output_len) < 0) {
1908 err = "DECODE_ERROR";
1909 goto err;
1910 }
1911 output_len = chunk_len;
1912
1913 if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
1914 err = "DECODE_ERROR";
1915 goto err;
1916 }
1917 output_len += chunk_len;
1918
1919 if (edata->encoding != BASE64_INVALID_ENCODING &&
1920 check_var_length_output(t, edata->input, edata->input_len,
1921 decode_out, output_len)) {
1922 err = "BAD_DECODING";
1923 goto err;
1924 }
1925
1926 err = NULL;
1927 err:
1928 t->err = err;
1929 OPENSSL_free(encode_out);
1930 OPENSSL_free(decode_out);
1931 EVP_ENCODE_CTX_free(decode_ctx);
1932 return 1;
1933 }
1934
1935 static const struct evp_test_method encode_test_method = {
1936 "Encoding",
1937 encode_test_init,
1938 encode_test_cleanup,
1939 encode_test_parse,
1940 encode_test_run,
1941 };
1942
1943 /* KDF operations */
1944
1945 struct kdf_data {
1946 /* Context for this operation */
1947 EVP_PKEY_CTX *ctx;
1948 /* Expected output */
1949 unsigned char *output;
1950 size_t output_len;
1951 };
1952
1953 /*
1954 * Perform public key operation setup: lookup key, allocated ctx and call
1955 * the appropriate initialisation function
1956 */
1957 static int kdf_test_init(struct evp_test *t, const char *name)
1958 {
1959 struct kdf_data *kdata;
1960
1961 kdata = OPENSSL_malloc(sizeof(*kdata));
1962 if (kdata == NULL)
1963 return 0;
1964 kdata->ctx = NULL;
1965 kdata->output = NULL;
1966 t->data = kdata;
1967 kdata->ctx = EVP_PKEY_CTX_new_id(OBJ_sn2nid(name), NULL);
1968 if (kdata->ctx == NULL)
1969 return 0;
1970 if (EVP_PKEY_derive_init(kdata->ctx) <= 0)
1971 return 0;
1972 return 1;
1973 }
1974
1975 static void kdf_test_cleanup(struct evp_test *t)
1976 {
1977 struct kdf_data *kdata = t->data;
1978 OPENSSL_free(kdata->output);
1979 EVP_PKEY_CTX_free(kdata->ctx);
1980 }
1981
1982 static int kdf_test_parse(struct evp_test *t,
1983 const char *keyword, const char *value)
1984 {
1985 struct kdf_data *kdata = t->data;
1986 if (strcmp(keyword, "Output") == 0)
1987 return test_bin(value, &kdata->output, &kdata->output_len);
1988 if (strncmp(keyword, "Ctrl", 4) == 0)
1989 return pkey_test_ctrl(t, kdata->ctx, value);
1990 return 0;
1991 }
1992
1993 static int kdf_test_run(struct evp_test *t)
1994 {
1995 struct kdf_data *kdata = t->data;
1996 unsigned char *out = NULL;
1997 size_t out_len = kdata->output_len;
1998 const char *err = "INTERNAL_ERROR";
1999 out = OPENSSL_malloc(out_len);
2000 if (!out) {
2001 fprintf(stderr, "Error allocating output buffer!\n");
2002 exit(1);
2003 }
2004 err = "KDF_DERIVE_ERROR";
2005 if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
2006 goto err;
2007 err = "KDF_LENGTH_MISMATCH";
2008 if (out_len != kdata->output_len)
2009 goto err;
2010 err = "KDF_MISMATCH";
2011 if (check_output(t, kdata->output, out, out_len))
2012 goto err;
2013 err = NULL;
2014 err:
2015 OPENSSL_free(out);
2016 t->err = err;
2017 return 1;
2018 }
2019
2020 static const struct evp_test_method kdf_test_method = {
2021 "KDF",
2022 kdf_test_init,
2023 kdf_test_cleanup,
2024 kdf_test_parse,
2025 kdf_test_run
2026 };