]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/disk-io.c
btrfs: fix hang during unmount when stopping a space reclaim worker
[people/ms/linux.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
141386e1
JB
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
d352ac68
CM
72/*
73 * async submit bios are used to offload expensive checksumming
74 * onto the worker threads. They checksum file and metadata bios
75 * just before they are sent down the IO stack.
76 */
44b8bd7e 77struct async_submit_bio {
8896a08d 78 struct inode *inode;
44b8bd7e 79 struct bio *bio;
a758781d 80 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 81 int mirror_num;
1941b64b
QW
82
83 /* Optional parameter for submit_bio_start used by direct io */
84 u64 dio_file_offset;
8b712842 85 struct btrfs_work work;
4e4cbee9 86 blk_status_t status;
44b8bd7e
CM
87};
88
d352ac68 89/*
2996e1f8 90 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 91 */
c67b3892 92static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 93{
d5178578 94 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 95 const int num_pages = num_extent_pages(buf);
a26663e7 96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 98 char *kaddr;
e9be5a30 99 int i;
d5178578
JT
100
101 shash->tfm = fs_info->csum_shash;
102 crypto_shash_init(shash);
a26663e7 103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 105 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 106
e9be5a30
DS
107 for (i = 1; i < num_pages; i++) {
108 kaddr = page_address(buf->pages[i]);
109 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 110 }
71a63551 111 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 112 crypto_shash_final(shash, result);
19c00ddc
CM
113}
114
d352ac68
CM
115/*
116 * we can't consider a given block up to date unless the transid of the
117 * block matches the transid in the parent node's pointer. This is how we
118 * detect blocks that either didn't get written at all or got written
119 * in the wrong place.
120 */
1259ab75 121static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
122 struct extent_buffer *eb, u64 parent_transid,
123 int atomic)
1259ab75 124{
2ac55d41 125 struct extent_state *cached_state = NULL;
1259ab75
CM
126 int ret;
127
128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 return 0;
130
b9fab919
CM
131 if (atomic)
132 return -EAGAIN;
133
2ac55d41 134 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 135 &cached_state);
0b32f4bb 136 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
137 btrfs_header_generation(eb) == parent_transid) {
138 ret = 0;
139 goto out;
140 }
94647322 141 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
142"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
143 eb->start, eb->read_mirror,
29549aec 144 parent_transid, btrfs_header_generation(eb));
1259ab75 145 ret = 1;
35b22c19 146 clear_extent_buffer_uptodate(eb);
33958dc6 147out:
2ac55d41 148 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 149 &cached_state);
1259ab75 150 return ret;
1259ab75
CM
151}
152
e7e16f48
JT
153static bool btrfs_supported_super_csum(u16 csum_type)
154{
155 switch (csum_type) {
156 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 157 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 158 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 159 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
160 return true;
161 default:
162 return false;
163 }
164}
165
1104a885
DS
166/*
167 * Return 0 if the superblock checksum type matches the checksum value of that
168 * algorithm. Pass the raw disk superblock data.
169 */
ab8d0fc4
JM
170static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
171 char *raw_disk_sb)
1104a885
DS
172{
173 struct btrfs_super_block *disk_sb =
174 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 175 char result[BTRFS_CSUM_SIZE];
d5178578
JT
176 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
177
178 shash->tfm = fs_info->csum_shash;
1104a885 179
51bce6c9
JT
180 /*
181 * The super_block structure does not span the whole
182 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
183 * filled with zeros and is included in the checksum.
184 */
fd08001f
EB
185 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
186 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 187
55fc29be 188 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 189 return 1;
1104a885 190
e7e16f48 191 return 0;
1104a885
DS
192}
193
e064d5e9 194int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 195 struct btrfs_key *first_key, u64 parent_transid)
581c1760 196{
e064d5e9 197 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
198 int found_level;
199 struct btrfs_key found_key;
200 int ret;
201
202 found_level = btrfs_header_level(eb);
203 if (found_level != level) {
63489055
QW
204 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
205 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
206 btrfs_err(fs_info,
207"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
208 eb->start, level, found_level);
581c1760
QW
209 return -EIO;
210 }
211
212 if (!first_key)
213 return 0;
214
5d41be6f
QW
215 /*
216 * For live tree block (new tree blocks in current transaction),
217 * we need proper lock context to avoid race, which is impossible here.
218 * So we only checks tree blocks which is read from disk, whose
219 * generation <= fs_info->last_trans_committed.
220 */
221 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
222 return 0;
62fdaa52
QW
223
224 /* We have @first_key, so this @eb must have at least one item */
225 if (btrfs_header_nritems(eb) == 0) {
226 btrfs_err(fs_info,
227 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
228 eb->start);
229 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
230 return -EUCLEAN;
231 }
232
581c1760
QW
233 if (found_level)
234 btrfs_node_key_to_cpu(eb, &found_key, 0);
235 else
236 btrfs_item_key_to_cpu(eb, &found_key, 0);
237 ret = btrfs_comp_cpu_keys(first_key, &found_key);
238
581c1760 239 if (ret) {
63489055
QW
240 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
241 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 242 btrfs_err(fs_info,
ff76a864
LB
243"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
244 eb->start, parent_transid, first_key->objectid,
245 first_key->type, first_key->offset,
246 found_key.objectid, found_key.type,
247 found_key.offset);
581c1760 248 }
581c1760
QW
249 return ret;
250}
251
d352ac68
CM
252/*
253 * helper to read a given tree block, doing retries as required when
254 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
255 *
256 * @parent_transid: expected transid, skip check if 0
257 * @level: expected level, mandatory check
258 * @first_key: expected key of first slot, skip check if NULL
d352ac68 259 */
6a2e9dc4
FM
260int btrfs_read_extent_buffer(struct extent_buffer *eb,
261 u64 parent_transid, int level,
262 struct btrfs_key *first_key)
f188591e 263{
5ab12d1f 264 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 265 struct extent_io_tree *io_tree;
ea466794 266 int failed = 0;
f188591e
CM
267 int ret;
268 int num_copies = 0;
269 int mirror_num = 0;
ea466794 270 int failed_mirror = 0;
f188591e 271
0b246afa 272 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 273 while (1) {
f8397d69 274 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 275 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 276 if (!ret) {
581c1760 277 if (verify_parent_transid(io_tree, eb,
b9fab919 278 parent_transid, 0))
256dd1bb 279 ret = -EIO;
e064d5e9 280 else if (btrfs_verify_level_key(eb, level,
448de471 281 first_key, parent_transid))
581c1760
QW
282 ret = -EUCLEAN;
283 else
284 break;
256dd1bb 285 }
d397712b 286
0b246afa 287 num_copies = btrfs_num_copies(fs_info,
f188591e 288 eb->start, eb->len);
4235298e 289 if (num_copies == 1)
ea466794 290 break;
4235298e 291
5cf1ab56
JB
292 if (!failed_mirror) {
293 failed = 1;
294 failed_mirror = eb->read_mirror;
295 }
296
f188591e 297 mirror_num++;
ea466794
JB
298 if (mirror_num == failed_mirror)
299 mirror_num++;
300
4235298e 301 if (mirror_num > num_copies)
ea466794 302 break;
f188591e 303 }
ea466794 304
c0901581 305 if (failed && !ret && failed_mirror)
20a1fbf9 306 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
307
308 return ret;
f188591e 309}
19c00ddc 310
eca0f6f6
QW
311static int csum_one_extent_buffer(struct extent_buffer *eb)
312{
313 struct btrfs_fs_info *fs_info = eb->fs_info;
314 u8 result[BTRFS_CSUM_SIZE];
315 int ret;
316
317 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
318 offsetof(struct btrfs_header, fsid),
319 BTRFS_FSID_SIZE) == 0);
320 csum_tree_block(eb, result);
321
322 if (btrfs_header_level(eb))
323 ret = btrfs_check_node(eb);
324 else
325 ret = btrfs_check_leaf_full(eb);
326
3777369f
QW
327 if (ret < 0)
328 goto error;
329
330 /*
331 * Also check the generation, the eb reached here must be newer than
332 * last committed. Or something seriously wrong happened.
333 */
334 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
335 ret = -EUCLEAN;
eca0f6f6 336 btrfs_err(fs_info,
3777369f
QW
337 "block=%llu bad generation, have %llu expect > %llu",
338 eb->start, btrfs_header_generation(eb),
339 fs_info->last_trans_committed);
340 goto error;
eca0f6f6
QW
341 }
342 write_extent_buffer(eb, result, 0, fs_info->csum_size);
343
344 return 0;
3777369f
QW
345
346error:
347 btrfs_print_tree(eb, 0);
348 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
349 eb->start);
350 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
351 return ret;
eca0f6f6
QW
352}
353
354/* Checksum all dirty extent buffers in one bio_vec */
355static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
356 struct bio_vec *bvec)
357{
358 struct page *page = bvec->bv_page;
359 u64 bvec_start = page_offset(page) + bvec->bv_offset;
360 u64 cur;
361 int ret = 0;
362
363 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
364 cur += fs_info->nodesize) {
365 struct extent_buffer *eb;
366 bool uptodate;
367
368 eb = find_extent_buffer(fs_info, cur);
369 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
370 fs_info->nodesize);
371
01cd3909 372 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
373 if (WARN_ON(!eb))
374 return -EUCLEAN;
375
376 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
377 free_extent_buffer(eb);
378 return -EUCLEAN;
379 }
380 if (WARN_ON(!uptodate)) {
381 free_extent_buffer(eb);
382 return -EUCLEAN;
383 }
384
385 ret = csum_one_extent_buffer(eb);
386 free_extent_buffer(eb);
387 if (ret < 0)
388 return ret;
389 }
390 return ret;
391}
392
d352ac68 393/*
ac303b69
QW
394 * Checksum a dirty tree block before IO. This has extra checks to make sure
395 * we only fill in the checksum field in the first page of a multi-page block.
396 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 397 */
ac303b69 398static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 399{
ac303b69 400 struct page *page = bvec->bv_page;
4eee4fa4 401 u64 start = page_offset(page);
19c00ddc 402 u64 found_start;
19c00ddc 403 struct extent_buffer *eb;
eca0f6f6 404
fbca46eb 405 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 406 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 407
4f2de97a
JB
408 eb = (struct extent_buffer *)page->private;
409 if (page != eb->pages[0])
410 return 0;
0f805531 411
19c00ddc 412 found_start = btrfs_header_bytenr(eb);
d3575156
NA
413
414 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
415 WARN_ON(found_start != 0);
416 return 0;
417 }
418
0f805531
AL
419 /*
420 * Please do not consolidate these warnings into a single if.
421 * It is useful to know what went wrong.
422 */
423 if (WARN_ON(found_start != start))
424 return -EUCLEAN;
425 if (WARN_ON(!PageUptodate(page)))
426 return -EUCLEAN;
427
eca0f6f6 428 return csum_one_extent_buffer(eb);
19c00ddc
CM
429}
430
b0c9b3b0 431static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 432{
b0c9b3b0 433 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 435 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 436 u8 *metadata_uuid;
2b82032c 437
9a8658e3
DS
438 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
439 BTRFS_FSID_SIZE);
944d3f9f
NB
440 /*
441 * Checking the incompat flag is only valid for the current fs. For
442 * seed devices it's forbidden to have their uuid changed so reading
443 * ->fsid in this case is fine
444 */
445 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
446 metadata_uuid = fs_devices->metadata_uuid;
447 else
448 metadata_uuid = fs_devices->fsid;
449
450 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
451 return 0;
452
453 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
454 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
455 return 0;
456
457 return 1;
2b82032c
YZ
458}
459
77bf40a2
QW
460/* Do basic extent buffer checks at read time */
461static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 462{
77bf40a2 463 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 464 u64 found_start;
77bf40a2
QW
465 const u32 csum_size = fs_info->csum_size;
466 u8 found_level;
2996e1f8 467 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 468 const u8 *header_csum;
77bf40a2 469 int ret = 0;
ea466794 470
ce9adaa5 471 found_start = btrfs_header_bytenr(eb);
727011e0 472 if (found_start != eb->start) {
8f0ed7d4
QW
473 btrfs_err_rl(fs_info,
474 "bad tree block start, mirror %u want %llu have %llu",
475 eb->read_mirror, eb->start, found_start);
f188591e 476 ret = -EIO;
77bf40a2 477 goto out;
ce9adaa5 478 }
b0c9b3b0 479 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
480 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
481 eb->start, eb->read_mirror);
1259ab75 482 ret = -EIO;
77bf40a2 483 goto out;
1259ab75 484 }
ce9adaa5 485 found_level = btrfs_header_level(eb);
1c24c3ce 486 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
487 btrfs_err(fs_info,
488 "bad tree block level, mirror %u level %d on logical %llu",
489 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 490 ret = -EIO;
77bf40a2 491 goto out;
1c24c3ce 492 }
ce9adaa5 493
c67b3892 494 csum_tree_block(eb, result);
dfd29eed
DS
495 header_csum = page_address(eb->pages[0]) +
496 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 497
dfd29eed 498 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 499 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
500"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
501 eb->start, eb->read_mirror,
dfd29eed 502 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
503 CSUM_FMT_VALUE(csum_size, result),
504 btrfs_header_level(eb));
2996e1f8 505 ret = -EUCLEAN;
77bf40a2 506 goto out;
2996e1f8
JT
507 }
508
a826d6dc
JB
509 /*
510 * If this is a leaf block and it is corrupt, set the corrupt bit so
511 * that we don't try and read the other copies of this block, just
512 * return -EIO.
513 */
1c4360ee 514 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
515 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
516 ret = -EIO;
517 }
ce9adaa5 518
813fd1dc 519 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
520 ret = -EIO;
521
0b32f4bb
JB
522 if (!ret)
523 set_extent_buffer_uptodate(eb);
75391f0d
QW
524 else
525 btrfs_err(fs_info,
8f0ed7d4
QW
526 "read time tree block corruption detected on logical %llu mirror %u",
527 eb->start, eb->read_mirror);
77bf40a2
QW
528out:
529 return ret;
530}
531
371cdc07
QW
532static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
533 int mirror)
534{
535 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
536 struct extent_buffer *eb;
537 bool reads_done;
538 int ret = 0;
539
540 /*
541 * We don't allow bio merge for subpage metadata read, so we should
542 * only get one eb for each endio hook.
543 */
544 ASSERT(end == start + fs_info->nodesize - 1);
545 ASSERT(PagePrivate(page));
546
547 eb = find_extent_buffer(fs_info, start);
548 /*
549 * When we are reading one tree block, eb must have been inserted into
550 * the radix tree. If not, something is wrong.
551 */
552 ASSERT(eb);
553
554 reads_done = atomic_dec_and_test(&eb->io_pages);
555 /* Subpage read must finish in page read */
556 ASSERT(reads_done);
557
558 eb->read_mirror = mirror;
559 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
560 ret = -EIO;
561 goto err;
562 }
563 ret = validate_extent_buffer(eb);
564 if (ret < 0)
565 goto err;
566
371cdc07
QW
567 set_extent_buffer_uptodate(eb);
568
569 free_extent_buffer(eb);
570 return ret;
571err:
572 /*
573 * end_bio_extent_readpage decrements io_pages in case of error,
574 * make sure it has something to decrement.
575 */
576 atomic_inc(&eb->io_pages);
577 clear_extent_buffer_uptodate(eb);
578 free_extent_buffer(eb);
579 return ret;
580}
581
c3a3b19b 582int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
583 struct page *page, u64 start, u64 end,
584 int mirror)
585{
586 struct extent_buffer *eb;
587 int ret = 0;
588 int reads_done;
589
590 ASSERT(page->private);
371cdc07 591
fbca46eb 592 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
593 return validate_subpage_buffer(page, start, end, mirror);
594
77bf40a2
QW
595 eb = (struct extent_buffer *)page->private;
596
597 /*
598 * The pending IO might have been the only thing that kept this buffer
599 * in memory. Make sure we have a ref for all this other checks
600 */
601 atomic_inc(&eb->refs);
602
603 reads_done = atomic_dec_and_test(&eb->io_pages);
604 if (!reads_done)
605 goto err;
606
607 eb->read_mirror = mirror;
608 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
609 ret = -EIO;
610 goto err;
611 }
612 ret = validate_extent_buffer(eb);
ce9adaa5 613err:
53b381b3
DW
614 if (ret) {
615 /*
616 * our io error hook is going to dec the io pages
617 * again, we have to make sure it has something
618 * to decrement
619 */
620 atomic_inc(&eb->io_pages);
0b32f4bb 621 clear_extent_buffer_uptodate(eb);
53b381b3 622 }
0b32f4bb 623 free_extent_buffer(eb);
77bf40a2 624
f188591e 625 return ret;
ce9adaa5
CM
626}
627
4a69a410
CM
628static void run_one_async_start(struct btrfs_work *work)
629{
4a69a410 630 struct async_submit_bio *async;
4e4cbee9 631 blk_status_t ret;
4a69a410
CM
632
633 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
634 ret = async->submit_bio_start(async->inode, async->bio,
635 async->dio_file_offset);
79787eaa 636 if (ret)
4e4cbee9 637 async->status = ret;
4a69a410
CM
638}
639
06ea01b1
DS
640/*
641 * In order to insert checksums into the metadata in large chunks, we wait
642 * until bio submission time. All the pages in the bio are checksummed and
643 * sums are attached onto the ordered extent record.
644 *
645 * At IO completion time the csums attached on the ordered extent record are
646 * inserted into the tree.
647 */
4a69a410 648static void run_one_async_done(struct btrfs_work *work)
8b712842 649{
8b712842 650 struct async_submit_bio *async;
06ea01b1 651 struct inode *inode;
8b712842
CM
652
653 async = container_of(work, struct async_submit_bio, work);
8896a08d 654 inode = async->inode;
4854ddd0 655
bb7ab3b9 656 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
657 if (async->status) {
658 async->bio->bi_status = async->status;
4246a0b6 659 bio_endio(async->bio);
79787eaa
JM
660 return;
661 }
662
ec39f769
CM
663 /*
664 * All of the bios that pass through here are from async helpers.
665 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
666 * This changes nothing when cgroups aren't in use.
667 */
668 async->bio->bi_opf |= REQ_CGROUP_PUNT;
1a722d8f 669 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
4a69a410
CM
670}
671
672static void run_one_async_free(struct btrfs_work *work)
673{
674 struct async_submit_bio *async;
675
676 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
677 kfree(async);
678}
679
ea1f0ced
CH
680/*
681 * Submit bio to an async queue.
682 *
683 * Retrun:
684 * - true if the work has been succesfuly submitted
685 * - false in case of error
686 */
687bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
688 u64 dio_file_offset,
689 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 690{
8896a08d 691 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
692 struct async_submit_bio *async;
693
694 async = kmalloc(sizeof(*async), GFP_NOFS);
695 if (!async)
ea1f0ced 696 return false;
44b8bd7e 697
8896a08d 698 async->inode = inode;
44b8bd7e
CM
699 async->bio = bio;
700 async->mirror_num = mirror_num;
4a69a410 701 async->submit_bio_start = submit_bio_start;
4a69a410 702
a0cac0ec
OS
703 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
704 run_one_async_free);
4a69a410 705
1941b64b 706 async->dio_file_offset = dio_file_offset;
8c8bee1d 707
4e4cbee9 708 async->status = 0;
79787eaa 709
67f055c7 710 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
711 btrfs_queue_work(fs_info->hipri_workers, &async->work);
712 else
713 btrfs_queue_work(fs_info->workers, &async->work);
ea1f0ced 714 return true;
44b8bd7e
CM
715}
716
4e4cbee9 717static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 718{
2c30c71b 719 struct bio_vec *bvec;
ce3ed71a 720 struct btrfs_root *root;
2b070cfe 721 int ret = 0;
6dc4f100 722 struct bvec_iter_all iter_all;
ce3ed71a 723
c09abff8 724 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 725 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 726 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 727 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
728 if (ret)
729 break;
ce3ed71a 730 }
2c30c71b 731
4e4cbee9 732 return errno_to_blk_status(ret);
ce3ed71a
CM
733}
734
8896a08d 735static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 736 u64 dio_file_offset)
22c59948 737{
8b712842
CM
738 /*
739 * when we're called for a write, we're already in the async
1a722d8f 740 * submission context. Just jump into btrfs_submit_bio.
8b712842 741 */
79787eaa 742 return btree_csum_one_bio(bio);
4a69a410 743}
22c59948 744
f4dcfb30 745static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 746 struct btrfs_inode *bi)
de0022b9 747{
4eef29ef 748 if (btrfs_is_zoned(fs_info))
f4dcfb30 749 return false;
6300463b 750 if (atomic_read(&bi->sync_writers))
f4dcfb30 751 return false;
9b4e675a 752 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
753 return false;
754 return true;
de0022b9
JB
755}
756
94d9e11b 757void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 758{
0b246afa 759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 760 blk_status_t ret;
cad321ad 761
08a6f464
CH
762 bio->bi_opf |= REQ_META;
763
cfe94440 764 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
1a722d8f
CH
765 btrfs_submit_bio(fs_info, bio, mirror_num);
766 return;
767 }
d313d7a3 768
ea1f0ced
CH
769 /*
770 * Kthread helpers are used to submit writes so that checksumming can
771 * happen in parallel across all CPUs.
772 */
773 if (should_async_write(fs_info, BTRFS_I(inode)) &&
774 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
775 return;
776
777 ret = btree_csum_one_bio(bio);
94d9e11b
CH
778 if (ret) {
779 bio->bi_status = ret;
780 bio_endio(bio);
ea1f0ced 781 return;
94d9e11b 782 }
ea1f0ced
CH
783
784 btrfs_submit_bio(fs_info, bio, mirror_num);
44b8bd7e
CM
785}
786
3dd1462e 787#ifdef CONFIG_MIGRATION
784b4e29 788static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
789 struct page *newpage, struct page *page,
790 enum migrate_mode mode)
784b4e29
CM
791{
792 /*
793 * we can't safely write a btree page from here,
794 * we haven't done the locking hook
795 */
796 if (PageDirty(page))
797 return -EAGAIN;
798 /*
799 * Buffers may be managed in a filesystem specific way.
800 * We must have no buffers or drop them.
801 */
802 if (page_has_private(page) &&
803 !try_to_release_page(page, GFP_KERNEL))
804 return -EAGAIN;
a6bc32b8 805 return migrate_page(mapping, newpage, page, mode);
784b4e29 806}
3dd1462e 807#endif
784b4e29 808
0da5468f
CM
809
810static int btree_writepages(struct address_space *mapping,
811 struct writeback_control *wbc)
812{
e2d84521
MX
813 struct btrfs_fs_info *fs_info;
814 int ret;
815
d8d5f3e1 816 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
817
818 if (wbc->for_kupdate)
819 return 0;
820
e2d84521 821 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 822 /* this is a bit racy, but that's ok */
d814a491
EL
823 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
824 BTRFS_DIRTY_METADATA_THRESH,
825 fs_info->dirty_metadata_batch);
e2d84521 826 if (ret < 0)
793955bc 827 return 0;
793955bc 828 }
0b32f4bb 829 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
830}
831
f913cff3 832static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 833{
f913cff3
MWO
834 if (folio_test_writeback(folio) || folio_test_dirty(folio))
835 return false;
0c4e538b 836
f913cff3 837 return try_release_extent_buffer(&folio->page);
d98237b3
CM
838}
839
895586eb
MWO
840static void btree_invalidate_folio(struct folio *folio, size_t offset,
841 size_t length)
d98237b3 842{
d1310b2e 843 struct extent_io_tree *tree;
895586eb
MWO
844 tree = &BTRFS_I(folio->mapping->host)->io_tree;
845 extent_invalidate_folio(tree, folio, offset);
f913cff3 846 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
847 if (folio_get_private(folio)) {
848 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
849 "folio private not zero on folio %llu",
850 (unsigned long long)folio_pos(folio));
851 folio_detach_private(folio);
9ad6b7bc 852 }
d98237b3
CM
853}
854
bb146eb2 855#ifdef DEBUG
0079c3b1
MWO
856static bool btree_dirty_folio(struct address_space *mapping,
857 struct folio *folio)
858{
859 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 860 struct btrfs_subpage *subpage;
0b32f4bb 861 struct extent_buffer *eb;
139e8cd3 862 int cur_bit = 0;
0079c3b1 863 u64 page_start = folio_pos(folio);
139e8cd3
QW
864
865 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 866 eb = folio_get_private(folio);
139e8cd3
QW
867 BUG_ON(!eb);
868 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
869 BUG_ON(!atomic_read(&eb->refs));
49d0c642 870 btrfs_assert_tree_write_locked(eb);
0079c3b1 871 return filemap_dirty_folio(mapping, folio);
139e8cd3 872 }
0079c3b1 873 subpage = folio_get_private(folio);
139e8cd3
QW
874
875 ASSERT(subpage->dirty_bitmap);
876 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
877 unsigned long flags;
878 u64 cur;
879 u16 tmp = (1 << cur_bit);
880
881 spin_lock_irqsave(&subpage->lock, flags);
882 if (!(tmp & subpage->dirty_bitmap)) {
883 spin_unlock_irqrestore(&subpage->lock, flags);
884 cur_bit++;
885 continue;
886 }
887 spin_unlock_irqrestore(&subpage->lock, flags);
888 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 889
139e8cd3
QW
890 eb = find_extent_buffer(fs_info, cur);
891 ASSERT(eb);
892 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
893 ASSERT(atomic_read(&eb->refs));
49d0c642 894 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
895 free_extent_buffer(eb);
896
897 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
898 }
0079c3b1 899 return filemap_dirty_folio(mapping, folio);
0b32f4bb 900}
0079c3b1
MWO
901#else
902#define btree_dirty_folio filemap_dirty_folio
903#endif
0b32f4bb 904
7f09410b 905static const struct address_space_operations btree_aops = {
0da5468f 906 .writepages = btree_writepages,
f913cff3 907 .release_folio = btree_release_folio,
895586eb 908 .invalidate_folio = btree_invalidate_folio,
5a92bc88 909#ifdef CONFIG_MIGRATION
784b4e29 910 .migratepage = btree_migratepage,
5a92bc88 911#endif
0079c3b1 912 .dirty_folio = btree_dirty_folio,
d98237b3
CM
913};
914
2ff7e61e
JM
915struct extent_buffer *btrfs_find_create_tree_block(
916 struct btrfs_fs_info *fs_info,
3fbaf258
JB
917 u64 bytenr, u64 owner_root,
918 int level)
0999df54 919{
0b246afa
JM
920 if (btrfs_is_testing(fs_info))
921 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 922 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
923}
924
581c1760
QW
925/*
926 * Read tree block at logical address @bytenr and do variant basic but critical
927 * verification.
928 *
1b7ec85e 929 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
930 * @parent_transid: expected transid of this tree block, skip check if 0
931 * @level: expected level, mandatory check
932 * @first_key: expected key in slot 0, skip check if NULL
933 */
2ff7e61e 934struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
935 u64 owner_root, u64 parent_transid,
936 int level, struct btrfs_key *first_key)
0999df54
CM
937{
938 struct extent_buffer *buf = NULL;
0999df54
CM
939 int ret;
940
3fbaf258 941 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
942 if (IS_ERR(buf))
943 return buf;
0999df54 944
6a2e9dc4 945 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 946 if (ret) {
537f38f0 947 free_extent_buffer_stale(buf);
64c043de 948 return ERR_PTR(ret);
0f0fe8f7 949 }
88c602ab
QW
950 if (btrfs_check_eb_owner(buf, owner_root)) {
951 free_extent_buffer_stale(buf);
952 return ERR_PTR(-EUCLEAN);
953 }
5f39d397 954 return buf;
ce9adaa5 955
eb60ceac
CM
956}
957
6a884d7d 958void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 959{
6a884d7d 960 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 961 if (btrfs_header_generation(buf) ==
e2d84521 962 fs_info->running_transaction->transid) {
49d0c642 963 btrfs_assert_tree_write_locked(buf);
b4ce94de 964
b9473439 965 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
966 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
967 -buf->len,
968 fs_info->dirty_metadata_batch);
ed7b63eb
JB
969 clear_extent_buffer_dirty(buf);
970 }
925baedd 971 }
5f39d397
CM
972}
973
da17066c 974static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 975 u64 objectid)
d97e63b6 976{
7c0260ee 977 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
978
979 memset(&root->root_key, 0, sizeof(root->root_key));
980 memset(&root->root_item, 0, sizeof(root->root_item));
981 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 982 root->fs_info = fs_info;
2e608bd1 983 root->root_key.objectid = objectid;
cfaa7295 984 root->node = NULL;
a28ec197 985 root->commit_root = NULL;
27cdeb70 986 root->state = 0;
abed4aaa 987 RB_CLEAR_NODE(&root->rb_node);
0b86a832 988
0f7d52f4 989 root->last_trans = 0;
6b8fad57 990 root->free_objectid = 0;
eb73c1b7 991 root->nr_delalloc_inodes = 0;
199c2a9c 992 root->nr_ordered_extents = 0;
6bef4d31 993 root->inode_tree = RB_ROOT;
088aea3b 994 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
995
996 btrfs_init_root_block_rsv(root);
0b86a832
CM
997
998 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 999 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1000 INIT_LIST_HEAD(&root->delalloc_inodes);
1001 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1002 INIT_LIST_HEAD(&root->ordered_extents);
1003 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1004 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1005 INIT_LIST_HEAD(&root->logged_list[0]);
1006 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1007 spin_lock_init(&root->inode_lock);
eb73c1b7 1008 spin_lock_init(&root->delalloc_lock);
199c2a9c 1009 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1010 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1011 spin_lock_init(&root->log_extents_lock[0]);
1012 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1013 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1014 mutex_init(&root->objectid_mutex);
e02119d5 1015 mutex_init(&root->log_mutex);
31f3d255 1016 mutex_init(&root->ordered_extent_mutex);
573bfb72 1017 mutex_init(&root->delalloc_mutex);
c53e9653 1018 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1019 init_waitqueue_head(&root->log_writer_wait);
1020 init_waitqueue_head(&root->log_commit_wait[0]);
1021 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1022 INIT_LIST_HEAD(&root->log_ctxs[0]);
1023 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1024 atomic_set(&root->log_commit[0], 0);
1025 atomic_set(&root->log_commit[1], 0);
1026 atomic_set(&root->log_writers, 0);
2ecb7923 1027 atomic_set(&root->log_batch, 0);
0700cea7 1028 refcount_set(&root->refs, 1);
8ecebf4d 1029 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1030 atomic_set(&root->nr_swapfiles, 0);
7237f183 1031 root->log_transid = 0;
d1433deb 1032 root->log_transid_committed = -1;
257c62e1 1033 root->last_log_commit = 0;
2e608bd1 1034 root->anon_dev = 0;
e289f03e 1035 if (!dummy) {
43eb5f29
QW
1036 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1037 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1038 extent_io_tree_init(fs_info, &root->log_csum_range,
1039 IO_TREE_LOG_CSUM_RANGE, NULL);
1040 }
017e5369 1041
5f3ab90a 1042 spin_lock_init(&root->root_item_lock);
370a11b8 1043 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1044#ifdef CONFIG_BTRFS_DEBUG
1045 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1046 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1047 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1048 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1049#endif
3768f368
CM
1050}
1051
74e4d827 1052static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1053 u64 objectid, gfp_t flags)
6f07e42e 1054{
74e4d827 1055 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1056 if (root)
96dfcb46 1057 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1058 return root;
1059}
1060
06ea65a3
JB
1061#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1062/* Should only be used by the testing infrastructure */
da17066c 1063struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1064{
1065 struct btrfs_root *root;
1066
7c0260ee
JM
1067 if (!fs_info)
1068 return ERR_PTR(-EINVAL);
1069
96dfcb46 1070 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1071 if (!root)
1072 return ERR_PTR(-ENOMEM);
da17066c 1073
b9ef22de 1074 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1075 root->alloc_bytenr = 0;
06ea65a3
JB
1076
1077 return root;
1078}
1079#endif
1080
abed4aaa
JB
1081static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1082{
1083 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1084 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1085
1086 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1087}
1088
1089static int global_root_key_cmp(const void *k, const struct rb_node *node)
1090{
1091 const struct btrfs_key *key = k;
1092 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1093
1094 return btrfs_comp_cpu_keys(key, &root->root_key);
1095}
1096
1097int btrfs_global_root_insert(struct btrfs_root *root)
1098{
1099 struct btrfs_fs_info *fs_info = root->fs_info;
1100 struct rb_node *tmp;
1101
1102 write_lock(&fs_info->global_root_lock);
1103 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1104 write_unlock(&fs_info->global_root_lock);
1105 ASSERT(!tmp);
1106
1107 return tmp ? -EEXIST : 0;
1108}
1109
1110void btrfs_global_root_delete(struct btrfs_root *root)
1111{
1112 struct btrfs_fs_info *fs_info = root->fs_info;
1113
1114 write_lock(&fs_info->global_root_lock);
1115 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1116 write_unlock(&fs_info->global_root_lock);
1117}
1118
1119struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1120 struct btrfs_key *key)
1121{
1122 struct rb_node *node;
1123 struct btrfs_root *root = NULL;
1124
1125 read_lock(&fs_info->global_root_lock);
1126 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1127 if (node)
1128 root = container_of(node, struct btrfs_root, rb_node);
1129 read_unlock(&fs_info->global_root_lock);
1130
1131 return root;
1132}
1133
f7238e50
JB
1134static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1135{
1136 struct btrfs_block_group *block_group;
1137 u64 ret;
1138
1139 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1140 return 0;
1141
1142 if (bytenr)
1143 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1144 else
1145 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1146 ASSERT(block_group);
1147 if (!block_group)
1148 return 0;
1149 ret = block_group->global_root_id;
1150 btrfs_put_block_group(block_group);
1151
1152 return ret;
1153}
1154
abed4aaa
JB
1155struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1156{
1157 struct btrfs_key key = {
1158 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1159 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1160 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1161 };
1162
1163 return btrfs_global_root(fs_info, &key);
1164}
1165
1166struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1167{
1168 struct btrfs_key key = {
1169 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1170 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1171 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1172 };
1173
1174 return btrfs_global_root(fs_info, &key);
1175}
1176
20897f5c 1177struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1178 u64 objectid)
1179{
9b7a2440 1180 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1181 struct extent_buffer *leaf;
1182 struct btrfs_root *tree_root = fs_info->tree_root;
1183 struct btrfs_root *root;
1184 struct btrfs_key key;
b89f6d1f 1185 unsigned int nofs_flag;
20897f5c 1186 int ret = 0;
20897f5c 1187
b89f6d1f
FM
1188 /*
1189 * We're holding a transaction handle, so use a NOFS memory allocation
1190 * context to avoid deadlock if reclaim happens.
1191 */
1192 nofs_flag = memalloc_nofs_save();
96dfcb46 1193 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1194 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1195 if (!root)
1196 return ERR_PTR(-ENOMEM);
1197
20897f5c
AJ
1198 root->root_key.objectid = objectid;
1199 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1200 root->root_key.offset = 0;
1201
9631e4cc
JB
1202 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1203 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1204 if (IS_ERR(leaf)) {
1205 ret = PTR_ERR(leaf);
1dd05682 1206 leaf = NULL;
8a6a87cd 1207 goto fail_unlock;
20897f5c
AJ
1208 }
1209
20897f5c 1210 root->node = leaf;
20897f5c
AJ
1211 btrfs_mark_buffer_dirty(leaf);
1212
1213 root->commit_root = btrfs_root_node(root);
27cdeb70 1214 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1215
f944d2cb
DS
1216 btrfs_set_root_flags(&root->root_item, 0);
1217 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1218 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1219 btrfs_set_root_generation(&root->root_item, trans->transid);
1220 btrfs_set_root_level(&root->root_item, 0);
1221 btrfs_set_root_refs(&root->root_item, 1);
1222 btrfs_set_root_used(&root->root_item, leaf->len);
1223 btrfs_set_root_last_snapshot(&root->root_item, 0);
1224 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1225 if (is_fstree(objectid))
807fc790
AS
1226 generate_random_guid(root->root_item.uuid);
1227 else
1228 export_guid(root->root_item.uuid, &guid_null);
c8422684 1229 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1230
8a6a87cd
BB
1231 btrfs_tree_unlock(leaf);
1232
20897f5c
AJ
1233 key.objectid = objectid;
1234 key.type = BTRFS_ROOT_ITEM_KEY;
1235 key.offset = 0;
1236 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1237 if (ret)
1238 goto fail;
1239
1dd05682
TI
1240 return root;
1241
8a6a87cd 1242fail_unlock:
8c38938c 1243 if (leaf)
1dd05682 1244 btrfs_tree_unlock(leaf);
8a6a87cd 1245fail:
00246528 1246 btrfs_put_root(root);
20897f5c 1247
1dd05682 1248 return ERR_PTR(ret);
20897f5c
AJ
1249}
1250
7237f183
YZ
1251static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1252 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1253{
1254 struct btrfs_root *root;
e02119d5 1255
96dfcb46 1256 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1257 if (!root)
7237f183 1258 return ERR_PTR(-ENOMEM);
e02119d5 1259
e02119d5
CM
1260 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1261 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1262 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1263
6ab6ebb7
NA
1264 return root;
1265}
1266
1267int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1268 struct btrfs_root *root)
1269{
1270 struct extent_buffer *leaf;
1271
7237f183 1272 /*
92a7cc42 1273 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1274 *
92a7cc42
QW
1275 * Log trees are not exposed to user space thus can't be snapshotted,
1276 * and they go away before a real commit is actually done.
1277 *
1278 * They do store pointers to file data extents, and those reference
1279 * counts still get updated (along with back refs to the log tree).
7237f183 1280 */
e02119d5 1281
4d75f8a9 1282 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1283 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1284 if (IS_ERR(leaf))
1285 return PTR_ERR(leaf);
e02119d5 1286
7237f183 1287 root->node = leaf;
e02119d5 1288
e02119d5
CM
1289 btrfs_mark_buffer_dirty(root->node);
1290 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1291
1292 return 0;
7237f183
YZ
1293}
1294
1295int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1296 struct btrfs_fs_info *fs_info)
1297{
1298 struct btrfs_root *log_root;
1299
1300 log_root = alloc_log_tree(trans, fs_info);
1301 if (IS_ERR(log_root))
1302 return PTR_ERR(log_root);
6ab6ebb7 1303
3ddebf27
NA
1304 if (!btrfs_is_zoned(fs_info)) {
1305 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1306
1307 if (ret) {
1308 btrfs_put_root(log_root);
1309 return ret;
1310 }
6ab6ebb7
NA
1311 }
1312
7237f183
YZ
1313 WARN_ON(fs_info->log_root_tree);
1314 fs_info->log_root_tree = log_root;
1315 return 0;
1316}
1317
1318int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1319 struct btrfs_root *root)
1320{
0b246afa 1321 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1322 struct btrfs_root *log_root;
1323 struct btrfs_inode_item *inode_item;
6ab6ebb7 1324 int ret;
7237f183 1325
0b246afa 1326 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1327 if (IS_ERR(log_root))
1328 return PTR_ERR(log_root);
1329
6ab6ebb7
NA
1330 ret = btrfs_alloc_log_tree_node(trans, log_root);
1331 if (ret) {
1332 btrfs_put_root(log_root);
1333 return ret;
1334 }
1335
7237f183
YZ
1336 log_root->last_trans = trans->transid;
1337 log_root->root_key.offset = root->root_key.objectid;
1338
1339 inode_item = &log_root->root_item.inode;
3cae210f
QW
1340 btrfs_set_stack_inode_generation(inode_item, 1);
1341 btrfs_set_stack_inode_size(inode_item, 3);
1342 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1343 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1344 fs_info->nodesize);
3cae210f 1345 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1346
5d4f98a2 1347 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1348
1349 WARN_ON(root->log_root);
1350 root->log_root = log_root;
1351 root->log_transid = 0;
d1433deb 1352 root->log_transid_committed = -1;
257c62e1 1353 root->last_log_commit = 0;
e02119d5
CM
1354 return 0;
1355}
1356
49d11bea
JB
1357static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1358 struct btrfs_path *path,
1359 struct btrfs_key *key)
e02119d5
CM
1360{
1361 struct btrfs_root *root;
1362 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1363 u64 generation;
cb517eab 1364 int ret;
581c1760 1365 int level;
0f7d52f4 1366
96dfcb46 1367 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1368 if (!root)
1369 return ERR_PTR(-ENOMEM);
0f7d52f4 1370
cb517eab
MX
1371 ret = btrfs_find_root(tree_root, key, path,
1372 &root->root_item, &root->root_key);
0f7d52f4 1373 if (ret) {
13a8a7c8
YZ
1374 if (ret > 0)
1375 ret = -ENOENT;
49d11bea 1376 goto fail;
0f7d52f4 1377 }
13a8a7c8 1378
84234f3a 1379 generation = btrfs_root_generation(&root->root_item);
581c1760 1380 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1381 root->node = read_tree_block(fs_info,
1382 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1383 key->objectid, generation, level, NULL);
64c043de
LB
1384 if (IS_ERR(root->node)) {
1385 ret = PTR_ERR(root->node);
8c38938c 1386 root->node = NULL;
49d11bea 1387 goto fail;
4eb150d6
QW
1388 }
1389 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1390 ret = -EIO;
49d11bea 1391 goto fail;
416bc658 1392 }
88c602ab
QW
1393
1394 /*
1395 * For real fs, and not log/reloc trees, root owner must
1396 * match its root node owner
1397 */
1398 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1399 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1400 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1401 root->root_key.objectid != btrfs_header_owner(root->node)) {
1402 btrfs_crit(fs_info,
1403"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1404 root->root_key.objectid, root->node->start,
1405 btrfs_header_owner(root->node),
1406 root->root_key.objectid);
1407 ret = -EUCLEAN;
1408 goto fail;
1409 }
5d4f98a2 1410 root->commit_root = btrfs_root_node(root);
cb517eab 1411 return root;
49d11bea 1412fail:
00246528 1413 btrfs_put_root(root);
49d11bea
JB
1414 return ERR_PTR(ret);
1415}
1416
1417struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1418 struct btrfs_key *key)
1419{
1420 struct btrfs_root *root;
1421 struct btrfs_path *path;
1422
1423 path = btrfs_alloc_path();
1424 if (!path)
1425 return ERR_PTR(-ENOMEM);
1426 root = read_tree_root_path(tree_root, path, key);
1427 btrfs_free_path(path);
1428
1429 return root;
cb517eab
MX
1430}
1431
2dfb1e43
QW
1432/*
1433 * Initialize subvolume root in-memory structure
1434 *
1435 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1436 */
1437static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1438{
1439 int ret;
dcc3eb96 1440 unsigned int nofs_flag;
cb517eab 1441
dcc3eb96
NB
1442 /*
1443 * We might be called under a transaction (e.g. indirect backref
1444 * resolution) which could deadlock if it triggers memory reclaim
1445 */
1446 nofs_flag = memalloc_nofs_save();
1447 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1448 memalloc_nofs_restore(nofs_flag);
1449 if (ret)
8257b2dc 1450 goto fail;
8257b2dc 1451
aeb935a4 1452 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1453 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1454 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1455 btrfs_check_and_init_root_item(&root->root_item);
1456 }
1457
851fd730
QW
1458 /*
1459 * Don't assign anonymous block device to roots that are not exposed to
1460 * userspace, the id pool is limited to 1M
1461 */
1462 if (is_fstree(root->root_key.objectid) &&
1463 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1464 if (!anon_dev) {
1465 ret = get_anon_bdev(&root->anon_dev);
1466 if (ret)
1467 goto fail;
1468 } else {
1469 root->anon_dev = anon_dev;
1470 }
851fd730 1471 }
f32e48e9
CR
1472
1473 mutex_lock(&root->objectid_mutex);
453e4873 1474 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1475 if (ret) {
1476 mutex_unlock(&root->objectid_mutex);
876d2cf1 1477 goto fail;
f32e48e9
CR
1478 }
1479
6b8fad57 1480 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1481
1482 mutex_unlock(&root->objectid_mutex);
1483
cb517eab
MX
1484 return 0;
1485fail:
84db5ccf 1486 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1487 return ret;
1488}
1489
a98db0f3
JB
1490static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1491 u64 root_id)
cb517eab
MX
1492{
1493 struct btrfs_root *root;
1494
fc7cbcd4
DS
1495 spin_lock(&fs_info->fs_roots_radix_lock);
1496 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1497 (unsigned long)root_id);
bc44d7c4 1498 if (root)
00246528 1499 root = btrfs_grab_root(root);
fc7cbcd4 1500 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1501 return root;
1502}
1503
49d11bea
JB
1504static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1505 u64 objectid)
1506{
abed4aaa
JB
1507 struct btrfs_key key = {
1508 .objectid = objectid,
1509 .type = BTRFS_ROOT_ITEM_KEY,
1510 .offset = 0,
1511 };
1512
49d11bea
JB
1513 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1514 return btrfs_grab_root(fs_info->tree_root);
1515 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1516 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1517 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1518 return btrfs_grab_root(fs_info->chunk_root);
1519 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1520 return btrfs_grab_root(fs_info->dev_root);
1521 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1522 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1523 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1524 return btrfs_grab_root(fs_info->quota_root) ?
1525 fs_info->quota_root : ERR_PTR(-ENOENT);
1526 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1527 return btrfs_grab_root(fs_info->uuid_root) ?
1528 fs_info->uuid_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1529 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1530 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1531
1532 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1533 }
49d11bea
JB
1534 return NULL;
1535}
1536
cb517eab
MX
1537int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1538 struct btrfs_root *root)
1539{
1540 int ret;
1541
fc7cbcd4
DS
1542 ret = radix_tree_preload(GFP_NOFS);
1543 if (ret)
1544 return ret;
1545
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548 (unsigned long)root->root_key.objectid,
1549 root);
af01d2e5 1550 if (ret == 0) {
00246528 1551 btrfs_grab_root(root);
fc7cbcd4 1552 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1553 }
fc7cbcd4
DS
1554 spin_unlock(&fs_info->fs_roots_radix_lock);
1555 radix_tree_preload_end();
cb517eab
MX
1556
1557 return ret;
1558}
1559
bd647ce3
JB
1560void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1561{
1562#ifdef CONFIG_BTRFS_DEBUG
1563 struct btrfs_root *root;
1564
1565 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1566 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1567
bd647ce3
JB
1568 root = list_first_entry(&fs_info->allocated_roots,
1569 struct btrfs_root, leak_list);
457f1864 1570 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1571 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1572 refcount_read(&root->refs));
1573 while (refcount_read(&root->refs) > 1)
00246528
JB
1574 btrfs_put_root(root);
1575 btrfs_put_root(root);
bd647ce3
JB
1576 }
1577#endif
1578}
1579
abed4aaa
JB
1580static void free_global_roots(struct btrfs_fs_info *fs_info)
1581{
1582 struct btrfs_root *root;
1583 struct rb_node *node;
1584
1585 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1586 root = rb_entry(node, struct btrfs_root, rb_node);
1587 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1588 btrfs_put_root(root);
1589 }
1590}
1591
0d4b0463
JB
1592void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1593{
141386e1
JB
1594 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1595 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1596 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1597 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1598 btrfs_free_csum_hash(fs_info);
1599 btrfs_free_stripe_hash_table(fs_info);
1600 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1601 kfree(fs_info->balance_ctl);
1602 kfree(fs_info->delayed_root);
abed4aaa 1603 free_global_roots(fs_info);
00246528
JB
1604 btrfs_put_root(fs_info->tree_root);
1605 btrfs_put_root(fs_info->chunk_root);
1606 btrfs_put_root(fs_info->dev_root);
00246528
JB
1607 btrfs_put_root(fs_info->quota_root);
1608 btrfs_put_root(fs_info->uuid_root);
00246528 1609 btrfs_put_root(fs_info->fs_root);
aeb935a4 1610 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1611 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1612 btrfs_check_leaked_roots(fs_info);
3fd63727 1613 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1614 kfree(fs_info->super_copy);
1615 kfree(fs_info->super_for_commit);
8481dd80 1616 kfree(fs_info->subpage_info);
0d4b0463
JB
1617 kvfree(fs_info);
1618}
1619
1620
2dfb1e43
QW
1621/*
1622 * Get an in-memory reference of a root structure.
1623 *
1624 * For essential trees like root/extent tree, we grab it from fs_info directly.
1625 * For subvolume trees, we check the cached filesystem roots first. If not
1626 * found, then read it from disk and add it to cached fs roots.
1627 *
1628 * Caller should release the root by calling btrfs_put_root() after the usage.
1629 *
1630 * NOTE: Reloc and log trees can't be read by this function as they share the
1631 * same root objectid.
1632 *
1633 * @objectid: root id
1634 * @anon_dev: preallocated anonymous block device number for new roots,
1635 * pass 0 for new allocation.
1636 * @check_ref: whether to check root item references, If true, return -ENOENT
1637 * for orphan roots
1638 */
1639static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1640 u64 objectid, dev_t anon_dev,
1641 bool check_ref)
5eda7b5e
CM
1642{
1643 struct btrfs_root *root;
381cf658 1644 struct btrfs_path *path;
1d4c08e0 1645 struct btrfs_key key;
5eda7b5e
CM
1646 int ret;
1647
49d11bea
JB
1648 root = btrfs_get_global_root(fs_info, objectid);
1649 if (root)
1650 return root;
4df27c4d 1651again:
56e9357a 1652 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1653 if (root) {
2dfb1e43
QW
1654 /* Shouldn't get preallocated anon_dev for cached roots */
1655 ASSERT(!anon_dev);
bc44d7c4 1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1657 btrfs_put_root(root);
48475471 1658 return ERR_PTR(-ENOENT);
bc44d7c4 1659 }
5eda7b5e 1660 return root;
48475471 1661 }
5eda7b5e 1662
56e9357a
DS
1663 key.objectid = objectid;
1664 key.type = BTRFS_ROOT_ITEM_KEY;
1665 key.offset = (u64)-1;
1666 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1667 if (IS_ERR(root))
1668 return root;
3394e160 1669
c00869f1 1670 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1671 ret = -ENOENT;
581bb050 1672 goto fail;
35a30d7c 1673 }
581bb050 1674
2dfb1e43 1675 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1676 if (ret)
1677 goto fail;
3394e160 1678
381cf658
DS
1679 path = btrfs_alloc_path();
1680 if (!path) {
1681 ret = -ENOMEM;
1682 goto fail;
1683 }
1d4c08e0
DS
1684 key.objectid = BTRFS_ORPHAN_OBJECTID;
1685 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1686 key.offset = objectid;
1d4c08e0
DS
1687
1688 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1689 btrfs_free_path(path);
d68fc57b
YZ
1690 if (ret < 0)
1691 goto fail;
1692 if (ret == 0)
27cdeb70 1693 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1694
cb517eab 1695 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1696 if (ret) {
168a2f77
JJB
1697 if (ret == -EEXIST) {
1698 btrfs_put_root(root);
4df27c4d 1699 goto again;
168a2f77 1700 }
4df27c4d 1701 goto fail;
0f7d52f4 1702 }
edbd8d4e 1703 return root;
4df27c4d 1704fail:
33fab972
FM
1705 /*
1706 * If our caller provided us an anonymous device, then it's his
143823cf 1707 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1708 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1709 * and once again by our caller.
1710 */
1711 if (anon_dev)
1712 root->anon_dev = 0;
8c38938c 1713 btrfs_put_root(root);
4df27c4d 1714 return ERR_PTR(ret);
edbd8d4e
CM
1715}
1716
2dfb1e43
QW
1717/*
1718 * Get in-memory reference of a root structure
1719 *
1720 * @objectid: tree objectid
1721 * @check_ref: if set, verify that the tree exists and the item has at least
1722 * one reference
1723 */
1724struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1725 u64 objectid, bool check_ref)
1726{
1727 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1728}
1729
1730/*
1731 * Get in-memory reference of a root structure, created as new, optionally pass
1732 * the anonymous block device id
1733 *
1734 * @objectid: tree objectid
1735 * @anon_dev: if zero, allocate a new anonymous block device or use the
1736 * parameter value
1737 */
1738struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1739 u64 objectid, dev_t anon_dev)
1740{
1741 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1742}
1743
49d11bea
JB
1744/*
1745 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1746 * @fs_info: the fs_info
1747 * @objectid: the objectid we need to lookup
1748 *
1749 * This is exclusively used for backref walking, and exists specifically because
1750 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1751 * creation time, which means we may have to read the tree_root in order to look
1752 * up a fs root that is not in memory. If the root is not in memory we will
1753 * read the tree root commit root and look up the fs root from there. This is a
1754 * temporary root, it will not be inserted into the radix tree as it doesn't
1755 * have the most uptodate information, it'll simply be discarded once the
1756 * backref code is finished using the root.
1757 */
1758struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1759 struct btrfs_path *path,
1760 u64 objectid)
1761{
1762 struct btrfs_root *root;
1763 struct btrfs_key key;
1764
1765 ASSERT(path->search_commit_root && path->skip_locking);
1766
1767 /*
1768 * This can return -ENOENT if we ask for a root that doesn't exist, but
1769 * since this is called via the backref walking code we won't be looking
1770 * up a root that doesn't exist, unless there's corruption. So if root
1771 * != NULL just return it.
1772 */
1773 root = btrfs_get_global_root(fs_info, objectid);
1774 if (root)
1775 return root;
1776
1777 root = btrfs_lookup_fs_root(fs_info, objectid);
1778 if (root)
1779 return root;
1780
1781 key.objectid = objectid;
1782 key.type = BTRFS_ROOT_ITEM_KEY;
1783 key.offset = (u64)-1;
1784 root = read_tree_root_path(fs_info->tree_root, path, &key);
1785 btrfs_release_path(path);
1786
1787 return root;
1788}
1789
a74a4b97
CM
1790static int cleaner_kthread(void *arg)
1791{
0d031dc4 1792 struct btrfs_fs_info *fs_info = arg;
d0278245 1793 int again;
a74a4b97 1794
d6fd0ae2 1795 while (1) {
d0278245 1796 again = 0;
a74a4b97 1797
fd340d0f
JB
1798 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1799
d0278245 1800 /* Make the cleaner go to sleep early. */
2ff7e61e 1801 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1802 goto sleep;
1803
90c711ab
ZB
1804 /*
1805 * Do not do anything if we might cause open_ctree() to block
1806 * before we have finished mounting the filesystem.
1807 */
0b246afa 1808 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1809 goto sleep;
1810
0b246afa 1811 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1812 goto sleep;
1813
dc7f370c
MX
1814 /*
1815 * Avoid the problem that we change the status of the fs
1816 * during the above check and trylock.
1817 */
2ff7e61e 1818 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1819 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1820 goto sleep;
76dda93c 1821 }
a74a4b97 1822
2ff7e61e 1823 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1824
33c44184 1825 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1826 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1827
1828 /*
05323cd1
MX
1829 * The defragger has dealt with the R/O remount and umount,
1830 * needn't do anything special here.
d0278245 1831 */
0b246afa 1832 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1833
1834 /*
f3372065 1835 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1836 * with relocation (btrfs_relocate_chunk) and relocation
1837 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1838 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1839 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1840 * unused block groups.
1841 */
0b246afa 1842 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1843
1844 /*
1845 * Reclaim block groups in the reclaim_bgs list after we deleted
1846 * all unused block_groups. This possibly gives us some more free
1847 * space.
1848 */
1849 btrfs_reclaim_bgs(fs_info);
d0278245 1850sleep:
a0a1db70 1851 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1852 if (kthread_should_park())
1853 kthread_parkme();
1854 if (kthread_should_stop())
1855 return 0;
838fe188 1856 if (!again) {
a74a4b97 1857 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1858 schedule();
a74a4b97
CM
1859 __set_current_state(TASK_RUNNING);
1860 }
da288d28 1861 }
a74a4b97
CM
1862}
1863
1864static int transaction_kthread(void *arg)
1865{
1866 struct btrfs_root *root = arg;
0b246afa 1867 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1868 struct btrfs_trans_handle *trans;
1869 struct btrfs_transaction *cur;
8929ecfa 1870 u64 transid;
643900be 1871 time64_t delta;
a74a4b97 1872 unsigned long delay;
914b2007 1873 bool cannot_commit;
a74a4b97
CM
1874
1875 do {
914b2007 1876 cannot_commit = false;
ba1bc00f 1877 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1878 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1879
0b246afa
JM
1880 spin_lock(&fs_info->trans_lock);
1881 cur = fs_info->running_transaction;
a74a4b97 1882 if (!cur) {
0b246afa 1883 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1884 goto sleep;
1885 }
31153d81 1886
643900be 1887 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1888 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1889 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1890 delta < fs_info->commit_interval) {
0b246afa 1891 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1892 delay -= msecs_to_jiffies((delta - 1) * 1000);
1893 delay = min(delay,
1894 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1895 goto sleep;
1896 }
8929ecfa 1897 transid = cur->transid;
0b246afa 1898 spin_unlock(&fs_info->trans_lock);
56bec294 1899
79787eaa 1900 /* If the file system is aborted, this will always fail. */
354aa0fb 1901 trans = btrfs_attach_transaction(root);
914b2007 1902 if (IS_ERR(trans)) {
354aa0fb
MX
1903 if (PTR_ERR(trans) != -ENOENT)
1904 cannot_commit = true;
79787eaa 1905 goto sleep;
914b2007 1906 }
8929ecfa 1907 if (transid == trans->transid) {
3a45bb20 1908 btrfs_commit_transaction(trans);
8929ecfa 1909 } else {
3a45bb20 1910 btrfs_end_transaction(trans);
8929ecfa 1911 }
a74a4b97 1912sleep:
0b246afa
JM
1913 wake_up_process(fs_info->cleaner_kthread);
1914 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1915
84961539 1916 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1917 btrfs_cleanup_transaction(fs_info);
ce63f891 1918 if (!kthread_should_stop() &&
0b246afa 1919 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1920 cannot_commit))
bc5511d0 1921 schedule_timeout_interruptible(delay);
a74a4b97
CM
1922 } while (!kthread_should_stop());
1923 return 0;
1924}
1925
af31f5e5 1926/*
01f0f9da
NB
1927 * This will find the highest generation in the array of root backups. The
1928 * index of the highest array is returned, or -EINVAL if we can't find
1929 * anything.
af31f5e5
CM
1930 *
1931 * We check to make sure the array is valid by comparing the
1932 * generation of the latest root in the array with the generation
1933 * in the super block. If they don't match we pitch it.
1934 */
01f0f9da 1935static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1936{
01f0f9da 1937 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1938 u64 cur;
af31f5e5
CM
1939 struct btrfs_root_backup *root_backup;
1940 int i;
1941
1942 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1943 root_backup = info->super_copy->super_roots + i;
1944 cur = btrfs_backup_tree_root_gen(root_backup);
1945 if (cur == newest_gen)
01f0f9da 1946 return i;
af31f5e5
CM
1947 }
1948
01f0f9da 1949 return -EINVAL;
af31f5e5
CM
1950}
1951
af31f5e5
CM
1952/*
1953 * copy all the root pointers into the super backup array.
1954 * this will bump the backup pointer by one when it is
1955 * done
1956 */
1957static void backup_super_roots(struct btrfs_fs_info *info)
1958{
6ef108dd 1959 const int next_backup = info->backup_root_index;
af31f5e5 1960 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1961
1962 root_backup = info->super_for_commit->super_roots + next_backup;
1963
1964 /*
1965 * make sure all of our padding and empty slots get zero filled
1966 * regardless of which ones we use today
1967 */
1968 memset(root_backup, 0, sizeof(*root_backup));
1969
1970 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1971
1972 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1973 btrfs_set_backup_tree_root_gen(root_backup,
1974 btrfs_header_generation(info->tree_root->node));
1975
1976 btrfs_set_backup_tree_root_level(root_backup,
1977 btrfs_header_level(info->tree_root->node));
1978
1979 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1980 btrfs_set_backup_chunk_root_gen(root_backup,
1981 btrfs_header_generation(info->chunk_root->node));
1982 btrfs_set_backup_chunk_root_level(root_backup,
1983 btrfs_header_level(info->chunk_root->node));
1984
9c54e80d
JB
1985 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
1986 btrfs_set_backup_block_group_root(root_backup,
1987 info->block_group_root->node->start);
1988 btrfs_set_backup_block_group_root_gen(root_backup,
1989 btrfs_header_generation(info->block_group_root->node));
1990 btrfs_set_backup_block_group_root_level(root_backup,
1991 btrfs_header_level(info->block_group_root->node));
1992 } else {
1993 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1994 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1995
1996 btrfs_set_backup_extent_root(root_backup,
1997 extent_root->node->start);
1998 btrfs_set_backup_extent_root_gen(root_backup,
1999 btrfs_header_generation(extent_root->node));
2000 btrfs_set_backup_extent_root_level(root_backup,
2001 btrfs_header_level(extent_root->node));
f7238e50
JB
2002
2003 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2004 btrfs_set_backup_csum_root_gen(root_backup,
2005 btrfs_header_generation(csum_root->node));
2006 btrfs_set_backup_csum_root_level(root_backup,
2007 btrfs_header_level(csum_root->node));
9c54e80d 2008 }
af31f5e5 2009
7c7e82a7
CM
2010 /*
2011 * we might commit during log recovery, which happens before we set
2012 * the fs_root. Make sure it is valid before we fill it in.
2013 */
2014 if (info->fs_root && info->fs_root->node) {
2015 btrfs_set_backup_fs_root(root_backup,
2016 info->fs_root->node->start);
2017 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2018 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2019 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2020 btrfs_header_level(info->fs_root->node));
7c7e82a7 2021 }
af31f5e5
CM
2022
2023 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2024 btrfs_set_backup_dev_root_gen(root_backup,
2025 btrfs_header_generation(info->dev_root->node));
2026 btrfs_set_backup_dev_root_level(root_backup,
2027 btrfs_header_level(info->dev_root->node));
2028
af31f5e5
CM
2029 btrfs_set_backup_total_bytes(root_backup,
2030 btrfs_super_total_bytes(info->super_copy));
2031 btrfs_set_backup_bytes_used(root_backup,
2032 btrfs_super_bytes_used(info->super_copy));
2033 btrfs_set_backup_num_devices(root_backup,
2034 btrfs_super_num_devices(info->super_copy));
2035
2036 /*
2037 * if we don't copy this out to the super_copy, it won't get remembered
2038 * for the next commit
2039 */
2040 memcpy(&info->super_copy->super_roots,
2041 &info->super_for_commit->super_roots,
2042 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2043}
2044
bd2336b2
NB
2045/*
2046 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2047 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2048 *
2049 * fs_info - filesystem whose backup roots need to be read
2050 * priority - priority of backup root required
2051 *
2052 * Returns backup root index on success and -EINVAL otherwise.
2053 */
2054static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2055{
2056 int backup_index = find_newest_super_backup(fs_info);
2057 struct btrfs_super_block *super = fs_info->super_copy;
2058 struct btrfs_root_backup *root_backup;
2059
2060 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2061 if (priority == 0)
2062 return backup_index;
2063
2064 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2065 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2066 } else {
2067 return -EINVAL;
2068 }
2069
2070 root_backup = super->super_roots + backup_index;
2071
2072 btrfs_set_super_generation(super,
2073 btrfs_backup_tree_root_gen(root_backup));
2074 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2075 btrfs_set_super_root_level(super,
2076 btrfs_backup_tree_root_level(root_backup));
2077 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2078
2079 /*
2080 * Fixme: the total bytes and num_devices need to match or we should
2081 * need a fsck
2082 */
2083 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2084 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2085
2086 return backup_index;
2087}
2088
7abadb64
LB
2089/* helper to cleanup workers */
2090static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2091{
dc6e3209 2092 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2093 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2094 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2095 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2096 if (fs_info->endio_workers)
2097 destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2098 if (fs_info->endio_raid56_workers)
2099 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2100 if (fs_info->rmw_workers)
2101 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2102 if (fs_info->compressed_write_workers)
2103 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2104 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2105 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2106 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2107 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2108 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2109 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2110 if (fs_info->discard_ctl.discard_workers)
2111 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2112 /*
2113 * Now that all other work queues are destroyed, we can safely destroy
2114 * the queues used for metadata I/O, since tasks from those other work
2115 * queues can do metadata I/O operations.
2116 */
d7b9416f
CH
2117 if (fs_info->endio_meta_workers)
2118 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2119}
2120
2e9f5954
R
2121static void free_root_extent_buffers(struct btrfs_root *root)
2122{
2123 if (root) {
2124 free_extent_buffer(root->node);
2125 free_extent_buffer(root->commit_root);
2126 root->node = NULL;
2127 root->commit_root = NULL;
2128 }
2129}
2130
abed4aaa
JB
2131static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2132{
2133 struct btrfs_root *root, *tmp;
2134
2135 rbtree_postorder_for_each_entry_safe(root, tmp,
2136 &fs_info->global_root_tree,
2137 rb_node)
2138 free_root_extent_buffers(root);
2139}
2140
af31f5e5 2141/* helper to cleanup tree roots */
4273eaff 2142static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2143{
2e9f5954 2144 free_root_extent_buffers(info->tree_root);
655b09fe 2145
abed4aaa 2146 free_global_root_pointers(info);
2e9f5954 2147 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2148 free_root_extent_buffers(info->quota_root);
2149 free_root_extent_buffers(info->uuid_root);
8c38938c 2150 free_root_extent_buffers(info->fs_root);
aeb935a4 2151 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2152 free_root_extent_buffers(info->block_group_root);
4273eaff 2153 if (free_chunk_root)
2e9f5954 2154 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2155}
2156
8c38938c
JB
2157void btrfs_put_root(struct btrfs_root *root)
2158{
2159 if (!root)
2160 return;
2161
2162 if (refcount_dec_and_test(&root->refs)) {
2163 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2164 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2165 if (root->anon_dev)
2166 free_anon_bdev(root->anon_dev);
2167 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2168 free_root_extent_buffers(root);
8c38938c 2169#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2170 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2171 list_del_init(&root->leak_list);
fc7cbcd4 2172 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2173#endif
2174 kfree(root);
2175 }
2176}
2177
faa2dbf0 2178void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2179{
fc7cbcd4
DS
2180 int ret;
2181 struct btrfs_root *gang[8];
2182 int i;
171f6537
JB
2183
2184 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2185 gang[0] = list_entry(fs_info->dead_roots.next,
2186 struct btrfs_root, root_list);
2187 list_del(&gang[0]->root_list);
171f6537 2188
fc7cbcd4
DS
2189 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2190 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2191 btrfs_put_root(gang[0]);
171f6537
JB
2192 }
2193
fc7cbcd4
DS
2194 while (1) {
2195 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2196 (void **)gang, 0,
2197 ARRAY_SIZE(gang));
2198 if (!ret)
2199 break;
2200 for (i = 0; i < ret; i++)
2201 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2202 }
2203}
af31f5e5 2204
638aa7ed
ES
2205static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2206{
2207 mutex_init(&fs_info->scrub_lock);
2208 atomic_set(&fs_info->scrubs_running, 0);
2209 atomic_set(&fs_info->scrub_pause_req, 0);
2210 atomic_set(&fs_info->scrubs_paused, 0);
2211 atomic_set(&fs_info->scrub_cancel_req, 0);
2212 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2213 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2214}
2215
779a65a4
ES
2216static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2217{
2218 spin_lock_init(&fs_info->balance_lock);
2219 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2220 atomic_set(&fs_info->balance_pause_req, 0);
2221 atomic_set(&fs_info->balance_cancel_req, 0);
2222 fs_info->balance_ctl = NULL;
2223 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2224 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2225}
2226
6bccf3ab 2227static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2228{
2ff7e61e
JM
2229 struct inode *inode = fs_info->btree_inode;
2230
2231 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2232 set_nlink(inode, 1);
f37938e0
ES
2233 /*
2234 * we set the i_size on the btree inode to the max possible int.
2235 * the real end of the address space is determined by all of
2236 * the devices in the system
2237 */
2ff7e61e
JM
2238 inode->i_size = OFFSET_MAX;
2239 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2240
2ff7e61e 2241 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2242 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2243 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2244 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2245 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2246
5c8fd99f 2247 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2248 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2249 BTRFS_I(inode)->location.type = 0;
2250 BTRFS_I(inode)->location.offset = 0;
2ff7e61e
JM
2251 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2252 btrfs_insert_inode_hash(inode);
f37938e0
ES
2253}
2254
ad618368
ES
2255static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2256{
ad618368 2257 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2258 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2259 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2260}
2261
f9e92e40
ES
2262static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2263{
2264 spin_lock_init(&fs_info->qgroup_lock);
2265 mutex_init(&fs_info->qgroup_ioctl_lock);
2266 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2267 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2268 fs_info->qgroup_seq = 1;
f9e92e40 2269 fs_info->qgroup_ulist = NULL;
d2c609b8 2270 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2271 mutex_init(&fs_info->qgroup_rescan_lock);
2272}
2273
d21deec5 2274static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2275{
f7b885be 2276 u32 max_active = fs_info->thread_pool_size;
6f011058 2277 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2278
2279 fs_info->workers =
a31b4a43
CH
2280 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2281 fs_info->hipri_workers =
2282 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2283 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2284
2285 fs_info->delalloc_workers =
cb001095
JM
2286 btrfs_alloc_workqueue(fs_info, "delalloc",
2287 flags, max_active, 2);
2a458198
ES
2288
2289 fs_info->flush_workers =
cb001095
JM
2290 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2291 flags, max_active, 0);
2a458198
ES
2292
2293 fs_info->caching_workers =
cb001095 2294 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2295
2a458198 2296 fs_info->fixup_workers =
cb001095 2297 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2298
2a458198 2299 fs_info->endio_workers =
d7b9416f 2300 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2301 fs_info->endio_meta_workers =
d7b9416f 2302 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2a458198 2303 fs_info->endio_raid56_workers =
d34e123d 2304 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2305 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2306 fs_info->endio_write_workers =
cb001095
JM
2307 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2308 max_active, 2);
fed8a72d
CH
2309 fs_info->compressed_write_workers =
2310 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2311 fs_info->endio_freespace_worker =
cb001095
JM
2312 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2313 max_active, 0);
2a458198 2314 fs_info->delayed_workers =
cb001095
JM
2315 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2316 max_active, 0);
2a458198 2317 fs_info->qgroup_rescan_workers =
cb001095 2318 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2319 fs_info->discard_ctl.discard_workers =
2320 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2321
a31b4a43
CH
2322 if (!(fs_info->workers && fs_info->hipri_workers &&
2323 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2324 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2325 fs_info->compressed_write_workers &&
2a458198
ES
2326 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2327 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2328 fs_info->caching_workers && fs_info->fixup_workers &&
2329 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2330 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2331 return -ENOMEM;
2332 }
2333
2334 return 0;
2335}
2336
6d97c6e3
JT
2337static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2338{
2339 struct crypto_shash *csum_shash;
b4e967be 2340 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2341
b4e967be 2342 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2343
2344 if (IS_ERR(csum_shash)) {
2345 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2346 csum_driver);
6d97c6e3
JT
2347 return PTR_ERR(csum_shash);
2348 }
2349
2350 fs_info->csum_shash = csum_shash;
2351
c8a5f8ca
DS
2352 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2353 btrfs_super_csum_name(csum_type),
2354 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2355 return 0;
2356}
2357
63443bf5
ES
2358static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2359 struct btrfs_fs_devices *fs_devices)
2360{
2361 int ret;
63443bf5
ES
2362 struct btrfs_root *log_tree_root;
2363 struct btrfs_super_block *disk_super = fs_info->super_copy;
2364 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2365 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2366
2367 if (fs_devices->rw_devices == 0) {
f14d104d 2368 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2369 return -EIO;
2370 }
2371
96dfcb46
JB
2372 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2373 GFP_KERNEL);
63443bf5
ES
2374 if (!log_tree_root)
2375 return -ENOMEM;
2376
2ff7e61e 2377 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2378 BTRFS_TREE_LOG_OBJECTID,
2379 fs_info->generation + 1, level,
2380 NULL);
64c043de 2381 if (IS_ERR(log_tree_root->node)) {
f14d104d 2382 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2383 ret = PTR_ERR(log_tree_root->node);
8c38938c 2384 log_tree_root->node = NULL;
00246528 2385 btrfs_put_root(log_tree_root);
0eeff236 2386 return ret;
4eb150d6
QW
2387 }
2388 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2389 btrfs_err(fs_info, "failed to read log tree");
00246528 2390 btrfs_put_root(log_tree_root);
63443bf5
ES
2391 return -EIO;
2392 }
4eb150d6 2393
63443bf5
ES
2394 /* returns with log_tree_root freed on success */
2395 ret = btrfs_recover_log_trees(log_tree_root);
2396 if (ret) {
0b246afa
JM
2397 btrfs_handle_fs_error(fs_info, ret,
2398 "Failed to recover log tree");
00246528 2399 btrfs_put_root(log_tree_root);
63443bf5
ES
2400 return ret;
2401 }
2402
bc98a42c 2403 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2404 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2405 if (ret)
2406 return ret;
2407 }
2408
2409 return 0;
2410}
2411
abed4aaa
JB
2412static int load_global_roots_objectid(struct btrfs_root *tree_root,
2413 struct btrfs_path *path, u64 objectid,
2414 const char *name)
2415{
2416 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2417 struct btrfs_root *root;
f7238e50 2418 u64 max_global_id = 0;
abed4aaa
JB
2419 int ret;
2420 struct btrfs_key key = {
2421 .objectid = objectid,
2422 .type = BTRFS_ROOT_ITEM_KEY,
2423 .offset = 0,
2424 };
2425 bool found = false;
2426
2427 /* If we have IGNOREDATACSUMS skip loading these roots. */
2428 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2429 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2430 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2431 return 0;
2432 }
2433
2434 while (1) {
2435 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2436 if (ret < 0)
2437 break;
2438
2439 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2440 ret = btrfs_next_leaf(tree_root, path);
2441 if (ret) {
2442 if (ret > 0)
2443 ret = 0;
2444 break;
2445 }
2446 }
2447 ret = 0;
2448
2449 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2450 if (key.objectid != objectid)
2451 break;
2452 btrfs_release_path(path);
2453
f7238e50
JB
2454 /*
2455 * Just worry about this for extent tree, it'll be the same for
2456 * everybody.
2457 */
2458 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2459 max_global_id = max(max_global_id, key.offset);
2460
abed4aaa
JB
2461 found = true;
2462 root = read_tree_root_path(tree_root, path, &key);
2463 if (IS_ERR(root)) {
2464 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2465 ret = PTR_ERR(root);
2466 break;
2467 }
2468 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 ret = btrfs_global_root_insert(root);
2470 if (ret) {
2471 btrfs_put_root(root);
2472 break;
2473 }
2474 key.offset++;
2475 }
2476 btrfs_release_path(path);
2477
f7238e50
JB
2478 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2479 fs_info->nr_global_roots = max_global_id + 1;
2480
abed4aaa
JB
2481 if (!found || ret) {
2482 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2483 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2484
2485 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2486 ret = ret ? ret : -ENOENT;
2487 else
2488 ret = 0;
2489 btrfs_err(fs_info, "failed to load root %s", name);
2490 }
2491 return ret;
2492}
2493
2494static int load_global_roots(struct btrfs_root *tree_root)
2495{
2496 struct btrfs_path *path;
2497 int ret = 0;
2498
2499 path = btrfs_alloc_path();
2500 if (!path)
2501 return -ENOMEM;
2502
2503 ret = load_global_roots_objectid(tree_root, path,
2504 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2505 if (ret)
2506 goto out;
2507 ret = load_global_roots_objectid(tree_root, path,
2508 BTRFS_CSUM_TREE_OBJECTID, "csum");
2509 if (ret)
2510 goto out;
2511 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2512 goto out;
2513 ret = load_global_roots_objectid(tree_root, path,
2514 BTRFS_FREE_SPACE_TREE_OBJECTID,
2515 "free space");
2516out:
2517 btrfs_free_path(path);
2518 return ret;
2519}
2520
6bccf3ab 2521static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2522{
6bccf3ab 2523 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2524 struct btrfs_root *root;
4bbcaa64
ES
2525 struct btrfs_key location;
2526 int ret;
2527
6bccf3ab
JM
2528 BUG_ON(!fs_info->tree_root);
2529
abed4aaa
JB
2530 ret = load_global_roots(tree_root);
2531 if (ret)
2532 return ret;
2533
2534 location.objectid = BTRFS_DEV_TREE_OBJECTID;
4bbcaa64
ES
2535 location.type = BTRFS_ROOT_ITEM_KEY;
2536 location.offset = 0;
2537
a4f3d2c4 2538 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2539 if (IS_ERR(root)) {
42437a63
JB
2540 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2541 ret = PTR_ERR(root);
2542 goto out;
2543 }
2544 } else {
2545 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2546 fs_info->dev_root = root;
f50f4353 2547 }
820a49da
JB
2548 /* Initialize fs_info for all devices in any case */
2549 btrfs_init_devices_late(fs_info);
4bbcaa64 2550
aeb935a4
QW
2551 /*
2552 * This tree can share blocks with some other fs tree during relocation
2553 * and we need a proper setup by btrfs_get_fs_root
2554 */
56e9357a
DS
2555 root = btrfs_get_fs_root(tree_root->fs_info,
2556 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2557 if (IS_ERR(root)) {
42437a63
JB
2558 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2559 ret = PTR_ERR(root);
2560 goto out;
2561 }
2562 } else {
2563 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2564 fs_info->data_reloc_root = root;
aeb935a4 2565 }
aeb935a4 2566
4bbcaa64 2567 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2568 root = btrfs_read_tree_root(tree_root, &location);
2569 if (!IS_ERR(root)) {
2570 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2571 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2572 fs_info->quota_root = root;
4bbcaa64
ES
2573 }
2574
2575 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2576 root = btrfs_read_tree_root(tree_root, &location);
2577 if (IS_ERR(root)) {
42437a63
JB
2578 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2579 ret = PTR_ERR(root);
2580 if (ret != -ENOENT)
2581 goto out;
2582 }
4bbcaa64 2583 } else {
a4f3d2c4
DS
2584 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2585 fs_info->uuid_root = root;
4bbcaa64
ES
2586 }
2587
2588 return 0;
f50f4353
LB
2589out:
2590 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2591 location.objectid, ret);
2592 return ret;
4bbcaa64
ES
2593}
2594
069ec957
QW
2595/*
2596 * Real super block validation
2597 * NOTE: super csum type and incompat features will not be checked here.
2598 *
2599 * @sb: super block to check
2600 * @mirror_num: the super block number to check its bytenr:
2601 * 0 the primary (1st) sb
2602 * 1, 2 2nd and 3rd backup copy
2603 * -1 skip bytenr check
2604 */
2605static int validate_super(struct btrfs_fs_info *fs_info,
2606 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2607{
21a852b0
QW
2608 u64 nodesize = btrfs_super_nodesize(sb);
2609 u64 sectorsize = btrfs_super_sectorsize(sb);
2610 int ret = 0;
2611
2612 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2613 btrfs_err(fs_info, "no valid FS found");
2614 ret = -EINVAL;
2615 }
2616 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2617 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2618 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2619 ret = -EINVAL;
2620 }
2621 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2622 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2623 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2624 ret = -EINVAL;
2625 }
2626 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2627 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2628 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2629 ret = -EINVAL;
2630 }
2631 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2632 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2633 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2634 ret = -EINVAL;
2635 }
2636
2637 /*
2638 * Check sectorsize and nodesize first, other check will need it.
2639 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2640 */
2641 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2642 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2643 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2644 ret = -EINVAL;
2645 }
0bb3eb3e
QW
2646
2647 /*
1a42daab
QW
2648 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2649 *
2650 * We can support 16K sectorsize with 64K page size without problem,
2651 * but such sectorsize/pagesize combination doesn't make much sense.
2652 * 4K will be our future standard, PAGE_SIZE is supported from the very
2653 * beginning.
0bb3eb3e 2654 */
1a42daab 2655 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2656 btrfs_err(fs_info,
0bb3eb3e 2657 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2658 sectorsize, PAGE_SIZE);
2659 ret = -EINVAL;
2660 }
0bb3eb3e 2661
21a852b0
QW
2662 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2663 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2664 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2665 ret = -EINVAL;
2666 }
2667 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2668 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2669 le32_to_cpu(sb->__unused_leafsize), nodesize);
2670 ret = -EINVAL;
2671 }
2672
2673 /* Root alignment check */
2674 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2675 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2676 btrfs_super_root(sb));
2677 ret = -EINVAL;
2678 }
2679 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2680 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2681 btrfs_super_chunk_root(sb));
2682 ret = -EINVAL;
2683 }
2684 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2685 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2686 btrfs_super_log_root(sb));
2687 ret = -EINVAL;
2688 }
2689
aefd7f70
NB
2690 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2691 BTRFS_FSID_SIZE)) {
2692 btrfs_err(fs_info,
2693 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2694 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2695 ret = -EINVAL;
2696 }
2697
2698 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2699 memcmp(fs_info->fs_devices->metadata_uuid,
2700 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2701 btrfs_err(fs_info,
2702"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2703 fs_info->super_copy->metadata_uuid,
2704 fs_info->fs_devices->metadata_uuid);
2705 ret = -EINVAL;
2706 }
2707
de37aa51 2708 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2709 BTRFS_FSID_SIZE) != 0) {
21a852b0 2710 btrfs_err(fs_info,
7239ff4b 2711 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2712 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2713 ret = -EINVAL;
2714 }
2715
2716 /*
2717 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2718 * done later
2719 */
2720 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2721 btrfs_err(fs_info, "bytes_used is too small %llu",
2722 btrfs_super_bytes_used(sb));
2723 ret = -EINVAL;
2724 }
2725 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2726 btrfs_err(fs_info, "invalid stripesize %u",
2727 btrfs_super_stripesize(sb));
2728 ret = -EINVAL;
2729 }
2730 if (btrfs_super_num_devices(sb) > (1UL << 31))
2731 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2732 btrfs_super_num_devices(sb));
2733 if (btrfs_super_num_devices(sb) == 0) {
2734 btrfs_err(fs_info, "number of devices is 0");
2735 ret = -EINVAL;
2736 }
2737
069ec957
QW
2738 if (mirror_num >= 0 &&
2739 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2740 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2741 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2742 ret = -EINVAL;
2743 }
2744
2745 /*
2746 * Obvious sys_chunk_array corruptions, it must hold at least one key
2747 * and one chunk
2748 */
2749 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2750 btrfs_err(fs_info, "system chunk array too big %u > %u",
2751 btrfs_super_sys_array_size(sb),
2752 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2753 ret = -EINVAL;
2754 }
2755 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2756 + sizeof(struct btrfs_chunk)) {
2757 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2758 btrfs_super_sys_array_size(sb),
2759 sizeof(struct btrfs_disk_key)
2760 + sizeof(struct btrfs_chunk));
2761 ret = -EINVAL;
2762 }
2763
2764 /*
2765 * The generation is a global counter, we'll trust it more than the others
2766 * but it's still possible that it's the one that's wrong.
2767 */
2768 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2769 btrfs_warn(fs_info,
2770 "suspicious: generation < chunk_root_generation: %llu < %llu",
2771 btrfs_super_generation(sb),
2772 btrfs_super_chunk_root_generation(sb));
2773 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2774 && btrfs_super_cache_generation(sb) != (u64)-1)
2775 btrfs_warn(fs_info,
2776 "suspicious: generation < cache_generation: %llu < %llu",
2777 btrfs_super_generation(sb),
2778 btrfs_super_cache_generation(sb));
2779
2780 return ret;
2781}
2782
069ec957
QW
2783/*
2784 * Validation of super block at mount time.
2785 * Some checks already done early at mount time, like csum type and incompat
2786 * flags will be skipped.
2787 */
2788static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2789{
2790 return validate_super(fs_info, fs_info->super_copy, 0);
2791}
2792
75cb857d
QW
2793/*
2794 * Validation of super block at write time.
2795 * Some checks like bytenr check will be skipped as their values will be
2796 * overwritten soon.
2797 * Extra checks like csum type and incompat flags will be done here.
2798 */
2799static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2800 struct btrfs_super_block *sb)
2801{
2802 int ret;
2803
2804 ret = validate_super(fs_info, sb, -1);
2805 if (ret < 0)
2806 goto out;
e7e16f48 2807 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2808 ret = -EUCLEAN;
2809 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2810 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2811 goto out;
2812 }
2813 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2814 ret = -EUCLEAN;
2815 btrfs_err(fs_info,
2816 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2817 btrfs_super_incompat_flags(sb),
2818 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2819 goto out;
2820 }
2821out:
2822 if (ret < 0)
2823 btrfs_err(fs_info,
2824 "super block corruption detected before writing it to disk");
2825 return ret;
2826}
2827
bd676446
JB
2828static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2829{
2830 int ret = 0;
2831
2832 root->node = read_tree_block(root->fs_info, bytenr,
2833 root->root_key.objectid, gen, level, NULL);
2834 if (IS_ERR(root->node)) {
2835 ret = PTR_ERR(root->node);
2836 root->node = NULL;
4eb150d6
QW
2837 return ret;
2838 }
2839 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2840 free_extent_buffer(root->node);
2841 root->node = NULL;
4eb150d6 2842 return -EIO;
bd676446
JB
2843 }
2844
bd676446
JB
2845 btrfs_set_root_node(&root->root_item, root->node);
2846 root->commit_root = btrfs_root_node(root);
2847 btrfs_set_root_refs(&root->root_item, 1);
2848 return ret;
2849}
2850
2851static int load_important_roots(struct btrfs_fs_info *fs_info)
2852{
2853 struct btrfs_super_block *sb = fs_info->super_copy;
2854 u64 gen, bytenr;
2855 int level, ret;
2856
2857 bytenr = btrfs_super_root(sb);
2858 gen = btrfs_super_generation(sb);
2859 level = btrfs_super_root_level(sb);
2860 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2861 if (ret) {
bd676446 2862 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2863 return ret;
2864 }
2865
2866 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2867 return 0;
2868
2869 bytenr = btrfs_super_block_group_root(sb);
2870 gen = btrfs_super_block_group_root_generation(sb);
2871 level = btrfs_super_block_group_root_level(sb);
2872 ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
2873 if (ret)
2874 btrfs_warn(fs_info, "couldn't read block group root");
bd676446
JB
2875 return ret;
2876}
2877
6ef108dd 2878static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2879{
6ef108dd 2880 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2881 struct btrfs_super_block *sb = fs_info->super_copy;
2882 struct btrfs_root *tree_root = fs_info->tree_root;
2883 bool handle_error = false;
2884 int ret = 0;
2885 int i;
2886
9c54e80d
JB
2887 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2888 struct btrfs_root *root;
2889
2890 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
2891 GFP_KERNEL);
2892 if (!root)
2893 return -ENOMEM;
2894 fs_info->block_group_root = root;
2895 }
b8522a1e 2896
b8522a1e 2897 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2898 if (handle_error) {
2899 if (!IS_ERR(tree_root->node))
2900 free_extent_buffer(tree_root->node);
2901 tree_root->node = NULL;
2902
2903 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2904 break;
2905
2906 free_root_pointers(fs_info, 0);
2907
2908 /*
2909 * Don't use the log in recovery mode, it won't be
2910 * valid
2911 */
2912 btrfs_set_super_log_root(sb, 0);
2913
2914 /* We can't trust the free space cache either */
2915 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2916
2917 ret = read_backup_root(fs_info, i);
6ef108dd 2918 backup_index = ret;
b8522a1e
NB
2919 if (ret < 0)
2920 return ret;
2921 }
b8522a1e 2922
bd676446
JB
2923 ret = load_important_roots(fs_info);
2924 if (ret) {
217f5004 2925 handle_error = true;
b8522a1e
NB
2926 continue;
2927 }
2928
336a0d8d
NB
2929 /*
2930 * No need to hold btrfs_root::objectid_mutex since the fs
2931 * hasn't been fully initialised and we are the only user
2932 */
453e4873 2933 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2934 if (ret < 0) {
b8522a1e
NB
2935 handle_error = true;
2936 continue;
2937 }
2938
6b8fad57 2939 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2940
2941 ret = btrfs_read_roots(fs_info);
2942 if (ret < 0) {
2943 handle_error = true;
2944 continue;
2945 }
2946
2947 /* All successful */
bd676446
JB
2948 fs_info->generation = btrfs_header_generation(tree_root->node);
2949 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2950 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2951
2952 /* Always begin writing backup roots after the one being used */
2953 if (backup_index < 0) {
2954 fs_info->backup_root_index = 0;
2955 } else {
2956 fs_info->backup_root_index = backup_index + 1;
2957 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2958 }
b8522a1e
NB
2959 break;
2960 }
2961
2962 return ret;
2963}
2964
8260edba 2965void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2966{
fc7cbcd4 2967 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2968 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2969 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2970 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2971 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2972 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2973 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2974 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2975 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2976 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2977 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2978 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2979 spin_lock_init(&fs_info->super_lock);
f28491e0 2980 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2981 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2982 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2983 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2984 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2985 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2986 rwlock_init(&fs_info->global_root_lock);
d7c15171 2987 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2988 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2989 mutex_init(&fs_info->reloc_mutex);
573bfb72 2990 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2991 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2992 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2993 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2994
0b86a832 2995 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2996 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2997 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2998 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2999 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3000 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3001#ifdef CONFIG_BTRFS_DEBUG
3002 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3003 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3004 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3005#endif
c8bf1b67 3006 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3007 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3008 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3009 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3010 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3011 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3012 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3013 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3014 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3015 BTRFS_BLOCK_RSV_DELREFS);
3016
771ed689 3017 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3018 atomic_set(&fs_info->defrag_running, 0);
034f784d 3019 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3020 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3021 fs_info->global_root_tree = RB_ROOT;
95ac567a 3022 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3023 fs_info->metadata_ratio = 0;
4cb5300b 3024 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3025 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3026 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3027 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3028 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3029 btrfs_init_ref_verify(fs_info);
c8b97818 3030
b34b086c
CM
3031 fs_info->thread_pool_size = min_t(unsigned long,
3032 num_online_cpus() + 2, 8);
0afbaf8c 3033
199c2a9c
MX
3034 INIT_LIST_HEAD(&fs_info->ordered_roots);
3035 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3036
638aa7ed 3037 btrfs_init_scrub(fs_info);
21adbd5c
SB
3038#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3039 fs_info->check_integrity_print_mask = 0;
3040#endif
779a65a4 3041 btrfs_init_balance(fs_info);
57056740 3042 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3043
16b0c258 3044 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3045 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3046
fe119a6e
NB
3047 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3048 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3049
5a3f23d5 3050 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3051 mutex_init(&fs_info->tree_log_mutex);
925baedd 3052 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3053 mutex_init(&fs_info->transaction_kthread_mutex);
3054 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3055 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3056 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3057 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3058 init_rwsem(&fs_info->subvol_sem);
803b2f54 3059 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3060
ad618368 3061 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3062 btrfs_init_qgroup(fs_info);
b0643e59 3063 btrfs_discard_init(fs_info);
416ac51d 3064
fa9c0d79
CM
3065 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3066 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3067
e6dcd2dc 3068 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3069 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3070 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3071 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3072 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3073
da17066c
JM
3074 /* Usable values until the real ones are cached from the superblock */
3075 fs_info->nodesize = 4096;
3076 fs_info->sectorsize = 4096;
ab108d99 3077 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3078 fs_info->stripesize = 4096;
3079
f7b12a62
NA
3080 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3081
eede2bf3
OS
3082 spin_lock_init(&fs_info->swapfile_pins_lock);
3083 fs_info->swapfile_pins = RB_ROOT;
3084
18bb8bbf
JT
3085 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3086 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3087}
3088
3089static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3090{
3091 int ret;
3092
3093 fs_info->sb = sb;
3094 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3095 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3096
5deb17e1 3097 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3098 if (ret)
c75e8394 3099 return ret;
ae18c37a
JB
3100
3101 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3102 if (ret)
c75e8394 3103 return ret;
ae18c37a
JB
3104
3105 fs_info->dirty_metadata_batch = PAGE_SIZE *
3106 (1 + ilog2(nr_cpu_ids));
3107
3108 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3109 if (ret)
c75e8394 3110 return ret;
ae18c37a
JB
3111
3112 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3113 GFP_KERNEL);
3114 if (ret)
c75e8394 3115 return ret;
ae18c37a
JB
3116
3117 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3118 GFP_KERNEL);
c75e8394
JB
3119 if (!fs_info->delayed_root)
3120 return -ENOMEM;
ae18c37a
JB
3121 btrfs_init_delayed_root(fs_info->delayed_root);
3122
a0a1db70
FM
3123 if (sb_rdonly(sb))
3124 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3125
c75e8394 3126 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3127}
3128
97f4dd09
NB
3129static int btrfs_uuid_rescan_kthread(void *data)
3130{
0d031dc4 3131 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3132 int ret;
3133
3134 /*
3135 * 1st step is to iterate through the existing UUID tree and
3136 * to delete all entries that contain outdated data.
3137 * 2nd step is to add all missing entries to the UUID tree.
3138 */
3139 ret = btrfs_uuid_tree_iterate(fs_info);
3140 if (ret < 0) {
c94bec2c
JB
3141 if (ret != -EINTR)
3142 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3143 ret);
97f4dd09
NB
3144 up(&fs_info->uuid_tree_rescan_sem);
3145 return ret;
3146 }
3147 return btrfs_uuid_scan_kthread(data);
3148}
3149
3150static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3151{
3152 struct task_struct *task;
3153
3154 down(&fs_info->uuid_tree_rescan_sem);
3155 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3156 if (IS_ERR(task)) {
3157 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3158 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3159 up(&fs_info->uuid_tree_rescan_sem);
3160 return PTR_ERR(task);
3161 }
3162
3163 return 0;
3164}
3165
8cd29088
BB
3166/*
3167 * Some options only have meaning at mount time and shouldn't persist across
3168 * remounts, or be displayed. Clear these at the end of mount and remount
3169 * code paths.
3170 */
3171void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3172{
3173 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3174 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3175}
3176
44c0ca21
BB
3177/*
3178 * Mounting logic specific to read-write file systems. Shared by open_ctree
3179 * and btrfs_remount when remounting from read-only to read-write.
3180 */
3181int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3182{
3183 int ret;
94846229 3184 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3185 bool clear_free_space_tree = false;
3186
3187 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3188 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3189 clear_free_space_tree = true;
3190 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3191 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3192 btrfs_warn(fs_info, "free space tree is invalid");
3193 clear_free_space_tree = true;
3194 }
3195
3196 if (clear_free_space_tree) {
3197 btrfs_info(fs_info, "clearing free space tree");
3198 ret = btrfs_clear_free_space_tree(fs_info);
3199 if (ret) {
3200 btrfs_warn(fs_info,
3201 "failed to clear free space tree: %d", ret);
3202 goto out;
3203 }
3204 }
44c0ca21 3205
8d488a8c
FM
3206 /*
3207 * btrfs_find_orphan_roots() is responsible for finding all the dead
3208 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3209 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3210 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3211 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3212 * item before the root's tree is deleted - this means that if we unmount
3213 * or crash before the deletion completes, on the next mount we will not
3214 * delete what remains of the tree because the orphan item does not
3215 * exists anymore, which is what tells us we have a pending deletion.
3216 */
3217 ret = btrfs_find_orphan_roots(fs_info);
3218 if (ret)
3219 goto out;
3220
44c0ca21
BB
3221 ret = btrfs_cleanup_fs_roots(fs_info);
3222 if (ret)
3223 goto out;
3224
8f1c21d7
BB
3225 down_read(&fs_info->cleanup_work_sem);
3226 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3227 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3228 up_read(&fs_info->cleanup_work_sem);
3229 goto out;
3230 }
3231 up_read(&fs_info->cleanup_work_sem);
3232
44c0ca21 3233 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3234 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3235 mutex_unlock(&fs_info->cleaner_mutex);
3236 if (ret < 0) {
3237 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3238 goto out;
3239 }
3240
5011139a
BB
3241 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3242 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3243 btrfs_info(fs_info, "creating free space tree");
3244 ret = btrfs_create_free_space_tree(fs_info);
3245 if (ret) {
3246 btrfs_warn(fs_info,
3247 "failed to create free space tree: %d", ret);
3248 goto out;
3249 }
3250 }
3251
94846229
BB
3252 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3253 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3254 if (ret)
3255 goto out;
3256 }
3257
44c0ca21
BB
3258 ret = btrfs_resume_balance_async(fs_info);
3259 if (ret)
3260 goto out;
3261
3262 ret = btrfs_resume_dev_replace_async(fs_info);
3263 if (ret) {
3264 btrfs_warn(fs_info, "failed to resume dev_replace");
3265 goto out;
3266 }
3267
3268 btrfs_qgroup_rescan_resume(fs_info);
3269
3270 if (!fs_info->uuid_root) {
3271 btrfs_info(fs_info, "creating UUID tree");
3272 ret = btrfs_create_uuid_tree(fs_info);
3273 if (ret) {
3274 btrfs_warn(fs_info,
3275 "failed to create the UUID tree %d", ret);
3276 goto out;
3277 }
3278 }
3279
3280out:
3281 return ret;
3282}
3283
ae18c37a
JB
3284int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3285 char *options)
3286{
3287 u32 sectorsize;
3288 u32 nodesize;
3289 u32 stripesize;
3290 u64 generation;
3291 u64 features;
3292 u16 csum_type;
ae18c37a
JB
3293 struct btrfs_super_block *disk_super;
3294 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3295 struct btrfs_root *tree_root;
3296 struct btrfs_root *chunk_root;
3297 int ret;
3298 int err = -EINVAL;
ae18c37a
JB
3299 int level;
3300
8260edba 3301 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3302 if (ret) {
83c8266a 3303 err = ret;
ae18c37a 3304 goto fail;
53b381b3
DW
3305 }
3306
ae18c37a
JB
3307 /* These need to be init'ed before we start creating inodes and such. */
3308 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3309 GFP_KERNEL);
3310 fs_info->tree_root = tree_root;
3311 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3312 GFP_KERNEL);
3313 fs_info->chunk_root = chunk_root;
3314 if (!tree_root || !chunk_root) {
3315 err = -ENOMEM;
c75e8394 3316 goto fail;
ae18c37a
JB
3317 }
3318
3319 fs_info->btree_inode = new_inode(sb);
3320 if (!fs_info->btree_inode) {
3321 err = -ENOMEM;
c75e8394 3322 goto fail;
ae18c37a
JB
3323 }
3324 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3325 btrfs_init_btree_inode(fs_info);
3326
d24fa5c1 3327 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3328
3329 /*
3330 * Read super block and check the signature bytes only
3331 */
d24fa5c1 3332 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3333 if (IS_ERR(disk_super)) {
3334 err = PTR_ERR(disk_super);
16cdcec7 3335 goto fail_alloc;
20b45077 3336 }
39279cc3 3337
8dc3f22c 3338 /*
260db43c 3339 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3340 * corrupted, we'll find out
3341 */
8f32380d 3342 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3343 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3344 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3345 csum_type);
8dc3f22c 3346 err = -EINVAL;
8f32380d 3347 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3348 goto fail_alloc;
3349 }
3350
83c68bbc
SY
3351 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3352
6d97c6e3
JT
3353 ret = btrfs_init_csum_hash(fs_info, csum_type);
3354 if (ret) {
3355 err = ret;
8f32380d 3356 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3357 goto fail_alloc;
3358 }
3359
1104a885
DS
3360 /*
3361 * We want to check superblock checksum, the type is stored inside.
3362 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3363 */
8f32380d 3364 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3365 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3366 err = -EINVAL;
8f32380d 3367 btrfs_release_disk_super(disk_super);
141386e1 3368 goto fail_alloc;
1104a885
DS
3369 }
3370
3371 /*
3372 * super_copy is zeroed at allocation time and we never touch the
3373 * following bytes up to INFO_SIZE, the checksum is calculated from
3374 * the whole block of INFO_SIZE
3375 */
8f32380d
JT
3376 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3377 btrfs_release_disk_super(disk_super);
5f39d397 3378
fbc6feae
NB
3379 disk_super = fs_info->super_copy;
3380
0b86a832 3381
fbc6feae
NB
3382 features = btrfs_super_flags(disk_super);
3383 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3384 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3385 btrfs_set_super_flags(disk_super, features);
3386 btrfs_info(fs_info,
3387 "found metadata UUID change in progress flag, clearing");
3388 }
3389
3390 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3391 sizeof(*fs_info->super_for_commit));
de37aa51 3392
069ec957 3393 ret = btrfs_validate_mount_super(fs_info);
1104a885 3394 if (ret) {
05135f59 3395 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3396 err = -EINVAL;
141386e1 3397 goto fail_alloc;
1104a885
DS
3398 }
3399
0f7d52f4 3400 if (!btrfs_super_root(disk_super))
141386e1 3401 goto fail_alloc;
0f7d52f4 3402
acce952b 3403 /* check FS state, whether FS is broken. */
87533c47
MX
3404 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3405 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3406
75e7cb7f
LB
3407 /*
3408 * In the long term, we'll store the compression type in the super
3409 * block, and it'll be used for per file compression control.
3410 */
3411 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3412
6f93e834
AJ
3413
3414 /* Set up fs_info before parsing mount options */
3415 nodesize = btrfs_super_nodesize(disk_super);
3416 sectorsize = btrfs_super_sectorsize(disk_super);
3417 stripesize = sectorsize;
3418 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3419 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3420
3421 fs_info->nodesize = nodesize;
3422 fs_info->sectorsize = sectorsize;
3423 fs_info->sectorsize_bits = ilog2(sectorsize);
3424 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3425 fs_info->stripesize = stripesize;
3426
2ff7e61e 3427 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3428 if (ret) {
3429 err = ret;
141386e1 3430 goto fail_alloc;
2b82032c 3431 }
dfe25020 3432
f2b636e8
JB
3433 features = btrfs_super_incompat_flags(disk_super) &
3434 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3435 if (features) {
05135f59 3436 btrfs_err(fs_info,
d5321a0f 3437 "cannot mount because of unsupported optional features (0x%llx)",
05135f59 3438 features);
f2b636e8 3439 err = -EINVAL;
141386e1 3440 goto fail_alloc;
f2b636e8
JB
3441 }
3442
5d4f98a2 3443 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3444 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3445 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3446 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3447 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3448 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3449
e26b04c4
NB
3450 /*
3451 * Flag our filesystem as having big metadata blocks if they are bigger
3452 * than the page size.
3453 */
6b769dac 3454 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
e26b04c4 3455 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
e26b04c4 3456
bc3f116f
CM
3457 /*
3458 * mixed block groups end up with duplicate but slightly offset
3459 * extent buffers for the same range. It leads to corruptions
3460 */
3461 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3462 (sectorsize != nodesize)) {
05135f59
DS
3463 btrfs_err(fs_info,
3464"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3465 nodesize, sectorsize);
141386e1 3466 goto fail_alloc;
bc3f116f
CM
3467 }
3468
ceda0864
MX
3469 /*
3470 * Needn't use the lock because there is no other task which will
3471 * update the flag.
3472 */
a6fa6fae 3473 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3474
f2b636e8
JB
3475 features = btrfs_super_compat_ro_flags(disk_super) &
3476 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3477 if (!sb_rdonly(sb) && features) {
05135f59 3478 btrfs_err(fs_info,
d5321a0f 3479 "cannot mount read-write because of unsupported optional features (0x%llx)",
c1c9ff7c 3480 features);
f2b636e8 3481 err = -EINVAL;
141386e1 3482 goto fail_alloc;
f2b636e8 3483 }
dc4d3168
QW
3484 /*
3485 * We have unsupported RO compat features, although RO mounted, we
3486 * should not cause any metadata write, including log replay.
3487 * Or we could screw up whatever the new feature requires.
3488 */
3489 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3490 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3491 btrfs_err(fs_info,
3492"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3493 features);
3494 err = -EINVAL;
3495 goto fail_alloc;
3496 }
3497
61d92c32 3498
8481dd80
QW
3499 if (sectorsize < PAGE_SIZE) {
3500 struct btrfs_subpage_info *subpage_info;
3501
9f73f1ae
QW
3502 /*
3503 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3504 * going to be deprecated.
3505 *
3506 * Force to use v2 cache for subpage case.
3507 */
3508 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3509 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3510 "forcing free space tree for sector size %u with page size %lu",
3511 sectorsize, PAGE_SIZE);
3512
95ea0486
QW
3513 btrfs_warn(fs_info,
3514 "read-write for sector size %u with page size %lu is experimental",
3515 sectorsize, PAGE_SIZE);
8481dd80
QW
3516 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3517 if (!subpage_info)
3518 goto fail_alloc;
3519 btrfs_init_subpage_info(subpage_info, sectorsize);
3520 fs_info->subpage_info = subpage_info;
c8050b3b 3521 }
0bb3eb3e 3522
d21deec5 3523 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3524 if (ret) {
3525 err = ret;
0dc3b84a
JB
3526 goto fail_sb_buffer;
3527 }
4543df7e 3528
9e11ceee
JK
3529 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3530 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3531
a061fc8d
CM
3532 sb->s_blocksize = sectorsize;
3533 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3534 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3535
925baedd 3536 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3537 ret = btrfs_read_sys_array(fs_info);
925baedd 3538 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3539 if (ret) {
05135f59 3540 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3541 goto fail_sb_buffer;
84eed90f 3542 }
0b86a832 3543
84234f3a 3544 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3545 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3546 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3547 generation, level);
3548 if (ret) {
05135f59 3549 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3550 goto fail_tree_roots;
83121942 3551 }
0b86a832 3552
e17cade2 3553 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3554 offsetof(struct btrfs_header, chunk_tree_uuid),
3555 BTRFS_UUID_SIZE);
e17cade2 3556
5b4aacef 3557 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3558 if (ret) {
05135f59 3559 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3560 goto fail_tree_roots;
2b82032c 3561 }
0b86a832 3562
8dabb742 3563 /*
bacce86a
AJ
3564 * At this point we know all the devices that make this filesystem,
3565 * including the seed devices but we don't know yet if the replace
3566 * target is required. So free devices that are not part of this
1a9fd417 3567 * filesystem but skip the replace target device which is checked
bacce86a 3568 * below in btrfs_init_dev_replace().
8dabb742 3569 */
bacce86a 3570 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3571 if (!fs_devices->latest_dev->bdev) {
05135f59 3572 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3573 goto fail_tree_roots;
3574 }
3575
b8522a1e 3576 ret = init_tree_roots(fs_info);
4bbcaa64 3577 if (ret)
b8522a1e 3578 goto fail_tree_roots;
8929ecfa 3579
73651042
NA
3580 /*
3581 * Get zone type information of zoned block devices. This will also
3582 * handle emulation of a zoned filesystem if a regular device has the
3583 * zoned incompat feature flag set.
3584 */
3585 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3586 if (ret) {
3587 btrfs_err(fs_info,
3588 "zoned: failed to read device zone info: %d",
3589 ret);
3590 goto fail_block_groups;
3591 }
3592
75ec1db8
JB
3593 /*
3594 * If we have a uuid root and we're not being told to rescan we need to
3595 * check the generation here so we can set the
3596 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3597 * transaction during a balance or the log replay without updating the
3598 * uuid generation, and then if we crash we would rescan the uuid tree,
3599 * even though it was perfectly fine.
3600 */
3601 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3602 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3603 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3604
cf90d884
QW
3605 ret = btrfs_verify_dev_extents(fs_info);
3606 if (ret) {
3607 btrfs_err(fs_info,
3608 "failed to verify dev extents against chunks: %d",
3609 ret);
3610 goto fail_block_groups;
3611 }
68310a5e
ID
3612 ret = btrfs_recover_balance(fs_info);
3613 if (ret) {
05135f59 3614 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3615 goto fail_block_groups;
3616 }
3617
733f4fbb
SB
3618 ret = btrfs_init_dev_stats(fs_info);
3619 if (ret) {
05135f59 3620 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3621 goto fail_block_groups;
3622 }
3623
8dabb742
SB
3624 ret = btrfs_init_dev_replace(fs_info);
3625 if (ret) {
05135f59 3626 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3627 goto fail_block_groups;
3628 }
3629
b70f5097
NA
3630 ret = btrfs_check_zoned_mode(fs_info);
3631 if (ret) {
3632 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3633 ret);
3634 goto fail_block_groups;
3635 }
3636
c6761a9e 3637 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3638 if (ret) {
05135f59
DS
3639 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3640 ret);
b7c35e81
AJ
3641 goto fail_block_groups;
3642 }
3643
96f3136e 3644 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3645 if (ret) {
05135f59 3646 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3647 goto fail_fsdev_sysfs;
c59021f8 3648 }
3649
c59021f8 3650 ret = btrfs_init_space_info(fs_info);
3651 if (ret) {
05135f59 3652 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3653 goto fail_sysfs;
c59021f8 3654 }
3655
5b4aacef 3656 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3657 if (ret) {
05135f59 3658 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3659 goto fail_sysfs;
1b1d1f66 3660 }
4330e183 3661
16beac87
NA
3662 btrfs_free_zone_cache(fs_info);
3663
5c78a5e7
AJ
3664 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3665 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3666 btrfs_warn(fs_info,
52042d8e 3667 "writable mount is not allowed due to too many missing devices");
2365dd3c 3668 goto fail_sysfs;
292fd7fc 3669 }
9078a3e1 3670
33c44184 3671 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3672 "btrfs-cleaner");
57506d50 3673 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3674 goto fail_sysfs;
a74a4b97
CM
3675
3676 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3677 tree_root,
3678 "btrfs-transaction");
57506d50 3679 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3680 goto fail_cleaner;
a74a4b97 3681
583b7231 3682 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3683 !fs_info->fs_devices->rotating) {
583b7231 3684 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3685 }
3686
572d9ab7 3687 /*
01327610 3688 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3689 * not have to wait for transaction commit
3690 */
3691 btrfs_apply_pending_changes(fs_info);
3818aea2 3692
21adbd5c 3693#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3694 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3695 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3696 btrfs_test_opt(fs_info,
cbeaae4f 3697 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3698 fs_info->check_integrity_print_mask);
3699 if (ret)
05135f59
DS
3700 btrfs_warn(fs_info,
3701 "failed to initialize integrity check module: %d",
3702 ret);
21adbd5c
SB
3703 }
3704#endif
bcef60f2
AJ
3705 ret = btrfs_read_qgroup_config(fs_info);
3706 if (ret)
3707 goto fail_trans_kthread;
21adbd5c 3708
fd708b81
JB
3709 if (btrfs_build_ref_tree(fs_info))
3710 btrfs_err(fs_info, "couldn't build ref tree");
3711
96da0919
QW
3712 /* do not make disk changes in broken FS or nologreplay is given */
3713 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3714 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3715 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3716 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3717 if (ret) {
63443bf5 3718 err = ret;
28c16cbb 3719 goto fail_qgroup;
79787eaa 3720 }
e02119d5 3721 }
1a40e23b 3722
56e9357a 3723 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3724 if (IS_ERR(fs_info->fs_root)) {
3725 err = PTR_ERR(fs_info->fs_root);
f50f4353 3726 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3727 fs_info->fs_root = NULL;
bcef60f2 3728 goto fail_qgroup;
3140c9a3 3729 }
c289811c 3730
bc98a42c 3731 if (sb_rdonly(sb))
8cd29088 3732 goto clear_oneshot;
59641015 3733
44c0ca21 3734 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3735 if (ret) {
6bccf3ab 3736 close_ctree(fs_info);
2b6ba629 3737 return ret;
e3acc2a6 3738 }
b0643e59 3739 btrfs_discard_resume(fs_info);
b382a324 3740
44c0ca21
BB
3741 if (fs_info->uuid_root &&
3742 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3743 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3744 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3745 ret = btrfs_check_uuid_tree(fs_info);
3746 if (ret) {
05135f59
DS
3747 btrfs_warn(fs_info,
3748 "failed to check the UUID tree: %d", ret);
6bccf3ab 3749 close_ctree(fs_info);
70f80175
SB
3750 return ret;
3751 }
f7a81ea4 3752 }
94846229 3753
afcdd129 3754 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3755
b4be6aef
JB
3756 /* Kick the cleaner thread so it'll start deleting snapshots. */
3757 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3758 wake_up_process(fs_info->cleaner_kthread);
3759
8cd29088
BB
3760clear_oneshot:
3761 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3762 return 0;
39279cc3 3763
bcef60f2
AJ
3764fail_qgroup:
3765 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3766fail_trans_kthread:
3767 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3768 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3769 btrfs_free_fs_roots(fs_info);
3f157a2f 3770fail_cleaner:
a74a4b97 3771 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3772
3773 /*
3774 * make sure we're done with the btree inode before we stop our
3775 * kthreads
3776 */
3777 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3778
2365dd3c 3779fail_sysfs:
6618a59b 3780 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3781
b7c35e81
AJ
3782fail_fsdev_sysfs:
3783 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3784
1b1d1f66 3785fail_block_groups:
54067ae9 3786 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3787
3788fail_tree_roots:
9e3aa805
JB
3789 if (fs_info->data_reloc_root)
3790 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3791 free_root_pointers(fs_info, true);
2b8195bb 3792 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3793
39279cc3 3794fail_sb_buffer:
7abadb64 3795 btrfs_stop_all_workers(fs_info);
5cdd7db6 3796 btrfs_free_block_groups(fs_info);
16cdcec7 3797fail_alloc:
586e46e2
ID
3798 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3799
4543df7e 3800 iput(fs_info->btree_inode);
7e662854 3801fail:
586e46e2 3802 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3803 return err;
eb60ceac 3804}
663faf9f 3805ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3806
314b6dd0 3807static void btrfs_end_super_write(struct bio *bio)
f2984462 3808{
314b6dd0
JT
3809 struct btrfs_device *device = bio->bi_private;
3810 struct bio_vec *bvec;
3811 struct bvec_iter_all iter_all;
3812 struct page *page;
3813
3814 bio_for_each_segment_all(bvec, bio, iter_all) {
3815 page = bvec->bv_page;
3816
3817 if (bio->bi_status) {
3818 btrfs_warn_rl_in_rcu(device->fs_info,
3819 "lost page write due to IO error on %s (%d)",
3820 rcu_str_deref(device->name),
3821 blk_status_to_errno(bio->bi_status));
3822 ClearPageUptodate(page);
3823 SetPageError(page);
3824 btrfs_dev_stat_inc_and_print(device,
3825 BTRFS_DEV_STAT_WRITE_ERRS);
3826 } else {
3827 SetPageUptodate(page);
3828 }
3829
3830 put_page(page);
3831 unlock_page(page);
f2984462 3832 }
314b6dd0
JT
3833
3834 bio_put(bio);
f2984462
CM
3835}
3836
8f32380d
JT
3837struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3838 int copy_num)
29c36d72 3839{
29c36d72 3840 struct btrfs_super_block *super;
8f32380d 3841 struct page *page;
12659251 3842 u64 bytenr, bytenr_orig;
8f32380d 3843 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3844 int ret;
3845
3846 bytenr_orig = btrfs_sb_offset(copy_num);
3847 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3848 if (ret == -ENOENT)
3849 return ERR_PTR(-EINVAL);
3850 else if (ret)
3851 return ERR_PTR(ret);
29c36d72 3852
cda00eba 3853 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3854 return ERR_PTR(-EINVAL);
29c36d72 3855
8f32380d
JT
3856 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3857 if (IS_ERR(page))
3858 return ERR_CAST(page);
29c36d72 3859
8f32380d 3860 super = page_address(page);
96c2e067
AJ
3861 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3862 btrfs_release_disk_super(super);
3863 return ERR_PTR(-ENODATA);
3864 }
3865
12659251 3866 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3867 btrfs_release_disk_super(super);
3868 return ERR_PTR(-EINVAL);
29c36d72
AJ
3869 }
3870
8f32380d 3871 return super;
29c36d72
AJ
3872}
3873
3874
8f32380d 3875struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3876{
8f32380d 3877 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3878 int i;
3879 u64 transid = 0;
a512bbf8
YZ
3880
3881 /* we would like to check all the supers, but that would make
3882 * a btrfs mount succeed after a mkfs from a different FS.
3883 * So, we need to add a special mount option to scan for
3884 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3885 */
3886 for (i = 0; i < 1; i++) {
8f32380d
JT
3887 super = btrfs_read_dev_one_super(bdev, i);
3888 if (IS_ERR(super))
a512bbf8
YZ
3889 continue;
3890
a512bbf8 3891 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3892 if (latest)
3893 btrfs_release_disk_super(super);
3894
3895 latest = super;
a512bbf8 3896 transid = btrfs_super_generation(super);
a512bbf8
YZ
3897 }
3898 }
92fc03fb 3899
8f32380d 3900 return super;
a512bbf8
YZ
3901}
3902
4eedeb75 3903/*
abbb3b8e 3904 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3905 * pages we use for writing are locked.
4eedeb75 3906 *
abbb3b8e
DS
3907 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3908 * the expected device size at commit time. Note that max_mirrors must be
3909 * same for write and wait phases.
4eedeb75 3910 *
314b6dd0 3911 * Return number of errors when page is not found or submission fails.
4eedeb75 3912 */
a512bbf8 3913static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3914 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3915{
d5178578 3916 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3917 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3918 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3919 int i;
a512bbf8 3920 int errors = 0;
12659251
NA
3921 int ret;
3922 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3923
3924 if (max_mirrors == 0)
3925 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3926
d5178578
JT
3927 shash->tfm = fs_info->csum_shash;
3928
a512bbf8 3929 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3930 struct page *page;
3931 struct bio *bio;
3932 struct btrfs_super_block *disk_super;
3933
12659251
NA
3934 bytenr_orig = btrfs_sb_offset(i);
3935 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3936 if (ret == -ENOENT) {
3937 continue;
3938 } else if (ret < 0) {
3939 btrfs_err(device->fs_info,
3940 "couldn't get super block location for mirror %d",
3941 i);
3942 errors++;
3943 continue;
3944 }
935e5cc9
MX
3945 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3946 device->commit_total_bytes)
a512bbf8
YZ
3947 break;
3948
12659251 3949 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3950
fd08001f
EB
3951 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3952 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3953 sb->csum);
4eedeb75 3954
314b6dd0
JT
3955 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3956 GFP_NOFS);
3957 if (!page) {
abbb3b8e 3958 btrfs_err(device->fs_info,
314b6dd0 3959 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3960 bytenr);
3961 errors++;
4eedeb75 3962 continue;
abbb3b8e 3963 }
634554dc 3964
314b6dd0
JT
3965 /* Bump the refcount for wait_dev_supers() */
3966 get_page(page);
a512bbf8 3967
314b6dd0
JT
3968 disk_super = page_address(page);
3969 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3970
314b6dd0
JT
3971 /*
3972 * Directly use bios here instead of relying on the page cache
3973 * to do I/O, so we don't lose the ability to do integrity
3974 * checking.
3975 */
07888c66
CH
3976 bio = bio_alloc(device->bdev, 1,
3977 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3978 GFP_NOFS);
314b6dd0
JT
3979 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3980 bio->bi_private = device;
3981 bio->bi_end_io = btrfs_end_super_write;
3982 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3983 offset_in_page(bytenr));
a512bbf8 3984
387125fc 3985 /*
314b6dd0
JT
3986 * We FUA only the first super block. The others we allow to
3987 * go down lazy and there's a short window where the on-disk
3988 * copies might still contain the older version.
387125fc 3989 */
1b9e619c 3990 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3991 bio->bi_opf |= REQ_FUA;
3992
58ff51f1
CH
3993 btrfsic_check_bio(bio);
3994 submit_bio(bio);
8376d9e1
NA
3995
3996 if (btrfs_advance_sb_log(device, i))
3997 errors++;
a512bbf8
YZ
3998 }
3999 return errors < i ? 0 : -1;
4000}
4001
abbb3b8e
DS
4002/*
4003 * Wait for write completion of superblocks done by write_dev_supers,
4004 * @max_mirrors same for write and wait phases.
4005 *
314b6dd0 4006 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4007 * date.
4008 */
4009static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4010{
abbb3b8e
DS
4011 int i;
4012 int errors = 0;
b6a535fa 4013 bool primary_failed = false;
12659251 4014 int ret;
abbb3b8e
DS
4015 u64 bytenr;
4016
4017 if (max_mirrors == 0)
4018 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4019
4020 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4021 struct page *page;
4022
12659251
NA
4023 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4024 if (ret == -ENOENT) {
4025 break;
4026 } else if (ret < 0) {
4027 errors++;
4028 if (i == 0)
4029 primary_failed = true;
4030 continue;
4031 }
abbb3b8e
DS
4032 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4033 device->commit_total_bytes)
4034 break;
4035
314b6dd0
JT
4036 page = find_get_page(device->bdev->bd_inode->i_mapping,
4037 bytenr >> PAGE_SHIFT);
4038 if (!page) {
abbb3b8e 4039 errors++;
b6a535fa
HM
4040 if (i == 0)
4041 primary_failed = true;
abbb3b8e
DS
4042 continue;
4043 }
314b6dd0
JT
4044 /* Page is submitted locked and unlocked once the IO completes */
4045 wait_on_page_locked(page);
4046 if (PageError(page)) {
abbb3b8e 4047 errors++;
b6a535fa
HM
4048 if (i == 0)
4049 primary_failed = true;
4050 }
abbb3b8e 4051
314b6dd0
JT
4052 /* Drop our reference */
4053 put_page(page);
abbb3b8e 4054
314b6dd0
JT
4055 /* Drop the reference from the writing run */
4056 put_page(page);
abbb3b8e
DS
4057 }
4058
b6a535fa
HM
4059 /* log error, force error return */
4060 if (primary_failed) {
4061 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4062 device->devid);
4063 return -1;
4064 }
4065
abbb3b8e
DS
4066 return errors < i ? 0 : -1;
4067}
4068
387125fc
CM
4069/*
4070 * endio for the write_dev_flush, this will wake anyone waiting
4071 * for the barrier when it is done
4072 */
4246a0b6 4073static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4074{
f9e69aa9 4075 bio_uninit(bio);
e0ae9994 4076 complete(bio->bi_private);
387125fc
CM
4077}
4078
4079/*
4fc6441a
AJ
4080 * Submit a flush request to the device if it supports it. Error handling is
4081 * done in the waiting counterpart.
387125fc 4082 */
4fc6441a 4083static void write_dev_flush(struct btrfs_device *device)
387125fc 4084{
f9e69aa9 4085 struct bio *bio = &device->flush_bio;
387125fc 4086
a91cf0ff
WY
4087#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4088 /*
4089 * When a disk has write caching disabled, we skip submission of a bio
4090 * with flush and sync requests before writing the superblock, since
4091 * it's not needed. However when the integrity checker is enabled, this
4092 * results in reports that there are metadata blocks referred by a
4093 * superblock that were not properly flushed. So don't skip the bio
4094 * submission only when the integrity checker is enabled for the sake
4095 * of simplicity, since this is a debug tool and not meant for use in
4096 * non-debug builds.
4097 */
08e688fd 4098 if (!bdev_write_cache(device->bdev))
4fc6441a 4099 return;
a91cf0ff 4100#endif
387125fc 4101
f9e69aa9
CH
4102 bio_init(bio, device->bdev, NULL, 0,
4103 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4104 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4105 init_completion(&device->flush_wait);
4106 bio->bi_private = &device->flush_wait;
387125fc 4107
58ff51f1
CH
4108 btrfsic_check_bio(bio);
4109 submit_bio(bio);
1c3063b6 4110 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4111}
387125fc 4112
4fc6441a
AJ
4113/*
4114 * If the flush bio has been submitted by write_dev_flush, wait for it.
4115 */
8c27cb35 4116static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4117{
f9e69aa9 4118 struct bio *bio = &device->flush_bio;
387125fc 4119
1c3063b6 4120 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4121 return BLK_STS_OK;
387125fc 4122
1c3063b6 4123 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4124 wait_for_completion_io(&device->flush_wait);
387125fc 4125
8c27cb35 4126 return bio->bi_status;
387125fc 4127}
387125fc 4128
d10b82fe 4129static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4130{
6528b99d 4131 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4132 return -EIO;
387125fc
CM
4133 return 0;
4134}
4135
4136/*
4137 * send an empty flush down to each device in parallel,
4138 * then wait for them
4139 */
4140static int barrier_all_devices(struct btrfs_fs_info *info)
4141{
4142 struct list_head *head;
4143 struct btrfs_device *dev;
5af3e8cc 4144 int errors_wait = 0;
4e4cbee9 4145 blk_status_t ret;
387125fc 4146
1538e6c5 4147 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4148 /* send down all the barriers */
4149 head = &info->fs_devices->devices;
1538e6c5 4150 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4151 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4152 continue;
cea7c8bf 4153 if (!dev->bdev)
387125fc 4154 continue;
e12c9621 4155 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4156 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4157 continue;
4158
4fc6441a 4159 write_dev_flush(dev);
58efbc9f 4160 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4161 }
4162
4163 /* wait for all the barriers */
1538e6c5 4164 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4165 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4166 continue;
387125fc 4167 if (!dev->bdev) {
5af3e8cc 4168 errors_wait++;
387125fc
CM
4169 continue;
4170 }
e12c9621 4171 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4172 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4173 continue;
4174
4fc6441a 4175 ret = wait_dev_flush(dev);
401b41e5
AJ
4176 if (ret) {
4177 dev->last_flush_error = ret;
66b4993e
DS
4178 btrfs_dev_stat_inc_and_print(dev,
4179 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4180 errors_wait++;
401b41e5
AJ
4181 }
4182 }
4183
cea7c8bf 4184 if (errors_wait) {
401b41e5
AJ
4185 /*
4186 * At some point we need the status of all disks
4187 * to arrive at the volume status. So error checking
4188 * is being pushed to a separate loop.
4189 */
d10b82fe 4190 return check_barrier_error(info);
387125fc 4191 }
387125fc
CM
4192 return 0;
4193}
4194
943c6e99
ZL
4195int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4196{
8789f4fe
ZL
4197 int raid_type;
4198 int min_tolerated = INT_MAX;
943c6e99 4199
8789f4fe
ZL
4200 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4201 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4202 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4203 btrfs_raid_array[BTRFS_RAID_SINGLE].
4204 tolerated_failures);
943c6e99 4205
8789f4fe
ZL
4206 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4207 if (raid_type == BTRFS_RAID_SINGLE)
4208 continue;
41a6e891 4209 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4210 continue;
8c3e3582 4211 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4212 btrfs_raid_array[raid_type].
4213 tolerated_failures);
4214 }
943c6e99 4215
8789f4fe 4216 if (min_tolerated == INT_MAX) {
ab8d0fc4 4217 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4218 min_tolerated = 0;
4219 }
4220
4221 return min_tolerated;
943c6e99
ZL
4222}
4223
eece6a9c 4224int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4225{
e5e9a520 4226 struct list_head *head;
f2984462 4227 struct btrfs_device *dev;
a061fc8d 4228 struct btrfs_super_block *sb;
f2984462 4229 struct btrfs_dev_item *dev_item;
f2984462
CM
4230 int ret;
4231 int do_barriers;
a236aed1
CM
4232 int max_errors;
4233 int total_errors = 0;
a061fc8d 4234 u64 flags;
f2984462 4235
0b246afa 4236 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4237
4238 /*
4239 * max_mirrors == 0 indicates we're from commit_transaction,
4240 * not from fsync where the tree roots in fs_info have not
4241 * been consistent on disk.
4242 */
4243 if (max_mirrors == 0)
4244 backup_super_roots(fs_info);
f2984462 4245
0b246afa 4246 sb = fs_info->super_for_commit;
a061fc8d 4247 dev_item = &sb->dev_item;
e5e9a520 4248
0b246afa
JM
4249 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4250 head = &fs_info->fs_devices->devices;
4251 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4252
5af3e8cc 4253 if (do_barriers) {
0b246afa 4254 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4255 if (ret) {
4256 mutex_unlock(
0b246afa
JM
4257 &fs_info->fs_devices->device_list_mutex);
4258 btrfs_handle_fs_error(fs_info, ret,
4259 "errors while submitting device barriers.");
5af3e8cc
SB
4260 return ret;
4261 }
4262 }
387125fc 4263
1538e6c5 4264 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4265 if (!dev->bdev) {
4266 total_errors++;
4267 continue;
4268 }
e12c9621 4269 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4270 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4271 continue;
4272
2b82032c 4273 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4274 btrfs_set_stack_device_type(dev_item, dev->type);
4275 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4276 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4277 dev->commit_total_bytes);
ce7213c7
MX
4278 btrfs_set_stack_device_bytes_used(dev_item,
4279 dev->commit_bytes_used);
a061fc8d
CM
4280 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4281 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4282 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4283 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4284 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4285 BTRFS_FSID_SIZE);
a512bbf8 4286
a061fc8d
CM
4287 flags = btrfs_super_flags(sb);
4288 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4289
75cb857d
QW
4290 ret = btrfs_validate_write_super(fs_info, sb);
4291 if (ret < 0) {
4292 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4293 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4294 "unexpected superblock corruption detected");
4295 return -EUCLEAN;
4296 }
4297
abbb3b8e 4298 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4299 if (ret)
4300 total_errors++;
f2984462 4301 }
a236aed1 4302 if (total_errors > max_errors) {
0b246afa
JM
4303 btrfs_err(fs_info, "%d errors while writing supers",
4304 total_errors);
4305 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4306
9d565ba4 4307 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4308 btrfs_handle_fs_error(fs_info, -EIO,
4309 "%d errors while writing supers",
4310 total_errors);
9d565ba4 4311 return -EIO;
a236aed1 4312 }
f2984462 4313
a512bbf8 4314 total_errors = 0;
1538e6c5 4315 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4316 if (!dev->bdev)
4317 continue;
e12c9621 4318 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4319 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4320 continue;
4321
abbb3b8e 4322 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4323 if (ret)
4324 total_errors++;
f2984462 4325 }
0b246afa 4326 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4327 if (total_errors > max_errors) {
0b246afa
JM
4328 btrfs_handle_fs_error(fs_info, -EIO,
4329 "%d errors while writing supers",
4330 total_errors);
79787eaa 4331 return -EIO;
a236aed1 4332 }
f2984462
CM
4333 return 0;
4334}
4335
cb517eab
MX
4336/* Drop a fs root from the radix tree and free it. */
4337void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4338 struct btrfs_root *root)
2619ba1f 4339{
4785e24f
JB
4340 bool drop_ref = false;
4341
fc7cbcd4
DS
4342 spin_lock(&fs_info->fs_roots_radix_lock);
4343 radix_tree_delete(&fs_info->fs_roots_radix,
4344 (unsigned long)root->root_key.objectid);
4345 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4346 drop_ref = true;
fc7cbcd4 4347 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4348
84961539 4349 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4350 ASSERT(root->log_root == NULL);
1c1ea4f7 4351 if (root->reloc_root) {
00246528 4352 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4353 root->reloc_root = NULL;
4354 }
4355 }
3321719e 4356
4785e24f
JB
4357 if (drop_ref)
4358 btrfs_put_root(root);
2619ba1f
CM
4359}
4360
c146afad 4361int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4362{
fc7cbcd4
DS
4363 u64 root_objectid = 0;
4364 struct btrfs_root *gang[8];
4365 int i = 0;
65d33fd7 4366 int err = 0;
fc7cbcd4 4367 unsigned int ret = 0;
e089f05c 4368
c146afad 4369 while (1) {
fc7cbcd4
DS
4370 spin_lock(&fs_info->fs_roots_radix_lock);
4371 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4372 (void **)gang, root_objectid,
4373 ARRAY_SIZE(gang));
4374 if (!ret) {
4375 spin_unlock(&fs_info->fs_roots_radix_lock);
4376 break;
65d33fd7 4377 }
fc7cbcd4 4378 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4379
fc7cbcd4
DS
4380 for (i = 0; i < ret; i++) {
4381 /* Avoid to grab roots in dead_roots */
4382 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4383 gang[i] = NULL;
4384 continue;
4385 }
4386 /* grab all the search result for later use */
4387 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4388 }
fc7cbcd4 4389 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4390
fc7cbcd4
DS
4391 for (i = 0; i < ret; i++) {
4392 if (!gang[i])
65d33fd7 4393 continue;
fc7cbcd4
DS
4394 root_objectid = gang[i]->root_key.objectid;
4395 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4396 if (err)
fc7cbcd4
DS
4397 break;
4398 btrfs_put_root(gang[i]);
c146afad 4399 }
fc7cbcd4 4400 root_objectid++;
c146afad 4401 }
65d33fd7 4402
fc7cbcd4
DS
4403 /* release the uncleaned roots due to error */
4404 for (; i < ret; i++) {
4405 if (gang[i])
4406 btrfs_put_root(gang[i]);
65d33fd7
QW
4407 }
4408 return err;
c146afad 4409}
a2135011 4410
6bccf3ab 4411int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4412{
6bccf3ab 4413 struct btrfs_root *root = fs_info->tree_root;
c146afad 4414 struct btrfs_trans_handle *trans;
a74a4b97 4415
0b246afa 4416 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4417 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4418 mutex_unlock(&fs_info->cleaner_mutex);
4419 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4420
4421 /* wait until ongoing cleanup work done */
0b246afa
JM
4422 down_write(&fs_info->cleanup_work_sem);
4423 up_write(&fs_info->cleanup_work_sem);
c71bf099 4424
7a7eaa40 4425 trans = btrfs_join_transaction(root);
3612b495
TI
4426 if (IS_ERR(trans))
4427 return PTR_ERR(trans);
3a45bb20 4428 return btrfs_commit_transaction(trans);
c146afad
YZ
4429}
4430
36c86a9e
QW
4431static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4432{
4433 struct btrfs_transaction *trans;
4434 struct btrfs_transaction *tmp;
4435 bool found = false;
4436
4437 if (list_empty(&fs_info->trans_list))
4438 return;
4439
4440 /*
4441 * This function is only called at the very end of close_ctree(),
4442 * thus no other running transaction, no need to take trans_lock.
4443 */
4444 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4445 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4446 struct extent_state *cached = NULL;
4447 u64 dirty_bytes = 0;
4448 u64 cur = 0;
4449 u64 found_start;
4450 u64 found_end;
4451
4452 found = true;
4453 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4454 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4455 dirty_bytes += found_end + 1 - found_start;
4456 cur = found_end + 1;
4457 }
4458 btrfs_warn(fs_info,
4459 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4460 trans->transid, dirty_bytes);
4461 btrfs_cleanup_one_transaction(trans, fs_info);
4462
4463 if (trans == fs_info->running_transaction)
4464 fs_info->running_transaction = NULL;
4465 list_del_init(&trans->list);
4466
4467 btrfs_put_transaction(trans);
4468 trace_btrfs_transaction_commit(fs_info);
4469 }
4470 ASSERT(!found);
4471}
4472
b105e927 4473void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4474{
c146afad
YZ
4475 int ret;
4476
afcdd129 4477 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4478
8a1f1e3d
FM
4479 /*
4480 * If we had UNFINISHED_DROPS we could still be processing them, so
4481 * clear that bit and wake up relocation so it can stop.
4482 * We must do this before stopping the block group reclaim task, because
4483 * at btrfs_relocate_block_group() we wait for this bit, and after the
4484 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4485 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4486 * return 1.
4487 */
4488 btrfs_wake_unfinished_drop(fs_info);
4489
31e70e52
FM
4490 /*
4491 * We may have the reclaim task running and relocating a data block group,
4492 * in which case it may create delayed iputs. So stop it before we park
4493 * the cleaner kthread otherwise we can get new delayed iputs after
4494 * parking the cleaner, and that can make the async reclaim task to hang
4495 * if it's waiting for delayed iputs to complete, since the cleaner is
4496 * parked and can not run delayed iputs - this will make us hang when
4497 * trying to stop the async reclaim task.
4498 */
4499 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4500 /*
4501 * We don't want the cleaner to start new transactions, add more delayed
4502 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4503 * because that frees the task_struct, and the transaction kthread might
4504 * still try to wake up the cleaner.
4505 */
4506 kthread_park(fs_info->cleaner_kthread);
c146afad 4507
7343dd61 4508 /* wait for the qgroup rescan worker to stop */
d06f23d6 4509 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4510
803b2f54
SB
4511 /* wait for the uuid_scan task to finish */
4512 down(&fs_info->uuid_tree_rescan_sem);
4513 /* avoid complains from lockdep et al., set sem back to initial state */
4514 up(&fs_info->uuid_tree_rescan_sem);
4515
837d5b6e 4516 /* pause restriper - we want to resume on mount */
aa1b8cd4 4517 btrfs_pause_balance(fs_info);
837d5b6e 4518
8dabb742
SB
4519 btrfs_dev_replace_suspend_for_unmount(fs_info);
4520
aa1b8cd4 4521 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4522
4523 /* wait for any defraggers to finish */
4524 wait_event(fs_info->transaction_wait,
4525 (atomic_read(&fs_info->defrag_running) == 0));
4526
4527 /* clear out the rbtree of defraggable inodes */
26176e7c 4528 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4529
a362bb86
FM
4530 /*
4531 * After we parked the cleaner kthread, ordered extents may have
4532 * completed and created new delayed iputs. If one of the async reclaim
4533 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4534 * can hang forever trying to stop it, because if a delayed iput is
4535 * added after it ran btrfs_run_delayed_iputs() and before it called
4536 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4537 * no one else to run iputs.
4538 *
4539 * So wait for all ongoing ordered extents to complete and then run
4540 * delayed iputs. This works because once we reach this point no one
4541 * can either create new ordered extents nor create delayed iputs
4542 * through some other means.
4543 *
4544 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4545 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4546 * but the delayed iput for the respective inode is made only when doing
4547 * the final btrfs_put_ordered_extent() (which must happen at
4548 * btrfs_finish_ordered_io() when we are unmounting).
4549 */
4550 btrfs_flush_workqueue(fs_info->endio_write_workers);
4551 /* Ordered extents for free space inodes. */
4552 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4553 btrfs_run_delayed_iputs(fs_info);
4554
21c7e756 4555 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4556 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4557 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4558
b0643e59
DZ
4559 /* Cancel or finish ongoing discard work */
4560 btrfs_discard_cleanup(fs_info);
4561
bc98a42c 4562 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4563 /*
d6fd0ae2
OS
4564 * The cleaner kthread is stopped, so do one final pass over
4565 * unused block groups.
e44163e1 4566 */
0b246afa 4567 btrfs_delete_unused_bgs(fs_info);
e44163e1 4568
f0cc2cd7
FM
4569 /*
4570 * There might be existing delayed inode workers still running
4571 * and holding an empty delayed inode item. We must wait for
4572 * them to complete first because they can create a transaction.
4573 * This happens when someone calls btrfs_balance_delayed_items()
4574 * and then a transaction commit runs the same delayed nodes
4575 * before any delayed worker has done something with the nodes.
4576 * We must wait for any worker here and not at transaction
4577 * commit time since that could cause a deadlock.
4578 * This is a very rare case.
4579 */
4580 btrfs_flush_workqueue(fs_info->delayed_workers);
4581
6bccf3ab 4582 ret = btrfs_commit_super(fs_info);
acce952b 4583 if (ret)
04892340 4584 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4585 }
4586
84961539 4587 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4588 btrfs_error_commit_super(fs_info);
0f7d52f4 4589
e3029d9f
AV
4590 kthread_stop(fs_info->transaction_kthread);
4591 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4592
e187831e 4593 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4594 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4595
5958253c
QW
4596 if (btrfs_check_quota_leak(fs_info)) {
4597 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4598 btrfs_err(fs_info, "qgroup reserved space leaked");
4599 }
4600
04892340 4601 btrfs_free_qgroup_config(fs_info);
fe816d0f 4602 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4603
963d678b 4604 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4605 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4606 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4607 }
bcc63abb 4608
5deb17e1 4609 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4610 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4611 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4612
6618a59b 4613 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4614 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4615
1a4319cc
LB
4616 btrfs_put_block_group_cache(fs_info);
4617
de348ee0
WS
4618 /*
4619 * we must make sure there is not any read request to
4620 * submit after we stopping all workers.
4621 */
4622 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4623 btrfs_stop_all_workers(fs_info);
4624
0a31daa4 4625 /* We shouldn't have any transaction open at this point */
36c86a9e 4626 warn_about_uncommitted_trans(fs_info);
0a31daa4 4627
afcdd129 4628 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4629 free_root_pointers(fs_info, true);
8c38938c 4630 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4631
4e19443d
JB
4632 /*
4633 * We must free the block groups after dropping the fs_roots as we could
4634 * have had an IO error and have left over tree log blocks that aren't
4635 * cleaned up until the fs roots are freed. This makes the block group
4636 * accounting appear to be wrong because there's pending reserved bytes,
4637 * so make sure we do the block group cleanup afterwards.
4638 */
4639 btrfs_free_block_groups(fs_info);
4640
13e6c37b 4641 iput(fs_info->btree_inode);
d6bfde87 4642
21adbd5c 4643#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4644 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4645 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4646#endif
4647
0b86a832 4648 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4649 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4650}
4651
b9fab919
CM
4652int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4653 int atomic)
5f39d397 4654{
1259ab75 4655 int ret;
727011e0 4656 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4657
0b32f4bb 4658 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4659 if (!ret)
4660 return ret;
4661
4662 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4663 parent_transid, atomic);
4664 if (ret == -EAGAIN)
4665 return ret;
1259ab75 4666 return !ret;
5f39d397
CM
4667}
4668
5f39d397
CM
4669void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4670{
2f4d60df 4671 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4672 u64 transid = btrfs_header_generation(buf);
b9473439 4673 int was_dirty;
b4ce94de 4674
06ea65a3
JB
4675#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4676 /*
4677 * This is a fast path so only do this check if we have sanity tests
52042d8e 4678 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4679 * outside of the sanity tests.
4680 */
b0132a3b 4681 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4682 return;
4683#endif
49d0c642 4684 btrfs_assert_tree_write_locked(buf);
0b246afa 4685 if (transid != fs_info->generation)
5d163e0e 4686 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4687 buf->start, transid, fs_info->generation);
0b32f4bb 4688 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4689 if (!was_dirty)
104b4e51
NB
4690 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4691 buf->len,
4692 fs_info->dirty_metadata_batch);
1f21ef0a 4693#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4694 /*
4695 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4696 * but item data not updated.
4697 * So here we should only check item pointers, not item data.
4698 */
4699 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4700 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4701 btrfs_print_leaf(buf);
1f21ef0a
FM
4702 ASSERT(0);
4703 }
4704#endif
eb60ceac
CM
4705}
4706
2ff7e61e 4707static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4708 int flush_delayed)
16cdcec7
MX
4709{
4710 /*
4711 * looks as though older kernels can get into trouble with
4712 * this code, they end up stuck in balance_dirty_pages forever
4713 */
e2d84521 4714 int ret;
16cdcec7
MX
4715
4716 if (current->flags & PF_MEMALLOC)
4717 return;
4718
b53d3f5d 4719 if (flush_delayed)
2ff7e61e 4720 btrfs_balance_delayed_items(fs_info);
16cdcec7 4721
d814a491
EL
4722 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4723 BTRFS_DIRTY_METADATA_THRESH,
4724 fs_info->dirty_metadata_batch);
e2d84521 4725 if (ret > 0) {
0b246afa 4726 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4727 }
16cdcec7
MX
4728}
4729
2ff7e61e 4730void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4731{
2ff7e61e 4732 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4733}
585ad2c3 4734
2ff7e61e 4735void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4736{
2ff7e61e 4737 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4738}
6b80053d 4739
2ff7e61e 4740static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4741{
fe816d0f
NB
4742 /* cleanup FS via transaction */
4743 btrfs_cleanup_transaction(fs_info);
4744
0b246afa 4745 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4746 btrfs_run_delayed_iputs(fs_info);
0b246afa 4747 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4748
0b246afa
JM
4749 down_write(&fs_info->cleanup_work_sem);
4750 up_write(&fs_info->cleanup_work_sem);
acce952b 4751}
4752
ef67963d
JB
4753static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4754{
fc7cbcd4
DS
4755 struct btrfs_root *gang[8];
4756 u64 root_objectid = 0;
4757 int ret;
4758
4759 spin_lock(&fs_info->fs_roots_radix_lock);
4760 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4761 (void **)gang, root_objectid,
4762 ARRAY_SIZE(gang))) != 0) {
4763 int i;
4764
4765 for (i = 0; i < ret; i++)
4766 gang[i] = btrfs_grab_root(gang[i]);
4767 spin_unlock(&fs_info->fs_roots_radix_lock);
4768
4769 for (i = 0; i < ret; i++) {
4770 if (!gang[i])
ef67963d 4771 continue;
fc7cbcd4
DS
4772 root_objectid = gang[i]->root_key.objectid;
4773 btrfs_free_log(NULL, gang[i]);
4774 btrfs_put_root(gang[i]);
ef67963d 4775 }
fc7cbcd4
DS
4776 root_objectid++;
4777 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4778 }
fc7cbcd4 4779 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4780 btrfs_free_log_root_tree(NULL, fs_info);
4781}
4782
143bede5 4783static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4784{
acce952b 4785 struct btrfs_ordered_extent *ordered;
acce952b 4786
199c2a9c 4787 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4788 /*
4789 * This will just short circuit the ordered completion stuff which will
4790 * make sure the ordered extent gets properly cleaned up.
4791 */
199c2a9c 4792 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4793 root_extent_list)
4794 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4795 spin_unlock(&root->ordered_extent_lock);
4796}
4797
4798static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4799{
4800 struct btrfs_root *root;
4801 struct list_head splice;
4802
4803 INIT_LIST_HEAD(&splice);
4804
4805 spin_lock(&fs_info->ordered_root_lock);
4806 list_splice_init(&fs_info->ordered_roots, &splice);
4807 while (!list_empty(&splice)) {
4808 root = list_first_entry(&splice, struct btrfs_root,
4809 ordered_root);
1de2cfde
JB
4810 list_move_tail(&root->ordered_root,
4811 &fs_info->ordered_roots);
199c2a9c 4812
2a85d9ca 4813 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4814 btrfs_destroy_ordered_extents(root);
4815
2a85d9ca
LB
4816 cond_resched();
4817 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4818 }
4819 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4820
4821 /*
4822 * We need this here because if we've been flipped read-only we won't
4823 * get sync() from the umount, so we need to make sure any ordered
4824 * extents that haven't had their dirty pages IO start writeout yet
4825 * actually get run and error out properly.
4826 */
4827 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4828}
4829
35a3621b 4830static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4831 struct btrfs_fs_info *fs_info)
acce952b 4832{
4833 struct rb_node *node;
4834 struct btrfs_delayed_ref_root *delayed_refs;
4835 struct btrfs_delayed_ref_node *ref;
4836 int ret = 0;
4837
4838 delayed_refs = &trans->delayed_refs;
4839
4840 spin_lock(&delayed_refs->lock);
d7df2c79 4841 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4842 spin_unlock(&delayed_refs->lock);
b79ce3dd 4843 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4844 return ret;
4845 }
4846
5c9d028b 4847 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4848 struct btrfs_delayed_ref_head *head;
0e0adbcf 4849 struct rb_node *n;
e78417d1 4850 bool pin_bytes = false;
acce952b 4851
d7df2c79
JB
4852 head = rb_entry(node, struct btrfs_delayed_ref_head,
4853 href_node);
3069bd26 4854 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4855 continue;
3069bd26 4856
d7df2c79 4857 spin_lock(&head->lock);
e3d03965 4858 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4859 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4860 ref_node);
d7df2c79 4861 ref->in_tree = 0;
e3d03965 4862 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4863 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4864 if (!list_empty(&ref->add_list))
4865 list_del(&ref->add_list);
d7df2c79
JB
4866 atomic_dec(&delayed_refs->num_entries);
4867 btrfs_put_delayed_ref(ref);
e78417d1 4868 }
d7df2c79
JB
4869 if (head->must_insert_reserved)
4870 pin_bytes = true;
4871 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4872 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4873 spin_unlock(&head->lock);
4874 spin_unlock(&delayed_refs->lock);
4875 mutex_unlock(&head->mutex);
acce952b 4876
f603bb94
NB
4877 if (pin_bytes) {
4878 struct btrfs_block_group *cache;
4879
4880 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4881 BUG_ON(!cache);
4882
4883 spin_lock(&cache->space_info->lock);
4884 spin_lock(&cache->lock);
4885 cache->pinned += head->num_bytes;
4886 btrfs_space_info_update_bytes_pinned(fs_info,
4887 cache->space_info, head->num_bytes);
4888 cache->reserved -= head->num_bytes;
4889 cache->space_info->bytes_reserved -= head->num_bytes;
4890 spin_unlock(&cache->lock);
4891 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4892
4893 btrfs_put_block_group(cache);
4894
4895 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4896 head->bytenr + head->num_bytes - 1);
4897 }
31890da0 4898 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4899 btrfs_put_delayed_ref_head(head);
acce952b 4900 cond_resched();
4901 spin_lock(&delayed_refs->lock);
4902 }
81f7eb00 4903 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4904
4905 spin_unlock(&delayed_refs->lock);
4906
4907 return ret;
4908}
4909
143bede5 4910static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4911{
4912 struct btrfs_inode *btrfs_inode;
4913 struct list_head splice;
4914
4915 INIT_LIST_HEAD(&splice);
4916
eb73c1b7
MX
4917 spin_lock(&root->delalloc_lock);
4918 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4919
4920 while (!list_empty(&splice)) {
fe816d0f 4921 struct inode *inode = NULL;
eb73c1b7
MX
4922 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4923 delalloc_inodes);
fe816d0f 4924 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4925 spin_unlock(&root->delalloc_lock);
acce952b 4926
fe816d0f
NB
4927 /*
4928 * Make sure we get a live inode and that it'll not disappear
4929 * meanwhile.
4930 */
4931 inode = igrab(&btrfs_inode->vfs_inode);
4932 if (inode) {
4933 invalidate_inode_pages2(inode->i_mapping);
4934 iput(inode);
4935 }
eb73c1b7 4936 spin_lock(&root->delalloc_lock);
acce952b 4937 }
eb73c1b7
MX
4938 spin_unlock(&root->delalloc_lock);
4939}
4940
4941static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4942{
4943 struct btrfs_root *root;
4944 struct list_head splice;
4945
4946 INIT_LIST_HEAD(&splice);
4947
4948 spin_lock(&fs_info->delalloc_root_lock);
4949 list_splice_init(&fs_info->delalloc_roots, &splice);
4950 while (!list_empty(&splice)) {
4951 root = list_first_entry(&splice, struct btrfs_root,
4952 delalloc_root);
00246528 4953 root = btrfs_grab_root(root);
eb73c1b7
MX
4954 BUG_ON(!root);
4955 spin_unlock(&fs_info->delalloc_root_lock);
4956
4957 btrfs_destroy_delalloc_inodes(root);
00246528 4958 btrfs_put_root(root);
eb73c1b7
MX
4959
4960 spin_lock(&fs_info->delalloc_root_lock);
4961 }
4962 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4963}
4964
2ff7e61e 4965static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4966 struct extent_io_tree *dirty_pages,
4967 int mark)
4968{
4969 int ret;
acce952b 4970 struct extent_buffer *eb;
4971 u64 start = 0;
4972 u64 end;
acce952b 4973
4974 while (1) {
4975 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4976 mark, NULL);
acce952b 4977 if (ret)
4978 break;
4979
91166212 4980 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4981 while (start <= end) {
0b246afa
JM
4982 eb = find_extent_buffer(fs_info, start);
4983 start += fs_info->nodesize;
fd8b2b61 4984 if (!eb)
acce952b 4985 continue;
fd8b2b61 4986 wait_on_extent_buffer_writeback(eb);
acce952b 4987
fd8b2b61
JB
4988 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4989 &eb->bflags))
4990 clear_extent_buffer_dirty(eb);
4991 free_extent_buffer_stale(eb);
acce952b 4992 }
4993 }
4994
4995 return ret;
4996}
4997
2ff7e61e 4998static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4999 struct extent_io_tree *unpin)
acce952b 5000{
acce952b 5001 u64 start;
5002 u64 end;
5003 int ret;
5004
acce952b 5005 while (1) {
0e6ec385
FM
5006 struct extent_state *cached_state = NULL;
5007
fcd5e742
LF
5008 /*
5009 * The btrfs_finish_extent_commit() may get the same range as
5010 * ours between find_first_extent_bit and clear_extent_dirty.
5011 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5012 * the same extent range.
5013 */
5014 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5015 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5016 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5017 if (ret) {
5018 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5019 break;
fcd5e742 5020 }
acce952b 5021
0e6ec385
FM
5022 clear_extent_dirty(unpin, start, end, &cached_state);
5023 free_extent_state(cached_state);
2ff7e61e 5024 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5025 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5026 cond_resched();
5027 }
5028
5029 return 0;
5030}
5031
32da5386 5032static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5033{
5034 struct inode *inode;
5035
5036 inode = cache->io_ctl.inode;
5037 if (inode) {
5038 invalidate_inode_pages2(inode->i_mapping);
5039 BTRFS_I(inode)->generation = 0;
5040 cache->io_ctl.inode = NULL;
5041 iput(inode);
5042 }
bbc37d6e 5043 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5044 btrfs_put_block_group(cache);
5045}
5046
5047void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5048 struct btrfs_fs_info *fs_info)
c79a1751 5049{
32da5386 5050 struct btrfs_block_group *cache;
c79a1751
LB
5051
5052 spin_lock(&cur_trans->dirty_bgs_lock);
5053 while (!list_empty(&cur_trans->dirty_bgs)) {
5054 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5055 struct btrfs_block_group,
c79a1751 5056 dirty_list);
c79a1751
LB
5057
5058 if (!list_empty(&cache->io_list)) {
5059 spin_unlock(&cur_trans->dirty_bgs_lock);
5060 list_del_init(&cache->io_list);
5061 btrfs_cleanup_bg_io(cache);
5062 spin_lock(&cur_trans->dirty_bgs_lock);
5063 }
5064
5065 list_del_init(&cache->dirty_list);
5066 spin_lock(&cache->lock);
5067 cache->disk_cache_state = BTRFS_DC_ERROR;
5068 spin_unlock(&cache->lock);
5069
5070 spin_unlock(&cur_trans->dirty_bgs_lock);
5071 btrfs_put_block_group(cache);
ba2c4d4e 5072 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5073 spin_lock(&cur_trans->dirty_bgs_lock);
5074 }
5075 spin_unlock(&cur_trans->dirty_bgs_lock);
5076
45ae2c18
NB
5077 /*
5078 * Refer to the definition of io_bgs member for details why it's safe
5079 * to use it without any locking
5080 */
c79a1751
LB
5081 while (!list_empty(&cur_trans->io_bgs)) {
5082 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5083 struct btrfs_block_group,
c79a1751 5084 io_list);
c79a1751
LB
5085
5086 list_del_init(&cache->io_list);
5087 spin_lock(&cache->lock);
5088 cache->disk_cache_state = BTRFS_DC_ERROR;
5089 spin_unlock(&cache->lock);
5090 btrfs_cleanup_bg_io(cache);
5091 }
5092}
5093
49b25e05 5094void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5095 struct btrfs_fs_info *fs_info)
49b25e05 5096{
bbbf7243
NB
5097 struct btrfs_device *dev, *tmp;
5098
2ff7e61e 5099 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5100 ASSERT(list_empty(&cur_trans->dirty_bgs));
5101 ASSERT(list_empty(&cur_trans->io_bgs));
5102
bbbf7243
NB
5103 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5104 post_commit_list) {
5105 list_del_init(&dev->post_commit_list);
5106 }
5107
2ff7e61e 5108 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5109
4a9d8bde 5110 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5111 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5112
4a9d8bde 5113 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5114 wake_up(&fs_info->transaction_wait);
49b25e05 5115
ccdf9b30 5116 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5117
2ff7e61e 5118 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5119 EXTENT_DIRTY);
fe119a6e 5120 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5121
d3575156
NA
5122 btrfs_free_redirty_list(cur_trans);
5123
4a9d8bde
MX
5124 cur_trans->state =TRANS_STATE_COMPLETED;
5125 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5126}
5127
2ff7e61e 5128static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5129{
5130 struct btrfs_transaction *t;
acce952b 5131
0b246afa 5132 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5133
0b246afa
JM
5134 spin_lock(&fs_info->trans_lock);
5135 while (!list_empty(&fs_info->trans_list)) {
5136 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5137 struct btrfs_transaction, list);
5138 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5139 refcount_inc(&t->use_count);
0b246afa 5140 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5141 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5142 btrfs_put_transaction(t);
0b246afa 5143 spin_lock(&fs_info->trans_lock);
724e2315
JB
5144 continue;
5145 }
0b246afa 5146 if (t == fs_info->running_transaction) {
724e2315 5147 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5148 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5149 /*
5150 * We wait for 0 num_writers since we don't hold a trans
5151 * handle open currently for this transaction.
5152 */
5153 wait_event(t->writer_wait,
5154 atomic_read(&t->num_writers) == 0);
5155 } else {
0b246afa 5156 spin_unlock(&fs_info->trans_lock);
724e2315 5157 }
2ff7e61e 5158 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5159
0b246afa
JM
5160 spin_lock(&fs_info->trans_lock);
5161 if (t == fs_info->running_transaction)
5162 fs_info->running_transaction = NULL;
acce952b 5163 list_del_init(&t->list);
0b246afa 5164 spin_unlock(&fs_info->trans_lock);
acce952b 5165
724e2315 5166 btrfs_put_transaction(t);
2e4e97ab 5167 trace_btrfs_transaction_commit(fs_info);
0b246afa 5168 spin_lock(&fs_info->trans_lock);
724e2315 5169 }
0b246afa
JM
5170 spin_unlock(&fs_info->trans_lock);
5171 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5172 btrfs_destroy_delayed_inodes(fs_info);
5173 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5174 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5175 btrfs_drop_all_logs(fs_info);
0b246afa 5176 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5177
5178 return 0;
5179}
ec7d6dfd 5180
453e4873 5181int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5182{
5183 struct btrfs_path *path;
5184 int ret;
5185 struct extent_buffer *l;
5186 struct btrfs_key search_key;
5187 struct btrfs_key found_key;
5188 int slot;
5189
5190 path = btrfs_alloc_path();
5191 if (!path)
5192 return -ENOMEM;
5193
5194 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5195 search_key.type = -1;
5196 search_key.offset = (u64)-1;
5197 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5198 if (ret < 0)
5199 goto error;
5200 BUG_ON(ret == 0); /* Corruption */
5201 if (path->slots[0] > 0) {
5202 slot = path->slots[0] - 1;
5203 l = path->nodes[0];
5204 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5205 root->free_objectid = max_t(u64, found_key.objectid + 1,
5206 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5207 } else {
23125104 5208 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5209 }
5210 ret = 0;
5211error:
5212 btrfs_free_path(path);
5213 return ret;
5214}
5215
543068a2 5216int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5217{
5218 int ret;
5219 mutex_lock(&root->objectid_mutex);
5220
6b8fad57 5221 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5222 btrfs_warn(root->fs_info,
5223 "the objectid of root %llu reaches its highest value",
5224 root->root_key.objectid);
5225 ret = -ENOSPC;
5226 goto out;
5227 }
5228
23125104 5229 *objectid = root->free_objectid++;
ec7d6dfd
NB
5230 ret = 0;
5231out:
5232 mutex_unlock(&root->objectid_mutex);
5233 return ret;
5234}