]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Refactor parse_num and use it to parse optarg.
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <signal.h>
39 #include <dlfcn.h>
40
41
42 /*
43 * following taken from linux/blkpg.h because they aren't
44 * anywhere else and it isn't safe to #include linux/ * stuff.
45 */
46
47 #define BLKPG _IO(0x12,105)
48
49 /* The argument structure */
50 struct blkpg_ioctl_arg {
51 int op;
52 int flags;
53 int datalen;
54 void *data;
55 };
56
57 /* The subfunctions (for the op field) */
58 #define BLKPG_ADD_PARTITION 1
59 #define BLKPG_DEL_PARTITION 2
60
61 /* Sizes of name fields. Unused at present. */
62 #define BLKPG_DEVNAMELTH 64
63 #define BLKPG_VOLNAMELTH 64
64
65 /* The data structure for ADD_PARTITION and DEL_PARTITION */
66 struct blkpg_partition {
67 long long start; /* starting offset in bytes */
68 long long length; /* length in bytes */
69 int pno; /* partition number */
70 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
71 to be used in kernel messages */
72 char volname[BLKPG_VOLNAMELTH]; /* volume label */
73 };
74
75 #include "part.h"
76
77 /* Force a compilation error if condition is true */
78 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
79
80 /* Force a compilation error if condition is true, but also produce a
81 result (of value 0 and type size_t), so the expression can be used
82 e.g. in a structure initializer (or where-ever else comma expressions
83 aren't permitted). */
84 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
85
86 static int is_dlm_hooks_ready = 0;
87
88 int dlm_funs_ready(void)
89 {
90 return is_dlm_hooks_ready ? 1 : 0;
91 }
92
93 static struct dlm_hooks *dlm_hooks = NULL;
94 struct dlm_lock_resource *dlm_lock_res = NULL;
95 static int ast_called = 0;
96
97 struct dlm_lock_resource {
98 dlm_lshandle_t *ls;
99 struct dlm_lksb lksb;
100 };
101
102 /* Using poll(2) to wait for and dispatch ASTs */
103 static int poll_for_ast(dlm_lshandle_t ls)
104 {
105 struct pollfd pfd;
106
107 pfd.fd = dlm_hooks->ls_get_fd(ls);
108 pfd.events = POLLIN;
109
110 while (!ast_called)
111 {
112 if (poll(&pfd, 1, 0) < 0)
113 {
114 perror("poll");
115 return -1;
116 }
117 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
118 }
119 ast_called = 0;
120
121 return 0;
122 }
123
124 static void dlm_ast(void *arg)
125 {
126 ast_called = 1;
127 }
128
129 static char *cluster_name = NULL;
130 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
131 int cluster_get_dlmlock(void)
132 {
133 int ret = -1;
134 char str[64];
135 int flags = LKF_NOQUEUE;
136 int retry_count = 0;
137
138 if (!dlm_funs_ready()) {
139 pr_err("Something wrong with dlm library\n");
140 return -1;
141 }
142
143 ret = get_cluster_name(&cluster_name);
144 if (ret) {
145 pr_err("The md can't get cluster name\n");
146 return -1;
147 }
148
149 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
150 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
151 if (!dlm_lock_res->ls) {
152 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
153 if (!dlm_lock_res->ls) {
154 pr_err("%s failed to create lockspace\n", cluster_name);
155 return -ENOMEM;
156 }
157 } else {
158 pr_err("open existed %s lockspace\n", cluster_name);
159 }
160
161 snprintf(str, 64, "bitmap%s", cluster_name);
162 retry:
163 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
164 &dlm_lock_res->lksb, flags, str, strlen(str),
165 0, dlm_ast, dlm_lock_res, NULL, NULL);
166 if (ret) {
167 pr_err("error %d when get PW mode on lock %s\n", errno, str);
168 /* let's try several times if EAGAIN happened */
169 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
170 sleep(10);
171 retry_count++;
172 goto retry;
173 }
174 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
175 return ret;
176 }
177
178 /* Wait for it to complete */
179 poll_for_ast(dlm_lock_res->ls);
180
181 if (dlm_lock_res->lksb.sb_status) {
182 pr_err("failed to lock cluster\n");
183 return -1;
184 }
185 return 1;
186 }
187
188 int cluster_release_dlmlock(void)
189 {
190 int ret = -1;
191
192 if (!cluster_name)
193 goto out;
194
195 if (!dlm_lock_res->lksb.sb_lkid)
196 goto out;
197
198 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
199 dlm_lock_res->lksb.sb_lkid, 0,
200 &dlm_lock_res->lksb);
201 if (ret) {
202 pr_err("error %d happened when unlock\n", errno);
203 /* XXX make sure the lock is unlocked eventually */
204 goto out;
205 }
206
207 /* Wait for it to complete */
208 poll_for_ast(dlm_lock_res->ls);
209
210 errno = dlm_lock_res->lksb.sb_status;
211 if (errno != EUNLOCK) {
212 pr_err("error %d happened in ast when unlock lockspace\n",
213 errno);
214 /* XXX make sure the lockspace is unlocked eventually */
215 goto out;
216 }
217
218 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
219 if (ret) {
220 pr_err("error %d happened when release lockspace\n", errno);
221 /* XXX make sure the lockspace is released eventually */
222 goto out;
223 }
224 free(dlm_lock_res);
225
226 out:
227 return ret;
228 }
229
230 int md_array_valid(int fd)
231 {
232 struct mdinfo *sra;
233 int ret;
234
235 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
236 if (sra) {
237 if (sra->array_state != ARRAY_UNKNOWN_STATE)
238 ret = 0;
239 else
240 ret = -ENODEV;
241
242 free(sra);
243 } else {
244 /*
245 * GET_ARRAY_INFO doesn't provide access to the proper state
246 * information, so fallback to a basic check for raid_disks != 0
247 */
248 ret = ioctl(fd, RAID_VERSION);
249 }
250
251 return !ret;
252 }
253
254 int md_array_active(int fd)
255 {
256 struct mdinfo *sra;
257 struct mdu_array_info_s array;
258 int ret = 0;
259
260 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
261 if (sra) {
262 if (!md_array_is_active(sra))
263 ret = -ENODEV;
264
265 free(sra);
266 } else {
267 /*
268 * GET_ARRAY_INFO doesn't provide access to the proper state
269 * information, so fallback to a basic check for raid_disks != 0
270 */
271 ret = ioctl(fd, GET_ARRAY_INFO, &array);
272 }
273
274 return !ret;
275 }
276
277 int md_array_is_active(struct mdinfo *info)
278 {
279 return (info->array_state != ARRAY_CLEAR &&
280 info->array_state != ARRAY_INACTIVE &&
281 info->array_state != ARRAY_UNKNOWN_STATE);
282 }
283
284 /*
285 * Get array info from the kernel. Longer term we want to deprecate the
286 * ioctl and get it from sysfs.
287 */
288 int md_get_array_info(int fd, struct mdu_array_info_s *array)
289 {
290 return ioctl(fd, GET_ARRAY_INFO, array);
291 }
292
293 /*
294 * Set array info
295 */
296 int md_set_array_info(int fd, struct mdu_array_info_s *array)
297 {
298 return ioctl(fd, SET_ARRAY_INFO, array);
299 }
300
301 /*
302 * Get disk info from the kernel.
303 */
304 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
305 {
306 return ioctl(fd, GET_DISK_INFO, disk);
307 }
308
309 int get_linux_version()
310 {
311 struct utsname name;
312 char *cp;
313 int a = 0, b = 0,c = 0;
314 if (uname(&name) <0)
315 return -1;
316
317 cp = name.release;
318 a = strtoul(cp, &cp, 10);
319 if (*cp == '.')
320 b = strtoul(cp+1, &cp, 10);
321 if (*cp == '.')
322 c = strtoul(cp+1, &cp, 10);
323
324 return (a*1000000)+(b*1000)+c;
325 }
326
327 int mdadm_version(char *version)
328 {
329 int a, b, c;
330 char *cp;
331
332 if (!version)
333 version = Version;
334
335 cp = strchr(version, '-');
336 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
337 return -1;
338 cp += 3;
339 a = strtoul(cp, &cp, 10);
340 if (*cp != '.')
341 return -1;
342 b = strtoul(cp+1, &cp, 10);
343 if (*cp == '.')
344 c = strtoul(cp+1, &cp, 10);
345 else
346 c = 0;
347 if (*cp != ' ' && *cp != '-')
348 return -1;
349 return (a*1000000)+(b*1000)+c;
350 }
351
352 unsigned long long parse_size(char *size)
353 {
354 /* parse 'size' which should be a number optionally
355 * followed by 'K', 'M'. 'G' or 'T'.
356 * Without a suffix, K is assumed.
357 * Number returned is in sectors (half-K)
358 * INVALID_SECTORS returned on error.
359 */
360 char *c;
361 long long s = strtoll(size, &c, 10);
362 if (s > 0) {
363 switch (*c) {
364 case 'K':
365 c++;
366 default:
367 s *= 2;
368 break;
369 case 'M':
370 c++;
371 s *= 1024 * 2;
372 break;
373 case 'G':
374 c++;
375 s *= 1024 * 1024 * 2;
376 break;
377 case 'T':
378 c++;
379 s *= 1024 * 1024 * 1024 * 2LL;
380 break;
381 case 's': /* sectors */
382 c++;
383 break;
384 }
385 } else
386 s = INVALID_SECTORS;
387 if (*c)
388 s = INVALID_SECTORS;
389 return s;
390 }
391
392 int is_near_layout_10(int layout)
393 {
394 int fc, fo;
395
396 fc = (layout >> 8) & 255;
397 fo = layout & (1 << 16);
398 if (fc > 1 || fo > 0)
399 return 0;
400 return 1;
401 }
402
403 int parse_layout_10(char *layout)
404 {
405 int copies, rv;
406 char *cp;
407 /* Parse the layout string for raid10 */
408 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
409 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
410 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
411 copies > 200 ||
412 *cp)
413 return -1;
414 if (layout[0] == 'n')
415 rv = 256 + copies;
416 else if (layout[0] == 'o')
417 rv = 0x10000 + (copies<<8) + 1;
418 else
419 rv = 1 + (copies<<8);
420 return rv;
421 }
422
423 int parse_layout_faulty(char *layout)
424 {
425 if (!layout)
426 return -1;
427 /* Parse the layout string for 'faulty' */
428 int ln = strcspn(layout, "0123456789");
429 char *m = xstrdup(layout);
430 int mode;
431 m[ln] = 0;
432 mode = map_name(faultylayout, m);
433 if (mode == UnSet)
434 return -1;
435
436 return mode | (atoi(layout+ln)<< ModeShift);
437 }
438
439 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
440 {
441 char *dev;
442 *slot = strtoul(input, &dev, 10);
443 if (dev == input || dev[0] != ':')
444 return -1;
445 *devname = dev+1;
446 return 0;
447 }
448
449 void remove_partitions(int fd)
450 {
451 /* remove partitions from this block devices.
452 * This is used for components added to an array
453 */
454 #ifdef BLKPG_DEL_PARTITION
455 struct blkpg_ioctl_arg a;
456 struct blkpg_partition p;
457
458 a.op = BLKPG_DEL_PARTITION;
459 a.data = (void*)&p;
460 a.datalen = sizeof(p);
461 a.flags = 0;
462 memset(a.data, 0, a.datalen);
463 for (p.pno = 0; p.pno < 16; p.pno++)
464 ioctl(fd, BLKPG, &a);
465 #endif
466 }
467
468 int test_partition(int fd)
469 {
470 /* Check if fd is a whole-disk or a partition.
471 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
472 * will return ENXIO on an invalid partition number.
473 */
474 struct blkpg_ioctl_arg a;
475 struct blkpg_partition p;
476 a.op = BLKPG_DEL_PARTITION;
477 a.data = (void*)&p;
478 a.datalen = sizeof(p);
479 a.flags = 0;
480 memset(a.data, 0, a.datalen);
481 p.pno = 1<<30;
482 if (ioctl(fd, BLKPG, &a) == 0)
483 /* Very unlikely, but not a partition */
484 return 0;
485 if (errno == ENXIO || errno == ENOTTY)
486 /* not a partition */
487 return 0;
488
489 return 1;
490 }
491
492 int test_partition_from_id(dev_t id)
493 {
494 char buf[20];
495 int fd, rv;
496
497 sprintf(buf, "%d:%d", major(id), minor(id));
498 fd = dev_open(buf, O_RDONLY);
499 if (fd < 0)
500 return -1;
501 rv = test_partition(fd);
502 close(fd);
503 return rv;
504 }
505
506 int enough(int level, int raid_disks, int layout, int clean, char *avail)
507 {
508 int copies, first;
509 int i;
510 int avail_disks = 0;
511
512 for (i = 0; i < raid_disks; i++)
513 avail_disks += !!avail[i];
514
515 switch (level) {
516 case 10:
517 /* This is the tricky one - we need to check
518 * which actual disks are present.
519 */
520 copies = (layout&255)* ((layout>>8) & 255);
521 first = 0;
522 do {
523 /* there must be one of the 'copies' form 'first' */
524 int n = copies;
525 int cnt = 0;
526 int this = first;
527 while (n--) {
528 if (avail[this])
529 cnt++;
530 this = (this+1) % raid_disks;
531 }
532 if (cnt == 0)
533 return 0;
534 first = (first+(layout&255)) % raid_disks;
535 } while (first != 0);
536 return 1;
537
538 case LEVEL_MULTIPATH:
539 return avail_disks>= 1;
540 case LEVEL_LINEAR:
541 case 0:
542 return avail_disks == raid_disks;
543 case 1:
544 return avail_disks >= 1;
545 case 4:
546 if (avail_disks == raid_disks - 1 &&
547 !avail[raid_disks - 1])
548 /* If just the parity device is missing, then we
549 * have enough, even if not clean
550 */
551 return 1;
552 /* FALL THROUGH */
553 case 5:
554 if (clean)
555 return avail_disks >= raid_disks-1;
556 else
557 return avail_disks >= raid_disks;
558 case 6:
559 if (clean)
560 return avail_disks >= raid_disks-2;
561 else
562 return avail_disks >= raid_disks;
563 default:
564 return 0;
565 }
566 }
567
568 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
569 {
570 int i, j;
571 char uuid[16];
572 char *c = buf;
573 strcpy(c, "UUID-");
574 c += strlen(c);
575 copy_uuid(uuid, id, swap);
576 for (i = 0; i < 4; i++) {
577 if (i)
578 *c++ = sep;
579 for (j = 3; j >= 0; j--) {
580 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
581 c+= 2;
582 }
583 }
584 return buf;
585
586 }
587
588 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
589 char *buf, char sep)
590 {
591 // dirty hack to work around an issue with super1 superblocks...
592 // super1 superblocks need swapuuid set in order for assembly to
593 // work, but can't have it set if we want this printout to match
594 // all the other uuid printouts in super1.c, so we force swapuuid
595 // to 1 to make our printout match the rest of super1
596 #if __BYTE_ORDER == BIG_ENDIAN
597 return __fname_from_uuid(info->uuid, 1, buf, sep);
598 #else
599 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
600 st->ss->swapuuid, buf, sep);
601 #endif
602 }
603
604 int check_ext2(int fd, char *name)
605 {
606 /*
607 * Check for an ext2fs file system.
608 * Superblock is always 1K at 1K offset
609 *
610 * s_magic is le16 at 56 == 0xEF53
611 * report mtime - le32 at 44
612 * blocks - le32 at 4
613 * logblksize - le32 at 24
614 */
615 unsigned char sb[1024];
616 time_t mtime;
617 unsigned long long size;
618 int bsize;
619 if (lseek(fd, 1024,0)!= 1024)
620 return 0;
621 if (read(fd, sb, 1024)!= 1024)
622 return 0;
623 if (sb[56] != 0x53 || sb[57] != 0xef)
624 return 0;
625
626 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
627 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
628 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
629 size <<= bsize;
630 pr_err("%s appears to contain an ext2fs file system\n",
631 name);
632 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
633 return 1;
634 }
635
636 int check_reiser(int fd, char *name)
637 {
638 /*
639 * superblock is at 64K
640 * size is 1024;
641 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
642 *
643 */
644 unsigned char sb[1024];
645 unsigned long long size;
646 if (lseek(fd, 64*1024, 0) != 64*1024)
647 return 0;
648 if (read(fd, sb, 1024) != 1024)
649 return 0;
650 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
651 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
652 return 0;
653 pr_err("%s appears to contain a reiserfs file system\n",name);
654 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
655 cont_err("size = %lluK\n", size*4);
656
657 return 1;
658 }
659
660 int check_raid(int fd, char *name)
661 {
662 struct mdinfo info;
663 time_t crtime;
664 char *level;
665 struct supertype *st = guess_super(fd);
666
667 if (!st)
668 return 0;
669 if (st->ss->add_to_super != NULL) {
670 st->ss->load_super(st, fd, name);
671 /* Looks like a raid array .. */
672 pr_err("%s appears to be part of a raid array:\n", name);
673 st->ss->getinfo_super(st, &info, NULL);
674 st->ss->free_super(st);
675 crtime = info.array.ctime;
676 level = map_num(pers, info.array.level);
677 if (!level)
678 level = "-unknown-";
679 cont_err("level=%s devices=%d ctime=%s",
680 level, info.array.raid_disks, ctime(&crtime));
681 } else {
682 /* Looks like GPT or MBR */
683 pr_err("partition table exists on %s\n", name);
684 }
685 return 1;
686 }
687
688 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
689 {
690 struct stat stb;
691
692 if (fstat(fd, &stb) != 0) {
693 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
694 return 0;
695 }
696 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
697 pr_err("%s is not a block device.\n", devname);
698 return 0;
699 }
700 if (rdev)
701 *rdev = stb.st_rdev;
702 return 1;
703 }
704
705 int stat_is_blkdev(char *devname, dev_t *rdev)
706 {
707 struct stat stb;
708
709 if (stat(devname, &stb) != 0) {
710 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
711 return 0;
712 }
713 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
714 pr_err("%s is not a block device.\n", devname);
715 return 0;
716 }
717 if (rdev)
718 *rdev = stb.st_rdev;
719 return 1;
720 }
721
722 int ask(char *mesg)
723 {
724 char *add = "";
725 int i;
726 for (i = 0; i < 5; i++) {
727 char buf[100];
728 fprintf(stderr, "%s%s", mesg, add);
729 fflush(stderr);
730 if (fgets(buf, 100, stdin)==NULL)
731 return 0;
732 if (buf[0]=='y' || buf[0]=='Y')
733 return 1;
734 if (buf[0]=='n' || buf[0]=='N')
735 return 0;
736 add = "(y/n) ";
737 }
738 pr_err("assuming 'no'\n");
739 return 0;
740 }
741
742 int is_standard(char *dev, int *nump)
743 {
744 /* tests if dev is a "standard" md dev name.
745 * i.e if the last component is "/dNN" or "/mdNN",
746 * where NN is a string of digits
747 * Returns 1 if a partitionable standard,
748 * -1 if non-partitonable,
749 * 0 if not a standard name.
750 */
751 char *d = strrchr(dev, '/');
752 int type = 0;
753 int num;
754 if (!d)
755 return 0;
756 if (strncmp(d, "/d",2) == 0)
757 d += 2, type = 1; /* /dev/md/dN{pM} */
758 else if (strncmp(d, "/md_d", 5) == 0)
759 d += 5, type = 1; /* /dev/md_dN{pM} */
760 else if (strncmp(d, "/md", 3) == 0)
761 d += 3, type = -1; /* /dev/mdN */
762 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
763 d += 1, type = -1; /* /dev/md/N */
764 else
765 return 0;
766 if (!*d)
767 return 0;
768 num = atoi(d);
769 while (isdigit(*d))
770 d++;
771 if (*d)
772 return 0;
773 if (nump) *nump = num;
774
775 return type;
776 }
777
778 unsigned long calc_csum(void *super, int bytes)
779 {
780 unsigned long long newcsum = 0;
781 int i;
782 unsigned int csum;
783 unsigned int *superc = (unsigned int*) super;
784
785 for(i = 0; i < bytes/4; i++)
786 newcsum += superc[i];
787 csum = (newcsum& 0xffffffff) + (newcsum>>32);
788 #ifdef __alpha__
789 /* The in-kernel checksum calculation is always 16bit on
790 * the alpha, though it is 32 bit on i386...
791 * I wonder what it is elsewhere... (it uses an API in
792 * a way that it shouldn't).
793 */
794 csum = (csum & 0xffff) + (csum >> 16);
795 csum = (csum & 0xffff) + (csum >> 16);
796 #endif
797 return csum;
798 }
799
800 char *human_size(long long bytes)
801 {
802 static char buf[47];
803
804 /* We convert bytes to either centi-M{ega,ibi}bytes,
805 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
806 * with appropriate rounding, and then print
807 * 1/100th of those as a decimal.
808 * We allow upto 2048Megabytes before converting to
809 * gigabytes and 2048Gigabytes before converting to
810 * terabytes, as that shows more precision and isn't
811 * too large a number.
812 */
813
814 if (bytes < 5000*1024)
815 buf[0] = 0;
816 else if (bytes < 2*1024LL*1024LL*1024LL) {
817 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
818 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
819 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
820 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
821 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
822 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
823 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
824 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
825 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
826 } else {
827 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
828 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
829 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
830 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
831 }
832 return buf;
833 }
834
835 char *human_size_brief(long long bytes, int prefix)
836 {
837 static char buf[30];
838
839 /* We convert bytes to either centi-M{ega,ibi}bytes,
840 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
841 * with appropriate rounding, and then print
842 * 1/100th of those as a decimal.
843 * We allow upto 2048Megabytes before converting to
844 * gigabytes and 2048Gigabytes before converting to
845 * terabytes, as that shows more precision and isn't
846 * too large a number.
847 *
848 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
849 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
850 */
851
852 if (bytes < 5000*1024)
853 buf[0] = 0;
854 else if (prefix == IEC) {
855 if (bytes < 2*1024LL*1024LL*1024LL) {
856 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
857 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
858 cMiB/100, cMiB % 100);
859 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
860 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
861 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
862 cGiB/100, cGiB % 100);
863 } else {
864 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
865 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
866 cTiB/100, cTiB % 100);
867 }
868 }
869 else if (prefix == JEDEC) {
870 if (bytes < 2*1024LL*1024LL*1024LL) {
871 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
872 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
873 cMB/100, cMB % 100);
874 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
875 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
876 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
877 cGB/100, cGB % 100);
878 } else {
879 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
880 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
881 cTB/100, cTB % 100);
882 }
883 }
884 else
885 buf[0] = 0;
886
887 return buf;
888 }
889
890 void print_r10_layout(int layout)
891 {
892 int near = layout & 255;
893 int far = (layout >> 8) & 255;
894 int offset = (layout&0x10000);
895 char *sep = "";
896
897 if (near != 1) {
898 printf("%s near=%d", sep, near);
899 sep = ",";
900 }
901 if (far != 1)
902 printf("%s %s=%d", sep, offset?"offset":"far", far);
903 if (near*far == 1)
904 printf("NO REDUNDANCY");
905 }
906
907 unsigned long long calc_array_size(int level, int raid_disks, int layout,
908 int chunksize, unsigned long long devsize)
909 {
910 if (level == 1)
911 return devsize;
912 devsize &= ~(unsigned long long)((chunksize>>9)-1);
913 return get_data_disks(level, layout, raid_disks) * devsize;
914 }
915
916 int get_data_disks(int level, int layout, int raid_disks)
917 {
918 int data_disks = 0;
919 switch (level) {
920 case 0: data_disks = raid_disks;
921 break;
922 case 1: data_disks = 1;
923 break;
924 case 4:
925 case 5: data_disks = raid_disks - 1;
926 break;
927 case 6: data_disks = raid_disks - 2;
928 break;
929 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
930 break;
931 }
932
933 return data_disks;
934 }
935
936 dev_t devnm2devid(char *devnm)
937 {
938 /* First look in /sys/block/$DEVNM/dev for %d:%d
939 * If that fails, try parsing out a number
940 */
941 char path[PATH_MAX];
942 char *ep;
943 int fd;
944 int mjr,mnr;
945
946 snprintf(path, sizeof(path), "/sys/block/%s/dev", devnm);
947 fd = open(path, O_RDONLY);
948 if (fd >= 0) {
949 char buf[20];
950 int n = read(fd, buf, sizeof(buf));
951 close(fd);
952 if (n > 0)
953 buf[n] = 0;
954 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
955 return makedev(mjr, mnr);
956 }
957 if (strncmp(devnm, "md_d", 4) == 0 &&
958 isdigit(devnm[4]) &&
959 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
960 ep > devnm && *ep == 0)
961 return makedev(get_mdp_major(), mnr << MdpMinorShift);
962
963 if (strncmp(devnm, "md", 2) == 0 &&
964 isdigit(devnm[2]) &&
965 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
966 ep > devnm && *ep == 0)
967 return makedev(MD_MAJOR, mnr);
968
969 return 0;
970 }
971
972 char *get_md_name(char *devnm)
973 {
974 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
975 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
976
977 static char devname[50];
978 struct stat stb;
979 dev_t rdev = devnm2devid(devnm);
980 char *dn;
981
982 if (rdev == 0)
983 return 0;
984 if (strncmp(devnm, "md_", 3) == 0) {
985 snprintf(devname, sizeof(devname), "/dev/md/%s",
986 devnm + 3);
987 if (stat(devname, &stb) == 0 &&
988 (S_IFMT&stb.st_mode) == S_IFBLK && (stb.st_rdev == rdev))
989 return devname;
990 }
991 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
992 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
993 (stb.st_rdev == rdev))
994 return devname;
995
996 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
997 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
998 (stb.st_rdev == rdev))
999 return devname;
1000
1001 dn = map_dev(major(rdev), minor(rdev), 0);
1002 if (dn)
1003 return dn;
1004 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1005 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1006 if (errno != EEXIST)
1007 return NULL;
1008
1009 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1010 (stb.st_rdev == rdev))
1011 return devname;
1012 unlink(devname);
1013 return NULL;
1014 }
1015
1016 void put_md_name(char *name)
1017 {
1018 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1019 unlink(name);
1020 }
1021
1022 int get_maj_min(char *dev, int *major, int *minor)
1023 {
1024 char *e;
1025 *major = strtoul(dev, &e, 0);
1026 return (e > dev && *e == ':' && e[1] &&
1027 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1028 *e == 0);
1029 }
1030
1031 int dev_open(char *dev, int flags)
1032 {
1033 /* like 'open', but if 'dev' matches %d:%d, create a temp
1034 * block device and open that
1035 */
1036 int fd = -1;
1037 char devname[32];
1038 int major;
1039 int minor;
1040
1041 if (!dev)
1042 return -1;
1043 flags |= O_DIRECT;
1044
1045 if (get_maj_min(dev, &major, &minor)) {
1046 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1047 (int)getpid(), major, minor);
1048 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1049 fd = open(devname, flags);
1050 unlink(devname);
1051 }
1052 if (fd < 0) {
1053 /* Try /tmp as /dev appear to be read-only */
1054 snprintf(devname, sizeof(devname),
1055 "/tmp/.tmp.md.%d:%d:%d",
1056 (int)getpid(), major, minor);
1057 if (mknod(devname, S_IFBLK|0600,
1058 makedev(major, minor)) == 0) {
1059 fd = open(devname, flags);
1060 unlink(devname);
1061 }
1062 }
1063 } else
1064 fd = open(dev, flags);
1065 return fd;
1066 }
1067
1068 int open_dev_flags(char *devnm, int flags)
1069 {
1070 dev_t devid;
1071 char buf[20];
1072
1073 devid = devnm2devid(devnm);
1074 sprintf(buf, "%d:%d", major(devid), minor(devid));
1075 return dev_open(buf, flags);
1076 }
1077
1078 int open_dev(char *devnm)
1079 {
1080 return open_dev_flags(devnm, O_RDONLY);
1081 }
1082
1083 int open_dev_excl(char *devnm)
1084 {
1085 char buf[20];
1086 int i;
1087 int flags = O_RDWR;
1088 dev_t devid = devnm2devid(devnm);
1089 long delay = 1000;
1090
1091 sprintf(buf, "%d:%d", major(devid), minor(devid));
1092 for (i = 0; i < 25; i++) {
1093 int fd = dev_open(buf, flags|O_EXCL);
1094 if (fd >= 0)
1095 return fd;
1096 if (errno == EACCES && flags == O_RDWR) {
1097 flags = O_RDONLY;
1098 continue;
1099 }
1100 if (errno != EBUSY)
1101 return fd;
1102 usleep(delay);
1103 if (delay < 200000)
1104 delay *= 2;
1105 }
1106 return -1;
1107 }
1108
1109 int same_dev(char *one, char *two)
1110 {
1111 struct stat st1, st2;
1112 if (stat(one, &st1) != 0)
1113 return 0;
1114 if (stat(two, &st2) != 0)
1115 return 0;
1116 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1117 return 0;
1118 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1119 return 0;
1120 return st1.st_rdev == st2.st_rdev;
1121 }
1122
1123 void wait_for(char *dev, int fd)
1124 {
1125 int i;
1126 struct stat stb_want;
1127 long delay = 1000;
1128
1129 if (fstat(fd, &stb_want) != 0 ||
1130 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1131 return;
1132
1133 for (i = 0; i < 25; i++) {
1134 struct stat stb;
1135 if (stat(dev, &stb) == 0 &&
1136 (stb.st_mode & S_IFMT) == S_IFBLK &&
1137 (stb.st_rdev == stb_want.st_rdev))
1138 return;
1139 usleep(delay);
1140 if (delay < 200000)
1141 delay *= 2;
1142 }
1143 if (i == 25)
1144 pr_err("timeout waiting for %s\n", dev);
1145 }
1146
1147 struct superswitch *superlist[] =
1148 {
1149 &super0, &super1,
1150 &super_ddf, &super_imsm,
1151 &mbr, &gpt,
1152 NULL
1153 };
1154
1155 struct supertype *super_by_fd(int fd, char **subarrayp)
1156 {
1157 mdu_array_info_t array;
1158 int vers;
1159 int minor;
1160 struct supertype *st = NULL;
1161 struct mdinfo *sra;
1162 char *verstr;
1163 char version[20];
1164 int i;
1165 char *subarray = NULL;
1166 char container[32] = "";
1167
1168 sra = sysfs_read(fd, NULL, GET_VERSION);
1169
1170 if (sra) {
1171 vers = sra->array.major_version;
1172 minor = sra->array.minor_version;
1173 verstr = sra->text_version;
1174 } else {
1175 if (md_get_array_info(fd, &array))
1176 array.major_version = array.minor_version = 0;
1177 vers = array.major_version;
1178 minor = array.minor_version;
1179 verstr = "";
1180 }
1181
1182 if (vers != -1) {
1183 sprintf(version, "%d.%d", vers, minor);
1184 verstr = version;
1185 }
1186 if (minor == -2 && is_subarray(verstr)) {
1187 char *dev = verstr+1;
1188
1189 subarray = strchr(dev, '/');
1190 if (subarray) {
1191 *subarray++ = '\0';
1192 subarray = xstrdup(subarray);
1193 }
1194 strcpy(container, dev);
1195 sysfs_free(sra);
1196 sra = sysfs_read(-1, container, GET_VERSION);
1197 if (sra && sra->text_version[0])
1198 verstr = sra->text_version;
1199 else
1200 verstr = "-no-metadata-";
1201 }
1202
1203 for (i = 0; st == NULL && superlist[i]; i++)
1204 st = superlist[i]->match_metadata_desc(verstr);
1205
1206 sysfs_free(sra);
1207 if (st) {
1208 st->sb = NULL;
1209 if (subarrayp)
1210 *subarrayp = subarray;
1211 strcpy(st->container_devnm, container);
1212 strcpy(st->devnm, fd2devnm(fd));
1213 } else
1214 free(subarray);
1215
1216 return st;
1217 }
1218
1219 int dev_size_from_id(dev_t id, unsigned long long *size)
1220 {
1221 char buf[20];
1222 int fd;
1223
1224 sprintf(buf, "%d:%d", major(id), minor(id));
1225 fd = dev_open(buf, O_RDONLY);
1226 if (fd < 0)
1227 return 0;
1228 if (get_dev_size(fd, NULL, size)) {
1229 close(fd);
1230 return 1;
1231 }
1232 close(fd);
1233 return 0;
1234 }
1235
1236 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1237 {
1238 char buf[20];
1239 int fd;
1240
1241 sprintf(buf, "%d:%d", major(id), minor(id));
1242 fd = dev_open(buf, O_RDONLY);
1243 if (fd < 0)
1244 return 0;
1245 if (get_dev_sector_size(fd, NULL, size)) {
1246 close(fd);
1247 return 1;
1248 }
1249 close(fd);
1250 return 0;
1251 }
1252
1253 struct supertype *dup_super(struct supertype *orig)
1254 {
1255 struct supertype *st;
1256
1257 if (!orig)
1258 return orig;
1259 st = xcalloc(1, sizeof(*st));
1260 st->ss = orig->ss;
1261 st->max_devs = orig->max_devs;
1262 st->minor_version = orig->minor_version;
1263 st->ignore_hw_compat = orig->ignore_hw_compat;
1264 st->data_offset = orig->data_offset;
1265 st->sb = NULL;
1266 st->info = NULL;
1267 return st;
1268 }
1269
1270 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1271 {
1272 /* try each load_super to find the best match,
1273 * and return the best superswitch
1274 */
1275 struct superswitch *ss;
1276 struct supertype *st;
1277 unsigned int besttime = 0;
1278 int bestsuper = -1;
1279 int i;
1280
1281 st = xcalloc(1, sizeof(*st));
1282 st->container_devnm[0] = 0;
1283
1284 for (i = 0; superlist[i]; i++) {
1285 int rv;
1286 ss = superlist[i];
1287 if (guess_type == guess_array && ss->add_to_super == NULL)
1288 continue;
1289 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1290 continue;
1291 memset(st, 0, sizeof(*st));
1292 st->ignore_hw_compat = 1;
1293 rv = ss->load_super(st, fd, NULL);
1294 if (rv == 0) {
1295 struct mdinfo info;
1296 st->ss->getinfo_super(st, &info, NULL);
1297 if (bestsuper == -1 ||
1298 besttime < info.array.ctime) {
1299 bestsuper = i;
1300 besttime = info.array.ctime;
1301 }
1302 ss->free_super(st);
1303 }
1304 }
1305 if (bestsuper != -1) {
1306 int rv;
1307 memset(st, 0, sizeof(*st));
1308 st->ignore_hw_compat = 1;
1309 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1310 if (rv == 0) {
1311 superlist[bestsuper]->free_super(st);
1312 return st;
1313 }
1314 }
1315 free(st);
1316 return NULL;
1317 }
1318
1319 /* Return size of device in bytes */
1320 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1321 {
1322 unsigned long long ldsize;
1323 struct stat st;
1324
1325 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1326 ldsize = (unsigned long long)st.st_size;
1327 else
1328 #ifdef BLKGETSIZE64
1329 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1330 #endif
1331 {
1332 unsigned long dsize;
1333 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1334 ldsize = dsize;
1335 ldsize <<= 9;
1336 } else {
1337 if (dname)
1338 pr_err("Cannot get size of %s: %s\n",
1339 dname, strerror(errno));
1340 return 0;
1341 }
1342 }
1343 *sizep = ldsize;
1344 return 1;
1345 }
1346
1347 /* Return sector size of device in bytes */
1348 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1349 {
1350 unsigned int sectsize;
1351
1352 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1353 if (dname)
1354 pr_err("Cannot get sector size of %s: %s\n",
1355 dname, strerror(errno));
1356 return 0;
1357 }
1358
1359 *sectsizep = sectsize;
1360 return 1;
1361 }
1362
1363 /* Return true if this can only be a container, not a member device.
1364 * i.e. is and md device and size is zero
1365 */
1366 int must_be_container(int fd)
1367 {
1368 struct mdinfo *mdi;
1369 unsigned long long size;
1370
1371 mdi = sysfs_read(fd, NULL, GET_VERSION);
1372 if (!mdi)
1373 return 0;
1374 sysfs_free(mdi);
1375
1376 if (get_dev_size(fd, NULL, &size) == 0)
1377 return 1;
1378 if (size == 0)
1379 return 1;
1380 return 0;
1381 }
1382
1383 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1384 * Returns: 1 if successful
1385 * -1 for unknown partition type
1386 * 0 for other errors
1387 */
1388 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1389 {
1390 struct GPT gpt;
1391 unsigned char empty_gpt_entry[16]= {0};
1392 struct GPT_part_entry *part;
1393 char buf[512];
1394 unsigned long long curr_part_end;
1395 unsigned all_partitions, entry_size;
1396 unsigned part_nr;
1397 unsigned int sector_size = 0;
1398
1399 *endofpart = 0;
1400
1401 BUILD_BUG_ON(sizeof(gpt) != 512);
1402 /* skip protective MBR */
1403 if (!get_dev_sector_size(fd, NULL, &sector_size))
1404 return 0;
1405 lseek(fd, sector_size, SEEK_SET);
1406 /* read GPT header */
1407 if (read(fd, &gpt, 512) != 512)
1408 return 0;
1409
1410 /* get the number of partition entries and the entry size */
1411 all_partitions = __le32_to_cpu(gpt.part_cnt);
1412 entry_size = __le32_to_cpu(gpt.part_size);
1413
1414 /* Check GPT signature*/
1415 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1416 return -1;
1417
1418 /* sanity checks */
1419 if (all_partitions > 1024 ||
1420 entry_size > sizeof(buf))
1421 return -1;
1422
1423 part = (struct GPT_part_entry *)buf;
1424
1425 /* set offset to third block (GPT entries) */
1426 lseek(fd, sector_size*2, SEEK_SET);
1427 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1428 /* read partition entry */
1429 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1430 return 0;
1431
1432 /* is this valid partition? */
1433 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1434 /* check the last lba for the current partition */
1435 curr_part_end = __le64_to_cpu(part->ending_lba);
1436 if (curr_part_end > *endofpart)
1437 *endofpart = curr_part_end;
1438 }
1439
1440 }
1441 return 1;
1442 }
1443
1444 /* Sets endofpart parameter to the last block used by the last partition on the device.
1445 * Returns: 1 if successful
1446 * -1 for unknown partition type
1447 * 0 for other errors
1448 */
1449 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1450 {
1451 struct MBR boot_sect;
1452 unsigned long long curr_part_end;
1453 unsigned part_nr;
1454 unsigned int sector_size;
1455 int retval = 0;
1456
1457 *endofpart = 0;
1458
1459 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1460 /* read MBR */
1461 lseek(fd, 0, 0);
1462 if (read(fd, &boot_sect, 512) != 512)
1463 goto abort;
1464
1465 /* check MBP signature */
1466 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1467 retval = 1;
1468 /* found the correct signature */
1469
1470 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1471 /*
1472 * Have to make every access through boot_sect rather
1473 * than using a pointer to the partition table (or an
1474 * entry), since the entries are not properly aligned.
1475 */
1476
1477 /* check for GPT type */
1478 if (boot_sect.parts[part_nr].part_type ==
1479 MBR_GPT_PARTITION_TYPE) {
1480 retval = get_gpt_last_partition_end(fd, endofpart);
1481 break;
1482 }
1483 /* check the last used lba for the current partition */
1484 curr_part_end =
1485 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1486 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1487 if (curr_part_end > *endofpart)
1488 *endofpart = curr_part_end;
1489 }
1490 } else {
1491 /* Unknown partition table */
1492 retval = -1;
1493 }
1494 /* calculate number of 512-byte blocks */
1495 if (get_dev_sector_size(fd, NULL, &sector_size))
1496 *endofpart *= (sector_size / 512);
1497 abort:
1498 return retval;
1499 }
1500
1501 int check_partitions(int fd, char *dname, unsigned long long freesize,
1502 unsigned long long size)
1503 {
1504 /*
1505 * Check where the last partition ends
1506 */
1507 unsigned long long endofpart;
1508
1509 if (get_last_partition_end(fd, &endofpart) > 0) {
1510 /* There appears to be a partition table here */
1511 if (freesize == 0) {
1512 /* partitions will not be visible in new device */
1513 pr_err("partition table exists on %s but will be lost or\n"
1514 " meaningless after creating array\n",
1515 dname);
1516 return 1;
1517 } else if (endofpart > freesize) {
1518 /* last partition overlaps metadata */
1519 pr_err("metadata will over-write last partition on %s.\n",
1520 dname);
1521 return 1;
1522 } else if (size && endofpart > size) {
1523 /* partitions will be truncated in new device */
1524 pr_err("array size is too small to cover all partitions on %s.\n",
1525 dname);
1526 return 1;
1527 }
1528 }
1529 return 0;
1530 }
1531
1532 int open_container(int fd)
1533 {
1534 /* 'fd' is a block device. Find out if it is in use
1535 * by a container, and return an open fd on that container.
1536 */
1537 char path[288];
1538 char *e;
1539 DIR *dir;
1540 struct dirent *de;
1541 int dfd, n;
1542 char buf[200];
1543 int major, minor;
1544 struct stat st;
1545
1546 if (fstat(fd, &st) != 0)
1547 return -1;
1548 sprintf(path, "/sys/dev/block/%d:%d/holders",
1549 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1550 e = path + strlen(path);
1551
1552 dir = opendir(path);
1553 if (!dir)
1554 return -1;
1555 while ((de = readdir(dir))) {
1556 if (de->d_ino == 0)
1557 continue;
1558 if (de->d_name[0] == '.')
1559 continue;
1560 /* Need to make sure it is a container and not a volume */
1561 sprintf(e, "/%s/md/metadata_version", de->d_name);
1562 dfd = open(path, O_RDONLY);
1563 if (dfd < 0)
1564 continue;
1565 n = read(dfd, buf, sizeof(buf));
1566 close(dfd);
1567 if (n <= 0 || (unsigned)n >= sizeof(buf))
1568 continue;
1569 buf[n] = 0;
1570 if (strncmp(buf, "external", 8) != 0 ||
1571 n < 10 ||
1572 buf[9] == '/')
1573 continue;
1574 sprintf(e, "/%s/dev", de->d_name);
1575 dfd = open(path, O_RDONLY);
1576 if (dfd < 0)
1577 continue;
1578 n = read(dfd, buf, sizeof(buf));
1579 close(dfd);
1580 if (n <= 0 || (unsigned)n >= sizeof(buf))
1581 continue;
1582 buf[n] = 0;
1583 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1584 continue;
1585 sprintf(buf, "%d:%d", major, minor);
1586 dfd = dev_open(buf, O_RDONLY);
1587 if (dfd >= 0) {
1588 closedir(dir);
1589 return dfd;
1590 }
1591 }
1592 closedir(dir);
1593 return -1;
1594 }
1595
1596 struct superswitch *version_to_superswitch(char *vers)
1597 {
1598 int i;
1599
1600 for (i = 0; superlist[i]; i++) {
1601 struct superswitch *ss = superlist[i];
1602
1603 if (strcmp(vers, ss->name) == 0)
1604 return ss;
1605 }
1606
1607 return NULL;
1608 }
1609
1610 int metadata_container_matches(char *metadata, char *devnm)
1611 {
1612 /* Check if 'devnm' is the container named in 'metadata'
1613 * which is
1614 * /containername/componentname or
1615 * -containername/componentname
1616 */
1617 int l;
1618 if (*metadata != '/' && *metadata != '-')
1619 return 0;
1620 l = strlen(devnm);
1621 if (strncmp(metadata+1, devnm, l) != 0)
1622 return 0;
1623 if (metadata[l+1] != '/')
1624 return 0;
1625 return 1;
1626 }
1627
1628 int metadata_subdev_matches(char *metadata, char *devnm)
1629 {
1630 /* Check if 'devnm' is the subdev named in 'metadata'
1631 * which is
1632 * /containername/subdev or
1633 * -containername/subdev
1634 */
1635 char *sl;
1636 if (*metadata != '/' && *metadata != '-')
1637 return 0;
1638 sl = strchr(metadata+1, '/');
1639 if (!sl)
1640 return 0;
1641 if (strcmp(sl+1, devnm) == 0)
1642 return 1;
1643 return 0;
1644 }
1645
1646 int is_container_member(struct mdstat_ent *mdstat, char *container)
1647 {
1648 if (mdstat->metadata_version == NULL ||
1649 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1650 !metadata_container_matches(mdstat->metadata_version+9, container))
1651 return 0;
1652
1653 return 1;
1654 }
1655
1656 int is_subarray_active(char *subarray, char *container)
1657 {
1658 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1659 struct mdstat_ent *ent;
1660
1661 for (ent = mdstat; ent; ent = ent->next)
1662 if (is_container_member(ent, container))
1663 if (strcmp(to_subarray(ent, container), subarray) == 0)
1664 break;
1665
1666 free_mdstat(mdstat);
1667
1668 return ent != NULL;
1669 }
1670
1671 /* open_subarray - opens a subarray in a container
1672 * @dev: container device name
1673 * @st: empty supertype
1674 * @quiet: block reporting errors flag
1675 *
1676 * On success returns an fd to a container and fills in *st
1677 */
1678 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1679 {
1680 struct mdinfo *mdi;
1681 struct mdinfo *info;
1682 int fd, err = 1;
1683 char *_devnm;
1684
1685 fd = open(dev, O_RDWR|O_EXCL);
1686 if (fd < 0) {
1687 if (!quiet)
1688 pr_err("Couldn't open %s, aborting\n",
1689 dev);
1690 return -1;
1691 }
1692
1693 _devnm = fd2devnm(fd);
1694 if (_devnm == NULL) {
1695 if (!quiet)
1696 pr_err("Failed to determine device number for %s\n",
1697 dev);
1698 goto close_fd;
1699 }
1700 strcpy(st->devnm, _devnm);
1701
1702 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1703 if (!mdi) {
1704 if (!quiet)
1705 pr_err("Failed to read sysfs for %s\n",
1706 dev);
1707 goto close_fd;
1708 }
1709
1710 if (mdi->array.level != UnSet) {
1711 if (!quiet)
1712 pr_err("%s is not a container\n", dev);
1713 goto free_sysfs;
1714 }
1715
1716 st->ss = version_to_superswitch(mdi->text_version);
1717 if (!st->ss) {
1718 if (!quiet)
1719 pr_err("Operation not supported for %s metadata\n",
1720 mdi->text_version);
1721 goto free_sysfs;
1722 }
1723
1724 if (st->devnm[0] == 0) {
1725 if (!quiet)
1726 pr_err("Failed to allocate device name\n");
1727 goto free_sysfs;
1728 }
1729
1730 if (!st->ss->load_container) {
1731 if (!quiet)
1732 pr_err("%s is not a container\n", dev);
1733 goto free_sysfs;
1734 }
1735
1736 if (st->ss->load_container(st, fd, NULL)) {
1737 if (!quiet)
1738 pr_err("Failed to load metadata for %s\n",
1739 dev);
1740 goto free_sysfs;
1741 }
1742
1743 info = st->ss->container_content(st, subarray);
1744 if (!info) {
1745 if (!quiet)
1746 pr_err("Failed to find subarray-%s in %s\n",
1747 subarray, dev);
1748 goto free_super;
1749 }
1750 free(info);
1751
1752 err = 0;
1753
1754 free_super:
1755 if (err)
1756 st->ss->free_super(st);
1757 free_sysfs:
1758 sysfs_free(mdi);
1759 close_fd:
1760 if (err)
1761 close(fd);
1762
1763 if (err)
1764 return -1;
1765 else
1766 return fd;
1767 }
1768
1769 int add_disk(int mdfd, struct supertype *st,
1770 struct mdinfo *sra, struct mdinfo *info)
1771 {
1772 /* Add a device to an array, in one of 2 ways. */
1773 int rv;
1774
1775 if (st->ss->external) {
1776 if (info->disk.state & (1<<MD_DISK_SYNC))
1777 info->recovery_start = MaxSector;
1778 else
1779 info->recovery_start = 0;
1780 rv = sysfs_add_disk(sra, info, 0);
1781 if (! rv) {
1782 struct mdinfo *sd2;
1783 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1784 if (sd2 == info)
1785 break;
1786 if (sd2 == NULL) {
1787 sd2 = xmalloc(sizeof(*sd2));
1788 *sd2 = *info;
1789 sd2->next = sra->devs;
1790 sra->devs = sd2;
1791 }
1792 }
1793 } else
1794 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1795 return rv;
1796 }
1797
1798 int remove_disk(int mdfd, struct supertype *st,
1799 struct mdinfo *sra, struct mdinfo *info)
1800 {
1801 int rv;
1802
1803 /* Remove the disk given by 'info' from the array */
1804 if (st->ss->external)
1805 rv = sysfs_set_str(sra, info, "slot", "none");
1806 else
1807 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1808 info->disk.minor));
1809 return rv;
1810 }
1811
1812 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1813 {
1814 int cnt = force ? 500 : 5;
1815 int ret;
1816
1817 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1818 * outstanding IO requests to the device.
1819 * In this case, it can be helpful to wait a little while,
1820 * up to 5 seconds if 'force' is set, or 50 msec if not.
1821 */
1822 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1823 errno == EBUSY &&
1824 cnt-- > 0)
1825 usleep(10000);
1826
1827 return ret;
1828 }
1829
1830 int sys_hot_remove_disk(int statefd, int force)
1831 {
1832 int cnt = force ? 500 : 5;
1833 int ret;
1834
1835 while ((ret = write(statefd, "remove", 6)) == -1 &&
1836 errno == EBUSY &&
1837 cnt-- > 0)
1838 usleep(10000);
1839 return ret == 6 ? 0 : -1;
1840 }
1841
1842 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1843 {
1844 /* Initialise kernel's knowledge of array.
1845 * This varies between externally managed arrays
1846 * and older kernels
1847 */
1848 mdu_array_info_t inf;
1849 int rv;
1850
1851 if (st->ss->external)
1852 return sysfs_set_array(info, 9003);
1853
1854 memset(&inf, 0, sizeof(inf));
1855 inf.major_version = info->array.major_version;
1856 inf.minor_version = info->array.minor_version;
1857 rv = md_set_array_info(mdfd, &inf);
1858
1859 return rv;
1860 }
1861
1862 unsigned long long min_recovery_start(struct mdinfo *array)
1863 {
1864 /* find the minimum recovery_start in an array for metadata
1865 * formats that only record per-array recovery progress instead
1866 * of per-device
1867 */
1868 unsigned long long recovery_start = MaxSector;
1869 struct mdinfo *d;
1870
1871 for (d = array->devs; d; d = d->next)
1872 recovery_start = min(recovery_start, d->recovery_start);
1873
1874 return recovery_start;
1875 }
1876
1877 int mdmon_pid(char *devnm)
1878 {
1879 char path[100];
1880 char pid[10];
1881 int fd;
1882 int n;
1883
1884 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1885
1886 fd = open(path, O_RDONLY | O_NOATIME, 0);
1887
1888 if (fd < 0)
1889 return -1;
1890 n = read(fd, pid, 9);
1891 close(fd);
1892 if (n <= 0)
1893 return -1;
1894 return atoi(pid);
1895 }
1896
1897 int mdmon_running(char *devnm)
1898 {
1899 int pid = mdmon_pid(devnm);
1900 if (pid <= 0)
1901 return 0;
1902 if (kill(pid, 0) == 0)
1903 return 1;
1904 return 0;
1905 }
1906
1907 int start_mdmon(char *devnm)
1908 {
1909 int i;
1910 int len;
1911 pid_t pid;
1912 int status;
1913 char pathbuf[1024];
1914 char *paths[4] = {
1915 pathbuf,
1916 BINDIR "/mdmon",
1917 "./mdmon",
1918 NULL
1919 };
1920
1921 if (check_env("MDADM_NO_MDMON"))
1922 return 0;
1923 if (continue_via_systemd(devnm, MDMON_SERVICE))
1924 return 0;
1925
1926 /* That failed, try running mdmon directly */
1927 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1928 if (len > 0) {
1929 char *sl;
1930 pathbuf[len] = 0;
1931 sl = strrchr(pathbuf, '/');
1932 if (sl)
1933 sl++;
1934 else
1935 sl = pathbuf;
1936 strcpy(sl, "mdmon");
1937 } else
1938 pathbuf[0] = '\0';
1939
1940 switch(fork()) {
1941 case 0:
1942 manage_fork_fds(1);
1943 for (i = 0; paths[i]; i++)
1944 if (paths[i][0]) {
1945 execl(paths[i], paths[i],
1946 devnm, NULL);
1947 }
1948 exit(1);
1949 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1950 return -1;
1951 default: /* parent - good */
1952 pid = wait(&status);
1953 if (pid < 0 || status != 0) {
1954 pr_err("failed to launch mdmon. Array remains readonly\n");
1955 return -1;
1956 }
1957 }
1958 return 0;
1959 }
1960
1961 __u32 random32(void)
1962 {
1963 __u32 rv;
1964 int rfd = open("/dev/urandom", O_RDONLY);
1965 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1966 rv = random();
1967 if (rfd >= 0)
1968 close(rfd);
1969 return rv;
1970 }
1971
1972 void random_uuid(__u8 *buf)
1973 {
1974 int fd, i, len;
1975 __u32 r[4];
1976
1977 fd = open("/dev/urandom", O_RDONLY);
1978 if (fd < 0)
1979 goto use_random;
1980 len = read(fd, buf, 16);
1981 close(fd);
1982 if (len != 16)
1983 goto use_random;
1984
1985 return;
1986
1987 use_random:
1988 for (i = 0; i < 4; i++)
1989 r[i] = random();
1990 memcpy(buf, r, 16);
1991 }
1992
1993 int flush_metadata_updates(struct supertype *st)
1994 {
1995 int sfd;
1996 if (!st->updates) {
1997 st->update_tail = NULL;
1998 return -1;
1999 }
2000
2001 sfd = connect_monitor(st->container_devnm);
2002 if (sfd < 0)
2003 return -1;
2004
2005 while (st->updates) {
2006 struct metadata_update *mu = st->updates;
2007 st->updates = mu->next;
2008
2009 send_message(sfd, mu, 0);
2010 wait_reply(sfd, 0);
2011 free(mu->buf);
2012 free(mu);
2013 }
2014 ack(sfd, 0);
2015 wait_reply(sfd, 0);
2016 close(sfd);
2017 st->update_tail = NULL;
2018 return 0;
2019 }
2020
2021 void append_metadata_update(struct supertype *st, void *buf, int len)
2022 {
2023
2024 struct metadata_update *mu = xmalloc(sizeof(*mu));
2025
2026 mu->buf = buf;
2027 mu->len = len;
2028 mu->space = NULL;
2029 mu->space_list = NULL;
2030 mu->next = NULL;
2031 *st->update_tail = mu;
2032 st->update_tail = &mu->next;
2033 }
2034
2035 #ifdef __TINYC__
2036 /* tinyc doesn't optimize this check in ioctl.h out ... */
2037 unsigned int __invalid_size_argument_for_IOC = 0;
2038 #endif
2039
2040 /* Pick all spares matching given criteria from a container
2041 * if min_size == 0 do not check size
2042 * if domlist == NULL do not check domains
2043 * if spare_group given add it to domains of each spare
2044 * metadata allows to test domains using metadata of destination array */
2045 struct mdinfo *container_choose_spares(struct supertype *st,
2046 struct spare_criteria *criteria,
2047 struct domainlist *domlist,
2048 char *spare_group,
2049 const char *metadata, int get_one)
2050 {
2051 struct mdinfo *d, **dp, *disks = NULL;
2052
2053 /* get list of all disks in container */
2054 if (st->ss->getinfo_super_disks)
2055 disks = st->ss->getinfo_super_disks(st);
2056
2057 if (!disks)
2058 return disks;
2059 /* find spare devices on the list */
2060 dp = &disks->devs;
2061 disks->array.spare_disks = 0;
2062 while (*dp) {
2063 int found = 0;
2064 d = *dp;
2065 if (d->disk.state == 0) {
2066 /* check if size is acceptable */
2067 unsigned long long dev_size;
2068 unsigned int dev_sector_size;
2069 int size_valid = 0;
2070 int sector_size_valid = 0;
2071
2072 dev_t dev = makedev(d->disk.major,d->disk.minor);
2073
2074 if (!criteria->min_size ||
2075 (dev_size_from_id(dev, &dev_size) &&
2076 dev_size >= criteria->min_size))
2077 size_valid = 1;
2078
2079 if (!criteria->sector_size ||
2080 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2081 criteria->sector_size == dev_sector_size))
2082 sector_size_valid = 1;
2083
2084 found = size_valid && sector_size_valid;
2085
2086 /* check if domain matches */
2087 if (found && domlist) {
2088 struct dev_policy *pol = devid_policy(dev);
2089 if (spare_group)
2090 pol_add(&pol, pol_domain,
2091 spare_group, NULL);
2092 if (domain_test(domlist, pol, metadata) != 1)
2093 found = 0;
2094 dev_policy_free(pol);
2095 }
2096 }
2097 if (found) {
2098 dp = &d->next;
2099 disks->array.spare_disks++;
2100 if (get_one) {
2101 sysfs_free(*dp);
2102 d->next = NULL;
2103 }
2104 } else {
2105 *dp = d->next;
2106 d->next = NULL;
2107 sysfs_free(d);
2108 }
2109 }
2110 return disks;
2111 }
2112
2113 /* Checks if paths point to the same device
2114 * Returns 0 if they do.
2115 * Returns 1 if they don't.
2116 * Returns -1 if something went wrong,
2117 * e.g. paths are empty or the files
2118 * they point to don't exist */
2119 int compare_paths (char* path1, char* path2)
2120 {
2121 struct stat st1,st2;
2122
2123 if (path1 == NULL || path2 == NULL)
2124 return -1;
2125 if (stat(path1,&st1) != 0)
2126 return -1;
2127 if (stat(path2,&st2) != 0)
2128 return -1;
2129 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2130 return 0;
2131 return 1;
2132 }
2133
2134 /* Make sure we can open as many devices as needed */
2135 void enable_fds(int devices)
2136 {
2137 unsigned int fds = 20 + devices;
2138 struct rlimit lim;
2139 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2140 return;
2141 if (lim.rlim_max < fds)
2142 lim.rlim_max = fds;
2143 lim.rlim_cur = fds;
2144 setrlimit(RLIMIT_NOFILE, &lim);
2145 }
2146
2147 /* Close all opened descriptors if needed and redirect
2148 * streams to /dev/null.
2149 * For debug purposed, leave STDOUT and STDERR untouched
2150 * Returns:
2151 * 1- if any error occurred
2152 * 0- otherwise
2153 */
2154 void manage_fork_fds(int close_all)
2155 {
2156 DIR *dir;
2157 struct dirent *dirent;
2158
2159 close(0);
2160 open("/dev/null", O_RDWR);
2161
2162 #ifndef DEBUG
2163 dup2(0, 1);
2164 dup2(0, 2);
2165 #endif
2166
2167 if (close_all == 0)
2168 return;
2169
2170 dir = opendir("/proc/self/fd");
2171 if (!dir) {
2172 pr_err("Cannot open /proc/self/fd directory.\n");
2173 return;
2174 }
2175 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2176 int fd = -1;
2177
2178 if ((strcmp(dirent->d_name, ".") == 0) ||
2179 (strcmp(dirent->d_name, "..")) == 0)
2180 continue;
2181
2182 fd = strtol(dirent->d_name, NULL, 10);
2183 if (fd > 2)
2184 close(fd);
2185 }
2186 }
2187
2188 /* In a systemd/udev world, it is best to get systemd to
2189 * run daemon rather than running in the background.
2190 * Returns:
2191 * 1- if systemd service has been started
2192 * 0- otherwise
2193 */
2194 int continue_via_systemd(char *devnm, char *service_name)
2195 {
2196 int pid, status;
2197 char pathbuf[1024];
2198
2199 /* Simply return that service cannot be started */
2200 if (check_env("MDADM_NO_SYSTEMCTL"))
2201 return 0;
2202 switch (fork()) {
2203 case 0:
2204 manage_fork_fds(1);
2205 snprintf(pathbuf, sizeof(pathbuf),
2206 "%s@%s.service", service_name, devnm);
2207 status = execl("/usr/bin/systemctl", "systemctl", "restart",
2208 pathbuf, NULL);
2209 status = execl("/bin/systemctl", "systemctl", "restart",
2210 pathbuf, NULL);
2211 exit(1);
2212 case -1: /* Just do it ourselves. */
2213 break;
2214 default: /* parent - good */
2215 pid = wait(&status);
2216 if (pid >= 0 && status == 0)
2217 return 1;
2218 }
2219 return 0;
2220 }
2221
2222 int in_initrd(void)
2223 {
2224 /* This is based on similar function in systemd. */
2225 struct statfs s;
2226 /* statfs.f_type is signed long on s390x and MIPS, causing all
2227 sorts of sign extension problems with RAMFS_MAGIC being
2228 defined as 0x858458f6 */
2229 return statfs("/", &s) >= 0 &&
2230 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2231 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2232 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2233 }
2234
2235 void reopen_mddev(int mdfd)
2236 {
2237 /* Re-open without any O_EXCL, but keep
2238 * the same fd
2239 */
2240 char *devnm;
2241 int fd;
2242 devnm = fd2devnm(mdfd);
2243 close(mdfd);
2244 fd = open_dev(devnm);
2245 if (fd >= 0 && fd != mdfd)
2246 dup2(fd, mdfd);
2247 }
2248
2249 static struct cmap_hooks *cmap_hooks = NULL;
2250 static int is_cmap_hooks_ready = 0;
2251
2252 void set_cmap_hooks(void)
2253 {
2254 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2255 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2256 if (!cmap_hooks->cmap_handle)
2257 return;
2258
2259 cmap_hooks->initialize =
2260 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2261 cmap_hooks->get_string =
2262 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2263 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2264
2265 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2266 !cmap_hooks->finalize)
2267 dlclose(cmap_hooks->cmap_handle);
2268 else
2269 is_cmap_hooks_ready = 1;
2270 }
2271
2272 int get_cluster_name(char **cluster_name)
2273 {
2274 int rv = -1;
2275 cmap_handle_t handle;
2276
2277 if (!is_cmap_hooks_ready)
2278 return rv;
2279
2280 rv = cmap_hooks->initialize(&handle);
2281 if (rv != CS_OK)
2282 goto out;
2283
2284 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2285 if (rv != CS_OK) {
2286 free(*cluster_name);
2287 rv = -1;
2288 goto name_err;
2289 }
2290
2291 rv = 0;
2292 name_err:
2293 cmap_hooks->finalize(handle);
2294 out:
2295 return rv;
2296 }
2297
2298 void set_dlm_hooks(void)
2299 {
2300 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2301 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2302 if (!dlm_hooks->dlm_handle)
2303 return;
2304
2305 dlm_hooks->open_lockspace =
2306 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2307 dlm_hooks->create_lockspace =
2308 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2309 dlm_hooks->release_lockspace =
2310 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2311 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2312 dlm_hooks->ls_unlock_wait =
2313 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2314 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2315 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2316
2317 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2318 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2319 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2320 !dlm_hooks->dispatch)
2321 dlclose(dlm_hooks->dlm_handle);
2322 else
2323 is_dlm_hooks_ready = 1;
2324 }
2325
2326 void set_hooks(void)
2327 {
2328 set_dlm_hooks();
2329 set_cmap_hooks();
2330 }
2331
2332 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2333 {
2334 int ret = 0;
2335 int fd_zero;
2336 void *addr = NULL;
2337 size_t written = 0;
2338 size_t len = count * 512;
2339 ssize_t n;
2340
2341 fd_zero = open("/dev/zero", O_RDONLY);
2342 if (fd_zero < 0) {
2343 pr_err("Cannot open /dev/zero\n");
2344 return -1;
2345 }
2346
2347 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2348 ret = -errno;
2349 pr_err("Failed to seek offset for zeroing\n");
2350 goto out;
2351 }
2352
2353 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2354
2355 if (addr == MAP_FAILED) {
2356 ret = -errno;
2357 pr_err("Mapping /dev/zero failed\n");
2358 goto out;
2359 }
2360
2361 do {
2362 n = write(fd, addr + written, len - written);
2363 if (n < 0) {
2364 if (errno == EINTR)
2365 continue;
2366 ret = -errno;
2367 pr_err("Zeroing disk range failed\n");
2368 break;
2369 }
2370 written += n;
2371 } while (written != len);
2372
2373 munmap(addr, len);
2374
2375 out:
2376 close(fd_zero);
2377 return ret;
2378 }