]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/handshake_helper.c
Introduce named constants for the ClientHello callback.
[thirdparty/openssl.git] / test / handshake_helper.c
1 /*
2 * Copyright 2016-2017 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <string.h>
11
12 #include <openssl/bio.h>
13 #include <openssl/x509_vfy.h>
14 #include <openssl/ssl.h>
15 #ifndef OPENSSL_NO_SRP
16 #include <openssl/srp.h>
17 #endif
18
19 #include "internal/sockets.h"
20 #include "internal/nelem.h"
21 #include "handshake_helper.h"
22 #include "testutil.h"
23
24 HANDSHAKE_RESULT *HANDSHAKE_RESULT_new()
25 {
26 HANDSHAKE_RESULT *ret;
27
28 TEST_ptr(ret = OPENSSL_zalloc(sizeof(*ret)));
29 return ret;
30 }
31
32 void HANDSHAKE_RESULT_free(HANDSHAKE_RESULT *result)
33 {
34 if (result == NULL)
35 return;
36 OPENSSL_free(result->client_npn_negotiated);
37 OPENSSL_free(result->server_npn_negotiated);
38 OPENSSL_free(result->client_alpn_negotiated);
39 OPENSSL_free(result->server_alpn_negotiated);
40 sk_X509_NAME_pop_free(result->server_ca_names, X509_NAME_free);
41 sk_X509_NAME_pop_free(result->client_ca_names, X509_NAME_free);
42 OPENSSL_free(result);
43 }
44
45 /*
46 * Since there appears to be no way to extract the sent/received alert
47 * from the SSL object directly, we use the info callback and stash
48 * the result in ex_data.
49 */
50 typedef struct handshake_ex_data_st {
51 int alert_sent;
52 int num_fatal_alerts_sent;
53 int alert_received;
54 int session_ticket_do_not_call;
55 ssl_servername_t servername;
56 } HANDSHAKE_EX_DATA;
57
58 typedef struct ctx_data_st {
59 unsigned char *npn_protocols;
60 size_t npn_protocols_len;
61 unsigned char *alpn_protocols;
62 size_t alpn_protocols_len;
63 char *srp_user;
64 char *srp_password;
65 } CTX_DATA;
66
67 /* |ctx_data| itself is stack-allocated. */
68 static void ctx_data_free_data(CTX_DATA *ctx_data)
69 {
70 OPENSSL_free(ctx_data->npn_protocols);
71 ctx_data->npn_protocols = NULL;
72 OPENSSL_free(ctx_data->alpn_protocols);
73 ctx_data->alpn_protocols = NULL;
74 OPENSSL_free(ctx_data->srp_user);
75 ctx_data->srp_user = NULL;
76 OPENSSL_free(ctx_data->srp_password);
77 ctx_data->srp_password = NULL;
78 }
79
80 static int ex_data_idx;
81
82 static void info_cb(const SSL *s, int where, int ret)
83 {
84 if (where & SSL_CB_ALERT) {
85 HANDSHAKE_EX_DATA *ex_data =
86 (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
87 if (where & SSL_CB_WRITE) {
88 ex_data->alert_sent = ret;
89 if (strcmp(SSL_alert_type_string(ret), "F") == 0
90 || strcmp(SSL_alert_desc_string(ret), "CN") == 0)
91 ex_data->num_fatal_alerts_sent++;
92 } else {
93 ex_data->alert_received = ret;
94 }
95 }
96 }
97
98 /* Select the appropriate server CTX.
99 * Returns SSL_TLSEXT_ERR_OK if a match was found.
100 * If |ignore| is 1, returns SSL_TLSEXT_ERR_NOACK on mismatch.
101 * Otherwise, returns SSL_TLSEXT_ERR_ALERT_FATAL on mismatch.
102 * An empty SNI extension also returns SSL_TSLEXT_ERR_NOACK.
103 */
104 static int select_server_ctx(SSL *s, void *arg, int ignore)
105 {
106 const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name);
107 HANDSHAKE_EX_DATA *ex_data =
108 (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
109
110 if (servername == NULL) {
111 ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
112 return SSL_TLSEXT_ERR_NOACK;
113 }
114
115 if (strcmp(servername, "server2") == 0) {
116 SSL_CTX *new_ctx = (SSL_CTX*)arg;
117 SSL_set_SSL_CTX(s, new_ctx);
118 /*
119 * Copy over all the SSL_CTX options - reasonable behavior
120 * allows testing of cases where the options between two
121 * contexts differ/conflict
122 */
123 SSL_clear_options(s, 0xFFFFFFFFL);
124 SSL_set_options(s, SSL_CTX_get_options(new_ctx));
125
126 ex_data->servername = SSL_TEST_SERVERNAME_SERVER2;
127 return SSL_TLSEXT_ERR_OK;
128 } else if (strcmp(servername, "server1") == 0) {
129 ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
130 return SSL_TLSEXT_ERR_OK;
131 } else if (ignore) {
132 ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
133 return SSL_TLSEXT_ERR_NOACK;
134 } else {
135 /* Don't set an explicit alert, to test library defaults. */
136 return SSL_TLSEXT_ERR_ALERT_FATAL;
137 }
138 }
139
140 static int client_hello_select_server_ctx(SSL *s, void *arg, int ignore)
141 {
142 const char *servername;
143 const unsigned char *p;
144 size_t len, remaining;
145 HANDSHAKE_EX_DATA *ex_data =
146 (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
147
148 /*
149 * The server_name extension was given too much extensibility when it
150 * was written, so parsing the normal case is a bit complex.
151 */
152 if (!SSL_client_hello_get0_ext(s, TLSEXT_TYPE_server_name, &p,
153 &remaining) ||
154 remaining <= 2)
155 return 0;
156 /* Extract the length of the supplied list of names. */
157 len = (*(p++) << 8);
158 len += *(p++);
159 if (len + 2 != remaining)
160 return 0;
161 remaining = len;
162 /*
163 * The list in practice only has a single element, so we only consider
164 * the first one.
165 */
166 if (remaining == 0 || *p++ != TLSEXT_NAMETYPE_host_name)
167 return 0;
168 remaining--;
169 /* Now we can finally pull out the byte array with the actual hostname. */
170 if (remaining <= 2)
171 return 0;
172 len = (*(p++) << 8);
173 len += *(p++);
174 if (len + 2 > remaining)
175 return 0;
176 remaining = len;
177 servername = (const char *)p;
178
179 if (len == strlen("server2") && strncmp(servername, "server2", len) == 0) {
180 SSL_CTX *new_ctx = arg;
181 SSL_set_SSL_CTX(s, new_ctx);
182 /*
183 * Copy over all the SSL_CTX options - reasonable behavior
184 * allows testing of cases where the options between two
185 * contexts differ/conflict
186 */
187 SSL_clear_options(s, 0xFFFFFFFFL);
188 SSL_set_options(s, SSL_CTX_get_options(new_ctx));
189
190 ex_data->servername = SSL_TEST_SERVERNAME_SERVER2;
191 return 1;
192 } else if (len == strlen("server1") &&
193 strncmp(servername, "server1", len) == 0) {
194 ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
195 return 1;
196 } else if (ignore) {
197 ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
198 return 1;
199 }
200 return 0;
201 }
202 /*
203 * (RFC 6066):
204 * If the server understood the ClientHello extension but
205 * does not recognize the server name, the server SHOULD take one of two
206 * actions: either abort the handshake by sending a fatal-level
207 * unrecognized_name(112) alert or continue the handshake.
208 *
209 * This behaviour is up to the application to configure; we test both
210 * configurations to ensure the state machine propagates the result
211 * correctly.
212 */
213 static int servername_ignore_cb(SSL *s, int *ad, void *arg)
214 {
215 return select_server_ctx(s, arg, 1);
216 }
217
218 static int servername_reject_cb(SSL *s, int *ad, void *arg)
219 {
220 return select_server_ctx(s, arg, 0);
221 }
222
223 static int client_hello_ignore_cb(SSL *s, int *al, void *arg)
224 {
225 if (!client_hello_select_server_ctx(s, arg, 1)) {
226 *al = SSL_AD_UNRECOGNIZED_NAME;
227 return SSL_CLIENT_HELLO_ERROR;
228 }
229 return SSL_CLIENT_HELLO_SUCCESS;
230 }
231
232 static int client_hello_reject_cb(SSL *s, int *al, void *arg)
233 {
234 if (!client_hello_select_server_ctx(s, arg, 0)) {
235 *al = SSL_AD_UNRECOGNIZED_NAME;
236 return SSL_CLIENT_HELLO_ERROR;
237 }
238 return SSL_CLIENT_HELLO_SUCCESS;
239 }
240
241 static int client_hello_nov12_cb(SSL *s, int *al, void *arg)
242 {
243 int ret;
244 unsigned int v;
245 const unsigned char *p;
246
247 v = SSL_client_hello_get0_legacy_version(s);
248 if (v > TLS1_2_VERSION || v < SSL3_VERSION) {
249 *al = SSL_AD_PROTOCOL_VERSION;
250 return SSL_CLIENT_HELLO_ERROR;
251 }
252 (void)SSL_client_hello_get0_session_id(s, &p);
253 if (p == NULL ||
254 SSL_client_hello_get0_random(s, &p) == 0 ||
255 SSL_client_hello_get0_ciphers(s, &p) == 0 ||
256 SSL_client_hello_get0_compression_methods(s, &p) == 0) {
257 *al = SSL_AD_INTERNAL_ERROR;
258 return SSL_CLIENT_HELLO_ERROR;
259 }
260 ret = client_hello_select_server_ctx(s, arg, 0);
261 SSL_set_max_proto_version(s, TLS1_1_VERSION);
262 if (!ret) {
263 *al = SSL_AD_UNRECOGNIZED_NAME;
264 return SSL_CLIENT_HELLO_ERROR;
265 }
266 return SSL_CLIENT_HELLO_SUCCESS;
267 }
268
269 static unsigned char dummy_ocsp_resp_good_val = 0xff;
270 static unsigned char dummy_ocsp_resp_bad_val = 0xfe;
271
272 static int server_ocsp_cb(SSL *s, void *arg)
273 {
274 unsigned char *resp;
275
276 resp = OPENSSL_malloc(1);
277 if (resp == NULL)
278 return SSL_TLSEXT_ERR_ALERT_FATAL;
279 /*
280 * For the purposes of testing we just send back a dummy OCSP response
281 */
282 *resp = *(unsigned char *)arg;
283 if (!SSL_set_tlsext_status_ocsp_resp(s, resp, 1))
284 return SSL_TLSEXT_ERR_ALERT_FATAL;
285
286 return SSL_TLSEXT_ERR_OK;
287 }
288
289 static int client_ocsp_cb(SSL *s, void *arg)
290 {
291 const unsigned char *resp;
292 int len;
293
294 len = SSL_get_tlsext_status_ocsp_resp(s, &resp);
295 if (len != 1 || *resp != dummy_ocsp_resp_good_val)
296 return 0;
297
298 return 1;
299 }
300
301 static int verify_reject_cb(X509_STORE_CTX *ctx, void *arg) {
302 X509_STORE_CTX_set_error(ctx, X509_V_ERR_APPLICATION_VERIFICATION);
303 return 0;
304 }
305
306 static int verify_accept_cb(X509_STORE_CTX *ctx, void *arg) {
307 return 1;
308 }
309
310 static int broken_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv,
311 EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc)
312 {
313 return 0;
314 }
315
316 static int do_not_call_session_ticket_cb(SSL *s, unsigned char *key_name,
317 unsigned char *iv,
318 EVP_CIPHER_CTX *ctx,
319 HMAC_CTX *hctx, int enc)
320 {
321 HANDSHAKE_EX_DATA *ex_data =
322 (HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
323 ex_data->session_ticket_do_not_call = 1;
324 return 0;
325 }
326
327 /* Parse the comma-separated list into TLS format. */
328 static int parse_protos(const char *protos, unsigned char **out, size_t *outlen)
329 {
330 size_t len, i, prefix;
331
332 len = strlen(protos);
333
334 /* Should never have reuse. */
335 if (!TEST_ptr_null(*out)
336 /* Test values are small, so we omit length limit checks. */
337 || !TEST_ptr(*out = OPENSSL_malloc(len + 1)))
338 return 0;
339 *outlen = len + 1;
340
341 /*
342 * foo => '3', 'f', 'o', 'o'
343 * foo,bar => '3', 'f', 'o', 'o', '3', 'b', 'a', 'r'
344 */
345 memcpy(*out + 1, protos, len);
346
347 prefix = 0;
348 i = prefix + 1;
349 while (i <= len) {
350 if ((*out)[i] == ',') {
351 if (!TEST_int_gt(i - 1, prefix))
352 goto err;
353 (*out)[prefix] = i - 1 - prefix;
354 prefix = i;
355 }
356 i++;
357 }
358 if (!TEST_int_gt(len, prefix))
359 goto err;
360 (*out)[prefix] = len - prefix;
361 return 1;
362
363 err:
364 OPENSSL_free(*out);
365 *out = NULL;
366 return 0;
367 }
368
369 #ifndef OPENSSL_NO_NEXTPROTONEG
370 /*
371 * The client SHOULD select the first protocol advertised by the server that it
372 * also supports. In the event that the client doesn't support any of server's
373 * protocols, or the server doesn't advertise any, it SHOULD select the first
374 * protocol that it supports.
375 */
376 static int client_npn_cb(SSL *s, unsigned char **out, unsigned char *outlen,
377 const unsigned char *in, unsigned int inlen,
378 void *arg)
379 {
380 CTX_DATA *ctx_data = (CTX_DATA*)(arg);
381 int ret;
382
383 ret = SSL_select_next_proto(out, outlen, in, inlen,
384 ctx_data->npn_protocols,
385 ctx_data->npn_protocols_len);
386 /* Accept both OPENSSL_NPN_NEGOTIATED and OPENSSL_NPN_NO_OVERLAP. */
387 return TEST_true(ret == OPENSSL_NPN_NEGOTIATED || ret == OPENSSL_NPN_NO_OVERLAP)
388 ? SSL_TLSEXT_ERR_OK : SSL_TLSEXT_ERR_ALERT_FATAL;
389 }
390
391 static int server_npn_cb(SSL *s, const unsigned char **data,
392 unsigned int *len, void *arg)
393 {
394 CTX_DATA *ctx_data = (CTX_DATA*)(arg);
395 *data = ctx_data->npn_protocols;
396 *len = ctx_data->npn_protocols_len;
397 return SSL_TLSEXT_ERR_OK;
398 }
399 #endif
400
401 /*
402 * The server SHOULD select the most highly preferred protocol that it supports
403 * and that is also advertised by the client. In the event that the server
404 * supports no protocols that the client advertises, then the server SHALL
405 * respond with a fatal "no_application_protocol" alert.
406 */
407 static int server_alpn_cb(SSL *s, const unsigned char **out,
408 unsigned char *outlen, const unsigned char *in,
409 unsigned int inlen, void *arg)
410 {
411 CTX_DATA *ctx_data = (CTX_DATA*)(arg);
412 int ret;
413
414 /* SSL_select_next_proto isn't const-correct... */
415 unsigned char *tmp_out;
416
417 /*
418 * The result points either to |in| or to |ctx_data->alpn_protocols|.
419 * The callback is allowed to point to |in| or to a long-lived buffer,
420 * so we can return directly without storing a copy.
421 */
422 ret = SSL_select_next_proto(&tmp_out, outlen,
423 ctx_data->alpn_protocols,
424 ctx_data->alpn_protocols_len, in, inlen);
425
426 *out = tmp_out;
427 /* Unlike NPN, we don't tolerate a mismatch. */
428 return ret == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK
429 : SSL_TLSEXT_ERR_ALERT_FATAL;
430 }
431
432 #ifndef OPENSSL_NO_SRP
433 static char *client_srp_cb(SSL *s, void *arg)
434 {
435 CTX_DATA *ctx_data = (CTX_DATA*)(arg);
436 return OPENSSL_strdup(ctx_data->srp_password);
437 }
438
439 static int server_srp_cb(SSL *s, int *ad, void *arg)
440 {
441 CTX_DATA *ctx_data = (CTX_DATA*)(arg);
442 if (strcmp(ctx_data->srp_user, SSL_get_srp_username(s)) != 0)
443 return SSL3_AL_FATAL;
444 if (SSL_set_srp_server_param_pw(s, ctx_data->srp_user,
445 ctx_data->srp_password,
446 "2048" /* known group */) < 0) {
447 *ad = SSL_AD_INTERNAL_ERROR;
448 return SSL3_AL_FATAL;
449 }
450 return SSL_ERROR_NONE;
451 }
452 #endif /* !OPENSSL_NO_SRP */
453
454 /*
455 * Configure callbacks and other properties that can't be set directly
456 * in the server/client CONF.
457 */
458 static int configure_handshake_ctx(SSL_CTX *server_ctx, SSL_CTX *server2_ctx,
459 SSL_CTX *client_ctx,
460 const SSL_TEST_CTX *test,
461 const SSL_TEST_EXTRA_CONF *extra,
462 CTX_DATA *server_ctx_data,
463 CTX_DATA *server2_ctx_data,
464 CTX_DATA *client_ctx_data)
465 {
466 unsigned char *ticket_keys;
467 size_t ticket_key_len;
468
469 if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server_ctx,
470 test->max_fragment_size), 1))
471 goto err;
472 if (server2_ctx != NULL) {
473 if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(server2_ctx,
474 test->max_fragment_size),
475 1))
476 goto err;
477 }
478 if (!TEST_int_eq(SSL_CTX_set_max_send_fragment(client_ctx,
479 test->max_fragment_size), 1))
480 goto err;
481
482 switch (extra->client.verify_callback) {
483 case SSL_TEST_VERIFY_ACCEPT_ALL:
484 SSL_CTX_set_cert_verify_callback(client_ctx, &verify_accept_cb, NULL);
485 break;
486 case SSL_TEST_VERIFY_REJECT_ALL:
487 SSL_CTX_set_cert_verify_callback(client_ctx, &verify_reject_cb, NULL);
488 break;
489 case SSL_TEST_VERIFY_NONE:
490 break;
491 }
492
493 /*
494 * Link the two contexts for SNI purposes.
495 * Also do ClientHello callbacks here, as setting both ClientHello and SNI
496 * is bad.
497 */
498 switch (extra->server.servername_callback) {
499 case SSL_TEST_SERVERNAME_IGNORE_MISMATCH:
500 SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_ignore_cb);
501 SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx);
502 break;
503 case SSL_TEST_SERVERNAME_REJECT_MISMATCH:
504 SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_reject_cb);
505 SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx);
506 break;
507 case SSL_TEST_SERVERNAME_CB_NONE:
508 break;
509 case SSL_TEST_SERVERNAME_CLIENT_HELLO_IGNORE_MISMATCH:
510 SSL_CTX_set_client_hello_cb(server_ctx, client_hello_ignore_cb, server2_ctx);
511 break;
512 case SSL_TEST_SERVERNAME_CLIENT_HELLO_REJECT_MISMATCH:
513 SSL_CTX_set_client_hello_cb(server_ctx, client_hello_reject_cb, server2_ctx);
514 break;
515 case SSL_TEST_SERVERNAME_CLIENT_HELLO_NO_V12:
516 SSL_CTX_set_client_hello_cb(server_ctx, client_hello_nov12_cb, server2_ctx);
517 }
518
519 if (extra->server.cert_status != SSL_TEST_CERT_STATUS_NONE) {
520 SSL_CTX_set_tlsext_status_type(client_ctx, TLSEXT_STATUSTYPE_ocsp);
521 SSL_CTX_set_tlsext_status_cb(client_ctx, client_ocsp_cb);
522 SSL_CTX_set_tlsext_status_arg(client_ctx, NULL);
523 SSL_CTX_set_tlsext_status_cb(server_ctx, server_ocsp_cb);
524 SSL_CTX_set_tlsext_status_arg(server_ctx,
525 ((extra->server.cert_status == SSL_TEST_CERT_STATUS_GOOD_RESPONSE)
526 ? &dummy_ocsp_resp_good_val : &dummy_ocsp_resp_bad_val));
527 }
528
529 /*
530 * The initial_ctx/session_ctx always handles the encrypt/decrypt of the
531 * session ticket. This ticket_key callback is assigned to the second
532 * session (assigned via SNI), and should never be invoked
533 */
534 if (server2_ctx != NULL)
535 SSL_CTX_set_tlsext_ticket_key_cb(server2_ctx,
536 do_not_call_session_ticket_cb);
537
538 if (extra->server.broken_session_ticket) {
539 SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, broken_session_ticket_cb);
540 }
541 #ifndef OPENSSL_NO_NEXTPROTONEG
542 if (extra->server.npn_protocols != NULL) {
543 if (!TEST_true(parse_protos(extra->server.npn_protocols,
544 &server_ctx_data->npn_protocols,
545 &server_ctx_data->npn_protocols_len)))
546 goto err;
547 SSL_CTX_set_npn_advertised_cb(server_ctx, server_npn_cb,
548 server_ctx_data);
549 }
550 if (extra->server2.npn_protocols != NULL) {
551 if (!TEST_true(parse_protos(extra->server2.npn_protocols,
552 &server2_ctx_data->npn_protocols,
553 &server2_ctx_data->npn_protocols_len))
554 || !TEST_ptr(server2_ctx))
555 goto err;
556 SSL_CTX_set_npn_advertised_cb(server2_ctx, server_npn_cb,
557 server2_ctx_data);
558 }
559 if (extra->client.npn_protocols != NULL) {
560 if (!TEST_true(parse_protos(extra->client.npn_protocols,
561 &client_ctx_data->npn_protocols,
562 &client_ctx_data->npn_protocols_len)))
563 goto err;
564 SSL_CTX_set_next_proto_select_cb(client_ctx, client_npn_cb,
565 client_ctx_data);
566 }
567 #endif
568 if (extra->server.alpn_protocols != NULL) {
569 if (!TEST_true(parse_protos(extra->server.alpn_protocols,
570 &server_ctx_data->alpn_protocols,
571 &server_ctx_data->alpn_protocols_len)))
572 goto err;
573 SSL_CTX_set_alpn_select_cb(server_ctx, server_alpn_cb, server_ctx_data);
574 }
575 if (extra->server2.alpn_protocols != NULL) {
576 if (!TEST_ptr(server2_ctx)
577 || !TEST_true(parse_protos(extra->server2.alpn_protocols,
578 &server2_ctx_data->alpn_protocols,
579 &server2_ctx_data->alpn_protocols_len
580 )))
581 goto err;
582 SSL_CTX_set_alpn_select_cb(server2_ctx, server_alpn_cb,
583 server2_ctx_data);
584 }
585 if (extra->client.alpn_protocols != NULL) {
586 unsigned char *alpn_protos = NULL;
587 size_t alpn_protos_len;
588 if (!TEST_true(parse_protos(extra->client.alpn_protocols,
589 &alpn_protos, &alpn_protos_len))
590 /* Reversed return value convention... */
591 || !TEST_int_eq(SSL_CTX_set_alpn_protos(client_ctx, alpn_protos,
592 alpn_protos_len), 0))
593 goto err;
594 OPENSSL_free(alpn_protos);
595 }
596
597 /*
598 * Use fixed session ticket keys so that we can decrypt a ticket created with
599 * one CTX in another CTX. Don't address server2 for the moment.
600 */
601 ticket_key_len = SSL_CTX_set_tlsext_ticket_keys(server_ctx, NULL, 0);
602 if (!TEST_ptr(ticket_keys = OPENSSL_zalloc(ticket_key_len))
603 || !TEST_int_eq(SSL_CTX_set_tlsext_ticket_keys(server_ctx,
604 ticket_keys,
605 ticket_key_len), 1)) {
606 OPENSSL_free(ticket_keys);
607 goto err;
608 }
609 OPENSSL_free(ticket_keys);
610
611 /* The default log list includes EC keys, so CT can't work without EC. */
612 #if !defined(OPENSSL_NO_CT) && !defined(OPENSSL_NO_EC)
613 if (!TEST_true(SSL_CTX_set_default_ctlog_list_file(client_ctx)))
614 goto err;
615 switch (extra->client.ct_validation) {
616 case SSL_TEST_CT_VALIDATION_PERMISSIVE:
617 if (!TEST_true(SSL_CTX_enable_ct(client_ctx,
618 SSL_CT_VALIDATION_PERMISSIVE)))
619 goto err;
620 break;
621 case SSL_TEST_CT_VALIDATION_STRICT:
622 if (!TEST_true(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_STRICT)))
623 goto err;
624 break;
625 case SSL_TEST_CT_VALIDATION_NONE:
626 break;
627 }
628 #endif
629 #ifndef OPENSSL_NO_SRP
630 if (extra->server.srp_user != NULL) {
631 SSL_CTX_set_srp_username_callback(server_ctx, server_srp_cb);
632 server_ctx_data->srp_user = OPENSSL_strdup(extra->server.srp_user);
633 server_ctx_data->srp_password = OPENSSL_strdup(extra->server.srp_password);
634 SSL_CTX_set_srp_cb_arg(server_ctx, server_ctx_data);
635 }
636 if (extra->server2.srp_user != NULL) {
637 if (!TEST_ptr(server2_ctx))
638 goto err;
639 SSL_CTX_set_srp_username_callback(server2_ctx, server_srp_cb);
640 server2_ctx_data->srp_user = OPENSSL_strdup(extra->server2.srp_user);
641 server2_ctx_data->srp_password = OPENSSL_strdup(extra->server2.srp_password);
642 SSL_CTX_set_srp_cb_arg(server2_ctx, server2_ctx_data);
643 }
644 if (extra->client.srp_user != NULL) {
645 if (!TEST_true(SSL_CTX_set_srp_username(client_ctx,
646 extra->client.srp_user)))
647 goto err;
648 SSL_CTX_set_srp_client_pwd_callback(client_ctx, client_srp_cb);
649 client_ctx_data->srp_password = OPENSSL_strdup(extra->client.srp_password);
650 SSL_CTX_set_srp_cb_arg(client_ctx, client_ctx_data);
651 }
652 #endif /* !OPENSSL_NO_SRP */
653 return 1;
654 err:
655 return 0;
656 }
657
658 /* Configure per-SSL callbacks and other properties. */
659 static void configure_handshake_ssl(SSL *server, SSL *client,
660 const SSL_TEST_EXTRA_CONF *extra)
661 {
662 if (extra->client.servername != SSL_TEST_SERVERNAME_NONE)
663 SSL_set_tlsext_host_name(client,
664 ssl_servername_name(extra->client.servername));
665 }
666
667 /* The status for each connection phase. */
668 typedef enum {
669 PEER_SUCCESS,
670 PEER_RETRY,
671 PEER_ERROR,
672 PEER_WAITING,
673 PEER_TEST_FAILURE
674 } peer_status_t;
675
676 /* An SSL object and associated read-write buffers. */
677 typedef struct peer_st {
678 SSL *ssl;
679 /* Buffer lengths are int to match the SSL read/write API. */
680 unsigned char *write_buf;
681 int write_buf_len;
682 unsigned char *read_buf;
683 int read_buf_len;
684 int bytes_to_write;
685 int bytes_to_read;
686 peer_status_t status;
687 } PEER;
688
689 static int create_peer(PEER *peer, SSL_CTX *ctx)
690 {
691 static const int peer_buffer_size = 64 * 1024;
692 SSL *ssl = NULL;
693 unsigned char *read_buf = NULL, *write_buf = NULL;
694
695 if (!TEST_ptr(ssl = SSL_new(ctx))
696 || !TEST_ptr(write_buf = OPENSSL_zalloc(peer_buffer_size))
697 || !TEST_ptr(read_buf = OPENSSL_zalloc(peer_buffer_size)))
698 goto err;
699
700 peer->ssl = ssl;
701 peer->write_buf = write_buf;
702 peer->read_buf = read_buf;
703 peer->write_buf_len = peer->read_buf_len = peer_buffer_size;
704 return 1;
705 err:
706 SSL_free(ssl);
707 OPENSSL_free(write_buf);
708 OPENSSL_free(read_buf);
709 return 0;
710 }
711
712 static void peer_free_data(PEER *peer)
713 {
714 SSL_free(peer->ssl);
715 OPENSSL_free(peer->write_buf);
716 OPENSSL_free(peer->read_buf);
717 }
718
719 /*
720 * Note that we could do the handshake transparently under an SSL_write,
721 * but separating the steps is more helpful for debugging test failures.
722 */
723 static void do_handshake_step(PEER *peer)
724 {
725 if (!TEST_int_eq(peer->status, PEER_RETRY)) {
726 peer->status = PEER_TEST_FAILURE;
727 } else {
728 int ret = SSL_do_handshake(peer->ssl);
729
730 if (ret == 1) {
731 peer->status = PEER_SUCCESS;
732 } else if (ret == 0) {
733 peer->status = PEER_ERROR;
734 } else {
735 int error = SSL_get_error(peer->ssl, ret);
736 /* Memory bios should never block with SSL_ERROR_WANT_WRITE. */
737 if (error != SSL_ERROR_WANT_READ)
738 peer->status = PEER_ERROR;
739 }
740 }
741 }
742
743 /*-
744 * Send/receive some application data. The read-write sequence is
745 * Peer A: (R) W - first read will yield no data
746 * Peer B: R W
747 * ...
748 * Peer A: R W
749 * Peer B: R W
750 * Peer A: R
751 */
752 static void do_app_data_step(PEER *peer)
753 {
754 int ret = 1, write_bytes;
755
756 if (!TEST_int_eq(peer->status, PEER_RETRY)) {
757 peer->status = PEER_TEST_FAILURE;
758 return;
759 }
760
761 /* We read everything available... */
762 while (ret > 0 && peer->bytes_to_read) {
763 ret = SSL_read(peer->ssl, peer->read_buf, peer->read_buf_len);
764 if (ret > 0) {
765 if (!TEST_int_le(ret, peer->bytes_to_read)) {
766 peer->status = PEER_TEST_FAILURE;
767 return;
768 }
769 peer->bytes_to_read -= ret;
770 } else if (ret == 0) {
771 peer->status = PEER_ERROR;
772 return;
773 } else {
774 int error = SSL_get_error(peer->ssl, ret);
775 if (error != SSL_ERROR_WANT_READ) {
776 peer->status = PEER_ERROR;
777 return;
778 } /* Else continue with write. */
779 }
780 }
781
782 /* ... but we only write one write-buffer-full of data. */
783 write_bytes = peer->bytes_to_write < peer->write_buf_len ? peer->bytes_to_write :
784 peer->write_buf_len;
785 if (write_bytes) {
786 ret = SSL_write(peer->ssl, peer->write_buf, write_bytes);
787 if (ret > 0) {
788 /* SSL_write will only succeed with a complete write. */
789 if (!TEST_int_eq(ret, write_bytes)) {
790 peer->status = PEER_TEST_FAILURE;
791 return;
792 }
793 peer->bytes_to_write -= ret;
794 } else {
795 /*
796 * We should perhaps check for SSL_ERROR_WANT_READ/WRITE here
797 * but this doesn't yet occur with current app data sizes.
798 */
799 peer->status = PEER_ERROR;
800 return;
801 }
802 }
803
804 /*
805 * We could simply finish when there was nothing to read, and we have
806 * nothing left to write. But keeping track of the expected number of bytes
807 * to read gives us somewhat better guarantees that all data sent is in fact
808 * received.
809 */
810 if (!peer->bytes_to_write && !peer->bytes_to_read) {
811 peer->status = PEER_SUCCESS;
812 }
813 }
814
815 static void do_reneg_setup_step(const SSL_TEST_CTX *test_ctx, PEER *peer)
816 {
817 int ret;
818 char buf;
819
820 if (peer->status == PEER_SUCCESS) {
821 /*
822 * We are a client that succeeded this step previously, but the server
823 * wanted to retry. Probably there is a no_renegotiation warning alert
824 * waiting for us. Attempt to continue the handshake.
825 */
826 peer->status = PEER_RETRY;
827 do_handshake_step(peer);
828 return;
829 }
830
831 if (!TEST_int_eq(peer->status, PEER_RETRY)
832 || !TEST_true(test_ctx->handshake_mode
833 == SSL_TEST_HANDSHAKE_RENEG_SERVER
834 || test_ctx->handshake_mode
835 == SSL_TEST_HANDSHAKE_RENEG_CLIENT
836 || test_ctx->handshake_mode
837 == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER
838 || test_ctx->handshake_mode
839 == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT)) {
840 peer->status = PEER_TEST_FAILURE;
841 return;
842 }
843
844 /* Reset the count of the amount of app data we need to read/write */
845 peer->bytes_to_write = peer->bytes_to_read = test_ctx->app_data_size;
846
847 /* Check if we are the peer that is going to initiate */
848 if ((test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
849 && SSL_is_server(peer->ssl))
850 || (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT
851 && !SSL_is_server(peer->ssl))) {
852 /*
853 * If we already asked for a renegotiation then fall through to the
854 * SSL_read() below.
855 */
856 if (!SSL_renegotiate_pending(peer->ssl)) {
857 /*
858 * If we are the client we will always attempt to resume the
859 * session. The server may or may not resume dependent on the
860 * setting of SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
861 */
862 if (SSL_is_server(peer->ssl)) {
863 ret = SSL_renegotiate(peer->ssl);
864 } else {
865 if (test_ctx->extra.client.reneg_ciphers != NULL) {
866 if (!SSL_set_cipher_list(peer->ssl,
867 test_ctx->extra.client.reneg_ciphers)) {
868 peer->status = PEER_ERROR;
869 return;
870 }
871 ret = SSL_renegotiate(peer->ssl);
872 } else {
873 ret = SSL_renegotiate_abbreviated(peer->ssl);
874 }
875 }
876 if (!ret) {
877 peer->status = PEER_ERROR;
878 return;
879 }
880 do_handshake_step(peer);
881 /*
882 * If status is PEER_RETRY it means we're waiting on the peer to
883 * continue the handshake. As far as setting up the renegotiation is
884 * concerned that is a success. The next step will continue the
885 * handshake to its conclusion.
886 *
887 * If status is PEER_SUCCESS then we are the server and we have
888 * successfully sent the HelloRequest. We need to continue to wait
889 * until the handshake arrives from the client.
890 */
891 if (peer->status == PEER_RETRY)
892 peer->status = PEER_SUCCESS;
893 else if (peer->status == PEER_SUCCESS)
894 peer->status = PEER_RETRY;
895 return;
896 }
897 } else if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER
898 || test_ctx->handshake_mode
899 == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT) {
900 if (SSL_is_server(peer->ssl)
901 != (test_ctx->handshake_mode
902 == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER)) {
903 peer->status = PEER_SUCCESS;
904 return;
905 }
906
907 ret = SSL_key_update(peer->ssl, test_ctx->key_update_type);
908 if (!ret) {
909 peer->status = PEER_ERROR;
910 return;
911 }
912 do_handshake_step(peer);
913 /*
914 * This is a one step handshake. We shouldn't get anything other than
915 * PEER_SUCCESS
916 */
917 if (peer->status != PEER_SUCCESS)
918 peer->status = PEER_ERROR;
919 return;
920 }
921
922 /*
923 * The SSL object is still expecting app data, even though it's going to
924 * get a handshake message. We try to read, and it should fail - after which
925 * we should be in a handshake
926 */
927 ret = SSL_read(peer->ssl, &buf, sizeof(buf));
928 if (ret >= 0) {
929 /*
930 * We're not actually expecting data - we're expecting a reneg to
931 * start
932 */
933 peer->status = PEER_ERROR;
934 return;
935 } else {
936 int error = SSL_get_error(peer->ssl, ret);
937 if (error != SSL_ERROR_WANT_READ) {
938 peer->status = PEER_ERROR;
939 return;
940 }
941 /* If we're not in init yet then we're not done with setup yet */
942 if (!SSL_in_init(peer->ssl))
943 return;
944 }
945
946 peer->status = PEER_SUCCESS;
947 }
948
949
950 /*
951 * RFC 5246 says:
952 *
953 * Note that as of TLS 1.1,
954 * failure to properly close a connection no longer requires that a
955 * session not be resumed. This is a change from TLS 1.0 to conform
956 * with widespread implementation practice.
957 *
958 * However,
959 * (a) OpenSSL requires that a connection be shutdown for all protocol versions.
960 * (b) We test lower versions, too.
961 * So we just implement shutdown. We do a full bidirectional shutdown so that we
962 * can compare sent and received close_notify alerts and get some test coverage
963 * for SSL_shutdown as a bonus.
964 */
965 static void do_shutdown_step(PEER *peer)
966 {
967 int ret;
968
969 if (!TEST_int_eq(peer->status, PEER_RETRY)) {
970 peer->status = PEER_TEST_FAILURE;
971 return;
972 }
973 ret = SSL_shutdown(peer->ssl);
974
975 if (ret == 1) {
976 peer->status = PEER_SUCCESS;
977 } else if (ret < 0) { /* On 0, we retry. */
978 int error = SSL_get_error(peer->ssl, ret);
979
980 if (error != SSL_ERROR_WANT_READ && error != SSL_ERROR_WANT_WRITE)
981 peer->status = PEER_ERROR;
982 }
983 }
984
985 typedef enum {
986 HANDSHAKE,
987 RENEG_APPLICATION_DATA,
988 RENEG_SETUP,
989 RENEG_HANDSHAKE,
990 APPLICATION_DATA,
991 SHUTDOWN,
992 CONNECTION_DONE
993 } connect_phase_t;
994
995 static connect_phase_t next_phase(const SSL_TEST_CTX *test_ctx,
996 connect_phase_t phase)
997 {
998 switch (phase) {
999 case HANDSHAKE:
1000 if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
1001 || test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT
1002 || test_ctx->handshake_mode
1003 == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT
1004 || test_ctx->handshake_mode
1005 == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER)
1006 return RENEG_APPLICATION_DATA;
1007 return APPLICATION_DATA;
1008 case RENEG_APPLICATION_DATA:
1009 return RENEG_SETUP;
1010 case RENEG_SETUP:
1011 if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_KEY_UPDATE_SERVER
1012 || test_ctx->handshake_mode
1013 == SSL_TEST_HANDSHAKE_KEY_UPDATE_CLIENT)
1014 return APPLICATION_DATA;
1015 return RENEG_HANDSHAKE;
1016 case RENEG_HANDSHAKE:
1017 return APPLICATION_DATA;
1018 case APPLICATION_DATA:
1019 return SHUTDOWN;
1020 case SHUTDOWN:
1021 return CONNECTION_DONE;
1022 case CONNECTION_DONE:
1023 TEST_error("Trying to progress after connection done");
1024 break;
1025 }
1026 return -1;
1027 }
1028
1029 static void do_connect_step(const SSL_TEST_CTX *test_ctx, PEER *peer,
1030 connect_phase_t phase)
1031 {
1032 switch (phase) {
1033 case HANDSHAKE:
1034 do_handshake_step(peer);
1035 break;
1036 case RENEG_APPLICATION_DATA:
1037 do_app_data_step(peer);
1038 break;
1039 case RENEG_SETUP:
1040 do_reneg_setup_step(test_ctx, peer);
1041 break;
1042 case RENEG_HANDSHAKE:
1043 do_handshake_step(peer);
1044 break;
1045 case APPLICATION_DATA:
1046 do_app_data_step(peer);
1047 break;
1048 case SHUTDOWN:
1049 do_shutdown_step(peer);
1050 break;
1051 case CONNECTION_DONE:
1052 TEST_error("Action after connection done");
1053 break;
1054 }
1055 }
1056
1057 typedef enum {
1058 /* Both parties succeeded. */
1059 HANDSHAKE_SUCCESS,
1060 /* Client errored. */
1061 CLIENT_ERROR,
1062 /* Server errored. */
1063 SERVER_ERROR,
1064 /* Peers are in inconsistent state. */
1065 INTERNAL_ERROR,
1066 /* One or both peers not done. */
1067 HANDSHAKE_RETRY
1068 } handshake_status_t;
1069
1070 /*
1071 * Determine the handshake outcome.
1072 * last_status: the status of the peer to have acted last.
1073 * previous_status: the status of the peer that didn't act last.
1074 * client_spoke_last: 1 if the client went last.
1075 */
1076 static handshake_status_t handshake_status(peer_status_t last_status,
1077 peer_status_t previous_status,
1078 int client_spoke_last)
1079 {
1080 switch (last_status) {
1081 case PEER_TEST_FAILURE:
1082 return INTERNAL_ERROR;
1083
1084 case PEER_WAITING:
1085 /* Shouldn't ever happen */
1086 return INTERNAL_ERROR;
1087
1088 case PEER_SUCCESS:
1089 switch (previous_status) {
1090 case PEER_TEST_FAILURE:
1091 return INTERNAL_ERROR;
1092 case PEER_SUCCESS:
1093 /* Both succeeded. */
1094 return HANDSHAKE_SUCCESS;
1095 case PEER_WAITING:
1096 case PEER_RETRY:
1097 /* Let the first peer finish. */
1098 return HANDSHAKE_RETRY;
1099 case PEER_ERROR:
1100 /*
1101 * Second peer succeeded despite the fact that the first peer
1102 * already errored. This shouldn't happen.
1103 */
1104 return INTERNAL_ERROR;
1105 }
1106
1107 case PEER_RETRY:
1108 return HANDSHAKE_RETRY;
1109
1110 case PEER_ERROR:
1111 switch (previous_status) {
1112 case PEER_TEST_FAILURE:
1113 return INTERNAL_ERROR;
1114 case PEER_WAITING:
1115 /* The client failed immediately before sending the ClientHello */
1116 return client_spoke_last ? CLIENT_ERROR : INTERNAL_ERROR;
1117 case PEER_SUCCESS:
1118 /*
1119 * First peer succeeded but second peer errored.
1120 * TODO(emilia): we should be able to continue here (with some
1121 * application data?) to ensure the first peer receives the
1122 * alert / close_notify.
1123 * (No tests currently exercise this branch.)
1124 */
1125 return client_spoke_last ? CLIENT_ERROR : SERVER_ERROR;
1126 case PEER_RETRY:
1127 /* We errored; let the peer finish. */
1128 return HANDSHAKE_RETRY;
1129 case PEER_ERROR:
1130 /* Both peers errored. Return the one that errored first. */
1131 return client_spoke_last ? SERVER_ERROR : CLIENT_ERROR;
1132 }
1133 }
1134 /* Control should never reach here. */
1135 return INTERNAL_ERROR;
1136 }
1137
1138 /* Convert unsigned char buf's that shouldn't contain any NUL-bytes to char. */
1139 static char *dup_str(const unsigned char *in, size_t len)
1140 {
1141 char *ret = NULL;
1142
1143 if (len == 0)
1144 return NULL;
1145
1146 /* Assert that the string does not contain NUL-bytes. */
1147 if (TEST_size_t_eq(OPENSSL_strnlen((const char*)(in), len), len))
1148 TEST_ptr(ret = OPENSSL_strndup((const char*)(in), len));
1149 return ret;
1150 }
1151
1152 static int pkey_type(EVP_PKEY *pkey)
1153 {
1154 int nid = EVP_PKEY_id(pkey);
1155
1156 #ifndef OPENSSL_NO_EC
1157 if (nid == EVP_PKEY_EC) {
1158 const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
1159 return EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
1160 }
1161 #endif
1162 return nid;
1163 }
1164
1165 static int peer_pkey_type(SSL *s)
1166 {
1167 X509 *x = SSL_get_peer_certificate(s);
1168
1169 if (x != NULL) {
1170 int nid = pkey_type(X509_get0_pubkey(x));
1171
1172 X509_free(x);
1173 return nid;
1174 }
1175 return NID_undef;
1176 }
1177
1178 #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK)
1179 static int set_sock_as_sctp(int sock)
1180 {
1181 /*
1182 * For SCTP we have to set various options on the socket prior to
1183 * connecting. This is done automatically by BIO_new_dgram_sctp().
1184 * We don't actually need the created BIO though so we free it again
1185 * immediately.
1186 */
1187 BIO *tmpbio = BIO_new_dgram_sctp(sock, BIO_NOCLOSE);
1188
1189 if (tmpbio == NULL)
1190 return 0;
1191 BIO_free(tmpbio);
1192
1193 return 1;
1194 }
1195
1196 static int create_sctp_socks(int *ssock, int *csock)
1197 {
1198 BIO_ADDRINFO *res = NULL;
1199 const BIO_ADDRINFO *ai = NULL;
1200 int lsock = INVALID_SOCKET, asock = INVALID_SOCKET;
1201 int consock = INVALID_SOCKET;
1202 int ret = 0;
1203 int family = 0;
1204
1205 if (BIO_sock_init() != 1)
1206 return 0;
1207
1208 /*
1209 * Port is 4463. It could be anything. It will fail if it's already being
1210 * used for some other SCTP service. It seems unlikely though so we don't
1211 * worry about it here.
1212 */
1213 if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_SERVER, family, SOCK_STREAM,
1214 IPPROTO_SCTP, &res))
1215 return 0;
1216
1217 for (ai = res; ai != NULL; ai = BIO_ADDRINFO_next(ai)) {
1218 family = BIO_ADDRINFO_family(ai);
1219 lsock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0);
1220 if (lsock == INVALID_SOCKET) {
1221 /* Maybe the kernel doesn't support the socket family, even if
1222 * BIO_lookup() added it in the returned result...
1223 */
1224 continue;
1225 }
1226
1227 if (!set_sock_as_sctp(lsock)
1228 || !BIO_listen(lsock, BIO_ADDRINFO_address(ai),
1229 BIO_SOCK_REUSEADDR)) {
1230 BIO_closesocket(lsock);
1231 lsock = INVALID_SOCKET;
1232 continue;
1233 }
1234
1235 /* Success, don't try any more addresses */
1236 break;
1237 }
1238
1239 if (lsock == INVALID_SOCKET)
1240 goto err;
1241
1242 BIO_ADDRINFO_free(res);
1243 res = NULL;
1244
1245 if (!BIO_lookup_ex(NULL, "4463", BIO_LOOKUP_CLIENT, family, SOCK_STREAM,
1246 IPPROTO_SCTP, &res))
1247 goto err;
1248
1249 consock = BIO_socket(family, SOCK_STREAM, IPPROTO_SCTP, 0);
1250 if (consock == INVALID_SOCKET)
1251 goto err;
1252
1253 if (!set_sock_as_sctp(consock)
1254 || !BIO_connect(consock, BIO_ADDRINFO_address(res), 0)
1255 || !BIO_socket_nbio(consock, 1))
1256 goto err;
1257
1258 asock = BIO_accept_ex(lsock, NULL, BIO_SOCK_NONBLOCK);
1259 if (asock == INVALID_SOCKET)
1260 goto err;
1261
1262 *csock = consock;
1263 *ssock = asock;
1264 consock = asock = INVALID_SOCKET;
1265 ret = 1;
1266
1267 err:
1268 BIO_ADDRINFO_free(res);
1269 if (consock != INVALID_SOCKET)
1270 BIO_closesocket(consock);
1271 if (lsock != INVALID_SOCKET)
1272 BIO_closesocket(lsock);
1273 if (asock != INVALID_SOCKET)
1274 BIO_closesocket(asock);
1275 return ret;
1276 }
1277 #endif
1278
1279 /*
1280 * Note that |extra| points to the correct client/server configuration
1281 * within |test_ctx|. When configuring the handshake, general mode settings
1282 * are taken from |test_ctx|, and client/server-specific settings should be
1283 * taken from |extra|.
1284 *
1285 * The configuration code should never reach into |test_ctx->extra| or
1286 * |test_ctx->resume_extra| directly.
1287 *
1288 * (We could refactor test mode settings into a substructure. This would result
1289 * in cleaner argument passing but would complicate the test configuration
1290 * parsing.)
1291 */
1292 static HANDSHAKE_RESULT *do_handshake_internal(
1293 SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx,
1294 const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra,
1295 SSL_SESSION *session_in, SSL_SESSION **session_out)
1296 {
1297 PEER server, client;
1298 BIO *client_to_server = NULL, *server_to_client = NULL;
1299 HANDSHAKE_EX_DATA server_ex_data, client_ex_data;
1300 CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data;
1301 HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new();
1302 int client_turn = 1, client_turn_count = 0;
1303 connect_phase_t phase = HANDSHAKE;
1304 handshake_status_t status = HANDSHAKE_RETRY;
1305 const unsigned char* tick = NULL;
1306 size_t tick_len = 0;
1307 SSL_SESSION* sess = NULL;
1308 const unsigned char *proto = NULL;
1309 /* API dictates unsigned int rather than size_t. */
1310 unsigned int proto_len = 0;
1311 EVP_PKEY *tmp_key;
1312 const STACK_OF(X509_NAME) *names;
1313 time_t start;
1314
1315 if (ret == NULL)
1316 return NULL;
1317
1318 memset(&server_ctx_data, 0, sizeof(server_ctx_data));
1319 memset(&server2_ctx_data, 0, sizeof(server2_ctx_data));
1320 memset(&client_ctx_data, 0, sizeof(client_ctx_data));
1321 memset(&server, 0, sizeof(server));
1322 memset(&client, 0, sizeof(client));
1323 memset(&server_ex_data, 0, sizeof(server_ex_data));
1324 memset(&client_ex_data, 0, sizeof(client_ex_data));
1325
1326 if (!configure_handshake_ctx(server_ctx, server2_ctx, client_ctx,
1327 test_ctx, extra, &server_ctx_data,
1328 &server2_ctx_data, &client_ctx_data)) {
1329 TEST_note("configure_handshake_ctx");
1330 return NULL;
1331 }
1332
1333 /* Setup SSL and buffers; additional configuration happens below. */
1334 if (!create_peer(&server, server_ctx)) {
1335 TEST_note("creating server context");
1336 goto err;
1337 }
1338 if (!create_peer(&client, client_ctx)) {
1339 TEST_note("creating client context");
1340 goto err;
1341 }
1342
1343 server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size;
1344 client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size;
1345
1346 configure_handshake_ssl(server.ssl, client.ssl, extra);
1347 if (session_in != NULL) {
1348 /* In case we're testing resumption without tickets. */
1349 if (!TEST_true(SSL_CTX_add_session(server_ctx, session_in))
1350 || !TEST_true(SSL_set_session(client.ssl, session_in)))
1351 goto err;
1352 }
1353
1354 ret->result = SSL_TEST_INTERNAL_ERROR;
1355
1356 if (test_ctx->use_sctp) {
1357 #if !defined(OPENSSL_NO_SCTP) && !defined(OPENSSL_NO_SOCK)
1358 int csock, ssock;
1359
1360 if (create_sctp_socks(&ssock, &csock)) {
1361 client_to_server = BIO_new_dgram_sctp(csock, BIO_CLOSE);
1362 server_to_client = BIO_new_dgram_sctp(ssock, BIO_CLOSE);
1363 }
1364 #endif
1365 } else {
1366 client_to_server = BIO_new(BIO_s_mem());
1367 server_to_client = BIO_new(BIO_s_mem());
1368 }
1369
1370 if (!TEST_ptr(client_to_server)
1371 || !TEST_ptr(server_to_client))
1372 goto err;
1373
1374 /* Non-blocking bio. */
1375 BIO_set_nbio(client_to_server, 1);
1376 BIO_set_nbio(server_to_client, 1);
1377
1378 SSL_set_connect_state(client.ssl);
1379 SSL_set_accept_state(server.ssl);
1380
1381 /* The bios are now owned by the SSL object. */
1382 if (test_ctx->use_sctp) {
1383 SSL_set_bio(client.ssl, client_to_server, client_to_server);
1384 SSL_set_bio(server.ssl, server_to_client, server_to_client);
1385 } else {
1386 SSL_set_bio(client.ssl, server_to_client, client_to_server);
1387 if (!TEST_int_gt(BIO_up_ref(server_to_client), 0)
1388 || !TEST_int_gt(BIO_up_ref(client_to_server), 0))
1389 goto err;
1390 SSL_set_bio(server.ssl, client_to_server, server_to_client);
1391 }
1392
1393 ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL);
1394 if (!TEST_int_ge(ex_data_idx, 0)
1395 || !TEST_int_eq(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data), 1)
1396 || !TEST_int_eq(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data), 1))
1397 goto err;
1398
1399 SSL_set_info_callback(server.ssl, &info_cb);
1400 SSL_set_info_callback(client.ssl, &info_cb);
1401
1402 client.status = PEER_RETRY;
1403 server.status = PEER_WAITING;
1404
1405 start = time(NULL);
1406
1407 /*
1408 * Half-duplex handshake loop.
1409 * Client and server speak to each other synchronously in the same process.
1410 * We use non-blocking BIOs, so whenever one peer blocks for read, it
1411 * returns PEER_RETRY to indicate that it's the other peer's turn to write.
1412 * The handshake succeeds once both peers have succeeded. If one peer
1413 * errors out, we also let the other peer retry (and presumably fail).
1414 */
1415 for(;;) {
1416 if (client_turn) {
1417 do_connect_step(test_ctx, &client, phase);
1418 status = handshake_status(client.status, server.status,
1419 1 /* client went last */);
1420 if (server.status == PEER_WAITING)
1421 server.status = PEER_RETRY;
1422 } else {
1423 do_connect_step(test_ctx, &server, phase);
1424 status = handshake_status(server.status, client.status,
1425 0 /* server went last */);
1426 }
1427
1428 switch (status) {
1429 case HANDSHAKE_SUCCESS:
1430 client_turn_count = 0;
1431 phase = next_phase(test_ctx, phase);
1432 if (phase == CONNECTION_DONE) {
1433 ret->result = SSL_TEST_SUCCESS;
1434 goto err;
1435 } else {
1436 client.status = server.status = PEER_RETRY;
1437 /*
1438 * For now, client starts each phase. Since each phase is
1439 * started separately, we can later control this more
1440 * precisely, for example, to test client-initiated and
1441 * server-initiated shutdown.
1442 */
1443 client_turn = 1;
1444 break;
1445 }
1446 case CLIENT_ERROR:
1447 ret->result = SSL_TEST_CLIENT_FAIL;
1448 goto err;
1449 case SERVER_ERROR:
1450 ret->result = SSL_TEST_SERVER_FAIL;
1451 goto err;
1452 case INTERNAL_ERROR:
1453 ret->result = SSL_TEST_INTERNAL_ERROR;
1454 goto err;
1455 case HANDSHAKE_RETRY:
1456 if (test_ctx->use_sctp) {
1457 if (time(NULL) - start > 3) {
1458 /*
1459 * We've waited for too long. Give up.
1460 */
1461 ret->result = SSL_TEST_INTERNAL_ERROR;
1462 goto err;
1463 }
1464 /*
1465 * With "real" sockets we only swap to processing the peer
1466 * if they are expecting to retry. Otherwise we just retry the
1467 * same endpoint again.
1468 */
1469 if ((client_turn && server.status == PEER_RETRY)
1470 || (!client_turn && client.status == PEER_RETRY))
1471 client_turn ^= 1;
1472 } else {
1473 if (client_turn_count++ >= 2000) {
1474 /*
1475 * At this point, there's been so many PEER_RETRY in a row
1476 * that it's likely both sides are stuck waiting for a read.
1477 * It's time to give up.
1478 */
1479 ret->result = SSL_TEST_INTERNAL_ERROR;
1480 goto err;
1481 }
1482
1483 /* Continue. */
1484 client_turn ^= 1;
1485 }
1486 break;
1487 }
1488 }
1489 err:
1490 ret->server_alert_sent = server_ex_data.alert_sent;
1491 ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent;
1492 ret->server_alert_received = client_ex_data.alert_received;
1493 ret->client_alert_sent = client_ex_data.alert_sent;
1494 ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent;
1495 ret->client_alert_received = server_ex_data.alert_received;
1496 ret->server_protocol = SSL_version(server.ssl);
1497 ret->client_protocol = SSL_version(client.ssl);
1498 ret->servername = server_ex_data.servername;
1499 if ((sess = SSL_get0_session(client.ssl)) != NULL)
1500 SSL_SESSION_get0_ticket(sess, &tick, &tick_len);
1501 if (tick == NULL || tick_len == 0)
1502 ret->session_ticket = SSL_TEST_SESSION_TICKET_NO;
1503 else
1504 ret->session_ticket = SSL_TEST_SESSION_TICKET_YES;
1505 ret->compression = (SSL_get_current_compression(client.ssl) == NULL)
1506 ? SSL_TEST_COMPRESSION_NO
1507 : SSL_TEST_COMPRESSION_YES;
1508 ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call;
1509
1510 #ifndef OPENSSL_NO_NEXTPROTONEG
1511 SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len);
1512 ret->client_npn_negotiated = dup_str(proto, proto_len);
1513
1514 SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len);
1515 ret->server_npn_negotiated = dup_str(proto, proto_len);
1516 #endif
1517
1518 SSL_get0_alpn_selected(client.ssl, &proto, &proto_len);
1519 ret->client_alpn_negotiated = dup_str(proto, proto_len);
1520
1521 SSL_get0_alpn_selected(server.ssl, &proto, &proto_len);
1522 ret->server_alpn_negotiated = dup_str(proto, proto_len);
1523
1524 ret->client_resumed = SSL_session_reused(client.ssl);
1525 ret->server_resumed = SSL_session_reused(server.ssl);
1526
1527 if (session_out != NULL)
1528 *session_out = SSL_get1_session(client.ssl);
1529
1530 if (SSL_get_server_tmp_key(client.ssl, &tmp_key)) {
1531 ret->tmp_key_type = pkey_type(tmp_key);
1532 EVP_PKEY_free(tmp_key);
1533 }
1534
1535 SSL_get_peer_signature_nid(client.ssl, &ret->server_sign_hash);
1536 SSL_get_peer_signature_nid(server.ssl, &ret->client_sign_hash);
1537
1538 SSL_get_peer_signature_type_nid(client.ssl, &ret->server_sign_type);
1539 SSL_get_peer_signature_type_nid(server.ssl, &ret->client_sign_type);
1540
1541 names = SSL_get0_peer_CA_list(client.ssl);
1542 if (names == NULL)
1543 ret->client_ca_names = NULL;
1544 else
1545 ret->client_ca_names = SSL_dup_CA_list(names);
1546
1547 names = SSL_get0_peer_CA_list(server.ssl);
1548 if (names == NULL)
1549 ret->server_ca_names = NULL;
1550 else
1551 ret->server_ca_names = SSL_dup_CA_list(names);
1552
1553 ret->server_cert_type = peer_pkey_type(client.ssl);
1554 ret->client_cert_type = peer_pkey_type(server.ssl);
1555
1556 ctx_data_free_data(&server_ctx_data);
1557 ctx_data_free_data(&server2_ctx_data);
1558 ctx_data_free_data(&client_ctx_data);
1559
1560 peer_free_data(&server);
1561 peer_free_data(&client);
1562 return ret;
1563 }
1564
1565 HANDSHAKE_RESULT *do_handshake(SSL_CTX *server_ctx, SSL_CTX *server2_ctx,
1566 SSL_CTX *client_ctx, SSL_CTX *resume_server_ctx,
1567 SSL_CTX *resume_client_ctx,
1568 const SSL_TEST_CTX *test_ctx)
1569 {
1570 HANDSHAKE_RESULT *result;
1571 SSL_SESSION *session = NULL;
1572
1573 result = do_handshake_internal(server_ctx, server2_ctx, client_ctx,
1574 test_ctx, &test_ctx->extra,
1575 NULL, &session);
1576 if (result == NULL
1577 || test_ctx->handshake_mode != SSL_TEST_HANDSHAKE_RESUME
1578 || result->result == SSL_TEST_INTERNAL_ERROR)
1579 goto end;
1580
1581 if (result->result != SSL_TEST_SUCCESS) {
1582 result->result = SSL_TEST_FIRST_HANDSHAKE_FAILED;
1583 goto end;
1584 }
1585
1586 HANDSHAKE_RESULT_free(result);
1587 /* We don't support SNI on second handshake yet, so server2_ctx is NULL. */
1588 result = do_handshake_internal(resume_server_ctx, NULL, resume_client_ctx,
1589 test_ctx, &test_ctx->resume_extra,
1590 session, NULL);
1591 end:
1592 SSL_SESSION_free(session);
1593 return result;
1594 }