]> git.ipfire.org Git - thirdparty/hostap.git/blob - wlantest/tkip.c
2d626f36b665135af17727b0ea679ca4ae89bd3a
[thirdparty/hostap.git] / wlantest / tkip.c
1 /*
2 * Temporal Key Integrity Protocol (CCMP)
3 * Copyright (c) 2010, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "utils/includes.h"
10
11 #include "utils/common.h"
12 #include "common/ieee802_11_defs.h"
13 #include "wlantest.h"
14
15
16 void wep_crypt(u8 *key, u8 *buf, size_t plen);
17
18
19 static inline u16 RotR1(u16 val)
20 {
21 return (val >> 1) | (val << 15);
22 }
23
24
25 static inline u8 Lo8(u16 val)
26 {
27 return val & 0xff;
28 }
29
30
31 static inline u8 Hi8(u16 val)
32 {
33 return val >> 8;
34 }
35
36
37 static inline u16 Lo16(u32 val)
38 {
39 return val & 0xffff;
40 }
41
42
43 static inline u16 Hi16(u32 val)
44 {
45 return val >> 16;
46 }
47
48
49 static inline u16 Mk16(u8 hi, u8 lo)
50 {
51 return lo | (((u16) hi) << 8);
52 }
53
54
55 static inline u16 Mk16_le(u16 *v)
56 {
57 return le_to_host16(*v);
58 }
59
60
61 static const u16 Sbox[256] =
62 {
63 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
64 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
65 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
66 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
67 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
68 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
69 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
70 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
71 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
72 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
73 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
74 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
75 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
76 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
77 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
78 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
79 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
80 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
81 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
82 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
83 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
84 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
85 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
86 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
87 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
88 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
89 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
90 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
91 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
92 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
93 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
94 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
95 };
96
97
98 static inline u16 _S_(u16 v)
99 {
100 u16 t = Sbox[Hi8(v)];
101 return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
102 }
103
104
105 #define PHASE1_LOOP_COUNT 8
106
107 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
108 {
109 int i, j;
110
111 /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
112 TTAK[0] = Lo16(IV32);
113 TTAK[1] = Hi16(IV32);
114 TTAK[2] = Mk16(TA[1], TA[0]);
115 TTAK[3] = Mk16(TA[3], TA[2]);
116 TTAK[4] = Mk16(TA[5], TA[4]);
117
118 for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
119 j = 2 * (i & 1);
120 TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
121 TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
122 TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
123 TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
124 TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
125 }
126 }
127
128
129 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
130 u16 IV16)
131 {
132 u16 PPK[6];
133
134 /* Step 1 - make copy of TTAK and bring in TSC */
135 PPK[0] = TTAK[0];
136 PPK[1] = TTAK[1];
137 PPK[2] = TTAK[2];
138 PPK[3] = TTAK[3];
139 PPK[4] = TTAK[4];
140 PPK[5] = TTAK[4] + IV16;
141
142 /* Step 2 - 96-bit bijective mixing using S-box */
143 PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) &TK[0]));
144 PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) &TK[2]));
145 PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) &TK[4]));
146 PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) &TK[6]));
147 PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) &TK[8]));
148 PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) &TK[10]));
149
150 PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) &TK[12]));
151 PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) &TK[14]));
152 PPK[2] += RotR1(PPK[1]);
153 PPK[3] += RotR1(PPK[2]);
154 PPK[4] += RotR1(PPK[3]);
155 PPK[5] += RotR1(PPK[4]);
156
157 /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
158 * WEPSeed[0..2] is transmitted as WEP IV */
159 WEPSeed[0] = Hi8(IV16);
160 WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
161 WEPSeed[2] = Lo8(IV16);
162 WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) &TK[0])) >> 1);
163 WPA_PUT_LE16(&WEPSeed[4], PPK[0]);
164 WPA_PUT_LE16(&WEPSeed[6], PPK[1]);
165 WPA_PUT_LE16(&WEPSeed[8], PPK[2]);
166 WPA_PUT_LE16(&WEPSeed[10], PPK[3]);
167 WPA_PUT_LE16(&WEPSeed[12], PPK[4]);
168 WPA_PUT_LE16(&WEPSeed[14], PPK[5]);
169 }
170
171
172 static inline u32 rotl(u32 val, int bits)
173 {
174 return (val << bits) | (val >> (32 - bits));
175 }
176
177
178 static inline u32 rotr(u32 val, int bits)
179 {
180 return (val >> bits) | (val << (32 - bits));
181 }
182
183
184 static inline u32 xswap(u32 val)
185 {
186 return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
187 }
188
189
190 #define michael_block(l, r) \
191 do { \
192 r ^= rotl(l, 17); \
193 l += r; \
194 r ^= xswap(l); \
195 l += r; \
196 r ^= rotl(l, 3); \
197 l += r; \
198 r ^= rotr(l, 2); \
199 l += r; \
200 } while (0)
201
202
203 static void michael_mic(const u8 *key, const u8 *hdr, const u8 *data,
204 size_t data_len, u8 *mic)
205 {
206 u32 l, r;
207 int i, blocks, last;
208
209 l = WPA_GET_LE32(key);
210 r = WPA_GET_LE32(key + 4);
211
212 /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
213 l ^= WPA_GET_LE32(hdr);
214 michael_block(l, r);
215 l ^= WPA_GET_LE32(&hdr[4]);
216 michael_block(l, r);
217 l ^= WPA_GET_LE32(&hdr[8]);
218 michael_block(l, r);
219 l ^= WPA_GET_LE32(&hdr[12]);
220 michael_block(l, r);
221
222 /* 32-bit blocks of data */
223 blocks = data_len / 4;
224 last = data_len % 4;
225 for (i = 0; i < blocks; i++) {
226 l ^= WPA_GET_LE32(&data[4 * i]);
227 michael_block(l, r);
228 }
229
230 /* Last block and padding (0x5a, 4..7 x 0) */
231 switch (last) {
232 case 0:
233 l ^= 0x5a;
234 break;
235 case 1:
236 l ^= data[4 * i] | 0x5a00;
237 break;
238 case 2:
239 l ^= data[4 * i] | (data[4 * i + 1] << 8) | 0x5a0000;
240 break;
241 case 3:
242 l ^= data[4 * i] | (data[4 * i + 1] << 8) |
243 (data[4 * i + 2] << 16) | 0x5a000000;
244 break;
245 }
246 michael_block(l, r);
247 /* l ^= 0; */
248 michael_block(l, r);
249
250 WPA_PUT_LE32(mic, l);
251 WPA_PUT_LE32(mic + 4, r);
252 }
253
254
255 static void michael_mic_hdr(const struct ieee80211_hdr *hdr11, u8 *hdr)
256 {
257 int hdrlen = 24;
258 u16 fc = le_to_host16(hdr11->frame_control);
259
260 switch (fc & (WLAN_FC_FROMDS | WLAN_FC_TODS)) {
261 case WLAN_FC_TODS:
262 os_memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
263 os_memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
264 break;
265 case WLAN_FC_FROMDS:
266 os_memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
267 os_memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
268 break;
269 case WLAN_FC_FROMDS | WLAN_FC_TODS:
270 os_memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
271 os_memcpy(hdr + ETH_ALEN, hdr11 + 1, ETH_ALEN); /* SA */
272 hdrlen += ETH_ALEN;
273 break;
274 case 0:
275 os_memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
276 os_memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
277 break;
278 }
279
280 if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_DATA &&
281 (WLAN_FC_GET_STYPE(fc) & 0x08)) {
282 const u8 *qos = ((const u8 *) hdr11) + hdrlen;
283 hdr[12] = qos[0] & 0x0f; /* priority */
284 } else
285 hdr[12] = 0; /* priority */
286
287 hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
288 }
289
290
291 u8 * tkip_decrypt(const u8 *tk, const struct ieee80211_hdr *hdr,
292 const u8 *data, size_t data_len, size_t *decrypted_len)
293 {
294 u16 iv16;
295 u32 iv32;
296 u16 ttak[5];
297 u8 rc4key[16];
298 u8 *plain;
299 size_t plain_len;
300 u32 icv, rx_icv;
301 const u8 *mic_key;
302 u8 michael_hdr[16];
303 u8 mic[8];
304 u16 fc = le_to_host16(hdr->frame_control);
305
306 if (data_len < 8 + 4)
307 return NULL;
308
309 iv16 = (data[0] << 8) | data[2];
310 iv32 = WPA_GET_LE32(&data[4]);
311 wpa_printf(MSG_EXCESSIVE, "TKIP decrypt: iv32=%08x iv16=%04x",
312 iv32, iv16);
313
314 tkip_mixing_phase1(ttak, tk, hdr->addr2, iv32);
315 wpa_hexdump(MSG_EXCESSIVE, "TKIP TTAK", (u8 *) ttak, sizeof(ttak));
316 tkip_mixing_phase2(rc4key, tk, ttak, iv16);
317 wpa_hexdump(MSG_EXCESSIVE, "TKIP RC4KEY", rc4key, sizeof(rc4key));
318
319 plain_len = data_len - 8;
320 plain = os_malloc(plain_len);
321 if (plain == NULL)
322 return NULL;
323 os_memcpy(plain, data + 8, plain_len);
324 wep_crypt(rc4key, plain, plain_len);
325
326 icv = crc32(plain, plain_len - 4);
327 rx_icv = WPA_GET_LE32(plain + plain_len - 4);
328 if (icv != rx_icv) {
329 wpa_printf(MSG_INFO, "TKIP ICV mismatch in frame from " MACSTR,
330 MAC2STR(hdr->addr2));
331 wpa_printf(MSG_DEBUG, "TKIP calculated ICV %08x received ICV "
332 "%08x", icv, rx_icv);
333 os_free(plain);
334 return NULL;
335 }
336 plain_len -= 4;
337
338 /* TODO: MSDU reassembly */
339
340 if (plain_len < 8) {
341 wpa_printf(MSG_INFO, "TKIP: Not enough room for Michael MIC "
342 "in a frame from " MACSTR, MAC2STR(hdr->addr2));
343 os_free(plain);
344 return NULL;
345 }
346
347 michael_mic_hdr(hdr, michael_hdr);
348 mic_key = tk + ((fc & WLAN_FC_FROMDS) ? 16 : 24);
349 michael_mic(mic_key, michael_hdr, plain, plain_len - 8, mic);
350 if (os_memcmp(mic, plain + plain_len - 8, 8) != 0) {
351 wpa_printf(MSG_INFO, "TKIP: Michael MIC mismatch in a frame "
352 "from " MACSTR, MAC2STR(hdr->addr2));
353 wpa_hexdump(MSG_DEBUG, "TKIP: Calculated MIC", mic, 8);
354 wpa_hexdump(MSG_DEBUG, "TKIP: Received MIC",
355 plain + plain_len - 8, 8);
356 os_free(plain);
357 return NULL;
358 }
359
360 *decrypted_len = plain_len - 8;
361 return plain;
362 }
363
364
365 void tkip_get_pn(u8 *pn, const u8 *data)
366 {
367 pn[0] = data[7]; /* PN5 */
368 pn[1] = data[6]; /* PN4 */
369 pn[2] = data[5]; /* PN3 */
370 pn[3] = data[4]; /* PN2 */
371 pn[4] = data[0]; /* PN1 */
372 pn[5] = data[2]; /* PN0 */
373 }
374
375
376 u8 * tkip_encrypt(const u8 *tk, u8 *frame, size_t len, size_t hdrlen, u8 *qos,
377 u8 *pn, int keyid, size_t *encrypted_len)
378 {
379 /* TODO */
380 return NULL;
381 }