]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blobdiff - gdb/findvar.c
import gdb-1999-12-06 snapshot
[thirdparty/binutils-gdb.git] / gdb / findvar.c
index 465e00a5bae1236c9379bc5c9cae493da4b7b1d3..163e9f7905a65f62754418e622282c23b016f97b 100644 (file)
 /* Find a variable's value in memory, for GDB, the GNU debugger.
-   Copyright (C) 1986, 1987 Free Software Foundation, Inc.
+   Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
+   Free Software Foundation, Inc.
 
-GDB is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY.  No author or distributor accepts responsibility to anyone
-for the consequences of using it or for whether it serves any
-particular purpose or works at all, unless he says so in writing.
-Refer to the GDB General Public License for full details.
+   This file is part of GDB.
 
-Everyone is granted permission to copy, modify and redistribute GDB,
-but only under the conditions described in the GDB General Public
-License.  A copy of this license is supposed to have been given to you
-along with GDB so you can know your rights and responsibilities.  It
-should be in a file named COPYING.  Among other things, the copyright
-notice and this notice must be preserved on all copies.
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2 of the License, or
+   (at your option) any later version.
 
-In other words, go ahead and share GDB, but don't try to stop
-anyone else from sharing it farther.  Help stamp out software hoarding!
-*/
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program; if not, write to the Free Software
+   Foundation, Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
 
 #include "defs.h"
-#include "initialize.h"
-#include "param.h"
 #include "symtab.h"
+#include "gdbtypes.h"
 #include "frame.h"
 #include "value.h"
+#include "gdbcore.h"
+#include "inferior.h"
+#include "target.h"
+#include "gdb_string.h"
+#include "floatformat.h"
+#include "symfile.h"           /* for overlay functions */
+
+/* This is used to indicate that we don't know the format of the floating point
+   number.  Typically, this is useful for native ports, where the actual format
+   is irrelevant, since no conversions will be taking place.  */
+
+const struct floatformat floatformat_unknown;
+
+/* Registers we shouldn't try to store.  */
+#if !defined (CANNOT_STORE_REGISTER)
+#define CANNOT_STORE_REGISTER(regno) 0
+#endif
+
+static void write_register_gen PARAMS ((int, char *));
+
+static int read_relative_register_raw_bytes_for_frame PARAMS ((int regnum, char *myaddr, struct frame_info * frame));
+
+/* Basic byte-swapping routines.  GDB has needed these for a long time...
+   All extract a target-format integer at ADDR which is LEN bytes long.  */
+
+#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
+  /* 8 bit characters are a pretty safe assumption these days, so we
+     assume it throughout all these swapping routines.  If we had to deal with
+     9 bit characters, we would need to make len be in bits and would have
+     to re-write these routines...  */
+you lose
+#endif
+
+  LONGEST
+extract_signed_integer (addr, len)
+     PTR addr;
+     int len;
+{
+  LONGEST retval;
+  unsigned char *p;
+  unsigned char *startaddr = (unsigned char *) addr;
+  unsigned char *endaddr = startaddr + len;
+
+  if (len > (int) sizeof (LONGEST))
+    error ("\
+That operation is not available on integers of more than %d bytes.",
+          sizeof (LONGEST));
+
+  /* Start at the most significant end of the integer, and work towards
+     the least significant.  */
+  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+    {
+      p = startaddr;
+      /* Do the sign extension once at the start.  */
+      retval = ((LONGEST) * p ^ 0x80) - 0x80;
+      for (++p; p < endaddr; ++p)
+       retval = (retval << 8) | *p;
+    }
+  else
+    {
+      p = endaddr - 1;
+      /* Do the sign extension once at the start.  */
+      retval = ((LONGEST) * p ^ 0x80) - 0x80;
+      for (--p; p >= startaddr; --p)
+       retval = (retval << 8) | *p;
+    }
+  return retval;
+}
+
+ULONGEST
+extract_unsigned_integer (addr, len)
+     PTR addr;
+     int len;
+{
+  ULONGEST retval;
+  unsigned char *p;
+  unsigned char *startaddr = (unsigned char *) addr;
+  unsigned char *endaddr = startaddr + len;
+
+  if (len > (int) sizeof (ULONGEST))
+    error ("\
+That operation is not available on integers of more than %d bytes.",
+          sizeof (ULONGEST));
+
+  /* Start at the most significant end of the integer, and work towards
+     the least significant.  */
+  retval = 0;
+  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+    {
+      for (p = startaddr; p < endaddr; ++p)
+       retval = (retval << 8) | *p;
+    }
+  else
+    {
+      for (p = endaddr - 1; p >= startaddr; --p)
+       retval = (retval << 8) | *p;
+    }
+  return retval;
+}
+
+/* Sometimes a long long unsigned integer can be extracted as a
+   LONGEST value.  This is done so that we can print these values
+   better.  If this integer can be converted to a LONGEST, this
+   function returns 1 and sets *PVAL.  Otherwise it returns 0.  */
+
+int
+extract_long_unsigned_integer (addr, orig_len, pval)
+     PTR addr;
+     int orig_len;
+     LONGEST *pval;
+{
+  char *p, *first_addr;
+  int len;
+
+  len = orig_len;
+  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+    {
+      for (p = (char *) addr;
+          len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
+          p++)
+       {
+         if (*p == 0)
+           len--;
+         else
+           break;
+       }
+      first_addr = p;
+    }
+  else
+    {
+      first_addr = (char *) addr;
+      for (p = (char *) addr + orig_len - 1;
+          len > (int) sizeof (LONGEST) && p >= (char *) addr;
+          p--)
+       {
+         if (*p == 0)
+           len--;
+         else
+           break;
+       }
+    }
+
+  if (len <= (int) sizeof (LONGEST))
+    {
+      *pval = (LONGEST) extract_unsigned_integer (first_addr,
+                                                 sizeof (LONGEST));
+      return 1;
+    }
+
+  return 0;
+}
+
+CORE_ADDR
+extract_address (addr, len)
+     PTR addr;
+     int len;
+{
+  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
+     whether we want this to be true eventually.  */
+  return (CORE_ADDR) extract_unsigned_integer (addr, len);
+}
+
+void
+store_signed_integer (addr, len, val)
+     PTR addr;
+     int len;
+     LONGEST val;
+{
+  unsigned char *p;
+  unsigned char *startaddr = (unsigned char *) addr;
+  unsigned char *endaddr = startaddr + len;
+
+  /* Start at the least significant end of the integer, and work towards
+     the most significant.  */
+  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+    {
+      for (p = endaddr - 1; p >= startaddr; --p)
+       {
+         *p = val & 0xff;
+         val >>= 8;
+       }
+    }
+  else
+    {
+      for (p = startaddr; p < endaddr; ++p)
+       {
+         *p = val & 0xff;
+         val >>= 8;
+       }
+    }
+}
+
+void
+store_unsigned_integer (addr, len, val)
+     PTR addr;
+     int len;
+     ULONGEST val;
+{
+  unsigned char *p;
+  unsigned char *startaddr = (unsigned char *) addr;
+  unsigned char *endaddr = startaddr + len;
+
+  /* Start at the least significant end of the integer, and work towards
+     the most significant.  */
+  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+    {
+      for (p = endaddr - 1; p >= startaddr; --p)
+       {
+         *p = val & 0xff;
+         val >>= 8;
+       }
+    }
+  else
+    {
+      for (p = startaddr; p < endaddr; ++p)
+       {
+         *p = val & 0xff;
+         val >>= 8;
+       }
+    }
+}
+
+/* Store the literal address "val" into
+   gdb-local memory pointed to by "addr"
+   for "len" bytes. */
+void
+store_address (addr, len, val)
+     PTR addr;
+     int len;
+     LONGEST val;
+{
+  store_unsigned_integer (addr, len, val);
+}
+\f
+/* Extract a floating-point number from a target-order byte-stream at ADDR.
+   Returns the value as type DOUBLEST.
+
+   If the host and target formats agree, we just copy the raw data into the
+   appropriate type of variable and return, letting the host increase precision
+   as necessary.  Otherwise, we call the conversion routine and let it do the
+   dirty work.  */
+
+DOUBLEST
+extract_floating (addr, len)
+     PTR addr;
+     int len;
+{
+  DOUBLEST dretval;
+
+  if (len == sizeof (float))
+    {
+      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
+       {
+         float retval;
 
-CORE_ADDR read_register ();
+         memcpy (&retval, addr, sizeof (retval));
+         return retval;
+       }
+      else
+       floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
+    }
+  else if (len == sizeof (double))
+    {
+      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
+       {
+         double retval;
+
+         memcpy (&retval, addr, sizeof (retval));
+         return retval;
+       }
+      else
+       floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
+    }
+  else if (len == sizeof (DOUBLEST))
+    {
+      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
+       {
+         DOUBLEST retval;
+
+         memcpy (&retval, addr, sizeof (retval));
+         return retval;
+       }
+      else
+       floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
+    }
+#ifdef TARGET_EXTRACT_FLOATING
+  else if (TARGET_EXTRACT_FLOATING (addr, len, &dretval))
+    return dretval;
+#endif
+  else
+    {
+      error ("Can't deal with a floating point number of %d bytes.", len);
+    }
+
+  return dretval;
+}
+
+void
+store_floating (addr, len, val)
+     PTR addr;
+     int len;
+     DOUBLEST val;
+{
+  if (len == sizeof (float))
+    {
+      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
+       {
+         float floatval = val;
+
+         memcpy (addr, &floatval, sizeof (floatval));
+       }
+      else
+       floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
+    }
+  else if (len == sizeof (double))
+    {
+      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
+       {
+         double doubleval = val;
 
-START_FILE
+         memcpy (addr, &doubleval, sizeof (doubleval));
+       }
+      else
+       floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
+    }
+  else if (len == sizeof (DOUBLEST))
+    {
+      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
+       memcpy (addr, &val, sizeof (val));
+      else
+       floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
+    }
+#ifdef TARGET_STORE_FLOATING
+  else if (TARGET_STORE_FLOATING (addr, len, val))
+    return;
+#endif 
+  else
+    {
+      error ("Can't deal with a floating point number of %d bytes.", len);
+    }
+}
 \f
+
 /* Return the address in which frame FRAME's value of register REGNUM
    has been saved in memory.  Or return zero if it has not been saved.
    If REGNUM specifies the SP, the value we return is actually
    the SP value, not an address where it was saved.  */
 
-static CORE_ADDR
-find_saved_register (frame, regnum)
-     FRAME frame;
-     int regnum;
-{
-  struct frame_info fi;
-  struct frame_saved_regs saved_regs;
+CORE_ADDR
+find_saved_register (frame, regnum)
+     struct frame_info *frame;
+     int regnum;
+{
+  register struct frame_info *frame1 = NULL;
+  register CORE_ADDR addr = 0;
+
+  if (frame == NULL)           /* No regs saved if want current frame */
+    return 0;
+
+#ifdef HAVE_REGISTER_WINDOWS
+  /* We assume that a register in a register window will only be saved
+     in one place (since the name changes and/or disappears as you go
+     towards inner frames), so we only call get_frame_saved_regs on
+     the current frame.  This is directly in contradiction to the
+     usage below, which assumes that registers used in a frame must be
+     saved in a lower (more interior) frame.  This change is a result
+     of working on a register window machine; get_frame_saved_regs
+     always returns the registers saved within a frame, within the
+     context (register namespace) of that frame. */
+
+  /* However, note that we don't want this to return anything if
+     nothing is saved (if there's a frame inside of this one).  Also,
+     callers to this routine asking for the stack pointer want the
+     stack pointer saved for *this* frame; this is returned from the
+     next frame.  */
+
+  if (REGISTER_IN_WINDOW_P (regnum))
+    {
+      frame1 = get_next_frame (frame);
+      if (!frame1)
+       return 0;               /* Registers of this frame are active.  */
+
+      /* Get the SP from the next frame in; it will be this
+         current frame.  */
+      if (regnum != SP_REGNUM)
+       frame1 = frame;
+
+      FRAME_INIT_SAVED_REGS (frame1);
+      return frame1->saved_regs[regnum];       /* ... which might be zero */
+    }
+#endif /* HAVE_REGISTER_WINDOWS */
+
+  /* Note that this next routine assumes that registers used in
+     frame x will be saved only in the frame that x calls and
+     frames interior to it.  This is not true on the sparc, but the
+     above macro takes care of it, so we should be all right. */
+  while (1)
+    {
+      QUIT;
+      frame1 = get_prev_frame (frame1);
+      if (frame1 == 0 || frame1 == frame)
+       break;
+      FRAME_INIT_SAVED_REGS (frame1);
+      if (frame1->saved_regs[regnum])
+       addr = frame1->saved_regs[regnum];
+    }
+
+  return addr;
+}
+
+/* Find register number REGNUM relative to FRAME and put its (raw,
+   target format) contents in *RAW_BUFFER.  Set *OPTIMIZED if the
+   variable was optimized out (and thus can't be fetched).  Set *LVAL
+   to lval_memory, lval_register, or not_lval, depending on whether
+   the value was fetched from memory, from a register, or in a strange
+   and non-modifiable way (e.g. a frame pointer which was calculated
+   rather than fetched).  Set *ADDRP to the address, either in memory
+   on as a REGISTER_BYTE offset into the registers array.
+
+   Note that this implementation never sets *LVAL to not_lval.  But
+   it can be replaced by defining GET_SAVED_REGISTER and supplying
+   your own.
+
+   The argument RAW_BUFFER must point to aligned memory.  */
+
+void
+default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
+     char *raw_buffer;
+     int *optimized;
+     CORE_ADDR *addrp;
+     struct frame_info *frame;
+     int regnum;
+     enum lval_type *lval;
+{
+  CORE_ADDR addr;
+
+  if (!target_has_registers)
+    error ("No registers.");
+
+  /* Normal systems don't optimize out things with register numbers.  */
+  if (optimized != NULL)
+    *optimized = 0;
+  addr = find_saved_register (frame, regnum);
+  if (addr != 0)
+    {
+      if (lval != NULL)
+       *lval = lval_memory;
+      if (regnum == SP_REGNUM)
+       {
+         if (raw_buffer != NULL)
+           {
+             /* Put it back in target format.  */
+             store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), (LONGEST) addr);
+           }
+         if (addrp != NULL)
+           *addrp = 0;
+         return;
+       }
+      if (raw_buffer != NULL)
+       read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
+    }
+  else
+    {
+      if (lval != NULL)
+       *lval = lval_register;
+      addr = REGISTER_BYTE (regnum);
+      if (raw_buffer != NULL)
+       read_register_gen (regnum, raw_buffer);
+    }
+  if (addrp != NULL)
+    *addrp = addr;
+}
+
+#if !defined (GET_SAVED_REGISTER)
+#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
+  default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
+#endif
+void
+get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
+     char *raw_buffer;
+     int *optimized;
+     CORE_ADDR *addrp;
+     struct frame_info *frame;
+     int regnum;
+     enum lval_type *lval;
+{
+  GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
+}
+
+/* Copy the bytes of register REGNUM, relative to the input stack frame,
+   into our memory at MYADDR, in target byte order.
+   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
+
+   Returns 1 if could not be read, 0 if could.  */
+
+static int
+read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
+     int regnum;
+     char *myaddr;
+     struct frame_info *frame;
+{
+  int optim;
+  if (regnum == FP_REGNUM && frame)
+    {
+      /* Put it back in target format. */
+      store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
+                    (LONGEST) FRAME_FP (frame));
+
+      return 0;
+    }
+
+  get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
+                     regnum, (enum lval_type *) NULL);
+
+  if (register_valid[regnum] < 0)
+    return 1;                  /* register value not available */
+
+  return optim;
+}
+
+/* Copy the bytes of register REGNUM, relative to the current stack frame,
+   into our memory at MYADDR, in target byte order.
+   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
+
+   Returns 1 if could not be read, 0 if could.  */
+
+int
+read_relative_register_raw_bytes (regnum, myaddr)
+     int regnum;
+     char *myaddr;
+{
+  return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
+                                                    selected_frame);
+}
+
+/* Return a `value' with the contents of register REGNUM
+   in its virtual format, with the type specified by
+   REGISTER_VIRTUAL_TYPE.  
+
+   NOTE: returns NULL if register value is not available.
+   Caller will check return value or die!  */
+
+value_ptr
+value_of_register (regnum)
+     int regnum;
+{
+  CORE_ADDR addr;
+  int optim;
+  register value_ptr reg_val;
+  char raw_buffer[MAX_REGISTER_RAW_SIZE];
+  enum lval_type lval;
+
+  get_saved_register (raw_buffer, &optim, &addr,
+                     selected_frame, regnum, &lval);
+
+  if (register_valid[regnum] < 0)
+    return NULL;               /* register value not available */
+
+  reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
+
+  /* Convert raw data to virtual format if necessary.  */
+
+  if (REGISTER_CONVERTIBLE (regnum))
+    {
+      REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
+                                  raw_buffer, VALUE_CONTENTS_RAW (reg_val));
+    }
+  else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
+    memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
+           REGISTER_RAW_SIZE (regnum));
+  else
+    internal_error ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
+                   REGISTER_NAME (regnum),
+                   regnum,
+                   REGISTER_RAW_SIZE (regnum),
+                   REGISTER_VIRTUAL_SIZE (regnum));
+  VALUE_LVAL (reg_val) = lval;
+  VALUE_ADDRESS (reg_val) = addr;
+  VALUE_REGNO (reg_val) = regnum;
+  VALUE_OPTIMIZED_OUT (reg_val) = optim;
+  return reg_val;
+}
+\f
+/* Low level examining and depositing of registers.
+
+   The caller is responsible for making
+   sure that the inferior is stopped before calling the fetching routines,
+   or it will get garbage.  (a change from GDB version 3, in which
+   the caller got the value from the last stop).  */
+
+/* Contents and state of the registers (in target byte order). */
+
+char *registers;
+
+/* VALID_REGISTER is non-zero if it has been fetched, -1 if the
+   register value was not available. */
+
+signed char *register_valid;
+
+/* The thread/process associated with the current set of registers.  For now,
+   -1 is special, and means `no current process'.  */
+int registers_pid = -1;
+
+/* Indicate that registers may have changed, so invalidate the cache.  */
+
+void
+registers_changed ()
+{
+  int i;
+  int numregs = ARCH_NUM_REGS;
+
+  registers_pid = -1;
+
+  /* Force cleanup of any alloca areas if using C alloca instead of
+     a builtin alloca.  This particular call is used to clean up
+     areas allocated by low level target code which may build up
+     during lengthy interactions between gdb and the target before
+     gdb gives control to the user (ie watchpoints).  */
+  alloca (0);
+
+  for (i = 0; i < numregs; i++)
+    register_valid[i] = 0;
+
+  if (registers_changed_hook)
+    registers_changed_hook ();
+}
+
+/* Indicate that all registers have been fetched, so mark them all valid.  */
+void
+registers_fetched ()
+{
+  int i;
+  int numregs = ARCH_NUM_REGS;
+  for (i = 0; i < numregs; i++)
+    register_valid[i] = 1;
+}
+
+/* read_register_bytes and write_register_bytes are generally a *BAD*
+   idea.  They are inefficient because they need to check for partial
+   updates, which can only be done by scanning through all of the
+   registers and seeing if the bytes that are being read/written fall
+   inside of an invalid register.  [The main reason this is necessary
+   is that register sizes can vary, so a simple index won't suffice.]
+   It is far better to call read_register_gen and write_register_gen
+   if you want to get at the raw register contents, as it only takes a
+   regno as an argument, and therefore can't do a partial register
+   update.
+
+   Prior to the recent fixes to check for partial updates, both read
+   and write_register_bytes always checked to see if any registers
+   were stale, and then called target_fetch_registers (-1) to update
+   the whole set.  This caused really slowed things down for remote
+   targets.  */
+
+/* Copy INLEN bytes of consecutive data from registers
+   starting with the INREGBYTE'th byte of register data
+   into memory at MYADDR.  */
+
+void
+read_register_bytes (inregbyte, myaddr, inlen)
+     int inregbyte;
+     char *myaddr;
+     int inlen;
+{
+  int inregend = inregbyte + inlen;
+  int regno;
+
+  if (registers_pid != inferior_pid)
+    {
+      registers_changed ();
+      registers_pid = inferior_pid;
+    }
+
+  /* See if we are trying to read bytes from out-of-date registers.  If so,
+     update just those registers.  */
+
+  for (regno = 0; regno < NUM_REGS; regno++)
+    {
+      int regstart, regend;
+
+      if (register_valid[regno])
+       continue;
+
+      if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
+       continue;
+
+      regstart = REGISTER_BYTE (regno);
+      regend = regstart + REGISTER_RAW_SIZE (regno);
+
+      if (regend <= inregbyte || inregend <= regstart)
+       /* The range the user wants to read doesn't overlap with regno.  */
+       continue;
+
+      /* We've found an invalid register where at least one byte will be read.
+         Update it from the target.  */
+      target_fetch_registers (regno);
+
+      if (!register_valid[regno])
+       error ("read_register_bytes:  Couldn't update register %d.", regno);
+    }
+
+  if (myaddr != NULL)
+    memcpy (myaddr, &registers[inregbyte], inlen);
+}
+
+/* Read register REGNO into memory at MYADDR, which must be large enough
+   for REGISTER_RAW_BYTES (REGNO).  Target byte-order.
+   If the register is known to be the size of a CORE_ADDR or smaller,
+   read_register can be used instead.  */
+void
+read_register_gen (regno, myaddr)
+     int regno;
+     char *myaddr;
+{
+  if (registers_pid != inferior_pid)
+    {
+      registers_changed ();
+      registers_pid = inferior_pid;
+    }
+
+  if (!register_valid[regno])
+    target_fetch_registers (regno);
+  memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
+         REGISTER_RAW_SIZE (regno));
+}
+
+/* Write register REGNO at MYADDR to the target.  MYADDR points at
+   REGISTER_RAW_BYTES(REGNO), which must be in target byte-order.  */
+
+static void
+write_register_gen (regno, myaddr)
+     int regno;
+     char *myaddr;
+{
+  int size;
+
+  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
+     the registers array if something writes to this register.  */
+  if (CANNOT_STORE_REGISTER (regno))
+    return;
+
+  if (registers_pid != inferior_pid)
+    {
+      registers_changed ();
+      registers_pid = inferior_pid;
+    }
+
+  size = REGISTER_RAW_SIZE (regno);
+
+  /* If we have a valid copy of the register, and new value == old value,
+     then don't bother doing the actual store. */
+
+  if (register_valid[regno]
+      && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
+    return;
+
+  target_prepare_to_store ();
+
+  memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
+
+  register_valid[regno] = 1;
+
+  target_store_registers (regno);
+}
+
+/* Copy INLEN bytes of consecutive data from memory at MYADDR
+   into registers starting with the MYREGSTART'th byte of register data.  */
+
+void
+write_register_bytes (myregstart, myaddr, inlen)
+     int myregstart;
+     char *myaddr;
+     int inlen;
+{
+  int myregend = myregstart + inlen;
+  int regno;
+
+  target_prepare_to_store ();
+
+  /* Scan through the registers updating any that are covered by the range
+     myregstart<=>myregend using write_register_gen, which does nice things
+     like handling threads, and avoiding updates when the new and old contents
+     are the same.  */
+
+  for (regno = 0; regno < NUM_REGS; regno++)
+    {
+      int regstart, regend;
+
+      regstart = REGISTER_BYTE (regno);
+      regend = regstart + REGISTER_RAW_SIZE (regno);
+
+      /* Is this register completely outside the range the user is writing?  */
+      if (myregend <= regstart || regend <= myregstart)
+       /* do nothing */ ;              
+
+      /* Is this register completely within the range the user is writing?  */
+      else if (myregstart <= regstart && regend <= myregend)
+       write_register_gen (regno, myaddr + (regstart - myregstart));
+
+      /* The register partially overlaps the range being written.  */
+      else
+       {
+         char regbuf[MAX_REGISTER_RAW_SIZE];
+         /* What's the overlap between this register's bytes and
+             those the caller wants to write?  */
+         int overlapstart = max (regstart, myregstart);
+         int overlapend   = min (regend,   myregend);
+
+         /* We may be doing a partial update of an invalid register.
+            Update it from the target before scribbling on it.  */
+         read_register_gen (regno, regbuf);
+
+         memcpy (registers + overlapstart,
+                 myaddr + (overlapstart - myregstart),
+                 overlapend - overlapstart);
+
+         target_store_registers (regno);
+       }
+    }
+}
+
+
+/* Return the raw contents of register REGNO, regarding it as an integer.  */
+/* This probably should be returning LONGEST rather than CORE_ADDR.  */
+
+CORE_ADDR
+read_register (regno)
+     int regno;
+{
+  if (registers_pid != inferior_pid)
+    {
+      registers_changed ();
+      registers_pid = inferior_pid;
+    }
+
+  if (!register_valid[regno])
+    target_fetch_registers (regno);
+
+  return (CORE_ADDR) extract_address (&registers[REGISTER_BYTE (regno)],
+                                     REGISTER_RAW_SIZE (regno));
+}
+
+CORE_ADDR
+read_register_pid (regno, pid)
+     int regno, pid;
+{
+  int save_pid;
+  CORE_ADDR retval;
+
+  if (pid == inferior_pid)
+    return read_register (regno);
+
+  save_pid = inferior_pid;
+
+  inferior_pid = pid;
+
+  retval = read_register (regno);
+
+  inferior_pid = save_pid;
+
+  return retval;
+}
+
+/* Store VALUE, into the raw contents of register number REGNO.
+   This should probably write a LONGEST rather than a CORE_ADDR */
+
+void
+write_register (regno, val)
+     int regno;
+     LONGEST val;
+{
+  PTR buf;
+  int size;
+
+  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
+     the registers array if something writes to this register.  */
+  if (CANNOT_STORE_REGISTER (regno))
+    return;
+
+  if (registers_pid != inferior_pid)
+    {
+      registers_changed ();
+      registers_pid = inferior_pid;
+    }
+
+  size = REGISTER_RAW_SIZE (regno);
+  buf = alloca (size);
+  store_signed_integer (buf, size, (LONGEST) val);
+
+  /* If we have a valid copy of the register, and new value == old value,
+     then don't bother doing the actual store. */
+
+  if (register_valid[regno]
+      && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
+    return;
+
+  target_prepare_to_store ();
+
+  memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
+
+  register_valid[regno] = 1;
 
-  register FRAME frame1 = 0;
-  register CORE_ADDR addr = 0;
+  target_store_registers (regno);
+}
 
-  while (1)
+void
+write_register_pid (regno, val, pid)
+     int regno;
+     CORE_ADDR val;
+     int pid;
+{
+  int save_pid;
+
+  if (pid == inferior_pid)
     {
-      QUIT;
-      fi = get_prev_frame_info (frame1);
-      if (fi.frame == 0 || fi.frame == frame)
-       break;
-      get_frame_saved_regs (&fi, &saved_regs);
-      if (saved_regs.regs[regnum])
-       addr = saved_regs.regs[regnum];
-      frame1 = fi.frame;
+      write_register (regno, val);
+      return;
     }
 
-  return addr;
+  save_pid = inferior_pid;
+
+  inferior_pid = pid;
+
+  write_register (regno, val);
+
+  inferior_pid = save_pid;
 }
 
-/* Copy the bytes of register REGNUM, relative to the current stack frame,
-   into our memory at MYADDR.
-   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).  */
+/* Record that register REGNO contains VAL.
+   This is used when the value is obtained from the inferior or core dump,
+   so there is no need to store the value there.
+
+   If VAL is a NULL pointer, then it's probably an unsupported register.  We
+   just set it's value to all zeros.  We might want to record this fact, and
+   report it to the users of read_register and friends.
+ */
 
 void
-read_relative_register_raw_bytes (regnum, myaddr)
-     int regnum;
-     char *myaddr;
+supply_register (regno, val)
+     int regno;
+     char *val;
 {
-  register CORE_ADDR addr;
-
-  if (regnum == FP_REGNUM)
+#if 1
+  if (registers_pid != inferior_pid)
     {
-      bcopy (&selected_frame, myaddr, sizeof (CORE_ADDR));
-      return;
+      registers_changed ();
+      registers_pid = inferior_pid;
     }
+#endif
+
+  register_valid[regno] = 1;
+  if (val)
+    memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
+  else
+    memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
+
+  /* On some architectures, e.g. HPPA, there are a few stray bits in some
+     registers, that the rest of the code would like to ignore.  */
+#ifdef CLEAN_UP_REGISTER_VALUE
+  CLEAN_UP_REGISTER_VALUE (regno, &registers[REGISTER_BYTE (regno)]);
+#endif
+}
+
+
+/* This routine is getting awfully cluttered with #if's.  It's probably
+   time to turn this into READ_PC and define it in the tm.h file.
+   Ditto for write_pc.
+
+   1999-06-08: The following were re-written so that it assumes the
+   existance of a TARGET_READ_PC et.al. macro.  A default generic
+   version of that macro is made available where needed.
 
-  addr = find_saved_register (selected_frame, regnum);
+   Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
+   by the multi-arch framework, it will eventually be possible to
+   eliminate the intermediate read_pc_pid().  The client would call
+   TARGET_READ_PC directly. (cagney). */
 
-  if (addr)
+#ifndef TARGET_READ_PC
+#define TARGET_READ_PC generic_target_read_pc
+#endif
+
+CORE_ADDR
+generic_target_read_pc (pid)
+{
+#ifdef PC_REGNUM
+  if (PC_REGNUM >= 0)
     {
-      if (regnum == SP_REGNUM)
-       {
-         CORE_ADDR buffer = addr;
-         bcopy (&buffer, myaddr, sizeof (CORE_ADDR));
-       }
-      else
-       read_memory (addr, myaddr, REGISTER_RAW_SIZE (regnum));
-      return;
+      CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
+      return pc_val;
     }
-  read_register_bytes (REGISTER_BYTE (regnum),
-                      myaddr, REGISTER_RAW_SIZE (regnum));
+#endif
+  internal_error ("generic_target_read_pc");
+  return 0;
 }
 
-/* Return a `value' with the contents of register REGNUM
-   in its virtual format, with the type specified by
-   REGISTER_VIRTUAL_TYPE.  */
+CORE_ADDR
+read_pc_pid (pid)
+     int pid;
+{
+  int saved_inferior_pid;
+  CORE_ADDR pc_val;
 
-value
-value_of_register (regnum)
-     int regnum;
+  /* In case pid != inferior_pid. */
+  saved_inferior_pid = inferior_pid;
+  inferior_pid = pid;
+
+  pc_val = TARGET_READ_PC (pid);
+
+  inferior_pid = saved_inferior_pid;
+  return pc_val;
+}
+
+CORE_ADDR
+read_pc ()
 {
-  register CORE_ADDR addr = find_saved_register (selected_frame, regnum);
-  register value val;
-  char raw_buffer[MAX_REGISTER_RAW_SIZE];
-  char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
+  return read_pc_pid (inferior_pid);
+}
 
-  if (addr)
-    {
-      if (regnum == SP_REGNUM)
-       return value_from_long (builtin_type_int, addr);
-      read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
-    }
-  else
-    read_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
-                        REGISTER_RAW_SIZE (regnum));
+#ifndef TARGET_WRITE_PC
+#define TARGET_WRITE_PC generic_target_write_pc
+#endif
 
-  REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
-  val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
-  bcopy (virtual_buffer, VALUE_CONTENTS (val), REGISTER_VIRTUAL_SIZE (regnum));
-  VALUE_LVAL (val) = addr ? lval_memory : lval_register;
-  VALUE_ADDRESS (val) = addr ? addr : REGISTER_BYTE (regnum);
-  VALUE_REGNO (val) = regnum;
-  return val;
+void
+generic_target_write_pc (pc, pid)
+     CORE_ADDR pc;
+     int pid;
+{
+#ifdef PC_REGNUM
+  if (PC_REGNUM >= 0)
+    write_register_pid (PC_REGNUM, pc, pid);
+#ifdef NPC_REGNUM
+  if (NPC_REGNUM >= 0)
+    write_register_pid (NPC_REGNUM, pc + 4, pid);
+#ifdef NNPC_REGNUM
+  if (NNPC_REGNUM >= 0)
+    write_register_pid (NNPC_REGNUM, pc + 8, pid);
+#endif
+#endif
+#else
+  internal_error ("generic_target_write_pc");
+#endif
 }
-\f
-/* Low level examining and depositing of registers.
 
-   Note that you must call `fetch_registers' once
-   before examining or depositing any registers.  */
+void
+write_pc_pid (pc, pid)
+     CORE_ADDR pc;
+     int pid;
+{
+  int saved_inferior_pid;
 
-char registers[REGISTER_BYTES];
+  /* In case pid != inferior_pid. */
+  saved_inferior_pid = inferior_pid;
+  inferior_pid = pid;
 
-/* Copy LEN bytes of consecutive data from registers
-   starting with the REGBYTE'th byte of register data
-   into memory at MYADDR.  */
+  TARGET_WRITE_PC (pc, pid);
 
-read_register_bytes (regbyte, myaddr, len)
-     int regbyte;
-     char *myaddr;
-     int len;
+  inferior_pid = saved_inferior_pid;
+}
+
+void
+write_pc (pc)
+     CORE_ADDR pc;
 {
-  bcopy (&registers[regbyte], myaddr, len);
+  write_pc_pid (pc, inferior_pid);
 }
 
-/* Copy LEN bytes of consecutive data from memory at MYADDR
-   into registers starting with the REGBYTE'th byte of register data.  */
+/* Cope with strage ways of getting to the stack and frame pointers */
 
-write_register_bytes (regbyte, myaddr, len)
-     int regbyte;
-     char *myaddr;
-     int len;
+#ifndef TARGET_READ_SP
+#define TARGET_READ_SP generic_target_read_sp
+#endif
+
+CORE_ADDR
+generic_target_read_sp ()
 {
-  bcopy (myaddr, &registers[regbyte], len);
-  if (have_inferior_p ())
-    store_inferior_registers (-1);
+#ifdef SP_REGNUM
+  if (SP_REGNUM >= 0)
+    return read_register (SP_REGNUM);
+#endif
+  internal_error ("generic_target_read_sp");
 }
 
-/* Return the contents of register REGNO,
-   regarding it as an integer.  */
-
 CORE_ADDR
-read_register (regno)
-     int regno;
+read_sp ()
 {
-  /* This loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
-  return *(int *) &registers[REGISTER_BYTE (regno)];
+  return TARGET_READ_SP ();
 }
 
-/* Store VALUE in the register number REGNO, regarded as an integer.  */
+#ifndef TARGET_WRITE_SP
+#define TARGET_WRITE_SP generic_target_write_sp
+#endif
 
 void
-write_register (regno, val)
-     int regno, val;
+generic_target_write_sp (val)
+     CORE_ADDR val;
 {
-  /* This loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
-  *(int *) &registers[REGISTER_BYTE (regno)] = val;
+#ifdef SP_REGNUM
+  if (SP_REGNUM >= 0)
+    {
+      write_register (SP_REGNUM, val);
+      return;
+    }
+#endif
+  internal_error ("generic_target_write_sp");
+}
 
-  if (have_inferior_p ())
-    store_inferior_registers (regno);
+void
+write_sp (val)
+     CORE_ADDR val;
+{
+  TARGET_WRITE_SP (val);
 }
 
-/* Record that register REGNO contains VAL.
-   This is used when the value is obtained from the inferior or core dump,
-   so there is no need to store the value there.  */
+#ifndef TARGET_READ_FP
+#define TARGET_READ_FP generic_target_read_fp
+#endif
+
+CORE_ADDR
+generic_target_read_fp ()
+{
+#ifdef FP_REGNUM
+  if (FP_REGNUM >= 0)
+    return read_register (FP_REGNUM);
+#endif
+  internal_error ("generic_target_read_fp");
+}
+
+CORE_ADDR
+read_fp ()
+{
+  return TARGET_READ_FP ();
+}
+
+#ifndef TARGET_WRITE_FP
+#define TARGET_WRITE_FP generic_target_write_fp
+#endif
 
 void
-supply_register (regno, val)
-     int regno;
-     char *val;
+generic_target_write_fp (val)
+     CORE_ADDR val;
+{
+#ifdef FP_REGNUM
+  if (FP_REGNUM >= 0)
+    {
+      write_register (FP_REGNUM, val);
+      return;
+    }
+#endif
+  internal_error ("generic_target_write_fp");
+}
+
+void
+write_fp (val)
+     CORE_ADDR val;
 {
-  bcopy (val, &registers[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno));
+  TARGET_WRITE_FP (val);
 }
 \f
+/* Will calling read_var_value or locate_var_value on SYM end
+   up caring what frame it is being evaluated relative to?  SYM must
+   be non-NULL.  */
+int
+symbol_read_needs_frame (sym)
+     struct symbol *sym;
+{
+  switch (SYMBOL_CLASS (sym))
+    {
+      /* All cases listed explicitly so that gcc -Wall will detect it if
+         we failed to consider one.  */
+    case LOC_REGISTER:
+    case LOC_ARG:
+    case LOC_REF_ARG:
+    case LOC_REGPARM:
+    case LOC_REGPARM_ADDR:
+    case LOC_LOCAL:
+    case LOC_LOCAL_ARG:
+    case LOC_BASEREG:
+    case LOC_BASEREG_ARG:
+    case LOC_THREAD_LOCAL_STATIC:
+      return 1;
+
+    case LOC_UNDEF:
+    case LOC_CONST:
+    case LOC_STATIC:
+    case LOC_INDIRECT:
+    case LOC_TYPEDEF:
+
+    case LOC_LABEL:
+      /* Getting the address of a label can be done independently of the block,
+         even if some *uses* of that address wouldn't work so well without
+         the right frame.  */
+
+    case LOC_BLOCK:
+    case LOC_CONST_BYTES:
+    case LOC_UNRESOLVED:
+    case LOC_OPTIMIZED_OUT:
+      return 0;
+    }
+  return 1;
+}
+
 /* Given a struct symbol for a variable,
-   and a stack frame address, read the value of the variable
-   and return a (pointer to a) struct value containing the value.  */
+   and a stack frame id, read the value of the variable
+   and return a (pointer to a) struct value containing the value. 
+   If the variable cannot be found, return a zero pointer.
+   If FRAME is NULL, use the selected_frame.  */
 
-value
+value_ptr
 read_var_value (var, frame)
      register struct symbol *var;
-     FRAME frame;
+     struct frame_info *frame;
 {
-  register value v;
-
-  struct frame_info fi;
-
+  register value_ptr v;
   struct type *type = SYMBOL_TYPE (var);
-  register CORE_ADDR addr = 0;
-  int val = SYMBOL_VALUE (var);
+  CORE_ADDR addr;
   register int len;
 
-  if (SYMBOL_CLASS (var) == LOC_BLOCK)
-    type = lookup_function_type (type, 0);
-
   v = allocate_value (type);
   VALUE_LVAL (v) = lval_memory;        /* The most likely possibility.  */
+  VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
+
   len = TYPE_LENGTH (type);
 
-  if (frame == 0) frame = selected_frame;
+  if (frame == NULL)
+    frame = selected_frame;
 
   switch (SYMBOL_CLASS (var))
     {
     case LOC_CONST:
-    case LOC_LABEL:
-      bcopy (&val, VALUE_CONTENTS (v), len);
+      /* Put the constant back in target format.  */
+      store_signed_integer (VALUE_CONTENTS_RAW (v), len,
+                           (LONGEST) SYMBOL_VALUE (var));
       VALUE_LVAL (v) = not_lval;
       return v;
 
-    case LOC_CONST_BYTES:
-      bcopy (val, VALUE_CONTENTS (v), len);
+    case LOC_LABEL:
+      /* Put the constant back in target format.  */
+      if (overlay_debugging)
+       store_address (VALUE_CONTENTS_RAW (v), len,
+            (LONGEST) symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
+                                                SYMBOL_BFD_SECTION (var)));
+      else
+       store_address (VALUE_CONTENTS_RAW (v), len,
+                      (LONGEST) SYMBOL_VALUE_ADDRESS (var));
       VALUE_LVAL (v) = not_lval;
       return v;
 
+    case LOC_CONST_BYTES:
+      {
+       char *bytes_addr;
+       bytes_addr = SYMBOL_VALUE_BYTES (var);
+       memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
+       VALUE_LVAL (v) = not_lval;
+       return v;
+      }
+
     case LOC_STATIC:
-      addr = val;
+      if (overlay_debugging)
+       addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
+                                        SYMBOL_BFD_SECTION (var));
+      else
+       addr = SYMBOL_VALUE_ADDRESS (var);
+      break;
+
+    case LOC_INDIRECT:
+      /* The import slot does not have a real address in it from the
+         dynamic loader (dld.sl on HP-UX), if the target hasn't begun
+         execution yet, so check for that. */
+      if (!target_has_execution)
+       error ("\
+Attempt to access variable defined in different shared object or load module when\n\
+addresses have not been bound by the dynamic loader. Try again when executable is running.");
+
+      addr = SYMBOL_VALUE_ADDRESS (var);
+      addr = read_memory_unsigned_integer
+       (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
       break;
 
     case LOC_ARG:
-      fi = get_frame_info (frame);
-      addr = val + FRAME_ARGS_ADDRESS (fi);
+      if (frame == NULL)
+       return 0;
+      addr = FRAME_ARGS_ADDRESS (frame);
+      if (!addr)
+       return 0;
+      addr += SYMBOL_VALUE (var);
+      break;
+
+    case LOC_REF_ARG:
+      if (frame == NULL)
+       return 0;
+      addr = FRAME_ARGS_ADDRESS (frame);
+      if (!addr)
+       return 0;
+      addr += SYMBOL_VALUE (var);
+      addr = read_memory_unsigned_integer
+       (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
       break;
 
     case LOC_LOCAL:
-      fi = get_frame_info (frame);
-      addr = val + FRAME_LOCALS_ADDRESS (fi);
+    case LOC_LOCAL_ARG:
+      if (frame == NULL)
+       return 0;
+      addr = FRAME_LOCALS_ADDRESS (frame);
+      addr += SYMBOL_VALUE (var);
       break;
 
+    case LOC_BASEREG:
+    case LOC_BASEREG_ARG:
+      {
+       char buf[MAX_REGISTER_RAW_SIZE];
+       get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
+                           NULL);
+       addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
+       addr += SYMBOL_VALUE (var);
+       break;
+      }
+
+    case LOC_THREAD_LOCAL_STATIC:
+      {
+       char buf[MAX_REGISTER_RAW_SIZE];
+
+       get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
+                           NULL);
+       addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
+       addr += SYMBOL_VALUE (var);
+       break;
+      }
+
     case LOC_TYPEDEF:
       error ("Cannot look up value of a typedef");
+      break;
 
     case LOC_BLOCK:
-      VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
+      if (overlay_debugging)
+       VALUE_ADDRESS (v) = symbol_overlayed_address
+         (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
+      else
+       VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
       return v;
 
     case LOC_REGISTER:
+    case LOC_REGPARM:
+    case LOC_REGPARM_ADDR:
       {
-       char raw_buffer[MAX_REGISTER_RAW_SIZE];
-       char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
-
-       VALUE_REGNO (v) = val;
+       struct block *b;
+       int regno = SYMBOL_VALUE (var);
+       value_ptr regval;
 
-       /* Locate the register's contents in a real register or in core;
-          read the data in raw format.  */
+       if (frame == NULL)
+         return 0;
+       b = get_frame_block (frame);
 
-       addr = find_saved_register (frame, val);
-       if (addr == 0)
+       if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
          {
-           /* Value is really in a register.  */
+           regval = value_from_register (lookup_pointer_type (type),
+                                         regno,
+                                         frame);
 
-           VALUE_LVAL (v) = lval_register;
-           VALUE_ADDRESS (v) = REGISTER_BYTE (val);
+           if (regval == NULL)
+             error ("Value of register variable not available.");
 
-           read_register_bytes (REGISTER_BYTE (val),
-                                raw_buffer, REGISTER_RAW_SIZE (val));
+           addr = value_as_pointer (regval);
+           VALUE_LVAL (v) = lval_memory;
          }
        else
          {
-           /* Value was in a register that has been saved in memory.  */
+           regval = value_from_register (type, regno, frame);
 
-           read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (val));
-           VALUE_ADDRESS (v) = addr;
+           if (regval == NULL)
+             error ("Value of register variable not available.");
+           return regval;
          }
+      }
+      break;
+
+    case LOC_UNRESOLVED:
+      {
+       struct minimal_symbol *msym;
+
+       msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
+       if (msym == NULL)
+         return 0;
+       if (overlay_debugging)
+         addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
+                                          SYMBOL_BFD_SECTION (msym));
+       else
+         addr = SYMBOL_VALUE_ADDRESS (msym);
+      }
+      break;
 
-       /* Convert the raw contents to virtual contents.
-          (Just copy them if the formats are the same.)  */
+    case LOC_OPTIMIZED_OUT:
+      VALUE_LVAL (v) = not_lval;
+      VALUE_OPTIMIZED_OUT (v) = 1;
+      return v;
 
-       REGISTER_CONVERT_TO_VIRTUAL (val, raw_buffer, virtual_buffer);
+    default:
+      error ("Cannot look up value of a botched symbol.");
+      break;
+    }
 
-       if (REGISTER_CONVERTIBLE (val))
-         {
-           /* When the raw and virtual formats differ, the virtual format
-              corresponds to a specific data type.  If we want that type,
-              copy the data into the value.
-              Otherwise, do a type-conversion.  */
+  VALUE_ADDRESS (v) = addr;
+  VALUE_LAZY (v) = 1;
+  return v;
+}
+
+/* Return a value of type TYPE, stored in register REGNUM, in frame
+   FRAME. 
+
+   NOTE: returns NULL if register value is not available.
+   Caller will check return value or die!  */
+
+value_ptr
+value_from_register (type, regnum, frame)
+     struct type *type;
+     int regnum;
+     struct frame_info *frame;
+{
+  char raw_buffer[MAX_REGISTER_RAW_SIZE];
+  CORE_ADDR addr;
+  int optim;
+  value_ptr v = allocate_value (type);
+  char *value_bytes = 0;
+  int value_bytes_copied = 0;
+  int num_storage_locs;
+  enum lval_type lval;
+  int len;
+
+  CHECK_TYPEDEF (type);
+  len = TYPE_LENGTH (type);
+
+  VALUE_REGNO (v) = regnum;
+
+  num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
+                     ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
+                     1);
+
+  if (num_storage_locs > 1
+#ifdef GDB_TARGET_IS_H8500
+      || TYPE_CODE (type) == TYPE_CODE_PTR
+#endif
+    )
+    {
+      /* Value spread across multiple storage locations.  */
+
+      int local_regnum;
+      int mem_stor = 0, reg_stor = 0;
+      int mem_tracking = 1;
+      CORE_ADDR last_addr = 0;
+      CORE_ADDR first_addr = 0;
+
+      value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
 
-           if (type != REGISTER_VIRTUAL_TYPE (val))
+      /* Copy all of the data out, whereever it may be.  */
+
+#ifdef GDB_TARGET_IS_H8500
+/* This piece of hideosity is required because the H8500 treats registers
+   differently depending upon whether they are used as pointers or not.  As a
+   pointer, a register needs to have a page register tacked onto the front.
+   An alternate way to do this would be to have gcc output different register
+   numbers for the pointer & non-pointer form of the register.  But, it
+   doesn't, so we're stuck with this.  */
+
+      if (TYPE_CODE (type) == TYPE_CODE_PTR
+         && len > 2)
+       {
+         int page_regnum;
+
+         switch (regnum)
+           {
+           case R0_REGNUM:
+           case R1_REGNUM:
+           case R2_REGNUM:
+           case R3_REGNUM:
+             page_regnum = SEG_D_REGNUM;
+             break;
+           case R4_REGNUM:
+           case R5_REGNUM:
+             page_regnum = SEG_E_REGNUM;
+             break;
+           case R6_REGNUM:
+           case R7_REGNUM:
+             page_regnum = SEG_T_REGNUM;
+             break;
+           }
+
+         value_bytes[0] = 0;
+         get_saved_register (value_bytes + 1,
+                             &optim,
+                             &addr,
+                             frame,
+                             page_regnum,
+                             &lval);
+
+         if (register_valid[page_regnum] == -1)
+           return NULL;        /* register value not available */
+
+         if (lval == lval_register)
+           reg_stor++;
+         else
+           mem_stor++;
+         first_addr = addr;
+         last_addr = addr;
+
+         get_saved_register (value_bytes + 2,
+                             &optim,
+                             &addr,
+                             frame,
+                             regnum,
+                             &lval);
+
+         if (register_valid[regnum] == -1)
+           return NULL;        /* register value not available */
+
+         if (lval == lval_register)
+           reg_stor++;
+         else
+           {
+             mem_stor++;
+             mem_tracking = mem_tracking && (addr == last_addr);
+           }
+         last_addr = addr;
+       }
+      else
+#endif /* GDB_TARGET_IS_H8500 */
+       for (local_regnum = regnum;
+            value_bytes_copied < len;
+            (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
+             ++local_regnum))
+         {
+           get_saved_register (value_bytes + value_bytes_copied,
+                               &optim,
+                               &addr,
+                               frame,
+                               local_regnum,
+                               &lval);
+
+           if (register_valid[local_regnum] == -1)
+             return NULL;      /* register value not available */
+
+           if (regnum == local_regnum)
+             first_addr = addr;
+           if (lval == lval_register)
+             reg_stor++;
+           else
              {
-               /* eg a variable of type `float' in a 68881 register
-                  with raw type `extended' and virtual type `double'.
-                  Fetch it as a `double' and then convert to `float'.  */
-               v = allocate_value (REGISTER_VIRTUAL_TYPE (val));
-               bcopy (virtual_buffer, VALUE_CONTENTS (v), len);
-               v = value_cast (type, v);
+               mem_stor++;
+
+               mem_tracking =
+                 (mem_tracking
+                  && (regnum == local_regnum
+                      || addr == last_addr));
              }
-           else
-             bcopy (virtual_buffer, VALUE_CONTENTS (v), len);
+           last_addr = addr;
          }
-       else
-         {
-           /* Raw and virtual formats are the same for this register.  */
 
-           union { int i; char c; } test;
-           /* If we want less than the full size, we need to
-              test for a big-endian or little-endian machine.  */
-           test.i = 1;
-           if (test.c != 1 && len < REGISTER_RAW_SIZE (val))
-             {
-               /* Big-endian, and we want less than full size.  */
-               VALUE_OFFSET (v) = REGISTER_RAW_SIZE (val) - len;
-             }
+      if ((reg_stor && mem_stor)
+         || (mem_stor && !mem_tracking))
+       /* Mixed storage; all of the hassle we just went through was
+          for some good purpose.  */
+       {
+         VALUE_LVAL (v) = lval_reg_frame_relative;
+         VALUE_FRAME (v) = FRAME_FP (frame);
+         VALUE_FRAME_REGNUM (v) = regnum;
+       }
+      else if (mem_stor)
+       {
+         VALUE_LVAL (v) = lval_memory;
+         VALUE_ADDRESS (v) = first_addr;
+       }
+      else if (reg_stor)
+       {
+         VALUE_LVAL (v) = lval_register;
+         VALUE_ADDRESS (v) = first_addr;
+       }
+      else
+       internal_error ("value_from_register: Value not stored anywhere!");
 
-           bcopy (virtual_buffer + VALUE_OFFSET (v),
-                  VALUE_CONTENTS (v), len);
-         }
+      VALUE_OPTIMIZED_OUT (v) = optim;
 
-       return v;
-      }
+      /* Any structure stored in more than one register will always be
+         an integral number of registers.  Otherwise, you'd need to do
+         some fiddling with the last register copied here for little
+         endian machines.  */
+
+      /* Copy into the contents section of the value.  */
+      memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
+
+      /* Finally do any conversion necessary when extracting this
+         type from more than one register.  */
+#ifdef REGISTER_CONVERT_TO_TYPE
+      REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
+#endif
+      return v;
     }
 
-  read_memory (addr, VALUE_CONTENTS (v), len);
+  /* Data is completely contained within a single register.  Locate the
+     register's contents in a real register or in core;
+     read the data in raw format.  */
+
+  get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
+
+  if (register_valid[regnum] == -1)
+    return NULL;               /* register value not available */
+
+  VALUE_OPTIMIZED_OUT (v) = optim;
+  VALUE_LVAL (v) = lval;
   VALUE_ADDRESS (v) = addr;
+
+  /* Convert raw data to virtual format if necessary.  */
+
+  if (REGISTER_CONVERTIBLE (regnum))
+    {
+      REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
+                                  raw_buffer, VALUE_CONTENTS_RAW (v));
+    }
+  else
+    {
+      /* Raw and virtual formats are the same for this register.  */
+
+      if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
+       {
+         /* Big-endian, and we want less than full size.  */
+         VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
+       }
+
+      memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
+    }
+
   return v;
 }
 \f
-/* Given a struct symbol for a variable,
-   and a stack frame address,
-   return a (pointer to a) struct value containing the variable's address.  */
+/* Given a struct symbol for a variable or function,
+   and a stack frame id, 
+   return a (pointer to a) struct value containing the properly typed
+   address.  */
 
-value
+value_ptr
 locate_var_value (var, frame)
      register struct symbol *var;
-     FRAME frame;
+     struct frame_info *frame;
 {
-  register CORE_ADDR addr = 0;
-  int val = SYMBOL_VALUE (var);
-  struct frame_info fi;
-
-  if (frame == 0) frame = selected_frame;
+  CORE_ADDR addr = 0;
+  struct type *type = SYMBOL_TYPE (var);
+  value_ptr lazy_value;
 
-  switch (SYMBOL_CLASS (var))
-    {
-    case LOC_CONST:
-    case LOC_CONST_BYTES:
-      error ("Address requested for identifier \"%s\" which is a constant.",
-            SYMBOL_NAME (var));
+  /* Evaluate it first; if the result is a memory address, we're fine.
+     Lazy evaluation pays off here. */
 
-    case LOC_REGISTER:
-      addr = find_saved_register (frame, val);
-      if (addr != 0)
-       {
-         union { int i; char c; } test;
-         int len = TYPE_LENGTH (SYMBOL_TYPE (var));
-         /* If var is less than the full size of register, we need to
-            test for a big-endian or little-endian machine.  */
-         test.i = 1;
-         if (test.c != 1 && len < REGISTER_RAW_SIZE (val))
-           /* Big-endian, and we want less than full size.  */
-           addr += REGISTER_RAW_SIZE (val) - len;
-         break;
-       }
-      error ("Address requested for identifier \"%s\" which is in a register.",
-            SYMBOL_NAME (var));
+  lazy_value = read_var_value (var, frame);
+  if (lazy_value == 0)
+    error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
 
-    case LOC_STATIC:
-    case LOC_LABEL:
-      addr = val;
-      break;
+  if (VALUE_LAZY (lazy_value)
+      || TYPE_CODE (type) == TYPE_CODE_FUNC)
+    {
+      value_ptr val;
 
-    case LOC_ARG:
-      fi = get_frame_info (frame);
-      addr = val + FRAME_ARGS_ADDRESS (fi);
-      break;
+      addr = VALUE_ADDRESS (lazy_value);
+      val = value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
+      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
+      return val;
+    }
 
-    case LOC_LOCAL:
-      fi = get_frame_info (frame);
-      addr = val + FRAME_LOCALS_ADDRESS (fi);
+  /* Not a memory address; check what the problem was.  */
+  switch (VALUE_LVAL (lazy_value))
+    {
+    case lval_register:
+    case lval_reg_frame_relative:
+      error ("Address requested for identifier \"%s\" which is in a register.",
+            SYMBOL_SOURCE_NAME (var));
       break;
 
-    case LOC_TYPEDEF:
-      error ("Address requested for identifier \"%s\" which is a typedef.",
-            SYMBOL_NAME (var));
-
-    case LOC_BLOCK:
-      addr = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
+    default:
+      error ("Can't take address of \"%s\" which isn't an lvalue.",
+            SYMBOL_SOURCE_NAME (var));
       break;
     }
+  return 0;                    /* For lint -- never reached */
+}
+\f
 
-  return value_cast (lookup_pointer_type (SYMBOL_TYPE (var)),
-                    value_from_long (builtin_type_long, addr));
+static void build_findvar PARAMS ((void));
+static void
+build_findvar ()
+{
+  /* We allocate some extra slop since we do a lot of memcpy's around
+     `registers', and failing-soft is better than failing hard.  */
+  int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
+  int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
+  registers = xmalloc (sizeof_registers);
+  memset (registers, 0, sizeof_registers);
+  register_valid = xmalloc (sizeof_register_valid);
+  memset (register_valid, 0, sizeof_register_valid);
 }
 
-static
-initialize ()
-{}
+void _initialize_findvar PARAMS ((void));
+void
+_initialize_findvar ()
+{
+  build_findvar ();
 
-END_FILE
+  register_gdbarch_swap (&registers, sizeof (registers), NULL);
+  register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
+  register_gdbarch_swap (NULL, 0, build_findvar);
+}