]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/block-group.c
Merge branch 'for-6.0/dax' into libnvdimm-fixes
[people/ms/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
2ca0ec77 3#include <linux/list_sort.h>
784352fe 4#include "misc.h"
2e405ad8
JB
5#include "ctree.h"
6#include "block-group.h"
3eeb3226 7#include "space-info.h"
9f21246d
JB
8#include "disk-io.h"
9#include "free-space-cache.h"
10#include "free-space-tree.h"
e3e0520b
JB
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
4358d963
JB
14#include "sysfs.h"
15#include "tree-log.h"
77745c05 16#include "delalloc-space.h"
b0643e59 17#include "discard.h"
96a14336 18#include "raid56.h"
08e11a3d 19#include "zoned.h"
2e405ad8 20
878d7b67
JB
21/*
22 * Return target flags in extended format or 0 if restripe for this chunk_type
23 * is not in progress
24 *
25 * Should be called with balance_lock held
26 */
e11c0406 27static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
28{
29 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 u64 target = 0;
31
32 if (!bctl)
33 return 0;
34
35 if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 }
45
46 return target;
47}
48
49/*
50 * @flags: available profiles in extended format (see ctree.h)
51 *
52 * Return reduced profile in chunk format. If profile changing is in progress
53 * (either running or paused) picks the target profile (if it's already
54 * available), otherwise falls back to plain reducing.
55 */
56static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57{
58 u64 num_devices = fs_info->fs_devices->rw_devices;
59 u64 target;
60 u64 raid_type;
61 u64 allowed = 0;
62
63 /*
64 * See if restripe for this chunk_type is in progress, if so try to
65 * reduce to the target profile
66 */
67 spin_lock(&fs_info->balance_lock);
e11c0406 68 target = get_restripe_target(fs_info, flags);
878d7b67 69 if (target) {
162e0a16
JB
70 spin_unlock(&fs_info->balance_lock);
71 return extended_to_chunk(target);
878d7b67
JB
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96}
97
ef0a82da 98u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
99{
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116}
117
32da5386 118void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 119{
48aaeebe 120 refcount_inc(&cache->refs);
3cad1284
JB
121}
122
32da5386 123void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 124{
48aaeebe 125 if (refcount_dec_and_test(&cache->refs)) {
3cad1284 126 WARN_ON(cache->pinned > 0);
40cdc509
FM
127 /*
128 * If there was a failure to cleanup a log tree, very likely due
129 * to an IO failure on a writeback attempt of one or more of its
130 * extent buffers, we could not do proper (and cheap) unaccounting
131 * of their reserved space, so don't warn on reserved > 0 in that
132 * case.
133 */
134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 WARN_ON(cache->reserved > 0);
3cad1284 137
b0643e59
DZ
138 /*
139 * A block_group shouldn't be on the discard_list anymore.
140 * Remove the block_group from the discard_list to prevent us
141 * from causing a panic due to NULL pointer dereference.
142 */
143 if (WARN_ON(!list_empty(&cache->discard_list)))
144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 cache);
146
3cad1284
JB
147 /*
148 * If not empty, someone is still holding mutex of
149 * full_stripe_lock, which can only be released by caller.
150 * And it will definitely cause use-after-free when caller
151 * tries to release full stripe lock.
152 *
153 * No better way to resolve, but only to warn.
154 */
155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 kfree(cache->free_space_ctl);
dafc340d 157 kfree(cache->physical_map);
3cad1284
JB
158 kfree(cache);
159 }
160}
161
4358d963
JB
162/*
163 * This adds the block group to the fs_info rb tree for the block group cache
164 */
165static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 166 struct btrfs_block_group *block_group)
4358d963
JB
167{
168 struct rb_node **p;
169 struct rb_node *parent = NULL;
32da5386 170 struct btrfs_block_group *cache;
08dddb29 171 bool leftmost = true;
4358d963 172
9afc6649
QW
173 ASSERT(block_group->length != 0);
174
16b0c258 175 write_lock(&info->block_group_cache_lock);
08dddb29 176 p = &info->block_group_cache_tree.rb_root.rb_node;
4358d963
JB
177
178 while (*p) {
179 parent = *p;
32da5386 180 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 181 if (block_group->start < cache->start) {
4358d963 182 p = &(*p)->rb_left;
b3470b5d 183 } else if (block_group->start > cache->start) {
4358d963 184 p = &(*p)->rb_right;
08dddb29 185 leftmost = false;
4358d963 186 } else {
16b0c258 187 write_unlock(&info->block_group_cache_lock);
4358d963
JB
188 return -EEXIST;
189 }
190 }
191
192 rb_link_node(&block_group->cache_node, parent, p);
08dddb29
FM
193 rb_insert_color_cached(&block_group->cache_node,
194 &info->block_group_cache_tree, leftmost);
4358d963 195
16b0c258 196 write_unlock(&info->block_group_cache_lock);
4358d963
JB
197
198 return 0;
199}
200
2e405ad8
JB
201/*
202 * This will return the block group at or after bytenr if contains is 0, else
203 * it will return the block group that contains the bytenr
204 */
32da5386 205static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
206 struct btrfs_fs_info *info, u64 bytenr, int contains)
207{
32da5386 208 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
209 struct rb_node *n;
210 u64 end, start;
211
16b0c258 212 read_lock(&info->block_group_cache_lock);
08dddb29 213 n = info->block_group_cache_tree.rb_root.rb_node;
2e405ad8
JB
214
215 while (n) {
32da5386 216 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
217 end = cache->start + cache->length - 1;
218 start = cache->start;
2e405ad8
JB
219
220 if (bytenr < start) {
b3470b5d 221 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
222 ret = cache;
223 n = n->rb_left;
224 } else if (bytenr > start) {
225 if (contains && bytenr <= end) {
226 ret = cache;
227 break;
228 }
229 n = n->rb_right;
230 } else {
231 ret = cache;
232 break;
233 }
234 }
08dddb29 235 if (ret)
2e405ad8 236 btrfs_get_block_group(ret);
16b0c258 237 read_unlock(&info->block_group_cache_lock);
2e405ad8
JB
238
239 return ret;
240}
241
242/*
243 * Return the block group that starts at or after bytenr
244 */
32da5386 245struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
246 struct btrfs_fs_info *info, u64 bytenr)
247{
248 return block_group_cache_tree_search(info, bytenr, 0);
249}
250
251/*
252 * Return the block group that contains the given bytenr
253 */
32da5386 254struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
255 struct btrfs_fs_info *info, u64 bytenr)
256{
257 return block_group_cache_tree_search(info, bytenr, 1);
258}
259
32da5386
DS
260struct btrfs_block_group *btrfs_next_block_group(
261 struct btrfs_block_group *cache)
2e405ad8
JB
262{
263 struct btrfs_fs_info *fs_info = cache->fs_info;
264 struct rb_node *node;
265
16b0c258 266 read_lock(&fs_info->block_group_cache_lock);
2e405ad8
JB
267
268 /* If our block group was removed, we need a full search. */
269 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 270 const u64 next_bytenr = cache->start + cache->length;
2e405ad8 271
16b0c258 272 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8 273 btrfs_put_block_group(cache);
8b01f931 274 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
2e405ad8
JB
275 }
276 node = rb_next(&cache->cache_node);
277 btrfs_put_block_group(cache);
278 if (node) {
32da5386 279 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
280 btrfs_get_block_group(cache);
281 } else
282 cache = NULL;
16b0c258 283 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8
JB
284 return cache;
285}
3eeb3226 286
2306e83e
FM
287/**
288 * Check if we can do a NOCOW write for a given extent.
289 *
290 * @fs_info: The filesystem information object.
291 * @bytenr: Logical start address of the extent.
292 *
293 * Check if we can do a NOCOW write for the given extent, and increments the
294 * number of NOCOW writers in the block group that contains the extent, as long
295 * as the block group exists and it's currently not in read-only mode.
296 *
297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298 * is responsible for calling btrfs_dec_nocow_writers() later.
299 *
300 * Or NULL if we can not do a NOCOW write
301 */
302struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
303 u64 bytenr)
3eeb3226 304{
32da5386 305 struct btrfs_block_group *bg;
2306e83e 306 bool can_nocow = true;
3eeb3226
JB
307
308 bg = btrfs_lookup_block_group(fs_info, bytenr);
309 if (!bg)
2306e83e 310 return NULL;
3eeb3226
JB
311
312 spin_lock(&bg->lock);
313 if (bg->ro)
2306e83e 314 can_nocow = false;
3eeb3226
JB
315 else
316 atomic_inc(&bg->nocow_writers);
317 spin_unlock(&bg->lock);
318
2306e83e 319 if (!can_nocow) {
3eeb3226 320 btrfs_put_block_group(bg);
2306e83e
FM
321 return NULL;
322 }
3eeb3226 323
2306e83e
FM
324 /* No put on block group, done by btrfs_dec_nocow_writers(). */
325 return bg;
3eeb3226
JB
326}
327
2306e83e
FM
328/**
329 * Decrement the number of NOCOW writers in a block group.
330 *
331 * @bg: The block group.
332 *
333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334 * and on the block group returned by that call. Typically this is called after
335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
336 * relocation.
337 *
338 * After this call, the caller should not use the block group anymore. It it wants
339 * to use it, then it should get a reference on it before calling this function.
340 */
341void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
3eeb3226 342{
3eeb3226
JB
343 if (atomic_dec_and_test(&bg->nocow_writers))
344 wake_up_var(&bg->nocow_writers);
2306e83e
FM
345
346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
3eeb3226
JB
347 btrfs_put_block_group(bg);
348}
349
32da5386 350void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
351{
352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
353}
354
355void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
356 const u64 start)
357{
32da5386 358 struct btrfs_block_group *bg;
3eeb3226
JB
359
360 bg = btrfs_lookup_block_group(fs_info, start);
361 ASSERT(bg);
362 if (atomic_dec_and_test(&bg->reservations))
363 wake_up_var(&bg->reservations);
364 btrfs_put_block_group(bg);
365}
366
32da5386 367void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
368{
369 struct btrfs_space_info *space_info = bg->space_info;
370
371 ASSERT(bg->ro);
372
373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
374 return;
375
376 /*
377 * Our block group is read only but before we set it to read only,
378 * some task might have had allocated an extent from it already, but it
379 * has not yet created a respective ordered extent (and added it to a
380 * root's list of ordered extents).
381 * Therefore wait for any task currently allocating extents, since the
382 * block group's reservations counter is incremented while a read lock
383 * on the groups' semaphore is held and decremented after releasing
384 * the read access on that semaphore and creating the ordered extent.
385 */
386 down_write(&space_info->groups_sem);
387 up_write(&space_info->groups_sem);
388
389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
390}
9f21246d
JB
391
392struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 393 struct btrfs_block_group *cache)
9f21246d
JB
394{
395 struct btrfs_caching_control *ctl;
396
397 spin_lock(&cache->lock);
398 if (!cache->caching_ctl) {
399 spin_unlock(&cache->lock);
400 return NULL;
401 }
402
403 ctl = cache->caching_ctl;
404 refcount_inc(&ctl->count);
405 spin_unlock(&cache->lock);
406 return ctl;
407}
408
409void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
410{
411 if (refcount_dec_and_test(&ctl->count))
412 kfree(ctl);
413}
414
415/*
416 * When we wait for progress in the block group caching, its because our
417 * allocation attempt failed at least once. So, we must sleep and let some
418 * progress happen before we try again.
419 *
420 * This function will sleep at least once waiting for new free space to show
421 * up, and then it will check the block group free space numbers for our min
422 * num_bytes. Another option is to have it go ahead and look in the rbtree for
423 * a free extent of a given size, but this is a good start.
424 *
425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426 * any of the information in this block group.
427 */
32da5386 428void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
429 u64 num_bytes)
430{
431 struct btrfs_caching_control *caching_ctl;
432
433 caching_ctl = btrfs_get_caching_control(cache);
434 if (!caching_ctl)
435 return;
436
32da5386 437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
438 (cache->free_space_ctl->free_space >= num_bytes));
439
440 btrfs_put_caching_control(caching_ctl);
441}
442
ced8ecf0
OS
443static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
444 struct btrfs_caching_control *caching_ctl)
445{
446 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
447 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
448}
449
450static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
451{
452 struct btrfs_caching_control *caching_ctl;
ced8ecf0 453 int ret;
9f21246d
JB
454
455 caching_ctl = btrfs_get_caching_control(cache);
456 if (!caching_ctl)
457 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
ced8ecf0 458 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
9f21246d
JB
459 btrfs_put_caching_control(caching_ctl);
460 return ret;
461}
462
463#ifdef CONFIG_BTRFS_DEBUG
32da5386 464static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
465{
466 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
467 u64 start = block_group->start;
468 u64 len = block_group->length;
9f21246d
JB
469 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
470 fs_info->nodesize : fs_info->sectorsize;
471 u64 step = chunk << 1;
472
473 while (len > chunk) {
474 btrfs_remove_free_space(block_group, start, chunk);
475 start += step;
476 if (len < step)
477 len = 0;
478 else
479 len -= step;
480 }
481}
482#endif
483
484/*
485 * This is only called by btrfs_cache_block_group, since we could have freed
486 * extents we need to check the pinned_extents for any extents that can't be
487 * used yet since their free space will be released as soon as the transaction
488 * commits.
489 */
32da5386 490u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
491{
492 struct btrfs_fs_info *info = block_group->fs_info;
493 u64 extent_start, extent_end, size, total_added = 0;
494 int ret;
495
496 while (start < end) {
fe119a6e 497 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
498 &extent_start, &extent_end,
499 EXTENT_DIRTY | EXTENT_UPTODATE,
500 NULL);
501 if (ret)
502 break;
503
504 if (extent_start <= start) {
505 start = extent_end + 1;
506 } else if (extent_start > start && extent_start < end) {
507 size = extent_start - start;
508 total_added += size;
b0643e59
DZ
509 ret = btrfs_add_free_space_async_trimmed(block_group,
510 start, size);
9f21246d
JB
511 BUG_ON(ret); /* -ENOMEM or logic error */
512 start = extent_end + 1;
513 } else {
514 break;
515 }
516 }
517
518 if (start < end) {
519 size = end - start;
520 total_added += size;
b0643e59
DZ
521 ret = btrfs_add_free_space_async_trimmed(block_group, start,
522 size);
9f21246d
JB
523 BUG_ON(ret); /* -ENOMEM or logic error */
524 }
525
526 return total_added;
527}
528
529static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
530{
32da5386 531 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d 532 struct btrfs_fs_info *fs_info = block_group->fs_info;
29cbcf40 533 struct btrfs_root *extent_root;
9f21246d
JB
534 struct btrfs_path *path;
535 struct extent_buffer *leaf;
536 struct btrfs_key key;
537 u64 total_found = 0;
538 u64 last = 0;
539 u32 nritems;
540 int ret;
541 bool wakeup = true;
542
543 path = btrfs_alloc_path();
544 if (!path)
545 return -ENOMEM;
546
b3470b5d 547 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
29cbcf40 548 extent_root = btrfs_extent_root(fs_info, last);
9f21246d
JB
549
550#ifdef CONFIG_BTRFS_DEBUG
551 /*
552 * If we're fragmenting we don't want to make anybody think we can
553 * allocate from this block group until we've had a chance to fragment
554 * the free space.
555 */
556 if (btrfs_should_fragment_free_space(block_group))
557 wakeup = false;
558#endif
559 /*
560 * We don't want to deadlock with somebody trying to allocate a new
561 * extent for the extent root while also trying to search the extent
562 * root to add free space. So we skip locking and search the commit
563 * root, since its read-only
564 */
565 path->skip_locking = 1;
566 path->search_commit_root = 1;
567 path->reada = READA_FORWARD;
568
569 key.objectid = last;
570 key.offset = 0;
571 key.type = BTRFS_EXTENT_ITEM_KEY;
572
573next:
574 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
575 if (ret < 0)
576 goto out;
577
578 leaf = path->nodes[0];
579 nritems = btrfs_header_nritems(leaf);
580
581 while (1) {
582 if (btrfs_fs_closing(fs_info) > 1) {
583 last = (u64)-1;
584 break;
585 }
586
587 if (path->slots[0] < nritems) {
588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 } else {
590 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
591 if (ret)
592 break;
593
594 if (need_resched() ||
595 rwsem_is_contended(&fs_info->commit_root_sem)) {
596 if (wakeup)
597 caching_ctl->progress = last;
598 btrfs_release_path(path);
599 up_read(&fs_info->commit_root_sem);
600 mutex_unlock(&caching_ctl->mutex);
601 cond_resched();
602 mutex_lock(&caching_ctl->mutex);
603 down_read(&fs_info->commit_root_sem);
604 goto next;
605 }
606
607 ret = btrfs_next_leaf(extent_root, path);
608 if (ret < 0)
609 goto out;
610 if (ret)
611 break;
612 leaf = path->nodes[0];
613 nritems = btrfs_header_nritems(leaf);
614 continue;
615 }
616
617 if (key.objectid < last) {
618 key.objectid = last;
619 key.offset = 0;
620 key.type = BTRFS_EXTENT_ITEM_KEY;
621
622 if (wakeup)
623 caching_ctl->progress = last;
624 btrfs_release_path(path);
625 goto next;
626 }
627
b3470b5d 628 if (key.objectid < block_group->start) {
9f21246d
JB
629 path->slots[0]++;
630 continue;
631 }
632
b3470b5d 633 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
634 break;
635
636 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
637 key.type == BTRFS_METADATA_ITEM_KEY) {
638 total_found += add_new_free_space(block_group, last,
639 key.objectid);
640 if (key.type == BTRFS_METADATA_ITEM_KEY)
641 last = key.objectid +
642 fs_info->nodesize;
643 else
644 last = key.objectid + key.offset;
645
646 if (total_found > CACHING_CTL_WAKE_UP) {
647 total_found = 0;
648 if (wakeup)
649 wake_up(&caching_ctl->wait);
650 }
651 }
652 path->slots[0]++;
653 }
654 ret = 0;
655
656 total_found += add_new_free_space(block_group, last,
b3470b5d 657 block_group->start + block_group->length);
9f21246d
JB
658 caching_ctl->progress = (u64)-1;
659
660out:
661 btrfs_free_path(path);
662 return ret;
663}
664
665static noinline void caching_thread(struct btrfs_work *work)
666{
32da5386 667 struct btrfs_block_group *block_group;
9f21246d
JB
668 struct btrfs_fs_info *fs_info;
669 struct btrfs_caching_control *caching_ctl;
670 int ret;
671
672 caching_ctl = container_of(work, struct btrfs_caching_control, work);
673 block_group = caching_ctl->block_group;
674 fs_info = block_group->fs_info;
675
676 mutex_lock(&caching_ctl->mutex);
677 down_read(&fs_info->commit_root_sem);
678
e747853c
JB
679 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
680 ret = load_free_space_cache(block_group);
681 if (ret == 1) {
682 ret = 0;
683 goto done;
684 }
685
686 /*
687 * We failed to load the space cache, set ourselves to
688 * CACHE_STARTED and carry on.
689 */
690 spin_lock(&block_group->lock);
691 block_group->cached = BTRFS_CACHE_STARTED;
692 spin_unlock(&block_group->lock);
693 wake_up(&caching_ctl->wait);
694 }
695
2f96e402
JB
696 /*
697 * If we are in the transaction that populated the free space tree we
698 * can't actually cache from the free space tree as our commit root and
699 * real root are the same, so we could change the contents of the blocks
700 * while caching. Instead do the slow caching in this case, and after
701 * the transaction has committed we will be safe.
702 */
703 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
704 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
705 ret = load_free_space_tree(caching_ctl);
706 else
707 ret = load_extent_tree_free(caching_ctl);
e747853c 708done:
9f21246d
JB
709 spin_lock(&block_group->lock);
710 block_group->caching_ctl = NULL;
711 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
712 spin_unlock(&block_group->lock);
713
714#ifdef CONFIG_BTRFS_DEBUG
715 if (btrfs_should_fragment_free_space(block_group)) {
716 u64 bytes_used;
717
718 spin_lock(&block_group->space_info->lock);
719 spin_lock(&block_group->lock);
b3470b5d 720 bytes_used = block_group->length - block_group->used;
9f21246d
JB
721 block_group->space_info->bytes_used += bytes_used >> 1;
722 spin_unlock(&block_group->lock);
723 spin_unlock(&block_group->space_info->lock);
e11c0406 724 fragment_free_space(block_group);
9f21246d
JB
725 }
726#endif
727
728 caching_ctl->progress = (u64)-1;
729
730 up_read(&fs_info->commit_root_sem);
731 btrfs_free_excluded_extents(block_group);
732 mutex_unlock(&caching_ctl->mutex);
733
734 wake_up(&caching_ctl->wait);
735
736 btrfs_put_caching_control(caching_ctl);
737 btrfs_put_block_group(block_group);
738}
739
ced8ecf0 740int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
9f21246d 741{
9f21246d 742 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 743 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
744 int ret = 0;
745
2eda5708
NA
746 /* Allocator for zoned filesystems does not use the cache at all */
747 if (btrfs_is_zoned(fs_info))
748 return 0;
749
9f21246d
JB
750 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
751 if (!caching_ctl)
752 return -ENOMEM;
753
754 INIT_LIST_HEAD(&caching_ctl->list);
755 mutex_init(&caching_ctl->mutex);
756 init_waitqueue_head(&caching_ctl->wait);
757 caching_ctl->block_group = cache;
b3470b5d 758 caching_ctl->progress = cache->start;
e747853c 759 refcount_set(&caching_ctl->count, 2);
a0cac0ec 760 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
761
762 spin_lock(&cache->lock);
9f21246d 763 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 764 kfree(caching_ctl);
e747853c
JB
765
766 caching_ctl = cache->caching_ctl;
767 if (caching_ctl)
768 refcount_inc(&caching_ctl->count);
769 spin_unlock(&cache->lock);
770 goto out;
9f21246d
JB
771 }
772 WARN_ON(cache->caching_ctl);
773 cache->caching_ctl = caching_ctl;
ced8ecf0 774 cache->cached = BTRFS_CACHE_STARTED;
e747853c 775 cache->has_caching_ctl = 1;
9f21246d
JB
776 spin_unlock(&cache->lock);
777
16b0c258 778 write_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
779 refcount_inc(&caching_ctl->count);
780 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
16b0c258 781 write_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
782
783 btrfs_get_block_group(cache);
784
785 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c 786out:
ced8ecf0
OS
787 if (wait && caching_ctl)
788 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
e747853c
JB
789 if (caching_ctl)
790 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
791
792 return ret;
793}
e3e0520b
JB
794
795static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
796{
797 u64 extra_flags = chunk_to_extended(flags) &
798 BTRFS_EXTENDED_PROFILE_MASK;
799
800 write_seqlock(&fs_info->profiles_lock);
801 if (flags & BTRFS_BLOCK_GROUP_DATA)
802 fs_info->avail_data_alloc_bits &= ~extra_flags;
803 if (flags & BTRFS_BLOCK_GROUP_METADATA)
804 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
805 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
806 fs_info->avail_system_alloc_bits &= ~extra_flags;
807 write_sequnlock(&fs_info->profiles_lock);
808}
809
810/*
811 * Clear incompat bits for the following feature(s):
812 *
813 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
814 * in the whole filesystem
9c907446
DS
815 *
816 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
817 */
818static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
819{
9c907446
DS
820 bool found_raid56 = false;
821 bool found_raid1c34 = false;
822
823 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
824 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
825 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
826 struct list_head *head = &fs_info->space_info;
827 struct btrfs_space_info *sinfo;
828
829 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
830 down_read(&sinfo->groups_sem);
831 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 832 found_raid56 = true;
e3e0520b 833 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
834 found_raid56 = true;
835 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
836 found_raid1c34 = true;
837 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
838 found_raid1c34 = true;
e3e0520b 839 up_read(&sinfo->groups_sem);
e3e0520b 840 }
d8e6fd5c 841 if (!found_raid56)
9c907446 842 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 843 if (!found_raid1c34)
9c907446 844 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
845 }
846}
847
7357623a
QW
848static int remove_block_group_item(struct btrfs_trans_handle *trans,
849 struct btrfs_path *path,
850 struct btrfs_block_group *block_group)
851{
852 struct btrfs_fs_info *fs_info = trans->fs_info;
853 struct btrfs_root *root;
854 struct btrfs_key key;
855 int ret;
856
dfe8aec4 857 root = btrfs_block_group_root(fs_info);
7357623a
QW
858 key.objectid = block_group->start;
859 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
860 key.offset = block_group->length;
861
862 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
863 if (ret > 0)
864 ret = -ENOENT;
865 if (ret < 0)
866 return ret;
867
868 ret = btrfs_del_item(trans, root, path);
869 return ret;
870}
871
e3e0520b
JB
872int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
873 u64 group_start, struct extent_map *em)
874{
875 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 876 struct btrfs_path *path;
32da5386 877 struct btrfs_block_group *block_group;
e3e0520b 878 struct btrfs_free_cluster *cluster;
e3e0520b
JB
879 struct inode *inode;
880 struct kobject *kobj = NULL;
881 int ret;
882 int index;
883 int factor;
884 struct btrfs_caching_control *caching_ctl = NULL;
885 bool remove_em;
886 bool remove_rsv = false;
887
888 block_group = btrfs_lookup_block_group(fs_info, group_start);
889 BUG_ON(!block_group);
890 BUG_ON(!block_group->ro);
891
892 trace_btrfs_remove_block_group(block_group);
893 /*
894 * Free the reserved super bytes from this block group before
895 * remove it.
896 */
897 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
898 btrfs_free_ref_tree_range(fs_info, block_group->start,
899 block_group->length);
e3e0520b 900
e3e0520b
JB
901 index = btrfs_bg_flags_to_raid_index(block_group->flags);
902 factor = btrfs_bg_type_to_factor(block_group->flags);
903
904 /* make sure this block group isn't part of an allocation cluster */
905 cluster = &fs_info->data_alloc_cluster;
906 spin_lock(&cluster->refill_lock);
907 btrfs_return_cluster_to_free_space(block_group, cluster);
908 spin_unlock(&cluster->refill_lock);
909
910 /*
911 * make sure this block group isn't part of a metadata
912 * allocation cluster
913 */
914 cluster = &fs_info->meta_alloc_cluster;
915 spin_lock(&cluster->refill_lock);
916 btrfs_return_cluster_to_free_space(block_group, cluster);
917 spin_unlock(&cluster->refill_lock);
918
40ab3be1 919 btrfs_clear_treelog_bg(block_group);
c2707a25 920 btrfs_clear_data_reloc_bg(block_group);
40ab3be1 921
e3e0520b
JB
922 path = btrfs_alloc_path();
923 if (!path) {
924 ret = -ENOMEM;
9fecd132 925 goto out;
e3e0520b
JB
926 }
927
928 /*
929 * get the inode first so any iput calls done for the io_list
930 * aren't the final iput (no unlinks allowed now)
931 */
932 inode = lookup_free_space_inode(block_group, path);
933
934 mutex_lock(&trans->transaction->cache_write_mutex);
935 /*
936 * Make sure our free space cache IO is done before removing the
937 * free space inode
938 */
939 spin_lock(&trans->transaction->dirty_bgs_lock);
940 if (!list_empty(&block_group->io_list)) {
941 list_del_init(&block_group->io_list);
942
943 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
944
945 spin_unlock(&trans->transaction->dirty_bgs_lock);
946 btrfs_wait_cache_io(trans, block_group, path);
947 btrfs_put_block_group(block_group);
948 spin_lock(&trans->transaction->dirty_bgs_lock);
949 }
950
951 if (!list_empty(&block_group->dirty_list)) {
952 list_del_init(&block_group->dirty_list);
953 remove_rsv = true;
954 btrfs_put_block_group(block_group);
955 }
956 spin_unlock(&trans->transaction->dirty_bgs_lock);
957 mutex_unlock(&trans->transaction->cache_write_mutex);
958
36b216c8
BB
959 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
960 if (ret)
9fecd132 961 goto out;
e3e0520b 962
16b0c258 963 write_lock(&fs_info->block_group_cache_lock);
08dddb29
FM
964 rb_erase_cached(&block_group->cache_node,
965 &fs_info->block_group_cache_tree);
e3e0520b
JB
966 RB_CLEAR_NODE(&block_group->cache_node);
967
9fecd132
FM
968 /* Once for the block groups rbtree */
969 btrfs_put_block_group(block_group);
970
16b0c258 971 write_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
972
973 down_write(&block_group->space_info->groups_sem);
974 /*
975 * we must use list_del_init so people can check to see if they
976 * are still on the list after taking the semaphore
977 */
978 list_del_init(&block_group->list);
979 if (list_empty(&block_group->space_info->block_groups[index])) {
980 kobj = block_group->space_info->block_group_kobjs[index];
981 block_group->space_info->block_group_kobjs[index] = NULL;
982 clear_avail_alloc_bits(fs_info, block_group->flags);
983 }
984 up_write(&block_group->space_info->groups_sem);
985 clear_incompat_bg_bits(fs_info, block_group->flags);
986 if (kobj) {
987 kobject_del(kobj);
988 kobject_put(kobj);
989 }
990
991 if (block_group->has_caching_ctl)
992 caching_ctl = btrfs_get_caching_control(block_group);
993 if (block_group->cached == BTRFS_CACHE_STARTED)
994 btrfs_wait_block_group_cache_done(block_group);
995 if (block_group->has_caching_ctl) {
16b0c258 996 write_lock(&fs_info->block_group_cache_lock);
e3e0520b
JB
997 if (!caching_ctl) {
998 struct btrfs_caching_control *ctl;
999
1000 list_for_each_entry(ctl,
1001 &fs_info->caching_block_groups, list)
1002 if (ctl->block_group == block_group) {
1003 caching_ctl = ctl;
1004 refcount_inc(&caching_ctl->count);
1005 break;
1006 }
1007 }
1008 if (caching_ctl)
1009 list_del_init(&caching_ctl->list);
16b0c258 1010 write_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
1011 if (caching_ctl) {
1012 /* Once for the caching bgs list and once for us. */
1013 btrfs_put_caching_control(caching_ctl);
1014 btrfs_put_caching_control(caching_ctl);
1015 }
1016 }
1017
1018 spin_lock(&trans->transaction->dirty_bgs_lock);
1019 WARN_ON(!list_empty(&block_group->dirty_list));
1020 WARN_ON(!list_empty(&block_group->io_list));
1021 spin_unlock(&trans->transaction->dirty_bgs_lock);
1022
1023 btrfs_remove_free_space_cache(block_group);
1024
1025 spin_lock(&block_group->space_info->lock);
1026 list_del_init(&block_group->ro_list);
1027
1028 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1029 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1030 < block_group->length);
e3e0520b 1031 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1032 < block_group->length - block_group->zone_unusable);
1033 WARN_ON(block_group->space_info->bytes_zone_unusable
1034 < block_group->zone_unusable);
e3e0520b 1035 WARN_ON(block_group->space_info->disk_total
b3470b5d 1036 < block_group->length * factor);
6a921de5
NA
1037 WARN_ON(block_group->zone_is_active &&
1038 block_group->space_info->active_total_bytes
1039 < block_group->length);
e3e0520b 1040 }
b3470b5d 1041 block_group->space_info->total_bytes -= block_group->length;
6a921de5
NA
1042 if (block_group->zone_is_active)
1043 block_group->space_info->active_total_bytes -= block_group->length;
169e0da9
NA
1044 block_group->space_info->bytes_readonly -=
1045 (block_group->length - block_group->zone_unusable);
1046 block_group->space_info->bytes_zone_unusable -=
1047 block_group->zone_unusable;
b3470b5d 1048 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1049
1050 spin_unlock(&block_group->space_info->lock);
1051
ffcb9d44
FM
1052 /*
1053 * Remove the free space for the block group from the free space tree
1054 * and the block group's item from the extent tree before marking the
1055 * block group as removed. This is to prevent races with tasks that
1056 * freeze and unfreeze a block group, this task and another task
1057 * allocating a new block group - the unfreeze task ends up removing
1058 * the block group's extent map before the task calling this function
1059 * deletes the block group item from the extent tree, allowing for
1060 * another task to attempt to create another block group with the same
1061 * item key (and failing with -EEXIST and a transaction abort).
1062 */
1063 ret = remove_block_group_free_space(trans, block_group);
1064 if (ret)
1065 goto out;
1066
1067 ret = remove_block_group_item(trans, path, block_group);
1068 if (ret < 0)
1069 goto out;
1070
e3e0520b
JB
1071 spin_lock(&block_group->lock);
1072 block_group->removed = 1;
1073 /*
6b7304af
FM
1074 * At this point trimming or scrub can't start on this block group,
1075 * because we removed the block group from the rbtree
1076 * fs_info->block_group_cache_tree so no one can't find it anymore and
1077 * even if someone already got this block group before we removed it
1078 * from the rbtree, they have already incremented block_group->frozen -
1079 * if they didn't, for the trimming case they won't find any free space
1080 * entries because we already removed them all when we called
1081 * btrfs_remove_free_space_cache().
e3e0520b
JB
1082 *
1083 * And we must not remove the extent map from the fs_info->mapping_tree
1084 * to prevent the same logical address range and physical device space
6b7304af
FM
1085 * ranges from being reused for a new block group. This is needed to
1086 * avoid races with trimming and scrub.
1087 *
1088 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1089 * completely transactionless, so while it is trimming a range the
1090 * currently running transaction might finish and a new one start,
1091 * allowing for new block groups to be created that can reuse the same
1092 * physical device locations unless we take this special care.
1093 *
1094 * There may also be an implicit trim operation if the file system
1095 * is mounted with -odiscard. The same protections must remain
1096 * in place until the extents have been discarded completely when
1097 * the transaction commit has completed.
1098 */
6b7304af 1099 remove_em = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1100 spin_unlock(&block_group->lock);
1101
e3e0520b
JB
1102 if (remove_em) {
1103 struct extent_map_tree *em_tree;
1104
1105 em_tree = &fs_info->mapping_tree;
1106 write_lock(&em_tree->lock);
1107 remove_extent_mapping(em_tree, em);
1108 write_unlock(&em_tree->lock);
1109 /* once for the tree */
1110 free_extent_map(em);
1111 }
f6033c5e 1112
9fecd132 1113out:
f6033c5e
XY
1114 /* Once for the lookup reference */
1115 btrfs_put_block_group(block_group);
e3e0520b
JB
1116 if (remove_rsv)
1117 btrfs_delayed_refs_rsv_release(fs_info, 1);
1118 btrfs_free_path(path);
1119 return ret;
1120}
1121
1122struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1123 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1124{
dfe8aec4 1125 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3e0520b
JB
1126 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1127 struct extent_map *em;
1128 struct map_lookup *map;
1129 unsigned int num_items;
1130
1131 read_lock(&em_tree->lock);
1132 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1133 read_unlock(&em_tree->lock);
1134 ASSERT(em && em->start == chunk_offset);
1135
1136 /*
1137 * We need to reserve 3 + N units from the metadata space info in order
1138 * to remove a block group (done at btrfs_remove_chunk() and at
1139 * btrfs_remove_block_group()), which are used for:
1140 *
1141 * 1 unit for adding the free space inode's orphan (located in the tree
1142 * of tree roots).
1143 * 1 unit for deleting the block group item (located in the extent
1144 * tree).
1145 * 1 unit for deleting the free space item (located in tree of tree
1146 * roots).
1147 * N units for deleting N device extent items corresponding to each
1148 * stripe (located in the device tree).
1149 *
1150 * In order to remove a block group we also need to reserve units in the
1151 * system space info in order to update the chunk tree (update one or
1152 * more device items and remove one chunk item), but this is done at
1153 * btrfs_remove_chunk() through a call to check_system_chunk().
1154 */
1155 map = em->map_lookup;
1156 num_items = 3 + map->num_stripes;
1157 free_extent_map(em);
1158
dfe8aec4 1159 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
e3e0520b
JB
1160}
1161
26ce2095
JB
1162/*
1163 * Mark block group @cache read-only, so later write won't happen to block
1164 * group @cache.
1165 *
1166 * If @force is not set, this function will only mark the block group readonly
1167 * if we have enough free space (1M) in other metadata/system block groups.
1168 * If @force is not set, this function will mark the block group readonly
1169 * without checking free space.
1170 *
1171 * NOTE: This function doesn't care if other block groups can contain all the
1172 * data in this block group. That check should be done by relocation routine,
1173 * not this function.
1174 */
32da5386 1175static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1176{
1177 struct btrfs_space_info *sinfo = cache->space_info;
1178 u64 num_bytes;
26ce2095
JB
1179 int ret = -ENOSPC;
1180
26ce2095
JB
1181 spin_lock(&sinfo->lock);
1182 spin_lock(&cache->lock);
1183
195a49ea
FM
1184 if (cache->swap_extents) {
1185 ret = -ETXTBSY;
1186 goto out;
1187 }
1188
26ce2095
JB
1189 if (cache->ro) {
1190 cache->ro++;
1191 ret = 0;
1192 goto out;
1193 }
1194
b3470b5d 1195 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1196 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1197
1198 /*
a30a3d20
JB
1199 * Data never overcommits, even in mixed mode, so do just the straight
1200 * check of left over space in how much we have allocated.
26ce2095 1201 */
a30a3d20
JB
1202 if (force) {
1203 ret = 0;
1204 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1205 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1206
1207 /*
1208 * Here we make sure if we mark this bg RO, we still have enough
1209 * free space as buffer.
1210 */
1211 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1212 ret = 0;
1213 } else {
1214 /*
1215 * We overcommit metadata, so we need to do the
1216 * btrfs_can_overcommit check here, and we need to pass in
1217 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1218 * leeway to allow us to mark this block group as read only.
1219 */
1220 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1221 BTRFS_RESERVE_NO_FLUSH))
1222 ret = 0;
1223 }
1224
1225 if (!ret) {
26ce2095 1226 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1227 if (btrfs_is_zoned(cache->fs_info)) {
1228 /* Migrate zone_unusable bytes to readonly */
1229 sinfo->bytes_readonly += cache->zone_unusable;
1230 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1231 cache->zone_unusable = 0;
1232 }
26ce2095
JB
1233 cache->ro++;
1234 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1235 }
1236out:
1237 spin_unlock(&cache->lock);
1238 spin_unlock(&sinfo->lock);
1239 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1240 btrfs_info(cache->fs_info,
b3470b5d 1241 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1242 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1243 }
1244 return ret;
1245}
1246
fe119a6e
NB
1247static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1248 struct btrfs_block_group *bg)
45bb5d6a
NB
1249{
1250 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1251 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1252 const u64 start = bg->start;
1253 const u64 end = start + bg->length - 1;
1254 int ret;
1255
fe119a6e
NB
1256 spin_lock(&fs_info->trans_lock);
1257 if (trans->transaction->list.prev != &fs_info->trans_list) {
1258 prev_trans = list_last_entry(&trans->transaction->list,
1259 struct btrfs_transaction, list);
1260 refcount_inc(&prev_trans->use_count);
1261 }
1262 spin_unlock(&fs_info->trans_lock);
1263
45bb5d6a
NB
1264 /*
1265 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1266 * btrfs_finish_extent_commit(). If we are at transaction N, another
1267 * task might be running finish_extent_commit() for the previous
1268 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1269 * group in pinned_extents before we were able to clear the whole block
1270 * group range from pinned_extents. This means that task can lookup for
1271 * the block group after we unpinned it from pinned_extents and removed
1272 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1273 */
1274 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1275 if (prev_trans) {
1276 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1277 EXTENT_DIRTY);
1278 if (ret)
534cf531 1279 goto out;
fe119a6e 1280 }
45bb5d6a 1281
fe119a6e 1282 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1283 EXTENT_DIRTY);
534cf531 1284out:
45bb5d6a 1285 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1286 if (prev_trans)
1287 btrfs_put_transaction(prev_trans);
45bb5d6a 1288
534cf531 1289 return ret == 0;
45bb5d6a
NB
1290}
1291
e3e0520b
JB
1292/*
1293 * Process the unused_bgs list and remove any that don't have any allocated
1294 * space inside of them.
1295 */
1296void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1297{
32da5386 1298 struct btrfs_block_group *block_group;
e3e0520b
JB
1299 struct btrfs_space_info *space_info;
1300 struct btrfs_trans_handle *trans;
6e80d4f8 1301 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1302 int ret = 0;
1303
1304 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1305 return;
1306
ddfd08cb
JB
1307 /*
1308 * Long running balances can keep us blocked here for eternity, so
1309 * simply skip deletion if we're unable to get the mutex.
1310 */
f3372065 1311 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
ddfd08cb
JB
1312 return;
1313
e3e0520b
JB
1314 spin_lock(&fs_info->unused_bgs_lock);
1315 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1316 int trimming;
1317
1318 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1319 struct btrfs_block_group,
e3e0520b
JB
1320 bg_list);
1321 list_del_init(&block_group->bg_list);
1322
1323 space_info = block_group->space_info;
1324
1325 if (ret || btrfs_mixed_space_info(space_info)) {
1326 btrfs_put_block_group(block_group);
1327 continue;
1328 }
1329 spin_unlock(&fs_info->unused_bgs_lock);
1330
b0643e59
DZ
1331 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1332
e3e0520b
JB
1333 /* Don't want to race with allocators so take the groups_sem */
1334 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1335
1336 /*
1337 * Async discard moves the final block group discard to be prior
1338 * to the unused_bgs code path. Therefore, if it's not fully
1339 * trimmed, punt it back to the async discard lists.
1340 */
1341 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1342 !btrfs_is_free_space_trimmed(block_group)) {
1343 trace_btrfs_skip_unused_block_group(block_group);
1344 up_write(&space_info->groups_sem);
1345 /* Requeue if we failed because of async discard */
1346 btrfs_discard_queue_work(&fs_info->discard_ctl,
1347 block_group);
1348 goto next;
1349 }
1350
e3e0520b
JB
1351 spin_lock(&block_group->lock);
1352 if (block_group->reserved || block_group->pinned ||
bf38be65 1353 block_group->used || block_group->ro ||
e3e0520b
JB
1354 list_is_singular(&block_group->list)) {
1355 /*
1356 * We want to bail if we made new allocations or have
1357 * outstanding allocations in this block group. We do
1358 * the ro check in case balance is currently acting on
1359 * this block group.
1360 */
1361 trace_btrfs_skip_unused_block_group(block_group);
1362 spin_unlock(&block_group->lock);
1363 up_write(&space_info->groups_sem);
1364 goto next;
1365 }
1366 spin_unlock(&block_group->lock);
1367
1368 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1369 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1370 up_write(&space_info->groups_sem);
1371 if (ret < 0) {
1372 ret = 0;
1373 goto next;
1374 }
1375
74e91b12
NA
1376 ret = btrfs_zone_finish(block_group);
1377 if (ret < 0) {
1378 btrfs_dec_block_group_ro(block_group);
1379 if (ret == -EAGAIN)
1380 ret = 0;
1381 goto next;
1382 }
1383
e3e0520b
JB
1384 /*
1385 * Want to do this before we do anything else so we can recover
1386 * properly if we fail to join the transaction.
1387 */
1388 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1389 block_group->start);
e3e0520b
JB
1390 if (IS_ERR(trans)) {
1391 btrfs_dec_block_group_ro(block_group);
1392 ret = PTR_ERR(trans);
1393 goto next;
1394 }
1395
1396 /*
1397 * We could have pending pinned extents for this block group,
1398 * just delete them, we don't care about them anymore.
1399 */
534cf531
FM
1400 if (!clean_pinned_extents(trans, block_group)) {
1401 btrfs_dec_block_group_ro(block_group);
e3e0520b 1402 goto end_trans;
534cf531 1403 }
e3e0520b 1404
b0643e59
DZ
1405 /*
1406 * At this point, the block_group is read only and should fail
1407 * new allocations. However, btrfs_finish_extent_commit() can
1408 * cause this block_group to be placed back on the discard
1409 * lists because now the block_group isn't fully discarded.
1410 * Bail here and try again later after discarding everything.
1411 */
1412 spin_lock(&fs_info->discard_ctl.lock);
1413 if (!list_empty(&block_group->discard_list)) {
1414 spin_unlock(&fs_info->discard_ctl.lock);
1415 btrfs_dec_block_group_ro(block_group);
1416 btrfs_discard_queue_work(&fs_info->discard_ctl,
1417 block_group);
1418 goto end_trans;
1419 }
1420 spin_unlock(&fs_info->discard_ctl.lock);
1421
e3e0520b
JB
1422 /* Reset pinned so btrfs_put_block_group doesn't complain */
1423 spin_lock(&space_info->lock);
1424 spin_lock(&block_group->lock);
1425
1426 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1427 -block_group->pinned);
1428 space_info->bytes_readonly += block_group->pinned;
e3e0520b
JB
1429 block_group->pinned = 0;
1430
1431 spin_unlock(&block_group->lock);
1432 spin_unlock(&space_info->lock);
1433
6e80d4f8
DZ
1434 /*
1435 * The normal path here is an unused block group is passed here,
1436 * then trimming is handled in the transaction commit path.
1437 * Async discard interposes before this to do the trimming
1438 * before coming down the unused block group path as trimming
1439 * will no longer be done later in the transaction commit path.
1440 */
1441 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1442 goto flip_async;
1443
dcba6e48
NA
1444 /*
1445 * DISCARD can flip during remount. On zoned filesystems, we
1446 * need to reset sequential-required zones.
1447 */
1448 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1449 btrfs_is_zoned(fs_info);
e3e0520b
JB
1450
1451 /* Implicit trim during transaction commit. */
1452 if (trimming)
6b7304af 1453 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1454
1455 /*
1456 * Btrfs_remove_chunk will abort the transaction if things go
1457 * horribly wrong.
1458 */
b3470b5d 1459 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1460
1461 if (ret) {
1462 if (trimming)
6b7304af 1463 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1464 goto end_trans;
1465 }
1466
1467 /*
1468 * If we're not mounted with -odiscard, we can just forget
1469 * about this block group. Otherwise we'll need to wait
1470 * until transaction commit to do the actual discard.
1471 */
1472 if (trimming) {
1473 spin_lock(&fs_info->unused_bgs_lock);
1474 /*
1475 * A concurrent scrub might have added us to the list
1476 * fs_info->unused_bgs, so use a list_move operation
1477 * to add the block group to the deleted_bgs list.
1478 */
1479 list_move(&block_group->bg_list,
1480 &trans->transaction->deleted_bgs);
1481 spin_unlock(&fs_info->unused_bgs_lock);
1482 btrfs_get_block_group(block_group);
1483 }
1484end_trans:
1485 btrfs_end_transaction(trans);
1486next:
e3e0520b
JB
1487 btrfs_put_block_group(block_group);
1488 spin_lock(&fs_info->unused_bgs_lock);
1489 }
1490 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1491 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1492 return;
1493
1494flip_async:
1495 btrfs_end_transaction(trans);
f3372065 1496 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1497 btrfs_put_block_group(block_group);
1498 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1499}
1500
32da5386 1501void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1502{
1503 struct btrfs_fs_info *fs_info = bg->fs_info;
1504
1505 spin_lock(&fs_info->unused_bgs_lock);
1506 if (list_empty(&bg->bg_list)) {
1507 btrfs_get_block_group(bg);
1508 trace_btrfs_add_unused_block_group(bg);
1509 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1510 }
1511 spin_unlock(&fs_info->unused_bgs_lock);
1512}
4358d963 1513
2ca0ec77
JT
1514/*
1515 * We want block groups with a low number of used bytes to be in the beginning
1516 * of the list, so they will get reclaimed first.
1517 */
1518static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1519 const struct list_head *b)
1520{
1521 const struct btrfs_block_group *bg1, *bg2;
1522
1523 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1524 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1525
1526 return bg1->used > bg2->used;
1527}
1528
3687fcb0
JT
1529static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1530{
1531 if (btrfs_is_zoned(fs_info))
1532 return btrfs_zoned_should_reclaim(fs_info);
1533 return true;
1534}
1535
18bb8bbf
JT
1536void btrfs_reclaim_bgs_work(struct work_struct *work)
1537{
1538 struct btrfs_fs_info *fs_info =
1539 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1540 struct btrfs_block_group *bg;
1541 struct btrfs_space_info *space_info;
18bb8bbf
JT
1542
1543 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1544 return;
1545
3687fcb0
JT
1546 if (!btrfs_should_reclaim(fs_info))
1547 return;
1548
ca5e4ea0
NA
1549 sb_start_write(fs_info->sb);
1550
1551 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1552 sb_end_write(fs_info->sb);
18bb8bbf 1553 return;
ca5e4ea0 1554 }
18bb8bbf 1555
9cc0b837
JT
1556 /*
1557 * Long running balances can keep us blocked here for eternity, so
1558 * simply skip reclaim if we're unable to get the mutex.
1559 */
1560 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1561 btrfs_exclop_finish(fs_info);
ca5e4ea0 1562 sb_end_write(fs_info->sb);
9cc0b837
JT
1563 return;
1564 }
1565
18bb8bbf 1566 spin_lock(&fs_info->unused_bgs_lock);
2ca0ec77
JT
1567 /*
1568 * Sort happens under lock because we can't simply splice it and sort.
1569 * The block groups might still be in use and reachable via bg_list,
1570 * and their presence in the reclaim_bgs list must be preserved.
1571 */
1572 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
18bb8bbf 1573 while (!list_empty(&fs_info->reclaim_bgs)) {
5f93e776 1574 u64 zone_unusable;
1cea5cf0
FM
1575 int ret = 0;
1576
18bb8bbf
JT
1577 bg = list_first_entry(&fs_info->reclaim_bgs,
1578 struct btrfs_block_group,
1579 bg_list);
1580 list_del_init(&bg->bg_list);
1581
1582 space_info = bg->space_info;
1583 spin_unlock(&fs_info->unused_bgs_lock);
1584
1585 /* Don't race with allocators so take the groups_sem */
1586 down_write(&space_info->groups_sem);
1587
1588 spin_lock(&bg->lock);
1589 if (bg->reserved || bg->pinned || bg->ro) {
1590 /*
1591 * We want to bail if we made new allocations or have
1592 * outstanding allocations in this block group. We do
1593 * the ro check in case balance is currently acting on
1594 * this block group.
1595 */
1596 spin_unlock(&bg->lock);
1597 up_write(&space_info->groups_sem);
1598 goto next;
1599 }
1600 spin_unlock(&bg->lock);
1601
1602 /* Get out fast, in case we're unmounting the filesystem */
1603 if (btrfs_fs_closing(fs_info)) {
1604 up_write(&space_info->groups_sem);
1605 goto next;
1606 }
1607
5f93e776
JT
1608 /*
1609 * Cache the zone_unusable value before turning the block group
1610 * to read only. As soon as the blog group is read only it's
1611 * zone_unusable value gets moved to the block group's read-only
1612 * bytes and isn't available for calculations anymore.
1613 */
1614 zone_unusable = bg->zone_unusable;
18bb8bbf
JT
1615 ret = inc_block_group_ro(bg, 0);
1616 up_write(&space_info->groups_sem);
1617 if (ret < 0)
1618 goto next;
1619
5f93e776
JT
1620 btrfs_info(fs_info,
1621 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1622 bg->start, div_u64(bg->used * 100, bg->length),
1623 div64_u64(zone_unusable * 100, bg->length));
18bb8bbf
JT
1624 trace_btrfs_reclaim_block_group(bg);
1625 ret = btrfs_relocate_chunk(fs_info, bg->start);
74944c87
JB
1626 if (ret) {
1627 btrfs_dec_block_group_ro(bg);
18bb8bbf
JT
1628 btrfs_err(fs_info, "error relocating chunk %llu",
1629 bg->start);
74944c87 1630 }
18bb8bbf
JT
1631
1632next:
d96b3424 1633 btrfs_put_block_group(bg);
18bb8bbf
JT
1634 spin_lock(&fs_info->unused_bgs_lock);
1635 }
1636 spin_unlock(&fs_info->unused_bgs_lock);
1637 mutex_unlock(&fs_info->reclaim_bgs_lock);
1638 btrfs_exclop_finish(fs_info);
ca5e4ea0 1639 sb_end_write(fs_info->sb);
18bb8bbf
JT
1640}
1641
1642void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1643{
1644 spin_lock(&fs_info->unused_bgs_lock);
1645 if (!list_empty(&fs_info->reclaim_bgs))
1646 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1647 spin_unlock(&fs_info->unused_bgs_lock);
1648}
1649
1650void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1651{
1652 struct btrfs_fs_info *fs_info = bg->fs_info;
1653
1654 spin_lock(&fs_info->unused_bgs_lock);
1655 if (list_empty(&bg->bg_list)) {
1656 btrfs_get_block_group(bg);
1657 trace_btrfs_add_reclaim_block_group(bg);
1658 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1659 }
1660 spin_unlock(&fs_info->unused_bgs_lock);
1661}
1662
e3ba67a1
JT
1663static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1664 struct btrfs_path *path)
1665{
1666 struct extent_map_tree *em_tree;
1667 struct extent_map *em;
1668 struct btrfs_block_group_item bg;
1669 struct extent_buffer *leaf;
1670 int slot;
1671 u64 flags;
1672 int ret = 0;
1673
1674 slot = path->slots[0];
1675 leaf = path->nodes[0];
1676
1677 em_tree = &fs_info->mapping_tree;
1678 read_lock(&em_tree->lock);
1679 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1680 read_unlock(&em_tree->lock);
1681 if (!em) {
1682 btrfs_err(fs_info,
1683 "logical %llu len %llu found bg but no related chunk",
1684 key->objectid, key->offset);
1685 return -ENOENT;
1686 }
1687
1688 if (em->start != key->objectid || em->len != key->offset) {
1689 btrfs_err(fs_info,
1690 "block group %llu len %llu mismatch with chunk %llu len %llu",
1691 key->objectid, key->offset, em->start, em->len);
1692 ret = -EUCLEAN;
1693 goto out_free_em;
1694 }
1695
1696 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1697 sizeof(bg));
1698 flags = btrfs_stack_block_group_flags(&bg) &
1699 BTRFS_BLOCK_GROUP_TYPE_MASK;
1700
1701 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1702 btrfs_err(fs_info,
1703"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1704 key->objectid, key->offset, flags,
1705 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1706 ret = -EUCLEAN;
1707 }
1708
1709out_free_em:
1710 free_extent_map(em);
1711 return ret;
1712}
1713
4358d963
JB
1714static int find_first_block_group(struct btrfs_fs_info *fs_info,
1715 struct btrfs_path *path,
1716 struct btrfs_key *key)
1717{
dfe8aec4 1718 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3ba67a1 1719 int ret;
4358d963 1720 struct btrfs_key found_key;
4358d963 1721
36dfbbe2 1722 btrfs_for_each_slot(root, key, &found_key, path, ret) {
4358d963
JB
1723 if (found_key.objectid >= key->objectid &&
1724 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
36dfbbe2 1725 return read_bg_from_eb(fs_info, &found_key, path);
4358d963 1726 }
4358d963 1727 }
4358d963
JB
1728 return ret;
1729}
1730
1731static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1732{
1733 u64 extra_flags = chunk_to_extended(flags) &
1734 BTRFS_EXTENDED_PROFILE_MASK;
1735
1736 write_seqlock(&fs_info->profiles_lock);
1737 if (flags & BTRFS_BLOCK_GROUP_DATA)
1738 fs_info->avail_data_alloc_bits |= extra_flags;
1739 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1740 fs_info->avail_metadata_alloc_bits |= extra_flags;
1741 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1742 fs_info->avail_system_alloc_bits |= extra_flags;
1743 write_sequnlock(&fs_info->profiles_lock);
1744}
1745
96a14336 1746/**
9ee9b979
NB
1747 * Map a physical disk address to a list of logical addresses
1748 *
1749 * @fs_info: the filesystem
96a14336 1750 * @chunk_start: logical address of block group
138082f3 1751 * @bdev: physical device to resolve, can be NULL to indicate any device
96a14336
NB
1752 * @physical: physical address to map to logical addresses
1753 * @logical: return array of logical addresses which map to @physical
1754 * @naddrs: length of @logical
1755 * @stripe_len: size of IO stripe for the given block group
1756 *
1757 * Maps a particular @physical disk address to a list of @logical addresses.
1758 * Used primarily to exclude those portions of a block group that contain super
1759 * block copies.
1760 */
96a14336 1761int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
138082f3
NA
1762 struct block_device *bdev, u64 physical, u64 **logical,
1763 int *naddrs, int *stripe_len)
96a14336
NB
1764{
1765 struct extent_map *em;
1766 struct map_lookup *map;
1767 u64 *buf;
1768 u64 bytenr;
1776ad17
NB
1769 u64 data_stripe_length;
1770 u64 io_stripe_size;
1771 int i, nr = 0;
1772 int ret = 0;
96a14336
NB
1773
1774 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1775 if (IS_ERR(em))
1776 return -EIO;
1777
1778 map = em->map_lookup;
9e22b925 1779 data_stripe_length = em->orig_block_len;
1776ad17 1780 io_stripe_size = map->stripe_len;
138082f3 1781 chunk_start = em->start;
96a14336 1782
9e22b925
NB
1783 /* For RAID5/6 adjust to a full IO stripe length */
1784 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776ad17 1785 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1786
1787 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1788 if (!buf) {
1789 ret = -ENOMEM;
1790 goto out;
1791 }
96a14336
NB
1792
1793 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1794 bool already_inserted = false;
1795 u64 stripe_nr;
138082f3 1796 u64 offset;
1776ad17
NB
1797 int j;
1798
1799 if (!in_range(physical, map->stripes[i].physical,
1800 data_stripe_length))
96a14336
NB
1801 continue;
1802
138082f3
NA
1803 if (bdev && map->stripes[i].dev->bdev != bdev)
1804 continue;
1805
96a14336 1806 stripe_nr = physical - map->stripes[i].physical;
138082f3 1807 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
96a14336 1808
ac067734
DS
1809 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1810 BTRFS_BLOCK_GROUP_RAID10)) {
96a14336
NB
1811 stripe_nr = stripe_nr * map->num_stripes + i;
1812 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
96a14336
NB
1813 }
1814 /*
1815 * The remaining case would be for RAID56, multiply by
1816 * nr_data_stripes(). Alternatively, just use rmap_len below
1817 * instead of map->stripe_len
1818 */
1819
138082f3 1820 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
1821
1822 /* Ensure we don't add duplicate addresses */
96a14336 1823 for (j = 0; j < nr; j++) {
1776ad17
NB
1824 if (buf[j] == bytenr) {
1825 already_inserted = true;
96a14336 1826 break;
1776ad17 1827 }
96a14336 1828 }
1776ad17
NB
1829
1830 if (!already_inserted)
96a14336 1831 buf[nr++] = bytenr;
96a14336
NB
1832 }
1833
1834 *logical = buf;
1835 *naddrs = nr;
1776ad17
NB
1836 *stripe_len = io_stripe_size;
1837out:
96a14336 1838 free_extent_map(em);
1776ad17 1839 return ret;
96a14336
NB
1840}
1841
32da5386 1842static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1843{
1844 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 1845 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
1846 u64 bytenr;
1847 u64 *logical;
1848 int stripe_len;
1849 int i, nr, ret;
1850
b3470b5d
DS
1851 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1852 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1853 cache->bytes_super += stripe_len;
b3470b5d 1854 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1855 stripe_len);
1856 if (ret)
1857 return ret;
1858 }
1859
1860 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1861 bytenr = btrfs_sb_offset(i);
138082f3 1862 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
4358d963
JB
1863 bytenr, &logical, &nr, &stripe_len);
1864 if (ret)
1865 return ret;
1866
12659251
NA
1867 /* Shouldn't have super stripes in sequential zones */
1868 if (zoned && nr) {
1869 btrfs_err(fs_info,
1870 "zoned: block group %llu must not contain super block",
1871 cache->start);
1872 return -EUCLEAN;
1873 }
1874
4358d963 1875 while (nr--) {
96f9b0f2
NB
1876 u64 len = min_t(u64, stripe_len,
1877 cache->start + cache->length - logical[nr]);
4358d963
JB
1878
1879 cache->bytes_super += len;
96f9b0f2
NB
1880 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1881 len);
4358d963
JB
1882 if (ret) {
1883 kfree(logical);
1884 return ret;
1885 }
1886 }
1887
1888 kfree(logical);
1889 }
1890 return 0;
1891}
1892
32da5386 1893static void link_block_group(struct btrfs_block_group *cache)
4358d963
JB
1894{
1895 struct btrfs_space_info *space_info = cache->space_info;
1896 int index = btrfs_bg_flags_to_raid_index(cache->flags);
4358d963
JB
1897
1898 down_write(&space_info->groups_sem);
4358d963
JB
1899 list_add_tail(&cache->list, &space_info->block_groups[index]);
1900 up_write(&space_info->groups_sem);
4358d963
JB
1901}
1902
32da5386 1903static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 1904 struct btrfs_fs_info *fs_info, u64 start)
4358d963 1905{
32da5386 1906 struct btrfs_block_group *cache;
4358d963
JB
1907
1908 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1909 if (!cache)
1910 return NULL;
1911
1912 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1913 GFP_NOFS);
1914 if (!cache->free_space_ctl) {
1915 kfree(cache);
1916 return NULL;
1917 }
1918
b3470b5d 1919 cache->start = start;
4358d963
JB
1920
1921 cache->fs_info = fs_info;
1922 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 1923
6e80d4f8
DZ
1924 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1925
48aaeebe 1926 refcount_set(&cache->refs, 1);
4358d963
JB
1927 spin_lock_init(&cache->lock);
1928 init_rwsem(&cache->data_rwsem);
1929 INIT_LIST_HEAD(&cache->list);
1930 INIT_LIST_HEAD(&cache->cluster_list);
1931 INIT_LIST_HEAD(&cache->bg_list);
1932 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1933 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1934 INIT_LIST_HEAD(&cache->dirty_list);
1935 INIT_LIST_HEAD(&cache->io_list);
afba2bc0 1936 INIT_LIST_HEAD(&cache->active_bg_list);
cd79909b 1937 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 1938 atomic_set(&cache->frozen, 0);
4358d963
JB
1939 mutex_init(&cache->free_space_lock);
1940 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1941
1942 return cache;
1943}
1944
1945/*
1946 * Iterate all chunks and verify that each of them has the corresponding block
1947 * group
1948 */
1949static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1950{
1951 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1952 struct extent_map *em;
32da5386 1953 struct btrfs_block_group *bg;
4358d963
JB
1954 u64 start = 0;
1955 int ret = 0;
1956
1957 while (1) {
1958 read_lock(&map_tree->lock);
1959 /*
1960 * lookup_extent_mapping will return the first extent map
1961 * intersecting the range, so setting @len to 1 is enough to
1962 * get the first chunk.
1963 */
1964 em = lookup_extent_mapping(map_tree, start, 1);
1965 read_unlock(&map_tree->lock);
1966 if (!em)
1967 break;
1968
1969 bg = btrfs_lookup_block_group(fs_info, em->start);
1970 if (!bg) {
1971 btrfs_err(fs_info,
1972 "chunk start=%llu len=%llu doesn't have corresponding block group",
1973 em->start, em->len);
1974 ret = -EUCLEAN;
1975 free_extent_map(em);
1976 break;
1977 }
b3470b5d 1978 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
1979 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1980 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1981 btrfs_err(fs_info,
1982"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1983 em->start, em->len,
1984 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 1985 bg->start, bg->length,
4358d963
JB
1986 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1987 ret = -EUCLEAN;
1988 free_extent_map(em);
1989 btrfs_put_block_group(bg);
1990 break;
1991 }
1992 start = em->start + em->len;
1993 free_extent_map(em);
1994 btrfs_put_block_group(bg);
1995 }
1996 return ret;
1997}
1998
ffb9e0f0 1999static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 2000 struct btrfs_block_group_item *bgi,
d49a2ddb 2001 const struct btrfs_key *key,
ffb9e0f0
QW
2002 int need_clear)
2003{
32da5386 2004 struct btrfs_block_group *cache;
ffb9e0f0 2005 struct btrfs_space_info *space_info;
ffb9e0f0 2006 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
2007 int ret;
2008
d49a2ddb 2009 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 2010
9afc6649 2011 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
2012 if (!cache)
2013 return -ENOMEM;
2014
4afd2fe8
JT
2015 cache->length = key->offset;
2016 cache->used = btrfs_stack_block_group_used(bgi);
2017 cache->flags = btrfs_stack_block_group_flags(bgi);
f7238e50 2018 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
9afc6649 2019
e3e39c72
MPS
2020 set_free_space_tree_thresholds(cache);
2021
ffb9e0f0
QW
2022 if (need_clear) {
2023 /*
2024 * When we mount with old space cache, we need to
2025 * set BTRFS_DC_CLEAR and set dirty flag.
2026 *
2027 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2028 * truncate the old free space cache inode and
2029 * setup a new one.
2030 * b) Setting 'dirty flag' makes sure that we flush
2031 * the new space cache info onto disk.
2032 */
2033 if (btrfs_test_opt(info, SPACE_CACHE))
2034 cache->disk_cache_state = BTRFS_DC_CLEAR;
2035 }
ffb9e0f0
QW
2036 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2037 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2038 btrfs_err(info,
2039"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2040 cache->start);
2041 ret = -EINVAL;
2042 goto error;
2043 }
2044
a94794d5 2045 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
2046 if (ret) {
2047 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2048 cache->start);
2049 goto error;
2050 }
2051
ffb9e0f0
QW
2052 /*
2053 * We need to exclude the super stripes now so that the space info has
2054 * super bytes accounted for, otherwise we'll think we have more space
2055 * than we actually do.
2056 */
2057 ret = exclude_super_stripes(cache);
2058 if (ret) {
2059 /* We may have excluded something, so call this just in case. */
2060 btrfs_free_excluded_extents(cache);
2061 goto error;
2062 }
2063
2064 /*
169e0da9
NA
2065 * For zoned filesystem, space after the allocation offset is the only
2066 * free space for a block group. So, we don't need any caching work.
2067 * btrfs_calc_zone_unusable() will set the amount of free space and
2068 * zone_unusable space.
2069 *
2070 * For regular filesystem, check for two cases, either we are full, and
2071 * therefore don't need to bother with the caching work since we won't
2072 * find any space, or we are empty, and we can just add all the space
2073 * in and be done with it. This saves us _a_lot_ of time, particularly
2074 * in the full case.
ffb9e0f0 2075 */
169e0da9
NA
2076 if (btrfs_is_zoned(info)) {
2077 btrfs_calc_zone_unusable(cache);
c46c4247
NA
2078 /* Should not have any excluded extents. Just in case, though. */
2079 btrfs_free_excluded_extents(cache);
169e0da9 2080 } else if (cache->length == cache->used) {
ffb9e0f0
QW
2081 cache->last_byte_to_unpin = (u64)-1;
2082 cache->cached = BTRFS_CACHE_FINISHED;
2083 btrfs_free_excluded_extents(cache);
2084 } else if (cache->used == 0) {
2085 cache->last_byte_to_unpin = (u64)-1;
2086 cache->cached = BTRFS_CACHE_FINISHED;
9afc6649
QW
2087 add_new_free_space(cache, cache->start,
2088 cache->start + cache->length);
ffb9e0f0
QW
2089 btrfs_free_excluded_extents(cache);
2090 }
2091
2092 ret = btrfs_add_block_group_cache(info, cache);
2093 if (ret) {
2094 btrfs_remove_free_space_cache(cache);
2095 goto error;
2096 }
2097 trace_btrfs_add_block_group(info, cache, 0);
9afc6649 2098 btrfs_update_space_info(info, cache->flags, cache->length,
169e0da9 2099 cache->used, cache->bytes_super,
6a921de5
NA
2100 cache->zone_unusable, cache->zone_is_active,
2101 &space_info);
ffb9e0f0
QW
2102
2103 cache->space_info = space_info;
2104
2105 link_block_group(cache);
2106
2107 set_avail_alloc_bits(info, cache->flags);
a09f23c3
AJ
2108 if (btrfs_chunk_writeable(info, cache->start)) {
2109 if (cache->used == 0) {
2110 ASSERT(list_empty(&cache->bg_list));
2111 if (btrfs_test_opt(info, DISCARD_ASYNC))
2112 btrfs_discard_queue_work(&info->discard_ctl, cache);
2113 else
2114 btrfs_mark_bg_unused(cache);
2115 }
2116 } else {
ffb9e0f0 2117 inc_block_group_ro(cache, 1);
ffb9e0f0 2118 }
a09f23c3 2119
ffb9e0f0
QW
2120 return 0;
2121error:
2122 btrfs_put_block_group(cache);
2123 return ret;
2124}
2125
42437a63
JB
2126static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2127{
2128 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2129 struct btrfs_space_info *space_info;
2130 struct rb_node *node;
2131 int ret = 0;
2132
2133 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2134 struct extent_map *em;
2135 struct map_lookup *map;
2136 struct btrfs_block_group *bg;
2137
2138 em = rb_entry(node, struct extent_map, rb_node);
2139 map = em->map_lookup;
2140 bg = btrfs_create_block_group_cache(fs_info, em->start);
2141 if (!bg) {
2142 ret = -ENOMEM;
2143 break;
2144 }
2145
2146 /* Fill dummy cache as FULL */
2147 bg->length = em->len;
2148 bg->flags = map->type;
2149 bg->last_byte_to_unpin = (u64)-1;
2150 bg->cached = BTRFS_CACHE_FINISHED;
2151 bg->used = em->len;
2152 bg->flags = map->type;
2153 ret = btrfs_add_block_group_cache(fs_info, bg);
2b29726c
QW
2154 /*
2155 * We may have some valid block group cache added already, in
2156 * that case we skip to the next one.
2157 */
2158 if (ret == -EEXIST) {
2159 ret = 0;
2160 btrfs_put_block_group(bg);
2161 continue;
2162 }
2163
42437a63
JB
2164 if (ret) {
2165 btrfs_remove_free_space_cache(bg);
2166 btrfs_put_block_group(bg);
2167 break;
2168 }
2b29726c 2169
42437a63 2170 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
6a921de5 2171 0, 0, false, &space_info);
42437a63
JB
2172 bg->space_info = space_info;
2173 link_block_group(bg);
2174
2175 set_avail_alloc_bits(fs_info, bg->flags);
2176 }
2177 if (!ret)
2178 btrfs_init_global_block_rsv(fs_info);
2179 return ret;
2180}
2181
4358d963
JB
2182int btrfs_read_block_groups(struct btrfs_fs_info *info)
2183{
dfe8aec4 2184 struct btrfs_root *root = btrfs_block_group_root(info);
4358d963
JB
2185 struct btrfs_path *path;
2186 int ret;
32da5386 2187 struct btrfs_block_group *cache;
4358d963
JB
2188 struct btrfs_space_info *space_info;
2189 struct btrfs_key key;
4358d963
JB
2190 int need_clear = 0;
2191 u64 cache_gen;
4358d963 2192
dfe8aec4 2193 if (!root)
42437a63
JB
2194 return fill_dummy_bgs(info);
2195
4358d963
JB
2196 key.objectid = 0;
2197 key.offset = 0;
2198 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2199 path = btrfs_alloc_path();
2200 if (!path)
2201 return -ENOMEM;
4358d963
JB
2202
2203 cache_gen = btrfs_super_cache_generation(info->super_copy);
2204 if (btrfs_test_opt(info, SPACE_CACHE) &&
2205 btrfs_super_generation(info->super_copy) != cache_gen)
2206 need_clear = 1;
2207 if (btrfs_test_opt(info, CLEAR_CACHE))
2208 need_clear = 1;
2209
2210 while (1) {
4afd2fe8
JT
2211 struct btrfs_block_group_item bgi;
2212 struct extent_buffer *leaf;
2213 int slot;
2214
4358d963
JB
2215 ret = find_first_block_group(info, path, &key);
2216 if (ret > 0)
2217 break;
2218 if (ret != 0)
2219 goto error;
2220
4afd2fe8
JT
2221 leaf = path->nodes[0];
2222 slot = path->slots[0];
2223
2224 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2225 sizeof(bgi));
2226
2227 btrfs_item_key_to_cpu(leaf, &key, slot);
2228 btrfs_release_path(path);
2229 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2230 if (ret < 0)
4358d963 2231 goto error;
ffb9e0f0
QW
2232 key.objectid += key.offset;
2233 key.offset = 0;
4358d963 2234 }
7837fa88 2235 btrfs_release_path(path);
4358d963 2236
72804905 2237 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2238 int i;
2239
2240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2241 if (list_empty(&space_info->block_groups[i]))
2242 continue;
2243 cache = list_first_entry(&space_info->block_groups[i],
2244 struct btrfs_block_group,
2245 list);
2246 btrfs_sysfs_add_block_group_type(cache);
2247 }
2248
4358d963
JB
2249 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2250 (BTRFS_BLOCK_GROUP_RAID10 |
2251 BTRFS_BLOCK_GROUP_RAID1_MASK |
2252 BTRFS_BLOCK_GROUP_RAID56_MASK |
2253 BTRFS_BLOCK_GROUP_DUP)))
2254 continue;
2255 /*
2256 * Avoid allocating from un-mirrored block group if there are
2257 * mirrored block groups.
2258 */
2259 list_for_each_entry(cache,
2260 &space_info->block_groups[BTRFS_RAID_RAID0],
2261 list)
e11c0406 2262 inc_block_group_ro(cache, 1);
4358d963
JB
2263 list_for_each_entry(cache,
2264 &space_info->block_groups[BTRFS_RAID_SINGLE],
2265 list)
e11c0406 2266 inc_block_group_ro(cache, 1);
4358d963
JB
2267 }
2268
2269 btrfs_init_global_block_rsv(info);
2270 ret = check_chunk_block_group_mappings(info);
2271error:
2272 btrfs_free_path(path);
2b29726c
QW
2273 /*
2274 * We've hit some error while reading the extent tree, and have
2275 * rescue=ibadroots mount option.
2276 * Try to fill the tree using dummy block groups so that the user can
2277 * continue to mount and grab their data.
2278 */
2279 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2280 ret = fill_dummy_bgs(info);
4358d963
JB
2281 return ret;
2282}
2283
79bd3712
FM
2284/*
2285 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2286 * allocation.
2287 *
2288 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2289 * phases.
2290 */
97f4728a
QW
2291static int insert_block_group_item(struct btrfs_trans_handle *trans,
2292 struct btrfs_block_group *block_group)
2293{
2294 struct btrfs_fs_info *fs_info = trans->fs_info;
2295 struct btrfs_block_group_item bgi;
dfe8aec4 2296 struct btrfs_root *root = btrfs_block_group_root(fs_info);
97f4728a
QW
2297 struct btrfs_key key;
2298
2299 spin_lock(&block_group->lock);
2300 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2301 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2302 block_group->global_root_id);
97f4728a
QW
2303 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2304 key.objectid = block_group->start;
2305 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2306 key.offset = block_group->length;
2307 spin_unlock(&block_group->lock);
2308
97f4728a
QW
2309 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2310}
2311
2eadb9e7
NB
2312static int insert_dev_extent(struct btrfs_trans_handle *trans,
2313 struct btrfs_device *device, u64 chunk_offset,
2314 u64 start, u64 num_bytes)
2315{
2316 struct btrfs_fs_info *fs_info = device->fs_info;
2317 struct btrfs_root *root = fs_info->dev_root;
2318 struct btrfs_path *path;
2319 struct btrfs_dev_extent *extent;
2320 struct extent_buffer *leaf;
2321 struct btrfs_key key;
2322 int ret;
2323
2324 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2325 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2326 path = btrfs_alloc_path();
2327 if (!path)
2328 return -ENOMEM;
2329
2330 key.objectid = device->devid;
2331 key.type = BTRFS_DEV_EXTENT_KEY;
2332 key.offset = start;
2333 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2334 if (ret)
2335 goto out;
2336
2337 leaf = path->nodes[0];
2338 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2339 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2340 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2341 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2342 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2343
2344 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2345 btrfs_mark_buffer_dirty(leaf);
2346out:
2347 btrfs_free_path(path);
2348 return ret;
2349}
2350
2351/*
2352 * This function belongs to phase 2.
2353 *
2354 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2355 * phases.
2356 */
2357static int insert_dev_extents(struct btrfs_trans_handle *trans,
2358 u64 chunk_offset, u64 chunk_size)
2359{
2360 struct btrfs_fs_info *fs_info = trans->fs_info;
2361 struct btrfs_device *device;
2362 struct extent_map *em;
2363 struct map_lookup *map;
2364 u64 dev_offset;
2365 u64 stripe_size;
2366 int i;
2367 int ret = 0;
2368
2369 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2370 if (IS_ERR(em))
2371 return PTR_ERR(em);
2372
2373 map = em->map_lookup;
2374 stripe_size = em->orig_block_len;
2375
2376 /*
2377 * Take the device list mutex to prevent races with the final phase of
2378 * a device replace operation that replaces the device object associated
2379 * with the map's stripes, because the device object's id can change
2380 * at any time during that final phase of the device replace operation
2381 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2382 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2383 * resulting in persisting a device extent item with such ID.
2384 */
2385 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2386 for (i = 0; i < map->num_stripes; i++) {
2387 device = map->stripes[i].dev;
2388 dev_offset = map->stripes[i].physical;
2389
2390 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2391 stripe_size);
2392 if (ret)
2393 break;
2394 }
2395 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2396
2397 free_extent_map(em);
2398 return ret;
2399}
2400
79bd3712
FM
2401/*
2402 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2403 * chunk allocation.
2404 *
2405 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2406 * phases.
2407 */
4358d963
JB
2408void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2409{
2410 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2411 struct btrfs_block_group *block_group;
4358d963
JB
2412 int ret = 0;
2413
4358d963 2414 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2415 int index;
2416
4358d963 2417 block_group = list_first_entry(&trans->new_bgs,
32da5386 2418 struct btrfs_block_group,
4358d963
JB
2419 bg_list);
2420 if (ret)
2421 goto next;
2422
49ea112d
JB
2423 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2424
97f4728a 2425 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2426 if (ret)
2427 btrfs_abort_transaction(trans, ret);
79bd3712
FM
2428 if (!block_group->chunk_item_inserted) {
2429 mutex_lock(&fs_info->chunk_mutex);
2430 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2431 mutex_unlock(&fs_info->chunk_mutex);
2432 if (ret)
2433 btrfs_abort_transaction(trans, ret);
2434 }
2eadb9e7
NB
2435 ret = insert_dev_extents(trans, block_group->start,
2436 block_group->length);
4358d963
JB
2437 if (ret)
2438 btrfs_abort_transaction(trans, ret);
2439 add_block_group_free_space(trans, block_group);
49ea112d
JB
2440
2441 /*
2442 * If we restriped during balance, we may have added a new raid
2443 * type, so now add the sysfs entries when it is safe to do so.
2444 * We don't have to worry about locking here as it's handled in
2445 * btrfs_sysfs_add_block_group_type.
2446 */
2447 if (block_group->space_info->block_group_kobjs[index] == NULL)
2448 btrfs_sysfs_add_block_group_type(block_group);
2449
4358d963
JB
2450 /* Already aborted the transaction if it failed. */
2451next:
2452 btrfs_delayed_refs_rsv_release(fs_info, 1);
2453 list_del_init(&block_group->bg_list);
2454 }
2455 btrfs_trans_release_chunk_metadata(trans);
2456}
2457
f7238e50
JB
2458/*
2459 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2460 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2461 */
2462static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2463{
2464 u64 div = SZ_1G;
2465 u64 index;
2466
2467 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2468 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2469
2470 /* If we have a smaller fs index based on 128MiB. */
2471 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2472 div = SZ_128M;
2473
2474 offset = div64_u64(offset, div);
2475 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2476 return index;
2477}
2478
79bd3712
FM
2479struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2480 u64 bytes_used, u64 type,
2481 u64 chunk_offset, u64 size)
4358d963
JB
2482{
2483 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2484 struct btrfs_block_group *cache;
4358d963
JB
2485 int ret;
2486
2487 btrfs_set_log_full_commit(trans);
2488
9afc6649 2489 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963 2490 if (!cache)
79bd3712 2491 return ERR_PTR(-ENOMEM);
4358d963 2492
9afc6649 2493 cache->length = size;
e3e39c72 2494 set_free_space_tree_thresholds(cache);
bf38be65 2495 cache->used = bytes_used;
4358d963
JB
2496 cache->flags = type;
2497 cache->last_byte_to_unpin = (u64)-1;
2498 cache->cached = BTRFS_CACHE_FINISHED;
f7238e50
JB
2499 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2500
997e3e2e
BB
2501 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2502 cache->needs_free_space = 1;
08e11a3d 2503
a94794d5 2504 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2505 if (ret) {
2506 btrfs_put_block_group(cache);
79bd3712 2507 return ERR_PTR(ret);
08e11a3d
NA
2508 }
2509
4358d963
JB
2510 ret = exclude_super_stripes(cache);
2511 if (ret) {
2512 /* We may have excluded something, so call this just in case */
2513 btrfs_free_excluded_extents(cache);
2514 btrfs_put_block_group(cache);
79bd3712 2515 return ERR_PTR(ret);
4358d963
JB
2516 }
2517
2518 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2519
2520 btrfs_free_excluded_extents(cache);
2521
2522#ifdef CONFIG_BTRFS_DEBUG
2523 if (btrfs_should_fragment_free_space(cache)) {
2524 u64 new_bytes_used = size - bytes_used;
2525
2526 bytes_used += new_bytes_used >> 1;
e11c0406 2527 fragment_free_space(cache);
4358d963
JB
2528 }
2529#endif
2530 /*
2531 * Ensure the corresponding space_info object is created and
2532 * assigned to our block group. We want our bg to be added to the rbtree
2533 * with its ->space_info set.
2534 */
2535 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2536 ASSERT(cache->space_info);
2537
2538 ret = btrfs_add_block_group_cache(fs_info, cache);
2539 if (ret) {
2540 btrfs_remove_free_space_cache(cache);
2541 btrfs_put_block_group(cache);
79bd3712 2542 return ERR_PTR(ret);
4358d963
JB
2543 }
2544
2545 /*
2546 * Now that our block group has its ->space_info set and is inserted in
2547 * the rbtree, update the space info's counters.
2548 */
2549 trace_btrfs_add_block_group(fs_info, cache, 1);
2550 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
98173255 2551 cache->bytes_super, cache->zone_unusable,
6a921de5 2552 cache->zone_is_active, &cache->space_info);
4358d963
JB
2553 btrfs_update_global_block_rsv(fs_info);
2554
2555 link_block_group(cache);
2556
2557 list_add_tail(&cache->bg_list, &trans->new_bgs);
2558 trans->delayed_ref_updates++;
2559 btrfs_update_delayed_refs_rsv(trans);
2560
2561 set_avail_alloc_bits(fs_info, type);
79bd3712 2562 return cache;
4358d963 2563}
26ce2095 2564
b12de528
QW
2565/*
2566 * Mark one block group RO, can be called several times for the same block
2567 * group.
2568 *
2569 * @cache: the destination block group
2570 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2571 * ensure we still have some free space after marking this
2572 * block group RO.
2573 */
2574int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2575 bool do_chunk_alloc)
26ce2095
JB
2576{
2577 struct btrfs_fs_info *fs_info = cache->fs_info;
2578 struct btrfs_trans_handle *trans;
dfe8aec4 2579 struct btrfs_root *root = btrfs_block_group_root(fs_info);
26ce2095
JB
2580 u64 alloc_flags;
2581 int ret;
b6e9f16c 2582 bool dirty_bg_running;
26ce2095 2583
2d192fc4
QW
2584 /*
2585 * This can only happen when we are doing read-only scrub on read-only
2586 * mount.
2587 * In that case we should not start a new transaction on read-only fs.
2588 * Thus here we skip all chunk allocations.
2589 */
2590 if (sb_rdonly(fs_info->sb)) {
2591 mutex_lock(&fs_info->ro_block_group_mutex);
2592 ret = inc_block_group_ro(cache, 0);
2593 mutex_unlock(&fs_info->ro_block_group_mutex);
2594 return ret;
2595 }
2596
b6e9f16c 2597 do {
dfe8aec4 2598 trans = btrfs_join_transaction(root);
b6e9f16c
NB
2599 if (IS_ERR(trans))
2600 return PTR_ERR(trans);
26ce2095 2601
b6e9f16c 2602 dirty_bg_running = false;
26ce2095 2603
b6e9f16c
NB
2604 /*
2605 * We're not allowed to set block groups readonly after the dirty
2606 * block group cache has started writing. If it already started,
2607 * back off and let this transaction commit.
2608 */
2609 mutex_lock(&fs_info->ro_block_group_mutex);
2610 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2611 u64 transid = trans->transid;
26ce2095 2612
b6e9f16c
NB
2613 mutex_unlock(&fs_info->ro_block_group_mutex);
2614 btrfs_end_transaction(trans);
2615
2616 ret = btrfs_wait_for_commit(fs_info, transid);
2617 if (ret)
2618 return ret;
2619 dirty_bg_running = true;
2620 }
2621 } while (dirty_bg_running);
26ce2095 2622
b12de528 2623 if (do_chunk_alloc) {
26ce2095 2624 /*
b12de528
QW
2625 * If we are changing raid levels, try to allocate a
2626 * corresponding block group with the new raid level.
26ce2095 2627 */
349e120e 2628 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2629 if (alloc_flags != cache->flags) {
2630 ret = btrfs_chunk_alloc(trans, alloc_flags,
2631 CHUNK_ALLOC_FORCE);
2632 /*
2633 * ENOSPC is allowed here, we may have enough space
2634 * already allocated at the new raid level to carry on
2635 */
2636 if (ret == -ENOSPC)
2637 ret = 0;
2638 if (ret < 0)
2639 goto out;
2640 }
26ce2095
JB
2641 }
2642
a7a63acc 2643 ret = inc_block_group_ro(cache, 0);
195a49ea 2644 if (!do_chunk_alloc || ret == -ETXTBSY)
b12de528 2645 goto unlock_out;
26ce2095
JB
2646 if (!ret)
2647 goto out;
2648 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2649 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2650 if (ret < 0)
2651 goto out;
b6a98021
NA
2652 /*
2653 * We have allocated a new chunk. We also need to activate that chunk to
2654 * grant metadata tickets for zoned filesystem.
2655 */
2656 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2657 if (ret < 0)
2658 goto out;
2659
e11c0406 2660 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
2661 if (ret == -ETXTBSY)
2662 goto unlock_out;
26ce2095
JB
2663out:
2664 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 2665 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
2666 mutex_lock(&fs_info->chunk_mutex);
2667 check_system_chunk(trans, alloc_flags);
2668 mutex_unlock(&fs_info->chunk_mutex);
2669 }
b12de528 2670unlock_out:
26ce2095
JB
2671 mutex_unlock(&fs_info->ro_block_group_mutex);
2672
2673 btrfs_end_transaction(trans);
2674 return ret;
2675}
2676
32da5386 2677void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2678{
2679 struct btrfs_space_info *sinfo = cache->space_info;
2680 u64 num_bytes;
2681
2682 BUG_ON(!cache->ro);
2683
2684 spin_lock(&sinfo->lock);
2685 spin_lock(&cache->lock);
2686 if (!--cache->ro) {
169e0da9
NA
2687 if (btrfs_is_zoned(cache->fs_info)) {
2688 /* Migrate zone_unusable bytes back */
98173255
NA
2689 cache->zone_unusable =
2690 (cache->alloc_offset - cache->used) +
2691 (cache->length - cache->zone_capacity);
169e0da9
NA
2692 sinfo->bytes_zone_unusable += cache->zone_unusable;
2693 sinfo->bytes_readonly -= cache->zone_unusable;
2694 }
f9f28e5b
NA
2695 num_bytes = cache->length - cache->reserved -
2696 cache->pinned - cache->bytes_super -
2697 cache->zone_unusable - cache->used;
2698 sinfo->bytes_readonly -= num_bytes;
26ce2095
JB
2699 list_del_init(&cache->ro_list);
2700 }
2701 spin_unlock(&cache->lock);
2702 spin_unlock(&sinfo->lock);
2703}
77745c05 2704
3be4d8ef
QW
2705static int update_block_group_item(struct btrfs_trans_handle *trans,
2706 struct btrfs_path *path,
2707 struct btrfs_block_group *cache)
77745c05
JB
2708{
2709 struct btrfs_fs_info *fs_info = trans->fs_info;
2710 int ret;
dfe8aec4 2711 struct btrfs_root *root = btrfs_block_group_root(fs_info);
77745c05
JB
2712 unsigned long bi;
2713 struct extent_buffer *leaf;
bf38be65 2714 struct btrfs_block_group_item bgi;
b3470b5d
DS
2715 struct btrfs_key key;
2716
2717 key.objectid = cache->start;
2718 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2719 key.offset = cache->length;
77745c05 2720
3be4d8ef 2721 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
2722 if (ret) {
2723 if (ret > 0)
2724 ret = -ENOENT;
2725 goto fail;
2726 }
2727
2728 leaf = path->nodes[0];
2729 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2730 btrfs_set_stack_block_group_used(&bgi, cache->used);
2731 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2732 cache->global_root_id);
de0dc456 2733 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2734 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2735 btrfs_mark_buffer_dirty(leaf);
2736fail:
2737 btrfs_release_path(path);
2738 return ret;
2739
2740}
2741
32da5386 2742static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2743 struct btrfs_trans_handle *trans,
2744 struct btrfs_path *path)
2745{
2746 struct btrfs_fs_info *fs_info = block_group->fs_info;
2747 struct btrfs_root *root = fs_info->tree_root;
2748 struct inode *inode = NULL;
2749 struct extent_changeset *data_reserved = NULL;
2750 u64 alloc_hint = 0;
2751 int dcs = BTRFS_DC_ERROR;
0044ae11 2752 u64 cache_size = 0;
77745c05
JB
2753 int retries = 0;
2754 int ret = 0;
2755
af456a2c
BB
2756 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2757 return 0;
2758
77745c05
JB
2759 /*
2760 * If this block group is smaller than 100 megs don't bother caching the
2761 * block group.
2762 */
b3470b5d 2763 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2764 spin_lock(&block_group->lock);
2765 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2766 spin_unlock(&block_group->lock);
2767 return 0;
2768 }
2769
bf31f87f 2770 if (TRANS_ABORTED(trans))
77745c05
JB
2771 return 0;
2772again:
2773 inode = lookup_free_space_inode(block_group, path);
2774 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2775 ret = PTR_ERR(inode);
2776 btrfs_release_path(path);
2777 goto out;
2778 }
2779
2780 if (IS_ERR(inode)) {
2781 BUG_ON(retries);
2782 retries++;
2783
2784 if (block_group->ro)
2785 goto out_free;
2786
2787 ret = create_free_space_inode(trans, block_group, path);
2788 if (ret)
2789 goto out_free;
2790 goto again;
2791 }
2792
2793 /*
2794 * We want to set the generation to 0, that way if anything goes wrong
2795 * from here on out we know not to trust this cache when we load up next
2796 * time.
2797 */
2798 BTRFS_I(inode)->generation = 0;
9a56fcd1 2799 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
77745c05
JB
2800 if (ret) {
2801 /*
2802 * So theoretically we could recover from this, simply set the
2803 * super cache generation to 0 so we know to invalidate the
2804 * cache, but then we'd have to keep track of the block groups
2805 * that fail this way so we know we _have_ to reset this cache
2806 * before the next commit or risk reading stale cache. So to
2807 * limit our exposure to horrible edge cases lets just abort the
2808 * transaction, this only happens in really bad situations
2809 * anyway.
2810 */
2811 btrfs_abort_transaction(trans, ret);
2812 goto out_put;
2813 }
2814 WARN_ON(ret);
2815
2816 /* We've already setup this transaction, go ahead and exit */
2817 if (block_group->cache_generation == trans->transid &&
2818 i_size_read(inode)) {
2819 dcs = BTRFS_DC_SETUP;
2820 goto out_put;
2821 }
2822
2823 if (i_size_read(inode) > 0) {
2824 ret = btrfs_check_trunc_cache_free_space(fs_info,
2825 &fs_info->global_block_rsv);
2826 if (ret)
2827 goto out_put;
2828
2829 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2830 if (ret)
2831 goto out_put;
2832 }
2833
2834 spin_lock(&block_group->lock);
2835 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2836 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2837 /*
2838 * don't bother trying to write stuff out _if_
2839 * a) we're not cached,
2840 * b) we're with nospace_cache mount option,
2841 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2842 */
2843 dcs = BTRFS_DC_WRITTEN;
2844 spin_unlock(&block_group->lock);
2845 goto out_put;
2846 }
2847 spin_unlock(&block_group->lock);
2848
2849 /*
2850 * We hit an ENOSPC when setting up the cache in this transaction, just
2851 * skip doing the setup, we've already cleared the cache so we're safe.
2852 */
2853 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2854 ret = -ENOSPC;
2855 goto out_put;
2856 }
2857
2858 /*
2859 * Try to preallocate enough space based on how big the block group is.
2860 * Keep in mind this has to include any pinned space which could end up
2861 * taking up quite a bit since it's not folded into the other space
2862 * cache.
2863 */
0044ae11
QW
2864 cache_size = div_u64(block_group->length, SZ_256M);
2865 if (!cache_size)
2866 cache_size = 1;
77745c05 2867
0044ae11
QW
2868 cache_size *= 16;
2869 cache_size *= fs_info->sectorsize;
77745c05 2870
36ea6f3e 2871 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
0044ae11 2872 cache_size);
77745c05
JB
2873 if (ret)
2874 goto out_put;
2875
0044ae11
QW
2876 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2877 cache_size, cache_size,
77745c05
JB
2878 &alloc_hint);
2879 /*
2880 * Our cache requires contiguous chunks so that we don't modify a bunch
2881 * of metadata or split extents when writing the cache out, which means
2882 * we can enospc if we are heavily fragmented in addition to just normal
2883 * out of space conditions. So if we hit this just skip setting up any
2884 * other block groups for this transaction, maybe we'll unpin enough
2885 * space the next time around.
2886 */
2887 if (!ret)
2888 dcs = BTRFS_DC_SETUP;
2889 else if (ret == -ENOSPC)
2890 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2891
2892out_put:
2893 iput(inode);
2894out_free:
2895 btrfs_release_path(path);
2896out:
2897 spin_lock(&block_group->lock);
2898 if (!ret && dcs == BTRFS_DC_SETUP)
2899 block_group->cache_generation = trans->transid;
2900 block_group->disk_cache_state = dcs;
2901 spin_unlock(&block_group->lock);
2902
2903 extent_changeset_free(data_reserved);
2904 return ret;
2905}
2906
2907int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2908{
2909 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2910 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2911 struct btrfs_transaction *cur_trans = trans->transaction;
2912 struct btrfs_path *path;
2913
2914 if (list_empty(&cur_trans->dirty_bgs) ||
2915 !btrfs_test_opt(fs_info, SPACE_CACHE))
2916 return 0;
2917
2918 path = btrfs_alloc_path();
2919 if (!path)
2920 return -ENOMEM;
2921
2922 /* Could add new block groups, use _safe just in case */
2923 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2924 dirty_list) {
2925 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2926 cache_save_setup(cache, trans, path);
2927 }
2928
2929 btrfs_free_path(path);
2930 return 0;
2931}
2932
2933/*
2934 * Transaction commit does final block group cache writeback during a critical
2935 * section where nothing is allowed to change the FS. This is required in
2936 * order for the cache to actually match the block group, but can introduce a
2937 * lot of latency into the commit.
2938 *
2939 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2940 * There's a chance we'll have to redo some of it if the block group changes
2941 * again during the commit, but it greatly reduces the commit latency by
2942 * getting rid of the easy block groups while we're still allowing others to
2943 * join the commit.
2944 */
2945int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2946{
2947 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2948 struct btrfs_block_group *cache;
77745c05
JB
2949 struct btrfs_transaction *cur_trans = trans->transaction;
2950 int ret = 0;
2951 int should_put;
2952 struct btrfs_path *path = NULL;
2953 LIST_HEAD(dirty);
2954 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
2955 int loops = 0;
2956
2957 spin_lock(&cur_trans->dirty_bgs_lock);
2958 if (list_empty(&cur_trans->dirty_bgs)) {
2959 spin_unlock(&cur_trans->dirty_bgs_lock);
2960 return 0;
2961 }
2962 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2963 spin_unlock(&cur_trans->dirty_bgs_lock);
2964
2965again:
2966 /* Make sure all the block groups on our dirty list actually exist */
2967 btrfs_create_pending_block_groups(trans);
2968
2969 if (!path) {
2970 path = btrfs_alloc_path();
938fcbfb
JB
2971 if (!path) {
2972 ret = -ENOMEM;
2973 goto out;
2974 }
77745c05
JB
2975 }
2976
2977 /*
2978 * cache_write_mutex is here only to save us from balance or automatic
2979 * removal of empty block groups deleting this block group while we are
2980 * writing out the cache
2981 */
2982 mutex_lock(&trans->transaction->cache_write_mutex);
2983 while (!list_empty(&dirty)) {
2984 bool drop_reserve = true;
2985
32da5386 2986 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
2987 dirty_list);
2988 /*
2989 * This can happen if something re-dirties a block group that
2990 * is already under IO. Just wait for it to finish and then do
2991 * it all again
2992 */
2993 if (!list_empty(&cache->io_list)) {
2994 list_del_init(&cache->io_list);
2995 btrfs_wait_cache_io(trans, cache, path);
2996 btrfs_put_block_group(cache);
2997 }
2998
2999
3000 /*
3001 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3002 * it should update the cache_state. Don't delete until after
3003 * we wait.
3004 *
3005 * Since we're not running in the commit critical section
3006 * we need the dirty_bgs_lock to protect from update_block_group
3007 */
3008 spin_lock(&cur_trans->dirty_bgs_lock);
3009 list_del_init(&cache->dirty_list);
3010 spin_unlock(&cur_trans->dirty_bgs_lock);
3011
3012 should_put = 1;
3013
3014 cache_save_setup(cache, trans, path);
3015
3016 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3017 cache->io_ctl.inode = NULL;
3018 ret = btrfs_write_out_cache(trans, cache, path);
3019 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3020 should_put = 0;
3021
3022 /*
3023 * The cache_write_mutex is protecting the
3024 * io_list, also refer to the definition of
3025 * btrfs_transaction::io_bgs for more details
3026 */
3027 list_add_tail(&cache->io_list, io);
3028 } else {
3029 /*
3030 * If we failed to write the cache, the
3031 * generation will be bad and life goes on
3032 */
3033 ret = 0;
3034 }
3035 }
3036 if (!ret) {
3be4d8ef 3037 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3038 /*
3039 * Our block group might still be attached to the list
3040 * of new block groups in the transaction handle of some
3041 * other task (struct btrfs_trans_handle->new_bgs). This
3042 * means its block group item isn't yet in the extent
3043 * tree. If this happens ignore the error, as we will
3044 * try again later in the critical section of the
3045 * transaction commit.
3046 */
3047 if (ret == -ENOENT) {
3048 ret = 0;
3049 spin_lock(&cur_trans->dirty_bgs_lock);
3050 if (list_empty(&cache->dirty_list)) {
3051 list_add_tail(&cache->dirty_list,
3052 &cur_trans->dirty_bgs);
3053 btrfs_get_block_group(cache);
3054 drop_reserve = false;
3055 }
3056 spin_unlock(&cur_trans->dirty_bgs_lock);
3057 } else if (ret) {
3058 btrfs_abort_transaction(trans, ret);
3059 }
3060 }
3061
3062 /* If it's not on the io list, we need to put the block group */
3063 if (should_put)
3064 btrfs_put_block_group(cache);
3065 if (drop_reserve)
3066 btrfs_delayed_refs_rsv_release(fs_info, 1);
77745c05
JB
3067 /*
3068 * Avoid blocking other tasks for too long. It might even save
3069 * us from writing caches for block groups that are going to be
3070 * removed.
3071 */
3072 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
3073 if (ret)
3074 goto out;
77745c05
JB
3075 mutex_lock(&trans->transaction->cache_write_mutex);
3076 }
3077 mutex_unlock(&trans->transaction->cache_write_mutex);
3078
3079 /*
3080 * Go through delayed refs for all the stuff we've just kicked off
3081 * and then loop back (just once)
3082 */
34d1eb0e
JB
3083 if (!ret)
3084 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
3085 if (!ret && loops == 0) {
3086 loops++;
3087 spin_lock(&cur_trans->dirty_bgs_lock);
3088 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3089 /*
3090 * dirty_bgs_lock protects us from concurrent block group
3091 * deletes too (not just cache_write_mutex).
3092 */
3093 if (!list_empty(&dirty)) {
3094 spin_unlock(&cur_trans->dirty_bgs_lock);
3095 goto again;
3096 }
3097 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
3098 }
3099out:
3100 if (ret < 0) {
3101 spin_lock(&cur_trans->dirty_bgs_lock);
3102 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3103 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
3104 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3105 }
3106
3107 btrfs_free_path(path);
3108 return ret;
3109}
3110
3111int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3112{
3113 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3114 struct btrfs_block_group *cache;
77745c05
JB
3115 struct btrfs_transaction *cur_trans = trans->transaction;
3116 int ret = 0;
3117 int should_put;
3118 struct btrfs_path *path;
3119 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
3120
3121 path = btrfs_alloc_path();
3122 if (!path)
3123 return -ENOMEM;
3124
3125 /*
3126 * Even though we are in the critical section of the transaction commit,
3127 * we can still have concurrent tasks adding elements to this
3128 * transaction's list of dirty block groups. These tasks correspond to
3129 * endio free space workers started when writeback finishes for a
3130 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3131 * allocate new block groups as a result of COWing nodes of the root
3132 * tree when updating the free space inode. The writeback for the space
3133 * caches is triggered by an earlier call to
3134 * btrfs_start_dirty_block_groups() and iterations of the following
3135 * loop.
3136 * Also we want to do the cache_save_setup first and then run the
3137 * delayed refs to make sure we have the best chance at doing this all
3138 * in one shot.
3139 */
3140 spin_lock(&cur_trans->dirty_bgs_lock);
3141 while (!list_empty(&cur_trans->dirty_bgs)) {
3142 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 3143 struct btrfs_block_group,
77745c05
JB
3144 dirty_list);
3145
3146 /*
3147 * This can happen if cache_save_setup re-dirties a block group
3148 * that is already under IO. Just wait for it to finish and
3149 * then do it all again
3150 */
3151 if (!list_empty(&cache->io_list)) {
3152 spin_unlock(&cur_trans->dirty_bgs_lock);
3153 list_del_init(&cache->io_list);
3154 btrfs_wait_cache_io(trans, cache, path);
3155 btrfs_put_block_group(cache);
3156 spin_lock(&cur_trans->dirty_bgs_lock);
3157 }
3158
3159 /*
3160 * Don't remove from the dirty list until after we've waited on
3161 * any pending IO
3162 */
3163 list_del_init(&cache->dirty_list);
3164 spin_unlock(&cur_trans->dirty_bgs_lock);
3165 should_put = 1;
3166
3167 cache_save_setup(cache, trans, path);
3168
3169 if (!ret)
3170 ret = btrfs_run_delayed_refs(trans,
3171 (unsigned long) -1);
3172
3173 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3174 cache->io_ctl.inode = NULL;
3175 ret = btrfs_write_out_cache(trans, cache, path);
3176 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3177 should_put = 0;
3178 list_add_tail(&cache->io_list, io);
3179 } else {
3180 /*
3181 * If we failed to write the cache, the
3182 * generation will be bad and life goes on
3183 */
3184 ret = 0;
3185 }
3186 }
3187 if (!ret) {
3be4d8ef 3188 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3189 /*
3190 * One of the free space endio workers might have
3191 * created a new block group while updating a free space
3192 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3193 * and hasn't released its transaction handle yet, in
3194 * which case the new block group is still attached to
3195 * its transaction handle and its creation has not
3196 * finished yet (no block group item in the extent tree
3197 * yet, etc). If this is the case, wait for all free
3198 * space endio workers to finish and retry. This is a
260db43c 3199 * very rare case so no need for a more efficient and
77745c05
JB
3200 * complex approach.
3201 */
3202 if (ret == -ENOENT) {
3203 wait_event(cur_trans->writer_wait,
3204 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 3205 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3206 }
3207 if (ret)
3208 btrfs_abort_transaction(trans, ret);
3209 }
3210
3211 /* If its not on the io list, we need to put the block group */
3212 if (should_put)
3213 btrfs_put_block_group(cache);
3214 btrfs_delayed_refs_rsv_release(fs_info, 1);
3215 spin_lock(&cur_trans->dirty_bgs_lock);
3216 }
3217 spin_unlock(&cur_trans->dirty_bgs_lock);
3218
3219 /*
3220 * Refer to the definition of io_bgs member for details why it's safe
3221 * to use it without any locking
3222 */
3223 while (!list_empty(io)) {
32da5386 3224 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
3225 io_list);
3226 list_del_init(&cache->io_list);
3227 btrfs_wait_cache_io(trans, cache, path);
3228 btrfs_put_block_group(cache);
3229 }
3230
3231 btrfs_free_path(path);
3232 return ret;
3233}
606d1bf1 3234
ac2f1e63
JB
3235static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3236 u64 bytes_freed)
3237{
3238 const struct btrfs_space_info *space_info = bg->space_info;
3239 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3240 const u64 new_val = bg->used;
3241 const u64 old_val = new_val + bytes_freed;
3242 u64 thresh;
3243
3244 if (reclaim_thresh == 0)
3245 return false;
3246
3247 thresh = div_factor_fine(bg->length, reclaim_thresh);
3248
3249 /*
3250 * If we were below the threshold before don't reclaim, we are likely a
3251 * brand new block group and we don't want to relocate new block groups.
3252 */
3253 if (old_val < thresh)
3254 return false;
3255 if (new_val >= thresh)
3256 return false;
3257 return true;
3258}
3259
606d1bf1 3260int btrfs_update_block_group(struct btrfs_trans_handle *trans,
11b66fa6 3261 u64 bytenr, u64 num_bytes, bool alloc)
606d1bf1
JB
3262{
3263 struct btrfs_fs_info *info = trans->fs_info;
32da5386 3264 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
3265 u64 total = num_bytes;
3266 u64 old_val;
3267 u64 byte_in_group;
3268 int factor;
3269 int ret = 0;
3270
3271 /* Block accounting for super block */
3272 spin_lock(&info->delalloc_root_lock);
3273 old_val = btrfs_super_bytes_used(info->super_copy);
3274 if (alloc)
3275 old_val += num_bytes;
3276 else
3277 old_val -= num_bytes;
3278 btrfs_set_super_bytes_used(info->super_copy, old_val);
3279 spin_unlock(&info->delalloc_root_lock);
3280
3281 while (total) {
ac2f1e63
JB
3282 bool reclaim;
3283
606d1bf1
JB
3284 cache = btrfs_lookup_block_group(info, bytenr);
3285 if (!cache) {
3286 ret = -ENOENT;
3287 break;
3288 }
3289 factor = btrfs_bg_type_to_factor(cache->flags);
3290
3291 /*
3292 * If this block group has free space cache written out, we
3293 * need to make sure to load it if we are removing space. This
3294 * is because we need the unpinning stage to actually add the
3295 * space back to the block group, otherwise we will leak space.
3296 */
32da5386 3297 if (!alloc && !btrfs_block_group_done(cache))
ced8ecf0 3298 btrfs_cache_block_group(cache, true);
606d1bf1 3299
b3470b5d
DS
3300 byte_in_group = bytenr - cache->start;
3301 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
3302
3303 spin_lock(&cache->space_info->lock);
3304 spin_lock(&cache->lock);
3305
3306 if (btrfs_test_opt(info, SPACE_CACHE) &&
3307 cache->disk_cache_state < BTRFS_DC_CLEAR)
3308 cache->disk_cache_state = BTRFS_DC_CLEAR;
3309
bf38be65 3310 old_val = cache->used;
b3470b5d 3311 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
3312 if (alloc) {
3313 old_val += num_bytes;
bf38be65 3314 cache->used = old_val;
606d1bf1
JB
3315 cache->reserved -= num_bytes;
3316 cache->space_info->bytes_reserved -= num_bytes;
3317 cache->space_info->bytes_used += num_bytes;
3318 cache->space_info->disk_used += num_bytes * factor;
3319 spin_unlock(&cache->lock);
3320 spin_unlock(&cache->space_info->lock);
3321 } else {
3322 old_val -= num_bytes;
bf38be65 3323 cache->used = old_val;
606d1bf1
JB
3324 cache->pinned += num_bytes;
3325 btrfs_space_info_update_bytes_pinned(info,
3326 cache->space_info, num_bytes);
3327 cache->space_info->bytes_used -= num_bytes;
3328 cache->space_info->disk_used -= num_bytes * factor;
ac2f1e63
JB
3329
3330 reclaim = should_reclaim_block_group(cache, num_bytes);
606d1bf1
JB
3331 spin_unlock(&cache->lock);
3332 spin_unlock(&cache->space_info->lock);
3333
fe119a6e 3334 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
3335 bytenr, bytenr + num_bytes - 1,
3336 GFP_NOFS | __GFP_NOFAIL);
3337 }
3338
3339 spin_lock(&trans->transaction->dirty_bgs_lock);
3340 if (list_empty(&cache->dirty_list)) {
3341 list_add_tail(&cache->dirty_list,
3342 &trans->transaction->dirty_bgs);
3343 trans->delayed_ref_updates++;
3344 btrfs_get_block_group(cache);
3345 }
3346 spin_unlock(&trans->transaction->dirty_bgs_lock);
3347
3348 /*
3349 * No longer have used bytes in this block group, queue it for
3350 * deletion. We do this after adding the block group to the
3351 * dirty list to avoid races between cleaner kthread and space
3352 * cache writeout.
3353 */
6e80d4f8
DZ
3354 if (!alloc && old_val == 0) {
3355 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3356 btrfs_mark_bg_unused(cache);
ac2f1e63
JB
3357 } else if (!alloc && reclaim) {
3358 btrfs_mark_bg_to_reclaim(cache);
6e80d4f8 3359 }
606d1bf1
JB
3360
3361 btrfs_put_block_group(cache);
3362 total -= num_bytes;
3363 bytenr += num_bytes;
3364 }
3365
3366 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3367 btrfs_update_delayed_refs_rsv(trans);
3368 return ret;
3369}
3370
3371/**
3372 * btrfs_add_reserved_bytes - update the block_group and space info counters
3373 * @cache: The cache we are manipulating
3374 * @ram_bytes: The number of bytes of file content, and will be same to
3375 * @num_bytes except for the compress path.
3376 * @num_bytes: The number of bytes in question
3377 * @delalloc: The blocks are allocated for the delalloc write
3378 *
3379 * This is called by the allocator when it reserves space. If this is a
3380 * reservation and the block group has become read only we cannot make the
3381 * reservation and return -EAGAIN, otherwise this function always succeeds.
3382 */
32da5386 3383int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3384 u64 ram_bytes, u64 num_bytes, int delalloc)
3385{
3386 struct btrfs_space_info *space_info = cache->space_info;
3387 int ret = 0;
3388
3389 spin_lock(&space_info->lock);
3390 spin_lock(&cache->lock);
3391 if (cache->ro) {
3392 ret = -EAGAIN;
3393 } else {
3394 cache->reserved += num_bytes;
3395 space_info->bytes_reserved += num_bytes;
a43c3835
JB
3396 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3397 space_info->flags, num_bytes, 1);
606d1bf1
JB
3398 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3399 space_info, -ram_bytes);
3400 if (delalloc)
3401 cache->delalloc_bytes += num_bytes;
99ffb43e
JB
3402
3403 /*
3404 * Compression can use less space than we reserved, so wake
3405 * tickets if that happens
3406 */
3407 if (num_bytes < ram_bytes)
3408 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3409 }
3410 spin_unlock(&cache->lock);
3411 spin_unlock(&space_info->lock);
3412 return ret;
3413}
3414
3415/**
3416 * btrfs_free_reserved_bytes - update the block_group and space info counters
3417 * @cache: The cache we are manipulating
3418 * @num_bytes: The number of bytes in question
3419 * @delalloc: The blocks are allocated for the delalloc write
3420 *
3421 * This is called by somebody who is freeing space that was never actually used
3422 * on disk. For example if you reserve some space for a new leaf in transaction
3423 * A and before transaction A commits you free that leaf, you call this with
3424 * reserve set to 0 in order to clear the reservation.
3425 */
32da5386 3426void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3427 u64 num_bytes, int delalloc)
3428{
3429 struct btrfs_space_info *space_info = cache->space_info;
3430
3431 spin_lock(&space_info->lock);
3432 spin_lock(&cache->lock);
3433 if (cache->ro)
3434 space_info->bytes_readonly += num_bytes;
3435 cache->reserved -= num_bytes;
3436 space_info->bytes_reserved -= num_bytes;
3437 space_info->max_extent_size = 0;
3438
3439 if (delalloc)
3440 cache->delalloc_bytes -= num_bytes;
3441 spin_unlock(&cache->lock);
3308234a
JB
3442
3443 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3444 spin_unlock(&space_info->lock);
3445}
07730d87
JB
3446
3447static void force_metadata_allocation(struct btrfs_fs_info *info)
3448{
3449 struct list_head *head = &info->space_info;
3450 struct btrfs_space_info *found;
3451
72804905 3452 list_for_each_entry(found, head, list) {
07730d87
JB
3453 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3454 found->force_alloc = CHUNK_ALLOC_FORCE;
3455 }
07730d87
JB
3456}
3457
3458static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3459 struct btrfs_space_info *sinfo, int force)
3460{
3461 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3462 u64 thresh;
3463
3464 if (force == CHUNK_ALLOC_FORCE)
3465 return 1;
3466
3467 /*
3468 * in limited mode, we want to have some free space up to
3469 * about 1% of the FS size.
3470 */
3471 if (force == CHUNK_ALLOC_LIMITED) {
3472 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3473 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3474
3475 if (sinfo->total_bytes - bytes_used < thresh)
3476 return 1;
3477 }
3478
3479 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3480 return 0;
3481 return 1;
3482}
3483
3484int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3485{
3486 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3487
3488 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3489}
3490
820c363b 3491static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
79bd3712
FM
3492{
3493 struct btrfs_block_group *bg;
3494 int ret;
3495
3496 /*
3497 * Check if we have enough space in the system space info because we
3498 * will need to update device items in the chunk btree and insert a new
3499 * chunk item in the chunk btree as well. This will allocate a new
3500 * system block group if needed.
3501 */
3502 check_system_chunk(trans, flags);
3503
f6f39f7a 3504 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3505 if (IS_ERR(bg)) {
3506 ret = PTR_ERR(bg);
3507 goto out;
3508 }
3509
79bd3712
FM
3510 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3511 /*
3512 * Normally we are not expected to fail with -ENOSPC here, since we have
3513 * previously reserved space in the system space_info and allocated one
ecd84d54 3514 * new system chunk if necessary. However there are three exceptions:
79bd3712
FM
3515 *
3516 * 1) We may have enough free space in the system space_info but all the
3517 * existing system block groups have a profile which can not be used
3518 * for extent allocation.
3519 *
3520 * This happens when mounting in degraded mode. For example we have a
3521 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3522 * using the other device in degraded mode. If we then allocate a chunk,
3523 * we may have enough free space in the existing system space_info, but
3524 * none of the block groups can be used for extent allocation since they
3525 * have a RAID1 profile, and because we are in degraded mode with a
3526 * single device, we are forced to allocate a new system chunk with a
3527 * SINGLE profile. Making check_system_chunk() iterate over all system
3528 * block groups and check if they have a usable profile and enough space
3529 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3530 * try again after forcing allocation of a new system chunk. Like this
3531 * we avoid paying the cost of that search in normal circumstances, when
3532 * we were not mounted in degraded mode;
3533 *
3534 * 2) We had enough free space info the system space_info, and one suitable
3535 * block group to allocate from when we called check_system_chunk()
3536 * above. However right after we called it, the only system block group
3537 * with enough free space got turned into RO mode by a running scrub,
3538 * and in this case we have to allocate a new one and retry. We only
3539 * need do this allocate and retry once, since we have a transaction
ecd84d54
FM
3540 * handle and scrub uses the commit root to search for block groups;
3541 *
3542 * 3) We had one system block group with enough free space when we called
3543 * check_system_chunk(), but after that, right before we tried to
3544 * allocate the last extent buffer we needed, a discard operation came
3545 * in and it temporarily removed the last free space entry from the
3546 * block group (discard removes a free space entry, discards it, and
3547 * then adds back the entry to the block group cache).
79bd3712
FM
3548 */
3549 if (ret == -ENOSPC) {
3550 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3551 struct btrfs_block_group *sys_bg;
3552
f6f39f7a 3553 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3554 if (IS_ERR(sys_bg)) {
3555 ret = PTR_ERR(sys_bg);
3556 btrfs_abort_transaction(trans, ret);
3557 goto out;
3558 }
3559
3560 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3561 if (ret) {
3562 btrfs_abort_transaction(trans, ret);
3563 goto out;
3564 }
3565
3566 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3567 if (ret) {
3568 btrfs_abort_transaction(trans, ret);
3569 goto out;
3570 }
3571 } else if (ret) {
3572 btrfs_abort_transaction(trans, ret);
3573 goto out;
3574 }
3575out:
3576 btrfs_trans_release_chunk_metadata(trans);
3577
820c363b
NA
3578 if (ret)
3579 return ERR_PTR(ret);
3580
3581 btrfs_get_block_group(bg);
3582 return bg;
79bd3712
FM
3583}
3584
07730d87 3585/*
79bd3712
FM
3586 * Chunk allocation is done in 2 phases:
3587 *
3588 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3589 * the chunk, the chunk mapping, create its block group and add the items
3590 * that belong in the chunk btree to it - more specifically, we need to
3591 * update device items in the chunk btree and add a new chunk item to it.
3592 *
3593 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3594 * group item to the extent btree and the device extent items to the devices
3595 * btree.
3596 *
3597 * This is done to prevent deadlocks. For example when COWing a node from the
3598 * extent btree we are holding a write lock on the node's parent and if we
3599 * trigger chunk allocation and attempted to insert the new block group item
3600 * in the extent btree right way, we could deadlock because the path for the
3601 * insertion can include that parent node. At first glance it seems impossible
3602 * to trigger chunk allocation after starting a transaction since tasks should
3603 * reserve enough transaction units (metadata space), however while that is true
3604 * most of the time, chunk allocation may still be triggered for several reasons:
3605 *
3606 * 1) When reserving metadata, we check if there is enough free space in the
3607 * metadata space_info and therefore don't trigger allocation of a new chunk.
3608 * However later when the task actually tries to COW an extent buffer from
3609 * the extent btree or from the device btree for example, it is forced to
3610 * allocate a new block group (chunk) because the only one that had enough
3611 * free space was just turned to RO mode by a running scrub for example (or
3612 * device replace, block group reclaim thread, etc), so we can not use it
3613 * for allocating an extent and end up being forced to allocate a new one;
3614 *
3615 * 2) Because we only check that the metadata space_info has enough free bytes,
3616 * we end up not allocating a new metadata chunk in that case. However if
3617 * the filesystem was mounted in degraded mode, none of the existing block
3618 * groups might be suitable for extent allocation due to their incompatible
3619 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3620 * use a RAID1 profile, in degraded mode using a single device). In this case
3621 * when the task attempts to COW some extent buffer of the extent btree for
3622 * example, it will trigger allocation of a new metadata block group with a
3623 * suitable profile (SINGLE profile in the example of the degraded mount of
3624 * the RAID1 filesystem);
3625 *
3626 * 3) The task has reserved enough transaction units / metadata space, but when
3627 * it attempts to COW an extent buffer from the extent or device btree for
3628 * example, it does not find any free extent in any metadata block group,
3629 * therefore forced to try to allocate a new metadata block group.
3630 * This is because some other task allocated all available extents in the
3631 * meanwhile - this typically happens with tasks that don't reserve space
3632 * properly, either intentionally or as a bug. One example where this is
3633 * done intentionally is fsync, as it does not reserve any transaction units
3634 * and ends up allocating a variable number of metadata extents for log
ecd84d54
FM
3635 * tree extent buffers;
3636 *
3637 * 4) The task has reserved enough transaction units / metadata space, but right
3638 * before it tries to allocate the last extent buffer it needs, a discard
3639 * operation comes in and, temporarily, removes the last free space entry from
3640 * the only metadata block group that had free space (discard starts by
3641 * removing a free space entry from a block group, then does the discard
3642 * operation and, once it's done, it adds back the free space entry to the
3643 * block group).
79bd3712
FM
3644 *
3645 * We also need this 2 phases setup when adding a device to a filesystem with
3646 * a seed device - we must create new metadata and system chunks without adding
3647 * any of the block group items to the chunk, extent and device btrees. If we
3648 * did not do it this way, we would get ENOSPC when attempting to update those
3649 * btrees, since all the chunks from the seed device are read-only.
3650 *
3651 * Phase 1 does the updates and insertions to the chunk btree because if we had
3652 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3653 * parallel, we risk having too many system chunks allocated by many tasks if
3654 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3655 * extreme case this leads to exhaustion of the system chunk array in the
3656 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3657 * and with RAID filesystems (so we have more device items in the chunk btree).
3658 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3659 * the system chunk array due to concurrent allocations") provides more details.
3660 *
2bb2e00e
FM
3661 * Allocation of system chunks does not happen through this function. A task that
3662 * needs to update the chunk btree (the only btree that uses system chunks), must
3663 * preallocate chunk space by calling either check_system_chunk() or
3664 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3665 * metadata chunk or when removing a chunk, while the later is used before doing
3666 * a modification to the chunk btree - use cases for the later are adding,
3667 * removing and resizing a device as well as relocation of a system chunk.
3668 * See the comment below for more details.
79bd3712
FM
3669 *
3670 * The reservation of system space, done through check_system_chunk(), as well
3671 * as all the updates and insertions into the chunk btree must be done while
3672 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3673 * an extent buffer from the chunks btree we never trigger allocation of a new
3674 * system chunk, which would result in a deadlock (trying to lock twice an
3675 * extent buffer of the chunk btree, first time before triggering the chunk
3676 * allocation and the second time during chunk allocation while attempting to
3677 * update the chunks btree). The system chunk array is also updated while holding
3678 * that mutex. The same logic applies to removing chunks - we must reserve system
3679 * space, update the chunk btree and the system chunk array in the superblock
3680 * while holding fs_info->chunk_mutex.
3681 *
3682 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3683 *
3684 * If @force is CHUNK_ALLOC_FORCE:
07730d87
JB
3685 * - return 1 if it successfully allocates a chunk,
3686 * - return errors including -ENOSPC otherwise.
79bd3712 3687 * If @force is NOT CHUNK_ALLOC_FORCE:
07730d87
JB
3688 * - return 0 if it doesn't need to allocate a new chunk,
3689 * - return 1 if it successfully allocates a chunk,
3690 * - return errors including -ENOSPC otherwise.
3691 */
3692int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3693 enum btrfs_chunk_alloc_enum force)
3694{
3695 struct btrfs_fs_info *fs_info = trans->fs_info;
3696 struct btrfs_space_info *space_info;
820c363b 3697 struct btrfs_block_group *ret_bg;
07730d87
JB
3698 bool wait_for_alloc = false;
3699 bool should_alloc = false;
760e69c4 3700 bool from_extent_allocation = false;
07730d87
JB
3701 int ret = 0;
3702
760e69c4
NA
3703 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3704 from_extent_allocation = true;
3705 force = CHUNK_ALLOC_FORCE;
3706 }
3707
07730d87
JB
3708 /* Don't re-enter if we're already allocating a chunk */
3709 if (trans->allocating_chunk)
3710 return -ENOSPC;
79bd3712 3711 /*
2bb2e00e
FM
3712 * Allocation of system chunks can not happen through this path, as we
3713 * could end up in a deadlock if we are allocating a data or metadata
3714 * chunk and there is another task modifying the chunk btree.
3715 *
3716 * This is because while we are holding the chunk mutex, we will attempt
3717 * to add the new chunk item to the chunk btree or update an existing
3718 * device item in the chunk btree, while the other task that is modifying
3719 * the chunk btree is attempting to COW an extent buffer while holding a
3720 * lock on it and on its parent - if the COW operation triggers a system
3721 * chunk allocation, then we can deadlock because we are holding the
3722 * chunk mutex and we may need to access that extent buffer or its parent
3723 * in order to add the chunk item or update a device item.
3724 *
3725 * Tasks that want to modify the chunk tree should reserve system space
3726 * before updating the chunk btree, by calling either
3727 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3728 * It's possible that after a task reserves the space, it still ends up
3729 * here - this happens in the cases described above at do_chunk_alloc().
3730 * The task will have to either retry or fail.
79bd3712 3731 */
2bb2e00e 3732 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
79bd3712 3733 return -ENOSPC;
07730d87
JB
3734
3735 space_info = btrfs_find_space_info(fs_info, flags);
3736 ASSERT(space_info);
3737
3738 do {
3739 spin_lock(&space_info->lock);
3740 if (force < space_info->force_alloc)
3741 force = space_info->force_alloc;
3742 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3743 if (space_info->full) {
3744 /* No more free physical space */
3745 if (should_alloc)
3746 ret = -ENOSPC;
3747 else
3748 ret = 0;
3749 spin_unlock(&space_info->lock);
3750 return ret;
3751 } else if (!should_alloc) {
3752 spin_unlock(&space_info->lock);
3753 return 0;
3754 } else if (space_info->chunk_alloc) {
3755 /*
3756 * Someone is already allocating, so we need to block
3757 * until this someone is finished and then loop to
3758 * recheck if we should continue with our allocation
3759 * attempt.
3760 */
3761 wait_for_alloc = true;
1314ca78 3762 force = CHUNK_ALLOC_NO_FORCE;
07730d87
JB
3763 spin_unlock(&space_info->lock);
3764 mutex_lock(&fs_info->chunk_mutex);
3765 mutex_unlock(&fs_info->chunk_mutex);
3766 } else {
3767 /* Proceed with allocation */
3768 space_info->chunk_alloc = 1;
3769 wait_for_alloc = false;
3770 spin_unlock(&space_info->lock);
3771 }
3772
3773 cond_resched();
3774 } while (wait_for_alloc);
3775
3776 mutex_lock(&fs_info->chunk_mutex);
3777 trans->allocating_chunk = true;
3778
3779 /*
3780 * If we have mixed data/metadata chunks we want to make sure we keep
3781 * allocating mixed chunks instead of individual chunks.
3782 */
3783 if (btrfs_mixed_space_info(space_info))
3784 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3785
3786 /*
3787 * if we're doing a data chunk, go ahead and make sure that
3788 * we keep a reasonable number of metadata chunks allocated in the
3789 * FS as well.
3790 */
3791 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3792 fs_info->data_chunk_allocations++;
3793 if (!(fs_info->data_chunk_allocations %
3794 fs_info->metadata_ratio))
3795 force_metadata_allocation(fs_info);
3796 }
3797
820c363b 3798 ret_bg = do_chunk_alloc(trans, flags);
07730d87
JB
3799 trans->allocating_chunk = false;
3800
760e69c4 3801 if (IS_ERR(ret_bg)) {
820c363b 3802 ret = PTR_ERR(ret_bg);
760e69c4
NA
3803 } else if (from_extent_allocation) {
3804 /*
3805 * New block group is likely to be used soon. Try to activate
3806 * it now. Failure is OK for now.
3807 */
3808 btrfs_zone_activate(ret_bg);
3809 }
3810
3811 if (!ret)
820c363b
NA
3812 btrfs_put_block_group(ret_bg);
3813
07730d87
JB
3814 spin_lock(&space_info->lock);
3815 if (ret < 0) {
3816 if (ret == -ENOSPC)
3817 space_info->full = 1;
3818 else
3819 goto out;
3820 } else {
3821 ret = 1;
3822 space_info->max_extent_size = 0;
3823 }
3824
3825 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3826out:
3827 space_info->chunk_alloc = 0;
3828 spin_unlock(&space_info->lock);
3829 mutex_unlock(&fs_info->chunk_mutex);
07730d87
JB
3830
3831 return ret;
3832}
3833
3834static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3835{
3836 u64 num_dev;
3837
3838 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3839 if (!num_dev)
3840 num_dev = fs_info->fs_devices->rw_devices;
3841
3842 return num_dev;
3843}
3844
2bb2e00e
FM
3845static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3846 u64 bytes,
3847 u64 type)
07730d87
JB
3848{
3849 struct btrfs_fs_info *fs_info = trans->fs_info;
3850 struct btrfs_space_info *info;
3851 u64 left;
07730d87 3852 int ret = 0;
07730d87
JB
3853
3854 /*
3855 * Needed because we can end up allocating a system chunk and for an
3856 * atomic and race free space reservation in the chunk block reserve.
3857 */
3858 lockdep_assert_held(&fs_info->chunk_mutex);
3859
3860 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3861 spin_lock(&info->lock);
3862 left = info->total_bytes - btrfs_space_info_used(info, true);
3863 spin_unlock(&info->lock);
3864
2bb2e00e 3865 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
07730d87 3866 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
2bb2e00e 3867 left, bytes, type);
07730d87
JB
3868 btrfs_dump_space_info(fs_info, info, 0, 0);
3869 }
3870
2bb2e00e 3871 if (left < bytes) {
07730d87 3872 u64 flags = btrfs_system_alloc_profile(fs_info);
79bd3712 3873 struct btrfs_block_group *bg;
07730d87
JB
3874
3875 /*
3876 * Ignore failure to create system chunk. We might end up not
3877 * needing it, as we might not need to COW all nodes/leafs from
3878 * the paths we visit in the chunk tree (they were already COWed
3879 * or created in the current transaction for example).
3880 */
f6f39f7a 3881 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3882 if (IS_ERR(bg)) {
3883 ret = PTR_ERR(bg);
2bb2e00e 3884 } else {
b6a98021
NA
3885 /*
3886 * We have a new chunk. We also need to activate it for
3887 * zoned filesystem.
3888 */
3889 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3890 if (ret < 0)
3891 return;
3892
79bd3712
FM
3893 /*
3894 * If we fail to add the chunk item here, we end up
3895 * trying again at phase 2 of chunk allocation, at
3896 * btrfs_create_pending_block_groups(). So ignore
2bb2e00e
FM
3897 * any error here. An ENOSPC here could happen, due to
3898 * the cases described at do_chunk_alloc() - the system
3899 * block group we just created was just turned into RO
3900 * mode by a scrub for example, or a running discard
3901 * temporarily removed its free space entries, etc.
79bd3712
FM
3902 */
3903 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3904 }
07730d87
JB
3905 }
3906
3907 if (!ret) {
9270501c 3908 ret = btrfs_block_rsv_add(fs_info,
07730d87 3909 &fs_info->chunk_block_rsv,
2bb2e00e 3910 bytes, BTRFS_RESERVE_NO_FLUSH);
1cb3db1c 3911 if (!ret)
2bb2e00e 3912 trans->chunk_bytes_reserved += bytes;
07730d87
JB
3913 }
3914}
3915
2bb2e00e
FM
3916/*
3917 * Reserve space in the system space for allocating or removing a chunk.
3918 * The caller must be holding fs_info->chunk_mutex.
3919 */
3920void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3921{
3922 struct btrfs_fs_info *fs_info = trans->fs_info;
3923 const u64 num_devs = get_profile_num_devs(fs_info, type);
3924 u64 bytes;
3925
3926 /* num_devs device items to update and 1 chunk item to add or remove. */
3927 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3928 btrfs_calc_insert_metadata_size(fs_info, 1);
3929
3930 reserve_chunk_space(trans, bytes, type);
3931}
3932
3933/*
3934 * Reserve space in the system space, if needed, for doing a modification to the
3935 * chunk btree.
3936 *
3937 * @trans: A transaction handle.
3938 * @is_item_insertion: Indicate if the modification is for inserting a new item
3939 * in the chunk btree or if it's for the deletion or update
3940 * of an existing item.
3941 *
3942 * This is used in a context where we need to update the chunk btree outside
3943 * block group allocation and removal, to avoid a deadlock with a concurrent
3944 * task that is allocating a metadata or data block group and therefore needs to
3945 * update the chunk btree while holding the chunk mutex. After the update to the
3946 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3947 *
3948 */
3949void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3950 bool is_item_insertion)
3951{
3952 struct btrfs_fs_info *fs_info = trans->fs_info;
3953 u64 bytes;
3954
3955 if (is_item_insertion)
3956 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3957 else
3958 bytes = btrfs_calc_metadata_size(fs_info, 1);
3959
3960 mutex_lock(&fs_info->chunk_mutex);
3961 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3962 mutex_unlock(&fs_info->chunk_mutex);
3963}
3964
3e43c279
JB
3965void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3966{
32da5386 3967 struct btrfs_block_group *block_group;
3e43c279
JB
3968 u64 last = 0;
3969
3970 while (1) {
3971 struct inode *inode;
3972
3973 block_group = btrfs_lookup_first_block_group(info, last);
3974 while (block_group) {
3975 btrfs_wait_block_group_cache_done(block_group);
3976 spin_lock(&block_group->lock);
3977 if (block_group->iref)
3978 break;
3979 spin_unlock(&block_group->lock);
3980 block_group = btrfs_next_block_group(block_group);
3981 }
3982 if (!block_group) {
3983 if (last == 0)
3984 break;
3985 last = 0;
3986 continue;
3987 }
3988
3989 inode = block_group->inode;
3990 block_group->iref = 0;
3991 block_group->inode = NULL;
3992 spin_unlock(&block_group->lock);
3993 ASSERT(block_group->io_ctl.inode == NULL);
3994 iput(inode);
b3470b5d 3995 last = block_group->start + block_group->length;
3e43c279
JB
3996 btrfs_put_block_group(block_group);
3997 }
3998}
3999
4000/*
4001 * Must be called only after stopping all workers, since we could have block
4002 * group caching kthreads running, and therefore they could race with us if we
4003 * freed the block groups before stopping them.
4004 */
4005int btrfs_free_block_groups(struct btrfs_fs_info *info)
4006{
32da5386 4007 struct btrfs_block_group *block_group;
3e43c279
JB
4008 struct btrfs_space_info *space_info;
4009 struct btrfs_caching_control *caching_ctl;
4010 struct rb_node *n;
4011
16b0c258 4012 write_lock(&info->block_group_cache_lock);
3e43c279
JB
4013 while (!list_empty(&info->caching_block_groups)) {
4014 caching_ctl = list_entry(info->caching_block_groups.next,
4015 struct btrfs_caching_control, list);
4016 list_del(&caching_ctl->list);
4017 btrfs_put_caching_control(caching_ctl);
4018 }
16b0c258 4019 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4020
4021 spin_lock(&info->unused_bgs_lock);
4022 while (!list_empty(&info->unused_bgs)) {
4023 block_group = list_first_entry(&info->unused_bgs,
32da5386 4024 struct btrfs_block_group,
3e43c279
JB
4025 bg_list);
4026 list_del_init(&block_group->bg_list);
4027 btrfs_put_block_group(block_group);
4028 }
3e43c279 4029
18bb8bbf
JT
4030 while (!list_empty(&info->reclaim_bgs)) {
4031 block_group = list_first_entry(&info->reclaim_bgs,
4032 struct btrfs_block_group,
4033 bg_list);
4034 list_del_init(&block_group->bg_list);
4035 btrfs_put_block_group(block_group);
4036 }
4037 spin_unlock(&info->unused_bgs_lock);
4038
afba2bc0
NA
4039 spin_lock(&info->zone_active_bgs_lock);
4040 while (!list_empty(&info->zone_active_bgs)) {
4041 block_group = list_first_entry(&info->zone_active_bgs,
4042 struct btrfs_block_group,
4043 active_bg_list);
4044 list_del_init(&block_group->active_bg_list);
4045 btrfs_put_block_group(block_group);
4046 }
4047 spin_unlock(&info->zone_active_bgs_lock);
4048
16b0c258 4049 write_lock(&info->block_group_cache_lock);
08dddb29 4050 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
32da5386 4051 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279 4052 cache_node);
08dddb29
FM
4053 rb_erase_cached(&block_group->cache_node,
4054 &info->block_group_cache_tree);
3e43c279 4055 RB_CLEAR_NODE(&block_group->cache_node);
16b0c258 4056 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4057
4058 down_write(&block_group->space_info->groups_sem);
4059 list_del(&block_group->list);
4060 up_write(&block_group->space_info->groups_sem);
4061
4062 /*
4063 * We haven't cached this block group, which means we could
4064 * possibly have excluded extents on this block group.
4065 */
4066 if (block_group->cached == BTRFS_CACHE_NO ||
4067 block_group->cached == BTRFS_CACHE_ERROR)
4068 btrfs_free_excluded_extents(block_group);
4069
4070 btrfs_remove_free_space_cache(block_group);
4071 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4072 ASSERT(list_empty(&block_group->dirty_list));
4073 ASSERT(list_empty(&block_group->io_list));
4074 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 4075 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 4076 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
4077 btrfs_put_block_group(block_group);
4078
16b0c258 4079 write_lock(&info->block_group_cache_lock);
3e43c279 4080 }
16b0c258 4081 write_unlock(&info->block_group_cache_lock);
3e43c279 4082
3e43c279
JB
4083 btrfs_release_global_block_rsv(info);
4084
4085 while (!list_empty(&info->space_info)) {
4086 space_info = list_entry(info->space_info.next,
4087 struct btrfs_space_info,
4088 list);
4089
4090 /*
4091 * Do not hide this behind enospc_debug, this is actually
4092 * important and indicates a real bug if this happens.
4093 */
4094 if (WARN_ON(space_info->bytes_pinned > 0 ||
3e43c279
JB
4095 space_info->bytes_may_use > 0))
4096 btrfs_dump_space_info(info, space_info, 0, 0);
40cdc509
FM
4097
4098 /*
4099 * If there was a failure to cleanup a log tree, very likely due
4100 * to an IO failure on a writeback attempt of one or more of its
4101 * extent buffers, we could not do proper (and cheap) unaccounting
4102 * of their reserved space, so don't warn on bytes_reserved > 0 in
4103 * that case.
4104 */
4105 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4106 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4107 if (WARN_ON(space_info->bytes_reserved > 0))
4108 btrfs_dump_space_info(info, space_info, 0, 0);
4109 }
4110
d611add4 4111 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
4112 list_del(&space_info->list);
4113 btrfs_sysfs_remove_space_info(space_info);
4114 }
4115 return 0;
4116}
684b752b
FM
4117
4118void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4119{
4120 atomic_inc(&cache->frozen);
4121}
4122
4123void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4124{
4125 struct btrfs_fs_info *fs_info = block_group->fs_info;
4126 struct extent_map_tree *em_tree;
4127 struct extent_map *em;
4128 bool cleanup;
4129
4130 spin_lock(&block_group->lock);
4131 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4132 block_group->removed);
4133 spin_unlock(&block_group->lock);
4134
4135 if (cleanup) {
684b752b
FM
4136 em_tree = &fs_info->mapping_tree;
4137 write_lock(&em_tree->lock);
4138 em = lookup_extent_mapping(em_tree, block_group->start,
4139 1);
4140 BUG_ON(!em); /* logic error, can't happen */
4141 remove_extent_mapping(em_tree, em);
4142 write_unlock(&em_tree->lock);
684b752b
FM
4143
4144 /* once for us and once for the tree */
4145 free_extent_map(em);
4146 free_extent_map(em);
4147
4148 /*
4149 * We may have left one free space entry and other possible
4150 * tasks trimming this block group have left 1 entry each one.
4151 * Free them if any.
4152 */
4153 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
4154 }
4155}
195a49ea
FM
4156
4157bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4158{
4159 bool ret = true;
4160
4161 spin_lock(&bg->lock);
4162 if (bg->ro)
4163 ret = false;
4164 else
4165 bg->swap_extents++;
4166 spin_unlock(&bg->lock);
4167
4168 return ret;
4169}
4170
4171void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4172{
4173 spin_lock(&bg->lock);
4174 ASSERT(!bg->ro);
4175 ASSERT(bg->swap_extents >= amount);
4176 bg->swap_extents -= amount;
4177 spin_unlock(&bg->lock);
4178}