]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blobdiff - gdb/rs6000-tdep.c
Add new infrun.h header.
[thirdparty/binutils-gdb.git] / gdb / rs6000-tdep.c
index 790776734e9ae6de5c492f3b26ac0971121d4b5e..c4ce51c5430217a923d8f13c23cd5908ad192df7 100644 (file)
@@ -1,8 +1,6 @@
 /* Target-dependent code for GDB, the GNU debugger.
 
-   Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
-   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
-   Free Software Foundation, Inc.
+   Copyright (C) 1986-2014 Free Software Foundation, Inc.
 
    This file is part of GDB.
 
@@ -22,6 +20,7 @@
 #include "defs.h"
 #include "frame.h"
 #include "inferior.h"
+#include "infrun.h"
 #include "symtab.h"
 #include "target.h"
 #include "gdbcore.h"
 
 #include "elf-bfd.h"
 #include "elf/ppc.h"
+#include "elf/ppc64.h"
 
 #include "solib-svr4.h"
 #include "ppc-tdep.h"
+#include "ppc-ravenscar-thread.h"
 
 #include "gdb_assert.h"
 #include "dis-asm.h"
 
 #include "features/rs6000/powerpc-32.c"
 #include "features/rs6000/powerpc-altivec32.c"
+#include "features/rs6000/powerpc-vsx32.c"
 #include "features/rs6000/powerpc-403.c"
 #include "features/rs6000/powerpc-403gc.c"
+#include "features/rs6000/powerpc-405.c"
 #include "features/rs6000/powerpc-505.c"
 #include "features/rs6000/powerpc-601.c"
 #include "features/rs6000/powerpc-602.c"
@@ -72,6 +75,7 @@
 #include "features/rs6000/powerpc-604.c"
 #include "features/rs6000/powerpc-64.c"
 #include "features/rs6000/powerpc-altivec64.c"
+#include "features/rs6000/powerpc-vsx64.c"
 #include "features/rs6000/powerpc-7400.c"
 #include "features/rs6000/powerpc-750.c"
 #include "features/rs6000/powerpc-860.c"
     && (regnum) >= (tdep)->ppc_dl0_regnum \
     && (regnum) < (tdep)->ppc_dl0_regnum + 16)
 
+/* Determine if regnum is a POWER7 VSX register.  */
+#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
+    && (regnum) >= (tdep)->ppc_vsr0_regnum \
+    && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
+
+/* Determine if regnum is a POWER7 Extended FP register.  */
+#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
+    && (regnum) >= (tdep)->ppc_efpr0_regnum \
+    && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
+
 /* The list of available "set powerpc ..." and "show powerpc ..."
    commands.  */
 static struct cmd_list_element *setpowerpccmdlist = NULL;
@@ -96,7 +110,7 @@ static struct cmd_list_element *showpowerpccmdlist = NULL;
 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
 
 /* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
-static const char *powerpc_vector_strings[] =
+static const char *const powerpc_vector_strings[] =
 {
   "auto",
   "generic",
@@ -109,7 +123,7 @@ static const char *powerpc_vector_strings[] =
 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
 static const char *powerpc_vector_abi_string = "auto";
 
-/* To be used by skip_prologue. */
+/* To be used by skip_prologue.  */
 
 struct rs6000_framedata
   {
@@ -117,22 +131,37 @@ struct rs6000_framedata
                                   by which we decrement sp to allocate
                                   the frame */
     int saved_gpr;             /* smallest # of saved gpr */
+    unsigned int gpr_mask;     /* Each bit is an individual saved GPR.  */
     int saved_fpr;             /* smallest # of saved fpr */
     int saved_vr;               /* smallest # of saved vr */
     int saved_ev;               /* smallest # of saved ev */
     int alloca_reg;            /* alloca register number (frame ptr) */
-    char frameless;            /* true if frameless functions. */
-    char nosavedpc;            /* true if pc not saved. */
+    char frameless;            /* true if frameless functions.  */
+    char nosavedpc;            /* true if pc not saved.  */
+    char used_bl;              /* true if link register clobbered */
     int gpr_offset;            /* offset of saved gprs from prev sp */
     int fpr_offset;            /* offset of saved fprs from prev sp */
     int vr_offset;              /* offset of saved vrs from prev sp */
     int ev_offset;              /* offset of saved evs from prev sp */
     int lr_offset;             /* offset of saved lr */
+    int lr_register;           /* register of saved lr, if trustworthy */
     int cr_offset;             /* offset of saved cr */
     int vrsave_offset;          /* offset of saved vrsave register */
   };
 
 
+/* Is REGNO a VSX register? Return 1 if so, 0 otherwise.  */
+int
+vsx_register_p (struct gdbarch *gdbarch, int regno)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  if (tdep->ppc_vsr0_regnum < 0)
+    return 0;
+  else
+    return (regno >= tdep->ppc_vsr0_upper_regnum && regno
+           <= tdep->ppc_vsr0_upper_regnum + 31);
+}
+
 /* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
 int
 altivec_register_p (struct gdbarch *gdbarch, int regno)
@@ -187,6 +216,16 @@ ppc_floating_point_unit_p (struct gdbarch *gdbarch)
           && tdep->ppc_fpscr_regnum >= 0);
 }
 
+/* Return non-zero if the architecture described by GDBARCH has
+   VSX registers (vsr0 --- vsr63).  */
+static int
+ppc_vsx_support_p (struct gdbarch *gdbarch)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  return tdep->ppc_vsr0_regnum >= 0;
+}
+
 /* Return non-zero if the architecture described by GDBARCH has
    Altivec registers (vr0 --- vr31, vrsave and vscr).  */
 int
@@ -539,6 +578,37 @@ ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
                  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
 }
 
+/* Supply register REGNUM in the VSX register set REGSET
+   from the buffer specified by VSXREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
+
+void
+ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
+                    int regnum, const void *vsxregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+
+  if (!ppc_vsx_support_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+
+  if (regnum == -1)
+    {
+      int i;
+
+      for (i = tdep->ppc_vsr0_upper_regnum;
+          i < tdep->ppc_vsr0_upper_regnum + 32;
+          i++)
+       ppc_supply_reg (regcache, i, vsxregs, 0, 8);
+
+      return;
+    }
+  else
+    ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
+}
+
 /* Supply register REGNUM in the Altivec register set REGSET
    from the buffer specified by VRREGS and LEN to register cache
    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
@@ -669,6 +739,40 @@ ppc_collect_fpregset (const struct regset *regset,
                   regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
 }
 
+/* Collect register REGNUM in the VSX register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   VSXREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
+
+void
+ppc_collect_vsxregset (const struct regset *regset,
+                     const struct regcache *regcache,
+                     int regnum, void *vsxregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+
+  if (!ppc_vsx_support_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+
+  if (regnum == -1)
+    {
+      int i;
+
+      for (i = tdep->ppc_vsr0_upper_regnum;
+          i < tdep->ppc_vsr0_upper_regnum + 32;
+          i++)
+       ppc_collect_reg (regcache, i, vsxregs, 0, 8);
+
+      return;
+    }
+  else
+    ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
+}
+
+
 /* Collect register REGNUM in the Altivec register set
    REGSET from register cache REGCACHE into the buffer specified by
    VRREGS and LEN.  If REGNUM is -1, do this for all registers in
@@ -771,6 +875,8 @@ insn_changes_sp_or_jumps (unsigned long insn)
 static int
 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
 {
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   bfd_byte insn_buf[PPC_INSN_SIZE];
   CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
   unsigned long insn;
@@ -795,9 +901,20 @@ rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
     {
       if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
         return 0;
-      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
+      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
       if (insn == 0x4e800020)
         break;
+      /* Assume a bctr is a tail call unless it points strictly within
+        this function.  */
+      if (insn == 0x4e800420)
+       {
+         CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
+                                                      tdep->ppc_ctr_regnum);
+         if (ctr > func_start && ctr < func_end)
+           return 0;
+         else
+           break;
+       }
       if (insn_changes_sp_or_jumps (insn))
         return 0;
     }
@@ -810,7 +927,7 @@ rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
     {
       if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
         return 0;
-      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
+      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
       if (insn_changes_sp_or_jumps (insn))
         return 1;
     }
@@ -828,7 +945,7 @@ rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
 
 /* Sequence of bytes for breakpoint instruction.  */
 
-const static unsigned char *
+static const unsigned char *
 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
                           int *bp_size)
 {
@@ -841,6 +958,116 @@ rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
     return little_breakpoint;
 }
 
+/* Instruction masks for displaced stepping.  */
+#define BRANCH_MASK 0xfc000000
+#define BP_MASK 0xFC0007FE
+#define B_INSN 0x48000000
+#define BC_INSN 0x40000000
+#define BXL_INSN 0x4c000000
+#define BP_INSN 0x7C000008
+
+/* Fix up the state of registers and memory after having single-stepped
+   a displaced instruction.  */
+static void
+ppc_displaced_step_fixup (struct gdbarch *gdbarch,
+                         struct displaced_step_closure *closure,
+                         CORE_ADDR from, CORE_ADDR to,
+                         struct regcache *regs)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  /* Since we use simple_displaced_step_copy_insn, our closure is a
+     copy of the instruction.  */
+  ULONGEST insn  = extract_unsigned_integer ((gdb_byte *) closure,
+                                             PPC_INSN_SIZE, byte_order);
+  ULONGEST opcode = 0;
+  /* Offset for non PC-relative instructions.  */
+  LONGEST offset = PPC_INSN_SIZE;
+
+  opcode = insn & BRANCH_MASK;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: (ppc) fixup (%s, %s)\n",
+                       paddress (gdbarch, from), paddress (gdbarch, to));
+
+
+  /* Handle PC-relative branch instructions.  */
+  if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
+    {
+      ULONGEST current_pc;
+
+      /* Read the current PC value after the instruction has been executed
+        in a displaced location.  Calculate the offset to be applied to the
+        original PC value before the displaced stepping.  */
+      regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                     &current_pc);
+      offset = current_pc - to;
+
+      if (opcode != BXL_INSN)
+       {
+         /* Check for AA bit indicating whether this is an absolute
+            addressing or PC-relative (1: absolute, 0: relative).  */
+         if (!(insn & 0x2))
+           {
+             /* PC-relative addressing is being used in the branch.  */
+             if (debug_displaced)
+               fprintf_unfiltered
+                 (gdb_stdlog,
+                  "displaced: (ppc) branch instruction: %s\n"
+                  "displaced: (ppc) adjusted PC from %s to %s\n",
+                  paddress (gdbarch, insn), paddress (gdbarch, current_pc),
+                  paddress (gdbarch, from + offset));
+
+             regcache_cooked_write_unsigned (regs,
+                                             gdbarch_pc_regnum (gdbarch),
+                                             from + offset);
+           }
+       }
+      else
+       {
+         /* If we're here, it means we have a branch to LR or CTR.  If the
+            branch was taken, the offset is probably greater than 4 (the next
+            instruction), so it's safe to assume that an offset of 4 means we
+            did not take the branch.  */
+         if (offset == PPC_INSN_SIZE)
+           regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                           from + PPC_INSN_SIZE);
+       }
+
+      /* Check for LK bit indicating whether we should set the link
+        register to point to the next instruction
+        (1: Set, 0: Don't set).  */
+      if (insn & 0x1)
+       {
+         /* Link register needs to be set to the next instruction's PC.  */
+         regcache_cooked_write_unsigned (regs,
+                                         gdbarch_tdep (gdbarch)->ppc_lr_regnum,
+                                         from + PPC_INSN_SIZE);
+         if (debug_displaced)
+               fprintf_unfiltered (gdb_stdlog,
+                                   "displaced: (ppc) adjusted LR to %s\n",
+                                   paddress (gdbarch, from + PPC_INSN_SIZE));
+
+       }
+    }
+  /* Check for breakpoints in the inferior.  If we've found one, place the PC
+     right at the breakpoint instruction.  */
+  else if ((insn & BP_MASK) == BP_INSN)
+    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
+  else
+  /* Handle any other instructions that do not fit in the categories above.  */
+    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                   from + offset);
+}
+
+/* Always use hardware single-stepping to execute the
+   displaced instruction.  */
+static int
+ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
+                                 struct displaced_step_closure *closure)
+{
+  return 1;
+}
 
 /* Instruction masks used during single-stepping of atomic sequences.  */
 #define LWARX_MASK 0xfc0007fe
@@ -849,8 +1076,6 @@ rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
 #define STWCX_MASK 0xfc0007ff
 #define STWCX_INSTRUCTION 0x7c00012d
 #define STDCX_INSTRUCTION 0x7c0001ad
-#define BC_MASK 0xfc000000
-#define BC_INSTRUCTION 0x40000000
 
 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
    instruction and ending with a STWCX/STDCX instruction.  If such a sequence
@@ -860,11 +1085,14 @@ rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
 int 
 ppc_deal_with_atomic_sequence (struct frame_info *frame)
 {
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct address_space *aspace = get_frame_address_space (frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   CORE_ADDR pc = get_frame_pc (frame);
   CORE_ADDR breaks[2] = {-1, -1};
   CORE_ADDR loc = pc;
   CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
-  int insn = read_memory_integer (loc, PPC_INSN_SIZE);
+  int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
   int insn_count;
   int index;
   int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */  
@@ -882,15 +1110,15 @@ ppc_deal_with_atomic_sequence (struct frame_info *frame)
   for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
     {
       loc += PPC_INSN_SIZE;
-      insn = read_memory_integer (loc, PPC_INSN_SIZE);
+      insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
 
       /* Assume that there is at most one conditional branch in the atomic
          sequence.  If a conditional branch is found, put a breakpoint in 
          its destination address.  */
-      if ((insn & BC_MASK) == BC_INSTRUCTION)
+      if ((insn & BRANCH_MASK) == BC_INSN)
         {
-          int immediate = ((insn & ~3) << 16) >> 16;
-          int absolute = ((insn >> 1) & 1);
+          int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
+          int absolute = insn & 2;
 
           if (bc_insn_count >= 1)
             return 0; /* More than one conditional branch found, fallback 
@@ -899,7 +1127,7 @@ ppc_deal_with_atomic_sequence (struct frame_info *frame)
          if (absolute)
            breaks[1] = immediate;
          else
-           breaks[1] = pc + immediate;
+           breaks[1] = loc + immediate;
 
          bc_insn_count++;
          last_breakpoint++;
@@ -917,22 +1145,21 @@ ppc_deal_with_atomic_sequence (struct frame_info *frame)
 
   closing_insn = loc;
   loc += PPC_INSN_SIZE;
-  insn = read_memory_integer (loc, PPC_INSN_SIZE);
+  insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
 
   /* Insert a breakpoint right after the end of the atomic sequence.  */
   breaks[0] = loc;
 
   /* Check for duplicated breakpoints.  Check also for a breakpoint
-     placed (branch instruction's destination) at the stwcx/stdcx 
-     instruction, this resets the reservation and take us back to the 
-     lwarx/ldarx instruction at the beginning of the atomic sequence.  */
-  if (last_breakpoint && ((breaks[1] == breaks[0]) 
-      || (breaks[1] == closing_insn)))
+     placed (branch instruction's destination) anywhere in sequence.  */
+  if (last_breakpoint
+      && (breaks[1] == breaks[0]
+         || (breaks[1] >= pc && breaks[1] <= closing_insn)))
     last_breakpoint = 0;
 
   /* Effectively inserts the breakpoints.  */
   for (index = 0; index <= last_breakpoint; index++)
-    insert_single_step_breakpoint (breaks[index]);
+    insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
 
   return 1;
 }
@@ -1028,7 +1255,7 @@ store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
    they can use to access PIC data using PC-relative offsets.  */
 
 static int
-bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
+bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
 {
   CORE_ADDR dest;
   int immediate;
@@ -1042,13 +1269,207 @@ bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
   else
     dest = pc + immediate;
 
-  dest_insn = read_memory_integer (dest, 4);
+  dest_insn = read_memory_integer (dest, 4, byte_order);
   if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
     return 1;
 
   return 0;
 }
 
+/* Masks for decoding a branch-and-link (bl) instruction.
+
+   BL_MASK and BL_INSTRUCTION are used in combination with each other.
+   The former is anded with the opcode in question; if the result of
+   this masking operation is equal to BL_INSTRUCTION, then the opcode in
+   question is a ``bl'' instruction.
+   
+   BL_DISPLACMENT_MASK is anded with the opcode in order to extract
+   the branch displacement.  */
+
+#define BL_MASK 0xfc000001
+#define BL_INSTRUCTION 0x48000001
+#define BL_DISPLACEMENT_MASK 0x03fffffc
+
+static unsigned long
+rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  gdb_byte buf[4];
+  unsigned long op;
+
+  /* Fetch the instruction and convert it to an integer.  */
+  if (target_read_memory (pc, buf, 4))
+    return 0;
+  op = extract_unsigned_integer (buf, 4, byte_order);
+
+  return op;
+}
+
+/* GCC generates several well-known sequences of instructions at the begining
+   of each function prologue when compiling with -fstack-check.  If one of
+   such sequences starts at START_PC, then return the address of the
+   instruction immediately past this sequence.  Otherwise, return START_PC.  */
+   
+static CORE_ADDR
+rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
+{
+  CORE_ADDR pc = start_pc;
+  unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
+
+  /* First possible sequence: A small number of probes.
+         stw 0, -<some immediate>(1)
+         [repeat this instruction any (small) number of times].  */
+  
+  if ((op & 0xffff0000) == 0x90010000)
+    {
+      while ((op & 0xffff0000) == 0x90010000)
+        {
+          pc = pc + 4;
+          op = rs6000_fetch_instruction (gdbarch, pc);
+        }
+      return pc;
+    }
+
+  /* Second sequence: A probing loop.
+         addi 12,1,-<some immediate>
+         lis 0,-<some immediate>
+         [possibly ori 0,0,<some immediate>]
+         add 0,12,0
+         cmpw 0,12,0
+         beq 0,<disp>
+         addi 12,12,-<some immediate>
+         stw 0,0(12)
+         b <disp>
+         [possibly one last probe: stw 0,<some immediate>(12)].  */
+
+  while (1)
+    {
+      /* addi 12,1,-<some immediate> */
+      if ((op & 0xffff0000) != 0x39810000)
+        break;
+
+      /* lis 0,-<some immediate> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) != 0x3c000000)
+        break;
+
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      /* [possibly ori 0,0,<some immediate>] */
+      if ((op & 0xffff0000) == 0x60000000)
+        {
+          pc = pc + 4;
+          op = rs6000_fetch_instruction (gdbarch, pc);
+        }
+      /* add 0,12,0 */
+      if (op != 0x7c0c0214)
+        break;
+
+      /* cmpw 0,12,0 */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if (op != 0x7c0c0000)
+        break;
+
+      /* beq 0,<disp> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xff9f0001) != 0x41820000)
+        break;
+
+      /* addi 12,12,-<some immediate> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) != 0x398c0000)
+        break;
+
+      /* stw 0,0(12) */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if (op != 0x900c0000)
+        break;
+
+      /* b <disp> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xfc000001) != 0x48000000)
+        break;
+
+      /* [possibly one last probe: stw 0,<some immediate>(12)].  */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) == 0x900c0000)
+        {
+          pc = pc + 4;
+          op = rs6000_fetch_instruction (gdbarch, pc);
+        }
+
+      /* We found a valid stack-check sequence, return the new PC.  */
+      return pc;
+    }
+
+  /* Third sequence: No probe; instead, a comparizon between the stack size
+     limit (saved in a run-time global variable) and the current stack
+     pointer:
+
+        addi 0,1,-<some immediate>
+        lis 12,__gnat_stack_limit@ha
+        lwz 12,__gnat_stack_limit@l(12)
+        twllt 0,12
+
+     or, with a small variant in the case of a bigger stack frame:
+        addis 0,1,<some immediate>
+        addic 0,0,-<some immediate>
+        lis 12,__gnat_stack_limit@ha
+        lwz 12,__gnat_stack_limit@l(12)
+        twllt 0,12
+  */
+  while (1)
+    {
+      /* addi 0,1,-<some immediate> */
+      if ((op & 0xffff0000) != 0x38010000)
+        {
+          /* small stack frame variant not recognized; try the
+             big stack frame variant: */
+
+          /* addis 0,1,<some immediate> */
+          if ((op & 0xffff0000) != 0x3c010000)
+            break;
+
+          /* addic 0,0,-<some immediate> */
+          pc = pc + 4;
+          op = rs6000_fetch_instruction (gdbarch, pc);
+          if ((op & 0xffff0000) != 0x30000000)
+            break;
+        }
+
+      /* lis 12,<some immediate> */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) != 0x3d800000)
+        break;
+      
+      /* lwz 12,<some immediate>(12) */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xffff0000) != 0x818c0000)
+        break;
+
+      /* twllt 0,12 */
+      pc = pc + 4;
+      op = rs6000_fetch_instruction (gdbarch, pc);
+      if ((op & 0xfffffffe) != 0x7c406008)
+        break;
+
+      /* We found a valid stack-check sequence, return the new PC.  */
+      return pc;
+    }
+
+  /* No stack check code in our prologue, return the start_pc.  */
+  return start_pc;
+}
+
 /* return pc value after skipping a function prologue and also return
    information about a function frame.
 
@@ -1069,8 +1490,7 @@ bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
    - ev_offset is the offset of the first saved ev from the previous frame.
    - lr_offset is the offset of the saved lr
    - cr_offset is the offset of the saved cr
-   - vrsave_offset is the offset of the saved vrsave register
- */
+   - vrsave_offset is the offset of the saved vrsave register.  */
 
 static CORE_ADDR
 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
@@ -1097,6 +1517,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
   int r0_contains_arg = 0;
   const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
   memset (fdata, 0, sizeof (struct rs6000_framedata));
   fdata->saved_gpr = -1;
@@ -1106,13 +1527,18 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
   fdata->alloca_reg = -1;
   fdata->frameless = 1;
   fdata->nosavedpc = 1;
+  fdata->lr_register = -1;
+
+  pc = rs6000_skip_stack_check (gdbarch, pc);
+  if (pc >= lim_pc)
+    pc = lim_pc;
 
   for (;; pc += 4)
     {
       /* Sometimes it isn't clear if an instruction is a prologue
          instruction or not.  When we encounter one of these ambiguous
         cases, we'll set prev_insn_was_prologue_insn to 0 (false).
-        Otherwise, we'll assume that it really is a prologue instruction. */
+        Otherwise, we'll assume that it really is a prologue instruction.  */
       if (prev_insn_was_prologue_insn)
        last_prologue_pc = pc;
 
@@ -1125,7 +1551,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
       /* Fetch the instruction and convert it to an integer.  */
       if (target_read_memory (pc, buf, 4))
        break;
-      op = extract_unsigned_integer (buf, 4);
+      op = extract_unsigned_integer (buf, 4, byte_order);
 
       if ((op & 0xfc1fffff) == 0x7c0802a6)
        {                       /* mflr Rx */
@@ -1147,7 +1573,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
             remember just the first one, but skip over additional
             ones.  */
          if (lr_reg == -1)
-           lr_reg = (op & 0x03e00000);
+           lr_reg = (op & 0x03e00000) >> 21;
           if (lr_reg == 0)
             r0_contains_arg = 0;
          continue;
@@ -1178,6 +1604,10 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
        {
 
          reg = GET_SRC_REG (op);
+         if ((op & 0xfc1f0000) == 0xbc010000)
+           fdata->gpr_mask |= ~((1U << reg) - 1);
+         else
+           fdata->gpr_mask |= 1U << reg;
          if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
            {
              fdata->saved_gpr = reg;
@@ -1188,19 +1618,30 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
          continue;
 
        }
-      else if ((op & 0xffff0000) == 0x60000000)
+      else if ((op & 0xffff0000) == 0x3c4c0000
+              || (op & 0xffff0000) == 0x3c400000
+              || (op & 0xffff0000) == 0x38420000)
+       {
+         /* .  0:      addis 2,12,.TOC.-0b@ha
+            .          addi 2,2,.TOC.-0b@l
+            or
+            .          lis 2,.TOC.@ha
+            .          addi 2,2,.TOC.@l
+            used by ELFv2 global entry points to set up r2.  */
+         continue;
+       }
+      else if (op == 0x60000000)
         {
          /* nop */
          /* Allow nops in the prologue, but do not consider them to
             be part of the prologue unless followed by other prologue
-            instructions. */
+            instructions.  */
          prev_insn_was_prologue_insn = 0;
          continue;
 
        }
       else if ((op & 0xffff0000) == 0x3c000000)
-       {                       /* addis 0,0,NUM, used
-                                  for >= 32k frames */
+       {                       /* addis 0,0,NUM, used for >= 32k frames */
          fdata->offset = (op & 0x0000ffff) << 16;
          fdata->frameless = 0;
           r0_contains_arg = 0;
@@ -1208,8 +1649,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
 
        }
       else if ((op & 0xffff0000) == 0x60000000)
-       {                       /* ori 0,0,NUM, 2nd ha
-                                  lf of >= 32k frames */
+       {                       /* ori 0,0,NUM, 2nd half of >= 32k frames */
          fdata->offset |= (op & 0x0000ffff);
          fdata->frameless = 0;
           r0_contains_arg = 0;
@@ -1269,6 +1709,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
       else if (op == 0x48000005)
        {                       /* bl .+4 used in 
                                   -mrelocatable */
+         fdata->used_bl = 1;
          continue;
 
        }
@@ -1286,14 +1727,17 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
        }
       else if ((op & 0xfc000001) == 0x48000001)
        {                       /* bl foo, 
-                                  to save fprs??? */
+                                  to save fprs???  */
 
          fdata->frameless = 0;
 
          /* If the return address has already been saved, we can skip
             calls to blrl (for PIC).  */
-          if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
-           continue;
+          if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
+           {
+             fdata->used_bl = 1;
+             continue;
+           }
 
          /* Don't skip over the subroutine call if it is not within
             the first three instructions of the prologue and either
@@ -1305,22 +1749,24 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
              struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
              struct symtab_and_line this_sal = find_pc_line (pc, 0);
 
-             if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
+             if ((prologue_sal.line == 0)
+                 || (prologue_sal.line != this_sal.line))
                break;
            }
 
-         op = read_memory_integer (pc + 4, 4);
+         op = read_memory_integer (pc + 4, 4, byte_order);
 
          /* At this point, make sure this is not a trampoline
             function (a function that simply calls another functions,
             and nothing else).  If the next is not a nop, this branch
-            was part of the function prologue. */
+            was part of the function prologue.  */
 
          if (op == 0x4def7b82 || op == 0)      /* crorc 15, 15, 15 */
-           break;              /* don't skip over 
-                                  this branch */
-         continue;
+           break;              /* Don't skip over 
+                                  this branch.  */
 
+         fdata->used_bl = 1;
+         continue;
        }
       /* update stack pointer */
       else if ((op & 0xfc1f0000) == 0x94010000)
@@ -1332,7 +1778,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
        }
       else if ((op & 0xfc1f016a) == 0x7c01016e)
        {                       /* stwux rX,r1,rY */
-         /* no way to figure out what r1 is going to be */
+         /* No way to figure out what r1 is going to be.  */
          fdata->frameless = 0;
          offset = fdata->offset;
          continue;
@@ -1346,7 +1792,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
        }
       else if ((op & 0xfc1f016a) == 0x7c01016a)
        {                       /* stdux rX,r1,rY */
-         /* no way to figure out what r1 is going to be */
+         /* No way to figure out what r1 is going to be.  */
          fdata->frameless = 0;
          offset = fdata->offset;
          continue;
@@ -1360,8 +1806,8 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
        }
       /* Load up minimal toc pointer.  Do not treat an epilogue restore
         of r31 as a minimal TOC load.  */
-      else if (((op >> 22) == 0x20f    ||      /* l r31,... or l r30,... */
-              (op >> 22) == 0x3af)             /* ld r31,... or ld r30,... */
+      else if (((op >> 22) == 0x20f    ||      /* l r31,... or l r30,...  */
+              (op >> 22) == 0x3af)             /* ld r31,... or ld r30,...  */
               && !framep
               && !minimal_toc_loaded)
        {
@@ -1374,7 +1820,8 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
       else if ((op & 0xfc0007fe) == 0x7c000378 &&      /* mr(.)  Rx,Ry */
                (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
                (((op >> 21) & 31) <= 10) &&
-               ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
+               ((long) ((op >> 16) & 31)
+               >= fdata->saved_gpr)) /* Rx: local var reg */
        {
          continue;
 
@@ -1387,6 +1834,15 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
 
          /* Set up frame pointer */
        }
+      else if (op == 0x603d0000)       /* oril r29, r1, 0x0 */
+       {
+         fdata->frameless = 0;
+         framep = 1;
+         fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
+         continue;
+
+         /* Another way to set up the frame pointer.  */
+       }
       else if (op == 0x603f0000        /* oril r31, r1, 0x0 */
               || op == 0x7c3f0b78)
        {                       /* mr r31, r1 */
@@ -1456,7 +1912,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
          vr_saved_offset = SIGNED_SHORT (op);
 
           /* This insn by itself is not part of the prologue, unless
-             if part of the pair of insns mentioned above. So do not
+             if part of the pair of insns mentioned above.  So do not
              record this insn as part of the prologue yet.  */
           prev_insn_was_prologue_insn = 0;
        }
@@ -1581,11 +2037,15 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
 
       else
        {
+         unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
+
          /* Not a recognized prologue instruction.
             Handle optimizer code motions into the prologue by continuing
             the search if we have no valid frame yet or if the return
-            address is not yet saved in the frame.  */
-         if (fdata->frameless == 0 && fdata->nosavedpc == 0)
+            address is not yet saved in the frame.  Also skip instructions
+            if some of the GPRs expected to be saved are not yet saved.  */
+         if (fdata->frameless == 0 && fdata->nosavedpc == 0
+             && (fdata->gpr_mask & all_mask) == all_mask)
            break;
 
          if (op == 0x4e800020          /* blr */
@@ -1610,7 +2070,7 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
 
 #if 0
 /* I have problems with skipping over __main() that I need to address
- * sometime. Previously, I used to use misc_function_vector which
+ * sometime.  Previously, I used to use misc_function_vector which
  * didn't work as well as I wanted to be.  -MGO */
 
   /* If the first thing after skipping a prolog is a branch to a function,
@@ -1621,8 +2081,8 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
 
 
   if ((op & 0xfc000001) == 0x48000001)
-    {                          /* bl foo, an initializer function? */
-      op = read_memory_integer (pc + 4, 4);
+    {                          /* bl foo, an initializer function?  */
+      op = read_memory_integer (pc + 4, 4, byte_order);
 
       if (op == 0x4def7b82)
        {                       /* cror 0xf, 0xf, 0xf (nop) */
@@ -1638,6 +2098,9 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
     }
 #endif /* 0 */
 
+  if (pc == lim_pc && lr_reg >= 0)
+    fdata->lr_register = lr_reg;
+
   fdata->offset = -fdata->offset;
   return last_prologue_pc;
 }
@@ -1646,14 +2109,15 @@ static CORE_ADDR
 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
 {
   struct rs6000_framedata frame;
-  CORE_ADDR limit_pc, func_addr;
+  CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
 
   /* See if we can determine the end of the prologue via the symbol table.
      If so, then return either PC, or the PC after the prologue, whichever
      is greater.  */
-  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
+  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
     {
-      CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
+      CORE_ADDR post_prologue_pc
+       = skip_prologue_using_sal (gdbarch, func_addr);
       if (post_prologue_pc != 0)
        return max (pc, post_prologue_pc);
     }
@@ -1664,14 +2128,55 @@ rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
   /* Find an upper limit on the function prologue using the debug
      information.  If the debug information could not be used to provide
      that bound, then use an arbitrary large number as the upper bound.  */
-  limit_pc = skip_prologue_using_sal (pc);
+  limit_pc = skip_prologue_using_sal (gdbarch, pc);
   if (limit_pc == 0)
     limit_pc = pc + 100;          /* Magic.  */
 
+  /* Do not allow limit_pc to be past the function end, if we know
+     where that end is...  */
+  if (func_end_addr && limit_pc > func_end_addr)
+    limit_pc = func_end_addr;
+
   pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
   return pc;
 }
 
+/* When compiling for EABI, some versions of GCC emit a call to __eabi
+   in the prologue of main().
+
+   The function below examines the code pointed at by PC and checks to
+   see if it corresponds to a call to __eabi.  If so, it returns the
+   address of the instruction following that call.  Otherwise, it simply
+   returns PC.  */
+
+static CORE_ADDR
+rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  gdb_byte buf[4];
+  unsigned long op;
+
+  if (target_read_memory (pc, buf, 4))
+    return pc;
+  op = extract_unsigned_integer (buf, 4, byte_order);
+
+  if ((op & BL_MASK) == BL_INSTRUCTION)
+    {
+      CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
+      CORE_ADDR call_dest = pc + 4 + displ;
+      struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
+
+      /* We check for ___eabi (three leading underscores) in addition
+         to __eabi in case the GCC option "-fleading-underscore" was
+        used to compile the program.  */
+      if (s.minsym != NULL
+          && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
+         && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
+             || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
+       pc += 4;
+    }
+  return pc;
+}
 
 /* All the ABI's require 16 byte alignment.  */
 static CORE_ADDR
@@ -1703,8 +2208,9 @@ rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
    gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
    @FIX code.  */
 
-int
-rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
+static int
+rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
+                                  CORE_ADDR pc, const char *name)
 {
   return name && !strncmp (name, "@FIX", 4);
 }
@@ -1723,14 +2229,16 @@ rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
    Result is desired PC to step until, or NULL if we are not in
    code that should be skipped.  */
 
-CORE_ADDR
+static CORE_ADDR
 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   unsigned int ii, op;
   int rel;
   CORE_ADDR solib_target_pc;
-  struct minimal_symbol *msymbol;
+  struct bound_minimal_symbol msymbol;
 
   static unsigned trampoline_code[] =
   {
@@ -1746,11 +2254,12 @@ rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
 
   /* Check for bigtoc fixup code.  */
   msymbol = lookup_minimal_symbol_by_pc (pc);
-  if (msymbol 
-      && rs6000_in_solib_return_trampoline (pc, SYMBOL_LINKAGE_NAME (msymbol)))
+  if (msymbol.minsym
+      && rs6000_in_solib_return_trampoline (gdbarch, pc,
+                                           MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
     {
       /* Double-check that the third instruction from PC is relative "b".  */
-      op = read_memory_integer (pc + 8, 4);
+      op = read_memory_integer (pc + 8, 4, byte_order);
       if ((op & 0xfc000003) == 0x48000000)
        {
          /* Extract bits 6-29 as a signed 24-bit relative word address and
@@ -1767,12 +2276,13 @@ rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
 
   for (ii = 0; trampoline_code[ii]; ++ii)
     {
-      op = read_memory_integer (pc + (ii * 4), 4);
+      op = read_memory_integer (pc + (ii * 4), 4, byte_order);
       if (op != trampoline_code[ii])
        return 0;
     }
-  ii = get_frame_register_unsigned (frame, 11);        /* r11 holds destination addr   */
-  pc = read_memory_unsigned_integer (ii, tdep->wordsize); /* (r11) value */
+  ii = get_frame_register_unsigned (frame, 11);        /* r11 holds destination
+                                                  addr.  */
+  pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
   return pc;
 }
 
@@ -1785,6 +2295,8 @@ rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
 
   if (!tdep->ppc_builtin_type_vec64)
     {
+      const struct builtin_type *bt = builtin_type (gdbarch);
+
       /* The type we're building is this: */
 #if 0
       union __gdb_builtin_type_vec64
@@ -1799,18 +2311,19 @@ rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
 
       struct type *t;
 
-      t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
-      append_composite_type_field (t, "uint64", builtin_type_int64);
+      t = arch_composite_type (gdbarch,
+                              "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
+      append_composite_type_field (t, "uint64", bt->builtin_int64);
       append_composite_type_field (t, "v2_float",
-                                  init_vector_type (builtin_type_float, 2));
+                                  init_vector_type (bt->builtin_float, 2));
       append_composite_type_field (t, "v2_int32",
-                                  init_vector_type (builtin_type_int32, 2));
+                                  init_vector_type (bt->builtin_int32, 2));
       append_composite_type_field (t, "v4_int16",
-                                  init_vector_type (builtin_type_int16, 4));
+                                  init_vector_type (bt->builtin_int16, 4));
       append_composite_type_field (t, "v8_int8",
-                                  init_vector_type (builtin_type_int8, 8));
+                                  init_vector_type (bt->builtin_int8, 8));
 
-      TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
+      TYPE_VECTOR (t) = 1;
       TYPE_NAME (t) = "ppc_builtin_type_vec64";
       tdep->ppc_builtin_type_vec64 = t;
     }
@@ -1818,6 +2331,53 @@ rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
   return tdep->ppc_builtin_type_vec64;
 }
 
+/* Vector 128 type.  */
+
+static struct type *
+rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  if (!tdep->ppc_builtin_type_vec128)
+    {
+      const struct builtin_type *bt = builtin_type (gdbarch);
+
+      /* The type we're building is this
+
+        type = union __ppc_builtin_type_vec128 {
+            uint128_t uint128;
+            double v2_double[2];
+            float v4_float[4];
+            int32_t v4_int32[4];
+            int16_t v8_int16[8];
+            int8_t v16_int8[16];
+        }
+      */
+
+      struct type *t;
+
+      t = arch_composite_type (gdbarch,
+                              "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
+      append_composite_type_field (t, "uint128", bt->builtin_uint128);
+      append_composite_type_field (t, "v2_double",
+                                  init_vector_type (bt->builtin_double, 2));
+      append_composite_type_field (t, "v4_float",
+                                  init_vector_type (bt->builtin_float, 4));
+      append_composite_type_field (t, "v4_int32",
+                                  init_vector_type (bt->builtin_int32, 4));
+      append_composite_type_field (t, "v8_int16",
+                                  init_vector_type (bt->builtin_int16, 8));
+      append_composite_type_field (t, "v16_int8",
+                                  init_vector_type (bt->builtin_int8, 16));
+
+      TYPE_VECTOR (t) = 1;
+      TYPE_NAME (t) = "ppc_builtin_type_vec128";
+      tdep->ppc_builtin_type_vec128 = t;
+    }
+
+  return tdep->ppc_builtin_type_vec128;
+}
+
 /* Return the name of register number REGNO, or the empty string if it
    is an anonymous register.  */
 
@@ -1834,6 +2394,12 @@ rs6000_register_name (struct gdbarch *gdbarch, int regno)
       && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
     return "";
 
+  /* Hide the upper halves of the vs0~vs31 registers.  */
+  if (tdep->ppc_vsr0_regnum >= 0
+      && tdep->ppc_vsr0_upper_regnum <= regno
+      && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
+    return "";
+
   /* Check if the SPE pseudo registers are available.  */
   if (IS_SPE_PSEUDOREG (tdep, regno))
     {
@@ -1858,6 +2424,36 @@ rs6000_register_name (struct gdbarch *gdbarch, int regno)
       return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
     }
 
+  /* Check if this is a VSX pseudo-register.  */
+  if (IS_VSX_PSEUDOREG (tdep, regno))
+    {
+      static const char *const vsx_regnames[] = {
+       "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
+       "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
+       "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
+       "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
+       "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
+       "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
+       "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
+       "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
+       "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
+      };
+      return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
+    }
+
+  /* Check if the this is a Extended FP pseudo-register.  */
+  if (IS_EFP_PSEUDOREG (tdep, regno))
+    {
+      static const char *const efpr_regnames[] = {
+       "f32", "f33", "f34", "f35", "f36", "f37", "f38",
+       "f39", "f40", "f41", "f42", "f43", "f44", "f45",
+       "f46", "f47", "f48", "f49", "f50", "f51",
+       "f52", "f53", "f54", "f55", "f56", "f57",
+       "f58", "f59", "f60", "f61", "f62", "f63"
+      };
+      return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
+    }
+
   return tdesc_register_name (gdbarch, regno);
 }
 
@@ -1871,14 +2467,22 @@ rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
 
   /* These are the only pseudo-registers we support.  */
   gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
-             || IS_DFP_PSEUDOREG (tdep, regnum));
+             || IS_DFP_PSEUDOREG (tdep, regnum)
+             || IS_VSX_PSEUDOREG (tdep, regnum)
+             || IS_EFP_PSEUDOREG (tdep, regnum));
 
   /* These are the e500 pseudo-registers.  */
   if (IS_SPE_PSEUDOREG (tdep, regnum))
     return rs6000_builtin_type_vec64 (gdbarch);
-  else
-    /* Could only be the ppc decimal128 pseudo-registers.  */
+  else if (IS_DFP_PSEUDOREG (tdep, regnum))
+    /* PPC decimal128 pseudo-registers.  */
     return builtin_type (gdbarch)->builtin_declong;
+  else if (IS_VSX_PSEUDOREG (tdep, regnum))
+    /* POWER7 VSX pseudo-registers.  */
+    return rs6000_builtin_type_vec128 (gdbarch);
+  else
+    /* POWER7 Extended FP pseudo-registers.  */
+    return builtin_type (gdbarch)->builtin_double;
 }
 
 /* Is REGNUM a member of REGGROUP?  */
@@ -1890,13 +2494,15 @@ rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
 
   /* These are the only pseudo-registers we support.  */
   gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
-             || IS_DFP_PSEUDOREG (tdep, regnum));
+             || IS_DFP_PSEUDOREG (tdep, regnum)
+             || IS_VSX_PSEUDOREG (tdep, regnum)
+             || IS_EFP_PSEUDOREG (tdep, regnum));
 
-  /* These are the e500 pseudo-registers.  */
-  if (IS_SPE_PSEUDOREG (tdep, regnum))
+  /* These are the e500 pseudo-registers or the POWER7 VSX registers.  */
+  if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
     return group == all_reggroup || group == vector_reggroup;
   else
-    /* Could only be the ppc decimal128 pseudo-registers.  */
+    /* PPC decimal128 or Extended FP pseudo-registers.  */
     return group == all_reggroup || group == float_reggroup;
 }
 
@@ -1913,21 +2519,31 @@ rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
          && regnum >= tdep->ppc_fp0_regnum
          && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
          && TYPE_CODE (type) == TYPE_CODE_FLT
-         && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
+         && TYPE_LENGTH (type)
+            != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
 }
 
-static void
+static int
 rs6000_register_to_value (struct frame_info *frame,
                           int regnum,
                           struct type *type,
-                          gdb_byte *to)
+                          gdb_byte *to,
+                         int *optimizedp, int *unavailablep)
 {
+  struct gdbarch *gdbarch = get_frame_arch (frame);
   gdb_byte from[MAX_REGISTER_SIZE];
   
   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
 
-  get_frame_register (frame, regnum, from);
-  convert_typed_floating (from, builtin_type_double, to, type);
+  if (!get_frame_register_bytes (frame, regnum, 0,
+                                register_size (gdbarch, regnum),
+                                from, optimizedp, unavailablep))
+    return 0;
+
+  convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
+                         to, type);
+  *optimizedp = *unavailablep = 0;
+  return 1;
 }
 
 static void
@@ -1936,14 +2552,21 @@ rs6000_value_to_register (struct frame_info *frame,
                           struct type *type,
                           const gdb_byte *from)
 {
+  struct gdbarch *gdbarch = get_frame_arch (frame);
   gdb_byte to[MAX_REGISTER_SIZE];
 
   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
 
-  convert_typed_floating (from, type, to, builtin_type_double);
+  convert_typed_floating (from, type,
+                         to, builtin_type (gdbarch)->builtin_double);
   put_frame_register (frame, regnum, to);
 }
 
+ /* The type of a function that moves the value of REG between CACHE
+    or BUF --- in either direction.  */
+typedef enum register_status (*move_ev_register_func) (struct regcache *,
+                                                      int, void *);
+
 /* Move SPE vector register values between a 64-bit buffer and the two
    32-bit raw register halves in a regcache.  This function handles
    both splitting a 64-bit value into two 32-bit halves, and joining
@@ -1967,16 +2590,16 @@ rs6000_value_to_register (struct frame_info *frame,
    MOVE, since this function can't tell at compile-time which of
    REGCACHE or BUFFER is acting as the source of the data.  If C had
    co-variant type qualifiers, ...  */
-static void
-e500_move_ev_register (void (*move) (struct regcache *regcache,
-                                     int regnum, gdb_byte *buf),
-                       struct regcache *regcache, int ev_reg,
-                       gdb_byte *buffer)
+
+static enum register_status
+e500_move_ev_register (move_ev_register_func move,
+                      struct regcache *regcache, int ev_reg, void *buffer)
 {
   struct gdbarch *arch = get_regcache_arch (regcache);
   struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 
   int reg_index;
   gdb_byte *byte_buffer = buffer;
+  enum register_status status;
 
   gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
 
@@ -1984,62 +2607,85 @@ e500_move_ev_register (void (*move) (struct regcache *regcache,
 
   if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
     {
-      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
-      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
+      status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
+                    byte_buffer);
+      if (status == REG_VALID)
+       status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
+                      byte_buffer + 4);
     }
   else
     {
-      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
-      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
+      status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
+      if (status == REG_VALID)
+       status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
+                      byte_buffer + 4);
     }
+
+  return status;
 }
 
-static void
+static enum register_status
+do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
+{
+  return regcache_raw_read (regcache, regnum, buffer);
+}
+
+static enum register_status
+do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
+{
+  regcache_raw_write (regcache, regnum, buffer);
+
+  return REG_VALID;
+}
+
+static enum register_status
 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
                           int reg_nr, gdb_byte *buffer)
 {
-  e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
+  return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
 }
 
 static void
 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
                            int reg_nr, const gdb_byte *buffer)
 {
-  e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
-                        regcache_raw_write,
-                        regcache, reg_nr, (gdb_byte *) buffer);
+  e500_move_ev_register (do_regcache_raw_write, regcache,
+                        reg_nr, (void *) buffer);
 }
 
-/* Read method for PPC pseudo-registers. Currently this is handling the
-   16 decimal128 registers that map into 16 pairs of FP registers.  */
-static void
-ppc_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+/* Read method for DFP pseudo-registers.  */
+static enum register_status
+dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
                           int reg_nr, gdb_byte *buffer)
 {
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
   int reg_index = reg_nr - tdep->ppc_dl0_regnum;
+  enum register_status status;
 
   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
     {
       /* Read two FP registers to form a whole dl register.  */
-      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
-                        2 * reg_index, buffer);
-      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
-                        2 * reg_index + 1, buffer + 8);
+      status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                 2 * reg_index, buffer);
+      if (status == REG_VALID)
+       status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                   2 * reg_index + 1, buffer + 8);
     }
   else
     {
-      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
-                        2 * reg_index + 1, buffer + 8);
-      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
-                        2 * reg_index, buffer);
+      status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                 2 * reg_index + 1, buffer);
+      if (status == REG_VALID)
+       status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                   2 * reg_index, buffer + 8);
     }
+
+  return status;
 }
 
-/* Write method for PPC pseudo-registers. Currently this is handling the
-   16 decimal128 registers that map into 16 pairs of FP registers.  */
+/* Write method for DFP pseudo-registers.  */
 static void
-ppc_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
                            int reg_nr, const gdb_byte *buffer)
 {
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
@@ -2057,14 +2703,110 @@ ppc_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
   else
     {
       regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
-                         2 * reg_index + 1, buffer + 8);
+                         2 * reg_index + 1, buffer);
       regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
-                         2 * reg_index, buffer);
+                         2 * reg_index, buffer + 8);
     }
 }
 
+/* Read method for POWER7 VSX pseudo-registers.  */
+static enum register_status
+vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                          int reg_nr, gdb_byte *buffer)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
+  enum register_status status;
+
+  /* Read the portion that overlaps the VMX registers.  */
+  if (reg_index > 31)
+    status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
+                               reg_index - 32, buffer);
+  else
+    /* Read the portion that overlaps the FPR registers.  */
+    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+      {
+       status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                   reg_index, buffer);
+       if (status == REG_VALID)
+         status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
+                                     reg_index, buffer + 8);
+      }
+    else
+      {
+       status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                                   reg_index, buffer + 8);
+       if (status == REG_VALID)
+         status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
+                                     reg_index, buffer);
+      }
+
+  return status;
+}
+
+/* Write method for POWER7 VSX pseudo-registers.  */
 static void
-rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                           int reg_nr, const gdb_byte *buffer)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
+
+  /* Write the portion that overlaps the VMX registers.  */
+  if (reg_index > 31)
+    regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
+                       reg_index - 32, buffer);
+  else
+    /* Write the portion that overlaps the FPR registers.  */
+    if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+      {
+       regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                       reg_index, buffer);
+       regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
+                       reg_index, buffer + 8);
+      }
+    else
+      {
+       regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                       reg_index, buffer + 8);
+       regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
+                       reg_index, buffer);
+      }
+}
+
+/* Read method for POWER7 Extended FP pseudo-registers.  */
+static enum register_status
+efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                          int reg_nr, gdb_byte *buffer)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
+  int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
+
+  /* Read the portion that overlaps the VMX register.  */
+  return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
+                                offset, register_size (gdbarch, reg_nr),
+                                buffer);
+}
+
+/* Write method for POWER7 Extended FP pseudo-registers.  */
+static void
+efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                           int reg_nr, const gdb_byte *buffer)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
+  int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
+
+  /* Write the portion that overlaps the VMX register.  */
+  regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
+                          offset, register_size (gdbarch, reg_nr),
+                          buffer);
+}
+
+static enum register_status
+rs6000_pseudo_register_read (struct gdbarch *gdbarch,
+                            struct regcache *regcache,
                             int reg_nr, gdb_byte *buffer)
 {
   struct gdbarch *regcache_arch = get_regcache_arch (regcache);
@@ -2073,9 +2815,13 @@ rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
   gdb_assert (regcache_arch == gdbarch);
 
   if (IS_SPE_PSEUDOREG (tdep, reg_nr))
-    e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+    return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
   else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
-    ppc_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+    return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
+    return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
+    return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
   else
     internal_error (__FILE__, __LINE__,
                    _("rs6000_pseudo_register_read: "
@@ -2096,7 +2842,11 @@ rs6000_pseudo_register_write (struct gdbarch *gdbarch,
   if (IS_SPE_PSEUDOREG (tdep, reg_nr))
     e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
   else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
-    ppc_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+    dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
+    vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
+    efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
   else
     internal_error (__FILE__, __LINE__,
                    _("rs6000_pseudo_register_write: "
@@ -2120,7 +2870,7 @@ rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
   else if (77 <= num && num <= 108)
     return tdep->ppc_vr0_regnum + (num - 77);
   else if (1200 <= num && num < 1200 + 32)
-    return tdep->ppc_ev0_regnum + (num - 1200);
+    return tdep->ppc_ev0_upper_regnum + (num - 1200);
   else
     switch (num)
       {
@@ -2162,7 +2912,7 @@ rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
   else if (1124 <= num && num < 1124 + 32)
     return tdep->ppc_vr0_regnum + (num - 1124);
   else if (1200 <= num && num < 1200 + 32)
-    return tdep->ppc_ev0_regnum + (num - 1200);
+    return tdep->ppc_ev0_upper_regnum + (num - 1200);
   else
     switch (num)
       {
@@ -2284,6 +3034,8 @@ static struct variant variants[] =
    bfd_mach_rs6k, &tdesc_rs6000},
   {"403", "IBM PowerPC 403", bfd_arch_powerpc,
    bfd_mach_ppc_403, &tdesc_powerpc_403},
+  {"405", "IBM PowerPC 405", bfd_arch_powerpc,
+   bfd_mach_ppc_405, &tdesc_powerpc_405},
   {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
    bfd_mach_ppc_601, &tdesc_powerpc_601},
   {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
@@ -2348,9 +3100,6 @@ find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
 static int
 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
 {
-  if (!info->disassembler_options)
-    info->disassembler_options = "any";
-
   if (info->endian == BFD_ENDIAN_BIG)
     return print_insn_big_powerpc (memaddr, info);
   else
@@ -2385,6 +3134,7 @@ rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
   struct rs6000_frame_cache *cache;
   struct gdbarch *gdbarch = get_frame_arch (this_frame);
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   struct rs6000_framedata fdata;
   int wordsize = tdep->wordsize;
   CORE_ADDR func, pc;
@@ -2412,7 +3162,7 @@ rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
   /* If the function appears to be frameless, check a couple of likely
      indicators that we have simply failed to find the frame setup.
      Two common cases of this are missing symbols (i.e.
-     frame_func_unwind returns the wrong address or 0), and assembly
+     get_frame_func returns the wrong address or 0), and assembly
      stubs which have a fast exit path but set up a frame on the slow
      path.
 
@@ -2442,7 +3192,8 @@ rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
 
   if (!fdata.frameless)
     /* Frameless really means stackless.  */
-    cache->base = read_memory_unsigned_integer (cache->base, wordsize);
+    cache->base
+      = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
 
   trad_frame_set_value (cache->saved_regs,
                        gdbarch_sp_regnum (gdbarch), cache->base);
@@ -2468,7 +3219,8 @@ rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
     }
 
   /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
-     All gpr's from saved_gpr to gpr31 are saved.  */
+     All gpr's from saved_gpr to gpr31 are saved (except during the
+     prologue).  */
 
   if (fdata.saved_gpr >= 0)
     {
@@ -2476,7 +3228,8 @@ rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
       CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
       for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
        {
-         cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
+         if (fdata.gpr_mask & (1U << i))
+           cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
          gpr_addr += wordsize;
        }
     }
@@ -2498,31 +3251,37 @@ rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
     }
 
   /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
-     All vr's from saved_ev to ev31 are saved. ????? */
+     All vr's from saved_ev to ev31 are saved. ?????  */
   if (tdep->ppc_ev0_regnum != -1)
     {
       if (fdata.saved_ev >= 0)
        {
          int i;
          CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
+         CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
+
          for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
            {
              cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
-              cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
+             cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
              ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
-            }
+           }
        }
     }
 
   /* If != 0, fdata.cr_offset is the offset from the frame that
      holds the CR.  */
   if (fdata.cr_offset != 0)
-    cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
+    cache->saved_regs[tdep->ppc_cr_regnum].addr
+      = cache->base + fdata.cr_offset;
 
   /* If != 0, fdata.lr_offset is the offset from the frame that
      holds the LR.  */
   if (fdata.lr_offset != 0)
-    cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
+    cache->saved_regs[tdep->ppc_lr_regnum].addr
+      = cache->base + fdata.lr_offset;
+  else if (fdata.lr_register != -1)
+    cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
   /* The PC is found in the link register.  */
   cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
     cache->saved_regs[tdep->ppc_lr_regnum];
@@ -2530,7 +3289,8 @@ rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
   /* If != 0, fdata.vrsave_offset is the offset from the frame that
      holds the VRSAVE.  */
   if (fdata.vrsave_offset != 0)
-    cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
+    cache->saved_regs[tdep->ppc_vrsave_regnum].addr
+      = cache->base + fdata.vrsave_offset;
 
   if (fdata.alloca_reg < 0)
     /* If no alloca register used, then fi->frame is the value of the
@@ -2569,6 +3329,7 @@ rs6000_frame_prev_register (struct frame_info *this_frame,
 static const struct frame_unwind rs6000_frame_unwind =
 {
   NORMAL_FRAME,
+  default_frame_unwind_stop_reason,
   rs6000_frame_this_id,
   rs6000_frame_prev_register,
   NULL,
@@ -2659,6 +3420,125 @@ ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
 }
 
 
+/* Return true if a .gnu_attributes section exists in BFD and it
+   indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
+   section exists in BFD and it indicates that SPE extensions are in
+   use.  Check the .gnu.attributes section first, as the binary might be
+   compiled for SPE, but not actually using SPE instructions.  */
+
+static int
+bfd_uses_spe_extensions (bfd *abfd)
+{
+  asection *sect;
+  gdb_byte *contents = NULL;
+  bfd_size_type size;
+  gdb_byte *ptr;
+  int success = 0;
+  int vector_abi;
+
+  if (!abfd)
+    return 0;
+
+#ifdef HAVE_ELF
+  /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
+     could be using the SPE vector abi without actually using any spe
+     bits whatsoever.  But it's close enough for now.  */
+  vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
+                                        Tag_GNU_Power_ABI_Vector);
+  if (vector_abi == 3)
+    return 1;
+#endif
+
+  sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
+  if (!sect)
+    return 0;
+
+  size = bfd_get_section_size (sect);
+  contents = xmalloc (size);
+  if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
+    {
+      xfree (contents);
+      return 0;
+    }
+
+  /* Parse the .PPC.EMB.apuinfo section.  The layout is as follows:
+
+     struct {
+       uint32 name_len;
+       uint32 data_len;
+       uint32 type;
+       char name[name_len rounded up to 4-byte alignment];
+       char data[data_len];
+     };
+
+     Technically, there's only supposed to be one such structure in a
+     given apuinfo section, but the linker is not always vigilant about
+     merging apuinfo sections from input files.  Just go ahead and parse
+     them all, exiting early when we discover the binary uses SPE
+     insns.
+
+     It's not specified in what endianness the information in this
+     section is stored.  Assume that it's the endianness of the BFD.  */
+  ptr = contents;
+  while (1)
+    {
+      unsigned int name_len;
+      unsigned int data_len;
+      unsigned int type;
+
+      /* If we can't read the first three fields, we're done.  */
+      if (size < 12)
+       break;
+
+      name_len = bfd_get_32 (abfd, ptr);
+      name_len = (name_len + 3) & ~3U; /* Round to 4 bytes.  */
+      data_len = bfd_get_32 (abfd, ptr + 4);
+      type = bfd_get_32 (abfd, ptr + 8);
+      ptr += 12;
+
+      /* The name must be "APUinfo\0".  */
+      if (name_len != 8
+         && strcmp ((const char *) ptr, "APUinfo") != 0)
+       break;
+      ptr += name_len;
+
+      /* The type must be 2.  */
+      if (type != 2)
+       break;
+
+      /* The data is stored as a series of uint32.  The upper half of
+        each uint32 indicates the particular APU used and the lower
+        half indicates the revision of that APU.  We just care about
+        the upper half.  */
+
+      /* Not 4-byte quantities.  */
+      if (data_len & 3U)
+       break;
+
+      while (data_len)
+       {
+         unsigned int apuinfo = bfd_get_32 (abfd, ptr);
+         unsigned int apu = apuinfo >> 16;
+         ptr += 4;
+         data_len -= 4;
+
+         /* The SPE APU is 0x100; the SPEFP APU is 0x101.  Accept
+            either.  */
+         if (apu == 0x100 || apu == 0x101)
+           {
+             success = 1;
+             data_len = 0;
+           }
+       }
+
+      if (success)
+       break;
+    }
+
+  xfree (contents);
+  return success;
+}
+
 /* Initialize the current architecture based on INFO.  If possible, re-use an
    architecture from ARCHES, which is a list of architectures already created
    during this debugging session.
@@ -2675,15 +3555,27 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   enum bfd_architecture arch;
   unsigned long mach;
   bfd abfd;
-  asection *sect;
   enum auto_boolean soft_float_flag = powerpc_soft_float_global;
   int soft_float;
   enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
-  int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0;
+  enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
+  int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
+      have_vsx = 0;
   int tdesc_wordsize = -1;
   const struct target_desc *tdesc = info.target_desc;
   struct tdesc_arch_data *tdesc_data = NULL;
   int num_pseudoregs = 0;
+  int cur_reg;
+
+  /* INFO may refer to a binary that is not of the PowerPC architecture,
+     e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
+     In this case, we must not attempt to infer properties of the (PowerPC
+     side) of the target system from properties of that executable.  Trust
+     the target description instead.  */
+  if (info.abfd
+      && bfd_get_arch (info.abfd) != bfd_arch_powerpc
+      && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
+    info.abfd = NULL;
 
   from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
     bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
@@ -2727,19 +3619,15 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
      Application-specific Processing Unit that is present on the
      chip.  The content of the section is determined by the assembler
      which looks at each instruction and determines which unit (and
-     which version of it) can execute it. In our case we just look for
-     the existance of the section.  */
+     which version of it) can execute it.  Grovel through the section
+     looking for relevant e500 APUs.  */
 
-  if (info.abfd)
+  if (bfd_uses_spe_extensions (info.abfd))
     {
-      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
-      if (sect)
-       {
-         arch = info.bfd_arch_info->arch;
-         mach = bfd_mach_ppc_e500;
-         bfd_default_set_arch_mach (&abfd, arch, mach);
-         info.bfd_arch_info = bfd_get_arch_info (&abfd);
-       }
+      arch = info.bfd_arch_info->arch;
+      mach = bfd_mach_ppc_e500;
+      bfd_default_set_arch_mach (&abfd, arch, mach);
+      info.bfd_arch_info = bfd_get_arch_info (&abfd);
     }
 
   /* Find a default target description which describes our register
@@ -2767,10 +3655,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
        "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
        "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
       };
-      static const char *const segment_regs[] = {
-       "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
-       "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
-      };
       const struct tdesc_feature *feature;
       int i, valid_p;
       static const char *const msr_names[] = { "msr", "ps" };
@@ -2878,6 +3762,38 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
       else
        have_altivec = 0;
 
+      /* Check for POWER7 VSX registers support.  */
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.vsx");
+
+      if (feature != NULL)
+       {
+         static const char *const vsx_regs[] = {
+           "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
+           "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
+           "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
+           "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
+           "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
+           "vs30h", "vs31h"
+         };
+
+         valid_p = 1;
+
+         for (i = 0; i < ppc_num_vshrs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_VSR0_UPPER_REGNUM + i,
+                                               vsx_regs[i]);
+         if (!valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+
+         have_vsx = 1;
+       }
+      else
+       have_vsx = 0;
+
       /* On machines supporting the SPE APU, the general-purpose registers
         are 64 bits long.  There are SIMD vector instructions to treat them
         as pairs of floats, but the rest of the instruction set treats them
@@ -2945,6 +3861,21 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
     }
 
 #ifdef HAVE_ELF
+  if (from_elf_exec)
+    {
+      switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
+       {
+       case 1:
+         elf_abi = POWERPC_ELF_V1;
+         break;
+       case 2:
+         elf_abi = POWERPC_ELF_V2;
+         break;
+       default:
+         break;
+       }
+    }
+
   if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
     {
       switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
@@ -2981,6 +3912,21 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
     }
 #endif
 
+  /* At this point, the only supported ELF-based 64-bit little-endian
+     operating system is GNU/Linux, and this uses the ELFv2 ABI by
+     default.  All other supported ELF-based operating systems use the
+     ELFv1 ABI by default.  Therefore, if the ABI marker is missing,
+     e.g. because we run a legacy binary, or have attached to a process
+     and have not found any associated binary file, set the default
+     according to this heuristic.  */
+  if (elf_abi == POWERPC_ELF_AUTO)
+    {
+      if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
+        elf_abi = POWERPC_ELF_V2;
+      else
+        elf_abi = POWERPC_ELF_V1;
+    }
+
   if (soft_float_flag == AUTO_BOOLEAN_TRUE)
     soft_float = 1;
   else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
@@ -3023,6 +3969,8 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
          meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
          separate word size check.  */
       tdep = gdbarch_tdep (arches->gdbarch);
+      if (tdep && tdep->elf_abi != elf_abi)
+       continue;
       if (tdep && tdep->soft_float != soft_float)
        continue;
       if (tdep && tdep->vector_abi != vector_abi)
@@ -3043,8 +3991,9 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
        - "set arch"            trust blindly
        - GDB startup           useless but harmless */
 
-  tdep = XCALLOC (1, struct gdbarch_tdep);
+  tdep = XCNEW (struct gdbarch_tdep);
   tdep->wordsize = wordsize;
+  tdep->elf_abi = elf_abi;
   tdep->soft_float = soft_float;
   tdep->vector_abi = vector_abi;
 
@@ -3061,6 +4010,7 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
 
   tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
   tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
+  tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
   tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
   tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
   tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
@@ -3089,10 +4039,11 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   else
     tdep->lr_frame_offset = 4;
 
-  if (have_spe || have_dfp)
+  if (have_spe || have_dfp || have_vsx)
     {
       set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
-      set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
+      set_gdbarch_pseudo_register_write (gdbarch,
+                                        rs6000_pseudo_register_write);
     }
 
   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
@@ -3109,6 +4060,9 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
     num_pseudoregs += 32;
   if (have_dfp)
     num_pseudoregs += 16;
+  if (have_vsx)
+    /* Include both VSX and Extended FP registers.  */
+    num_pseudoregs += 96;
 
   set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
 
@@ -3141,18 +4095,19 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
 
   set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
   set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
+  set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
 
   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
   set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
 
   /* The value of symbols of type N_SO and N_FUN maybe null when
-     it shouldn't be. */
+     it shouldn't be.  */
   set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
 
   /* Handles single stepping of atomic sequences.  */
   set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
   
-  /* Not sure on this. FIXMEmgo */
+  /* Not sure on this.  FIXMEmgo */
   set_gdbarch_frame_args_skip (gdbarch, 8);
 
   /* Helpers for function argument information.  */
@@ -3170,7 +4125,22 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   /* Frame handling.  */
   dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
 
+  /* Setup displaced stepping.  */
+  set_gdbarch_displaced_step_copy_insn (gdbarch,
+                                       simple_displaced_step_copy_insn);
+  set_gdbarch_displaced_step_hw_singlestep (gdbarch,
+                                           ppc_displaced_step_hw_singlestep);
+  set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
+  set_gdbarch_displaced_step_free_closure (gdbarch,
+                                          simple_displaced_step_free_closure);
+  set_gdbarch_displaced_step_location (gdbarch,
+                                      displaced_step_at_entry_point);
+
+  set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
+
   /* Hook in ABI-specific overrides, if they have been registered.  */
+  info.target_desc = tdesc;
+  info.tdep_info = (void *) tdesc_data;
   gdbarch_init_osabi (info, gdbarch);
 
   switch (info.osabi)
@@ -3202,15 +4172,40 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
      halves anonymous.  */
   set_gdbarch_register_name (gdbarch, rs6000_register_name);
 
-  /* Recording the numbering of pseudo registers.  */
-  tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1;
+  /* Choose register numbers for all supported pseudo-registers.  */
+  tdep->ppc_ev0_regnum = -1;
+  tdep->ppc_dl0_regnum = -1;
+  tdep->ppc_vsr0_regnum = -1;
+  tdep->ppc_efpr0_regnum = -1;
+
+  cur_reg = gdbarch_num_regs (gdbarch);
+
+  if (have_spe)
+    {
+      tdep->ppc_ev0_regnum = cur_reg;
+      cur_reg += 32;
+    }
+  if (have_dfp)
+    {
+      tdep->ppc_dl0_regnum = cur_reg;
+      cur_reg += 16;
+    }
+  if (have_vsx)
+    {
+      tdep->ppc_vsr0_regnum = cur_reg;
+      cur_reg += 64;
+      tdep->ppc_efpr0_regnum = cur_reg;
+      cur_reg += 32;
+    }
 
-  /* Set the register number for _Decimal128 pseudo-registers.  */
-  tdep->ppc_dl0_regnum = have_dfp? gdbarch_num_regs (gdbarch) : -1;
+  gdb_assert (gdbarch_num_regs (gdbarch)
+             + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
 
-  if (have_dfp && have_spe)
-    /* Put the _Decimal128 pseudo-registers after the SPE registers.  */
-    tdep->ppc_dl0_regnum += 32;
+  /* Register the ravenscar_arch_ops.  */
+  if (mach == bfd_mach_ppc_e500)
+    register_e500_ravenscar_ops (gdbarch);
+  else
+    register_ppc_ravenscar_ops (gdbarch);
 
   return gdbarch;
 }
@@ -3251,7 +4246,7 @@ powerpc_set_soft_float (char *args, int from_tty,
   /* Update the architecture.  */
   gdbarch_info_init (&info);
   if (!gdbarch_update_p (info))
-    internal_error (__FILE__, __LINE__, "could not update architecture");
+    internal_error (__FILE__, __LINE__, _("could not update architecture"));
 }
 
 static void
@@ -3278,12 +4273,92 @@ powerpc_set_vector_abi (char *args, int from_tty,
   /* Update the architecture.  */
   gdbarch_info_init (&info);
   if (!gdbarch_update_p (info))
-    internal_error (__FILE__, __LINE__, "could not update architecture");
+    internal_error (__FILE__, __LINE__, _("could not update architecture"));
+}
+
+/* Show the current setting of the exact watchpoints flag.  */
+
+static void
+show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
+                               struct cmd_list_element *c,
+                               const char *value)
+{
+  fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
+}
+
+/* Read a PPC instruction from memory.  */
+
+static unsigned int
+read_insn (struct frame_info *frame, CORE_ADDR pc)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+
+  return read_memory_unsigned_integer (pc, 4, byte_order);
+}
+
+/* Return non-zero if the instructions at PC match the series
+   described in PATTERN, or zero otherwise.  PATTERN is an array of
+   'struct ppc_insn_pattern' objects, terminated by an entry whose
+   mask is zero.
+
+   When the match is successful, fill INSN[i] with what PATTERN[i]
+   matched.  If PATTERN[i] is optional, and the instruction wasn't
+   present, set INSN[i] to 0 (which is not a valid PPC instruction).
+   INSN should have as many elements as PATTERN.  Note that, if
+   PATTERN contains optional instructions which aren't present in
+   memory, then INSN will have holes, so INSN[i] isn't necessarily the
+   i'th instruction in memory.  */
+
+int
+ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
+                        struct ppc_insn_pattern *pattern,
+                        unsigned int *insns)
+{
+  int i;
+  unsigned int insn;
+
+  for (i = 0, insn = 0; pattern[i].mask; i++)
+    {
+      if (insn == 0)
+       insn = read_insn (frame, pc);
+      insns[i] = 0;
+      if ((insn & pattern[i].mask) == pattern[i].data)
+       {
+         insns[i] = insn;
+         pc += 4;
+         insn = 0;
+       }
+      else if (!pattern[i].optional)
+       return 0;
+    }
+
+  return 1;
+}
+
+/* Return the 'd' field of the d-form instruction INSN, properly
+   sign-extended.  */
+
+CORE_ADDR
+ppc_insn_d_field (unsigned int insn)
+{
+  return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
+}
+
+/* Return the 'ds' field of the ds-form instruction INSN, with the two
+   zero bits concatenated at the right, and properly
+   sign-extended.  */
+
+CORE_ADDR
+ppc_insn_ds_field (unsigned int insn)
+{
+  return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
 }
 
 /* Initialization code.  */
 
-extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
+/* -Wmissing-prototypes */
+extern initialize_file_ftype _initialize_rs6000_tdep;
 
 void
 _initialize_rs6000_tdep (void)
@@ -3294,8 +4369,10 @@ _initialize_rs6000_tdep (void)
   /* Initialize the standard target descriptions.  */
   initialize_tdesc_powerpc_32 ();
   initialize_tdesc_powerpc_altivec32 ();
+  initialize_tdesc_powerpc_vsx32 ();
   initialize_tdesc_powerpc_403 ();
   initialize_tdesc_powerpc_403gc ();
+  initialize_tdesc_powerpc_405 ();
   initialize_tdesc_powerpc_505 ();
   initialize_tdesc_powerpc_601 ();
   initialize_tdesc_powerpc_602 ();
@@ -3303,6 +4380,7 @@ _initialize_rs6000_tdep (void)
   initialize_tdesc_powerpc_604 ();
   initialize_tdesc_powerpc_64 ();
   initialize_tdesc_powerpc_altivec64 ();
+  initialize_tdesc_powerpc_vsx64 ();
   initialize_tdesc_powerpc_7400 ();
   initialize_tdesc_powerpc_750 ();
   initialize_tdesc_powerpc_860 ();
@@ -3334,4 +4412,17 @@ _initialize_rs6000_tdep (void)
                        _("Show the vector ABI."),
                        NULL, powerpc_set_vector_abi, NULL,
                        &setpowerpccmdlist, &showpowerpccmdlist);
+
+  add_setshow_boolean_cmd ("exact-watchpoints", class_support,
+                          &target_exact_watchpoints,
+                          _("\
+Set whether to use just one debug register for watchpoints on scalars."),
+                          _("\
+Show whether to use just one debug register for watchpoints on scalars."),
+                          _("\
+If true, GDB will use only one debug register when watching a variable of\n\
+scalar type, thus assuming that the variable is accessed through the address\n\
+of its first byte."),
+                          NULL, show_powerpc_exact_watchpoints,
+                          &setpowerpccmdlist, &showpowerpccmdlist);
 }