]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Grow: Split Grow_reshape into helper function
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(void)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135 int retry_count = 0;
136
137 if (!dlm_funs_ready()) {
138 pr_err("Something wrong with dlm library\n");
139 return -1;
140 }
141
142 ret = get_cluster_name(&cluster_name);
143 if (ret) {
144 pr_err("The md can't get cluster name\n");
145 return -1;
146 }
147
148 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
149 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
150 if (!dlm_lock_res->ls) {
151 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
152 if (!dlm_lock_res->ls) {
153 pr_err("%s failed to create lockspace\n", cluster_name);
154 return -ENOMEM;
155 }
156 } else {
157 pr_err("open existed %s lockspace\n", cluster_name);
158 }
159
160 snprintf(str, 64, "bitmap%s", cluster_name);
161 retry:
162 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
163 &dlm_lock_res->lksb, flags, str, strlen(str),
164 0, dlm_ast, dlm_lock_res, NULL, NULL);
165 if (ret) {
166 pr_err("error %d when get PW mode on lock %s\n", errno, str);
167 /* let's try several times if EAGAIN happened */
168 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
169 sleep_for(10, 0, true);
170 retry_count++;
171 goto retry;
172 }
173 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
174 return ret;
175 }
176
177 /* Wait for it to complete */
178 poll_for_ast(dlm_lock_res->ls);
179
180 if (dlm_lock_res->lksb.sb_status) {
181 pr_err("failed to lock cluster\n");
182 return -1;
183 }
184 return 1;
185 }
186
187 int cluster_release_dlmlock(void)
188 {
189 int ret = -1;
190
191 if (!cluster_name)
192 goto out;
193
194 if (!dlm_lock_res->lksb.sb_lkid)
195 goto out;
196
197 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
198 dlm_lock_res->lksb.sb_lkid, 0,
199 &dlm_lock_res->lksb);
200 if (ret) {
201 pr_err("error %d happened when unlock\n", errno);
202 /* XXX make sure the lock is unlocked eventually */
203 goto out;
204 }
205
206 /* Wait for it to complete */
207 poll_for_ast(dlm_lock_res->ls);
208
209 errno = dlm_lock_res->lksb.sb_status;
210 if (errno != EUNLOCK) {
211 pr_err("error %d happened in ast when unlock lockspace\n",
212 errno);
213 /* XXX make sure the lockspace is unlocked eventually */
214 goto out;
215 }
216
217 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
218 if (ret) {
219 pr_err("error %d happened when release lockspace\n", errno);
220 /* XXX make sure the lockspace is released eventually */
221 goto out;
222 }
223 free(dlm_lock_res);
224
225 out:
226 return ret;
227 }
228
229 int md_array_valid(int fd)
230 {
231 struct mdinfo *sra;
232 int ret;
233
234 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
235 if (sra) {
236 if (sra->array_state != ARRAY_UNKNOWN_STATE)
237 ret = 0;
238 else
239 ret = -ENODEV;
240
241 free(sra);
242 } else {
243 /*
244 * GET_ARRAY_INFO doesn't provide access to the proper state
245 * information, so fallback to a basic check for raid_disks != 0
246 */
247 ret = ioctl(fd, RAID_VERSION);
248 }
249
250 return !ret;
251 }
252
253 int md_array_active(int fd)
254 {
255 struct mdinfo *sra;
256 struct mdu_array_info_s array;
257 int ret = 0;
258
259 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
260 if (sra) {
261 if (!md_array_is_active(sra))
262 ret = -ENODEV;
263
264 free(sra);
265 } else {
266 /*
267 * GET_ARRAY_INFO doesn't provide access to the proper state
268 * information, so fallback to a basic check for raid_disks != 0
269 */
270 ret = md_get_array_info(fd, &array);
271 }
272
273 return !ret;
274 }
275
276 int md_array_is_active(struct mdinfo *info)
277 {
278 return (info->array_state != ARRAY_CLEAR &&
279 info->array_state != ARRAY_INACTIVE &&
280 info->array_state != ARRAY_UNKNOWN_STATE);
281 }
282
283 /*
284 * Get array info from the kernel. Longer term we want to deprecate the
285 * ioctl and get it from sysfs.
286 */
287 int md_get_array_info(int fd, struct mdu_array_info_s *array)
288 {
289 return ioctl(fd, GET_ARRAY_INFO, array);
290 }
291
292 /*
293 * Set array info
294 */
295 int md_set_array_info(int fd, struct mdu_array_info_s *array)
296 {
297 return ioctl(fd, SET_ARRAY_INFO, array);
298 }
299
300 /*
301 * Get disk info from the kernel.
302 */
303 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
304 {
305 return ioctl(fd, GET_DISK_INFO, disk);
306 }
307
308 int get_linux_version()
309 {
310 struct utsname name;
311 char *cp;
312 int a = 0, b = 0,c = 0;
313 if (uname(&name) <0)
314 return -1;
315
316 cp = name.release;
317 a = strtoul(cp, &cp, 10);
318 if (*cp == '.')
319 b = strtoul(cp+1, &cp, 10);
320 if (*cp == '.')
321 c = strtoul(cp+1, &cp, 10);
322
323 return (a*1000000)+(b*1000)+c;
324 }
325
326 int mdadm_version(char *version)
327 {
328 int a, b, c;
329 char *cp;
330
331 if (!version)
332 version = Version;
333
334 cp = strchr(version, '-');
335 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
336 return -1;
337 cp += 3;
338 a = strtoul(cp, &cp, 10);
339 if (*cp != '.')
340 return -1;
341 b = strtoul(cp+1, &cp, 10);
342 if (*cp == '.')
343 c = strtoul(cp+1, &cp, 10);
344 else
345 c = 0;
346 if (*cp != ' ' && *cp != '-')
347 return -1;
348 return (a*1000000)+(b*1000)+c;
349 }
350
351 unsigned long long parse_size(char *size)
352 {
353 /* parse 'size' which should be a number optionally
354 * followed by 'K', 'M'. 'G' or 'T'.
355 * Without a suffix, K is assumed.
356 * Number returned is in sectors (half-K)
357 * INVALID_SECTORS returned on error.
358 */
359 char *c;
360 long long s = strtoll(size, &c, 10);
361 if (s > 0) {
362 switch (*c) {
363 case 'K':
364 c++;
365 default:
366 s *= 2;
367 break;
368 case 'M':
369 c++;
370 s *= 1024 * 2;
371 break;
372 case 'G':
373 c++;
374 s *= 1024 * 1024 * 2;
375 break;
376 case 'T':
377 c++;
378 s *= 1024 * 1024 * 1024 * 2LL;
379 break;
380 case 's': /* sectors */
381 c++;
382 break;
383 }
384 } else
385 s = INVALID_SECTORS;
386 if (*c)
387 s = INVALID_SECTORS;
388 return s;
389 }
390
391 int is_near_layout_10(int layout)
392 {
393 int fc, fo;
394
395 fc = (layout >> 8) & 255;
396 fo = layout & (1 << 16);
397 if (fc > 1 || fo > 0)
398 return 0;
399 return 1;
400 }
401
402 int parse_layout_10(char *layout)
403 {
404 int copies, rv;
405 char *cp;
406 /* Parse the layout string for raid10 */
407 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
408 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
409 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
410 copies > 200 ||
411 *cp)
412 return -1;
413 if (layout[0] == 'n')
414 rv = 256 + copies;
415 else if (layout[0] == 'o')
416 rv = 0x10000 + (copies<<8) + 1;
417 else
418 rv = 1 + (copies<<8);
419 return rv;
420 }
421
422 int parse_layout_faulty(char *layout)
423 {
424 if (!layout)
425 return -1;
426 /* Parse the layout string for 'faulty' */
427 int ln = strcspn(layout, "0123456789");
428 char *m = xstrdup(layout);
429 int mode;
430 m[ln] = 0;
431 mode = map_name(faultylayout, m);
432 if (mode == UnSet)
433 return -1;
434
435 return mode | (atoi(layout+ln)<< ModeShift);
436 }
437
438 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
439 {
440 char *dev;
441 *slot = strtoul(input, &dev, 10);
442 if (dev == input || dev[0] != ':')
443 return -1;
444 *devname = dev+1;
445 return 0;
446 }
447
448 void remove_partitions(int fd)
449 {
450 /* remove partitions from this block devices.
451 * This is used for components added to an array
452 */
453 #ifdef BLKPG_DEL_PARTITION
454 struct blkpg_ioctl_arg a;
455 struct blkpg_partition p;
456
457 a.op = BLKPG_DEL_PARTITION;
458 a.data = (void*)&p;
459 a.datalen = sizeof(p);
460 a.flags = 0;
461 memset(a.data, 0, a.datalen);
462 for (p.pno = 0; p.pno < 16; p.pno++)
463 ioctl(fd, BLKPG, &a);
464 #endif
465 }
466
467 int test_partition(int fd)
468 {
469 /* Check if fd is a whole-disk or a partition.
470 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
471 * will return ENXIO on an invalid partition number.
472 */
473 struct blkpg_ioctl_arg a;
474 struct blkpg_partition p;
475 a.op = BLKPG_DEL_PARTITION;
476 a.data = (void*)&p;
477 a.datalen = sizeof(p);
478 a.flags = 0;
479 memset(a.data, 0, a.datalen);
480 p.pno = 1<<30;
481 if (ioctl(fd, BLKPG, &a) == 0)
482 /* Very unlikely, but not a partition */
483 return 0;
484 if (errno == ENXIO || errno == ENOTTY)
485 /* not a partition */
486 return 0;
487
488 return 1;
489 }
490
491 int test_partition_from_id(dev_t id)
492 {
493 char buf[20];
494 int fd, rv;
495
496 sprintf(buf, "%d:%d", major(id), minor(id));
497 fd = dev_open(buf, O_RDONLY);
498 if (fd < 0)
499 return -1;
500 rv = test_partition(fd);
501 close(fd);
502 return rv;
503 }
504
505 int enough(int level, int raid_disks, int layout, int clean, char *avail)
506 {
507 int copies, first;
508 int i;
509 int avail_disks = 0;
510
511 for (i = 0; i < raid_disks; i++)
512 avail_disks += !!avail[i];
513
514 switch (level) {
515 case 10:
516 /* This is the tricky one - we need to check
517 * which actual disks are present.
518 */
519 copies = (layout&255)* ((layout>>8) & 255);
520 first = 0;
521 do {
522 /* there must be one of the 'copies' form 'first' */
523 int n = copies;
524 int cnt = 0;
525 int this = first;
526 while (n--) {
527 if (avail[this])
528 cnt++;
529 this = (this+1) % raid_disks;
530 }
531 if (cnt == 0)
532 return 0;
533 first = (first+(layout&255)) % raid_disks;
534 } while (first != 0);
535 return 1;
536
537 case LEVEL_MULTIPATH:
538 return avail_disks>= 1;
539 case LEVEL_LINEAR:
540 case 0:
541 return avail_disks == raid_disks;
542 case 1:
543 return avail_disks >= 1;
544 case 4:
545 if (avail_disks == raid_disks - 1 &&
546 !avail[raid_disks - 1])
547 /* If just the parity device is missing, then we
548 * have enough, even if not clean
549 */
550 return 1;
551 /* FALL THROUGH */
552 case 5:
553 if (clean)
554 return avail_disks >= raid_disks-1;
555 else
556 return avail_disks >= raid_disks;
557 case 6:
558 if (clean)
559 return avail_disks >= raid_disks-2;
560 else
561 return avail_disks >= raid_disks;
562 default:
563 return 0;
564 }
565 }
566
567 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
568 {
569 int i, j;
570 char uuid[16];
571 char *c = buf;
572 strcpy(c, "UUID-");
573 c += strlen(c);
574 copy_uuid(uuid, id, swap);
575 for (i = 0; i < 4; i++) {
576 if (i)
577 *c++ = sep;
578 for (j = 3; j >= 0; j--) {
579 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
580 c+= 2;
581 }
582 }
583 return buf;
584
585 }
586
587 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
588 char *buf, char sep)
589 {
590 // dirty hack to work around an issue with super1 superblocks...
591 // super1 superblocks need swapuuid set in order for assembly to
592 // work, but can't have it set if we want this printout to match
593 // all the other uuid printouts in super1.c, so we force swapuuid
594 // to 1 to make our printout match the rest of super1
595 #if __BYTE_ORDER == BIG_ENDIAN
596 return __fname_from_uuid(info->uuid, 1, buf, sep);
597 #else
598 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
599 st->ss->swapuuid, buf, sep);
600 #endif
601 }
602
603 int check_ext2(int fd, char *name)
604 {
605 /*
606 * Check for an ext2fs file system.
607 * Superblock is always 1K at 1K offset
608 *
609 * s_magic is le16 at 56 == 0xEF53
610 * report mtime - le32 at 44
611 * blocks - le32 at 4
612 * logblksize - le32 at 24
613 */
614 unsigned char sb[1024];
615 time_t mtime;
616 unsigned long long size;
617 int bsize;
618 if (lseek(fd, 1024,0)!= 1024)
619 return 0;
620 if (read(fd, sb, 1024)!= 1024)
621 return 0;
622 if (sb[56] != 0x53 || sb[57] != 0xef)
623 return 0;
624
625 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
626 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
627 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
628 size <<= bsize;
629 pr_err("%s appears to contain an ext2fs file system\n",
630 name);
631 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
632 return 1;
633 }
634
635 int check_reiser(int fd, char *name)
636 {
637 /*
638 * superblock is at 64K
639 * size is 1024;
640 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
641 *
642 */
643 unsigned char sb[1024];
644 unsigned long long size;
645 if (lseek(fd, 64*1024, 0) != 64*1024)
646 return 0;
647 if (read(fd, sb, 1024) != 1024)
648 return 0;
649 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
650 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
651 return 0;
652 pr_err("%s appears to contain a reiserfs file system\n",name);
653 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
654 cont_err("size = %lluK\n", size*4);
655
656 return 1;
657 }
658
659 int check_raid(int fd, char *name)
660 {
661 struct mdinfo info;
662 time_t crtime;
663 char *level;
664 struct supertype *st = guess_super(fd);
665
666 if (!st)
667 return 0;
668 if (st->ss->add_to_super != NULL) {
669 st->ss->load_super(st, fd, name);
670 /* Looks like a raid array .. */
671 pr_err("%s appears to be part of a raid array:\n", name);
672 st->ss->getinfo_super(st, &info, NULL);
673 st->ss->free_super(st);
674 crtime = info.array.ctime;
675 level = map_num(pers, info.array.level);
676 if (!level)
677 level = "-unknown-";
678 cont_err("level=%s devices=%d ctime=%s",
679 level, info.array.raid_disks, ctime(&crtime));
680 } else {
681 /* Looks like GPT or MBR */
682 pr_err("partition table exists on %s\n", name);
683 }
684 return 1;
685 }
686
687 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
688 {
689 struct stat stb;
690
691 if (fstat(fd, &stb) != 0) {
692 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
693 return 0;
694 }
695 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
696 pr_err("%s is not a block device.\n", devname);
697 return 0;
698 }
699 if (rdev)
700 *rdev = stb.st_rdev;
701 return 1;
702 }
703
704 int stat_is_blkdev(char *devname, dev_t *rdev)
705 {
706 struct stat stb;
707
708 if (stat(devname, &stb) != 0) {
709 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
710 return 0;
711 }
712 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
713 pr_err("%s is not a block device.\n", devname);
714 return 0;
715 }
716 if (rdev)
717 *rdev = stb.st_rdev;
718 return 1;
719 }
720
721 int ask(char *mesg)
722 {
723 char *add = "";
724 int i;
725 for (i = 0; i < 5; i++) {
726 char buf[100];
727 fprintf(stderr, "%s%s", mesg, add);
728 fflush(stderr);
729 if (fgets(buf, 100, stdin)==NULL)
730 return 0;
731 if (buf[0]=='y' || buf[0]=='Y')
732 return 1;
733 if (buf[0]=='n' || buf[0]=='N')
734 return 0;
735 add = "(y/n) ";
736 }
737 pr_err("assuming 'no'\n");
738 return 0;
739 }
740
741 int is_standard(char *dev, int *nump)
742 {
743 /* tests if dev is a "standard" md dev name.
744 * i.e if the last component is "/dNN" or "/mdNN",
745 * where NN is a string of digits
746 * Returns 1 if a partitionable standard,
747 * -1 if non-partitonable,
748 * 0 if not a standard name.
749 */
750 char *d = strrchr(dev, '/');
751 int type = 0;
752 int num;
753 if (!d)
754 return 0;
755 if (strncmp(d, "/d",2) == 0)
756 d += 2, type = 1; /* /dev/md/dN{pM} */
757 else if (strncmp(d, "/md_d", 5) == 0)
758 d += 5, type = 1; /* /dev/md_dN{pM} */
759 else if (strncmp(d, "/md", 3) == 0)
760 d += 3, type = -1; /* /dev/mdN */
761 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
762 d += 1, type = -1; /* /dev/md/N */
763 else
764 return 0;
765 if (!*d)
766 return 0;
767 num = atoi(d);
768 while (isdigit(*d))
769 d++;
770 if (*d)
771 return 0;
772 if (nump) *nump = num;
773
774 return type;
775 }
776
777 unsigned long calc_csum(void *super, int bytes)
778 {
779 unsigned long long newcsum = 0;
780 int i;
781 unsigned int csum;
782 unsigned int *superc = (unsigned int*) super;
783
784 for(i = 0; i < bytes/4; i++)
785 newcsum += superc[i];
786 csum = (newcsum& 0xffffffff) + (newcsum>>32);
787 #ifdef __alpha__
788 /* The in-kernel checksum calculation is always 16bit on
789 * the alpha, though it is 32 bit on i386...
790 * I wonder what it is elsewhere... (it uses an API in
791 * a way that it shouldn't).
792 */
793 csum = (csum & 0xffff) + (csum >> 16);
794 csum = (csum & 0xffff) + (csum >> 16);
795 #endif
796 return csum;
797 }
798
799 char *human_size(long long bytes)
800 {
801 static char buf[47];
802
803 /* We convert bytes to either centi-M{ega,ibi}bytes,
804 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
805 * with appropriate rounding, and then print
806 * 1/100th of those as a decimal.
807 * We allow upto 2048Megabytes before converting to
808 * gigabytes and 2048Gigabytes before converting to
809 * terabytes, as that shows more precision and isn't
810 * too large a number.
811 */
812
813 if (bytes < 5000*1024)
814 buf[0] = 0;
815 else if (bytes < 2*1024LL*1024LL*1024LL) {
816 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
817 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
818 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
819 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
820 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
821 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
822 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
823 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
824 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
825 } else {
826 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
827 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
828 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
829 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
830 }
831 return buf;
832 }
833
834 char *human_size_brief(long long bytes, int prefix)
835 {
836 static char buf[30];
837
838 /* We convert bytes to either centi-M{ega,ibi}bytes,
839 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
840 * with appropriate rounding, and then print
841 * 1/100th of those as a decimal.
842 * We allow upto 2048Megabytes before converting to
843 * gigabytes and 2048Gigabytes before converting to
844 * terabytes, as that shows more precision and isn't
845 * too large a number.
846 *
847 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
848 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
849 */
850
851 if (bytes < 5000*1024)
852 buf[0] = 0;
853 else if (prefix == IEC) {
854 if (bytes < 2*1024LL*1024LL*1024LL) {
855 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
856 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
857 cMiB/100, cMiB % 100);
858 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
859 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
860 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
861 cGiB/100, cGiB % 100);
862 } else {
863 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
864 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
865 cTiB/100, cTiB % 100);
866 }
867 }
868 else if (prefix == JEDEC) {
869 if (bytes < 2*1024LL*1024LL*1024LL) {
870 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
871 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
872 cMB/100, cMB % 100);
873 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
874 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
875 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
876 cGB/100, cGB % 100);
877 } else {
878 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
879 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
880 cTB/100, cTB % 100);
881 }
882 }
883 else
884 buf[0] = 0;
885
886 return buf;
887 }
888
889 void print_r10_layout(int layout)
890 {
891 int near = layout & 255;
892 int far = (layout >> 8) & 255;
893 int offset = (layout&0x10000);
894 char *sep = "";
895
896 if (near != 1) {
897 printf("%s near=%d", sep, near);
898 sep = ",";
899 }
900 if (far != 1)
901 printf("%s %s=%d", sep, offset?"offset":"far", far);
902 if (near*far == 1)
903 printf("NO REDUNDANCY");
904 }
905
906 unsigned long long calc_array_size(int level, int raid_disks, int layout,
907 int chunksize, unsigned long long devsize)
908 {
909 if (level == 1)
910 return devsize;
911 devsize &= ~(unsigned long long)((chunksize>>9)-1);
912 return get_data_disks(level, layout, raid_disks) * devsize;
913 }
914
915 int get_data_disks(int level, int layout, int raid_disks)
916 {
917 int data_disks = 0;
918 switch (level) {
919 case 0: data_disks = raid_disks;
920 break;
921 case 1: data_disks = 1;
922 break;
923 case 4:
924 case 5: data_disks = raid_disks - 1;
925 break;
926 case 6: data_disks = raid_disks - 2;
927 break;
928 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
929 break;
930 }
931
932 return data_disks;
933 }
934
935 dev_t devnm2devid(char *devnm)
936 {
937 /* First look in /sys/block/$DEVNM/dev for %d:%d
938 * If that fails, try parsing out a number
939 */
940 char path[PATH_MAX];
941 char *ep;
942 int fd;
943 int mjr,mnr;
944
945 snprintf(path, sizeof(path), "/sys/block/%s/dev", devnm);
946 fd = open(path, O_RDONLY);
947 if (fd >= 0) {
948 char buf[20];
949 int n = read(fd, buf, sizeof(buf));
950 close(fd);
951 if (n > 0)
952 buf[n] = 0;
953 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
954 return makedev(mjr, mnr);
955 }
956 if (strncmp(devnm, "md_d", 4) == 0 &&
957 isdigit(devnm[4]) &&
958 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
959 ep > devnm && *ep == 0)
960 return makedev(get_mdp_major(), mnr << MdpMinorShift);
961
962 if (strncmp(devnm, "md", 2) == 0 &&
963 isdigit(devnm[2]) &&
964 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
965 ep > devnm && *ep == 0)
966 return makedev(MD_MAJOR, mnr);
967
968 return 0;
969 }
970
971 char *get_md_name(char *devnm)
972 {
973 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
974 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
975
976 static char devname[50];
977 struct stat stb;
978 dev_t rdev = devnm2devid(devnm);
979 char *dn;
980
981 if (rdev == 0)
982 return 0;
983 if (strncmp(devnm, "md_", 3) == 0) {
984 snprintf(devname, sizeof(devname), "/dev/md/%s",
985 devnm + 3);
986 if (stat(devname, &stb) == 0 &&
987 (S_IFMT&stb.st_mode) == S_IFBLK && (stb.st_rdev == rdev))
988 return devname;
989 }
990 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
991 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
992 (stb.st_rdev == rdev))
993 return devname;
994
995 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
996 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
997 (stb.st_rdev == rdev))
998 return devname;
999
1000 dn = map_dev(major(rdev), minor(rdev), 0);
1001 if (dn)
1002 return dn;
1003 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1004 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1005 if (errno != EEXIST)
1006 return NULL;
1007
1008 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1009 (stb.st_rdev == rdev))
1010 return devname;
1011 unlink(devname);
1012 return NULL;
1013 }
1014
1015 void put_md_name(char *name)
1016 {
1017 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1018 unlink(name);
1019 }
1020
1021 int get_maj_min(char *dev, int *major, int *minor)
1022 {
1023 char *e;
1024 *major = strtoul(dev, &e, 0);
1025 return (e > dev && *e == ':' && e[1] &&
1026 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1027 *e == 0);
1028 }
1029
1030 /**
1031 * is_bit_set() - get bit value by index.
1032 * @val: value.
1033 * @index: index of the bit (LSB numbering).
1034 *
1035 * Return: bit value.
1036 */
1037 bool is_bit_set(int *val, unsigned char index)
1038 {
1039 if ((*val) & (1 << index))
1040 return true;
1041 return false;
1042 }
1043
1044 int dev_open(char *dev, int flags)
1045 {
1046 /* like 'open', but if 'dev' matches %d:%d, create a temp
1047 * block device and open that
1048 */
1049 int fd = -1;
1050 char devname[32];
1051 int major;
1052 int minor;
1053
1054 if (!dev)
1055 return -1;
1056 flags |= O_DIRECT;
1057
1058 if (get_maj_min(dev, &major, &minor)) {
1059 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1060 (int)getpid(), major, minor);
1061 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1062 fd = open(devname, flags);
1063 unlink(devname);
1064 }
1065 if (fd < 0) {
1066 /* Try /tmp as /dev appear to be read-only */
1067 snprintf(devname, sizeof(devname),
1068 "/tmp/.tmp.md.%d:%d:%d",
1069 (int)getpid(), major, minor);
1070 if (mknod(devname, S_IFBLK|0600,
1071 makedev(major, minor)) == 0) {
1072 fd = open(devname, flags);
1073 unlink(devname);
1074 }
1075 }
1076 } else
1077 fd = open(dev, flags);
1078 return fd;
1079 }
1080
1081 int open_dev_flags(char *devnm, int flags)
1082 {
1083 dev_t devid;
1084 char buf[20];
1085
1086 devid = devnm2devid(devnm);
1087 sprintf(buf, "%d:%d", major(devid), minor(devid));
1088 return dev_open(buf, flags);
1089 }
1090
1091 int open_dev(char *devnm)
1092 {
1093 return open_dev_flags(devnm, O_RDONLY);
1094 }
1095
1096 int open_dev_excl(char *devnm)
1097 {
1098 char buf[20];
1099 int i;
1100 int flags = O_RDWR;
1101 dev_t devid = devnm2devid(devnm);
1102 unsigned int delay = 1; // miliseconds
1103
1104 sprintf(buf, "%d:%d", major(devid), minor(devid));
1105 for (i = 0; i < 25; i++) {
1106 int fd = dev_open(buf, flags|O_EXCL);
1107 if (fd >= 0)
1108 return fd;
1109 if (errno == EACCES && flags == O_RDWR) {
1110 flags = O_RDONLY;
1111 continue;
1112 }
1113 if (errno != EBUSY)
1114 return fd;
1115 sleep_for(0, MSEC_TO_NSEC(delay), true);
1116 if (delay < 200)
1117 delay *= 2;
1118 }
1119 return -1;
1120 }
1121
1122 int same_dev(char *one, char *two)
1123 {
1124 struct stat st1, st2;
1125 if (stat(one, &st1) != 0)
1126 return 0;
1127 if (stat(two, &st2) != 0)
1128 return 0;
1129 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1130 return 0;
1131 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1132 return 0;
1133 return st1.st_rdev == st2.st_rdev;
1134 }
1135
1136 void wait_for(char *dev, int fd)
1137 {
1138 int i;
1139 struct stat stb_want;
1140 unsigned int delay = 1; // miliseconds
1141
1142 if (fstat(fd, &stb_want) != 0 ||
1143 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1144 return;
1145
1146 for (i = 0; i < 25; i++) {
1147 struct stat stb;
1148 if (stat(dev, &stb) == 0 &&
1149 (stb.st_mode & S_IFMT) == S_IFBLK &&
1150 (stb.st_rdev == stb_want.st_rdev))
1151 return;
1152 sleep_for(0, MSEC_TO_NSEC(delay), true);
1153 if (delay < 200)
1154 delay *= 2;
1155 }
1156 if (i == 25)
1157 pr_err("timeout waiting for %s\n", dev);
1158 }
1159
1160 struct superswitch *superlist[] =
1161 {
1162 &super0, &super1,
1163 &super_ddf, &super_imsm,
1164 &mbr, &gpt,
1165 NULL
1166 };
1167
1168 struct supertype *super_by_fd(int fd, char **subarrayp)
1169 {
1170 mdu_array_info_t array;
1171 int vers;
1172 int minor;
1173 struct supertype *st = NULL;
1174 struct mdinfo *sra;
1175 char *verstr;
1176 char version[20];
1177 int i;
1178 char *subarray = NULL;
1179 char container[32] = "";
1180
1181 sra = sysfs_read(fd, NULL, GET_VERSION);
1182
1183 if (sra) {
1184 vers = sra->array.major_version;
1185 minor = sra->array.minor_version;
1186 verstr = sra->text_version;
1187 } else {
1188 if (md_get_array_info(fd, &array))
1189 array.major_version = array.minor_version = 0;
1190 vers = array.major_version;
1191 minor = array.minor_version;
1192 verstr = "";
1193 }
1194
1195 if (vers != -1) {
1196 sprintf(version, "%d.%d", vers, minor);
1197 verstr = version;
1198 }
1199 if (minor == -2 && is_subarray(verstr)) {
1200 char *dev = verstr+1;
1201
1202 subarray = strchr(dev, '/');
1203 if (subarray) {
1204 *subarray++ = '\0';
1205 subarray = xstrdup(subarray);
1206 }
1207 strcpy(container, dev);
1208 sysfs_free(sra);
1209 sra = sysfs_read(-1, container, GET_VERSION);
1210 if (sra && sra->text_version[0])
1211 verstr = sra->text_version;
1212 else
1213 verstr = "-no-metadata-";
1214 }
1215
1216 for (i = 0; st == NULL && superlist[i]; i++)
1217 st = superlist[i]->match_metadata_desc(verstr);
1218
1219 sysfs_free(sra);
1220 if (st) {
1221 st->sb = NULL;
1222 if (subarrayp)
1223 *subarrayp = subarray;
1224 strcpy(st->container_devnm, container);
1225 strcpy(st->devnm, fd2devnm(fd));
1226 } else
1227 free(subarray);
1228
1229 return st;
1230 }
1231
1232 int dev_size_from_id(dev_t id, unsigned long long *size)
1233 {
1234 char buf[20];
1235 int fd;
1236
1237 sprintf(buf, "%d:%d", major(id), minor(id));
1238 fd = dev_open(buf, O_RDONLY);
1239 if (fd < 0)
1240 return 0;
1241 if (get_dev_size(fd, NULL, size)) {
1242 close(fd);
1243 return 1;
1244 }
1245 close(fd);
1246 return 0;
1247 }
1248
1249 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1250 {
1251 char buf[20];
1252 int fd;
1253
1254 sprintf(buf, "%d:%d", major(id), minor(id));
1255 fd = dev_open(buf, O_RDONLY);
1256 if (fd < 0)
1257 return 0;
1258 if (get_dev_sector_size(fd, NULL, size)) {
1259 close(fd);
1260 return 1;
1261 }
1262 close(fd);
1263 return 0;
1264 }
1265
1266 struct supertype *dup_super(struct supertype *orig)
1267 {
1268 struct supertype *st;
1269
1270 if (!orig)
1271 return orig;
1272 st = xcalloc(1, sizeof(*st));
1273 st->ss = orig->ss;
1274 st->max_devs = orig->max_devs;
1275 st->minor_version = orig->minor_version;
1276 st->ignore_hw_compat = orig->ignore_hw_compat;
1277 st->data_offset = orig->data_offset;
1278 st->sb = NULL;
1279 st->info = NULL;
1280 return st;
1281 }
1282
1283 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1284 {
1285 /* try each load_super to find the best match,
1286 * and return the best superswitch
1287 */
1288 struct superswitch *ss;
1289 struct supertype *st;
1290 unsigned int besttime = 0;
1291 int bestsuper = -1;
1292 int i;
1293
1294 st = xcalloc(1, sizeof(*st));
1295 st->container_devnm[0] = 0;
1296
1297 for (i = 0; superlist[i]; i++) {
1298 int rv;
1299 ss = superlist[i];
1300 if (guess_type == guess_array && ss->add_to_super == NULL)
1301 continue;
1302 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1303 continue;
1304 memset(st, 0, sizeof(*st));
1305 st->ignore_hw_compat = 1;
1306 rv = ss->load_super(st, fd, NULL);
1307 if (rv == 0) {
1308 struct mdinfo info;
1309 st->ss->getinfo_super(st, &info, NULL);
1310 if (bestsuper == -1 ||
1311 besttime < info.array.ctime) {
1312 bestsuper = i;
1313 besttime = info.array.ctime;
1314 }
1315 ss->free_super(st);
1316 }
1317 }
1318 if (bestsuper != -1) {
1319 int rv;
1320 memset(st, 0, sizeof(*st));
1321 st->ignore_hw_compat = 1;
1322 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1323 if (rv == 0) {
1324 superlist[bestsuper]->free_super(st);
1325 return st;
1326 }
1327 }
1328 free(st);
1329 return NULL;
1330 }
1331
1332 /* Return size of device in bytes */
1333 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1334 {
1335 unsigned long long ldsize;
1336 struct stat st;
1337
1338 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1339 ldsize = (unsigned long long)st.st_size;
1340 else
1341 #ifdef BLKGETSIZE64
1342 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1343 #endif
1344 {
1345 unsigned long dsize;
1346 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1347 ldsize = dsize;
1348 ldsize <<= 9;
1349 } else {
1350 if (dname)
1351 pr_err("Cannot get size of %s: %s\n",
1352 dname, strerror(errno));
1353 return 0;
1354 }
1355 }
1356 *sizep = ldsize;
1357 return 1;
1358 }
1359
1360 /* Return sector size of device in bytes */
1361 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1362 {
1363 unsigned int sectsize;
1364
1365 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1366 if (dname)
1367 pr_err("Cannot get sector size of %s: %s\n",
1368 dname, strerror(errno));
1369 return 0;
1370 }
1371
1372 *sectsizep = sectsize;
1373 return 1;
1374 }
1375
1376 /* Return true if this can only be a container, not a member device.
1377 * i.e. is and md device and size is zero
1378 */
1379 int must_be_container(int fd)
1380 {
1381 struct mdinfo *mdi;
1382 unsigned long long size;
1383
1384 mdi = sysfs_read(fd, NULL, GET_VERSION);
1385 if (!mdi)
1386 return 0;
1387 sysfs_free(mdi);
1388
1389 if (get_dev_size(fd, NULL, &size) == 0)
1390 return 1;
1391 if (size == 0)
1392 return 1;
1393 return 0;
1394 }
1395
1396 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1397 * Returns: 1 if successful
1398 * -1 for unknown partition type
1399 * 0 for other errors
1400 */
1401 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1402 {
1403 struct GPT gpt;
1404 unsigned char empty_gpt_entry[16]= {0};
1405 struct GPT_part_entry *part;
1406 char buf[512];
1407 unsigned long long curr_part_end;
1408 unsigned all_partitions, entry_size;
1409 unsigned part_nr;
1410 unsigned int sector_size = 0;
1411
1412 *endofpart = 0;
1413
1414 BUILD_BUG_ON(sizeof(gpt) != 512);
1415 /* skip protective MBR */
1416 if (!get_dev_sector_size(fd, NULL, &sector_size))
1417 return 0;
1418 lseek(fd, sector_size, SEEK_SET);
1419 /* read GPT header */
1420 if (read(fd, &gpt, 512) != 512)
1421 return 0;
1422
1423 /* get the number of partition entries and the entry size */
1424 all_partitions = __le32_to_cpu(gpt.part_cnt);
1425 entry_size = __le32_to_cpu(gpt.part_size);
1426
1427 /* Check GPT signature*/
1428 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1429 return -1;
1430
1431 /* sanity checks */
1432 if (all_partitions > 1024 ||
1433 entry_size > sizeof(buf))
1434 return -1;
1435
1436 part = (struct GPT_part_entry *)buf;
1437
1438 /* set offset to third block (GPT entries) */
1439 lseek(fd, sector_size*2, SEEK_SET);
1440 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1441 /* read partition entry */
1442 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1443 return 0;
1444
1445 /* is this valid partition? */
1446 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1447 /* check the last lba for the current partition */
1448 curr_part_end = __le64_to_cpu(part->ending_lba);
1449 if (curr_part_end > *endofpart)
1450 *endofpart = curr_part_end;
1451 }
1452
1453 }
1454 return 1;
1455 }
1456
1457 /* Sets endofpart parameter to the last block used by the last partition on the device.
1458 * Returns: 1 if successful
1459 * -1 for unknown partition type
1460 * 0 for other errors
1461 */
1462 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1463 {
1464 struct MBR boot_sect;
1465 unsigned long long curr_part_end;
1466 unsigned part_nr;
1467 unsigned int sector_size;
1468 int retval = 0;
1469
1470 *endofpart = 0;
1471
1472 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1473 /* read MBR */
1474 lseek(fd, 0, 0);
1475 if (read(fd, &boot_sect, 512) != 512)
1476 goto abort;
1477
1478 /* check MBP signature */
1479 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1480 retval = 1;
1481 /* found the correct signature */
1482
1483 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1484 /*
1485 * Have to make every access through boot_sect rather
1486 * than using a pointer to the partition table (or an
1487 * entry), since the entries are not properly aligned.
1488 */
1489
1490 /* check for GPT type */
1491 if (boot_sect.parts[part_nr].part_type ==
1492 MBR_GPT_PARTITION_TYPE) {
1493 retval = get_gpt_last_partition_end(fd, endofpart);
1494 break;
1495 }
1496 /* check the last used lba for the current partition */
1497 curr_part_end =
1498 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1499 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1500 if (curr_part_end > *endofpart)
1501 *endofpart = curr_part_end;
1502 }
1503 } else {
1504 /* Unknown partition table */
1505 retval = -1;
1506 }
1507 /* calculate number of 512-byte blocks */
1508 if (get_dev_sector_size(fd, NULL, &sector_size))
1509 *endofpart *= (sector_size / 512);
1510 abort:
1511 return retval;
1512 }
1513
1514 int check_partitions(int fd, char *dname, unsigned long long freesize,
1515 unsigned long long size)
1516 {
1517 /*
1518 * Check where the last partition ends
1519 */
1520 unsigned long long endofpart;
1521
1522 if (get_last_partition_end(fd, &endofpart) > 0) {
1523 /* There appears to be a partition table here */
1524 if (freesize == 0) {
1525 /* partitions will not be visible in new device */
1526 pr_err("partition table exists on %s but will be lost or\n"
1527 " meaningless after creating array\n",
1528 dname);
1529 return 1;
1530 } else if (endofpart > freesize) {
1531 /* last partition overlaps metadata */
1532 pr_err("metadata will over-write last partition on %s.\n",
1533 dname);
1534 return 1;
1535 } else if (size && endofpart > size) {
1536 /* partitions will be truncated in new device */
1537 pr_err("array size is too small to cover all partitions on %s.\n",
1538 dname);
1539 return 1;
1540 }
1541 }
1542 return 0;
1543 }
1544
1545 int open_container(int fd)
1546 {
1547 /* 'fd' is a block device. Find out if it is in use
1548 * by a container, and return an open fd on that container.
1549 */
1550 char path[288];
1551 char *e;
1552 DIR *dir;
1553 struct dirent *de;
1554 int dfd, n;
1555 char buf[200];
1556 int major, minor;
1557 struct stat st;
1558
1559 if (fstat(fd, &st) != 0)
1560 return -1;
1561 sprintf(path, "/sys/dev/block/%d:%d/holders",
1562 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1563 e = path + strlen(path);
1564
1565 dir = opendir(path);
1566 if (!dir)
1567 return -1;
1568 while ((de = readdir(dir))) {
1569 if (de->d_ino == 0)
1570 continue;
1571 if (de->d_name[0] == '.')
1572 continue;
1573 /* Need to make sure it is a container and not a volume */
1574 sprintf(e, "/%s/md/metadata_version", de->d_name);
1575 dfd = open(path, O_RDONLY);
1576 if (dfd < 0)
1577 continue;
1578 n = read(dfd, buf, sizeof(buf));
1579 close(dfd);
1580 if (n <= 0 || (unsigned)n >= sizeof(buf))
1581 continue;
1582 buf[n] = 0;
1583 if (strncmp(buf, "external", 8) != 0 ||
1584 n < 10 ||
1585 buf[9] == '/')
1586 continue;
1587 sprintf(e, "/%s/dev", de->d_name);
1588 dfd = open(path, O_RDONLY);
1589 if (dfd < 0)
1590 continue;
1591 n = read(dfd, buf, sizeof(buf));
1592 close(dfd);
1593 if (n <= 0 || (unsigned)n >= sizeof(buf))
1594 continue;
1595 buf[n] = 0;
1596 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1597 continue;
1598 sprintf(buf, "%d:%d", major, minor);
1599 dfd = dev_open(buf, O_RDONLY);
1600 if (dfd >= 0) {
1601 closedir(dir);
1602 return dfd;
1603 }
1604 }
1605 closedir(dir);
1606 return -1;
1607 }
1608
1609 struct superswitch *version_to_superswitch(char *vers)
1610 {
1611 int i;
1612
1613 for (i = 0; superlist[i]; i++) {
1614 struct superswitch *ss = superlist[i];
1615
1616 if (strcmp(vers, ss->name) == 0)
1617 return ss;
1618 }
1619
1620 return NULL;
1621 }
1622
1623 int metadata_container_matches(char *metadata, char *devnm)
1624 {
1625 /* Check if 'devnm' is the container named in 'metadata'
1626 * which is
1627 * /containername/componentname or
1628 * -containername/componentname
1629 */
1630 int l;
1631 if (*metadata != '/' && *metadata != '-')
1632 return 0;
1633 l = strlen(devnm);
1634 if (strncmp(metadata+1, devnm, l) != 0)
1635 return 0;
1636 if (metadata[l+1] != '/')
1637 return 0;
1638 return 1;
1639 }
1640
1641 int metadata_subdev_matches(char *metadata, char *devnm)
1642 {
1643 /* Check if 'devnm' is the subdev named in 'metadata'
1644 * which is
1645 * /containername/subdev or
1646 * -containername/subdev
1647 */
1648 char *sl;
1649 if (*metadata != '/' && *metadata != '-')
1650 return 0;
1651 sl = strchr(metadata+1, '/');
1652 if (!sl)
1653 return 0;
1654 if (strcmp(sl+1, devnm) == 0)
1655 return 1;
1656 return 0;
1657 }
1658
1659 int is_container_member(struct mdstat_ent *mdstat, char *container)
1660 {
1661 if (mdstat->metadata_version == NULL ||
1662 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1663 !metadata_container_matches(mdstat->metadata_version+9, container))
1664 return 0;
1665
1666 return 1;
1667 }
1668
1669 int is_subarray_active(char *subarray, char *container)
1670 {
1671 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1672 struct mdstat_ent *ent;
1673
1674 for (ent = mdstat; ent; ent = ent->next)
1675 if (is_container_member(ent, container))
1676 if (strcmp(to_subarray(ent, container), subarray) == 0)
1677 break;
1678
1679 free_mdstat(mdstat);
1680
1681 return ent != NULL;
1682 }
1683
1684 /* open_subarray - opens a subarray in a container
1685 * @dev: container device name
1686 * @st: empty supertype
1687 * @quiet: block reporting errors flag
1688 *
1689 * On success returns an fd to a container and fills in *st
1690 */
1691 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1692 {
1693 struct mdinfo *mdi;
1694 struct mdinfo *info;
1695 int fd, err = 1;
1696 char *_devnm;
1697
1698 fd = open(dev, O_RDWR|O_EXCL);
1699 if (fd < 0) {
1700 if (!quiet)
1701 pr_err("Couldn't open %s, aborting\n",
1702 dev);
1703 return -1;
1704 }
1705
1706 _devnm = fd2devnm(fd);
1707 if (_devnm == NULL) {
1708 if (!quiet)
1709 pr_err("Failed to determine device number for %s\n",
1710 dev);
1711 goto close_fd;
1712 }
1713 strcpy(st->devnm, _devnm);
1714
1715 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1716 if (!mdi) {
1717 if (!quiet)
1718 pr_err("Failed to read sysfs for %s\n",
1719 dev);
1720 goto close_fd;
1721 }
1722
1723 if (mdi->array.level != UnSet) {
1724 if (!quiet)
1725 pr_err("%s is not a container\n", dev);
1726 goto free_sysfs;
1727 }
1728
1729 st->ss = version_to_superswitch(mdi->text_version);
1730 if (!st->ss) {
1731 if (!quiet)
1732 pr_err("Operation not supported for %s metadata\n",
1733 mdi->text_version);
1734 goto free_sysfs;
1735 }
1736
1737 if (st->devnm[0] == 0) {
1738 if (!quiet)
1739 pr_err("Failed to allocate device name\n");
1740 goto free_sysfs;
1741 }
1742
1743 if (!st->ss->load_container) {
1744 if (!quiet)
1745 pr_err("%s is not a container\n", dev);
1746 goto free_sysfs;
1747 }
1748
1749 if (st->ss->load_container(st, fd, NULL)) {
1750 if (!quiet)
1751 pr_err("Failed to load metadata for %s\n",
1752 dev);
1753 goto free_sysfs;
1754 }
1755
1756 info = st->ss->container_content(st, subarray);
1757 if (!info) {
1758 if (!quiet)
1759 pr_err("Failed to find subarray-%s in %s\n",
1760 subarray, dev);
1761 goto free_super;
1762 }
1763 free(info);
1764
1765 err = 0;
1766
1767 free_super:
1768 if (err)
1769 st->ss->free_super(st);
1770 free_sysfs:
1771 sysfs_free(mdi);
1772 close_fd:
1773 if (err)
1774 close(fd);
1775
1776 if (err)
1777 return -1;
1778 else
1779 return fd;
1780 }
1781
1782 int add_disk(int mdfd, struct supertype *st,
1783 struct mdinfo *sra, struct mdinfo *info)
1784 {
1785 /* Add a device to an array, in one of 2 ways. */
1786 int rv;
1787
1788 if (st->ss->external) {
1789 if (info->disk.state & (1<<MD_DISK_SYNC))
1790 info->recovery_start = MaxSector;
1791 else
1792 info->recovery_start = 0;
1793 rv = sysfs_add_disk(sra, info, 0);
1794 if (! rv) {
1795 struct mdinfo *sd2;
1796 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1797 if (sd2 == info)
1798 break;
1799 if (sd2 == NULL) {
1800 sd2 = xmalloc(sizeof(*sd2));
1801 *sd2 = *info;
1802 sd2->next = sra->devs;
1803 sra->devs = sd2;
1804 }
1805 }
1806 } else
1807 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1808 return rv;
1809 }
1810
1811 int remove_disk(int mdfd, struct supertype *st,
1812 struct mdinfo *sra, struct mdinfo *info)
1813 {
1814 int rv;
1815
1816 /* Remove the disk given by 'info' from the array */
1817 if (st->ss->external)
1818 rv = sysfs_set_str(sra, info, "slot", "none");
1819 else
1820 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1821 info->disk.minor));
1822 return rv;
1823 }
1824
1825 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1826 {
1827 int cnt = force ? 500 : 5;
1828 int ret;
1829
1830 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1831 * outstanding IO requests to the device.
1832 * In this case, it can be helpful to wait a little while,
1833 * up to 5 seconds if 'force' is set, or 50 msec if not.
1834 */
1835 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1836 errno == EBUSY &&
1837 cnt-- > 0)
1838 sleep_for(0, MSEC_TO_NSEC(10), true);
1839
1840 return ret;
1841 }
1842
1843 int sys_hot_remove_disk(int statefd, int force)
1844 {
1845 int cnt = force ? 500 : 5;
1846 int ret;
1847
1848 while ((ret = write(statefd, "remove", 6)) == -1 &&
1849 errno == EBUSY &&
1850 cnt-- > 0)
1851 sleep_for(0, MSEC_TO_NSEC(10), true);
1852 return ret == 6 ? 0 : -1;
1853 }
1854
1855 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1856 {
1857 /* Initialise kernel's knowledge of array.
1858 * This varies between externally managed arrays
1859 * and older kernels
1860 */
1861 mdu_array_info_t inf;
1862 int rv;
1863
1864 if (st->ss->external)
1865 return sysfs_set_array(info, 9003);
1866
1867 memset(&inf, 0, sizeof(inf));
1868 inf.major_version = info->array.major_version;
1869 inf.minor_version = info->array.minor_version;
1870 rv = md_set_array_info(mdfd, &inf);
1871
1872 return rv;
1873 }
1874
1875 unsigned long long min_recovery_start(struct mdinfo *array)
1876 {
1877 /* find the minimum recovery_start in an array for metadata
1878 * formats that only record per-array recovery progress instead
1879 * of per-device
1880 */
1881 unsigned long long recovery_start = MaxSector;
1882 struct mdinfo *d;
1883
1884 for (d = array->devs; d; d = d->next)
1885 recovery_start = min(recovery_start, d->recovery_start);
1886
1887 return recovery_start;
1888 }
1889
1890 int mdmon_pid(char *devnm)
1891 {
1892 char path[100];
1893 char pid[10];
1894 int fd;
1895 int n;
1896
1897 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1898
1899 fd = open(path, O_RDONLY | O_NOATIME, 0);
1900
1901 if (fd < 0)
1902 return -1;
1903 n = read(fd, pid, 9);
1904 close(fd);
1905 if (n <= 0)
1906 return -1;
1907 return atoi(pid);
1908 }
1909
1910 int mdmon_running(char *devnm)
1911 {
1912 int pid = mdmon_pid(devnm);
1913 if (pid <= 0)
1914 return 0;
1915 if (kill(pid, 0) == 0)
1916 return 1;
1917 return 0;
1918 }
1919
1920 int start_mdmon(char *devnm)
1921 {
1922 int i;
1923 int len;
1924 pid_t pid;
1925 int status;
1926 char pathbuf[1024];
1927 char *paths[4] = {
1928 pathbuf,
1929 BINDIR "/mdmon",
1930 "./mdmon",
1931 NULL
1932 };
1933
1934 if (check_env("MDADM_NO_MDMON"))
1935 return 0;
1936 if (continue_via_systemd(devnm, MDMON_SERVICE))
1937 return 0;
1938
1939 /* That failed, try running mdmon directly */
1940 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1941 if (len > 0) {
1942 char *sl;
1943 pathbuf[len] = 0;
1944 sl = strrchr(pathbuf, '/');
1945 if (sl)
1946 sl++;
1947 else
1948 sl = pathbuf;
1949 strcpy(sl, "mdmon");
1950 } else
1951 pathbuf[0] = '\0';
1952
1953 switch(fork()) {
1954 case 0:
1955 manage_fork_fds(1);
1956 for (i = 0; paths[i]; i++)
1957 if (paths[i][0]) {
1958 execl(paths[i], paths[i],
1959 devnm, NULL);
1960 }
1961 exit(1);
1962 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1963 return -1;
1964 default: /* parent - good */
1965 pid = wait(&status);
1966 if (pid < 0 || status != 0) {
1967 pr_err("failed to launch mdmon. Array remains readonly\n");
1968 return -1;
1969 }
1970 }
1971 return 0;
1972 }
1973
1974 __u32 random32(void)
1975 {
1976 __u32 rv;
1977 int rfd = open("/dev/urandom", O_RDONLY);
1978 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1979 rv = random();
1980 if (rfd >= 0)
1981 close(rfd);
1982 return rv;
1983 }
1984
1985 void random_uuid(__u8 *buf)
1986 {
1987 int fd, i, len;
1988 __u32 r[4];
1989
1990 fd = open("/dev/urandom", O_RDONLY);
1991 if (fd < 0)
1992 goto use_random;
1993 len = read(fd, buf, 16);
1994 close(fd);
1995 if (len != 16)
1996 goto use_random;
1997
1998 return;
1999
2000 use_random:
2001 for (i = 0; i < 4; i++)
2002 r[i] = random();
2003 memcpy(buf, r, 16);
2004 }
2005
2006 int flush_metadata_updates(struct supertype *st)
2007 {
2008 int sfd;
2009 if (!st->updates) {
2010 st->update_tail = NULL;
2011 return -1;
2012 }
2013
2014 sfd = connect_monitor(st->container_devnm);
2015 if (sfd < 0)
2016 return -1;
2017
2018 while (st->updates) {
2019 struct metadata_update *mu = st->updates;
2020 st->updates = mu->next;
2021
2022 send_message(sfd, mu, 0);
2023 wait_reply(sfd, 0);
2024 free(mu->buf);
2025 free(mu);
2026 }
2027 ack(sfd, 0);
2028 wait_reply(sfd, 0);
2029 close(sfd);
2030 st->update_tail = NULL;
2031 return 0;
2032 }
2033
2034 void append_metadata_update(struct supertype *st, void *buf, int len)
2035 {
2036
2037 struct metadata_update *mu = xmalloc(sizeof(*mu));
2038
2039 mu->buf = buf;
2040 mu->len = len;
2041 mu->space = NULL;
2042 mu->space_list = NULL;
2043 mu->next = NULL;
2044 *st->update_tail = mu;
2045 st->update_tail = &mu->next;
2046 }
2047
2048 #ifdef __TINYC__
2049 /* tinyc doesn't optimize this check in ioctl.h out ... */
2050 unsigned int __invalid_size_argument_for_IOC = 0;
2051 #endif
2052
2053 /* Pick all spares matching given criteria from a container
2054 * if min_size == 0 do not check size
2055 * if domlist == NULL do not check domains
2056 * if spare_group given add it to domains of each spare
2057 * metadata allows to test domains using metadata of destination array */
2058 struct mdinfo *container_choose_spares(struct supertype *st,
2059 struct spare_criteria *criteria,
2060 struct domainlist *domlist,
2061 char *spare_group,
2062 const char *metadata, int get_one)
2063 {
2064 struct mdinfo *d, **dp, *disks = NULL;
2065
2066 /* get list of all disks in container */
2067 if (st->ss->getinfo_super_disks)
2068 disks = st->ss->getinfo_super_disks(st);
2069
2070 if (!disks)
2071 return disks;
2072 /* find spare devices on the list */
2073 dp = &disks->devs;
2074 disks->array.spare_disks = 0;
2075 while (*dp) {
2076 int found = 0;
2077 d = *dp;
2078 if (d->disk.state == 0) {
2079 /* check if size is acceptable */
2080 unsigned long long dev_size;
2081 unsigned int dev_sector_size;
2082 int size_valid = 0;
2083 int sector_size_valid = 0;
2084
2085 dev_t dev = makedev(d->disk.major,d->disk.minor);
2086
2087 if (!criteria->min_size ||
2088 (dev_size_from_id(dev, &dev_size) &&
2089 dev_size >= criteria->min_size))
2090 size_valid = 1;
2091
2092 if (!criteria->sector_size ||
2093 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2094 criteria->sector_size == dev_sector_size))
2095 sector_size_valid = 1;
2096
2097 found = size_valid && sector_size_valid;
2098
2099 /* check if domain matches */
2100 if (found && domlist) {
2101 struct dev_policy *pol = devid_policy(dev);
2102 if (spare_group)
2103 pol_add(&pol, pol_domain,
2104 spare_group, NULL);
2105 if (domain_test(domlist, pol, metadata) != 1)
2106 found = 0;
2107 dev_policy_free(pol);
2108 }
2109 }
2110 if (found) {
2111 dp = &d->next;
2112 disks->array.spare_disks++;
2113 if (get_one) {
2114 sysfs_free(*dp);
2115 d->next = NULL;
2116 }
2117 } else {
2118 *dp = d->next;
2119 d->next = NULL;
2120 sysfs_free(d);
2121 }
2122 }
2123 return disks;
2124 }
2125
2126 /* Checks if paths point to the same device
2127 * Returns 0 if they do.
2128 * Returns 1 if they don't.
2129 * Returns -1 if something went wrong,
2130 * e.g. paths are empty or the files
2131 * they point to don't exist */
2132 int compare_paths (char* path1, char* path2)
2133 {
2134 struct stat st1,st2;
2135
2136 if (path1 == NULL || path2 == NULL)
2137 return -1;
2138 if (stat(path1,&st1) != 0)
2139 return -1;
2140 if (stat(path2,&st2) != 0)
2141 return -1;
2142 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2143 return 0;
2144 return 1;
2145 }
2146
2147 /* Make sure we can open as many devices as needed */
2148 void enable_fds(int devices)
2149 {
2150 unsigned int fds = 20 + devices;
2151 struct rlimit lim;
2152 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2153 return;
2154 if (lim.rlim_max < fds)
2155 lim.rlim_max = fds;
2156 lim.rlim_cur = fds;
2157 setrlimit(RLIMIT_NOFILE, &lim);
2158 }
2159
2160 /* Close all opened descriptors if needed and redirect
2161 * streams to /dev/null.
2162 * For debug purposed, leave STDOUT and STDERR untouched
2163 * Returns:
2164 * 1- if any error occurred
2165 * 0- otherwise
2166 */
2167 void manage_fork_fds(int close_all)
2168 {
2169 DIR *dir;
2170 struct dirent *dirent;
2171
2172 close(0);
2173 open("/dev/null", O_RDWR);
2174
2175 #ifndef DEBUG
2176 dup2(0, 1);
2177 dup2(0, 2);
2178 #endif
2179
2180 if (close_all == 0)
2181 return;
2182
2183 dir = opendir("/proc/self/fd");
2184 if (!dir) {
2185 pr_err("Cannot open /proc/self/fd directory.\n");
2186 return;
2187 }
2188 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2189 int fd = -1;
2190
2191 if ((strcmp(dirent->d_name, ".") == 0) ||
2192 (strcmp(dirent->d_name, "..")) == 0)
2193 continue;
2194
2195 fd = strtol(dirent->d_name, NULL, 10);
2196 if (fd > 2)
2197 close(fd);
2198 }
2199 }
2200
2201 /* In a systemd/udev world, it is best to get systemd to
2202 * run daemon rather than running in the background.
2203 * Returns:
2204 * 1- if systemd service has been started
2205 * 0- otherwise
2206 */
2207 int continue_via_systemd(char *devnm, char *service_name)
2208 {
2209 int pid, status;
2210 char pathbuf[1024];
2211
2212 /* Simply return that service cannot be started */
2213 if (check_env("MDADM_NO_SYSTEMCTL"))
2214 return 0;
2215 switch (fork()) {
2216 case 0:
2217 manage_fork_fds(1);
2218 snprintf(pathbuf, sizeof(pathbuf),
2219 "%s@%s.service", service_name, devnm);
2220 status = execl("/usr/bin/systemctl", "systemctl", "restart",
2221 pathbuf, NULL);
2222 status = execl("/bin/systemctl", "systemctl", "restart",
2223 pathbuf, NULL);
2224 exit(1);
2225 case -1: /* Just do it ourselves. */
2226 break;
2227 default: /* parent - good */
2228 pid = wait(&status);
2229 if (pid >= 0 && status == 0)
2230 return 1;
2231 }
2232 return 0;
2233 }
2234
2235 int in_initrd(void)
2236 {
2237 /* This is based on similar function in systemd. */
2238 struct statfs s;
2239 /* statfs.f_type is signed long on s390x and MIPS, causing all
2240 sorts of sign extension problems with RAMFS_MAGIC being
2241 defined as 0x858458f6 */
2242 return statfs("/", &s) >= 0 &&
2243 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2244 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2245 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2246 }
2247
2248 void reopen_mddev(int mdfd)
2249 {
2250 /* Re-open without any O_EXCL, but keep
2251 * the same fd
2252 */
2253 char *devnm;
2254 int fd;
2255 devnm = fd2devnm(mdfd);
2256 close(mdfd);
2257 fd = open_dev(devnm);
2258 if (fd >= 0 && fd != mdfd)
2259 dup2(fd, mdfd);
2260 }
2261
2262 static struct cmap_hooks *cmap_hooks = NULL;
2263 static int is_cmap_hooks_ready = 0;
2264
2265 void set_cmap_hooks(void)
2266 {
2267 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2268 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2269 if (!cmap_hooks->cmap_handle)
2270 return;
2271
2272 cmap_hooks->initialize =
2273 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2274 cmap_hooks->get_string =
2275 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2276 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2277
2278 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2279 !cmap_hooks->finalize)
2280 dlclose(cmap_hooks->cmap_handle);
2281 else
2282 is_cmap_hooks_ready = 1;
2283 }
2284
2285 int get_cluster_name(char **cluster_name)
2286 {
2287 int rv = -1;
2288 cmap_handle_t handle;
2289
2290 if (!is_cmap_hooks_ready)
2291 return rv;
2292
2293 rv = cmap_hooks->initialize(&handle);
2294 if (rv != CS_OK)
2295 goto out;
2296
2297 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2298 if (rv != CS_OK) {
2299 free(*cluster_name);
2300 rv = -1;
2301 goto name_err;
2302 }
2303
2304 rv = 0;
2305 name_err:
2306 cmap_hooks->finalize(handle);
2307 out:
2308 return rv;
2309 }
2310
2311 void set_dlm_hooks(void)
2312 {
2313 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2314 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2315 if (!dlm_hooks->dlm_handle)
2316 return;
2317
2318 dlm_hooks->open_lockspace =
2319 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2320 dlm_hooks->create_lockspace =
2321 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2322 dlm_hooks->release_lockspace =
2323 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2324 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2325 dlm_hooks->ls_unlock_wait =
2326 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2327 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2328 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2329
2330 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2331 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2332 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2333 !dlm_hooks->dispatch)
2334 dlclose(dlm_hooks->dlm_handle);
2335 else
2336 is_dlm_hooks_ready = 1;
2337 }
2338
2339 void set_hooks(void)
2340 {
2341 set_dlm_hooks();
2342 set_cmap_hooks();
2343 }
2344
2345 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2346 {
2347 int ret = 0;
2348 int fd_zero;
2349 void *addr = NULL;
2350 size_t written = 0;
2351 size_t len = count * 512;
2352 ssize_t n;
2353
2354 fd_zero = open("/dev/zero", O_RDONLY);
2355 if (fd_zero < 0) {
2356 pr_err("Cannot open /dev/zero\n");
2357 return -1;
2358 }
2359
2360 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2361 ret = -errno;
2362 pr_err("Failed to seek offset for zeroing\n");
2363 goto out;
2364 }
2365
2366 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2367
2368 if (addr == MAP_FAILED) {
2369 ret = -errno;
2370 pr_err("Mapping /dev/zero failed\n");
2371 goto out;
2372 }
2373
2374 do {
2375 n = write(fd, addr + written, len - written);
2376 if (n < 0) {
2377 if (errno == EINTR)
2378 continue;
2379 ret = -errno;
2380 pr_err("Zeroing disk range failed\n");
2381 break;
2382 }
2383 written += n;
2384 } while (written != len);
2385
2386 munmap(addr, len);
2387
2388 out:
2389 close(fd_zero);
2390 return ret;
2391 }
2392
2393 /**
2394 * sleep_for() - Sleeps for specified time.
2395 * @sec: Seconds to sleep for.
2396 * @nsec: Nanoseconds to sleep for, has to be less than one second.
2397 * @wake_after_interrupt: If set, wake up if interrupted.
2398 *
2399 * Function immediately returns if error different than EINTR occurs.
2400 */
2401 void sleep_for(unsigned int sec, long nsec, bool wake_after_interrupt)
2402 {
2403 struct timespec delay = {.tv_sec = sec, .tv_nsec = nsec};
2404
2405 assert(nsec < MSEC_TO_NSEC(1000));
2406
2407 do {
2408 errno = 0;
2409 nanosleep(&delay, &delay);
2410 if (errno != 0 && errno != EINTR) {
2411 pr_err("Error sleeping for %us %ldns: %s\n", sec, nsec, strerror(errno));
2412 return;
2413 }
2414 } while (!wake_after_interrupt && errno == EINTR);
2415 }