]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
util: replace ioctl use with function
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(void)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135 int retry_count = 0;
136
137 if (!dlm_funs_ready()) {
138 pr_err("Something wrong with dlm library\n");
139 return -1;
140 }
141
142 ret = get_cluster_name(&cluster_name);
143 if (ret) {
144 pr_err("The md can't get cluster name\n");
145 return -1;
146 }
147
148 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
149 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
150 if (!dlm_lock_res->ls) {
151 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
152 if (!dlm_lock_res->ls) {
153 pr_err("%s failed to create lockspace\n", cluster_name);
154 return -ENOMEM;
155 }
156 } else {
157 pr_err("open existed %s lockspace\n", cluster_name);
158 }
159
160 snprintf(str, 64, "bitmap%s", cluster_name);
161 retry:
162 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
163 &dlm_lock_res->lksb, flags, str, strlen(str),
164 0, dlm_ast, dlm_lock_res, NULL, NULL);
165 if (ret) {
166 pr_err("error %d when get PW mode on lock %s\n", errno, str);
167 /* let's try several times if EAGAIN happened */
168 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
169 sleep(10);
170 retry_count++;
171 goto retry;
172 }
173 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
174 return ret;
175 }
176
177 /* Wait for it to complete */
178 poll_for_ast(dlm_lock_res->ls);
179
180 if (dlm_lock_res->lksb.sb_status) {
181 pr_err("failed to lock cluster\n");
182 return -1;
183 }
184 return 1;
185 }
186
187 int cluster_release_dlmlock(void)
188 {
189 int ret = -1;
190
191 if (!cluster_name)
192 goto out;
193
194 if (!dlm_lock_res->lksb.sb_lkid)
195 goto out;
196
197 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
198 dlm_lock_res->lksb.sb_lkid, 0,
199 &dlm_lock_res->lksb);
200 if (ret) {
201 pr_err("error %d happened when unlock\n", errno);
202 /* XXX make sure the lock is unlocked eventually */
203 goto out;
204 }
205
206 /* Wait for it to complete */
207 poll_for_ast(dlm_lock_res->ls);
208
209 errno = dlm_lock_res->lksb.sb_status;
210 if (errno != EUNLOCK) {
211 pr_err("error %d happened in ast when unlock lockspace\n",
212 errno);
213 /* XXX make sure the lockspace is unlocked eventually */
214 goto out;
215 }
216
217 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
218 if (ret) {
219 pr_err("error %d happened when release lockspace\n", errno);
220 /* XXX make sure the lockspace is released eventually */
221 goto out;
222 }
223 free(dlm_lock_res);
224
225 out:
226 return ret;
227 }
228
229 int md_array_valid(int fd)
230 {
231 struct mdinfo *sra;
232 int ret;
233
234 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
235 if (sra) {
236 if (sra->array_state != ARRAY_UNKNOWN_STATE)
237 ret = 0;
238 else
239 ret = -ENODEV;
240
241 free(sra);
242 } else {
243 /*
244 * GET_ARRAY_INFO doesn't provide access to the proper state
245 * information, so fallback to a basic check for raid_disks != 0
246 */
247 ret = ioctl(fd, RAID_VERSION);
248 }
249
250 return !ret;
251 }
252
253 int md_array_active(int fd)
254 {
255 struct mdinfo *sra;
256 struct mdu_array_info_s array;
257 int ret = 0;
258
259 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
260 if (sra) {
261 if (!md_array_is_active(sra))
262 ret = -ENODEV;
263
264 free(sra);
265 } else {
266 /*
267 * GET_ARRAY_INFO doesn't provide access to the proper state
268 * information, so fallback to a basic check for raid_disks != 0
269 */
270 ret = md_get_array_info(fd, &array);
271 }
272
273 return !ret;
274 }
275
276 int md_array_is_active(struct mdinfo *info)
277 {
278 return (info->array_state != ARRAY_CLEAR &&
279 info->array_state != ARRAY_INACTIVE &&
280 info->array_state != ARRAY_UNKNOWN_STATE);
281 }
282
283 /*
284 * Get array info from the kernel. Longer term we want to deprecate the
285 * ioctl and get it from sysfs.
286 */
287 int md_get_array_info(int fd, struct mdu_array_info_s *array)
288 {
289 return ioctl(fd, GET_ARRAY_INFO, array);
290 }
291
292 /*
293 * Set array info
294 */
295 int md_set_array_info(int fd, struct mdu_array_info_s *array)
296 {
297 return ioctl(fd, SET_ARRAY_INFO, array);
298 }
299
300 /*
301 * Get disk info from the kernel.
302 */
303 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
304 {
305 return ioctl(fd, GET_DISK_INFO, disk);
306 }
307
308 int get_linux_version()
309 {
310 struct utsname name;
311 char *cp;
312 int a = 0, b = 0,c = 0;
313 if (uname(&name) <0)
314 return -1;
315
316 cp = name.release;
317 a = strtoul(cp, &cp, 10);
318 if (*cp == '.')
319 b = strtoul(cp+1, &cp, 10);
320 if (*cp == '.')
321 c = strtoul(cp+1, &cp, 10);
322
323 return (a*1000000)+(b*1000)+c;
324 }
325
326 int mdadm_version(char *version)
327 {
328 int a, b, c;
329 char *cp;
330
331 if (!version)
332 version = Version;
333
334 cp = strchr(version, '-');
335 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
336 return -1;
337 cp += 3;
338 a = strtoul(cp, &cp, 10);
339 if (*cp != '.')
340 return -1;
341 b = strtoul(cp+1, &cp, 10);
342 if (*cp == '.')
343 c = strtoul(cp+1, &cp, 10);
344 else
345 c = 0;
346 if (*cp != ' ' && *cp != '-')
347 return -1;
348 return (a*1000000)+(b*1000)+c;
349 }
350
351 unsigned long long parse_size(char *size)
352 {
353 /* parse 'size' which should be a number optionally
354 * followed by 'K', 'M'. 'G' or 'T'.
355 * Without a suffix, K is assumed.
356 * Number returned is in sectors (half-K)
357 * INVALID_SECTORS returned on error.
358 */
359 char *c;
360 long long s = strtoll(size, &c, 10);
361 if (s > 0) {
362 switch (*c) {
363 case 'K':
364 c++;
365 default:
366 s *= 2;
367 break;
368 case 'M':
369 c++;
370 s *= 1024 * 2;
371 break;
372 case 'G':
373 c++;
374 s *= 1024 * 1024 * 2;
375 break;
376 case 'T':
377 c++;
378 s *= 1024 * 1024 * 1024 * 2LL;
379 break;
380 case 's': /* sectors */
381 c++;
382 break;
383 }
384 } else
385 s = INVALID_SECTORS;
386 if (*c)
387 s = INVALID_SECTORS;
388 return s;
389 }
390
391 int is_near_layout_10(int layout)
392 {
393 int fc, fo;
394
395 fc = (layout >> 8) & 255;
396 fo = layout & (1 << 16);
397 if (fc > 1 || fo > 0)
398 return 0;
399 return 1;
400 }
401
402 int parse_layout_10(char *layout)
403 {
404 int copies, rv;
405 char *cp;
406 /* Parse the layout string for raid10 */
407 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
408 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
409 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
410 copies > 200 ||
411 *cp)
412 return -1;
413 if (layout[0] == 'n')
414 rv = 256 + copies;
415 else if (layout[0] == 'o')
416 rv = 0x10000 + (copies<<8) + 1;
417 else
418 rv = 1 + (copies<<8);
419 return rv;
420 }
421
422 int parse_layout_faulty(char *layout)
423 {
424 if (!layout)
425 return -1;
426 /* Parse the layout string for 'faulty' */
427 int ln = strcspn(layout, "0123456789");
428 char *m = xstrdup(layout);
429 int mode;
430 m[ln] = 0;
431 mode = map_name(faultylayout, m);
432 if (mode == UnSet)
433 return -1;
434
435 return mode | (atoi(layout+ln)<< ModeShift);
436 }
437
438 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
439 {
440 char *dev;
441 *slot = strtoul(input, &dev, 10);
442 if (dev == input || dev[0] != ':')
443 return -1;
444 *devname = dev+1;
445 return 0;
446 }
447
448 void remove_partitions(int fd)
449 {
450 /* remove partitions from this block devices.
451 * This is used for components added to an array
452 */
453 #ifdef BLKPG_DEL_PARTITION
454 struct blkpg_ioctl_arg a;
455 struct blkpg_partition p;
456
457 a.op = BLKPG_DEL_PARTITION;
458 a.data = (void*)&p;
459 a.datalen = sizeof(p);
460 a.flags = 0;
461 memset(a.data, 0, a.datalen);
462 for (p.pno = 0; p.pno < 16; p.pno++)
463 ioctl(fd, BLKPG, &a);
464 #endif
465 }
466
467 int test_partition(int fd)
468 {
469 /* Check if fd is a whole-disk or a partition.
470 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
471 * will return ENXIO on an invalid partition number.
472 */
473 struct blkpg_ioctl_arg a;
474 struct blkpg_partition p;
475 a.op = BLKPG_DEL_PARTITION;
476 a.data = (void*)&p;
477 a.datalen = sizeof(p);
478 a.flags = 0;
479 memset(a.data, 0, a.datalen);
480 p.pno = 1<<30;
481 if (ioctl(fd, BLKPG, &a) == 0)
482 /* Very unlikely, but not a partition */
483 return 0;
484 if (errno == ENXIO || errno == ENOTTY)
485 /* not a partition */
486 return 0;
487
488 return 1;
489 }
490
491 int test_partition_from_id(dev_t id)
492 {
493 char buf[20];
494 int fd, rv;
495
496 sprintf(buf, "%d:%d", major(id), minor(id));
497 fd = dev_open(buf, O_RDONLY);
498 if (fd < 0)
499 return -1;
500 rv = test_partition(fd);
501 close(fd);
502 return rv;
503 }
504
505 int enough(int level, int raid_disks, int layout, int clean, char *avail)
506 {
507 int copies, first;
508 int i;
509 int avail_disks = 0;
510
511 for (i = 0; i < raid_disks; i++)
512 avail_disks += !!avail[i];
513
514 switch (level) {
515 case 10:
516 /* This is the tricky one - we need to check
517 * which actual disks are present.
518 */
519 copies = (layout&255)* ((layout>>8) & 255);
520 first = 0;
521 do {
522 /* there must be one of the 'copies' form 'first' */
523 int n = copies;
524 int cnt = 0;
525 int this = first;
526 while (n--) {
527 if (avail[this])
528 cnt++;
529 this = (this+1) % raid_disks;
530 }
531 if (cnt == 0)
532 return 0;
533 first = (first+(layout&255)) % raid_disks;
534 } while (first != 0);
535 return 1;
536
537 case LEVEL_MULTIPATH:
538 return avail_disks>= 1;
539 case LEVEL_LINEAR:
540 case 0:
541 return avail_disks == raid_disks;
542 case 1:
543 return avail_disks >= 1;
544 case 4:
545 if (avail_disks == raid_disks - 1 &&
546 !avail[raid_disks - 1])
547 /* If just the parity device is missing, then we
548 * have enough, even if not clean
549 */
550 return 1;
551 /* FALL THROUGH */
552 case 5:
553 if (clean)
554 return avail_disks >= raid_disks-1;
555 else
556 return avail_disks >= raid_disks;
557 case 6:
558 if (clean)
559 return avail_disks >= raid_disks-2;
560 else
561 return avail_disks >= raid_disks;
562 default:
563 return 0;
564 }
565 }
566
567 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
568 {
569 int i, j;
570 char uuid[16];
571 char *c = buf;
572 strcpy(c, "UUID-");
573 c += strlen(c);
574 copy_uuid(uuid, id, swap);
575 for (i = 0; i < 4; i++) {
576 if (i)
577 *c++ = sep;
578 for (j = 3; j >= 0; j--) {
579 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
580 c+= 2;
581 }
582 }
583 return buf;
584
585 }
586
587 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
588 char *buf, char sep)
589 {
590 // dirty hack to work around an issue with super1 superblocks...
591 // super1 superblocks need swapuuid set in order for assembly to
592 // work, but can't have it set if we want this printout to match
593 // all the other uuid printouts in super1.c, so we force swapuuid
594 // to 1 to make our printout match the rest of super1
595 #if __BYTE_ORDER == BIG_ENDIAN
596 return __fname_from_uuid(info->uuid, 1, buf, sep);
597 #else
598 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
599 st->ss->swapuuid, buf, sep);
600 #endif
601 }
602
603 int check_ext2(int fd, char *name)
604 {
605 /*
606 * Check for an ext2fs file system.
607 * Superblock is always 1K at 1K offset
608 *
609 * s_magic is le16 at 56 == 0xEF53
610 * report mtime - le32 at 44
611 * blocks - le32 at 4
612 * logblksize - le32 at 24
613 */
614 unsigned char sb[1024];
615 time_t mtime;
616 unsigned long long size;
617 int bsize;
618 if (lseek(fd, 1024,0)!= 1024)
619 return 0;
620 if (read(fd, sb, 1024)!= 1024)
621 return 0;
622 if (sb[56] != 0x53 || sb[57] != 0xef)
623 return 0;
624
625 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
626 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
627 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
628 size <<= bsize;
629 pr_err("%s appears to contain an ext2fs file system\n",
630 name);
631 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
632 return 1;
633 }
634
635 int check_reiser(int fd, char *name)
636 {
637 /*
638 * superblock is at 64K
639 * size is 1024;
640 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
641 *
642 */
643 unsigned char sb[1024];
644 unsigned long long size;
645 if (lseek(fd, 64*1024, 0) != 64*1024)
646 return 0;
647 if (read(fd, sb, 1024) != 1024)
648 return 0;
649 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
650 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
651 return 0;
652 pr_err("%s appears to contain a reiserfs file system\n",name);
653 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
654 cont_err("size = %lluK\n", size*4);
655
656 return 1;
657 }
658
659 int check_raid(int fd, char *name)
660 {
661 struct mdinfo info;
662 time_t crtime;
663 char *level;
664 struct supertype *st = guess_super(fd);
665
666 if (!st)
667 return 0;
668 if (st->ss->add_to_super != NULL) {
669 st->ss->load_super(st, fd, name);
670 /* Looks like a raid array .. */
671 pr_err("%s appears to be part of a raid array:\n", name);
672 st->ss->getinfo_super(st, &info, NULL);
673 st->ss->free_super(st);
674 crtime = info.array.ctime;
675 level = map_num(pers, info.array.level);
676 if (!level)
677 level = "-unknown-";
678 cont_err("level=%s devices=%d ctime=%s",
679 level, info.array.raid_disks, ctime(&crtime));
680 } else {
681 /* Looks like GPT or MBR */
682 pr_err("partition table exists on %s\n", name);
683 }
684 return 1;
685 }
686
687 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
688 {
689 struct stat stb;
690
691 if (fstat(fd, &stb) != 0) {
692 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
693 return 0;
694 }
695 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
696 pr_err("%s is not a block device.\n", devname);
697 return 0;
698 }
699 if (rdev)
700 *rdev = stb.st_rdev;
701 return 1;
702 }
703
704 int stat_is_blkdev(char *devname, dev_t *rdev)
705 {
706 struct stat stb;
707
708 if (stat(devname, &stb) != 0) {
709 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
710 return 0;
711 }
712 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
713 pr_err("%s is not a block device.\n", devname);
714 return 0;
715 }
716 if (rdev)
717 *rdev = stb.st_rdev;
718 return 1;
719 }
720
721 int ask(char *mesg)
722 {
723 char *add = "";
724 int i;
725 for (i = 0; i < 5; i++) {
726 char buf[100];
727 fprintf(stderr, "%s%s", mesg, add);
728 fflush(stderr);
729 if (fgets(buf, 100, stdin)==NULL)
730 return 0;
731 if (buf[0]=='y' || buf[0]=='Y')
732 return 1;
733 if (buf[0]=='n' || buf[0]=='N')
734 return 0;
735 add = "(y/n) ";
736 }
737 pr_err("assuming 'no'\n");
738 return 0;
739 }
740
741 int is_standard(char *dev, int *nump)
742 {
743 /* tests if dev is a "standard" md dev name.
744 * i.e if the last component is "/dNN" or "/mdNN",
745 * where NN is a string of digits
746 * Returns 1 if a partitionable standard,
747 * -1 if non-partitonable,
748 * 0 if not a standard name.
749 */
750 char *d = strrchr(dev, '/');
751 int type = 0;
752 int num;
753 if (!d)
754 return 0;
755 if (strncmp(d, "/d",2) == 0)
756 d += 2, type = 1; /* /dev/md/dN{pM} */
757 else if (strncmp(d, "/md_d", 5) == 0)
758 d += 5, type = 1; /* /dev/md_dN{pM} */
759 else if (strncmp(d, "/md", 3) == 0)
760 d += 3, type = -1; /* /dev/mdN */
761 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
762 d += 1, type = -1; /* /dev/md/N */
763 else
764 return 0;
765 if (!*d)
766 return 0;
767 num = atoi(d);
768 while (isdigit(*d))
769 d++;
770 if (*d)
771 return 0;
772 if (nump) *nump = num;
773
774 return type;
775 }
776
777 unsigned long calc_csum(void *super, int bytes)
778 {
779 unsigned long long newcsum = 0;
780 int i;
781 unsigned int csum;
782 unsigned int *superc = (unsigned int*) super;
783
784 for(i = 0; i < bytes/4; i++)
785 newcsum += superc[i];
786 csum = (newcsum& 0xffffffff) + (newcsum>>32);
787 #ifdef __alpha__
788 /* The in-kernel checksum calculation is always 16bit on
789 * the alpha, though it is 32 bit on i386...
790 * I wonder what it is elsewhere... (it uses an API in
791 * a way that it shouldn't).
792 */
793 csum = (csum & 0xffff) + (csum >> 16);
794 csum = (csum & 0xffff) + (csum >> 16);
795 #endif
796 return csum;
797 }
798
799 char *human_size(long long bytes)
800 {
801 static char buf[47];
802
803 /* We convert bytes to either centi-M{ega,ibi}bytes,
804 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
805 * with appropriate rounding, and then print
806 * 1/100th of those as a decimal.
807 * We allow upto 2048Megabytes before converting to
808 * gigabytes and 2048Gigabytes before converting to
809 * terabytes, as that shows more precision and isn't
810 * too large a number.
811 */
812
813 if (bytes < 5000*1024)
814 buf[0] = 0;
815 else if (bytes < 2*1024LL*1024LL*1024LL) {
816 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
817 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
818 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
819 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
820 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
821 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
822 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
823 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
824 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
825 } else {
826 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
827 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
828 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
829 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
830 }
831 return buf;
832 }
833
834 char *human_size_brief(long long bytes, int prefix)
835 {
836 static char buf[30];
837
838 /* We convert bytes to either centi-M{ega,ibi}bytes,
839 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
840 * with appropriate rounding, and then print
841 * 1/100th of those as a decimal.
842 * We allow upto 2048Megabytes before converting to
843 * gigabytes and 2048Gigabytes before converting to
844 * terabytes, as that shows more precision and isn't
845 * too large a number.
846 *
847 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
848 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
849 */
850
851 if (bytes < 5000*1024)
852 buf[0] = 0;
853 else if (prefix == IEC) {
854 if (bytes < 2*1024LL*1024LL*1024LL) {
855 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
856 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
857 cMiB/100, cMiB % 100);
858 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
859 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
860 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
861 cGiB/100, cGiB % 100);
862 } else {
863 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
864 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
865 cTiB/100, cTiB % 100);
866 }
867 }
868 else if (prefix == JEDEC) {
869 if (bytes < 2*1024LL*1024LL*1024LL) {
870 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
871 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
872 cMB/100, cMB % 100);
873 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
874 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
875 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
876 cGB/100, cGB % 100);
877 } else {
878 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
879 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
880 cTB/100, cTB % 100);
881 }
882 }
883 else
884 buf[0] = 0;
885
886 return buf;
887 }
888
889 void print_r10_layout(int layout)
890 {
891 int near = layout & 255;
892 int far = (layout >> 8) & 255;
893 int offset = (layout&0x10000);
894 char *sep = "";
895
896 if (near != 1) {
897 printf("%s near=%d", sep, near);
898 sep = ",";
899 }
900 if (far != 1)
901 printf("%s %s=%d", sep, offset?"offset":"far", far);
902 if (near*far == 1)
903 printf("NO REDUNDANCY");
904 }
905
906 unsigned long long calc_array_size(int level, int raid_disks, int layout,
907 int chunksize, unsigned long long devsize)
908 {
909 if (level == 1)
910 return devsize;
911 devsize &= ~(unsigned long long)((chunksize>>9)-1);
912 return get_data_disks(level, layout, raid_disks) * devsize;
913 }
914
915 int get_data_disks(int level, int layout, int raid_disks)
916 {
917 int data_disks = 0;
918 switch (level) {
919 case 0: data_disks = raid_disks;
920 break;
921 case 1: data_disks = 1;
922 break;
923 case 4:
924 case 5: data_disks = raid_disks - 1;
925 break;
926 case 6: data_disks = raid_disks - 2;
927 break;
928 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
929 break;
930 }
931
932 return data_disks;
933 }
934
935 dev_t devnm2devid(char *devnm)
936 {
937 /* First look in /sys/block/$DEVNM/dev for %d:%d
938 * If that fails, try parsing out a number
939 */
940 char path[PATH_MAX];
941 char *ep;
942 int fd;
943 int mjr,mnr;
944
945 snprintf(path, sizeof(path), "/sys/block/%s/dev", devnm);
946 fd = open(path, O_RDONLY);
947 if (fd >= 0) {
948 char buf[20];
949 int n = read(fd, buf, sizeof(buf));
950 close(fd);
951 if (n > 0)
952 buf[n] = 0;
953 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
954 return makedev(mjr, mnr);
955 }
956 if (strncmp(devnm, "md_d", 4) == 0 &&
957 isdigit(devnm[4]) &&
958 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
959 ep > devnm && *ep == 0)
960 return makedev(get_mdp_major(), mnr << MdpMinorShift);
961
962 if (strncmp(devnm, "md", 2) == 0 &&
963 isdigit(devnm[2]) &&
964 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
965 ep > devnm && *ep == 0)
966 return makedev(MD_MAJOR, mnr);
967
968 return 0;
969 }
970
971 char *get_md_name(char *devnm)
972 {
973 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
974 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
975
976 static char devname[50];
977 struct stat stb;
978 dev_t rdev = devnm2devid(devnm);
979 char *dn;
980
981 if (rdev == 0)
982 return 0;
983 if (strncmp(devnm, "md_", 3) == 0) {
984 snprintf(devname, sizeof(devname), "/dev/md/%s",
985 devnm + 3);
986 if (stat(devname, &stb) == 0 &&
987 (S_IFMT&stb.st_mode) == S_IFBLK && (stb.st_rdev == rdev))
988 return devname;
989 }
990 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
991 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
992 (stb.st_rdev == rdev))
993 return devname;
994
995 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
996 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
997 (stb.st_rdev == rdev))
998 return devname;
999
1000 dn = map_dev(major(rdev), minor(rdev), 0);
1001 if (dn)
1002 return dn;
1003 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1004 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1005 if (errno != EEXIST)
1006 return NULL;
1007
1008 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1009 (stb.st_rdev == rdev))
1010 return devname;
1011 unlink(devname);
1012 return NULL;
1013 }
1014
1015 void put_md_name(char *name)
1016 {
1017 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1018 unlink(name);
1019 }
1020
1021 int get_maj_min(char *dev, int *major, int *minor)
1022 {
1023 char *e;
1024 *major = strtoul(dev, &e, 0);
1025 return (e > dev && *e == ':' && e[1] &&
1026 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1027 *e == 0);
1028 }
1029
1030 int dev_open(char *dev, int flags)
1031 {
1032 /* like 'open', but if 'dev' matches %d:%d, create a temp
1033 * block device and open that
1034 */
1035 int fd = -1;
1036 char devname[32];
1037 int major;
1038 int minor;
1039
1040 if (!dev)
1041 return -1;
1042 flags |= O_DIRECT;
1043
1044 if (get_maj_min(dev, &major, &minor)) {
1045 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1046 (int)getpid(), major, minor);
1047 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1048 fd = open(devname, flags);
1049 unlink(devname);
1050 }
1051 if (fd < 0) {
1052 /* Try /tmp as /dev appear to be read-only */
1053 snprintf(devname, sizeof(devname),
1054 "/tmp/.tmp.md.%d:%d:%d",
1055 (int)getpid(), major, minor);
1056 if (mknod(devname, S_IFBLK|0600,
1057 makedev(major, minor)) == 0) {
1058 fd = open(devname, flags);
1059 unlink(devname);
1060 }
1061 }
1062 } else
1063 fd = open(dev, flags);
1064 return fd;
1065 }
1066
1067 int open_dev_flags(char *devnm, int flags)
1068 {
1069 dev_t devid;
1070 char buf[20];
1071
1072 devid = devnm2devid(devnm);
1073 sprintf(buf, "%d:%d", major(devid), minor(devid));
1074 return dev_open(buf, flags);
1075 }
1076
1077 int open_dev(char *devnm)
1078 {
1079 return open_dev_flags(devnm, O_RDONLY);
1080 }
1081
1082 int open_dev_excl(char *devnm)
1083 {
1084 char buf[20];
1085 int i;
1086 int flags = O_RDWR;
1087 dev_t devid = devnm2devid(devnm);
1088 long delay = 1000;
1089
1090 sprintf(buf, "%d:%d", major(devid), minor(devid));
1091 for (i = 0; i < 25; i++) {
1092 int fd = dev_open(buf, flags|O_EXCL);
1093 if (fd >= 0)
1094 return fd;
1095 if (errno == EACCES && flags == O_RDWR) {
1096 flags = O_RDONLY;
1097 continue;
1098 }
1099 if (errno != EBUSY)
1100 return fd;
1101 usleep(delay);
1102 if (delay < 200000)
1103 delay *= 2;
1104 }
1105 return -1;
1106 }
1107
1108 int same_dev(char *one, char *two)
1109 {
1110 struct stat st1, st2;
1111 if (stat(one, &st1) != 0)
1112 return 0;
1113 if (stat(two, &st2) != 0)
1114 return 0;
1115 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1116 return 0;
1117 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1118 return 0;
1119 return st1.st_rdev == st2.st_rdev;
1120 }
1121
1122 void wait_for(char *dev, int fd)
1123 {
1124 int i;
1125 struct stat stb_want;
1126 long delay = 1000;
1127
1128 if (fstat(fd, &stb_want) != 0 ||
1129 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1130 return;
1131
1132 for (i = 0; i < 25; i++) {
1133 struct stat stb;
1134 if (stat(dev, &stb) == 0 &&
1135 (stb.st_mode & S_IFMT) == S_IFBLK &&
1136 (stb.st_rdev == stb_want.st_rdev))
1137 return;
1138 usleep(delay);
1139 if (delay < 200000)
1140 delay *= 2;
1141 }
1142 if (i == 25)
1143 pr_err("timeout waiting for %s\n", dev);
1144 }
1145
1146 struct superswitch *superlist[] =
1147 {
1148 &super0, &super1,
1149 &super_ddf, &super_imsm,
1150 &mbr, &gpt,
1151 NULL
1152 };
1153
1154 struct supertype *super_by_fd(int fd, char **subarrayp)
1155 {
1156 mdu_array_info_t array;
1157 int vers;
1158 int minor;
1159 struct supertype *st = NULL;
1160 struct mdinfo *sra;
1161 char *verstr;
1162 char version[20];
1163 int i;
1164 char *subarray = NULL;
1165 char container[32] = "";
1166
1167 sra = sysfs_read(fd, NULL, GET_VERSION);
1168
1169 if (sra) {
1170 vers = sra->array.major_version;
1171 minor = sra->array.minor_version;
1172 verstr = sra->text_version;
1173 } else {
1174 if (md_get_array_info(fd, &array))
1175 array.major_version = array.minor_version = 0;
1176 vers = array.major_version;
1177 minor = array.minor_version;
1178 verstr = "";
1179 }
1180
1181 if (vers != -1) {
1182 sprintf(version, "%d.%d", vers, minor);
1183 verstr = version;
1184 }
1185 if (minor == -2 && is_subarray(verstr)) {
1186 char *dev = verstr+1;
1187
1188 subarray = strchr(dev, '/');
1189 if (subarray) {
1190 *subarray++ = '\0';
1191 subarray = xstrdup(subarray);
1192 }
1193 strcpy(container, dev);
1194 sysfs_free(sra);
1195 sra = sysfs_read(-1, container, GET_VERSION);
1196 if (sra && sra->text_version[0])
1197 verstr = sra->text_version;
1198 else
1199 verstr = "-no-metadata-";
1200 }
1201
1202 for (i = 0; st == NULL && superlist[i]; i++)
1203 st = superlist[i]->match_metadata_desc(verstr);
1204
1205 sysfs_free(sra);
1206 if (st) {
1207 st->sb = NULL;
1208 if (subarrayp)
1209 *subarrayp = subarray;
1210 strcpy(st->container_devnm, container);
1211 strcpy(st->devnm, fd2devnm(fd));
1212 } else
1213 free(subarray);
1214
1215 return st;
1216 }
1217
1218 int dev_size_from_id(dev_t id, unsigned long long *size)
1219 {
1220 char buf[20];
1221 int fd;
1222
1223 sprintf(buf, "%d:%d", major(id), minor(id));
1224 fd = dev_open(buf, O_RDONLY);
1225 if (fd < 0)
1226 return 0;
1227 if (get_dev_size(fd, NULL, size)) {
1228 close(fd);
1229 return 1;
1230 }
1231 close(fd);
1232 return 0;
1233 }
1234
1235 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1236 {
1237 char buf[20];
1238 int fd;
1239
1240 sprintf(buf, "%d:%d", major(id), minor(id));
1241 fd = dev_open(buf, O_RDONLY);
1242 if (fd < 0)
1243 return 0;
1244 if (get_dev_sector_size(fd, NULL, size)) {
1245 close(fd);
1246 return 1;
1247 }
1248 close(fd);
1249 return 0;
1250 }
1251
1252 struct supertype *dup_super(struct supertype *orig)
1253 {
1254 struct supertype *st;
1255
1256 if (!orig)
1257 return orig;
1258 st = xcalloc(1, sizeof(*st));
1259 st->ss = orig->ss;
1260 st->max_devs = orig->max_devs;
1261 st->minor_version = orig->minor_version;
1262 st->ignore_hw_compat = orig->ignore_hw_compat;
1263 st->data_offset = orig->data_offset;
1264 st->sb = NULL;
1265 st->info = NULL;
1266 return st;
1267 }
1268
1269 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1270 {
1271 /* try each load_super to find the best match,
1272 * and return the best superswitch
1273 */
1274 struct superswitch *ss;
1275 struct supertype *st;
1276 unsigned int besttime = 0;
1277 int bestsuper = -1;
1278 int i;
1279
1280 st = xcalloc(1, sizeof(*st));
1281 st->container_devnm[0] = 0;
1282
1283 for (i = 0; superlist[i]; i++) {
1284 int rv;
1285 ss = superlist[i];
1286 if (guess_type == guess_array && ss->add_to_super == NULL)
1287 continue;
1288 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1289 continue;
1290 memset(st, 0, sizeof(*st));
1291 st->ignore_hw_compat = 1;
1292 rv = ss->load_super(st, fd, NULL);
1293 if (rv == 0) {
1294 struct mdinfo info;
1295 st->ss->getinfo_super(st, &info, NULL);
1296 if (bestsuper == -1 ||
1297 besttime < info.array.ctime) {
1298 bestsuper = i;
1299 besttime = info.array.ctime;
1300 }
1301 ss->free_super(st);
1302 }
1303 }
1304 if (bestsuper != -1) {
1305 int rv;
1306 memset(st, 0, sizeof(*st));
1307 st->ignore_hw_compat = 1;
1308 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1309 if (rv == 0) {
1310 superlist[bestsuper]->free_super(st);
1311 return st;
1312 }
1313 }
1314 free(st);
1315 return NULL;
1316 }
1317
1318 /* Return size of device in bytes */
1319 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1320 {
1321 unsigned long long ldsize;
1322 struct stat st;
1323
1324 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1325 ldsize = (unsigned long long)st.st_size;
1326 else
1327 #ifdef BLKGETSIZE64
1328 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1329 #endif
1330 {
1331 unsigned long dsize;
1332 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1333 ldsize = dsize;
1334 ldsize <<= 9;
1335 } else {
1336 if (dname)
1337 pr_err("Cannot get size of %s: %s\n",
1338 dname, strerror(errno));
1339 return 0;
1340 }
1341 }
1342 *sizep = ldsize;
1343 return 1;
1344 }
1345
1346 /* Return sector size of device in bytes */
1347 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1348 {
1349 unsigned int sectsize;
1350
1351 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1352 if (dname)
1353 pr_err("Cannot get sector size of %s: %s\n",
1354 dname, strerror(errno));
1355 return 0;
1356 }
1357
1358 *sectsizep = sectsize;
1359 return 1;
1360 }
1361
1362 /* Return true if this can only be a container, not a member device.
1363 * i.e. is and md device and size is zero
1364 */
1365 int must_be_container(int fd)
1366 {
1367 struct mdinfo *mdi;
1368 unsigned long long size;
1369
1370 mdi = sysfs_read(fd, NULL, GET_VERSION);
1371 if (!mdi)
1372 return 0;
1373 sysfs_free(mdi);
1374
1375 if (get_dev_size(fd, NULL, &size) == 0)
1376 return 1;
1377 if (size == 0)
1378 return 1;
1379 return 0;
1380 }
1381
1382 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1383 * Returns: 1 if successful
1384 * -1 for unknown partition type
1385 * 0 for other errors
1386 */
1387 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1388 {
1389 struct GPT gpt;
1390 unsigned char empty_gpt_entry[16]= {0};
1391 struct GPT_part_entry *part;
1392 char buf[512];
1393 unsigned long long curr_part_end;
1394 unsigned all_partitions, entry_size;
1395 unsigned part_nr;
1396 unsigned int sector_size = 0;
1397
1398 *endofpart = 0;
1399
1400 BUILD_BUG_ON(sizeof(gpt) != 512);
1401 /* skip protective MBR */
1402 if (!get_dev_sector_size(fd, NULL, &sector_size))
1403 return 0;
1404 lseek(fd, sector_size, SEEK_SET);
1405 /* read GPT header */
1406 if (read(fd, &gpt, 512) != 512)
1407 return 0;
1408
1409 /* get the number of partition entries and the entry size */
1410 all_partitions = __le32_to_cpu(gpt.part_cnt);
1411 entry_size = __le32_to_cpu(gpt.part_size);
1412
1413 /* Check GPT signature*/
1414 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1415 return -1;
1416
1417 /* sanity checks */
1418 if (all_partitions > 1024 ||
1419 entry_size > sizeof(buf))
1420 return -1;
1421
1422 part = (struct GPT_part_entry *)buf;
1423
1424 /* set offset to third block (GPT entries) */
1425 lseek(fd, sector_size*2, SEEK_SET);
1426 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1427 /* read partition entry */
1428 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1429 return 0;
1430
1431 /* is this valid partition? */
1432 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1433 /* check the last lba for the current partition */
1434 curr_part_end = __le64_to_cpu(part->ending_lba);
1435 if (curr_part_end > *endofpart)
1436 *endofpart = curr_part_end;
1437 }
1438
1439 }
1440 return 1;
1441 }
1442
1443 /* Sets endofpart parameter to the last block used by the last partition on the device.
1444 * Returns: 1 if successful
1445 * -1 for unknown partition type
1446 * 0 for other errors
1447 */
1448 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1449 {
1450 struct MBR boot_sect;
1451 unsigned long long curr_part_end;
1452 unsigned part_nr;
1453 unsigned int sector_size;
1454 int retval = 0;
1455
1456 *endofpart = 0;
1457
1458 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1459 /* read MBR */
1460 lseek(fd, 0, 0);
1461 if (read(fd, &boot_sect, 512) != 512)
1462 goto abort;
1463
1464 /* check MBP signature */
1465 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1466 retval = 1;
1467 /* found the correct signature */
1468
1469 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1470 /*
1471 * Have to make every access through boot_sect rather
1472 * than using a pointer to the partition table (or an
1473 * entry), since the entries are not properly aligned.
1474 */
1475
1476 /* check for GPT type */
1477 if (boot_sect.parts[part_nr].part_type ==
1478 MBR_GPT_PARTITION_TYPE) {
1479 retval = get_gpt_last_partition_end(fd, endofpart);
1480 break;
1481 }
1482 /* check the last used lba for the current partition */
1483 curr_part_end =
1484 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1485 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1486 if (curr_part_end > *endofpart)
1487 *endofpart = curr_part_end;
1488 }
1489 } else {
1490 /* Unknown partition table */
1491 retval = -1;
1492 }
1493 /* calculate number of 512-byte blocks */
1494 if (get_dev_sector_size(fd, NULL, &sector_size))
1495 *endofpart *= (sector_size / 512);
1496 abort:
1497 return retval;
1498 }
1499
1500 int check_partitions(int fd, char *dname, unsigned long long freesize,
1501 unsigned long long size)
1502 {
1503 /*
1504 * Check where the last partition ends
1505 */
1506 unsigned long long endofpart;
1507
1508 if (get_last_partition_end(fd, &endofpart) > 0) {
1509 /* There appears to be a partition table here */
1510 if (freesize == 0) {
1511 /* partitions will not be visible in new device */
1512 pr_err("partition table exists on %s but will be lost or\n"
1513 " meaningless after creating array\n",
1514 dname);
1515 return 1;
1516 } else if (endofpart > freesize) {
1517 /* last partition overlaps metadata */
1518 pr_err("metadata will over-write last partition on %s.\n",
1519 dname);
1520 return 1;
1521 } else if (size && endofpart > size) {
1522 /* partitions will be truncated in new device */
1523 pr_err("array size is too small to cover all partitions on %s.\n",
1524 dname);
1525 return 1;
1526 }
1527 }
1528 return 0;
1529 }
1530
1531 int open_container(int fd)
1532 {
1533 /* 'fd' is a block device. Find out if it is in use
1534 * by a container, and return an open fd on that container.
1535 */
1536 char path[288];
1537 char *e;
1538 DIR *dir;
1539 struct dirent *de;
1540 int dfd, n;
1541 char buf[200];
1542 int major, minor;
1543 struct stat st;
1544
1545 if (fstat(fd, &st) != 0)
1546 return -1;
1547 sprintf(path, "/sys/dev/block/%d:%d/holders",
1548 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1549 e = path + strlen(path);
1550
1551 dir = opendir(path);
1552 if (!dir)
1553 return -1;
1554 while ((de = readdir(dir))) {
1555 if (de->d_ino == 0)
1556 continue;
1557 if (de->d_name[0] == '.')
1558 continue;
1559 /* Need to make sure it is a container and not a volume */
1560 sprintf(e, "/%s/md/metadata_version", de->d_name);
1561 dfd = open(path, O_RDONLY);
1562 if (dfd < 0)
1563 continue;
1564 n = read(dfd, buf, sizeof(buf));
1565 close(dfd);
1566 if (n <= 0 || (unsigned)n >= sizeof(buf))
1567 continue;
1568 buf[n] = 0;
1569 if (strncmp(buf, "external", 8) != 0 ||
1570 n < 10 ||
1571 buf[9] == '/')
1572 continue;
1573 sprintf(e, "/%s/dev", de->d_name);
1574 dfd = open(path, O_RDONLY);
1575 if (dfd < 0)
1576 continue;
1577 n = read(dfd, buf, sizeof(buf));
1578 close(dfd);
1579 if (n <= 0 || (unsigned)n >= sizeof(buf))
1580 continue;
1581 buf[n] = 0;
1582 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1583 continue;
1584 sprintf(buf, "%d:%d", major, minor);
1585 dfd = dev_open(buf, O_RDONLY);
1586 if (dfd >= 0) {
1587 closedir(dir);
1588 return dfd;
1589 }
1590 }
1591 closedir(dir);
1592 return -1;
1593 }
1594
1595 struct superswitch *version_to_superswitch(char *vers)
1596 {
1597 int i;
1598
1599 for (i = 0; superlist[i]; i++) {
1600 struct superswitch *ss = superlist[i];
1601
1602 if (strcmp(vers, ss->name) == 0)
1603 return ss;
1604 }
1605
1606 return NULL;
1607 }
1608
1609 int metadata_container_matches(char *metadata, char *devnm)
1610 {
1611 /* Check if 'devnm' is the container named in 'metadata'
1612 * which is
1613 * /containername/componentname or
1614 * -containername/componentname
1615 */
1616 int l;
1617 if (*metadata != '/' && *metadata != '-')
1618 return 0;
1619 l = strlen(devnm);
1620 if (strncmp(metadata+1, devnm, l) != 0)
1621 return 0;
1622 if (metadata[l+1] != '/')
1623 return 0;
1624 return 1;
1625 }
1626
1627 int metadata_subdev_matches(char *metadata, char *devnm)
1628 {
1629 /* Check if 'devnm' is the subdev named in 'metadata'
1630 * which is
1631 * /containername/subdev or
1632 * -containername/subdev
1633 */
1634 char *sl;
1635 if (*metadata != '/' && *metadata != '-')
1636 return 0;
1637 sl = strchr(metadata+1, '/');
1638 if (!sl)
1639 return 0;
1640 if (strcmp(sl+1, devnm) == 0)
1641 return 1;
1642 return 0;
1643 }
1644
1645 int is_container_member(struct mdstat_ent *mdstat, char *container)
1646 {
1647 if (mdstat->metadata_version == NULL ||
1648 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1649 !metadata_container_matches(mdstat->metadata_version+9, container))
1650 return 0;
1651
1652 return 1;
1653 }
1654
1655 int is_subarray_active(char *subarray, char *container)
1656 {
1657 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1658 struct mdstat_ent *ent;
1659
1660 for (ent = mdstat; ent; ent = ent->next)
1661 if (is_container_member(ent, container))
1662 if (strcmp(to_subarray(ent, container), subarray) == 0)
1663 break;
1664
1665 free_mdstat(mdstat);
1666
1667 return ent != NULL;
1668 }
1669
1670 /* open_subarray - opens a subarray in a container
1671 * @dev: container device name
1672 * @st: empty supertype
1673 * @quiet: block reporting errors flag
1674 *
1675 * On success returns an fd to a container and fills in *st
1676 */
1677 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1678 {
1679 struct mdinfo *mdi;
1680 struct mdinfo *info;
1681 int fd, err = 1;
1682 char *_devnm;
1683
1684 fd = open(dev, O_RDWR|O_EXCL);
1685 if (fd < 0) {
1686 if (!quiet)
1687 pr_err("Couldn't open %s, aborting\n",
1688 dev);
1689 return -1;
1690 }
1691
1692 _devnm = fd2devnm(fd);
1693 if (_devnm == NULL) {
1694 if (!quiet)
1695 pr_err("Failed to determine device number for %s\n",
1696 dev);
1697 goto close_fd;
1698 }
1699 strcpy(st->devnm, _devnm);
1700
1701 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1702 if (!mdi) {
1703 if (!quiet)
1704 pr_err("Failed to read sysfs for %s\n",
1705 dev);
1706 goto close_fd;
1707 }
1708
1709 if (mdi->array.level != UnSet) {
1710 if (!quiet)
1711 pr_err("%s is not a container\n", dev);
1712 goto free_sysfs;
1713 }
1714
1715 st->ss = version_to_superswitch(mdi->text_version);
1716 if (!st->ss) {
1717 if (!quiet)
1718 pr_err("Operation not supported for %s metadata\n",
1719 mdi->text_version);
1720 goto free_sysfs;
1721 }
1722
1723 if (st->devnm[0] == 0) {
1724 if (!quiet)
1725 pr_err("Failed to allocate device name\n");
1726 goto free_sysfs;
1727 }
1728
1729 if (!st->ss->load_container) {
1730 if (!quiet)
1731 pr_err("%s is not a container\n", dev);
1732 goto free_sysfs;
1733 }
1734
1735 if (st->ss->load_container(st, fd, NULL)) {
1736 if (!quiet)
1737 pr_err("Failed to load metadata for %s\n",
1738 dev);
1739 goto free_sysfs;
1740 }
1741
1742 info = st->ss->container_content(st, subarray);
1743 if (!info) {
1744 if (!quiet)
1745 pr_err("Failed to find subarray-%s in %s\n",
1746 subarray, dev);
1747 goto free_super;
1748 }
1749 free(info);
1750
1751 err = 0;
1752
1753 free_super:
1754 if (err)
1755 st->ss->free_super(st);
1756 free_sysfs:
1757 sysfs_free(mdi);
1758 close_fd:
1759 if (err)
1760 close(fd);
1761
1762 if (err)
1763 return -1;
1764 else
1765 return fd;
1766 }
1767
1768 int add_disk(int mdfd, struct supertype *st,
1769 struct mdinfo *sra, struct mdinfo *info)
1770 {
1771 /* Add a device to an array, in one of 2 ways. */
1772 int rv;
1773
1774 if (st->ss->external) {
1775 if (info->disk.state & (1<<MD_DISK_SYNC))
1776 info->recovery_start = MaxSector;
1777 else
1778 info->recovery_start = 0;
1779 rv = sysfs_add_disk(sra, info, 0);
1780 if (! rv) {
1781 struct mdinfo *sd2;
1782 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1783 if (sd2 == info)
1784 break;
1785 if (sd2 == NULL) {
1786 sd2 = xmalloc(sizeof(*sd2));
1787 *sd2 = *info;
1788 sd2->next = sra->devs;
1789 sra->devs = sd2;
1790 }
1791 }
1792 } else
1793 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1794 return rv;
1795 }
1796
1797 int remove_disk(int mdfd, struct supertype *st,
1798 struct mdinfo *sra, struct mdinfo *info)
1799 {
1800 int rv;
1801
1802 /* Remove the disk given by 'info' from the array */
1803 if (st->ss->external)
1804 rv = sysfs_set_str(sra, info, "slot", "none");
1805 else
1806 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1807 info->disk.minor));
1808 return rv;
1809 }
1810
1811 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1812 {
1813 int cnt = force ? 500 : 5;
1814 int ret;
1815
1816 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1817 * outstanding IO requests to the device.
1818 * In this case, it can be helpful to wait a little while,
1819 * up to 5 seconds if 'force' is set, or 50 msec if not.
1820 */
1821 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1822 errno == EBUSY &&
1823 cnt-- > 0)
1824 usleep(10000);
1825
1826 return ret;
1827 }
1828
1829 int sys_hot_remove_disk(int statefd, int force)
1830 {
1831 int cnt = force ? 500 : 5;
1832 int ret;
1833
1834 while ((ret = write(statefd, "remove", 6)) == -1 &&
1835 errno == EBUSY &&
1836 cnt-- > 0)
1837 usleep(10000);
1838 return ret == 6 ? 0 : -1;
1839 }
1840
1841 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1842 {
1843 /* Initialise kernel's knowledge of array.
1844 * This varies between externally managed arrays
1845 * and older kernels
1846 */
1847 mdu_array_info_t inf;
1848 int rv;
1849
1850 if (st->ss->external)
1851 return sysfs_set_array(info, 9003);
1852
1853 memset(&inf, 0, sizeof(inf));
1854 inf.major_version = info->array.major_version;
1855 inf.minor_version = info->array.minor_version;
1856 rv = md_set_array_info(mdfd, &inf);
1857
1858 return rv;
1859 }
1860
1861 unsigned long long min_recovery_start(struct mdinfo *array)
1862 {
1863 /* find the minimum recovery_start in an array for metadata
1864 * formats that only record per-array recovery progress instead
1865 * of per-device
1866 */
1867 unsigned long long recovery_start = MaxSector;
1868 struct mdinfo *d;
1869
1870 for (d = array->devs; d; d = d->next)
1871 recovery_start = min(recovery_start, d->recovery_start);
1872
1873 return recovery_start;
1874 }
1875
1876 int mdmon_pid(char *devnm)
1877 {
1878 char path[100];
1879 char pid[10];
1880 int fd;
1881 int n;
1882
1883 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1884
1885 fd = open(path, O_RDONLY | O_NOATIME, 0);
1886
1887 if (fd < 0)
1888 return -1;
1889 n = read(fd, pid, 9);
1890 close(fd);
1891 if (n <= 0)
1892 return -1;
1893 return atoi(pid);
1894 }
1895
1896 int mdmon_running(char *devnm)
1897 {
1898 int pid = mdmon_pid(devnm);
1899 if (pid <= 0)
1900 return 0;
1901 if (kill(pid, 0) == 0)
1902 return 1;
1903 return 0;
1904 }
1905
1906 int start_mdmon(char *devnm)
1907 {
1908 int i;
1909 int len;
1910 pid_t pid;
1911 int status;
1912 char pathbuf[1024];
1913 char *paths[4] = {
1914 pathbuf,
1915 BINDIR "/mdmon",
1916 "./mdmon",
1917 NULL
1918 };
1919
1920 if (check_env("MDADM_NO_MDMON"))
1921 return 0;
1922 if (continue_via_systemd(devnm, MDMON_SERVICE))
1923 return 0;
1924
1925 /* That failed, try running mdmon directly */
1926 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1927 if (len > 0) {
1928 char *sl;
1929 pathbuf[len] = 0;
1930 sl = strrchr(pathbuf, '/');
1931 if (sl)
1932 sl++;
1933 else
1934 sl = pathbuf;
1935 strcpy(sl, "mdmon");
1936 } else
1937 pathbuf[0] = '\0';
1938
1939 switch(fork()) {
1940 case 0:
1941 manage_fork_fds(1);
1942 for (i = 0; paths[i]; i++)
1943 if (paths[i][0]) {
1944 execl(paths[i], paths[i],
1945 devnm, NULL);
1946 }
1947 exit(1);
1948 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1949 return -1;
1950 default: /* parent - good */
1951 pid = wait(&status);
1952 if (pid < 0 || status != 0) {
1953 pr_err("failed to launch mdmon. Array remains readonly\n");
1954 return -1;
1955 }
1956 }
1957 return 0;
1958 }
1959
1960 __u32 random32(void)
1961 {
1962 __u32 rv;
1963 int rfd = open("/dev/urandom", O_RDONLY);
1964 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1965 rv = random();
1966 if (rfd >= 0)
1967 close(rfd);
1968 return rv;
1969 }
1970
1971 void random_uuid(__u8 *buf)
1972 {
1973 int fd, i, len;
1974 __u32 r[4];
1975
1976 fd = open("/dev/urandom", O_RDONLY);
1977 if (fd < 0)
1978 goto use_random;
1979 len = read(fd, buf, 16);
1980 close(fd);
1981 if (len != 16)
1982 goto use_random;
1983
1984 return;
1985
1986 use_random:
1987 for (i = 0; i < 4; i++)
1988 r[i] = random();
1989 memcpy(buf, r, 16);
1990 }
1991
1992 int flush_metadata_updates(struct supertype *st)
1993 {
1994 int sfd;
1995 if (!st->updates) {
1996 st->update_tail = NULL;
1997 return -1;
1998 }
1999
2000 sfd = connect_monitor(st->container_devnm);
2001 if (sfd < 0)
2002 return -1;
2003
2004 while (st->updates) {
2005 struct metadata_update *mu = st->updates;
2006 st->updates = mu->next;
2007
2008 send_message(sfd, mu, 0);
2009 wait_reply(sfd, 0);
2010 free(mu->buf);
2011 free(mu);
2012 }
2013 ack(sfd, 0);
2014 wait_reply(sfd, 0);
2015 close(sfd);
2016 st->update_tail = NULL;
2017 return 0;
2018 }
2019
2020 void append_metadata_update(struct supertype *st, void *buf, int len)
2021 {
2022
2023 struct metadata_update *mu = xmalloc(sizeof(*mu));
2024
2025 mu->buf = buf;
2026 mu->len = len;
2027 mu->space = NULL;
2028 mu->space_list = NULL;
2029 mu->next = NULL;
2030 *st->update_tail = mu;
2031 st->update_tail = &mu->next;
2032 }
2033
2034 #ifdef __TINYC__
2035 /* tinyc doesn't optimize this check in ioctl.h out ... */
2036 unsigned int __invalid_size_argument_for_IOC = 0;
2037 #endif
2038
2039 /* Pick all spares matching given criteria from a container
2040 * if min_size == 0 do not check size
2041 * if domlist == NULL do not check domains
2042 * if spare_group given add it to domains of each spare
2043 * metadata allows to test domains using metadata of destination array */
2044 struct mdinfo *container_choose_spares(struct supertype *st,
2045 struct spare_criteria *criteria,
2046 struct domainlist *domlist,
2047 char *spare_group,
2048 const char *metadata, int get_one)
2049 {
2050 struct mdinfo *d, **dp, *disks = NULL;
2051
2052 /* get list of all disks in container */
2053 if (st->ss->getinfo_super_disks)
2054 disks = st->ss->getinfo_super_disks(st);
2055
2056 if (!disks)
2057 return disks;
2058 /* find spare devices on the list */
2059 dp = &disks->devs;
2060 disks->array.spare_disks = 0;
2061 while (*dp) {
2062 int found = 0;
2063 d = *dp;
2064 if (d->disk.state == 0) {
2065 /* check if size is acceptable */
2066 unsigned long long dev_size;
2067 unsigned int dev_sector_size;
2068 int size_valid = 0;
2069 int sector_size_valid = 0;
2070
2071 dev_t dev = makedev(d->disk.major,d->disk.minor);
2072
2073 if (!criteria->min_size ||
2074 (dev_size_from_id(dev, &dev_size) &&
2075 dev_size >= criteria->min_size))
2076 size_valid = 1;
2077
2078 if (!criteria->sector_size ||
2079 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2080 criteria->sector_size == dev_sector_size))
2081 sector_size_valid = 1;
2082
2083 found = size_valid && sector_size_valid;
2084
2085 /* check if domain matches */
2086 if (found && domlist) {
2087 struct dev_policy *pol = devid_policy(dev);
2088 if (spare_group)
2089 pol_add(&pol, pol_domain,
2090 spare_group, NULL);
2091 if (domain_test(domlist, pol, metadata) != 1)
2092 found = 0;
2093 dev_policy_free(pol);
2094 }
2095 }
2096 if (found) {
2097 dp = &d->next;
2098 disks->array.spare_disks++;
2099 if (get_one) {
2100 sysfs_free(*dp);
2101 d->next = NULL;
2102 }
2103 } else {
2104 *dp = d->next;
2105 d->next = NULL;
2106 sysfs_free(d);
2107 }
2108 }
2109 return disks;
2110 }
2111
2112 /* Checks if paths point to the same device
2113 * Returns 0 if they do.
2114 * Returns 1 if they don't.
2115 * Returns -1 if something went wrong,
2116 * e.g. paths are empty or the files
2117 * they point to don't exist */
2118 int compare_paths (char* path1, char* path2)
2119 {
2120 struct stat st1,st2;
2121
2122 if (path1 == NULL || path2 == NULL)
2123 return -1;
2124 if (stat(path1,&st1) != 0)
2125 return -1;
2126 if (stat(path2,&st2) != 0)
2127 return -1;
2128 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2129 return 0;
2130 return 1;
2131 }
2132
2133 /* Make sure we can open as many devices as needed */
2134 void enable_fds(int devices)
2135 {
2136 unsigned int fds = 20 + devices;
2137 struct rlimit lim;
2138 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2139 return;
2140 if (lim.rlim_max < fds)
2141 lim.rlim_max = fds;
2142 lim.rlim_cur = fds;
2143 setrlimit(RLIMIT_NOFILE, &lim);
2144 }
2145
2146 /* Close all opened descriptors if needed and redirect
2147 * streams to /dev/null.
2148 * For debug purposed, leave STDOUT and STDERR untouched
2149 * Returns:
2150 * 1- if any error occurred
2151 * 0- otherwise
2152 */
2153 void manage_fork_fds(int close_all)
2154 {
2155 DIR *dir;
2156 struct dirent *dirent;
2157
2158 close(0);
2159 open("/dev/null", O_RDWR);
2160
2161 #ifndef DEBUG
2162 dup2(0, 1);
2163 dup2(0, 2);
2164 #endif
2165
2166 if (close_all == 0)
2167 return;
2168
2169 dir = opendir("/proc/self/fd");
2170 if (!dir) {
2171 pr_err("Cannot open /proc/self/fd directory.\n");
2172 return;
2173 }
2174 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2175 int fd = -1;
2176
2177 if ((strcmp(dirent->d_name, ".") == 0) ||
2178 (strcmp(dirent->d_name, "..")) == 0)
2179 continue;
2180
2181 fd = strtol(dirent->d_name, NULL, 10);
2182 if (fd > 2)
2183 close(fd);
2184 }
2185 }
2186
2187 /* In a systemd/udev world, it is best to get systemd to
2188 * run daemon rather than running in the background.
2189 * Returns:
2190 * 1- if systemd service has been started
2191 * 0- otherwise
2192 */
2193 int continue_via_systemd(char *devnm, char *service_name)
2194 {
2195 int pid, status;
2196 char pathbuf[1024];
2197
2198 /* Simply return that service cannot be started */
2199 if (check_env("MDADM_NO_SYSTEMCTL"))
2200 return 0;
2201 switch (fork()) {
2202 case 0:
2203 manage_fork_fds(1);
2204 snprintf(pathbuf, sizeof(pathbuf),
2205 "%s@%s.service", service_name, devnm);
2206 status = execl("/usr/bin/systemctl", "systemctl", "restart",
2207 pathbuf, NULL);
2208 status = execl("/bin/systemctl", "systemctl", "restart",
2209 pathbuf, NULL);
2210 exit(1);
2211 case -1: /* Just do it ourselves. */
2212 break;
2213 default: /* parent - good */
2214 pid = wait(&status);
2215 if (pid >= 0 && status == 0)
2216 return 1;
2217 }
2218 return 0;
2219 }
2220
2221 int in_initrd(void)
2222 {
2223 /* This is based on similar function in systemd. */
2224 struct statfs s;
2225 /* statfs.f_type is signed long on s390x and MIPS, causing all
2226 sorts of sign extension problems with RAMFS_MAGIC being
2227 defined as 0x858458f6 */
2228 return statfs("/", &s) >= 0 &&
2229 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2230 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2231 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2232 }
2233
2234 void reopen_mddev(int mdfd)
2235 {
2236 /* Re-open without any O_EXCL, but keep
2237 * the same fd
2238 */
2239 char *devnm;
2240 int fd;
2241 devnm = fd2devnm(mdfd);
2242 close(mdfd);
2243 fd = open_dev(devnm);
2244 if (fd >= 0 && fd != mdfd)
2245 dup2(fd, mdfd);
2246 }
2247
2248 static struct cmap_hooks *cmap_hooks = NULL;
2249 static int is_cmap_hooks_ready = 0;
2250
2251 void set_cmap_hooks(void)
2252 {
2253 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2254 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2255 if (!cmap_hooks->cmap_handle)
2256 return;
2257
2258 cmap_hooks->initialize =
2259 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2260 cmap_hooks->get_string =
2261 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2262 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2263
2264 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2265 !cmap_hooks->finalize)
2266 dlclose(cmap_hooks->cmap_handle);
2267 else
2268 is_cmap_hooks_ready = 1;
2269 }
2270
2271 int get_cluster_name(char **cluster_name)
2272 {
2273 int rv = -1;
2274 cmap_handle_t handle;
2275
2276 if (!is_cmap_hooks_ready)
2277 return rv;
2278
2279 rv = cmap_hooks->initialize(&handle);
2280 if (rv != CS_OK)
2281 goto out;
2282
2283 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2284 if (rv != CS_OK) {
2285 free(*cluster_name);
2286 rv = -1;
2287 goto name_err;
2288 }
2289
2290 rv = 0;
2291 name_err:
2292 cmap_hooks->finalize(handle);
2293 out:
2294 return rv;
2295 }
2296
2297 void set_dlm_hooks(void)
2298 {
2299 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2300 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2301 if (!dlm_hooks->dlm_handle)
2302 return;
2303
2304 dlm_hooks->open_lockspace =
2305 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2306 dlm_hooks->create_lockspace =
2307 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2308 dlm_hooks->release_lockspace =
2309 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2310 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2311 dlm_hooks->ls_unlock_wait =
2312 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2313 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2314 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2315
2316 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2317 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2318 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2319 !dlm_hooks->dispatch)
2320 dlclose(dlm_hooks->dlm_handle);
2321 else
2322 is_dlm_hooks_ready = 1;
2323 }
2324
2325 void set_hooks(void)
2326 {
2327 set_dlm_hooks();
2328 set_cmap_hooks();
2329 }
2330
2331 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2332 {
2333 int ret = 0;
2334 int fd_zero;
2335 void *addr = NULL;
2336 size_t written = 0;
2337 size_t len = count * 512;
2338 ssize_t n;
2339
2340 fd_zero = open("/dev/zero", O_RDONLY);
2341 if (fd_zero < 0) {
2342 pr_err("Cannot open /dev/zero\n");
2343 return -1;
2344 }
2345
2346 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2347 ret = -errno;
2348 pr_err("Failed to seek offset for zeroing\n");
2349 goto out;
2350 }
2351
2352 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2353
2354 if (addr == MAP_FAILED) {
2355 ret = -errno;
2356 pr_err("Mapping /dev/zero failed\n");
2357 goto out;
2358 }
2359
2360 do {
2361 n = write(fd, addr + written, len - written);
2362 if (n < 0) {
2363 if (errno == EINTR)
2364 continue;
2365 ret = -errno;
2366 pr_err("Zeroing disk range failed\n");
2367 break;
2368 }
2369 written += n;
2370 } while (written != len);
2371
2372 munmap(addr, len);
2373
2374 out:
2375 close(fd_zero);
2376 return ret;
2377 }