]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elf32-xtensa.c
Fix spelling mistakes.
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
CommitLineData
e0001a05 1/* Xtensa-specific support for 32-bit ELF.
cc643b88 2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
aa820537 3 Free Software Foundation, Inc.
e0001a05
NC
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
cd123cb7 9 published by the Free Software Foundation; either version 3 of the
e0001a05
NC
10 License, or (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
3e110533 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
53e09e0a 20 02110-1301, USA. */
e0001a05 21
e0001a05 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
e0001a05 24
e0001a05 25#include <stdarg.h>
e0001a05
NC
26#include <strings.h>
27
28#include "bfdlink.h"
29#include "libbfd.h"
30#include "elf-bfd.h"
31#include "elf/xtensa.h"
32#include "xtensa-isa.h"
33#include "xtensa-config.h"
34
43cd72b9
BW
35#define XTENSA_NO_NOP_REMOVAL 0
36
e0001a05
NC
37/* Local helper functions. */
38
f0e6fdb2 39static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
2db662be 40static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
e0001a05 41static bfd_reloc_status_type bfd_elf_xtensa_reloc
7fa3d080 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43cd72b9 43static bfd_boolean do_fix_for_relocatable_link
7fa3d080 44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
e0001a05 45static void do_fix_for_final_link
7fa3d080 46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
e0001a05
NC
47
48/* Local functions to handle Xtensa configurability. */
49
7fa3d080
BW
50static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53static xtensa_opcode get_const16_opcode (void);
54static xtensa_opcode get_l32r_opcode (void);
55static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56static int get_relocation_opnd (xtensa_opcode, int);
57static int get_relocation_slot (int);
e0001a05 58static xtensa_opcode get_relocation_opcode
7fa3d080 59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
e0001a05 60static bfd_boolean is_l32r_relocation
7fa3d080
BW
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62static bfd_boolean is_alt_relocation (int);
63static bfd_boolean is_operand_relocation (int);
43cd72b9 64static bfd_size_type insn_decode_len
7fa3d080 65 (bfd_byte *, bfd_size_type, bfd_size_type);
43cd72b9 66static xtensa_opcode insn_decode_opcode
7fa3d080 67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
43cd72b9 68static bfd_boolean check_branch_target_aligned
7fa3d080 69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
43cd72b9 70static bfd_boolean check_loop_aligned
7fa3d080
BW
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
43cd72b9 73static bfd_size_type get_asm_simplify_size
7fa3d080 74 (bfd_byte *, bfd_size_type, bfd_size_type);
e0001a05
NC
75
76/* Functions for link-time code simplifications. */
77
43cd72b9 78static bfd_reloc_status_type elf_xtensa_do_asm_simplify
7fa3d080 79 (bfd_byte *, bfd_vma, bfd_vma, char **);
e0001a05 80static bfd_reloc_status_type contract_asm_expansion
7fa3d080
BW
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
e0001a05
NC
84
85/* Access to internal relocations, section contents and symbols. */
86
87static Elf_Internal_Rela *retrieve_internal_relocs
7fa3d080
BW
88 (bfd *, asection *, bfd_boolean);
89static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92static void pin_contents (asection *, bfd_byte *);
93static void release_contents (asection *, bfd_byte *);
94static Elf_Internal_Sym *retrieve_local_syms (bfd *);
e0001a05
NC
95
96/* Miscellaneous utility functions. */
97
f0e6fdb2
BW
98static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
7fa3d080 100static asection *get_elf_r_symndx_section (bfd *, unsigned long);
e0001a05 101static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
7fa3d080
BW
102 (bfd *, unsigned long);
103static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106static bfd_boolean xtensa_is_property_section (asection *);
1d25768e 107static bfd_boolean xtensa_is_insntable_section (asection *);
7fa3d080 108static bfd_boolean xtensa_is_littable_section (asection *);
1d25768e 109static bfd_boolean xtensa_is_proptable_section (asection *);
7fa3d080
BW
110static int internal_reloc_compare (const void *, const void *);
111static int internal_reloc_matches (const void *, const void *);
51c8ebc1
BW
112static asection *xtensa_get_property_section (asection *, const char *);
113extern asection *xtensa_make_property_section (asection *, const char *);
7fa3d080 114static flagword xtensa_get_property_predef_flags (asection *);
e0001a05
NC
115
116/* Other functions called directly by the linker. */
117
118typedef void (*deps_callback_t)
7fa3d080 119 (asection *, bfd_vma, asection *, bfd_vma, void *);
e0001a05 120extern bfd_boolean xtensa_callback_required_dependence
7fa3d080 121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
e0001a05
NC
122
123
43cd72b9
BW
124/* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
7fa3d080 128
43cd72b9
BW
129int elf32xtensa_size_opt;
130
131
132/* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
e0001a05 135
7fa3d080 136typedef struct xtensa_relax_info_struct xtensa_relax_info;
e0001a05 137
43cd72b9 138
43cd72b9
BW
139/* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144xtensa_isa xtensa_default_isa;
145
146
e0001a05
NC
147/* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151static bfd_boolean relaxing_section = FALSE;
152
43cd72b9
BW
153/* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156int elf32xtensa_no_literal_movement = 1;
157
b0dddeec
AM
158/* Rename one of the generic section flags to better document how it
159 is used here. */
160/* Whether relocations have been processed. */
161#define reloc_done sec_flg0
e0001a05
NC
162\f
163static reloc_howto_type elf_howto_table[] =
164{
165 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
e5f131d1 167 FALSE, 0, 0, FALSE),
e0001a05
NC
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
e5f131d1 171
e0001a05
NC
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
e5f131d1
BW
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
e0001a05
NC
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
e5f131d1 182 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
e5f131d1 185 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
e5f131d1 188 FALSE, 0, 0xffffffff, FALSE),
e0001a05
NC
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
e5f131d1
BW
191 FALSE, 0, 0xffffffff, FALSE),
192
e0001a05 193 EMPTY_HOWTO (7),
e5f131d1
BW
194
195 /* Old relocations for backward compatibility. */
e0001a05 196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
e0001a05 198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
e0001a05 200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
e0001a05
NC
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
e0001a05
NC
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1
BW
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
e0001a05 210 EMPTY_HOWTO (13),
1bbb5f21
BW
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
e5f131d1 215
e0001a05
NC
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
e5f131d1 219 FALSE, 0, 0, FALSE),
e0001a05
NC
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
e5f131d1 223 FALSE, 0, 0, FALSE),
43cd72b9
BW
224
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
e5f131d1 227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
43cd72b9 228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
e5f131d1 229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
43cd72b9 230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
e5f131d1 231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
43cd72b9
BW
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
43cd72b9 236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
43cd72b9 238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
43cd72b9 240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
43cd72b9 242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
43cd72b9 244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
43cd72b9 246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
43cd72b9 248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
43cd72b9 250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
43cd72b9 252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
43cd72b9 254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
43cd72b9 256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
43cd72b9 258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
43cd72b9 260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
43cd72b9 262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
43cd72b9
BW
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
43cd72b9 268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
43cd72b9 270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
43cd72b9 272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
43cd72b9 274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
43cd72b9 276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
43cd72b9 278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
43cd72b9 280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
43cd72b9 282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
43cd72b9 284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
43cd72b9 286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
43cd72b9 288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
43cd72b9 290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
43cd72b9 292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
43cd72b9 294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
e5f131d1 295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
28dbbc02
BW
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
e0001a05
NC
319};
320
43cd72b9 321#if DEBUG_GEN_RELOC
e0001a05
NC
322#define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324#else
325#define TRACE(str)
326#endif
327
328static reloc_howto_type *
7fa3d080
BW
329elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
e0001a05
NC
331{
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
1bbb5f21
BW
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
43cd72b9
BW
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
e0001a05
NC
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
28dbbc02
BW
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
e0001a05 434 default:
43cd72b9
BW
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
e0001a05
NC
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456}
457
157090f7
AM
458static reloc_howto_type *
459elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461{
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470}
471
e0001a05
NC
472
473/* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476static void
7fa3d080
BW
477elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
e0001a05
NC
480{
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
483 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
484 cache_ptr->howto = &elf_howto_table[r_type];
485}
486
487\f
488/* Functions for the Xtensa ELF linker. */
489
490/* The name of the dynamic interpreter. This is put in the .interp
491 section. */
492
493#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
494
495/* The size in bytes of an entry in the procedure linkage table.
496 (This does _not_ include the space for the literals associated with
497 the PLT entry.) */
498
499#define PLT_ENTRY_SIZE 16
500
501/* For _really_ large PLTs, we may need to alternate between literals
502 and code to keep the literals within the 256K range of the L32R
503 instructions in the code. It's unlikely that anyone would ever need
504 such a big PLT, but an arbitrary limit on the PLT size would be bad.
505 Thus, we split the PLT into chunks. Since there's very little
506 overhead (2 extra literals) for each chunk, the chunk size is kept
507 small so that the code for handling multiple chunks get used and
508 tested regularly. With 254 entries, there are 1K of literals for
509 each chunk, and that seems like a nice round number. */
510
511#define PLT_ENTRIES_PER_CHUNK 254
512
513/* PLT entries are actually used as stub functions for lazy symbol
514 resolution. Once the symbol is resolved, the stub function is never
515 invoked. Note: the 32-byte frame size used here cannot be changed
516 without a corresponding change in the runtime linker. */
517
518static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
519{
520 0x6c, 0x10, 0x04, /* entry sp, 32 */
521 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
522 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
523 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
524 0x0a, 0x80, 0x00, /* jx a8 */
525 0 /* unused */
526};
527
528static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
529{
530 0x36, 0x41, 0x00, /* entry sp, 32 */
531 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
532 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
533 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
534 0xa0, 0x08, 0x00, /* jx a8 */
535 0 /* unused */
536};
537
28dbbc02
BW
538/* The size of the thread control block. */
539#define TCB_SIZE 8
540
541struct elf_xtensa_link_hash_entry
542{
543 struct elf_link_hash_entry elf;
544
545 bfd_signed_vma tlsfunc_refcount;
546
547#define GOT_UNKNOWN 0
548#define GOT_NORMAL 1
549#define GOT_TLS_GD 2 /* global or local dynamic */
550#define GOT_TLS_IE 4 /* initial or local exec */
551#define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
552 unsigned char tls_type;
553};
554
555#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
556
557struct elf_xtensa_obj_tdata
558{
559 struct elf_obj_tdata root;
560
561 /* tls_type for each local got entry. */
562 char *local_got_tls_type;
563
564 bfd_signed_vma *local_tlsfunc_refcounts;
565};
566
567#define elf_xtensa_tdata(abfd) \
568 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
569
570#define elf_xtensa_local_got_tls_type(abfd) \
571 (elf_xtensa_tdata (abfd)->local_got_tls_type)
572
573#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
574 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
575
576#define is_xtensa_elf(bfd) \
577 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
578 && elf_tdata (bfd) != NULL \
4dfe6ac6 579 && elf_object_id (bfd) == XTENSA_ELF_DATA)
28dbbc02
BW
580
581static bfd_boolean
582elf_xtensa_mkobject (bfd *abfd)
583{
584 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
4dfe6ac6 585 XTENSA_ELF_DATA);
28dbbc02
BW
586}
587
f0e6fdb2
BW
588/* Xtensa ELF linker hash table. */
589
590struct elf_xtensa_link_hash_table
591{
592 struct elf_link_hash_table elf;
593
594 /* Short-cuts to get to dynamic linker sections. */
595 asection *sgot;
596 asection *sgotplt;
597 asection *srelgot;
598 asection *splt;
599 asection *srelplt;
600 asection *sgotloc;
601 asection *spltlittbl;
602
603 /* Total count of PLT relocations seen during check_relocs.
604 The actual PLT code must be split into multiple sections and all
605 the sections have to be created before size_dynamic_sections,
606 where we figure out the exact number of PLT entries that will be
607 needed. It is OK if this count is an overestimate, e.g., some
608 relocations may be removed by GC. */
609 int plt_reloc_count;
28dbbc02
BW
610
611 struct elf_xtensa_link_hash_entry *tlsbase;
f0e6fdb2
BW
612};
613
614/* Get the Xtensa ELF linker hash table from a link_info structure. */
615
616#define elf_xtensa_hash_table(p) \
4dfe6ac6
NC
617 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
618 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
f0e6fdb2 619
28dbbc02
BW
620/* Create an entry in an Xtensa ELF linker hash table. */
621
622static struct bfd_hash_entry *
623elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
624 struct bfd_hash_table *table,
625 const char *string)
626{
627 /* Allocate the structure if it has not already been allocated by a
628 subclass. */
629 if (entry == NULL)
630 {
631 entry = bfd_hash_allocate (table,
632 sizeof (struct elf_xtensa_link_hash_entry));
633 if (entry == NULL)
634 return entry;
635 }
636
637 /* Call the allocation method of the superclass. */
638 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
639 if (entry != NULL)
640 {
641 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
642 eh->tlsfunc_refcount = 0;
643 eh->tls_type = GOT_UNKNOWN;
644 }
645
646 return entry;
647}
648
f0e6fdb2
BW
649/* Create an Xtensa ELF linker hash table. */
650
651static struct bfd_link_hash_table *
652elf_xtensa_link_hash_table_create (bfd *abfd)
653{
28dbbc02 654 struct elf_link_hash_entry *tlsbase;
f0e6fdb2
BW
655 struct elf_xtensa_link_hash_table *ret;
656 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
657
658 ret = bfd_malloc (amt);
659 if (ret == NULL)
660 return NULL;
661
662 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
28dbbc02 663 elf_xtensa_link_hash_newfunc,
4dfe6ac6
NC
664 sizeof (struct elf_xtensa_link_hash_entry),
665 XTENSA_ELF_DATA))
f0e6fdb2
BW
666 {
667 free (ret);
668 return NULL;
669 }
670
671 ret->sgot = NULL;
672 ret->sgotplt = NULL;
673 ret->srelgot = NULL;
674 ret->splt = NULL;
675 ret->srelplt = NULL;
676 ret->sgotloc = NULL;
677 ret->spltlittbl = NULL;
678
679 ret->plt_reloc_count = 0;
680
28dbbc02
BW
681 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
682 for it later. */
683 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
684 TRUE, FALSE, FALSE);
685 tlsbase->root.type = bfd_link_hash_new;
686 tlsbase->root.u.undef.abfd = NULL;
687 tlsbase->non_elf = 0;
688 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
689 ret->tlsbase->tls_type = GOT_UNKNOWN;
690
f0e6fdb2
BW
691 return &ret->elf.root;
692}
571b5725 693
28dbbc02
BW
694/* Copy the extra info we tack onto an elf_link_hash_entry. */
695
696static void
697elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
698 struct elf_link_hash_entry *dir,
699 struct elf_link_hash_entry *ind)
700{
701 struct elf_xtensa_link_hash_entry *edir, *eind;
702
703 edir = elf_xtensa_hash_entry (dir);
704 eind = elf_xtensa_hash_entry (ind);
705
706 if (ind->root.type == bfd_link_hash_indirect)
707 {
708 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
709 eind->tlsfunc_refcount = 0;
710
711 if (dir->got.refcount <= 0)
712 {
713 edir->tls_type = eind->tls_type;
714 eind->tls_type = GOT_UNKNOWN;
715 }
716 }
717
718 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
719}
720
571b5725 721static inline bfd_boolean
4608f3d9 722elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
7fa3d080 723 struct bfd_link_info *info)
571b5725
BW
724{
725 /* Check if we should do dynamic things to this symbol. The
726 "ignore_protected" argument need not be set, because Xtensa code
727 does not require special handling of STV_PROTECTED to make function
728 pointer comparisons work properly. The PLT addresses are never
729 used for function pointers. */
730
731 return _bfd_elf_dynamic_symbol_p (h, info, 0);
732}
733
e0001a05
NC
734\f
735static int
7fa3d080 736property_table_compare (const void *ap, const void *bp)
e0001a05
NC
737{
738 const property_table_entry *a = (const property_table_entry *) ap;
739 const property_table_entry *b = (const property_table_entry *) bp;
740
43cd72b9
BW
741 if (a->address == b->address)
742 {
43cd72b9
BW
743 if (a->size != b->size)
744 return (a->size - b->size);
745
746 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
747 return ((b->flags & XTENSA_PROP_ALIGN)
748 - (a->flags & XTENSA_PROP_ALIGN));
749
750 if ((a->flags & XTENSA_PROP_ALIGN)
751 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
752 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
753 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
754 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
755
756 if ((a->flags & XTENSA_PROP_UNREACHABLE)
757 != (b->flags & XTENSA_PROP_UNREACHABLE))
758 return ((b->flags & XTENSA_PROP_UNREACHABLE)
759 - (a->flags & XTENSA_PROP_UNREACHABLE));
760
761 return (a->flags - b->flags);
762 }
763
764 return (a->address - b->address);
765}
766
767
768static int
7fa3d080 769property_table_matches (const void *ap, const void *bp)
43cd72b9
BW
770{
771 const property_table_entry *a = (const property_table_entry *) ap;
772 const property_table_entry *b = (const property_table_entry *) bp;
773
774 /* Check if one entry overlaps with the other. */
e0001a05
NC
775 if ((b->address >= a->address && b->address < (a->address + a->size))
776 || (a->address >= b->address && a->address < (b->address + b->size)))
777 return 0;
778
779 return (a->address - b->address);
780}
781
782
43cd72b9
BW
783/* Get the literal table or property table entries for the given
784 section. Sets TABLE_P and returns the number of entries. On
785 error, returns a negative value. */
e0001a05 786
7fa3d080
BW
787static int
788xtensa_read_table_entries (bfd *abfd,
789 asection *section,
790 property_table_entry **table_p,
791 const char *sec_name,
792 bfd_boolean output_addr)
e0001a05
NC
793{
794 asection *table_section;
e0001a05
NC
795 bfd_size_type table_size = 0;
796 bfd_byte *table_data;
797 property_table_entry *blocks;
e4115460 798 int blk, block_count;
e0001a05 799 bfd_size_type num_records;
bcc2cc8e
BW
800 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
801 bfd_vma section_addr, off;
43cd72b9 802 flagword predef_flags;
bcc2cc8e 803 bfd_size_type table_entry_size, section_limit;
43cd72b9
BW
804
805 if (!section
806 || !(section->flags & SEC_ALLOC)
807 || (section->flags & SEC_DEBUGGING))
808 {
809 *table_p = NULL;
810 return 0;
811 }
e0001a05 812
74869ac7 813 table_section = xtensa_get_property_section (section, sec_name);
43cd72b9 814 if (table_section)
eea6121a 815 table_size = table_section->size;
43cd72b9 816
e0001a05
NC
817 if (table_size == 0)
818 {
819 *table_p = NULL;
820 return 0;
821 }
822
43cd72b9
BW
823 predef_flags = xtensa_get_property_predef_flags (table_section);
824 table_entry_size = 12;
825 if (predef_flags)
826 table_entry_size -= 4;
827
828 num_records = table_size / table_entry_size;
e0001a05
NC
829 table_data = retrieve_contents (abfd, table_section, TRUE);
830 blocks = (property_table_entry *)
831 bfd_malloc (num_records * sizeof (property_table_entry));
832 block_count = 0;
43cd72b9
BW
833
834 if (output_addr)
835 section_addr = section->output_section->vma + section->output_offset;
836 else
837 section_addr = section->vma;
3ba3bc8c 838
e0001a05 839 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
3ba3bc8c 840 if (internal_relocs && !table_section->reloc_done)
e0001a05 841 {
bcc2cc8e
BW
842 qsort (internal_relocs, table_section->reloc_count,
843 sizeof (Elf_Internal_Rela), internal_reloc_compare);
844 irel = internal_relocs;
845 }
846 else
847 irel = NULL;
848
849 section_limit = bfd_get_section_limit (abfd, section);
850 rel_end = internal_relocs + table_section->reloc_count;
851
852 for (off = 0; off < table_size; off += table_entry_size)
853 {
854 bfd_vma address = bfd_get_32 (abfd, table_data + off);
855
856 /* Skip any relocations before the current offset. This should help
857 avoid confusion caused by unexpected relocations for the preceding
858 table entry. */
859 while (irel &&
860 (irel->r_offset < off
861 || (irel->r_offset == off
862 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
863 {
864 irel += 1;
865 if (irel >= rel_end)
866 irel = 0;
867 }
e0001a05 868
bcc2cc8e 869 if (irel && irel->r_offset == off)
e0001a05 870 {
bcc2cc8e
BW
871 bfd_vma sym_off;
872 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
873 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
e0001a05 874
bcc2cc8e 875 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
e0001a05
NC
876 continue;
877
bcc2cc8e
BW
878 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
879 BFD_ASSERT (sym_off == 0);
880 address += (section_addr + sym_off + irel->r_addend);
e0001a05 881 }
bcc2cc8e 882 else
e0001a05 883 {
bcc2cc8e
BW
884 if (address < section_addr
885 || address >= section_addr + section_limit)
886 continue;
e0001a05 887 }
bcc2cc8e
BW
888
889 blocks[block_count].address = address;
890 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
891 if (predef_flags)
892 blocks[block_count].flags = predef_flags;
893 else
894 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
895 block_count++;
e0001a05
NC
896 }
897
898 release_contents (table_section, table_data);
899 release_internal_relocs (table_section, internal_relocs);
900
43cd72b9 901 if (block_count > 0)
e0001a05
NC
902 {
903 /* Now sort them into address order for easy reference. */
904 qsort (blocks, block_count, sizeof (property_table_entry),
905 property_table_compare);
e4115460
BW
906
907 /* Check that the table contents are valid. Problems may occur,
908 for example, if an unrelocated object file is stripped. */
909 for (blk = 1; blk < block_count; blk++)
910 {
911 /* The only circumstance where two entries may legitimately
912 have the same address is when one of them is a zero-size
913 placeholder to mark a place where fill can be inserted.
914 The zero-size entry should come first. */
915 if (blocks[blk - 1].address == blocks[blk].address &&
916 blocks[blk - 1].size != 0)
917 {
918 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
919 abfd, section);
920 bfd_set_error (bfd_error_bad_value);
921 free (blocks);
922 return -1;
923 }
924 }
e0001a05 925 }
43cd72b9 926
e0001a05
NC
927 *table_p = blocks;
928 return block_count;
929}
930
931
7fa3d080
BW
932static property_table_entry *
933elf_xtensa_find_property_entry (property_table_entry *property_table,
934 int property_table_size,
935 bfd_vma addr)
e0001a05
NC
936{
937 property_table_entry entry;
43cd72b9 938 property_table_entry *rv;
e0001a05 939
43cd72b9
BW
940 if (property_table_size == 0)
941 return NULL;
e0001a05
NC
942
943 entry.address = addr;
944 entry.size = 1;
43cd72b9 945 entry.flags = 0;
e0001a05 946
43cd72b9
BW
947 rv = bsearch (&entry, property_table, property_table_size,
948 sizeof (property_table_entry), property_table_matches);
949 return rv;
950}
951
952
953static bfd_boolean
7fa3d080
BW
954elf_xtensa_in_literal_pool (property_table_entry *lit_table,
955 int lit_table_size,
956 bfd_vma addr)
43cd72b9
BW
957{
958 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
e0001a05
NC
959 return TRUE;
960
961 return FALSE;
962}
963
964\f
965/* Look through the relocs for a section during the first phase, and
966 calculate needed space in the dynamic reloc sections. */
967
968static bfd_boolean
7fa3d080
BW
969elf_xtensa_check_relocs (bfd *abfd,
970 struct bfd_link_info *info,
971 asection *sec,
972 const Elf_Internal_Rela *relocs)
e0001a05 973{
f0e6fdb2 974 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
975 Elf_Internal_Shdr *symtab_hdr;
976 struct elf_link_hash_entry **sym_hashes;
977 const Elf_Internal_Rela *rel;
978 const Elf_Internal_Rela *rel_end;
e0001a05 979
28dbbc02 980 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
e0001a05
NC
981 return TRUE;
982
28dbbc02
BW
983 BFD_ASSERT (is_xtensa_elf (abfd));
984
f0e6fdb2 985 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
986 if (htab == NULL)
987 return FALSE;
988
e0001a05
NC
989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
990 sym_hashes = elf_sym_hashes (abfd);
991
e0001a05
NC
992 rel_end = relocs + sec->reloc_count;
993 for (rel = relocs; rel < rel_end; rel++)
994 {
995 unsigned int r_type;
996 unsigned long r_symndx;
28dbbc02
BW
997 struct elf_link_hash_entry *h = NULL;
998 struct elf_xtensa_link_hash_entry *eh;
999 int tls_type, old_tls_type;
1000 bfd_boolean is_got = FALSE;
1001 bfd_boolean is_plt = FALSE;
1002 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1003
1004 r_symndx = ELF32_R_SYM (rel->r_info);
1005 r_type = ELF32_R_TYPE (rel->r_info);
1006
1007 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1008 {
d003868e
AM
1009 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1010 abfd, r_symndx);
e0001a05
NC
1011 return FALSE;
1012 }
1013
28dbbc02 1014 if (r_symndx >= symtab_hdr->sh_info)
e0001a05
NC
1015 {
1016 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1017 while (h->root.type == bfd_link_hash_indirect
1018 || h->root.type == bfd_link_hash_warning)
1019 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1020 }
28dbbc02 1021 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1022
1023 switch (r_type)
1024 {
28dbbc02
BW
1025 case R_XTENSA_TLSDESC_FN:
1026 if (info->shared)
1027 {
1028 tls_type = GOT_TLS_GD;
1029 is_got = TRUE;
1030 is_tlsfunc = TRUE;
1031 }
1032 else
1033 tls_type = GOT_TLS_IE;
1034 break;
e0001a05 1035
28dbbc02
BW
1036 case R_XTENSA_TLSDESC_ARG:
1037 if (info->shared)
e0001a05 1038 {
28dbbc02
BW
1039 tls_type = GOT_TLS_GD;
1040 is_got = TRUE;
1041 }
1042 else
1043 {
1044 tls_type = GOT_TLS_IE;
1045 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1046 is_got = TRUE;
e0001a05
NC
1047 }
1048 break;
1049
28dbbc02
BW
1050 case R_XTENSA_TLS_DTPOFF:
1051 if (info->shared)
1052 tls_type = GOT_TLS_GD;
1053 else
1054 tls_type = GOT_TLS_IE;
1055 break;
1056
1057 case R_XTENSA_TLS_TPOFF:
1058 tls_type = GOT_TLS_IE;
1059 if (info->shared)
1060 info->flags |= DF_STATIC_TLS;
1061 if (info->shared || h)
1062 is_got = TRUE;
1063 break;
1064
1065 case R_XTENSA_32:
1066 tls_type = GOT_NORMAL;
1067 is_got = TRUE;
1068 break;
1069
e0001a05 1070 case R_XTENSA_PLT:
28dbbc02
BW
1071 tls_type = GOT_NORMAL;
1072 is_plt = TRUE;
1073 break;
e0001a05 1074
28dbbc02
BW
1075 case R_XTENSA_GNU_VTINHERIT:
1076 /* This relocation describes the C++ object vtable hierarchy.
1077 Reconstruct it for later use during GC. */
1078 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1079 return FALSE;
1080 continue;
1081
1082 case R_XTENSA_GNU_VTENTRY:
1083 /* This relocation describes which C++ vtable entries are actually
1084 used. Record for later use during GC. */
1085 BFD_ASSERT (h != NULL);
1086 if (h != NULL
1087 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1088 return FALSE;
1089 continue;
1090
1091 default:
1092 /* Nothing to do for any other relocations. */
1093 continue;
1094 }
1095
1096 if (h)
1097 {
1098 if (is_plt)
e0001a05 1099 {
b45329f9
BW
1100 if (h->plt.refcount <= 0)
1101 {
1102 h->needs_plt = 1;
1103 h->plt.refcount = 1;
1104 }
1105 else
1106 h->plt.refcount += 1;
e0001a05
NC
1107
1108 /* Keep track of the total PLT relocation count even if we
1109 don't yet know whether the dynamic sections will be
1110 created. */
f0e6fdb2 1111 htab->plt_reloc_count += 1;
e0001a05
NC
1112
1113 if (elf_hash_table (info)->dynamic_sections_created)
1114 {
f0e6fdb2 1115 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1116 return FALSE;
1117 }
1118 }
28dbbc02 1119 else if (is_got)
b45329f9
BW
1120 {
1121 if (h->got.refcount <= 0)
1122 h->got.refcount = 1;
1123 else
1124 h->got.refcount += 1;
1125 }
28dbbc02
BW
1126
1127 if (is_tlsfunc)
1128 eh->tlsfunc_refcount += 1;
e0001a05 1129
28dbbc02
BW
1130 old_tls_type = eh->tls_type;
1131 }
1132 else
1133 {
1134 /* Allocate storage the first time. */
1135 if (elf_local_got_refcounts (abfd) == NULL)
e0001a05 1136 {
28dbbc02
BW
1137 bfd_size_type size = symtab_hdr->sh_info;
1138 void *mem;
e0001a05 1139
28dbbc02
BW
1140 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1141 if (mem == NULL)
1142 return FALSE;
1143 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
e0001a05 1144
28dbbc02
BW
1145 mem = bfd_zalloc (abfd, size);
1146 if (mem == NULL)
1147 return FALSE;
1148 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1149
1150 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1151 if (mem == NULL)
1152 return FALSE;
1153 elf_xtensa_local_tlsfunc_refcounts (abfd)
1154 = (bfd_signed_vma *) mem;
e0001a05 1155 }
e0001a05 1156
28dbbc02
BW
1157 /* This is a global offset table entry for a local symbol. */
1158 if (is_got || is_plt)
1159 elf_local_got_refcounts (abfd) [r_symndx] += 1;
e0001a05 1160
28dbbc02
BW
1161 if (is_tlsfunc)
1162 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
e0001a05 1163
28dbbc02
BW
1164 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1165 }
1166
1167 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1168 tls_type |= old_tls_type;
1169 /* If a TLS symbol is accessed using IE at least once,
1170 there is no point to use a dynamic model for it. */
1171 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1172 && ((old_tls_type & GOT_TLS_GD) == 0
1173 || (tls_type & GOT_TLS_IE) == 0))
1174 {
1175 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1176 tls_type = old_tls_type;
1177 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1178 tls_type |= old_tls_type;
1179 else
1180 {
1181 (*_bfd_error_handler)
1182 (_("%B: `%s' accessed both as normal and thread local symbol"),
1183 abfd,
1184 h ? h->root.root.string : "<local>");
1185 return FALSE;
1186 }
1187 }
1188
1189 if (old_tls_type != tls_type)
1190 {
1191 if (eh)
1192 eh->tls_type = tls_type;
1193 else
1194 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
e0001a05
NC
1195 }
1196 }
1197
e0001a05
NC
1198 return TRUE;
1199}
1200
1201
95147441
BW
1202static void
1203elf_xtensa_make_sym_local (struct bfd_link_info *info,
1204 struct elf_link_hash_entry *h)
1205{
1206 if (info->shared)
1207 {
1208 if (h->plt.refcount > 0)
1209 {
1210 /* For shared objects, there's no need for PLT entries for local
1211 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1212 if (h->got.refcount < 0)
1213 h->got.refcount = 0;
1214 h->got.refcount += h->plt.refcount;
1215 h->plt.refcount = 0;
1216 }
1217 }
1218 else
1219 {
1220 /* Don't need any dynamic relocations at all. */
1221 h->plt.refcount = 0;
1222 h->got.refcount = 0;
1223 }
1224}
1225
1226
1227static void
1228elf_xtensa_hide_symbol (struct bfd_link_info *info,
1229 struct elf_link_hash_entry *h,
1230 bfd_boolean force_local)
1231{
1232 /* For a shared link, move the plt refcount to the got refcount to leave
1233 space for RELATIVE relocs. */
1234 elf_xtensa_make_sym_local (info, h);
1235
1236 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1237}
1238
1239
e0001a05
NC
1240/* Return the section that should be marked against GC for a given
1241 relocation. */
1242
1243static asection *
7fa3d080 1244elf_xtensa_gc_mark_hook (asection *sec,
07adf181 1245 struct bfd_link_info *info,
7fa3d080
BW
1246 Elf_Internal_Rela *rel,
1247 struct elf_link_hash_entry *h,
1248 Elf_Internal_Sym *sym)
e0001a05 1249{
e1e5c0b5
BW
1250 /* Property sections are marked "KEEP" in the linker scripts, but they
1251 should not cause other sections to be marked. (This approach relies
1252 on elf_xtensa_discard_info to remove property table entries that
1253 describe discarded sections. Alternatively, it might be more
1254 efficient to avoid using "KEEP" in the linker scripts and instead use
1255 the gc_mark_extra_sections hook to mark only the property sections
1256 that describe marked sections. That alternative does not work well
1257 with the current property table sections, which do not correspond
1258 one-to-one with the sections they describe, but that should be fixed
1259 someday.) */
1260 if (xtensa_is_property_section (sec))
1261 return NULL;
1262
07adf181
AM
1263 if (h != NULL)
1264 switch (ELF32_R_TYPE (rel->r_info))
1265 {
1266 case R_XTENSA_GNU_VTINHERIT:
1267 case R_XTENSA_GNU_VTENTRY:
1268 return NULL;
1269 }
1270
1271 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
e0001a05
NC
1272}
1273
7fa3d080 1274
e0001a05
NC
1275/* Update the GOT & PLT entry reference counts
1276 for the section being removed. */
1277
1278static bfd_boolean
7fa3d080 1279elf_xtensa_gc_sweep_hook (bfd *abfd,
28dbbc02 1280 struct bfd_link_info *info,
7fa3d080
BW
1281 asection *sec,
1282 const Elf_Internal_Rela *relocs)
e0001a05
NC
1283{
1284 Elf_Internal_Shdr *symtab_hdr;
1285 struct elf_link_hash_entry **sym_hashes;
e0001a05 1286 const Elf_Internal_Rela *rel, *relend;
28dbbc02
BW
1287 struct elf_xtensa_link_hash_table *htab;
1288
1289 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1290 if (htab == NULL)
1291 return FALSE;
e0001a05 1292
7dda2462
TG
1293 if (info->relocatable)
1294 return TRUE;
1295
e0001a05
NC
1296 if ((sec->flags & SEC_ALLOC) == 0)
1297 return TRUE;
1298
1299 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1300 sym_hashes = elf_sym_hashes (abfd);
e0001a05
NC
1301
1302 relend = relocs + sec->reloc_count;
1303 for (rel = relocs; rel < relend; rel++)
1304 {
1305 unsigned long r_symndx;
1306 unsigned int r_type;
1307 struct elf_link_hash_entry *h = NULL;
28dbbc02
BW
1308 struct elf_xtensa_link_hash_entry *eh;
1309 bfd_boolean is_got = FALSE;
1310 bfd_boolean is_plt = FALSE;
1311 bfd_boolean is_tlsfunc = FALSE;
e0001a05
NC
1312
1313 r_symndx = ELF32_R_SYM (rel->r_info);
1314 if (r_symndx >= symtab_hdr->sh_info)
3eb128b2
AM
1315 {
1316 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1317 while (h->root.type == bfd_link_hash_indirect
1318 || h->root.type == bfd_link_hash_warning)
1319 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1320 }
28dbbc02 1321 eh = elf_xtensa_hash_entry (h);
e0001a05
NC
1322
1323 r_type = ELF32_R_TYPE (rel->r_info);
1324 switch (r_type)
1325 {
28dbbc02
BW
1326 case R_XTENSA_TLSDESC_FN:
1327 if (info->shared)
1328 {
1329 is_got = TRUE;
1330 is_tlsfunc = TRUE;
1331 }
e0001a05
NC
1332 break;
1333
28dbbc02
BW
1334 case R_XTENSA_TLSDESC_ARG:
1335 if (info->shared)
1336 is_got = TRUE;
1337 else
1338 {
1339 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1340 is_got = TRUE;
1341 }
e0001a05
NC
1342 break;
1343
28dbbc02
BW
1344 case R_XTENSA_TLS_TPOFF:
1345 if (info->shared || h)
1346 is_got = TRUE;
e0001a05
NC
1347 break;
1348
28dbbc02
BW
1349 case R_XTENSA_32:
1350 is_got = TRUE;
e0001a05 1351 break;
28dbbc02
BW
1352
1353 case R_XTENSA_PLT:
1354 is_plt = TRUE;
1355 break;
1356
1357 default:
1358 continue;
1359 }
1360
1361 if (h)
1362 {
1363 if (is_plt)
1364 {
1365 if (h->plt.refcount > 0)
1366 h->plt.refcount--;
1367 }
1368 else if (is_got)
1369 {
1370 if (h->got.refcount > 0)
1371 h->got.refcount--;
1372 }
1373 if (is_tlsfunc)
1374 {
1375 if (eh->tlsfunc_refcount > 0)
1376 eh->tlsfunc_refcount--;
1377 }
1378 }
1379 else
1380 {
1381 if (is_got || is_plt)
1382 {
1383 bfd_signed_vma *got_refcount
1384 = &elf_local_got_refcounts (abfd) [r_symndx];
1385 if (*got_refcount > 0)
1386 *got_refcount -= 1;
1387 }
1388 if (is_tlsfunc)
1389 {
1390 bfd_signed_vma *tlsfunc_refcount
1391 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1392 if (*tlsfunc_refcount > 0)
1393 *tlsfunc_refcount -= 1;
1394 }
e0001a05
NC
1395 }
1396 }
1397
1398 return TRUE;
1399}
1400
1401
1402/* Create all the dynamic sections. */
1403
1404static bfd_boolean
7fa3d080 1405elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
e0001a05 1406{
f0e6fdb2 1407 struct elf_xtensa_link_hash_table *htab;
e901de89 1408 flagword flags, noalloc_flags;
f0e6fdb2
BW
1409
1410 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1411 if (htab == NULL)
1412 return FALSE;
e0001a05
NC
1413
1414 /* First do all the standard stuff. */
1415 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1416 return FALSE;
f0e6fdb2
BW
1417 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1418 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1419 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1420 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
64e77c6d 1421 htab->srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
e0001a05
NC
1422
1423 /* Create any extra PLT sections in case check_relocs has already
1424 been called on all the non-dynamic input files. */
f0e6fdb2 1425 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
e0001a05
NC
1426 return FALSE;
1427
e901de89
BW
1428 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1429 | SEC_LINKER_CREATED | SEC_READONLY);
1430 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
e0001a05
NC
1431
1432 /* Mark the ".got.plt" section READONLY. */
f0e6fdb2
BW
1433 if (htab->sgotplt == NULL
1434 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
e0001a05
NC
1435 return FALSE;
1436
e901de89 1437 /* Create ".got.loc" (literal tables for use by dynamic linker). */
f0e6fdb2
BW
1438 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1439 if (htab->sgotloc == NULL
1440 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
e901de89
BW
1441 return FALSE;
1442
e0001a05 1443 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
f0e6fdb2
BW
1444 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1445 noalloc_flags);
1446 if (htab->spltlittbl == NULL
1447 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
e0001a05
NC
1448 return FALSE;
1449
1450 return TRUE;
1451}
1452
1453
1454static bfd_boolean
f0e6fdb2 1455add_extra_plt_sections (struct bfd_link_info *info, int count)
e0001a05 1456{
f0e6fdb2 1457 bfd *dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
1458 int chunk;
1459
1460 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1461 ".got.plt" sections. */
1462 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1463 {
1464 char *sname;
1465 flagword flags;
1466 asection *s;
1467
1468 /* Stop when we find a section has already been created. */
f0e6fdb2 1469 if (elf_xtensa_get_plt_section (info, chunk))
e0001a05
NC
1470 break;
1471
1472 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1473 | SEC_LINKER_CREATED | SEC_READONLY);
1474
1475 sname = (char *) bfd_malloc (10);
1476 sprintf (sname, ".plt.%u", chunk);
ba05963f 1477 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
e0001a05 1478 if (s == NULL
e0001a05
NC
1479 || ! bfd_set_section_alignment (dynobj, s, 2))
1480 return FALSE;
1481
1482 sname = (char *) bfd_malloc (14);
1483 sprintf (sname, ".got.plt.%u", chunk);
3496cb2a 1484 s = bfd_make_section_with_flags (dynobj, sname, flags);
e0001a05 1485 if (s == NULL
e0001a05
NC
1486 || ! bfd_set_section_alignment (dynobj, s, 2))
1487 return FALSE;
1488 }
1489
1490 return TRUE;
1491}
1492
1493
1494/* Adjust a symbol defined by a dynamic object and referenced by a
1495 regular object. The current definition is in some section of the
1496 dynamic object, but we're not including those sections. We have to
1497 change the definition to something the rest of the link can
1498 understand. */
1499
1500static bfd_boolean
7fa3d080
BW
1501elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1502 struct elf_link_hash_entry *h)
e0001a05
NC
1503{
1504 /* If this is a weak symbol, and there is a real definition, the
1505 processor independent code will have arranged for us to see the
1506 real definition first, and we can just use the same value. */
7fa3d080 1507 if (h->u.weakdef)
e0001a05 1508 {
f6e332e6
AM
1509 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1510 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1511 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1512 h->root.u.def.value = h->u.weakdef->root.u.def.value;
e0001a05
NC
1513 return TRUE;
1514 }
1515
1516 /* This is a reference to a symbol defined by a dynamic object. The
1517 reference must go through the GOT, so there's no need for COPY relocs,
1518 .dynbss, etc. */
1519
1520 return TRUE;
1521}
1522
1523
e0001a05 1524static bfd_boolean
f1ab2340 1525elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
e0001a05 1526{
f1ab2340
BW
1527 struct bfd_link_info *info;
1528 struct elf_xtensa_link_hash_table *htab;
28dbbc02 1529 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
e0001a05 1530
f1ab2340
BW
1531 if (h->root.type == bfd_link_hash_indirect)
1532 return TRUE;
e0001a05
NC
1533
1534 if (h->root.type == bfd_link_hash_warning)
1535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1536
f1ab2340
BW
1537 info = (struct bfd_link_info *) arg;
1538 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1539 if (htab == NULL)
1540 return FALSE;
e0001a05 1541
28dbbc02
BW
1542 /* If we saw any use of an IE model for this symbol, we can then optimize
1543 away GOT entries for any TLSDESC_FN relocs. */
1544 if ((eh->tls_type & GOT_TLS_IE) != 0)
1545 {
1546 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1547 h->got.refcount -= eh->tlsfunc_refcount;
1548 }
e0001a05 1549
28dbbc02 1550 if (! elf_xtensa_dynamic_symbol_p (h, info))
95147441 1551 elf_xtensa_make_sym_local (info, h);
e0001a05 1552
f1ab2340
BW
1553 if (h->plt.refcount > 0)
1554 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1555
1556 if (h->got.refcount > 0)
f1ab2340 1557 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
e0001a05
NC
1558
1559 return TRUE;
1560}
1561
1562
1563static void
f0e6fdb2 1564elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
e0001a05 1565{
f0e6fdb2 1566 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
1567 bfd *i;
1568
f0e6fdb2 1569 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1570 if (htab == NULL)
1571 return;
f0e6fdb2 1572
e0001a05
NC
1573 for (i = info->input_bfds; i; i = i->link_next)
1574 {
1575 bfd_signed_vma *local_got_refcounts;
1576 bfd_size_type j, cnt;
1577 Elf_Internal_Shdr *symtab_hdr;
1578
1579 local_got_refcounts = elf_local_got_refcounts (i);
1580 if (!local_got_refcounts)
1581 continue;
1582
1583 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1584 cnt = symtab_hdr->sh_info;
1585
1586 for (j = 0; j < cnt; ++j)
1587 {
28dbbc02
BW
1588 /* If we saw any use of an IE model for this symbol, we can
1589 then optimize away GOT entries for any TLSDESC_FN relocs. */
1590 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1591 {
1592 bfd_signed_vma *tlsfunc_refcount
1593 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1594 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1595 local_got_refcounts[j] -= *tlsfunc_refcount;
1596 }
1597
e0001a05 1598 if (local_got_refcounts[j] > 0)
f0e6fdb2
BW
1599 htab->srelgot->size += (local_got_refcounts[j]
1600 * sizeof (Elf32_External_Rela));
e0001a05
NC
1601 }
1602 }
1603}
1604
1605
1606/* Set the sizes of the dynamic sections. */
1607
1608static bfd_boolean
7fa3d080
BW
1609elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1610 struct bfd_link_info *info)
e0001a05 1611{
f0e6fdb2 1612 struct elf_xtensa_link_hash_table *htab;
e901de89
BW
1613 bfd *dynobj, *abfd;
1614 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
e0001a05
NC
1615 bfd_boolean relplt, relgot;
1616 int plt_entries, plt_chunks, chunk;
1617
1618 plt_entries = 0;
1619 plt_chunks = 0;
e0001a05 1620
f0e6fdb2 1621 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1622 if (htab == NULL)
1623 return FALSE;
1624
e0001a05
NC
1625 dynobj = elf_hash_table (info)->dynobj;
1626 if (dynobj == NULL)
1627 abort ();
f0e6fdb2
BW
1628 srelgot = htab->srelgot;
1629 srelplt = htab->srelplt;
e0001a05
NC
1630
1631 if (elf_hash_table (info)->dynamic_sections_created)
1632 {
f0e6fdb2
BW
1633 BFD_ASSERT (htab->srelgot != NULL
1634 && htab->srelplt != NULL
1635 && htab->sgot != NULL
1636 && htab->spltlittbl != NULL
1637 && htab->sgotloc != NULL);
1638
e0001a05 1639 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 1640 if (info->executable)
e0001a05
NC
1641 {
1642 s = bfd_get_section_by_name (dynobj, ".interp");
1643 if (s == NULL)
1644 abort ();
eea6121a 1645 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
e0001a05
NC
1646 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1647 }
1648
1649 /* Allocate room for one word in ".got". */
f0e6fdb2 1650 htab->sgot->size = 4;
e0001a05 1651
f1ab2340
BW
1652 /* Allocate space in ".rela.got" for literals that reference global
1653 symbols and space in ".rela.plt" for literals that have PLT
1654 entries. */
e0001a05 1655 elf_link_hash_traverse (elf_hash_table (info),
f1ab2340 1656 elf_xtensa_allocate_dynrelocs,
7fa3d080 1657 (void *) info);
e0001a05 1658
e0001a05
NC
1659 /* If we are generating a shared object, we also need space in
1660 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1661 reference local symbols. */
1662 if (info->shared)
f0e6fdb2 1663 elf_xtensa_allocate_local_got_size (info);
e0001a05 1664
e0001a05
NC
1665 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1666 each PLT entry, we need the PLT code plus a 4-byte literal.
1667 For each chunk of ".plt", we also need two more 4-byte
1668 literals, two corresponding entries in ".rela.got", and an
1669 8-byte entry in ".xt.lit.plt". */
f0e6fdb2 1670 spltlittbl = htab->spltlittbl;
eea6121a 1671 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
1672 plt_chunks =
1673 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1674
1675 /* Iterate over all the PLT chunks, including any extra sections
1676 created earlier because the initial count of PLT relocations
1677 was an overestimate. */
1678 for (chunk = 0;
f0e6fdb2 1679 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
e0001a05
NC
1680 chunk++)
1681 {
1682 int chunk_entries;
1683
f0e6fdb2
BW
1684 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1685 BFD_ASSERT (sgotplt != NULL);
e0001a05
NC
1686
1687 if (chunk < plt_chunks - 1)
1688 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1689 else if (chunk == plt_chunks - 1)
1690 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1691 else
1692 chunk_entries = 0;
1693
1694 if (chunk_entries != 0)
1695 {
eea6121a
AM
1696 sgotplt->size = 4 * (chunk_entries + 2);
1697 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1698 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1699 spltlittbl->size += 8;
e0001a05
NC
1700 }
1701 else
1702 {
eea6121a
AM
1703 sgotplt->size = 0;
1704 splt->size = 0;
e0001a05
NC
1705 }
1706 }
e901de89
BW
1707
1708 /* Allocate space in ".got.loc" to match the total size of all the
1709 literal tables. */
f0e6fdb2 1710 sgotloc = htab->sgotloc;
eea6121a 1711 sgotloc->size = spltlittbl->size;
e901de89
BW
1712 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1713 {
1714 if (abfd->flags & DYNAMIC)
1715 continue;
1716 for (s = abfd->sections; s != NULL; s = s->next)
1717 {
b536dc1e
BW
1718 if (! elf_discarded_section (s)
1719 && xtensa_is_littable_section (s)
1720 && s != spltlittbl)
eea6121a 1721 sgotloc->size += s->size;
e901de89
BW
1722 }
1723 }
e0001a05
NC
1724 }
1725
1726 /* Allocate memory for dynamic sections. */
1727 relplt = FALSE;
1728 relgot = FALSE;
1729 for (s = dynobj->sections; s != NULL; s = s->next)
1730 {
1731 const char *name;
e0001a05
NC
1732
1733 if ((s->flags & SEC_LINKER_CREATED) == 0)
1734 continue;
1735
1736 /* It's OK to base decisions on the section name, because none
1737 of the dynobj section names depend upon the input files. */
1738 name = bfd_get_section_name (dynobj, s);
1739
0112cd26 1740 if (CONST_STRNEQ (name, ".rela"))
e0001a05 1741 {
c456f082 1742 if (s->size != 0)
e0001a05 1743 {
c456f082
AM
1744 if (strcmp (name, ".rela.plt") == 0)
1745 relplt = TRUE;
1746 else if (strcmp (name, ".rela.got") == 0)
1747 relgot = TRUE;
1748
1749 /* We use the reloc_count field as a counter if we need
1750 to copy relocs into the output file. */
1751 s->reloc_count = 0;
e0001a05
NC
1752 }
1753 }
0112cd26
NC
1754 else if (! CONST_STRNEQ (name, ".plt.")
1755 && ! CONST_STRNEQ (name, ".got.plt.")
c456f082 1756 && strcmp (name, ".got") != 0
e0001a05
NC
1757 && strcmp (name, ".plt") != 0
1758 && strcmp (name, ".got.plt") != 0
e901de89
BW
1759 && strcmp (name, ".xt.lit.plt") != 0
1760 && strcmp (name, ".got.loc") != 0)
e0001a05
NC
1761 {
1762 /* It's not one of our sections, so don't allocate space. */
1763 continue;
1764 }
1765
c456f082
AM
1766 if (s->size == 0)
1767 {
1768 /* If we don't need this section, strip it from the output
1769 file. We must create the ".plt*" and ".got.plt*"
1770 sections in create_dynamic_sections and/or check_relocs
1771 based on a conservative estimate of the PLT relocation
1772 count, because the sections must be created before the
1773 linker maps input sections to output sections. The
1774 linker does that before size_dynamic_sections, where we
1775 compute the exact size of the PLT, so there may be more
1776 of these sections than are actually needed. */
1777 s->flags |= SEC_EXCLUDE;
1778 }
1779 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
e0001a05
NC
1780 {
1781 /* Allocate memory for the section contents. */
eea6121a 1782 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
c456f082 1783 if (s->contents == NULL)
e0001a05
NC
1784 return FALSE;
1785 }
1786 }
1787
1788 if (elf_hash_table (info)->dynamic_sections_created)
1789 {
1790 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1791 known until finish_dynamic_sections, but we need to get the relocs
1792 in place before they are sorted. */
e0001a05
NC
1793 for (chunk = 0; chunk < plt_chunks; chunk++)
1794 {
1795 Elf_Internal_Rela irela;
1796 bfd_byte *loc;
1797
1798 irela.r_offset = 0;
1799 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1800 irela.r_addend = 0;
1801
1802 loc = (srelgot->contents
1803 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1804 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1805 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1806 loc + sizeof (Elf32_External_Rela));
1807 srelgot->reloc_count += 2;
1808 }
1809
1810 /* Add some entries to the .dynamic section. We fill in the
1811 values later, in elf_xtensa_finish_dynamic_sections, but we
1812 must add the entries now so that we get the correct size for
1813 the .dynamic section. The DT_DEBUG entry is filled in by the
1814 dynamic linker and used by the debugger. */
1815#define add_dynamic_entry(TAG, VAL) \
5a580b3a 1816 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
e0001a05 1817
ba05963f 1818 if (info->executable)
e0001a05
NC
1819 {
1820 if (!add_dynamic_entry (DT_DEBUG, 0))
1821 return FALSE;
1822 }
1823
1824 if (relplt)
1825 {
c243ad3b 1826 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
e0001a05
NC
1827 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1828 || !add_dynamic_entry (DT_JMPREL, 0))
1829 return FALSE;
1830 }
1831
1832 if (relgot)
1833 {
1834 if (!add_dynamic_entry (DT_RELA, 0)
1835 || !add_dynamic_entry (DT_RELASZ, 0)
1836 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1837 return FALSE;
1838 }
1839
c243ad3b
BW
1840 if (!add_dynamic_entry (DT_PLTGOT, 0)
1841 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
e0001a05
NC
1842 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1843 return FALSE;
1844 }
1845#undef add_dynamic_entry
1846
1847 return TRUE;
1848}
1849
28dbbc02
BW
1850static bfd_boolean
1851elf_xtensa_always_size_sections (bfd *output_bfd,
1852 struct bfd_link_info *info)
1853{
1854 struct elf_xtensa_link_hash_table *htab;
1855 asection *tls_sec;
1856
1857 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
1858 if (htab == NULL)
1859 return FALSE;
1860
28dbbc02
BW
1861 tls_sec = htab->elf.tls_sec;
1862
1863 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1864 {
1865 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1866 struct bfd_link_hash_entry *bh = &tlsbase->root;
1867 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1868
1869 tlsbase->type = STT_TLS;
1870 if (!(_bfd_generic_link_add_one_symbol
1871 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1872 tls_sec, 0, NULL, FALSE,
1873 bed->collect, &bh)))
1874 return FALSE;
1875 tlsbase->def_regular = 1;
1876 tlsbase->other = STV_HIDDEN;
1877 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1878 }
1879
1880 return TRUE;
1881}
1882
e0001a05 1883\f
28dbbc02
BW
1884/* Return the base VMA address which should be subtracted from real addresses
1885 when resolving @dtpoff relocation.
1886 This is PT_TLS segment p_vaddr. */
1887
1888static bfd_vma
1889dtpoff_base (struct bfd_link_info *info)
1890{
1891 /* If tls_sec is NULL, we should have signalled an error already. */
1892 if (elf_hash_table (info)->tls_sec == NULL)
1893 return 0;
1894 return elf_hash_table (info)->tls_sec->vma;
1895}
1896
1897/* Return the relocation value for @tpoff relocation
1898 if STT_TLS virtual address is ADDRESS. */
1899
1900static bfd_vma
1901tpoff (struct bfd_link_info *info, bfd_vma address)
1902{
1903 struct elf_link_hash_table *htab = elf_hash_table (info);
1904 bfd_vma base;
1905
1906 /* If tls_sec is NULL, we should have signalled an error already. */
1907 if (htab->tls_sec == NULL)
1908 return 0;
1909 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1910 return address - htab->tls_sec->vma + base;
1911}
1912
e0001a05
NC
1913/* Perform the specified relocation. The instruction at (contents + address)
1914 is modified to set one operand to represent the value in "relocation". The
1915 operand position is determined by the relocation type recorded in the
1916 howto. */
1917
1918#define CALL_SEGMENT_BITS (30)
7fa3d080 1919#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
e0001a05
NC
1920
1921static bfd_reloc_status_type
7fa3d080
BW
1922elf_xtensa_do_reloc (reloc_howto_type *howto,
1923 bfd *abfd,
1924 asection *input_section,
1925 bfd_vma relocation,
1926 bfd_byte *contents,
1927 bfd_vma address,
1928 bfd_boolean is_weak_undef,
1929 char **error_message)
e0001a05 1930{
43cd72b9 1931 xtensa_format fmt;
e0001a05 1932 xtensa_opcode opcode;
e0001a05 1933 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
1934 static xtensa_insnbuf ibuff = NULL;
1935 static xtensa_insnbuf sbuff = NULL;
1bbb5f21 1936 bfd_vma self_address;
43cd72b9
BW
1937 bfd_size_type input_size;
1938 int opnd, slot;
e0001a05
NC
1939 uint32 newval;
1940
43cd72b9
BW
1941 if (!ibuff)
1942 {
1943 ibuff = xtensa_insnbuf_alloc (isa);
1944 sbuff = xtensa_insnbuf_alloc (isa);
1945 }
1946
1947 input_size = bfd_get_section_limit (abfd, input_section);
1948
1bbb5f21
BW
1949 /* Calculate the PC address for this instruction. */
1950 self_address = (input_section->output_section->vma
1951 + input_section->output_offset
1952 + address);
1953
e0001a05
NC
1954 switch (howto->type)
1955 {
1956 case R_XTENSA_NONE:
43cd72b9
BW
1957 case R_XTENSA_DIFF8:
1958 case R_XTENSA_DIFF16:
1959 case R_XTENSA_DIFF32:
28dbbc02
BW
1960 case R_XTENSA_TLS_FUNC:
1961 case R_XTENSA_TLS_ARG:
1962 case R_XTENSA_TLS_CALL:
e0001a05
NC
1963 return bfd_reloc_ok;
1964
1965 case R_XTENSA_ASM_EXPAND:
1966 if (!is_weak_undef)
1967 {
1968 /* Check for windowed CALL across a 1GB boundary. */
91d6fa6a
NC
1969 opcode = get_expanded_call_opcode (contents + address,
1970 input_size - address, 0);
e0001a05
NC
1971 if (is_windowed_call_opcode (opcode))
1972 {
43cd72b9
BW
1973 if ((self_address >> CALL_SEGMENT_BITS)
1974 != (relocation >> CALL_SEGMENT_BITS))
e0001a05
NC
1975 {
1976 *error_message = "windowed longcall crosses 1GB boundary; "
1977 "return may fail";
1978 return bfd_reloc_dangerous;
1979 }
1980 }
1981 }
1982 return bfd_reloc_ok;
1983
1984 case R_XTENSA_ASM_SIMPLIFY:
43cd72b9 1985 {
e0001a05 1986 /* Convert the L32R/CALLX to CALL. */
43cd72b9
BW
1987 bfd_reloc_status_type retval =
1988 elf_xtensa_do_asm_simplify (contents, address, input_size,
1989 error_message);
e0001a05 1990 if (retval != bfd_reloc_ok)
43cd72b9 1991 return bfd_reloc_dangerous;
e0001a05
NC
1992
1993 /* The CALL needs to be relocated. Continue below for that part. */
1994 address += 3;
c46082c8 1995 self_address += 3;
43cd72b9 1996 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
e0001a05
NC
1997 }
1998 break;
1999
2000 case R_XTENSA_32:
e0001a05
NC
2001 {
2002 bfd_vma x;
2003 x = bfd_get_32 (abfd, contents + address);
2004 x = x + relocation;
2005 bfd_put_32 (abfd, x, contents + address);
2006 }
2007 return bfd_reloc_ok;
1bbb5f21
BW
2008
2009 case R_XTENSA_32_PCREL:
2010 bfd_put_32 (abfd, relocation - self_address, contents + address);
2011 return bfd_reloc_ok;
28dbbc02
BW
2012
2013 case R_XTENSA_PLT:
2014 case R_XTENSA_TLSDESC_FN:
2015 case R_XTENSA_TLSDESC_ARG:
2016 case R_XTENSA_TLS_DTPOFF:
2017 case R_XTENSA_TLS_TPOFF:
2018 bfd_put_32 (abfd, relocation, contents + address);
2019 return bfd_reloc_ok;
e0001a05
NC
2020 }
2021
43cd72b9
BW
2022 /* Only instruction slot-specific relocations handled below.... */
2023 slot = get_relocation_slot (howto->type);
2024 if (slot == XTENSA_UNDEFINED)
e0001a05 2025 {
43cd72b9 2026 *error_message = "unexpected relocation";
e0001a05
NC
2027 return bfd_reloc_dangerous;
2028 }
2029
43cd72b9
BW
2030 /* Read the instruction into a buffer and decode the opcode. */
2031 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2032 input_size - address);
2033 fmt = xtensa_format_decode (isa, ibuff);
2034 if (fmt == XTENSA_UNDEFINED)
e0001a05 2035 {
43cd72b9 2036 *error_message = "cannot decode instruction format";
e0001a05
NC
2037 return bfd_reloc_dangerous;
2038 }
2039
43cd72b9 2040 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
e0001a05 2041
43cd72b9
BW
2042 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2043 if (opcode == XTENSA_UNDEFINED)
e0001a05 2044 {
43cd72b9 2045 *error_message = "cannot decode instruction opcode";
e0001a05
NC
2046 return bfd_reloc_dangerous;
2047 }
2048
43cd72b9
BW
2049 /* Check for opcode-specific "alternate" relocations. */
2050 if (is_alt_relocation (howto->type))
2051 {
2052 if (opcode == get_l32r_opcode ())
2053 {
2054 /* Handle the special-case of non-PC-relative L32R instructions. */
2055 bfd *output_bfd = input_section->output_section->owner;
2056 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2057 if (!lit4_sec)
2058 {
2059 *error_message = "relocation references missing .lit4 section";
2060 return bfd_reloc_dangerous;
2061 }
2062 self_address = ((lit4_sec->vma & ~0xfff)
2063 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2064 newval = relocation;
2065 opnd = 1;
2066 }
2067 else if (opcode == get_const16_opcode ())
2068 {
2069 /* ALT used for high 16 bits. */
2070 newval = relocation >> 16;
2071 opnd = 1;
2072 }
2073 else
2074 {
2075 /* No other "alternate" relocations currently defined. */
2076 *error_message = "unexpected relocation";
2077 return bfd_reloc_dangerous;
2078 }
2079 }
2080 else /* Not an "alternate" relocation.... */
2081 {
2082 if (opcode == get_const16_opcode ())
2083 {
2084 newval = relocation & 0xffff;
2085 opnd = 1;
2086 }
2087 else
2088 {
2089 /* ...normal PC-relative relocation.... */
2090
2091 /* Determine which operand is being relocated. */
2092 opnd = get_relocation_opnd (opcode, howto->type);
2093 if (opnd == XTENSA_UNDEFINED)
2094 {
2095 *error_message = "unexpected relocation";
2096 return bfd_reloc_dangerous;
2097 }
2098
2099 if (!howto->pc_relative)
2100 {
2101 *error_message = "expected PC-relative relocation";
2102 return bfd_reloc_dangerous;
2103 }
e0001a05 2104
43cd72b9
BW
2105 newval = relocation;
2106 }
2107 }
e0001a05 2108
43cd72b9
BW
2109 /* Apply the relocation. */
2110 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2111 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2112 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2113 sbuff, newval))
e0001a05 2114 {
2db662be
BW
2115 const char *opname = xtensa_opcode_name (isa, opcode);
2116 const char *msg;
2117
2118 msg = "cannot encode";
2119 if (is_direct_call_opcode (opcode))
2120 {
2121 if ((relocation & 0x3) != 0)
2122 msg = "misaligned call target";
2123 else
2124 msg = "call target out of range";
2125 }
2126 else if (opcode == get_l32r_opcode ())
2127 {
2128 if ((relocation & 0x3) != 0)
2129 msg = "misaligned literal target";
2130 else if (is_alt_relocation (howto->type))
2131 msg = "literal target out of range (too many literals)";
2132 else if (self_address > relocation)
2133 msg = "literal target out of range (try using text-section-literals)";
2134 else
2135 msg = "literal placed after use";
2136 }
2137
2138 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
e0001a05
NC
2139 return bfd_reloc_dangerous;
2140 }
2141
43cd72b9 2142 /* Check for calls across 1GB boundaries. */
e0001a05
NC
2143 if (is_direct_call_opcode (opcode)
2144 && is_windowed_call_opcode (opcode))
2145 {
43cd72b9
BW
2146 if ((self_address >> CALL_SEGMENT_BITS)
2147 != (relocation >> CALL_SEGMENT_BITS))
e0001a05 2148 {
43cd72b9
BW
2149 *error_message =
2150 "windowed call crosses 1GB boundary; return may fail";
e0001a05
NC
2151 return bfd_reloc_dangerous;
2152 }
2153 }
2154
43cd72b9
BW
2155 /* Write the modified instruction back out of the buffer. */
2156 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2157 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2158 input_size - address);
e0001a05
NC
2159 return bfd_reloc_ok;
2160}
2161
2162
2db662be 2163static char *
7fa3d080 2164vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
e0001a05
NC
2165{
2166 /* To reduce the size of the memory leak,
2167 we only use a single message buffer. */
2168 static bfd_size_type alloc_size = 0;
2169 static char *message = NULL;
2170 bfd_size_type orig_len, len = 0;
2171 bfd_boolean is_append;
2172
2173 VA_OPEN (ap, arglen);
2174 VA_FIXEDARG (ap, const char *, origmsg);
2175
2176 is_append = (origmsg == message);
2177
2178 orig_len = strlen (origmsg);
2179 len = orig_len + strlen (fmt) + arglen + 20;
2180 if (len > alloc_size)
2181 {
515ef31d 2182 message = (char *) bfd_realloc_or_free (message, len);
e0001a05
NC
2183 alloc_size = len;
2184 }
515ef31d
NC
2185 if (message != NULL)
2186 {
2187 if (!is_append)
2188 memcpy (message, origmsg, orig_len);
2189 vsprintf (message + orig_len, fmt, ap);
2190 }
e0001a05
NC
2191 VA_CLOSE (ap);
2192 return message;
2193}
2194
2195
e0001a05
NC
2196/* This function is registered as the "special_function" in the
2197 Xtensa howto for handling simplify operations.
2198 bfd_perform_relocation / bfd_install_relocation use it to
2199 perform (install) the specified relocation. Since this replaces the code
2200 in bfd_perform_relocation, it is basically an Xtensa-specific,
2201 stripped-down version of bfd_perform_relocation. */
2202
2203static bfd_reloc_status_type
7fa3d080
BW
2204bfd_elf_xtensa_reloc (bfd *abfd,
2205 arelent *reloc_entry,
2206 asymbol *symbol,
2207 void *data,
2208 asection *input_section,
2209 bfd *output_bfd,
2210 char **error_message)
e0001a05
NC
2211{
2212 bfd_vma relocation;
2213 bfd_reloc_status_type flag;
2214 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2215 bfd_vma output_base = 0;
2216 reloc_howto_type *howto = reloc_entry->howto;
2217 asection *reloc_target_output_section;
2218 bfd_boolean is_weak_undef;
2219
dd1a320b
BW
2220 if (!xtensa_default_isa)
2221 xtensa_default_isa = xtensa_isa_init (0, 0);
2222
1049f94e 2223 /* ELF relocs are against symbols. If we are producing relocatable
e0001a05
NC
2224 output, and the reloc is against an external symbol, the resulting
2225 reloc will also be against the same symbol. In such a case, we
2226 don't want to change anything about the way the reloc is handled,
2227 since it will all be done at final link time. This test is similar
2228 to what bfd_elf_generic_reloc does except that it lets relocs with
2229 howto->partial_inplace go through even if the addend is non-zero.
2230 (The real problem is that partial_inplace is set for XTENSA_32
2231 relocs to begin with, but that's a long story and there's little we
2232 can do about it now....) */
2233
7fa3d080 2234 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
e0001a05
NC
2235 {
2236 reloc_entry->address += input_section->output_offset;
2237 return bfd_reloc_ok;
2238 }
2239
2240 /* Is the address of the relocation really within the section? */
07515404 2241 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
e0001a05
NC
2242 return bfd_reloc_outofrange;
2243
4cc11e76 2244 /* Work out which section the relocation is targeted at and the
e0001a05
NC
2245 initial relocation command value. */
2246
2247 /* Get symbol value. (Common symbols are special.) */
2248 if (bfd_is_com_section (symbol->section))
2249 relocation = 0;
2250 else
2251 relocation = symbol->value;
2252
2253 reloc_target_output_section = symbol->section->output_section;
2254
2255 /* Convert input-section-relative symbol value to absolute. */
2256 if ((output_bfd && !howto->partial_inplace)
2257 || reloc_target_output_section == NULL)
2258 output_base = 0;
2259 else
2260 output_base = reloc_target_output_section->vma;
2261
2262 relocation += output_base + symbol->section->output_offset;
2263
2264 /* Add in supplied addend. */
2265 relocation += reloc_entry->addend;
2266
2267 /* Here the variable relocation holds the final address of the
2268 symbol we are relocating against, plus any addend. */
2269 if (output_bfd)
2270 {
2271 if (!howto->partial_inplace)
2272 {
2273 /* This is a partial relocation, and we want to apply the relocation
2274 to the reloc entry rather than the raw data. Everything except
2275 relocations against section symbols has already been handled
2276 above. */
43cd72b9 2277
e0001a05
NC
2278 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2279 reloc_entry->addend = relocation;
2280 reloc_entry->address += input_section->output_offset;
2281 return bfd_reloc_ok;
2282 }
2283 else
2284 {
2285 reloc_entry->address += input_section->output_offset;
2286 reloc_entry->addend = 0;
2287 }
2288 }
2289
2290 is_weak_undef = (bfd_is_und_section (symbol->section)
2291 && (symbol->flags & BSF_WEAK) != 0);
2292 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2293 (bfd_byte *) data, (bfd_vma) octets,
2294 is_weak_undef, error_message);
2295
2296 if (flag == bfd_reloc_dangerous)
2297 {
2298 /* Add the symbol name to the error message. */
2299 if (! *error_message)
2300 *error_message = "";
2301 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2302 strlen (symbol->name) + 17,
70961b9d
AM
2303 symbol->name,
2304 (unsigned long) reloc_entry->addend);
e0001a05
NC
2305 }
2306
2307 return flag;
2308}
2309
2310
2311/* Set up an entry in the procedure linkage table. */
2312
2313static bfd_vma
f0e6fdb2 2314elf_xtensa_create_plt_entry (struct bfd_link_info *info,
7fa3d080
BW
2315 bfd *output_bfd,
2316 unsigned reloc_index)
e0001a05
NC
2317{
2318 asection *splt, *sgotplt;
2319 bfd_vma plt_base, got_base;
2320 bfd_vma code_offset, lit_offset;
2321 int chunk;
2322
2323 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
2324 splt = elf_xtensa_get_plt_section (info, chunk);
2325 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
2326 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2327
2328 plt_base = splt->output_section->vma + splt->output_offset;
2329 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2330
2331 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2332 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2333
2334 /* Fill in the literal entry. This is the offset of the dynamic
2335 relocation entry. */
2336 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2337 sgotplt->contents + lit_offset);
2338
2339 /* Fill in the entry in the procedure linkage table. */
2340 memcpy (splt->contents + code_offset,
2341 (bfd_big_endian (output_bfd)
2342 ? elf_xtensa_be_plt_entry
2343 : elf_xtensa_le_plt_entry),
2344 PLT_ENTRY_SIZE);
2345 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2346 plt_base + code_offset + 3),
2347 splt->contents + code_offset + 4);
2348 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2349 plt_base + code_offset + 6),
2350 splt->contents + code_offset + 7);
2351 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2352 plt_base + code_offset + 9),
2353 splt->contents + code_offset + 10);
2354
2355 return plt_base + code_offset;
2356}
2357
2358
28dbbc02
BW
2359static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2360
2361static bfd_boolean
2362replace_tls_insn (Elf_Internal_Rela *rel,
2363 bfd *abfd,
2364 asection *input_section,
2365 bfd_byte *contents,
2366 bfd_boolean is_ld_model,
2367 char **error_message)
2368{
2369 static xtensa_insnbuf ibuff = NULL;
2370 static xtensa_insnbuf sbuff = NULL;
2371 xtensa_isa isa = xtensa_default_isa;
2372 xtensa_format fmt;
2373 xtensa_opcode old_op, new_op;
2374 bfd_size_type input_size;
2375 int r_type;
2376 unsigned dest_reg, src_reg;
2377
2378 if (ibuff == NULL)
2379 {
2380 ibuff = xtensa_insnbuf_alloc (isa);
2381 sbuff = xtensa_insnbuf_alloc (isa);
2382 }
2383
2384 input_size = bfd_get_section_limit (abfd, input_section);
2385
2386 /* Read the instruction into a buffer and decode the opcode. */
2387 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2388 input_size - rel->r_offset);
2389 fmt = xtensa_format_decode (isa, ibuff);
2390 if (fmt == XTENSA_UNDEFINED)
2391 {
2392 *error_message = "cannot decode instruction format";
2393 return FALSE;
2394 }
2395
2396 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2397 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2398
2399 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2400 if (old_op == XTENSA_UNDEFINED)
2401 {
2402 *error_message = "cannot decode instruction opcode";
2403 return FALSE;
2404 }
2405
2406 r_type = ELF32_R_TYPE (rel->r_info);
2407 switch (r_type)
2408 {
2409 case R_XTENSA_TLS_FUNC:
2410 case R_XTENSA_TLS_ARG:
2411 if (old_op != get_l32r_opcode ()
2412 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2413 sbuff, &dest_reg) != 0)
2414 {
2415 *error_message = "cannot extract L32R destination for TLS access";
2416 return FALSE;
2417 }
2418 break;
2419
2420 case R_XTENSA_TLS_CALL:
2421 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2422 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2423 sbuff, &src_reg) != 0)
2424 {
2425 *error_message = "cannot extract CALLXn operands for TLS access";
2426 return FALSE;
2427 }
2428 break;
2429
2430 default:
2431 abort ();
2432 }
2433
2434 if (is_ld_model)
2435 {
2436 switch (r_type)
2437 {
2438 case R_XTENSA_TLS_FUNC:
2439 case R_XTENSA_TLS_ARG:
2440 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2441 versions of Xtensa). */
2442 new_op = xtensa_opcode_lookup (isa, "nop");
2443 if (new_op == XTENSA_UNDEFINED)
2444 {
2445 new_op = xtensa_opcode_lookup (isa, "or");
2446 if (new_op == XTENSA_UNDEFINED
2447 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2448 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2449 sbuff, 1) != 0
2450 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2451 sbuff, 1) != 0
2452 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2453 sbuff, 1) != 0)
2454 {
2455 *error_message = "cannot encode OR for TLS access";
2456 return FALSE;
2457 }
2458 }
2459 else
2460 {
2461 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2462 {
2463 *error_message = "cannot encode NOP for TLS access";
2464 return FALSE;
2465 }
2466 }
2467 break;
2468
2469 case R_XTENSA_TLS_CALL:
2470 /* Read THREADPTR into the CALLX's return value register. */
2471 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2472 if (new_op == XTENSA_UNDEFINED
2473 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2474 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2475 sbuff, dest_reg + 2) != 0)
2476 {
2477 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2478 return FALSE;
2479 }
2480 break;
2481 }
2482 }
2483 else
2484 {
2485 switch (r_type)
2486 {
2487 case R_XTENSA_TLS_FUNC:
2488 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2489 if (new_op == XTENSA_UNDEFINED
2490 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2491 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2492 sbuff, dest_reg) != 0)
2493 {
2494 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2495 return FALSE;
2496 }
2497 break;
2498
2499 case R_XTENSA_TLS_ARG:
2500 /* Nothing to do. Keep the original L32R instruction. */
2501 return TRUE;
2502
2503 case R_XTENSA_TLS_CALL:
2504 /* Add the CALLX's src register (holding the THREADPTR value)
2505 to the first argument register (holding the offset) and put
2506 the result in the CALLX's return value register. */
2507 new_op = xtensa_opcode_lookup (isa, "add");
2508 if (new_op == XTENSA_UNDEFINED
2509 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2510 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2511 sbuff, dest_reg + 2) != 0
2512 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2513 sbuff, dest_reg + 2) != 0
2514 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2515 sbuff, src_reg) != 0)
2516 {
2517 *error_message = "cannot encode ADD for TLS access";
2518 return FALSE;
2519 }
2520 break;
2521 }
2522 }
2523
2524 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2525 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2526 input_size - rel->r_offset);
2527
2528 return TRUE;
2529}
2530
2531
2532#define IS_XTENSA_TLS_RELOC(R_TYPE) \
2533 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2534 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2535 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2536 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2537 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2538 || (R_TYPE) == R_XTENSA_TLS_ARG \
2539 || (R_TYPE) == R_XTENSA_TLS_CALL)
2540
e0001a05 2541/* Relocate an Xtensa ELF section. This is invoked by the linker for
1049f94e 2542 both relocatable and final links. */
e0001a05
NC
2543
2544static bfd_boolean
7fa3d080
BW
2545elf_xtensa_relocate_section (bfd *output_bfd,
2546 struct bfd_link_info *info,
2547 bfd *input_bfd,
2548 asection *input_section,
2549 bfd_byte *contents,
2550 Elf_Internal_Rela *relocs,
2551 Elf_Internal_Sym *local_syms,
2552 asection **local_sections)
e0001a05 2553{
f0e6fdb2 2554 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
2555 Elf_Internal_Shdr *symtab_hdr;
2556 Elf_Internal_Rela *rel;
2557 Elf_Internal_Rela *relend;
2558 struct elf_link_hash_entry **sym_hashes;
88d65ad6
BW
2559 property_table_entry *lit_table = 0;
2560 int ltblsize = 0;
28dbbc02 2561 char *local_got_tls_types;
e0001a05 2562 char *error_message = NULL;
43cd72b9 2563 bfd_size_type input_size;
28dbbc02 2564 int tls_type;
e0001a05 2565
43cd72b9
BW
2566 if (!xtensa_default_isa)
2567 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 2568
28dbbc02
BW
2569 BFD_ASSERT (is_xtensa_elf (input_bfd));
2570
f0e6fdb2 2571 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
2572 if (htab == NULL)
2573 return FALSE;
2574
e0001a05
NC
2575 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2576 sym_hashes = elf_sym_hashes (input_bfd);
28dbbc02 2577 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
e0001a05 2578
88d65ad6
BW
2579 if (elf_hash_table (info)->dynamic_sections_created)
2580 {
2581 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
43cd72b9
BW
2582 &lit_table, XTENSA_LIT_SEC_NAME,
2583 TRUE);
88d65ad6
BW
2584 if (ltblsize < 0)
2585 return FALSE;
2586 }
2587
43cd72b9
BW
2588 input_size = bfd_get_section_limit (input_bfd, input_section);
2589
e0001a05
NC
2590 rel = relocs;
2591 relend = relocs + input_section->reloc_count;
2592 for (; rel < relend; rel++)
2593 {
2594 int r_type;
2595 reloc_howto_type *howto;
2596 unsigned long r_symndx;
2597 struct elf_link_hash_entry *h;
2598 Elf_Internal_Sym *sym;
28dbbc02
BW
2599 char sym_type;
2600 const char *name;
e0001a05
NC
2601 asection *sec;
2602 bfd_vma relocation;
2603 bfd_reloc_status_type r;
2604 bfd_boolean is_weak_undef;
2605 bfd_boolean unresolved_reloc;
9b8c98a4 2606 bfd_boolean warned;
28dbbc02 2607 bfd_boolean dynamic_symbol;
e0001a05
NC
2608
2609 r_type = ELF32_R_TYPE (rel->r_info);
2610 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2611 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2612 continue;
2613
2614 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2615 {
2616 bfd_set_error (bfd_error_bad_value);
2617 return FALSE;
2618 }
2619 howto = &elf_howto_table[r_type];
2620
2621 r_symndx = ELF32_R_SYM (rel->r_info);
2622
ab96bf03
AM
2623 h = NULL;
2624 sym = NULL;
2625 sec = NULL;
2626 is_weak_undef = FALSE;
2627 unresolved_reloc = FALSE;
2628 warned = FALSE;
2629
2630 if (howto->partial_inplace && !info->relocatable)
2631 {
2632 /* Because R_XTENSA_32 was made partial_inplace to fix some
2633 problems with DWARF info in partial links, there may be
2634 an addend stored in the contents. Take it out of there
2635 and move it back into the addend field of the reloc. */
2636 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2637 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2638 }
2639
2640 if (r_symndx < symtab_hdr->sh_info)
2641 {
2642 sym = local_syms + r_symndx;
28dbbc02 2643 sym_type = ELF32_ST_TYPE (sym->st_info);
ab96bf03
AM
2644 sec = local_sections[r_symndx];
2645 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2646 }
2647 else
2648 {
2649 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2650 r_symndx, symtab_hdr, sym_hashes,
2651 h, sec, relocation,
2652 unresolved_reloc, warned);
2653
2654 if (relocation == 0
2655 && !unresolved_reloc
2656 && h->root.type == bfd_link_hash_undefweak)
2657 is_weak_undef = TRUE;
28dbbc02
BW
2658
2659 sym_type = h->type;
ab96bf03
AM
2660 }
2661
2662 if (sec != NULL && elf_discarded_section (sec))
e4067dbb
DJ
2663 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2664 rel, relend, howto, contents);
ab96bf03 2665
1049f94e 2666 if (info->relocatable)
e0001a05 2667 {
7aa09196
SA
2668 bfd_vma dest_addr;
2669 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2670
43cd72b9 2671 /* This is a relocatable link.
e0001a05
NC
2672 1) If the reloc is against a section symbol, adjust
2673 according to the output section.
2674 2) If there is a new target for this relocation,
2675 the new target will be in the same output section.
2676 We adjust the relocation by the output section
2677 difference. */
2678
2679 if (relaxing_section)
2680 {
2681 /* Check if this references a section in another input file. */
43cd72b9
BW
2682 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2683 contents))
2684 return FALSE;
e0001a05
NC
2685 }
2686
7aa09196
SA
2687 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2688 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2689
43cd72b9 2690 if (r_type == R_XTENSA_ASM_SIMPLIFY)
e0001a05 2691 {
91d6fa6a 2692 error_message = NULL;
e0001a05
NC
2693 /* Convert ASM_SIMPLIFY into the simpler relocation
2694 so that they never escape a relaxing link. */
43cd72b9
BW
2695 r = contract_asm_expansion (contents, input_size, rel,
2696 &error_message);
2697 if (r != bfd_reloc_ok)
2698 {
2699 if (!((*info->callbacks->reloc_dangerous)
2700 (info, error_message, input_bfd, input_section,
2701 rel->r_offset)))
2702 return FALSE;
2703 }
e0001a05
NC
2704 r_type = ELF32_R_TYPE (rel->r_info);
2705 }
2706
1049f94e 2707 /* This is a relocatable link, so we don't have to change
e0001a05
NC
2708 anything unless the reloc is against a section symbol,
2709 in which case we have to adjust according to where the
2710 section symbol winds up in the output section. */
2711 if (r_symndx < symtab_hdr->sh_info)
2712 {
2713 sym = local_syms + r_symndx;
2714 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2715 {
2716 sec = local_sections[r_symndx];
2717 rel->r_addend += sec->output_offset + sym->st_value;
2718 }
2719 }
2720
2721 /* If there is an addend with a partial_inplace howto,
2722 then move the addend to the contents. This is a hack
1049f94e 2723 to work around problems with DWARF in relocatable links
e0001a05
NC
2724 with some previous version of BFD. Now we can't easily get
2725 rid of the hack without breaking backward compatibility.... */
7aa09196
SA
2726 r = bfd_reloc_ok;
2727 howto = &elf_howto_table[r_type];
2728 if (howto->partial_inplace && rel->r_addend)
2729 {
2730 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2731 rel->r_addend, contents,
2732 rel->r_offset, FALSE,
2733 &error_message);
2734 rel->r_addend = 0;
2735 }
2736 else
e0001a05 2737 {
7aa09196
SA
2738 /* Put the correct bits in the target instruction, even
2739 though the relocation will still be present in the output
2740 file. This makes disassembly clearer, as well as
2741 allowing loadable kernel modules to work without needing
2742 relocations on anything other than calls and l32r's. */
2743
2744 /* If it is not in the same section, there is nothing we can do. */
2745 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2746 sym_sec->output_section == input_section->output_section)
e0001a05
NC
2747 {
2748 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
7aa09196 2749 dest_addr, contents,
e0001a05
NC
2750 rel->r_offset, FALSE,
2751 &error_message);
e0001a05
NC
2752 }
2753 }
7aa09196
SA
2754 if (r != bfd_reloc_ok)
2755 {
2756 if (!((*info->callbacks->reloc_dangerous)
2757 (info, error_message, input_bfd, input_section,
2758 rel->r_offset)))
2759 return FALSE;
2760 }
e0001a05 2761
1049f94e 2762 /* Done with work for relocatable link; continue with next reloc. */
e0001a05
NC
2763 continue;
2764 }
2765
2766 /* This is a final link. */
2767
e0001a05
NC
2768 if (relaxing_section)
2769 {
2770 /* Check if this references a section in another input file. */
43cd72b9
BW
2771 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2772 &relocation);
e0001a05
NC
2773 }
2774
2775 /* Sanity check the address. */
43cd72b9 2776 if (rel->r_offset >= input_size
e0001a05
NC
2777 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2778 {
43cd72b9
BW
2779 (*_bfd_error_handler)
2780 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2781 input_bfd, input_section, rel->r_offset, input_size);
e0001a05
NC
2782 bfd_set_error (bfd_error_bad_value);
2783 return FALSE;
2784 }
2785
28dbbc02
BW
2786 if (h != NULL)
2787 name = h->root.root.string;
2788 else
e0001a05 2789 {
28dbbc02
BW
2790 name = (bfd_elf_string_from_elf_section
2791 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2792 if (name == NULL || *name == '\0')
2793 name = bfd_section_name (input_bfd, sec);
2794 }
e0001a05 2795
cf35638d 2796 if (r_symndx != STN_UNDEF
28dbbc02
BW
2797 && r_type != R_XTENSA_NONE
2798 && (h == NULL
2799 || h->root.type == bfd_link_hash_defined
2800 || h->root.type == bfd_link_hash_defweak)
2801 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2802 {
2803 (*_bfd_error_handler)
2804 ((sym_type == STT_TLS
2805 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2806 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2807 input_bfd,
2808 input_section,
2809 (long) rel->r_offset,
2810 howto->name,
2811 name);
2812 }
2813
2814 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2815
2816 tls_type = GOT_UNKNOWN;
2817 if (h)
2818 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2819 else if (local_got_tls_types)
2820 tls_type = local_got_tls_types [r_symndx];
2821
2822 switch (r_type)
2823 {
2824 case R_XTENSA_32:
2825 case R_XTENSA_PLT:
2826 if (elf_hash_table (info)->dynamic_sections_created
2827 && (input_section->flags & SEC_ALLOC) != 0
2828 && (dynamic_symbol || info->shared))
e0001a05
NC
2829 {
2830 Elf_Internal_Rela outrel;
2831 bfd_byte *loc;
2832 asection *srel;
2833
2834 if (dynamic_symbol && r_type == R_XTENSA_PLT)
f0e6fdb2 2835 srel = htab->srelplt;
e0001a05 2836 else
f0e6fdb2 2837 srel = htab->srelgot;
e0001a05
NC
2838
2839 BFD_ASSERT (srel != NULL);
2840
2841 outrel.r_offset =
2842 _bfd_elf_section_offset (output_bfd, info,
2843 input_section, rel->r_offset);
2844
2845 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2846 memset (&outrel, 0, sizeof outrel);
2847 else
2848 {
f0578e28
BW
2849 outrel.r_offset += (input_section->output_section->vma
2850 + input_section->output_offset);
e0001a05 2851
88d65ad6
BW
2852 /* Complain if the relocation is in a read-only section
2853 and not in a literal pool. */
2854 if ((input_section->flags & SEC_READONLY) != 0
2855 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
3ba3bc8c 2856 outrel.r_offset))
88d65ad6
BW
2857 {
2858 error_message =
2859 _("dynamic relocation in read-only section");
2860 if (!((*info->callbacks->reloc_dangerous)
2861 (info, error_message, input_bfd, input_section,
2862 rel->r_offset)))
2863 return FALSE;
2864 }
2865
e0001a05
NC
2866 if (dynamic_symbol)
2867 {
2868 outrel.r_addend = rel->r_addend;
2869 rel->r_addend = 0;
2870
2871 if (r_type == R_XTENSA_32)
2872 {
2873 outrel.r_info =
2874 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2875 relocation = 0;
2876 }
2877 else /* r_type == R_XTENSA_PLT */
2878 {
2879 outrel.r_info =
2880 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2881
2882 /* Create the PLT entry and set the initial
2883 contents of the literal entry to the address of
2884 the PLT entry. */
43cd72b9 2885 relocation =
f0e6fdb2 2886 elf_xtensa_create_plt_entry (info, output_bfd,
e0001a05
NC
2887 srel->reloc_count);
2888 }
2889 unresolved_reloc = FALSE;
2890 }
2891 else
2892 {
2893 /* Generate a RELATIVE relocation. */
2894 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2895 outrel.r_addend = 0;
2896 }
2897 }
2898
2899 loc = (srel->contents
2900 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2901 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2902 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
eea6121a 2903 <= srel->size);
e0001a05 2904 }
d9ab3f29
BW
2905 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2906 {
2907 /* This should only happen for non-PIC code, which is not
2908 supposed to be used on systems with dynamic linking.
2909 Just ignore these relocations. */
2910 continue;
2911 }
28dbbc02
BW
2912 break;
2913
2914 case R_XTENSA_TLS_TPOFF:
2915 /* Switch to LE model for local symbols in an executable. */
2916 if (! info->shared && ! dynamic_symbol)
2917 {
2918 relocation = tpoff (info, relocation);
2919 break;
2920 }
2921 /* fall through */
2922
2923 case R_XTENSA_TLSDESC_FN:
2924 case R_XTENSA_TLSDESC_ARG:
2925 {
2926 if (r_type == R_XTENSA_TLSDESC_FN)
2927 {
2928 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2929 r_type = R_XTENSA_NONE;
2930 }
2931 else if (r_type == R_XTENSA_TLSDESC_ARG)
2932 {
2933 if (info->shared)
2934 {
2935 if ((tls_type & GOT_TLS_IE) != 0)
2936 r_type = R_XTENSA_TLS_TPOFF;
2937 }
2938 else
2939 {
2940 r_type = R_XTENSA_TLS_TPOFF;
2941 if (! dynamic_symbol)
2942 {
2943 relocation = tpoff (info, relocation);
2944 break;
2945 }
2946 }
2947 }
2948
2949 if (r_type == R_XTENSA_NONE)
2950 /* Nothing to do here; skip to the next reloc. */
2951 continue;
2952
2953 if (! elf_hash_table (info)->dynamic_sections_created)
2954 {
2955 error_message =
2956 _("TLS relocation invalid without dynamic sections");
2957 if (!((*info->callbacks->reloc_dangerous)
2958 (info, error_message, input_bfd, input_section,
2959 rel->r_offset)))
2960 return FALSE;
2961 }
2962 else
2963 {
2964 Elf_Internal_Rela outrel;
2965 bfd_byte *loc;
2966 asection *srel = htab->srelgot;
2967 int indx;
2968
2969 outrel.r_offset = (input_section->output_section->vma
2970 + input_section->output_offset
2971 + rel->r_offset);
2972
2973 /* Complain if the relocation is in a read-only section
2974 and not in a literal pool. */
2975 if ((input_section->flags & SEC_READONLY) != 0
2976 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2977 outrel.r_offset))
2978 {
2979 error_message =
2980 _("dynamic relocation in read-only section");
2981 if (!((*info->callbacks->reloc_dangerous)
2982 (info, error_message, input_bfd, input_section,
2983 rel->r_offset)))
2984 return FALSE;
2985 }
2986
2987 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2988 if (indx == 0)
2989 outrel.r_addend = relocation - dtpoff_base (info);
2990 else
2991 outrel.r_addend = 0;
2992 rel->r_addend = 0;
2993
2994 outrel.r_info = ELF32_R_INFO (indx, r_type);
2995 relocation = 0;
2996 unresolved_reloc = FALSE;
2997
2998 BFD_ASSERT (srel);
2999 loc = (srel->contents
3000 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
3001 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3002 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3003 <= srel->size);
3004 }
3005 }
3006 break;
3007
3008 case R_XTENSA_TLS_DTPOFF:
3009 if (! info->shared)
3010 /* Switch from LD model to LE model. */
3011 relocation = tpoff (info, relocation);
3012 else
3013 relocation -= dtpoff_base (info);
3014 break;
3015
3016 case R_XTENSA_TLS_FUNC:
3017 case R_XTENSA_TLS_ARG:
3018 case R_XTENSA_TLS_CALL:
3019 /* Check if optimizing to IE or LE model. */
3020 if ((tls_type & GOT_TLS_IE) != 0)
3021 {
3022 bfd_boolean is_ld_model =
3023 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3024 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3025 is_ld_model, &error_message))
3026 {
3027 if (!((*info->callbacks->reloc_dangerous)
3028 (info, error_message, input_bfd, input_section,
3029 rel->r_offset)))
3030 return FALSE;
3031 }
3032
3033 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3034 {
3035 /* Skip subsequent relocations on the same instruction. */
3036 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3037 rel++;
3038 }
3039 }
3040 continue;
3041
3042 default:
3043 if (elf_hash_table (info)->dynamic_sections_created
3044 && dynamic_symbol && (is_operand_relocation (r_type)
3045 || r_type == R_XTENSA_32_PCREL))
3046 {
3047 error_message =
3048 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3049 strlen (name) + 2, name);
3050 if (!((*info->callbacks->reloc_dangerous)
3051 (info, error_message, input_bfd, input_section,
3052 rel->r_offset)))
3053 return FALSE;
3054 continue;
3055 }
3056 break;
e0001a05
NC
3057 }
3058
3059 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3060 because such sections are not SEC_ALLOC and thus ld.so will
3061 not process them. */
3062 if (unresolved_reloc
3063 && !((input_section->flags & SEC_DEBUGGING) != 0
f5385ebf 3064 && h->def_dynamic))
bf1747de
BW
3065 {
3066 (*_bfd_error_handler)
3067 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3068 input_bfd,
3069 input_section,
3070 (long) rel->r_offset,
3071 howto->name,
28dbbc02 3072 name);
bf1747de
BW
3073 return FALSE;
3074 }
e0001a05 3075
28dbbc02
BW
3076 /* TLS optimizations may have changed r_type; update "howto". */
3077 howto = &elf_howto_table[r_type];
3078
e0001a05
NC
3079 /* There's no point in calling bfd_perform_relocation here.
3080 Just go directly to our "special function". */
3081 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3082 relocation + rel->r_addend,
3083 contents, rel->r_offset, is_weak_undef,
3084 &error_message);
43cd72b9 3085
9b8c98a4 3086 if (r != bfd_reloc_ok && !warned)
e0001a05 3087 {
43cd72b9 3088 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
7fa3d080 3089 BFD_ASSERT (error_message != NULL);
e0001a05 3090
28dbbc02
BW
3091 if (rel->r_addend == 0)
3092 error_message = vsprint_msg (error_message, ": %s",
3093 strlen (name) + 2, name);
e0001a05 3094 else
28dbbc02
BW
3095 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3096 strlen (name) + 22,
3097 name, (int) rel->r_addend);
43cd72b9 3098
e0001a05
NC
3099 if (!((*info->callbacks->reloc_dangerous)
3100 (info, error_message, input_bfd, input_section,
3101 rel->r_offset)))
3102 return FALSE;
3103 }
3104 }
3105
88d65ad6
BW
3106 if (lit_table)
3107 free (lit_table);
3108
3ba3bc8c
BW
3109 input_section->reloc_done = TRUE;
3110
e0001a05
NC
3111 return TRUE;
3112}
3113
3114
3115/* Finish up dynamic symbol handling. There's not much to do here since
3116 the PLT and GOT entries are all set up by relocate_section. */
3117
3118static bfd_boolean
7fa3d080
BW
3119elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3120 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3121 struct elf_link_hash_entry *h,
3122 Elf_Internal_Sym *sym)
e0001a05 3123{
bf1747de 3124 if (h->needs_plt && !h->def_regular)
e0001a05
NC
3125 {
3126 /* Mark the symbol as undefined, rather than as defined in
3127 the .plt section. Leave the value alone. */
3128 sym->st_shndx = SHN_UNDEF;
bf1747de
BW
3129 /* If the symbol is weak, we do need to clear the value.
3130 Otherwise, the PLT entry would provide a definition for
3131 the symbol even if the symbol wasn't defined anywhere,
3132 and so the symbol would never be NULL. */
3133 if (!h->ref_regular_nonweak)
3134 sym->st_value = 0;
e0001a05
NC
3135 }
3136
3137 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3138 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
22edb2f1 3139 || h == elf_hash_table (info)->hgot)
e0001a05
NC
3140 sym->st_shndx = SHN_ABS;
3141
3142 return TRUE;
3143}
3144
3145
3146/* Combine adjacent literal table entries in the output. Adjacent
3147 entries within each input section may have been removed during
3148 relaxation, but we repeat the process here, even though it's too late
3149 to shrink the output section, because it's important to minimize the
3150 number of literal table entries to reduce the start-up work for the
3151 runtime linker. Returns the number of remaining table entries or -1
3152 on error. */
3153
3154static int
7fa3d080
BW
3155elf_xtensa_combine_prop_entries (bfd *output_bfd,
3156 asection *sxtlit,
3157 asection *sgotloc)
e0001a05 3158{
e0001a05
NC
3159 bfd_byte *contents;
3160 property_table_entry *table;
e901de89 3161 bfd_size_type section_size, sgotloc_size;
e0001a05
NC
3162 bfd_vma offset;
3163 int n, m, num;
3164
eea6121a 3165 section_size = sxtlit->size;
e0001a05
NC
3166 BFD_ASSERT (section_size % 8 == 0);
3167 num = section_size / 8;
3168
eea6121a 3169 sgotloc_size = sgotloc->size;
e901de89 3170 if (sgotloc_size != section_size)
b536dc1e
BW
3171 {
3172 (*_bfd_error_handler)
43cd72b9 3173 (_("internal inconsistency in size of .got.loc section"));
b536dc1e
BW
3174 return -1;
3175 }
e901de89 3176
eea6121a
AM
3177 table = bfd_malloc (num * sizeof (property_table_entry));
3178 if (table == 0)
e0001a05
NC
3179 return -1;
3180
3181 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3182 propagates to the output section, where it doesn't really apply and
eea6121a 3183 where it breaks the following call to bfd_malloc_and_get_section. */
e901de89 3184 sxtlit->flags &= ~SEC_IN_MEMORY;
e0001a05 3185
eea6121a
AM
3186 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3187 {
3188 if (contents != 0)
3189 free (contents);
3190 free (table);
3191 return -1;
3192 }
e0001a05
NC
3193
3194 /* There should never be any relocations left at this point, so this
3195 is quite a bit easier than what is done during relaxation. */
3196
3197 /* Copy the raw contents into a property table array and sort it. */
3198 offset = 0;
3199 for (n = 0; n < num; n++)
3200 {
3201 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3202 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3203 offset += 8;
3204 }
3205 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3206
3207 for (n = 0; n < num; n++)
3208 {
91d6fa6a 3209 bfd_boolean remove_entry = FALSE;
e0001a05
NC
3210
3211 if (table[n].size == 0)
91d6fa6a
NC
3212 remove_entry = TRUE;
3213 else if (n > 0
3214 && (table[n-1].address + table[n-1].size == table[n].address))
e0001a05
NC
3215 {
3216 table[n-1].size += table[n].size;
91d6fa6a 3217 remove_entry = TRUE;
e0001a05
NC
3218 }
3219
91d6fa6a 3220 if (remove_entry)
e0001a05
NC
3221 {
3222 for (m = n; m < num - 1; m++)
3223 {
3224 table[m].address = table[m+1].address;
3225 table[m].size = table[m+1].size;
3226 }
3227
3228 n--;
3229 num--;
3230 }
3231 }
3232
3233 /* Copy the data back to the raw contents. */
3234 offset = 0;
3235 for (n = 0; n < num; n++)
3236 {
3237 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3238 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3239 offset += 8;
3240 }
3241
3242 /* Clear the removed bytes. */
3243 if ((bfd_size_type) (num * 8) < section_size)
b54d4b07 3244 memset (&contents[num * 8], 0, section_size - num * 8);
e0001a05 3245
e901de89
BW
3246 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3247 section_size))
e0001a05
NC
3248 return -1;
3249
e901de89
BW
3250 /* Copy the contents to ".got.loc". */
3251 memcpy (sgotloc->contents, contents, section_size);
3252
e0001a05 3253 free (contents);
b614a702 3254 free (table);
e0001a05
NC
3255 return num;
3256}
3257
3258
3259/* Finish up the dynamic sections. */
3260
3261static bfd_boolean
7fa3d080
BW
3262elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3263 struct bfd_link_info *info)
e0001a05 3264{
f0e6fdb2 3265 struct elf_xtensa_link_hash_table *htab;
e0001a05 3266 bfd *dynobj;
e901de89 3267 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
e0001a05 3268 Elf32_External_Dyn *dyncon, *dynconend;
d9ab3f29 3269 int num_xtlit_entries = 0;
e0001a05
NC
3270
3271 if (! elf_hash_table (info)->dynamic_sections_created)
3272 return TRUE;
3273
f0e6fdb2 3274 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
3275 if (htab == NULL)
3276 return FALSE;
3277
e0001a05
NC
3278 dynobj = elf_hash_table (info)->dynobj;
3279 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3280 BFD_ASSERT (sdyn != NULL);
3281
3282 /* Set the first entry in the global offset table to the address of
3283 the dynamic section. */
f0e6fdb2 3284 sgot = htab->sgot;
e0001a05
NC
3285 if (sgot)
3286 {
eea6121a 3287 BFD_ASSERT (sgot->size == 4);
e0001a05 3288 if (sdyn == NULL)
7fa3d080 3289 bfd_put_32 (output_bfd, 0, sgot->contents);
e0001a05
NC
3290 else
3291 bfd_put_32 (output_bfd,
3292 sdyn->output_section->vma + sdyn->output_offset,
3293 sgot->contents);
3294 }
3295
f0e6fdb2 3296 srelplt = htab->srelplt;
7fa3d080 3297 if (srelplt && srelplt->size != 0)
e0001a05
NC
3298 {
3299 asection *sgotplt, *srelgot, *spltlittbl;
3300 int chunk, plt_chunks, plt_entries;
3301 Elf_Internal_Rela irela;
3302 bfd_byte *loc;
3303 unsigned rtld_reloc;
3304
f0e6fdb2
BW
3305 srelgot = htab->srelgot;
3306 spltlittbl = htab->spltlittbl;
3307 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
e0001a05
NC
3308
3309 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3310 of them follow immediately after.... */
3311 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3312 {
3313 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3314 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3315 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3316 break;
3317 }
3318 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3319
eea6121a 3320 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
e0001a05
NC
3321 plt_chunks =
3322 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3323
3324 for (chunk = 0; chunk < plt_chunks; chunk++)
3325 {
3326 int chunk_entries = 0;
3327
f0e6fdb2 3328 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
3329 BFD_ASSERT (sgotplt != NULL);
3330
3331 /* Emit special RTLD relocations for the first two entries in
3332 each chunk of the .got.plt section. */
3333
3334 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3335 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3336 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3337 irela.r_offset = (sgotplt->output_section->vma
3338 + sgotplt->output_offset);
3339 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3340 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3341 rtld_reloc += 1;
3342 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3343
3344 /* Next literal immediately follows the first. */
3345 loc += sizeof (Elf32_External_Rela);
3346 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3347 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3348 irela.r_offset = (sgotplt->output_section->vma
3349 + sgotplt->output_offset + 4);
3350 /* Tell rtld to set value to object's link map. */
3351 irela.r_addend = 2;
3352 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3353 rtld_reloc += 1;
3354 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3355
3356 /* Fill in the literal table. */
3357 if (chunk < plt_chunks - 1)
3358 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3359 else
3360 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3361
eea6121a 3362 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
e0001a05
NC
3363 bfd_put_32 (output_bfd,
3364 sgotplt->output_section->vma + sgotplt->output_offset,
3365 spltlittbl->contents + (chunk * 8) + 0);
3366 bfd_put_32 (output_bfd,
3367 8 + (chunk_entries * 4),
3368 spltlittbl->contents + (chunk * 8) + 4);
3369 }
3370
3371 /* All the dynamic relocations have been emitted at this point.
3372 Make sure the relocation sections are the correct size. */
eea6121a
AM
3373 if (srelgot->size != (sizeof (Elf32_External_Rela)
3374 * srelgot->reloc_count)
3375 || srelplt->size != (sizeof (Elf32_External_Rela)
3376 * srelplt->reloc_count))
e0001a05
NC
3377 abort ();
3378
3379 /* The .xt.lit.plt section has just been modified. This must
3380 happen before the code below which combines adjacent literal
3381 table entries, and the .xt.lit.plt contents have to be forced to
3382 the output here. */
3383 if (! bfd_set_section_contents (output_bfd,
3384 spltlittbl->output_section,
3385 spltlittbl->contents,
3386 spltlittbl->output_offset,
eea6121a 3387 spltlittbl->size))
e0001a05
NC
3388 return FALSE;
3389 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3390 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3391 }
3392
3393 /* Combine adjacent literal table entries. */
1049f94e 3394 BFD_ASSERT (! info->relocatable);
e901de89 3395 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
f0e6fdb2 3396 sgotloc = htab->sgotloc;
d9ab3f29
BW
3397 BFD_ASSERT (sgotloc);
3398 if (sxtlit)
3399 {
3400 num_xtlit_entries =
3401 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3402 if (num_xtlit_entries < 0)
3403 return FALSE;
3404 }
e0001a05
NC
3405
3406 dyncon = (Elf32_External_Dyn *) sdyn->contents;
eea6121a 3407 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
e0001a05
NC
3408 for (; dyncon < dynconend; dyncon++)
3409 {
3410 Elf_Internal_Dyn dyn;
e0001a05
NC
3411
3412 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3413
3414 switch (dyn.d_tag)
3415 {
3416 default:
3417 break;
3418
3419 case DT_XTENSA_GOT_LOC_SZ:
e0001a05
NC
3420 dyn.d_un.d_val = num_xtlit_entries;
3421 break;
3422
3423 case DT_XTENSA_GOT_LOC_OFF:
e29297b7 3424 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
f0e6fdb2
BW
3425 break;
3426
e0001a05 3427 case DT_PLTGOT:
e29297b7 3428 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
f0e6fdb2
BW
3429 break;
3430
e0001a05 3431 case DT_JMPREL:
e29297b7 3432 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
e0001a05
NC
3433 break;
3434
3435 case DT_PLTRELSZ:
e29297b7 3436 dyn.d_un.d_val = htab->srelplt->output_section->size;
e0001a05
NC
3437 break;
3438
3439 case DT_RELASZ:
3440 /* Adjust RELASZ to not include JMPREL. This matches what
3441 glibc expects and what is done for several other ELF
3442 targets (e.g., i386, alpha), but the "correct" behavior
3443 seems to be unresolved. Since the linker script arranges
3444 for .rela.plt to follow all other relocation sections, we
3445 don't have to worry about changing the DT_RELA entry. */
f0e6fdb2 3446 if (htab->srelplt)
e29297b7 3447 dyn.d_un.d_val -= htab->srelplt->output_section->size;
e0001a05
NC
3448 break;
3449 }
3450
3451 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3452 }
3453
3454 return TRUE;
3455}
3456
3457\f
3458/* Functions for dealing with the e_flags field. */
3459
3460/* Merge backend specific data from an object file to the output
3461 object file when linking. */
3462
3463static bfd_boolean
7fa3d080 3464elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
e0001a05
NC
3465{
3466 unsigned out_mach, in_mach;
3467 flagword out_flag, in_flag;
3468
cc643b88 3469 /* Check if we have the same endianness. */
e0001a05
NC
3470 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3471 return FALSE;
3472
3473 /* Don't even pretend to support mixed-format linking. */
3474 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3475 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3476 return FALSE;
3477
3478 out_flag = elf_elfheader (obfd)->e_flags;
3479 in_flag = elf_elfheader (ibfd)->e_flags;
3480
3481 out_mach = out_flag & EF_XTENSA_MACH;
3482 in_mach = in_flag & EF_XTENSA_MACH;
43cd72b9 3483 if (out_mach != in_mach)
e0001a05
NC
3484 {
3485 (*_bfd_error_handler)
43cd72b9 3486 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
d003868e 3487 ibfd, out_mach, in_mach);
e0001a05
NC
3488 bfd_set_error (bfd_error_wrong_format);
3489 return FALSE;
3490 }
3491
3492 if (! elf_flags_init (obfd))
3493 {
3494 elf_flags_init (obfd) = TRUE;
3495 elf_elfheader (obfd)->e_flags = in_flag;
43cd72b9 3496
e0001a05
NC
3497 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3498 && bfd_get_arch_info (obfd)->the_default)
3499 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3500 bfd_get_mach (ibfd));
43cd72b9 3501
e0001a05
NC
3502 return TRUE;
3503 }
3504
43cd72b9
BW
3505 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3506 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
e0001a05 3507
43cd72b9
BW
3508 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3509 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
e0001a05
NC
3510
3511 return TRUE;
3512}
3513
3514
3515static bfd_boolean
7fa3d080 3516elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
e0001a05
NC
3517{
3518 BFD_ASSERT (!elf_flags_init (abfd)
3519 || elf_elfheader (abfd)->e_flags == flags);
3520
3521 elf_elfheader (abfd)->e_flags |= flags;
3522 elf_flags_init (abfd) = TRUE;
3523
3524 return TRUE;
3525}
3526
3527
e0001a05 3528static bfd_boolean
7fa3d080 3529elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
e0001a05
NC
3530{
3531 FILE *f = (FILE *) farg;
3532 flagword e_flags = elf_elfheader (abfd)->e_flags;
3533
3534 fprintf (f, "\nXtensa header:\n");
43cd72b9 3535 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
e0001a05
NC
3536 fprintf (f, "\nMachine = Base\n");
3537 else
3538 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3539
3540 fprintf (f, "Insn tables = %s\n",
3541 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3542
3543 fprintf (f, "Literal tables = %s\n",
3544 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3545
3546 return _bfd_elf_print_private_bfd_data (abfd, farg);
3547}
3548
3549
3550/* Set the right machine number for an Xtensa ELF file. */
3551
3552static bfd_boolean
7fa3d080 3553elf_xtensa_object_p (bfd *abfd)
e0001a05
NC
3554{
3555 int mach;
3556 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3557
3558 switch (arch)
3559 {
3560 case E_XTENSA_MACH:
3561 mach = bfd_mach_xtensa;
3562 break;
3563 default:
3564 return FALSE;
3565 }
3566
3567 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3568 return TRUE;
3569}
3570
3571
3572/* The final processing done just before writing out an Xtensa ELF object
3573 file. This gets the Xtensa architecture right based on the machine
3574 number. */
3575
3576static void
7fa3d080
BW
3577elf_xtensa_final_write_processing (bfd *abfd,
3578 bfd_boolean linker ATTRIBUTE_UNUSED)
e0001a05
NC
3579{
3580 int mach;
3581 unsigned long val;
3582
3583 switch (mach = bfd_get_mach (abfd))
3584 {
3585 case bfd_mach_xtensa:
3586 val = E_XTENSA_MACH;
3587 break;
3588 default:
3589 return;
3590 }
3591
3592 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3593 elf_elfheader (abfd)->e_flags |= val;
3594}
3595
3596
3597static enum elf_reloc_type_class
7fa3d080 3598elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
e0001a05
NC
3599{
3600 switch ((int) ELF32_R_TYPE (rela->r_info))
3601 {
3602 case R_XTENSA_RELATIVE:
3603 return reloc_class_relative;
3604 case R_XTENSA_JMP_SLOT:
3605 return reloc_class_plt;
3606 default:
3607 return reloc_class_normal;
3608 }
3609}
3610
3611\f
3612static bfd_boolean
7fa3d080
BW
3613elf_xtensa_discard_info_for_section (bfd *abfd,
3614 struct elf_reloc_cookie *cookie,
3615 struct bfd_link_info *info,
3616 asection *sec)
e0001a05
NC
3617{
3618 bfd_byte *contents;
e0001a05 3619 bfd_vma offset, actual_offset;
1d25768e
BW
3620 bfd_size_type removed_bytes = 0;
3621 bfd_size_type entry_size;
e0001a05
NC
3622
3623 if (sec->output_section
3624 && bfd_is_abs_section (sec->output_section))
3625 return FALSE;
3626
1d25768e
BW
3627 if (xtensa_is_proptable_section (sec))
3628 entry_size = 12;
3629 else
3630 entry_size = 8;
3631
a3ef2d63 3632 if (sec->size == 0 || sec->size % entry_size != 0)
1d25768e
BW
3633 return FALSE;
3634
e0001a05
NC
3635 contents = retrieve_contents (abfd, sec, info->keep_memory);
3636 if (!contents)
3637 return FALSE;
3638
3639 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3640 if (!cookie->rels)
3641 {
3642 release_contents (sec, contents);
3643 return FALSE;
3644 }
3645
1d25768e
BW
3646 /* Sort the relocations. They should already be in order when
3647 relaxation is enabled, but it might not be. */
3648 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3649 internal_reloc_compare);
3650
e0001a05
NC
3651 cookie->rel = cookie->rels;
3652 cookie->relend = cookie->rels + sec->reloc_count;
3653
a3ef2d63 3654 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05
NC
3655 {
3656 actual_offset = offset - removed_bytes;
3657
3658 /* The ...symbol_deleted_p function will skip over relocs but it
3659 won't adjust their offsets, so do that here. */
3660 while (cookie->rel < cookie->relend
3661 && cookie->rel->r_offset < offset)
3662 {
3663 cookie->rel->r_offset -= removed_bytes;
3664 cookie->rel++;
3665 }
3666
3667 while (cookie->rel < cookie->relend
3668 && cookie->rel->r_offset == offset)
3669 {
c152c796 3670 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
e0001a05
NC
3671 {
3672 /* Remove the table entry. (If the reloc type is NONE, then
3673 the entry has already been merged with another and deleted
3674 during relaxation.) */
3675 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3676 {
3677 /* Shift the contents up. */
a3ef2d63 3678 if (offset + entry_size < sec->size)
e0001a05 3679 memmove (&contents[actual_offset],
1d25768e 3680 &contents[actual_offset + entry_size],
a3ef2d63 3681 sec->size - offset - entry_size);
1d25768e 3682 removed_bytes += entry_size;
e0001a05
NC
3683 }
3684
3685 /* Remove this relocation. */
3686 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3687 }
3688
3689 /* Adjust the relocation offset for previous removals. This
3690 should not be done before calling ...symbol_deleted_p
3691 because it might mess up the offset comparisons there.
3692 Make sure the offset doesn't underflow in the case where
3693 the first entry is removed. */
3694 if (cookie->rel->r_offset >= removed_bytes)
3695 cookie->rel->r_offset -= removed_bytes;
3696 else
3697 cookie->rel->r_offset = 0;
3698
3699 cookie->rel++;
3700 }
3701 }
3702
3703 if (removed_bytes != 0)
3704 {
3705 /* Adjust any remaining relocs (shouldn't be any). */
3706 for (; cookie->rel < cookie->relend; cookie->rel++)
3707 {
3708 if (cookie->rel->r_offset >= removed_bytes)
3709 cookie->rel->r_offset -= removed_bytes;
3710 else
3711 cookie->rel->r_offset = 0;
3712 }
3713
3714 /* Clear the removed bytes. */
a3ef2d63 3715 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05
NC
3716
3717 pin_contents (sec, contents);
3718 pin_internal_relocs (sec, cookie->rels);
3719
eea6121a 3720 /* Shrink size. */
a3ef2d63
BW
3721 if (sec->rawsize == 0)
3722 sec->rawsize = sec->size;
3723 sec->size -= removed_bytes;
b536dc1e
BW
3724
3725 if (xtensa_is_littable_section (sec))
3726 {
f0e6fdb2
BW
3727 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3728 if (sgotloc)
3729 sgotloc->size -= removed_bytes;
b536dc1e 3730 }
e0001a05
NC
3731 }
3732 else
3733 {
3734 release_contents (sec, contents);
3735 release_internal_relocs (sec, cookie->rels);
3736 }
3737
3738 return (removed_bytes != 0);
3739}
3740
3741
3742static bfd_boolean
7fa3d080
BW
3743elf_xtensa_discard_info (bfd *abfd,
3744 struct elf_reloc_cookie *cookie,
3745 struct bfd_link_info *info)
e0001a05
NC
3746{
3747 asection *sec;
3748 bfd_boolean changed = FALSE;
3749
3750 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3751 {
3752 if (xtensa_is_property_section (sec))
3753 {
3754 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3755 changed = TRUE;
3756 }
3757 }
3758
3759 return changed;
3760}
3761
3762
3763static bfd_boolean
7fa3d080 3764elf_xtensa_ignore_discarded_relocs (asection *sec)
e0001a05
NC
3765{
3766 return xtensa_is_property_section (sec);
3767}
3768
a77dc2cc
BW
3769
3770static unsigned int
3771elf_xtensa_action_discarded (asection *sec)
3772{
3773 if (strcmp (".xt_except_table", sec->name) == 0)
3774 return 0;
3775
3776 if (strcmp (".xt_except_desc", sec->name) == 0)
3777 return 0;
3778
3779 return _bfd_elf_default_action_discarded (sec);
3780}
3781
e0001a05
NC
3782\f
3783/* Support for core dump NOTE sections. */
3784
3785static bfd_boolean
7fa3d080 3786elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3787{
3788 int offset;
eea6121a 3789 unsigned int size;
e0001a05
NC
3790
3791 /* The size for Xtensa is variable, so don't try to recognize the format
3792 based on the size. Just assume this is GNU/Linux. */
3793
3794 /* pr_cursig */
3795 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3796
3797 /* pr_pid */
261b8d08 3798 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
e0001a05
NC
3799
3800 /* pr_reg */
3801 offset = 72;
eea6121a 3802 size = note->descsz - offset - 4;
e0001a05
NC
3803
3804 /* Make a ".reg/999" section. */
3805 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
eea6121a 3806 size, note->descpos + offset);
e0001a05
NC
3807}
3808
3809
3810static bfd_boolean
7fa3d080 3811elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
e0001a05
NC
3812{
3813 switch (note->descsz)
3814 {
3815 default:
3816 return FALSE;
3817
3818 case 128: /* GNU/Linux elf_prpsinfo */
3819 elf_tdata (abfd)->core_program
3820 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3821 elf_tdata (abfd)->core_command
3822 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3823 }
3824
3825 /* Note that for some reason, a spurious space is tacked
3826 onto the end of the args in some (at least one anyway)
3827 implementations, so strip it off if it exists. */
3828
3829 {
3830 char *command = elf_tdata (abfd)->core_command;
3831 int n = strlen (command);
3832
3833 if (0 < n && command[n - 1] == ' ')
3834 command[n - 1] = '\0';
3835 }
3836
3837 return TRUE;
3838}
3839
3840\f
3841/* Generic Xtensa configurability stuff. */
3842
3843static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3844static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3845static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3846static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3847static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3848static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3849static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3850static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3851
3852static void
7fa3d080 3853init_call_opcodes (void)
e0001a05
NC
3854{
3855 if (callx0_op == XTENSA_UNDEFINED)
3856 {
3857 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3858 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3859 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3860 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3861 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3862 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3863 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3864 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3865 }
3866}
3867
3868
3869static bfd_boolean
7fa3d080 3870is_indirect_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3871{
3872 init_call_opcodes ();
3873 return (opcode == callx0_op
3874 || opcode == callx4_op
3875 || opcode == callx8_op
3876 || opcode == callx12_op);
3877}
3878
3879
3880static bfd_boolean
7fa3d080 3881is_direct_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3882{
3883 init_call_opcodes ();
3884 return (opcode == call0_op
3885 || opcode == call4_op
3886 || opcode == call8_op
3887 || opcode == call12_op);
3888}
3889
3890
3891static bfd_boolean
7fa3d080 3892is_windowed_call_opcode (xtensa_opcode opcode)
e0001a05
NC
3893{
3894 init_call_opcodes ();
3895 return (opcode == call4_op
3896 || opcode == call8_op
3897 || opcode == call12_op
3898 || opcode == callx4_op
3899 || opcode == callx8_op
3900 || opcode == callx12_op);
3901}
3902
3903
28dbbc02
BW
3904static bfd_boolean
3905get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3906{
3907 unsigned dst = (unsigned) -1;
3908
3909 init_call_opcodes ();
3910 if (opcode == callx0_op)
3911 dst = 0;
3912 else if (opcode == callx4_op)
3913 dst = 4;
3914 else if (opcode == callx8_op)
3915 dst = 8;
3916 else if (opcode == callx12_op)
3917 dst = 12;
3918
3919 if (dst == (unsigned) -1)
3920 return FALSE;
3921
3922 *pdst = dst;
3923 return TRUE;
3924}
3925
3926
43cd72b9
BW
3927static xtensa_opcode
3928get_const16_opcode (void)
3929{
3930 static bfd_boolean done_lookup = FALSE;
3931 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3932 if (!done_lookup)
3933 {
3934 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3935 done_lookup = TRUE;
3936 }
3937 return const16_opcode;
3938}
3939
3940
e0001a05
NC
3941static xtensa_opcode
3942get_l32r_opcode (void)
3943{
3944 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
43cd72b9
BW
3945 static bfd_boolean done_lookup = FALSE;
3946
3947 if (!done_lookup)
e0001a05
NC
3948 {
3949 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
43cd72b9 3950 done_lookup = TRUE;
e0001a05
NC
3951 }
3952 return l32r_opcode;
3953}
3954
3955
3956static bfd_vma
7fa3d080 3957l32r_offset (bfd_vma addr, bfd_vma pc)
e0001a05
NC
3958{
3959 bfd_vma offset;
3960
3961 offset = addr - ((pc+3) & -4);
3962 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3963 offset = (signed int) offset >> 2;
3964 BFD_ASSERT ((signed int) offset >> 16 == -1);
3965 return offset;
3966}
3967
3968
e0001a05 3969static int
7fa3d080 3970get_relocation_opnd (xtensa_opcode opcode, int r_type)
e0001a05 3971{
43cd72b9
BW
3972 xtensa_isa isa = xtensa_default_isa;
3973 int last_immed, last_opnd, opi;
3974
3975 if (opcode == XTENSA_UNDEFINED)
3976 return XTENSA_UNDEFINED;
3977
3978 /* Find the last visible PC-relative immediate operand for the opcode.
3979 If there are no PC-relative immediates, then choose the last visible
3980 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3981 last_immed = XTENSA_UNDEFINED;
3982 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3983 for (opi = last_opnd - 1; opi >= 0; opi--)
3984 {
3985 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3986 continue;
3987 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3988 {
3989 last_immed = opi;
3990 break;
3991 }
3992 if (last_immed == XTENSA_UNDEFINED
3993 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3994 last_immed = opi;
3995 }
3996 if (last_immed < 0)
3997 return XTENSA_UNDEFINED;
3998
3999 /* If the operand number was specified in an old-style relocation,
4000 check for consistency with the operand computed above. */
4001 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4002 {
4003 int reloc_opnd = r_type - R_XTENSA_OP0;
4004 if (reloc_opnd != last_immed)
4005 return XTENSA_UNDEFINED;
4006 }
4007
4008 return last_immed;
4009}
4010
4011
4012int
7fa3d080 4013get_relocation_slot (int r_type)
43cd72b9
BW
4014{
4015 switch (r_type)
4016 {
4017 case R_XTENSA_OP0:
4018 case R_XTENSA_OP1:
4019 case R_XTENSA_OP2:
4020 return 0;
4021
4022 default:
4023 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4024 return r_type - R_XTENSA_SLOT0_OP;
4025 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4026 return r_type - R_XTENSA_SLOT0_ALT;
4027 break;
4028 }
4029
4030 return XTENSA_UNDEFINED;
e0001a05
NC
4031}
4032
4033
4034/* Get the opcode for a relocation. */
4035
4036static xtensa_opcode
7fa3d080
BW
4037get_relocation_opcode (bfd *abfd,
4038 asection *sec,
4039 bfd_byte *contents,
4040 Elf_Internal_Rela *irel)
e0001a05
NC
4041{
4042 static xtensa_insnbuf ibuff = NULL;
43cd72b9 4043 static xtensa_insnbuf sbuff = NULL;
e0001a05 4044 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4045 xtensa_format fmt;
4046 int slot;
e0001a05
NC
4047
4048 if (contents == NULL)
4049 return XTENSA_UNDEFINED;
4050
43cd72b9 4051 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
e0001a05
NC
4052 return XTENSA_UNDEFINED;
4053
4054 if (ibuff == NULL)
43cd72b9
BW
4055 {
4056 ibuff = xtensa_insnbuf_alloc (isa);
4057 sbuff = xtensa_insnbuf_alloc (isa);
4058 }
4059
e0001a05 4060 /* Decode the instruction. */
43cd72b9
BW
4061 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4062 sec->size - irel->r_offset);
4063 fmt = xtensa_format_decode (isa, ibuff);
4064 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4065 if (slot == XTENSA_UNDEFINED)
4066 return XTENSA_UNDEFINED;
4067 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4068 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
e0001a05
NC
4069}
4070
4071
4072bfd_boolean
7fa3d080
BW
4073is_l32r_relocation (bfd *abfd,
4074 asection *sec,
4075 bfd_byte *contents,
4076 Elf_Internal_Rela *irel)
e0001a05
NC
4077{
4078 xtensa_opcode opcode;
43cd72b9 4079 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
e0001a05 4080 return FALSE;
43cd72b9 4081 opcode = get_relocation_opcode (abfd, sec, contents, irel);
e0001a05
NC
4082 return (opcode == get_l32r_opcode ());
4083}
4084
e0001a05 4085
43cd72b9 4086static bfd_size_type
7fa3d080
BW
4087get_asm_simplify_size (bfd_byte *contents,
4088 bfd_size_type content_len,
4089 bfd_size_type offset)
e0001a05 4090{
43cd72b9 4091 bfd_size_type insnlen, size = 0;
e0001a05 4092
43cd72b9
BW
4093 /* Decode the size of the next two instructions. */
4094 insnlen = insn_decode_len (contents, content_len, offset);
4095 if (insnlen == 0)
4096 return 0;
e0001a05 4097
43cd72b9 4098 size += insnlen;
e0001a05 4099
43cd72b9
BW
4100 insnlen = insn_decode_len (contents, content_len, offset + size);
4101 if (insnlen == 0)
4102 return 0;
e0001a05 4103
43cd72b9
BW
4104 size += insnlen;
4105 return size;
4106}
e0001a05 4107
43cd72b9
BW
4108
4109bfd_boolean
7fa3d080 4110is_alt_relocation (int r_type)
43cd72b9
BW
4111{
4112 return (r_type >= R_XTENSA_SLOT0_ALT
4113 && r_type <= R_XTENSA_SLOT14_ALT);
e0001a05
NC
4114}
4115
4116
43cd72b9 4117bfd_boolean
7fa3d080 4118is_operand_relocation (int r_type)
e0001a05 4119{
43cd72b9
BW
4120 switch (r_type)
4121 {
4122 case R_XTENSA_OP0:
4123 case R_XTENSA_OP1:
4124 case R_XTENSA_OP2:
4125 return TRUE;
e0001a05 4126
43cd72b9
BW
4127 default:
4128 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4129 return TRUE;
4130 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4131 return TRUE;
4132 break;
4133 }
e0001a05 4134
43cd72b9 4135 return FALSE;
e0001a05
NC
4136}
4137
43cd72b9
BW
4138
4139#define MIN_INSN_LENGTH 2
e0001a05 4140
43cd72b9
BW
4141/* Return 0 if it fails to decode. */
4142
4143bfd_size_type
7fa3d080
BW
4144insn_decode_len (bfd_byte *contents,
4145 bfd_size_type content_len,
4146 bfd_size_type offset)
e0001a05 4147{
43cd72b9
BW
4148 int insn_len;
4149 xtensa_isa isa = xtensa_default_isa;
4150 xtensa_format fmt;
4151 static xtensa_insnbuf ibuff = NULL;
e0001a05 4152
43cd72b9
BW
4153 if (offset + MIN_INSN_LENGTH > content_len)
4154 return 0;
e0001a05 4155
43cd72b9
BW
4156 if (ibuff == NULL)
4157 ibuff = xtensa_insnbuf_alloc (isa);
4158 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4159 content_len - offset);
4160 fmt = xtensa_format_decode (isa, ibuff);
4161 if (fmt == XTENSA_UNDEFINED)
4162 return 0;
4163 insn_len = xtensa_format_length (isa, fmt);
4164 if (insn_len == XTENSA_UNDEFINED)
4165 return 0;
4166 return insn_len;
e0001a05
NC
4167}
4168
4169
43cd72b9
BW
4170/* Decode the opcode for a single slot instruction.
4171 Return 0 if it fails to decode or the instruction is multi-slot. */
e0001a05 4172
43cd72b9 4173xtensa_opcode
7fa3d080
BW
4174insn_decode_opcode (bfd_byte *contents,
4175 bfd_size_type content_len,
4176 bfd_size_type offset,
4177 int slot)
e0001a05 4178{
e0001a05 4179 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
4180 xtensa_format fmt;
4181 static xtensa_insnbuf insnbuf = NULL;
4182 static xtensa_insnbuf slotbuf = NULL;
4183
4184 if (offset + MIN_INSN_LENGTH > content_len)
e0001a05
NC
4185 return XTENSA_UNDEFINED;
4186
4187 if (insnbuf == NULL)
43cd72b9
BW
4188 {
4189 insnbuf = xtensa_insnbuf_alloc (isa);
4190 slotbuf = xtensa_insnbuf_alloc (isa);
4191 }
4192
4193 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4194 content_len - offset);
4195 fmt = xtensa_format_decode (isa, insnbuf);
4196 if (fmt == XTENSA_UNDEFINED)
e0001a05 4197 return XTENSA_UNDEFINED;
43cd72b9
BW
4198
4199 if (slot >= xtensa_format_num_slots (isa, fmt))
e0001a05 4200 return XTENSA_UNDEFINED;
e0001a05 4201
43cd72b9
BW
4202 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4203 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4204}
e0001a05 4205
e0001a05 4206
43cd72b9
BW
4207/* The offset is the offset in the contents.
4208 The address is the address of that offset. */
e0001a05 4209
43cd72b9 4210static bfd_boolean
7fa3d080
BW
4211check_branch_target_aligned (bfd_byte *contents,
4212 bfd_size_type content_length,
4213 bfd_vma offset,
4214 bfd_vma address)
43cd72b9
BW
4215{
4216 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4217 if (insn_len == 0)
4218 return FALSE;
4219 return check_branch_target_aligned_address (address, insn_len);
4220}
e0001a05 4221
e0001a05 4222
43cd72b9 4223static bfd_boolean
7fa3d080
BW
4224check_loop_aligned (bfd_byte *contents,
4225 bfd_size_type content_length,
4226 bfd_vma offset,
4227 bfd_vma address)
e0001a05 4228{
43cd72b9 4229 bfd_size_type loop_len, insn_len;
64b607e6 4230 xtensa_opcode opcode;
e0001a05 4231
64b607e6
BW
4232 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4233 if (opcode == XTENSA_UNDEFINED
4234 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4235 {
4236 BFD_ASSERT (FALSE);
4237 return FALSE;
4238 }
4239
43cd72b9 4240 loop_len = insn_decode_len (contents, content_length, offset);
43cd72b9 4241 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
64b607e6
BW
4242 if (loop_len == 0 || insn_len == 0)
4243 {
4244 BFD_ASSERT (FALSE);
4245 return FALSE;
4246 }
e0001a05 4247
43cd72b9
BW
4248 return check_branch_target_aligned_address (address + loop_len, insn_len);
4249}
e0001a05 4250
e0001a05
NC
4251
4252static bfd_boolean
7fa3d080 4253check_branch_target_aligned_address (bfd_vma addr, int len)
e0001a05 4254{
43cd72b9
BW
4255 if (len == 8)
4256 return (addr % 8 == 0);
4257 return ((addr >> 2) == ((addr + len - 1) >> 2));
e0001a05
NC
4258}
4259
43cd72b9
BW
4260\f
4261/* Instruction widening and narrowing. */
e0001a05 4262
7fa3d080
BW
4263/* When FLIX is available we need to access certain instructions only
4264 when they are 16-bit or 24-bit instructions. This table caches
4265 information about such instructions by walking through all the
4266 opcodes and finding the smallest single-slot format into which each
4267 can be encoded. */
4268
4269static xtensa_format *op_single_fmt_table = NULL;
e0001a05
NC
4270
4271
7fa3d080
BW
4272static void
4273init_op_single_format_table (void)
e0001a05 4274{
7fa3d080
BW
4275 xtensa_isa isa = xtensa_default_isa;
4276 xtensa_insnbuf ibuf;
4277 xtensa_opcode opcode;
4278 xtensa_format fmt;
4279 int num_opcodes;
4280
4281 if (op_single_fmt_table)
4282 return;
4283
4284 ibuf = xtensa_insnbuf_alloc (isa);
4285 num_opcodes = xtensa_isa_num_opcodes (isa);
4286
4287 op_single_fmt_table = (xtensa_format *)
4288 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4289 for (opcode = 0; opcode < num_opcodes; opcode++)
4290 {
4291 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4292 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4293 {
4294 if (xtensa_format_num_slots (isa, fmt) == 1
4295 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4296 {
4297 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4298 int fmt_length = xtensa_format_length (isa, fmt);
4299 if (old_fmt == XTENSA_UNDEFINED
4300 || fmt_length < xtensa_format_length (isa, old_fmt))
4301 op_single_fmt_table[opcode] = fmt;
4302 }
4303 }
4304 }
4305 xtensa_insnbuf_free (isa, ibuf);
4306}
4307
4308
4309static xtensa_format
4310get_single_format (xtensa_opcode opcode)
4311{
4312 init_op_single_format_table ();
4313 return op_single_fmt_table[opcode];
4314}
e0001a05 4315
e0001a05 4316
43cd72b9
BW
4317/* For the set of narrowable instructions we do NOT include the
4318 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4319 involved during linker relaxation that may require these to
4320 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4321 requires special case code to ensure it only works when op1 == op2. */
e0001a05 4322
7fa3d080
BW
4323struct string_pair
4324{
4325 const char *wide;
4326 const char *narrow;
4327};
4328
43cd72b9 4329struct string_pair narrowable[] =
e0001a05 4330{
43cd72b9
BW
4331 { "add", "add.n" },
4332 { "addi", "addi.n" },
4333 { "addmi", "addi.n" },
4334 { "l32i", "l32i.n" },
4335 { "movi", "movi.n" },
4336 { "ret", "ret.n" },
4337 { "retw", "retw.n" },
4338 { "s32i", "s32i.n" },
4339 { "or", "mov.n" } /* special case only when op1 == op2 */
4340};
e0001a05 4341
43cd72b9 4342struct string_pair widenable[] =
e0001a05 4343{
43cd72b9
BW
4344 { "add", "add.n" },
4345 { "addi", "addi.n" },
4346 { "addmi", "addi.n" },
4347 { "beqz", "beqz.n" },
4348 { "bnez", "bnez.n" },
4349 { "l32i", "l32i.n" },
4350 { "movi", "movi.n" },
4351 { "ret", "ret.n" },
4352 { "retw", "retw.n" },
4353 { "s32i", "s32i.n" },
4354 { "or", "mov.n" } /* special case only when op1 == op2 */
4355};
e0001a05
NC
4356
4357
64b607e6
BW
4358/* Check if an instruction can be "narrowed", i.e., changed from a standard
4359 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4360 return the instruction buffer holding the narrow instruction. Otherwise,
4361 return 0. The set of valid narrowing are specified by a string table
43cd72b9
BW
4362 but require some special case operand checks in some cases. */
4363
64b607e6
BW
4364static xtensa_insnbuf
4365can_narrow_instruction (xtensa_insnbuf slotbuf,
4366 xtensa_format fmt,
4367 xtensa_opcode opcode)
e0001a05 4368{
43cd72b9 4369 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4370 xtensa_format o_fmt;
4371 unsigned opi;
e0001a05 4372
43cd72b9
BW
4373 static xtensa_insnbuf o_insnbuf = NULL;
4374 static xtensa_insnbuf o_slotbuf = NULL;
e0001a05 4375
64b607e6 4376 if (o_insnbuf == NULL)
43cd72b9 4377 {
43cd72b9
BW
4378 o_insnbuf = xtensa_insnbuf_alloc (isa);
4379 o_slotbuf = xtensa_insnbuf_alloc (isa);
4380 }
e0001a05 4381
64b607e6 4382 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
43cd72b9
BW
4383 {
4384 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
e0001a05 4385
43cd72b9
BW
4386 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4387 {
4388 uint32 value, newval;
4389 int i, operand_count, o_operand_count;
4390 xtensa_opcode o_opcode;
e0001a05 4391
43cd72b9
BW
4392 /* Address does not matter in this case. We might need to
4393 fix it to handle branches/jumps. */
4394 bfd_vma self_address = 0;
e0001a05 4395
43cd72b9
BW
4396 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4397 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4398 return 0;
43cd72b9
BW
4399 o_fmt = get_single_format (o_opcode);
4400 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4401 return 0;
e0001a05 4402
43cd72b9
BW
4403 if (xtensa_format_length (isa, fmt) != 3
4404 || xtensa_format_length (isa, o_fmt) != 2)
64b607e6 4405 return 0;
e0001a05 4406
43cd72b9
BW
4407 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4408 operand_count = xtensa_opcode_num_operands (isa, opcode);
4409 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
e0001a05 4410
43cd72b9 4411 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4412 return 0;
e0001a05 4413
43cd72b9
BW
4414 if (!is_or)
4415 {
4416 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4417 return 0;
43cd72b9
BW
4418 }
4419 else
4420 {
4421 uint32 rawval0, rawval1, rawval2;
e0001a05 4422
64b607e6
BW
4423 if (o_operand_count + 1 != operand_count
4424 || xtensa_operand_get_field (isa, opcode, 0,
4425 fmt, 0, slotbuf, &rawval0) != 0
4426 || xtensa_operand_get_field (isa, opcode, 1,
4427 fmt, 0, slotbuf, &rawval1) != 0
4428 || xtensa_operand_get_field (isa, opcode, 2,
4429 fmt, 0, slotbuf, &rawval2) != 0
4430 || rawval1 != rawval2
4431 || rawval0 == rawval1 /* it is a nop */)
4432 return 0;
43cd72b9 4433 }
e0001a05 4434
43cd72b9
BW
4435 for (i = 0; i < o_operand_count; ++i)
4436 {
4437 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4438 slotbuf, &value)
4439 || xtensa_operand_decode (isa, opcode, i, &value))
64b607e6 4440 return 0;
e0001a05 4441
43cd72b9
BW
4442 /* PC-relative branches need adjustment, but
4443 the PC-rel operand will always have a relocation. */
4444 newval = value;
4445 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4446 self_address)
4447 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4448 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4449 o_slotbuf, newval))
64b607e6 4450 return 0;
43cd72b9 4451 }
e0001a05 4452
64b607e6
BW
4453 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4454 return 0;
e0001a05 4455
64b607e6 4456 return o_insnbuf;
43cd72b9
BW
4457 }
4458 }
64b607e6 4459 return 0;
43cd72b9 4460}
e0001a05 4461
e0001a05 4462
64b607e6
BW
4463/* Attempt to narrow an instruction. If the narrowing is valid, perform
4464 the action in-place directly into the contents and return TRUE. Otherwise,
4465 the return value is FALSE and the contents are not modified. */
e0001a05 4466
43cd72b9 4467static bfd_boolean
64b607e6
BW
4468narrow_instruction (bfd_byte *contents,
4469 bfd_size_type content_length,
4470 bfd_size_type offset)
e0001a05 4471{
43cd72b9 4472 xtensa_opcode opcode;
64b607e6 4473 bfd_size_type insn_len;
43cd72b9 4474 xtensa_isa isa = xtensa_default_isa;
64b607e6
BW
4475 xtensa_format fmt;
4476 xtensa_insnbuf o_insnbuf;
e0001a05 4477
43cd72b9
BW
4478 static xtensa_insnbuf insnbuf = NULL;
4479 static xtensa_insnbuf slotbuf = NULL;
e0001a05 4480
43cd72b9
BW
4481 if (insnbuf == NULL)
4482 {
4483 insnbuf = xtensa_insnbuf_alloc (isa);
4484 slotbuf = xtensa_insnbuf_alloc (isa);
43cd72b9 4485 }
e0001a05 4486
43cd72b9 4487 BFD_ASSERT (offset < content_length);
2c8c90bc 4488
43cd72b9 4489 if (content_length < 2)
e0001a05
NC
4490 return FALSE;
4491
64b607e6 4492 /* We will hand-code a few of these for a little while.
43cd72b9
BW
4493 These have all been specified in the assembler aleady. */
4494 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4495 content_length - offset);
4496 fmt = xtensa_format_decode (isa, insnbuf);
4497 if (xtensa_format_num_slots (isa, fmt) != 1)
e0001a05
NC
4498 return FALSE;
4499
43cd72b9 4500 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
e0001a05
NC
4501 return FALSE;
4502
43cd72b9
BW
4503 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4504 if (opcode == XTENSA_UNDEFINED)
e0001a05 4505 return FALSE;
43cd72b9
BW
4506 insn_len = xtensa_format_length (isa, fmt);
4507 if (insn_len > content_length)
4508 return FALSE;
4509
64b607e6
BW
4510 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4511 if (o_insnbuf)
4512 {
4513 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4514 content_length - offset);
4515 return TRUE;
4516 }
4517
4518 return FALSE;
4519}
4520
4521
4522/* Check if an instruction can be "widened", i.e., changed from a 2-byte
4523 "density" instruction to a standard 3-byte instruction. If it is valid,
4524 return the instruction buffer holding the wide instruction. Otherwise,
4525 return 0. The set of valid widenings are specified by a string table
4526 but require some special case operand checks in some cases. */
4527
4528static xtensa_insnbuf
4529can_widen_instruction (xtensa_insnbuf slotbuf,
4530 xtensa_format fmt,
4531 xtensa_opcode opcode)
4532{
4533 xtensa_isa isa = xtensa_default_isa;
4534 xtensa_format o_fmt;
4535 unsigned opi;
4536
4537 static xtensa_insnbuf o_insnbuf = NULL;
4538 static xtensa_insnbuf o_slotbuf = NULL;
4539
4540 if (o_insnbuf == NULL)
4541 {
4542 o_insnbuf = xtensa_insnbuf_alloc (isa);
4543 o_slotbuf = xtensa_insnbuf_alloc (isa);
4544 }
4545
4546 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
e0001a05 4547 {
43cd72b9
BW
4548 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4549 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4550 || strcmp ("bnez", widenable[opi].wide) == 0);
e0001a05 4551
43cd72b9
BW
4552 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4553 {
4554 uint32 value, newval;
4555 int i, operand_count, o_operand_count, check_operand_count;
4556 xtensa_opcode o_opcode;
e0001a05 4557
43cd72b9
BW
4558 /* Address does not matter in this case. We might need to fix it
4559 to handle branches/jumps. */
4560 bfd_vma self_address = 0;
e0001a05 4561
43cd72b9
BW
4562 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4563 if (o_opcode == XTENSA_UNDEFINED)
64b607e6 4564 return 0;
43cd72b9
BW
4565 o_fmt = get_single_format (o_opcode);
4566 if (o_fmt == XTENSA_UNDEFINED)
64b607e6 4567 return 0;
e0001a05 4568
43cd72b9
BW
4569 if (xtensa_format_length (isa, fmt) != 2
4570 || xtensa_format_length (isa, o_fmt) != 3)
64b607e6 4571 return 0;
e0001a05 4572
43cd72b9
BW
4573 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4574 operand_count = xtensa_opcode_num_operands (isa, opcode);
4575 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4576 check_operand_count = o_operand_count;
e0001a05 4577
43cd72b9 4578 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
64b607e6 4579 return 0;
e0001a05 4580
43cd72b9
BW
4581 if (!is_or)
4582 {
4583 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
64b607e6 4584 return 0;
43cd72b9
BW
4585 }
4586 else
4587 {
4588 uint32 rawval0, rawval1;
4589
64b607e6
BW
4590 if (o_operand_count != operand_count + 1
4591 || xtensa_operand_get_field (isa, opcode, 0,
4592 fmt, 0, slotbuf, &rawval0) != 0
4593 || xtensa_operand_get_field (isa, opcode, 1,
4594 fmt, 0, slotbuf, &rawval1) != 0
4595 || rawval0 == rawval1 /* it is a nop */)
4596 return 0;
43cd72b9
BW
4597 }
4598 if (is_branch)
4599 check_operand_count--;
4600
64b607e6 4601 for (i = 0; i < check_operand_count; i++)
43cd72b9
BW
4602 {
4603 int new_i = i;
4604 if (is_or && i == o_operand_count - 1)
4605 new_i = i - 1;
4606 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4607 slotbuf, &value)
4608 || xtensa_operand_decode (isa, opcode, new_i, &value))
64b607e6 4609 return 0;
43cd72b9
BW
4610
4611 /* PC-relative branches need adjustment, but
4612 the PC-rel operand will always have a relocation. */
4613 newval = value;
4614 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4615 self_address)
4616 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4617 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4618 o_slotbuf, newval))
64b607e6 4619 return 0;
43cd72b9
BW
4620 }
4621
4622 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
64b607e6 4623 return 0;
43cd72b9 4624
64b607e6 4625 return o_insnbuf;
43cd72b9
BW
4626 }
4627 }
64b607e6
BW
4628 return 0;
4629}
4630
4631
4632/* Attempt to widen an instruction. If the widening is valid, perform
4633 the action in-place directly into the contents and return TRUE. Otherwise,
4634 the return value is FALSE and the contents are not modified. */
4635
4636static bfd_boolean
4637widen_instruction (bfd_byte *contents,
4638 bfd_size_type content_length,
4639 bfd_size_type offset)
4640{
4641 xtensa_opcode opcode;
4642 bfd_size_type insn_len;
4643 xtensa_isa isa = xtensa_default_isa;
4644 xtensa_format fmt;
4645 xtensa_insnbuf o_insnbuf;
4646
4647 static xtensa_insnbuf insnbuf = NULL;
4648 static xtensa_insnbuf slotbuf = NULL;
4649
4650 if (insnbuf == NULL)
4651 {
4652 insnbuf = xtensa_insnbuf_alloc (isa);
4653 slotbuf = xtensa_insnbuf_alloc (isa);
4654 }
4655
4656 BFD_ASSERT (offset < content_length);
4657
4658 if (content_length < 2)
4659 return FALSE;
4660
4661 /* We will hand-code a few of these for a little while.
4662 These have all been specified in the assembler aleady. */
4663 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4664 content_length - offset);
4665 fmt = xtensa_format_decode (isa, insnbuf);
4666 if (xtensa_format_num_slots (isa, fmt) != 1)
4667 return FALSE;
4668
4669 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4670 return FALSE;
4671
4672 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4673 if (opcode == XTENSA_UNDEFINED)
4674 return FALSE;
4675 insn_len = xtensa_format_length (isa, fmt);
4676 if (insn_len > content_length)
4677 return FALSE;
4678
4679 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4680 if (o_insnbuf)
4681 {
4682 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4683 content_length - offset);
4684 return TRUE;
4685 }
43cd72b9 4686 return FALSE;
e0001a05
NC
4687}
4688
43cd72b9
BW
4689\f
4690/* Code for transforming CALLs at link-time. */
e0001a05 4691
43cd72b9 4692static bfd_reloc_status_type
7fa3d080
BW
4693elf_xtensa_do_asm_simplify (bfd_byte *contents,
4694 bfd_vma address,
4695 bfd_vma content_length,
4696 char **error_message)
e0001a05 4697{
43cd72b9
BW
4698 static xtensa_insnbuf insnbuf = NULL;
4699 static xtensa_insnbuf slotbuf = NULL;
4700 xtensa_format core_format = XTENSA_UNDEFINED;
4701 xtensa_opcode opcode;
4702 xtensa_opcode direct_call_opcode;
4703 xtensa_isa isa = xtensa_default_isa;
4704 bfd_byte *chbuf = contents + address;
4705 int opn;
e0001a05 4706
43cd72b9 4707 if (insnbuf == NULL)
e0001a05 4708 {
43cd72b9
BW
4709 insnbuf = xtensa_insnbuf_alloc (isa);
4710 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4711 }
e0001a05 4712
43cd72b9
BW
4713 if (content_length < address)
4714 {
4715 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4716 return bfd_reloc_other;
4717 }
e0001a05 4718
43cd72b9
BW
4719 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4720 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4721 if (direct_call_opcode == XTENSA_UNDEFINED)
4722 {
4723 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4724 return bfd_reloc_other;
4725 }
4726
4727 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4728 core_format = xtensa_format_lookup (isa, "x24");
4729 opcode = xtensa_opcode_lookup (isa, "or");
4730 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4731 for (opn = 0; opn < 3; opn++)
4732 {
4733 uint32 regno = 1;
4734 xtensa_operand_encode (isa, opcode, opn, &regno);
4735 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4736 slotbuf, regno);
4737 }
4738 xtensa_format_encode (isa, core_format, insnbuf);
4739 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4740 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
e0001a05 4741
43cd72b9
BW
4742 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4743 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4744 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
e0001a05 4745
43cd72b9
BW
4746 xtensa_format_encode (isa, core_format, insnbuf);
4747 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4748 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4749 content_length - address - 3);
e0001a05 4750
43cd72b9
BW
4751 return bfd_reloc_ok;
4752}
e0001a05 4753
e0001a05 4754
43cd72b9 4755static bfd_reloc_status_type
7fa3d080
BW
4756contract_asm_expansion (bfd_byte *contents,
4757 bfd_vma content_length,
4758 Elf_Internal_Rela *irel,
4759 char **error_message)
43cd72b9
BW
4760{
4761 bfd_reloc_status_type retval =
4762 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4763 error_message);
e0001a05 4764
43cd72b9
BW
4765 if (retval != bfd_reloc_ok)
4766 return bfd_reloc_dangerous;
e0001a05 4767
43cd72b9
BW
4768 /* Update the irel->r_offset field so that the right immediate and
4769 the right instruction are modified during the relocation. */
4770 irel->r_offset += 3;
4771 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4772 return bfd_reloc_ok;
4773}
e0001a05 4774
e0001a05 4775
43cd72b9 4776static xtensa_opcode
7fa3d080 4777swap_callx_for_call_opcode (xtensa_opcode opcode)
e0001a05 4778{
43cd72b9 4779 init_call_opcodes ();
e0001a05 4780
43cd72b9
BW
4781 if (opcode == callx0_op) return call0_op;
4782 if (opcode == callx4_op) return call4_op;
4783 if (opcode == callx8_op) return call8_op;
4784 if (opcode == callx12_op) return call12_op;
e0001a05 4785
43cd72b9
BW
4786 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4787 return XTENSA_UNDEFINED;
4788}
e0001a05 4789
e0001a05 4790
43cd72b9
BW
4791/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4792 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4793 If not, return XTENSA_UNDEFINED. */
e0001a05 4794
43cd72b9
BW
4795#define L32R_TARGET_REG_OPERAND 0
4796#define CONST16_TARGET_REG_OPERAND 0
4797#define CALLN_SOURCE_OPERAND 0
e0001a05 4798
43cd72b9 4799static xtensa_opcode
7fa3d080 4800get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
e0001a05 4801{
43cd72b9
BW
4802 static xtensa_insnbuf insnbuf = NULL;
4803 static xtensa_insnbuf slotbuf = NULL;
4804 xtensa_format fmt;
4805 xtensa_opcode opcode;
4806 xtensa_isa isa = xtensa_default_isa;
4807 uint32 regno, const16_regno, call_regno;
4808 int offset = 0;
e0001a05 4809
43cd72b9 4810 if (insnbuf == NULL)
e0001a05 4811 {
43cd72b9
BW
4812 insnbuf = xtensa_insnbuf_alloc (isa);
4813 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 4814 }
43cd72b9
BW
4815
4816 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4817 fmt = xtensa_format_decode (isa, insnbuf);
4818 if (fmt == XTENSA_UNDEFINED
4819 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4820 return XTENSA_UNDEFINED;
4821
4822 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4823 if (opcode == XTENSA_UNDEFINED)
4824 return XTENSA_UNDEFINED;
4825
4826 if (opcode == get_l32r_opcode ())
e0001a05 4827 {
43cd72b9
BW
4828 if (p_uses_l32r)
4829 *p_uses_l32r = TRUE;
4830 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4831 fmt, 0, slotbuf, &regno)
4832 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4833 &regno))
4834 return XTENSA_UNDEFINED;
e0001a05 4835 }
43cd72b9 4836 else if (opcode == get_const16_opcode ())
e0001a05 4837 {
43cd72b9
BW
4838 if (p_uses_l32r)
4839 *p_uses_l32r = FALSE;
4840 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4841 fmt, 0, slotbuf, &regno)
4842 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4843 &regno))
4844 return XTENSA_UNDEFINED;
4845
4846 /* Check that the next instruction is also CONST16. */
4847 offset += xtensa_format_length (isa, fmt);
4848 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4849 fmt = xtensa_format_decode (isa, insnbuf);
4850 if (fmt == XTENSA_UNDEFINED
4851 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4852 return XTENSA_UNDEFINED;
4853 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4854 if (opcode != get_const16_opcode ())
4855 return XTENSA_UNDEFINED;
4856
4857 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4858 fmt, 0, slotbuf, &const16_regno)
4859 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4860 &const16_regno)
4861 || const16_regno != regno)
4862 return XTENSA_UNDEFINED;
e0001a05 4863 }
43cd72b9
BW
4864 else
4865 return XTENSA_UNDEFINED;
e0001a05 4866
43cd72b9
BW
4867 /* Next instruction should be an CALLXn with operand 0 == regno. */
4868 offset += xtensa_format_length (isa, fmt);
4869 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4870 fmt = xtensa_format_decode (isa, insnbuf);
4871 if (fmt == XTENSA_UNDEFINED
4872 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4873 return XTENSA_UNDEFINED;
4874 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4875 if (opcode == XTENSA_UNDEFINED
4876 || !is_indirect_call_opcode (opcode))
4877 return XTENSA_UNDEFINED;
e0001a05 4878
43cd72b9
BW
4879 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4880 fmt, 0, slotbuf, &call_regno)
4881 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4882 &call_regno))
4883 return XTENSA_UNDEFINED;
e0001a05 4884
43cd72b9
BW
4885 if (call_regno != regno)
4886 return XTENSA_UNDEFINED;
e0001a05 4887
43cd72b9
BW
4888 return opcode;
4889}
e0001a05 4890
43cd72b9
BW
4891\f
4892/* Data structures used during relaxation. */
e0001a05 4893
43cd72b9 4894/* r_reloc: relocation values. */
e0001a05 4895
43cd72b9
BW
4896/* Through the relaxation process, we need to keep track of the values
4897 that will result from evaluating relocations. The standard ELF
4898 relocation structure is not sufficient for this purpose because we're
4899 operating on multiple input files at once, so we need to know which
4900 input file a relocation refers to. The r_reloc structure thus
4901 records both the input file (bfd) and ELF relocation.
e0001a05 4902
43cd72b9
BW
4903 For efficiency, an r_reloc also contains a "target_offset" field to
4904 cache the target-section-relative offset value that is represented by
4905 the relocation.
4906
4907 The r_reloc also contains a virtual offset that allows multiple
4908 inserted literals to be placed at the same "address" with
4909 different offsets. */
e0001a05 4910
43cd72b9 4911typedef struct r_reloc_struct r_reloc;
e0001a05 4912
43cd72b9 4913struct r_reloc_struct
e0001a05 4914{
43cd72b9
BW
4915 bfd *abfd;
4916 Elf_Internal_Rela rela;
e0001a05 4917 bfd_vma target_offset;
43cd72b9 4918 bfd_vma virtual_offset;
e0001a05
NC
4919};
4920
e0001a05 4921
43cd72b9
BW
4922/* The r_reloc structure is included by value in literal_value, but not
4923 every literal_value has an associated relocation -- some are simple
4924 constants. In such cases, we set all the fields in the r_reloc
4925 struct to zero. The r_reloc_is_const function should be used to
4926 detect this case. */
e0001a05 4927
43cd72b9 4928static bfd_boolean
7fa3d080 4929r_reloc_is_const (const r_reloc *r_rel)
e0001a05 4930{
43cd72b9 4931 return (r_rel->abfd == NULL);
e0001a05
NC
4932}
4933
4934
43cd72b9 4935static bfd_vma
7fa3d080 4936r_reloc_get_target_offset (const r_reloc *r_rel)
e0001a05 4937{
43cd72b9
BW
4938 bfd_vma target_offset;
4939 unsigned long r_symndx;
e0001a05 4940
43cd72b9
BW
4941 BFD_ASSERT (!r_reloc_is_const (r_rel));
4942 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4943 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4944 return (target_offset + r_rel->rela.r_addend);
4945}
e0001a05 4946
e0001a05 4947
43cd72b9 4948static struct elf_link_hash_entry *
7fa3d080 4949r_reloc_get_hash_entry (const r_reloc *r_rel)
e0001a05 4950{
43cd72b9
BW
4951 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4952 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4953}
e0001a05 4954
43cd72b9
BW
4955
4956static asection *
7fa3d080 4957r_reloc_get_section (const r_reloc *r_rel)
43cd72b9
BW
4958{
4959 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4960 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4961}
e0001a05
NC
4962
4963
4964static bfd_boolean
7fa3d080 4965r_reloc_is_defined (const r_reloc *r_rel)
e0001a05 4966{
43cd72b9
BW
4967 asection *sec;
4968 if (r_rel == NULL)
e0001a05 4969 return FALSE;
e0001a05 4970
43cd72b9
BW
4971 sec = r_reloc_get_section (r_rel);
4972 if (sec == bfd_abs_section_ptr
4973 || sec == bfd_com_section_ptr
4974 || sec == bfd_und_section_ptr)
4975 return FALSE;
4976 return TRUE;
e0001a05
NC
4977}
4978
4979
7fa3d080
BW
4980static void
4981r_reloc_init (r_reloc *r_rel,
4982 bfd *abfd,
4983 Elf_Internal_Rela *irel,
4984 bfd_byte *contents,
4985 bfd_size_type content_length)
4986{
4987 int r_type;
4988 reloc_howto_type *howto;
4989
4990 if (irel)
4991 {
4992 r_rel->rela = *irel;
4993 r_rel->abfd = abfd;
4994 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4995 r_rel->virtual_offset = 0;
4996 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4997 howto = &elf_howto_table[r_type];
4998 if (howto->partial_inplace)
4999 {
5000 bfd_vma inplace_val;
5001 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5002
5003 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5004 r_rel->target_offset += inplace_val;
5005 }
5006 }
5007 else
5008 memset (r_rel, 0, sizeof (r_reloc));
5009}
5010
5011
43cd72b9
BW
5012#if DEBUG
5013
e0001a05 5014static void
7fa3d080 5015print_r_reloc (FILE *fp, const r_reloc *r_rel)
e0001a05 5016{
43cd72b9
BW
5017 if (r_reloc_is_defined (r_rel))
5018 {
5019 asection *sec = r_reloc_get_section (r_rel);
5020 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5021 }
5022 else if (r_reloc_get_hash_entry (r_rel))
5023 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5024 else
5025 fprintf (fp, " ?? + ");
e0001a05 5026
43cd72b9
BW
5027 fprintf_vma (fp, r_rel->target_offset);
5028 if (r_rel->virtual_offset)
5029 {
5030 fprintf (fp, " + ");
5031 fprintf_vma (fp, r_rel->virtual_offset);
5032 }
5033
5034 fprintf (fp, ")");
5035}
e0001a05 5036
43cd72b9 5037#endif /* DEBUG */
e0001a05 5038
43cd72b9
BW
5039\f
5040/* source_reloc: relocations that reference literals. */
e0001a05 5041
43cd72b9
BW
5042/* To determine whether literals can be coalesced, we need to first
5043 record all the relocations that reference the literals. The
5044 source_reloc structure below is used for this purpose. The
5045 source_reloc entries are kept in a per-literal-section array, sorted
5046 by offset within the literal section (i.e., target offset).
e0001a05 5047
43cd72b9
BW
5048 The source_sec and r_rel.rela.r_offset fields identify the source of
5049 the relocation. The r_rel field records the relocation value, i.e.,
5050 the offset of the literal being referenced. The opnd field is needed
5051 to determine the range of the immediate field to which the relocation
5052 applies, so we can determine whether another literal with the same
5053 value is within range. The is_null field is true when the relocation
5054 is being removed (e.g., when an L32R is being removed due to a CALLX
5055 that is converted to a direct CALL). */
e0001a05 5056
43cd72b9
BW
5057typedef struct source_reloc_struct source_reloc;
5058
5059struct source_reloc_struct
e0001a05 5060{
43cd72b9
BW
5061 asection *source_sec;
5062 r_reloc r_rel;
5063 xtensa_opcode opcode;
5064 int opnd;
5065 bfd_boolean is_null;
5066 bfd_boolean is_abs_literal;
5067};
e0001a05 5068
e0001a05 5069
e0001a05 5070static void
7fa3d080
BW
5071init_source_reloc (source_reloc *reloc,
5072 asection *source_sec,
5073 const r_reloc *r_rel,
5074 xtensa_opcode opcode,
5075 int opnd,
5076 bfd_boolean is_abs_literal)
e0001a05 5077{
43cd72b9
BW
5078 reloc->source_sec = source_sec;
5079 reloc->r_rel = *r_rel;
5080 reloc->opcode = opcode;
5081 reloc->opnd = opnd;
5082 reloc->is_null = FALSE;
5083 reloc->is_abs_literal = is_abs_literal;
e0001a05
NC
5084}
5085
e0001a05 5086
43cd72b9
BW
5087/* Find the source_reloc for a particular source offset and relocation
5088 type. Note that the array is sorted by _target_ offset, so this is
5089 just a linear search. */
e0001a05 5090
43cd72b9 5091static source_reloc *
7fa3d080
BW
5092find_source_reloc (source_reloc *src_relocs,
5093 int src_count,
5094 asection *sec,
5095 Elf_Internal_Rela *irel)
e0001a05 5096{
43cd72b9 5097 int i;
e0001a05 5098
43cd72b9
BW
5099 for (i = 0; i < src_count; i++)
5100 {
5101 if (src_relocs[i].source_sec == sec
5102 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5103 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5104 == ELF32_R_TYPE (irel->r_info)))
5105 return &src_relocs[i];
5106 }
e0001a05 5107
43cd72b9 5108 return NULL;
e0001a05
NC
5109}
5110
5111
43cd72b9 5112static int
7fa3d080 5113source_reloc_compare (const void *ap, const void *bp)
e0001a05 5114{
43cd72b9
BW
5115 const source_reloc *a = (const source_reloc *) ap;
5116 const source_reloc *b = (const source_reloc *) bp;
e0001a05 5117
43cd72b9
BW
5118 if (a->r_rel.target_offset != b->r_rel.target_offset)
5119 return (a->r_rel.target_offset - b->r_rel.target_offset);
e0001a05 5120
43cd72b9
BW
5121 /* We don't need to sort on these criteria for correctness,
5122 but enforcing a more strict ordering prevents unstable qsort
5123 from behaving differently with different implementations.
5124 Without the code below we get correct but different results
5125 on Solaris 2.7 and 2.8. We would like to always produce the
5126 same results no matter the host. */
5127
5128 if ((!a->is_null) - (!b->is_null))
5129 return ((!a->is_null) - (!b->is_null));
5130 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
e0001a05
NC
5131}
5132
43cd72b9
BW
5133\f
5134/* Literal values and value hash tables. */
e0001a05 5135
43cd72b9
BW
5136/* Literals with the same value can be coalesced. The literal_value
5137 structure records the value of a literal: the "r_rel" field holds the
5138 information from the relocation on the literal (if there is one) and
5139 the "value" field holds the contents of the literal word itself.
e0001a05 5140
43cd72b9
BW
5141 The value_map structure records a literal value along with the
5142 location of a literal holding that value. The value_map hash table
5143 is indexed by the literal value, so that we can quickly check if a
5144 particular literal value has been seen before and is thus a candidate
5145 for coalescing. */
e0001a05 5146
43cd72b9
BW
5147typedef struct literal_value_struct literal_value;
5148typedef struct value_map_struct value_map;
5149typedef struct value_map_hash_table_struct value_map_hash_table;
e0001a05 5150
43cd72b9 5151struct literal_value_struct
e0001a05 5152{
43cd72b9
BW
5153 r_reloc r_rel;
5154 unsigned long value;
5155 bfd_boolean is_abs_literal;
5156};
5157
5158struct value_map_struct
5159{
5160 literal_value val; /* The literal value. */
5161 r_reloc loc; /* Location of the literal. */
5162 value_map *next;
5163};
5164
5165struct value_map_hash_table_struct
5166{
5167 unsigned bucket_count;
5168 value_map **buckets;
5169 unsigned count;
5170 bfd_boolean has_last_loc;
5171 r_reloc last_loc;
5172};
5173
5174
e0001a05 5175static void
7fa3d080
BW
5176init_literal_value (literal_value *lit,
5177 const r_reloc *r_rel,
5178 unsigned long value,
5179 bfd_boolean is_abs_literal)
e0001a05 5180{
43cd72b9
BW
5181 lit->r_rel = *r_rel;
5182 lit->value = value;
5183 lit->is_abs_literal = is_abs_literal;
e0001a05
NC
5184}
5185
5186
43cd72b9 5187static bfd_boolean
7fa3d080
BW
5188literal_value_equal (const literal_value *src1,
5189 const literal_value *src2,
5190 bfd_boolean final_static_link)
e0001a05 5191{
43cd72b9 5192 struct elf_link_hash_entry *h1, *h2;
e0001a05 5193
43cd72b9
BW
5194 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5195 return FALSE;
e0001a05 5196
43cd72b9
BW
5197 if (r_reloc_is_const (&src1->r_rel))
5198 return (src1->value == src2->value);
e0001a05 5199
43cd72b9
BW
5200 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5201 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5202 return FALSE;
e0001a05 5203
43cd72b9
BW
5204 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5205 return FALSE;
5206
5207 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5208 return FALSE;
5209
5210 if (src1->value != src2->value)
5211 return FALSE;
5212
5213 /* Now check for the same section (if defined) or the same elf_hash
5214 (if undefined or weak). */
5215 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5216 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5217 if (r_reloc_is_defined (&src1->r_rel)
5218 && (final_static_link
5219 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5220 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5221 {
5222 if (r_reloc_get_section (&src1->r_rel)
5223 != r_reloc_get_section (&src2->r_rel))
5224 return FALSE;
5225 }
5226 else
5227 {
5228 /* Require that the hash entries (i.e., symbols) be identical. */
5229 if (h1 != h2 || h1 == 0)
5230 return FALSE;
5231 }
5232
5233 if (src1->is_abs_literal != src2->is_abs_literal)
5234 return FALSE;
5235
5236 return TRUE;
e0001a05
NC
5237}
5238
e0001a05 5239
43cd72b9
BW
5240/* Must be power of 2. */
5241#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
e0001a05 5242
43cd72b9 5243static value_map_hash_table *
7fa3d080 5244value_map_hash_table_init (void)
43cd72b9
BW
5245{
5246 value_map_hash_table *values;
e0001a05 5247
43cd72b9
BW
5248 values = (value_map_hash_table *)
5249 bfd_zmalloc (sizeof (value_map_hash_table));
5250 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5251 values->count = 0;
5252 values->buckets = (value_map **)
5253 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5254 if (values->buckets == NULL)
5255 {
5256 free (values);
5257 return NULL;
5258 }
5259 values->has_last_loc = FALSE;
5260
5261 return values;
5262}
5263
5264
5265static void
7fa3d080 5266value_map_hash_table_delete (value_map_hash_table *table)
e0001a05 5267{
43cd72b9
BW
5268 free (table->buckets);
5269 free (table);
5270}
5271
5272
5273static unsigned
7fa3d080 5274hash_bfd_vma (bfd_vma val)
43cd72b9
BW
5275{
5276 return (val >> 2) + (val >> 10);
5277}
5278
5279
5280static unsigned
7fa3d080 5281literal_value_hash (const literal_value *src)
43cd72b9
BW
5282{
5283 unsigned hash_val;
e0001a05 5284
43cd72b9
BW
5285 hash_val = hash_bfd_vma (src->value);
5286 if (!r_reloc_is_const (&src->r_rel))
e0001a05 5287 {
43cd72b9
BW
5288 void *sec_or_hash;
5289
5290 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5291 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5292 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5293
5294 /* Now check for the same section and the same elf_hash. */
5295 if (r_reloc_is_defined (&src->r_rel))
5296 sec_or_hash = r_reloc_get_section (&src->r_rel);
5297 else
5298 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
f60ca5e3 5299 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
e0001a05 5300 }
43cd72b9
BW
5301 return hash_val;
5302}
e0001a05 5303
e0001a05 5304
43cd72b9 5305/* Check if the specified literal_value has been seen before. */
e0001a05 5306
43cd72b9 5307static value_map *
7fa3d080
BW
5308value_map_get_cached_value (value_map_hash_table *map,
5309 const literal_value *val,
5310 bfd_boolean final_static_link)
43cd72b9
BW
5311{
5312 value_map *map_e;
5313 value_map *bucket;
5314 unsigned idx;
5315
5316 idx = literal_value_hash (val);
5317 idx = idx & (map->bucket_count - 1);
5318 bucket = map->buckets[idx];
5319 for (map_e = bucket; map_e; map_e = map_e->next)
e0001a05 5320 {
43cd72b9
BW
5321 if (literal_value_equal (&map_e->val, val, final_static_link))
5322 return map_e;
5323 }
5324 return NULL;
5325}
e0001a05 5326
e0001a05 5327
43cd72b9
BW
5328/* Record a new literal value. It is illegal to call this if VALUE
5329 already has an entry here. */
5330
5331static value_map *
7fa3d080
BW
5332add_value_map (value_map_hash_table *map,
5333 const literal_value *val,
5334 const r_reloc *loc,
5335 bfd_boolean final_static_link)
43cd72b9
BW
5336{
5337 value_map **bucket_p;
5338 unsigned idx;
5339
5340 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5341 if (val_e == NULL)
5342 {
5343 bfd_set_error (bfd_error_no_memory);
5344 return NULL;
e0001a05
NC
5345 }
5346
43cd72b9
BW
5347 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5348 val_e->val = *val;
5349 val_e->loc = *loc;
5350
5351 idx = literal_value_hash (val);
5352 idx = idx & (map->bucket_count - 1);
5353 bucket_p = &map->buckets[idx];
5354
5355 val_e->next = *bucket_p;
5356 *bucket_p = val_e;
5357 map->count++;
5358 /* FIXME: Consider resizing the hash table if we get too many entries. */
5359
5360 return val_e;
e0001a05
NC
5361}
5362
43cd72b9
BW
5363\f
5364/* Lists of text actions (ta_) for narrowing, widening, longcall
5365 conversion, space fill, code & literal removal, etc. */
5366
5367/* The following text actions are generated:
5368
5369 "ta_remove_insn" remove an instruction or instructions
5370 "ta_remove_longcall" convert longcall to call
5371 "ta_convert_longcall" convert longcall to nop/call
5372 "ta_narrow_insn" narrow a wide instruction
5373 "ta_widen" widen a narrow instruction
5374 "ta_fill" add fill or remove fill
5375 removed < 0 is a fill; branches to the fill address will be
5376 changed to address + fill size (e.g., address - removed)
5377 removed >= 0 branches to the fill address will stay unchanged
5378 "ta_remove_literal" remove a literal; this action is
5379 indicated when a literal is removed
5380 or replaced.
5381 "ta_add_literal" insert a new literal; this action is
5382 indicated when a literal has been moved.
5383 It may use a virtual_offset because
5384 multiple literals can be placed at the
5385 same location.
5386
5387 For each of these text actions, we also record the number of bytes
5388 removed by performing the text action. In the case of a "ta_widen"
5389 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5390
5391typedef struct text_action_struct text_action;
5392typedef struct text_action_list_struct text_action_list;
5393typedef enum text_action_enum_t text_action_t;
5394
5395enum text_action_enum_t
5396{
5397 ta_none,
5398 ta_remove_insn, /* removed = -size */
5399 ta_remove_longcall, /* removed = -size */
5400 ta_convert_longcall, /* removed = 0 */
5401 ta_narrow_insn, /* removed = -1 */
5402 ta_widen_insn, /* removed = +1 */
5403 ta_fill, /* removed = +size */
5404 ta_remove_literal,
5405 ta_add_literal
5406};
e0001a05 5407
e0001a05 5408
43cd72b9
BW
5409/* Structure for a text action record. */
5410struct text_action_struct
e0001a05 5411{
43cd72b9
BW
5412 text_action_t action;
5413 asection *sec; /* Optional */
5414 bfd_vma offset;
5415 bfd_vma virtual_offset; /* Zero except for adding literals. */
5416 int removed_bytes;
5417 literal_value value; /* Only valid when adding literals. */
e0001a05 5418
43cd72b9
BW
5419 text_action *next;
5420};
e0001a05 5421
e0001a05 5422
43cd72b9
BW
5423/* List of all of the actions taken on a text section. */
5424struct text_action_list_struct
5425{
5426 text_action *head;
5427};
e0001a05 5428
e0001a05 5429
7fa3d080
BW
5430static text_action *
5431find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
43cd72b9
BW
5432{
5433 text_action **m_p;
5434
5435 /* It is not necessary to fill at the end of a section. */
5436 if (sec->size == offset)
5437 return NULL;
5438
7fa3d080 5439 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5440 {
5441 text_action *t = *m_p;
5442 /* When the action is another fill at the same address,
5443 just increase the size. */
5444 if (t->offset == offset && t->action == ta_fill)
5445 return t;
5446 }
5447 return NULL;
5448}
5449
5450
5451static int
7fa3d080
BW
5452compute_removed_action_diff (const text_action *ta,
5453 asection *sec,
5454 bfd_vma offset,
5455 int removed,
5456 int removable_space)
43cd72b9
BW
5457{
5458 int new_removed;
5459 int current_removed = 0;
5460
7fa3d080 5461 if (ta)
43cd72b9
BW
5462 current_removed = ta->removed_bytes;
5463
5464 BFD_ASSERT (ta == NULL || ta->offset == offset);
5465 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5466
5467 /* It is not necessary to fill at the end of a section. Clean this up. */
5468 if (sec->size == offset)
5469 new_removed = removable_space - 0;
5470 else
5471 {
5472 int space;
5473 int added = -removed - current_removed;
5474 /* Ignore multiples of the section alignment. */
5475 added = ((1 << sec->alignment_power) - 1) & added;
5476 new_removed = (-added);
5477
5478 /* Modify for removable. */
5479 space = removable_space - new_removed;
5480 new_removed = (removable_space
5481 - (((1 << sec->alignment_power) - 1) & space));
5482 }
5483 return (new_removed - current_removed);
5484}
5485
5486
7fa3d080
BW
5487static void
5488adjust_fill_action (text_action *ta, int fill_diff)
43cd72b9
BW
5489{
5490 ta->removed_bytes += fill_diff;
5491}
5492
5493
5494/* Add a modification action to the text. For the case of adding or
5495 removing space, modify any current fill and assume that
5496 "unreachable_space" bytes can be freely contracted. Note that a
5497 negative removed value is a fill. */
5498
5499static void
7fa3d080
BW
5500text_action_add (text_action_list *l,
5501 text_action_t action,
5502 asection *sec,
5503 bfd_vma offset,
5504 int removed)
43cd72b9
BW
5505{
5506 text_action **m_p;
5507 text_action *ta;
5508
5509 /* It is not necessary to fill at the end of a section. */
5510 if (action == ta_fill && sec->size == offset)
5511 return;
5512
5513 /* It is not necessary to fill 0 bytes. */
5514 if (action == ta_fill && removed == 0)
5515 return;
5516
7fa3d080 5517 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
43cd72b9
BW
5518 {
5519 text_action *t = *m_p;
658ff993
SA
5520
5521 if (action == ta_fill)
43cd72b9 5522 {
658ff993
SA
5523 /* When the action is another fill at the same address,
5524 just increase the size. */
5525 if (t->offset == offset && t->action == ta_fill)
5526 {
5527 t->removed_bytes += removed;
5528 return;
5529 }
5530 /* Fills need to happen before widens so that we don't
5531 insert fill bytes into the instruction stream. */
5532 if (t->offset == offset && t->action == ta_widen_insn)
5533 break;
43cd72b9
BW
5534 }
5535 }
5536
5537 /* Create a new record and fill it up. */
5538 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5539 ta->action = action;
5540 ta->sec = sec;
5541 ta->offset = offset;
5542 ta->removed_bytes = removed;
5543 ta->next = (*m_p);
5544 *m_p = ta;
5545}
5546
5547
5548static void
7fa3d080
BW
5549text_action_add_literal (text_action_list *l,
5550 text_action_t action,
5551 const r_reloc *loc,
5552 const literal_value *value,
5553 int removed)
43cd72b9
BW
5554{
5555 text_action **m_p;
5556 text_action *ta;
5557 asection *sec = r_reloc_get_section (loc);
5558 bfd_vma offset = loc->target_offset;
5559 bfd_vma virtual_offset = loc->virtual_offset;
5560
5561 BFD_ASSERT (action == ta_add_literal);
5562
5563 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5564 {
5565 if ((*m_p)->offset > offset
5566 && ((*m_p)->offset != offset
5567 || (*m_p)->virtual_offset > virtual_offset))
5568 break;
5569 }
5570
5571 /* Create a new record and fill it up. */
5572 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5573 ta->action = action;
5574 ta->sec = sec;
5575 ta->offset = offset;
5576 ta->virtual_offset = virtual_offset;
5577 ta->value = *value;
5578 ta->removed_bytes = removed;
5579 ta->next = (*m_p);
5580 *m_p = ta;
5581}
5582
5583
03669f1c
BW
5584/* Find the total offset adjustment for the relaxations specified by
5585 text_actions, beginning from a particular starting action. This is
5586 typically used from offset_with_removed_text to search an entire list of
5587 actions, but it may also be called directly when adjusting adjacent offsets
5588 so that each search may begin where the previous one left off. */
5589
5590static int
5591removed_by_actions (text_action **p_start_action,
5592 bfd_vma offset,
5593 bfd_boolean before_fill)
43cd72b9
BW
5594{
5595 text_action *r;
5596 int removed = 0;
5597
03669f1c
BW
5598 r = *p_start_action;
5599 while (r)
43cd72b9 5600 {
03669f1c
BW
5601 if (r->offset > offset)
5602 break;
5603
5604 if (r->offset == offset
5605 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5606 break;
5607
5608 removed += r->removed_bytes;
5609
5610 r = r->next;
43cd72b9
BW
5611 }
5612
03669f1c
BW
5613 *p_start_action = r;
5614 return removed;
5615}
5616
5617
5618static bfd_vma
5619offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5620{
5621 text_action *r = action_list->head;
5622 return offset - removed_by_actions (&r, offset, FALSE);
43cd72b9
BW
5623}
5624
5625
03e94c08
BW
5626static unsigned
5627action_list_count (text_action_list *action_list)
5628{
5629 text_action *r = action_list->head;
5630 unsigned count = 0;
5631 for (r = action_list->head; r != NULL; r = r->next)
5632 {
5633 count++;
5634 }
5635 return count;
5636}
5637
5638
43cd72b9
BW
5639/* The find_insn_action routine will only find non-fill actions. */
5640
7fa3d080
BW
5641static text_action *
5642find_insn_action (text_action_list *action_list, bfd_vma offset)
43cd72b9
BW
5643{
5644 text_action *t;
5645 for (t = action_list->head; t; t = t->next)
5646 {
5647 if (t->offset == offset)
5648 {
5649 switch (t->action)
5650 {
5651 case ta_none:
5652 case ta_fill:
5653 break;
5654 case ta_remove_insn:
5655 case ta_remove_longcall:
5656 case ta_convert_longcall:
5657 case ta_narrow_insn:
5658 case ta_widen_insn:
5659 return t;
5660 case ta_remove_literal:
5661 case ta_add_literal:
5662 BFD_ASSERT (0);
5663 break;
5664 }
5665 }
5666 }
5667 return NULL;
5668}
5669
5670
5671#if DEBUG
5672
5673static void
7fa3d080 5674print_action_list (FILE *fp, text_action_list *action_list)
43cd72b9
BW
5675{
5676 text_action *r;
5677
5678 fprintf (fp, "Text Action\n");
5679 for (r = action_list->head; r != NULL; r = r->next)
5680 {
5681 const char *t = "unknown";
5682 switch (r->action)
5683 {
5684 case ta_remove_insn:
5685 t = "remove_insn"; break;
5686 case ta_remove_longcall:
5687 t = "remove_longcall"; break;
5688 case ta_convert_longcall:
c46082c8 5689 t = "convert_longcall"; break;
43cd72b9
BW
5690 case ta_narrow_insn:
5691 t = "narrow_insn"; break;
5692 case ta_widen_insn:
5693 t = "widen_insn"; break;
5694 case ta_fill:
5695 t = "fill"; break;
5696 case ta_none:
5697 t = "none"; break;
5698 case ta_remove_literal:
5699 t = "remove_literal"; break;
5700 case ta_add_literal:
5701 t = "add_literal"; break;
5702 }
5703
5704 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5705 r->sec->owner->filename,
9ccb8af9 5706 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
43cd72b9
BW
5707 }
5708}
5709
5710#endif /* DEBUG */
5711
5712\f
5713/* Lists of literals being coalesced or removed. */
5714
5715/* In the usual case, the literal identified by "from" is being
5716 coalesced with another literal identified by "to". If the literal is
5717 unused and is being removed altogether, "to.abfd" will be NULL.
5718 The removed_literal entries are kept on a per-section list, sorted
5719 by the "from" offset field. */
5720
5721typedef struct removed_literal_struct removed_literal;
5722typedef struct removed_literal_list_struct removed_literal_list;
5723
5724struct removed_literal_struct
5725{
5726 r_reloc from;
5727 r_reloc to;
5728 removed_literal *next;
5729};
5730
5731struct removed_literal_list_struct
5732{
5733 removed_literal *head;
5734 removed_literal *tail;
5735};
5736
5737
43cd72b9
BW
5738/* Record that the literal at "from" is being removed. If "to" is not
5739 NULL, the "from" literal is being coalesced with the "to" literal. */
5740
5741static void
7fa3d080
BW
5742add_removed_literal (removed_literal_list *removed_list,
5743 const r_reloc *from,
5744 const r_reloc *to)
43cd72b9
BW
5745{
5746 removed_literal *r, *new_r, *next_r;
5747
5748 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5749
5750 new_r->from = *from;
5751 if (to)
5752 new_r->to = *to;
5753 else
5754 new_r->to.abfd = NULL;
5755 new_r->next = NULL;
5756
5757 r = removed_list->head;
5758 if (r == NULL)
5759 {
5760 removed_list->head = new_r;
5761 removed_list->tail = new_r;
5762 }
5763 /* Special check for common case of append. */
5764 else if (removed_list->tail->from.target_offset < from->target_offset)
5765 {
5766 removed_list->tail->next = new_r;
5767 removed_list->tail = new_r;
5768 }
5769 else
5770 {
7fa3d080 5771 while (r->from.target_offset < from->target_offset && r->next)
43cd72b9
BW
5772 {
5773 r = r->next;
5774 }
5775 next_r = r->next;
5776 r->next = new_r;
5777 new_r->next = next_r;
5778 if (next_r == NULL)
5779 removed_list->tail = new_r;
5780 }
5781}
5782
5783
5784/* Check if the list of removed literals contains an entry for the
5785 given address. Return the entry if found. */
5786
5787static removed_literal *
7fa3d080 5788find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
43cd72b9
BW
5789{
5790 removed_literal *r = removed_list->head;
5791 while (r && r->from.target_offset < addr)
5792 r = r->next;
5793 if (r && r->from.target_offset == addr)
5794 return r;
5795 return NULL;
5796}
5797
5798
5799#if DEBUG
5800
5801static void
7fa3d080 5802print_removed_literals (FILE *fp, removed_literal_list *removed_list)
43cd72b9
BW
5803{
5804 removed_literal *r;
5805 r = removed_list->head;
5806 if (r)
5807 fprintf (fp, "Removed Literals\n");
5808 for (; r != NULL; r = r->next)
5809 {
5810 print_r_reloc (fp, &r->from);
5811 fprintf (fp, " => ");
5812 if (r->to.abfd == NULL)
5813 fprintf (fp, "REMOVED");
5814 else
5815 print_r_reloc (fp, &r->to);
5816 fprintf (fp, "\n");
5817 }
5818}
5819
5820#endif /* DEBUG */
5821
5822\f
5823/* Per-section data for relaxation. */
5824
5825typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5826
5827struct xtensa_relax_info_struct
5828{
5829 bfd_boolean is_relaxable_literal_section;
5830 bfd_boolean is_relaxable_asm_section;
5831 int visited; /* Number of times visited. */
5832
5833 source_reloc *src_relocs; /* Array[src_count]. */
5834 int src_count;
5835 int src_next; /* Next src_relocs entry to assign. */
5836
5837 removed_literal_list removed_list;
5838 text_action_list action_list;
5839
5840 reloc_bfd_fix *fix_list;
5841 reloc_bfd_fix *fix_array;
5842 unsigned fix_array_count;
5843
5844 /* Support for expanding the reloc array that is stored
5845 in the section structure. If the relocations have been
5846 reallocated, the newly allocated relocations will be referenced
5847 here along with the actual size allocated. The relocation
5848 count will always be found in the section structure. */
5849 Elf_Internal_Rela *allocated_relocs;
5850 unsigned relocs_count;
5851 unsigned allocated_relocs_count;
5852};
5853
5854struct elf_xtensa_section_data
5855{
5856 struct bfd_elf_section_data elf;
5857 xtensa_relax_info relax_info;
5858};
5859
43cd72b9
BW
5860
5861static bfd_boolean
7fa3d080 5862elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
43cd72b9 5863{
f592407e
AM
5864 if (!sec->used_by_bfd)
5865 {
5866 struct elf_xtensa_section_data *sdata;
5867 bfd_size_type amt = sizeof (*sdata);
43cd72b9 5868
f592407e
AM
5869 sdata = bfd_zalloc (abfd, amt);
5870 if (sdata == NULL)
5871 return FALSE;
5872 sec->used_by_bfd = sdata;
5873 }
43cd72b9
BW
5874
5875 return _bfd_elf_new_section_hook (abfd, sec);
5876}
5877
5878
7fa3d080
BW
5879static xtensa_relax_info *
5880get_xtensa_relax_info (asection *sec)
5881{
5882 struct elf_xtensa_section_data *section_data;
5883
5884 /* No info available if no section or if it is an output section. */
5885 if (!sec || sec == sec->output_section)
5886 return NULL;
5887
5888 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5889 return &section_data->relax_info;
5890}
5891
5892
43cd72b9 5893static void
7fa3d080 5894init_xtensa_relax_info (asection *sec)
43cd72b9
BW
5895{
5896 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5897
5898 relax_info->is_relaxable_literal_section = FALSE;
5899 relax_info->is_relaxable_asm_section = FALSE;
5900 relax_info->visited = 0;
5901
5902 relax_info->src_relocs = NULL;
5903 relax_info->src_count = 0;
5904 relax_info->src_next = 0;
5905
5906 relax_info->removed_list.head = NULL;
5907 relax_info->removed_list.tail = NULL;
5908
5909 relax_info->action_list.head = NULL;
5910
5911 relax_info->fix_list = NULL;
5912 relax_info->fix_array = NULL;
5913 relax_info->fix_array_count = 0;
5914
5915 relax_info->allocated_relocs = NULL;
5916 relax_info->relocs_count = 0;
5917 relax_info->allocated_relocs_count = 0;
5918}
5919
43cd72b9
BW
5920\f
5921/* Coalescing literals may require a relocation to refer to a section in
5922 a different input file, but the standard relocation information
5923 cannot express that. Instead, the reloc_bfd_fix structures are used
5924 to "fix" the relocations that refer to sections in other input files.
5925 These structures are kept on per-section lists. The "src_type" field
5926 records the relocation type in case there are multiple relocations on
5927 the same location. FIXME: This is ugly; an alternative might be to
5928 add new symbols with the "owner" field to some other input file. */
5929
5930struct reloc_bfd_fix_struct
5931{
5932 asection *src_sec;
5933 bfd_vma src_offset;
5934 unsigned src_type; /* Relocation type. */
5935
43cd72b9
BW
5936 asection *target_sec;
5937 bfd_vma target_offset;
5938 bfd_boolean translated;
5939
5940 reloc_bfd_fix *next;
5941};
5942
5943
43cd72b9 5944static reloc_bfd_fix *
7fa3d080
BW
5945reloc_bfd_fix_init (asection *src_sec,
5946 bfd_vma src_offset,
5947 unsigned src_type,
7fa3d080
BW
5948 asection *target_sec,
5949 bfd_vma target_offset,
5950 bfd_boolean translated)
43cd72b9
BW
5951{
5952 reloc_bfd_fix *fix;
5953
5954 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5955 fix->src_sec = src_sec;
5956 fix->src_offset = src_offset;
5957 fix->src_type = src_type;
43cd72b9
BW
5958 fix->target_sec = target_sec;
5959 fix->target_offset = target_offset;
5960 fix->translated = translated;
5961
5962 return fix;
5963}
5964
5965
5966static void
7fa3d080 5967add_fix (asection *src_sec, reloc_bfd_fix *fix)
43cd72b9
BW
5968{
5969 xtensa_relax_info *relax_info;
5970
5971 relax_info = get_xtensa_relax_info (src_sec);
5972 fix->next = relax_info->fix_list;
5973 relax_info->fix_list = fix;
5974}
5975
5976
5977static int
7fa3d080 5978fix_compare (const void *ap, const void *bp)
43cd72b9
BW
5979{
5980 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5981 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5982
5983 if (a->src_offset != b->src_offset)
5984 return (a->src_offset - b->src_offset);
5985 return (a->src_type - b->src_type);
5986}
5987
5988
5989static void
7fa3d080 5990cache_fix_array (asection *sec)
43cd72b9
BW
5991{
5992 unsigned i, count = 0;
5993 reloc_bfd_fix *r;
5994 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5995
5996 if (relax_info == NULL)
5997 return;
5998 if (relax_info->fix_list == NULL)
5999 return;
6000
6001 for (r = relax_info->fix_list; r != NULL; r = r->next)
6002 count++;
6003
6004 relax_info->fix_array =
6005 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6006 relax_info->fix_array_count = count;
6007
6008 r = relax_info->fix_list;
6009 for (i = 0; i < count; i++, r = r->next)
6010 {
6011 relax_info->fix_array[count - 1 - i] = *r;
6012 relax_info->fix_array[count - 1 - i].next = NULL;
6013 }
6014
6015 qsort (relax_info->fix_array, relax_info->fix_array_count,
6016 sizeof (reloc_bfd_fix), fix_compare);
6017}
6018
6019
6020static reloc_bfd_fix *
7fa3d080 6021get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
43cd72b9
BW
6022{
6023 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6024 reloc_bfd_fix *rv;
6025 reloc_bfd_fix key;
6026
6027 if (relax_info == NULL)
6028 return NULL;
6029 if (relax_info->fix_list == NULL)
6030 return NULL;
6031
6032 if (relax_info->fix_array == NULL)
6033 cache_fix_array (sec);
6034
6035 key.src_offset = offset;
6036 key.src_type = type;
6037 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6038 sizeof (reloc_bfd_fix), fix_compare);
6039 return rv;
6040}
6041
6042\f
6043/* Section caching. */
6044
6045typedef struct section_cache_struct section_cache_t;
6046
6047struct section_cache_struct
6048{
6049 asection *sec;
6050
6051 bfd_byte *contents; /* Cache of the section contents. */
6052 bfd_size_type content_length;
6053
6054 property_table_entry *ptbl; /* Cache of the section property table. */
6055 unsigned pte_count;
6056
6057 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6058 unsigned reloc_count;
6059};
6060
6061
7fa3d080
BW
6062static void
6063init_section_cache (section_cache_t *sec_cache)
6064{
6065 memset (sec_cache, 0, sizeof (*sec_cache));
6066}
43cd72b9
BW
6067
6068
6069static void
7fa3d080 6070clear_section_cache (section_cache_t *sec_cache)
43cd72b9 6071{
7fa3d080
BW
6072 if (sec_cache->sec)
6073 {
6074 release_contents (sec_cache->sec, sec_cache->contents);
6075 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6076 if (sec_cache->ptbl)
6077 free (sec_cache->ptbl);
6078 memset (sec_cache, 0, sizeof (sec_cache));
6079 }
43cd72b9
BW
6080}
6081
6082
6083static bfd_boolean
7fa3d080
BW
6084section_cache_section (section_cache_t *sec_cache,
6085 asection *sec,
6086 struct bfd_link_info *link_info)
43cd72b9
BW
6087{
6088 bfd *abfd;
6089 property_table_entry *prop_table = NULL;
6090 int ptblsize = 0;
6091 bfd_byte *contents = NULL;
6092 Elf_Internal_Rela *internal_relocs = NULL;
6093 bfd_size_type sec_size;
6094
6095 if (sec == NULL)
6096 return FALSE;
6097 if (sec == sec_cache->sec)
6098 return TRUE;
6099
6100 abfd = sec->owner;
6101 sec_size = bfd_get_section_limit (abfd, sec);
6102
6103 /* Get the contents. */
6104 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6105 if (contents == NULL && sec_size != 0)
6106 goto err;
6107
6108 /* Get the relocations. */
6109 internal_relocs = retrieve_internal_relocs (abfd, sec,
6110 link_info->keep_memory);
6111
6112 /* Get the entry table. */
6113 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6114 XTENSA_PROP_SEC_NAME, FALSE);
6115 if (ptblsize < 0)
6116 goto err;
6117
6118 /* Fill in the new section cache. */
6119 clear_section_cache (sec_cache);
6120 memset (sec_cache, 0, sizeof (sec_cache));
6121
6122 sec_cache->sec = sec;
6123 sec_cache->contents = contents;
6124 sec_cache->content_length = sec_size;
6125 sec_cache->relocs = internal_relocs;
6126 sec_cache->reloc_count = sec->reloc_count;
6127 sec_cache->pte_count = ptblsize;
6128 sec_cache->ptbl = prop_table;
6129
6130 return TRUE;
6131
6132 err:
6133 release_contents (sec, contents);
6134 release_internal_relocs (sec, internal_relocs);
6135 if (prop_table)
6136 free (prop_table);
6137 return FALSE;
6138}
6139
43cd72b9
BW
6140\f
6141/* Extended basic blocks. */
6142
6143/* An ebb_struct represents an Extended Basic Block. Within this
6144 range, we guarantee that all instructions are decodable, the
6145 property table entries are contiguous, and no property table
6146 specifies a segment that cannot have instructions moved. This
6147 structure contains caches of the contents, property table and
6148 relocations for the specified section for easy use. The range is
6149 specified by ranges of indices for the byte offset, property table
6150 offsets and relocation offsets. These must be consistent. */
6151
6152typedef struct ebb_struct ebb_t;
6153
6154struct ebb_struct
6155{
6156 asection *sec;
6157
6158 bfd_byte *contents; /* Cache of the section contents. */
6159 bfd_size_type content_length;
6160
6161 property_table_entry *ptbl; /* Cache of the section property table. */
6162 unsigned pte_count;
6163
6164 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6165 unsigned reloc_count;
6166
6167 bfd_vma start_offset; /* Offset in section. */
6168 unsigned start_ptbl_idx; /* Offset in the property table. */
6169 unsigned start_reloc_idx; /* Offset in the relocations. */
6170
6171 bfd_vma end_offset;
6172 unsigned end_ptbl_idx;
6173 unsigned end_reloc_idx;
6174
6175 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6176
6177 /* The unreachable property table at the end of this set of blocks;
6178 NULL if the end is not an unreachable block. */
6179 property_table_entry *ends_unreachable;
6180};
6181
6182
6183enum ebb_target_enum
6184{
6185 EBB_NO_ALIGN = 0,
6186 EBB_DESIRE_TGT_ALIGN,
6187 EBB_REQUIRE_TGT_ALIGN,
6188 EBB_REQUIRE_LOOP_ALIGN,
6189 EBB_REQUIRE_ALIGN
6190};
6191
6192
6193/* proposed_action_struct is similar to the text_action_struct except
6194 that is represents a potential transformation, not one that will
6195 occur. We build a list of these for an extended basic block
6196 and use them to compute the actual actions desired. We must be
6197 careful that the entire set of actual actions we perform do not
6198 break any relocations that would fit if the actions were not
6199 performed. */
6200
6201typedef struct proposed_action_struct proposed_action;
6202
6203struct proposed_action_struct
6204{
6205 enum ebb_target_enum align_type; /* for the target alignment */
6206 bfd_vma alignment_pow;
6207 text_action_t action;
6208 bfd_vma offset;
6209 int removed_bytes;
6210 bfd_boolean do_action; /* If false, then we will not perform the action. */
6211};
6212
6213
6214/* The ebb_constraint_struct keeps a set of proposed actions for an
6215 extended basic block. */
6216
6217typedef struct ebb_constraint_struct ebb_constraint;
6218
6219struct ebb_constraint_struct
6220{
6221 ebb_t ebb;
6222 bfd_boolean start_movable;
6223
6224 /* Bytes of extra space at the beginning if movable. */
6225 int start_extra_space;
6226
6227 enum ebb_target_enum start_align;
6228
6229 bfd_boolean end_movable;
6230
6231 /* Bytes of extra space at the end if movable. */
6232 int end_extra_space;
6233
6234 unsigned action_count;
6235 unsigned action_allocated;
6236
6237 /* Array of proposed actions. */
6238 proposed_action *actions;
6239
6240 /* Action alignments -- one for each proposed action. */
6241 enum ebb_target_enum *action_aligns;
6242};
6243
6244
43cd72b9 6245static void
7fa3d080 6246init_ebb_constraint (ebb_constraint *c)
43cd72b9
BW
6247{
6248 memset (c, 0, sizeof (ebb_constraint));
6249}
6250
6251
6252static void
7fa3d080 6253free_ebb_constraint (ebb_constraint *c)
43cd72b9 6254{
7fa3d080 6255 if (c->actions)
43cd72b9
BW
6256 free (c->actions);
6257}
6258
6259
6260static void
7fa3d080
BW
6261init_ebb (ebb_t *ebb,
6262 asection *sec,
6263 bfd_byte *contents,
6264 bfd_size_type content_length,
6265 property_table_entry *prop_table,
6266 unsigned ptblsize,
6267 Elf_Internal_Rela *internal_relocs,
6268 unsigned reloc_count)
43cd72b9
BW
6269{
6270 memset (ebb, 0, sizeof (ebb_t));
6271 ebb->sec = sec;
6272 ebb->contents = contents;
6273 ebb->content_length = content_length;
6274 ebb->ptbl = prop_table;
6275 ebb->pte_count = ptblsize;
6276 ebb->relocs = internal_relocs;
6277 ebb->reloc_count = reloc_count;
6278 ebb->start_offset = 0;
6279 ebb->end_offset = ebb->content_length - 1;
6280 ebb->start_ptbl_idx = 0;
6281 ebb->end_ptbl_idx = ptblsize;
6282 ebb->start_reloc_idx = 0;
6283 ebb->end_reloc_idx = reloc_count;
6284}
6285
6286
6287/* Extend the ebb to all decodable contiguous sections. The algorithm
6288 for building a basic block around an instruction is to push it
6289 forward until we hit the end of a section, an unreachable block or
6290 a block that cannot be transformed. Then we push it backwards
6291 searching for similar conditions. */
6292
7fa3d080
BW
6293static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6294static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6295static bfd_size_type insn_block_decodable_len
6296 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6297
43cd72b9 6298static bfd_boolean
7fa3d080 6299extend_ebb_bounds (ebb_t *ebb)
43cd72b9
BW
6300{
6301 if (!extend_ebb_bounds_forward (ebb))
6302 return FALSE;
6303 if (!extend_ebb_bounds_backward (ebb))
6304 return FALSE;
6305 return TRUE;
6306}
6307
6308
6309static bfd_boolean
7fa3d080 6310extend_ebb_bounds_forward (ebb_t *ebb)
43cd72b9
BW
6311{
6312 property_table_entry *the_entry, *new_entry;
6313
6314 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6315
6316 /* Stop when (1) we cannot decode an instruction, (2) we are at
6317 the end of the property tables, (3) we hit a non-contiguous property
6318 table entry, (4) we hit a NO_TRANSFORM region. */
6319
6320 while (1)
6321 {
6322 bfd_vma entry_end;
6323 bfd_size_type insn_block_len;
6324
6325 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6326 insn_block_len =
6327 insn_block_decodable_len (ebb->contents, ebb->content_length,
6328 ebb->end_offset,
6329 entry_end - ebb->end_offset);
6330 if (insn_block_len != (entry_end - ebb->end_offset))
6331 {
6332 (*_bfd_error_handler)
6333 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6334 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6335 return FALSE;
6336 }
6337 ebb->end_offset += insn_block_len;
6338
6339 if (ebb->end_offset == ebb->sec->size)
6340 ebb->ends_section = TRUE;
6341
6342 /* Update the reloc counter. */
6343 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6344 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6345 < ebb->end_offset))
6346 {
6347 ebb->end_reloc_idx++;
6348 }
6349
6350 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6351 return TRUE;
6352
6353 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6354 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
99ded152 6355 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6356 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6357 break;
6358
6359 if (the_entry->address + the_entry->size != new_entry->address)
6360 break;
6361
6362 the_entry = new_entry;
6363 ebb->end_ptbl_idx++;
6364 }
6365
6366 /* Quick check for an unreachable or end of file just at the end. */
6367 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6368 {
6369 if (ebb->end_offset == ebb->content_length)
6370 ebb->ends_section = TRUE;
6371 }
6372 else
6373 {
6374 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6375 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6376 && the_entry->address + the_entry->size == new_entry->address)
6377 ebb->ends_unreachable = new_entry;
6378 }
6379
6380 /* Any other ending requires exact alignment. */
6381 return TRUE;
6382}
6383
6384
6385static bfd_boolean
7fa3d080 6386extend_ebb_bounds_backward (ebb_t *ebb)
43cd72b9
BW
6387{
6388 property_table_entry *the_entry, *new_entry;
6389
6390 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6391
6392 /* Stop when (1) we cannot decode the instructions in the current entry.
6393 (2) we are at the beginning of the property tables, (3) we hit a
6394 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6395
6396 while (1)
6397 {
6398 bfd_vma block_begin;
6399 bfd_size_type insn_block_len;
6400
6401 block_begin = the_entry->address - ebb->sec->vma;
6402 insn_block_len =
6403 insn_block_decodable_len (ebb->contents, ebb->content_length,
6404 block_begin,
6405 ebb->start_offset - block_begin);
6406 if (insn_block_len != ebb->start_offset - block_begin)
6407 {
6408 (*_bfd_error_handler)
6409 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6410 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6411 return FALSE;
6412 }
6413 ebb->start_offset -= insn_block_len;
6414
6415 /* Update the reloc counter. */
6416 while (ebb->start_reloc_idx > 0
6417 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6418 >= ebb->start_offset))
6419 {
6420 ebb->start_reloc_idx--;
6421 }
6422
6423 if (ebb->start_ptbl_idx == 0)
6424 return TRUE;
6425
6426 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6427 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
99ded152 6428 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
43cd72b9
BW
6429 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6430 return TRUE;
6431 if (new_entry->address + new_entry->size != the_entry->address)
6432 return TRUE;
6433
6434 the_entry = new_entry;
6435 ebb->start_ptbl_idx--;
6436 }
6437 return TRUE;
6438}
6439
6440
6441static bfd_size_type
7fa3d080
BW
6442insn_block_decodable_len (bfd_byte *contents,
6443 bfd_size_type content_len,
6444 bfd_vma block_offset,
6445 bfd_size_type block_len)
43cd72b9
BW
6446{
6447 bfd_vma offset = block_offset;
6448
6449 while (offset < block_offset + block_len)
6450 {
6451 bfd_size_type insn_len = 0;
6452
6453 insn_len = insn_decode_len (contents, content_len, offset);
6454 if (insn_len == 0)
6455 return (offset - block_offset);
6456 offset += insn_len;
6457 }
6458 return (offset - block_offset);
6459}
6460
6461
6462static void
7fa3d080 6463ebb_propose_action (ebb_constraint *c,
7fa3d080 6464 enum ebb_target_enum align_type,
288f74fa 6465 bfd_vma alignment_pow,
7fa3d080
BW
6466 text_action_t action,
6467 bfd_vma offset,
6468 int removed_bytes,
6469 bfd_boolean do_action)
43cd72b9 6470{
b08b5071 6471 proposed_action *act;
43cd72b9 6472
43cd72b9
BW
6473 if (c->action_allocated <= c->action_count)
6474 {
b08b5071 6475 unsigned new_allocated, i;
823fc61f 6476 proposed_action *new_actions;
b08b5071
BW
6477
6478 new_allocated = (c->action_count + 2) * 2;
823fc61f 6479 new_actions = (proposed_action *)
43cd72b9
BW
6480 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6481
6482 for (i = 0; i < c->action_count; i++)
6483 new_actions[i] = c->actions[i];
7fa3d080 6484 if (c->actions)
43cd72b9
BW
6485 free (c->actions);
6486 c->actions = new_actions;
6487 c->action_allocated = new_allocated;
6488 }
b08b5071
BW
6489
6490 act = &c->actions[c->action_count];
6491 act->align_type = align_type;
6492 act->alignment_pow = alignment_pow;
6493 act->action = action;
6494 act->offset = offset;
6495 act->removed_bytes = removed_bytes;
6496 act->do_action = do_action;
6497
43cd72b9
BW
6498 c->action_count++;
6499}
6500
6501\f
6502/* Access to internal relocations, section contents and symbols. */
6503
6504/* During relaxation, we need to modify relocations, section contents,
6505 and symbol definitions, and we need to keep the original values from
6506 being reloaded from the input files, i.e., we need to "pin" the
6507 modified values in memory. We also want to continue to observe the
6508 setting of the "keep-memory" flag. The following functions wrap the
6509 standard BFD functions to take care of this for us. */
6510
6511static Elf_Internal_Rela *
7fa3d080 6512retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6513{
6514 Elf_Internal_Rela *internal_relocs;
6515
6516 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6517 return NULL;
6518
6519 internal_relocs = elf_section_data (sec)->relocs;
6520 if (internal_relocs == NULL)
6521 internal_relocs = (_bfd_elf_link_read_relocs
7fa3d080 6522 (abfd, sec, NULL, NULL, keep_memory));
43cd72b9
BW
6523 return internal_relocs;
6524}
6525
6526
6527static void
7fa3d080 6528pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6529{
6530 elf_section_data (sec)->relocs = internal_relocs;
6531}
6532
6533
6534static void
7fa3d080 6535release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
6536{
6537 if (internal_relocs
6538 && elf_section_data (sec)->relocs != internal_relocs)
6539 free (internal_relocs);
6540}
6541
6542
6543static bfd_byte *
7fa3d080 6544retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
43cd72b9
BW
6545{
6546 bfd_byte *contents;
6547 bfd_size_type sec_size;
6548
6549 sec_size = bfd_get_section_limit (abfd, sec);
6550 contents = elf_section_data (sec)->this_hdr.contents;
6551
6552 if (contents == NULL && sec_size != 0)
6553 {
6554 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6555 {
7fa3d080 6556 if (contents)
43cd72b9
BW
6557 free (contents);
6558 return NULL;
6559 }
6560 if (keep_memory)
6561 elf_section_data (sec)->this_hdr.contents = contents;
6562 }
6563 return contents;
6564}
6565
6566
6567static void
7fa3d080 6568pin_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6569{
6570 elf_section_data (sec)->this_hdr.contents = contents;
6571}
6572
6573
6574static void
7fa3d080 6575release_contents (asection *sec, bfd_byte *contents)
43cd72b9
BW
6576{
6577 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6578 free (contents);
6579}
6580
6581
6582static Elf_Internal_Sym *
7fa3d080 6583retrieve_local_syms (bfd *input_bfd)
43cd72b9
BW
6584{
6585 Elf_Internal_Shdr *symtab_hdr;
6586 Elf_Internal_Sym *isymbuf;
6587 size_t locsymcount;
6588
6589 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6590 locsymcount = symtab_hdr->sh_info;
6591
6592 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6593 if (isymbuf == NULL && locsymcount != 0)
6594 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6595 NULL, NULL, NULL);
6596
6597 /* Save the symbols for this input file so they won't be read again. */
6598 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6599 symtab_hdr->contents = (unsigned char *) isymbuf;
6600
6601 return isymbuf;
6602}
6603
6604\f
6605/* Code for link-time relaxation. */
6606
6607/* Initialization for relaxation: */
7fa3d080 6608static bfd_boolean analyze_relocations (struct bfd_link_info *);
43cd72b9 6609static bfd_boolean find_relaxable_sections
7fa3d080 6610 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
43cd72b9 6611static bfd_boolean collect_source_relocs
7fa3d080 6612 (bfd *, asection *, struct bfd_link_info *);
43cd72b9 6613static bfd_boolean is_resolvable_asm_expansion
7fa3d080
BW
6614 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6615 bfd_boolean *);
43cd72b9 6616static Elf_Internal_Rela *find_associated_l32r_irel
7fa3d080 6617 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
43cd72b9 6618static bfd_boolean compute_text_actions
7fa3d080
BW
6619 (bfd *, asection *, struct bfd_link_info *);
6620static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6621static bfd_boolean compute_ebb_actions (ebb_constraint *);
43cd72b9 6622static bfd_boolean check_section_ebb_pcrels_fit
cb337148
BW
6623 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6624 const xtensa_opcode *);
7fa3d080 6625static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
43cd72b9 6626static void text_action_add_proposed
7fa3d080
BW
6627 (text_action_list *, const ebb_constraint *, asection *);
6628static int compute_fill_extra_space (property_table_entry *);
43cd72b9
BW
6629
6630/* First pass: */
6631static bfd_boolean compute_removed_literals
7fa3d080 6632 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
43cd72b9 6633static Elf_Internal_Rela *get_irel_at_offset
7fa3d080 6634 (asection *, Elf_Internal_Rela *, bfd_vma);
43cd72b9 6635static bfd_boolean is_removable_literal
99ded152
BW
6636 (const source_reloc *, int, const source_reloc *, int, asection *,
6637 property_table_entry *, int);
43cd72b9 6638static bfd_boolean remove_dead_literal
7fa3d080
BW
6639 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6640 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6641static bfd_boolean identify_literal_placement
6642 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6643 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6644 source_reloc *, property_table_entry *, int, section_cache_t *,
6645 bfd_boolean);
6646static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
43cd72b9 6647static bfd_boolean coalesce_shared_literal
7fa3d080 6648 (asection *, source_reloc *, property_table_entry *, int, value_map *);
43cd72b9 6649static bfd_boolean move_shared_literal
7fa3d080
BW
6650 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6651 int, const r_reloc *, const literal_value *, section_cache_t *);
43cd72b9
BW
6652
6653/* Second pass: */
7fa3d080
BW
6654static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6655static bfd_boolean translate_section_fixes (asection *);
6656static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
9b7f5d20 6657static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
43cd72b9 6658static void shrink_dynamic_reloc_sections
7fa3d080 6659 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
43cd72b9 6660static bfd_boolean move_literal
7fa3d080
BW
6661 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6662 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
43cd72b9 6663static bfd_boolean relax_property_section
7fa3d080 6664 (bfd *, asection *, struct bfd_link_info *);
43cd72b9
BW
6665
6666/* Third pass: */
7fa3d080 6667static bfd_boolean relax_section_symbols (bfd *, asection *);
43cd72b9
BW
6668
6669
6670static bfd_boolean
7fa3d080
BW
6671elf_xtensa_relax_section (bfd *abfd,
6672 asection *sec,
6673 struct bfd_link_info *link_info,
6674 bfd_boolean *again)
43cd72b9
BW
6675{
6676 static value_map_hash_table *values = NULL;
6677 static bfd_boolean relocations_analyzed = FALSE;
6678 xtensa_relax_info *relax_info;
6679
6680 if (!relocations_analyzed)
6681 {
6682 /* Do some overall initialization for relaxation. */
6683 values = value_map_hash_table_init ();
6684 if (values == NULL)
6685 return FALSE;
6686 relaxing_section = TRUE;
6687 if (!analyze_relocations (link_info))
6688 return FALSE;
6689 relocations_analyzed = TRUE;
6690 }
6691 *again = FALSE;
6692
6693 /* Don't mess with linker-created sections. */
6694 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6695 return TRUE;
6696
6697 relax_info = get_xtensa_relax_info (sec);
6698 BFD_ASSERT (relax_info != NULL);
6699
6700 switch (relax_info->visited)
6701 {
6702 case 0:
6703 /* Note: It would be nice to fold this pass into
6704 analyze_relocations, but it is important for this step that the
6705 sections be examined in link order. */
6706 if (!compute_removed_literals (abfd, sec, link_info, values))
6707 return FALSE;
6708 *again = TRUE;
6709 break;
6710
6711 case 1:
6712 if (values)
6713 value_map_hash_table_delete (values);
6714 values = NULL;
6715 if (!relax_section (abfd, sec, link_info))
6716 return FALSE;
6717 *again = TRUE;
6718 break;
6719
6720 case 2:
6721 if (!relax_section_symbols (abfd, sec))
6722 return FALSE;
6723 break;
6724 }
6725
6726 relax_info->visited++;
6727 return TRUE;
6728}
6729
6730\f
6731/* Initialization for relaxation. */
6732
6733/* This function is called once at the start of relaxation. It scans
6734 all the input sections and marks the ones that are relaxable (i.e.,
6735 literal sections with L32R relocations against them), and then
6736 collects source_reloc information for all the relocations against
6737 those relaxable sections. During this process, it also detects
6738 longcalls, i.e., calls relaxed by the assembler into indirect
6739 calls, that can be optimized back into direct calls. Within each
6740 extended basic block (ebb) containing an optimized longcall, it
6741 computes a set of "text actions" that can be performed to remove
6742 the L32R associated with the longcall while optionally preserving
6743 branch target alignments. */
6744
6745static bfd_boolean
7fa3d080 6746analyze_relocations (struct bfd_link_info *link_info)
43cd72b9
BW
6747{
6748 bfd *abfd;
6749 asection *sec;
6750 bfd_boolean is_relaxable = FALSE;
6751
6752 /* Initialize the per-section relaxation info. */
6753 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6754 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6755 {
6756 init_xtensa_relax_info (sec);
6757 }
6758
6759 /* Mark relaxable sections (and count relocations against each one). */
6760 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6761 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6762 {
6763 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6764 return FALSE;
6765 }
6766
6767 /* Bail out if there are no relaxable sections. */
6768 if (!is_relaxable)
6769 return TRUE;
6770
6771 /* Allocate space for source_relocs. */
6772 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6773 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6774 {
6775 xtensa_relax_info *relax_info;
6776
6777 relax_info = get_xtensa_relax_info (sec);
6778 if (relax_info->is_relaxable_literal_section
6779 || relax_info->is_relaxable_asm_section)
6780 {
6781 relax_info->src_relocs = (source_reloc *)
6782 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6783 }
25c6282a
BW
6784 else
6785 relax_info->src_count = 0;
43cd72b9
BW
6786 }
6787
6788 /* Collect info on relocations against each relaxable section. */
6789 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6790 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6791 {
6792 if (!collect_source_relocs (abfd, sec, link_info))
6793 return FALSE;
6794 }
6795
6796 /* Compute the text actions. */
6797 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
6798 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6799 {
6800 if (!compute_text_actions (abfd, sec, link_info))
6801 return FALSE;
6802 }
6803
6804 return TRUE;
6805}
6806
6807
6808/* Find all the sections that might be relaxed. The motivation for
6809 this pass is that collect_source_relocs() needs to record _all_ the
6810 relocations that target each relaxable section. That is expensive
6811 and unnecessary unless the target section is actually going to be
6812 relaxed. This pass identifies all such sections by checking if
6813 they have L32Rs pointing to them. In the process, the total number
6814 of relocations targeting each section is also counted so that we
6815 know how much space to allocate for source_relocs against each
6816 relaxable literal section. */
6817
6818static bfd_boolean
7fa3d080
BW
6819find_relaxable_sections (bfd *abfd,
6820 asection *sec,
6821 struct bfd_link_info *link_info,
6822 bfd_boolean *is_relaxable_p)
43cd72b9
BW
6823{
6824 Elf_Internal_Rela *internal_relocs;
6825 bfd_byte *contents;
6826 bfd_boolean ok = TRUE;
6827 unsigned i;
6828 xtensa_relax_info *source_relax_info;
25c6282a 6829 bfd_boolean is_l32r_reloc;
43cd72b9
BW
6830
6831 internal_relocs = retrieve_internal_relocs (abfd, sec,
6832 link_info->keep_memory);
6833 if (internal_relocs == NULL)
6834 return ok;
6835
6836 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6837 if (contents == NULL && sec->size != 0)
6838 {
6839 ok = FALSE;
6840 goto error_return;
6841 }
6842
6843 source_relax_info = get_xtensa_relax_info (sec);
6844 for (i = 0; i < sec->reloc_count; i++)
6845 {
6846 Elf_Internal_Rela *irel = &internal_relocs[i];
6847 r_reloc r_rel;
6848 asection *target_sec;
6849 xtensa_relax_info *target_relax_info;
6850
6851 /* If this section has not already been marked as "relaxable", and
6852 if it contains any ASM_EXPAND relocations (marking expanded
6853 longcalls) that can be optimized into direct calls, then mark
6854 the section as "relaxable". */
6855 if (source_relax_info
6856 && !source_relax_info->is_relaxable_asm_section
6857 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6858 {
6859 bfd_boolean is_reachable = FALSE;
6860 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6861 link_info, &is_reachable)
6862 && is_reachable)
6863 {
6864 source_relax_info->is_relaxable_asm_section = TRUE;
6865 *is_relaxable_p = TRUE;
6866 }
6867 }
6868
6869 r_reloc_init (&r_rel, abfd, irel, contents,
6870 bfd_get_section_limit (abfd, sec));
6871
6872 target_sec = r_reloc_get_section (&r_rel);
6873 target_relax_info = get_xtensa_relax_info (target_sec);
6874 if (!target_relax_info)
6875 continue;
6876
6877 /* Count PC-relative operand relocations against the target section.
6878 Note: The conditions tested here must match the conditions under
6879 which init_source_reloc is called in collect_source_relocs(). */
25c6282a
BW
6880 is_l32r_reloc = FALSE;
6881 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6882 {
6883 xtensa_opcode opcode =
6884 get_relocation_opcode (abfd, sec, contents, irel);
6885 if (opcode != XTENSA_UNDEFINED)
6886 {
6887 is_l32r_reloc = (opcode == get_l32r_opcode ());
6888 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6889 || is_l32r_reloc)
6890 target_relax_info->src_count++;
6891 }
6892 }
43cd72b9 6893
25c6282a 6894 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
43cd72b9
BW
6895 {
6896 /* Mark the target section as relaxable. */
6897 target_relax_info->is_relaxable_literal_section = TRUE;
6898 *is_relaxable_p = TRUE;
6899 }
6900 }
6901
6902 error_return:
6903 release_contents (sec, contents);
6904 release_internal_relocs (sec, internal_relocs);
6905 return ok;
6906}
6907
6908
6909/* Record _all_ the relocations that point to relaxable sections, and
6910 get rid of ASM_EXPAND relocs by either converting them to
6911 ASM_SIMPLIFY or by removing them. */
6912
6913static bfd_boolean
7fa3d080
BW
6914collect_source_relocs (bfd *abfd,
6915 asection *sec,
6916 struct bfd_link_info *link_info)
43cd72b9
BW
6917{
6918 Elf_Internal_Rela *internal_relocs;
6919 bfd_byte *contents;
6920 bfd_boolean ok = TRUE;
6921 unsigned i;
6922 bfd_size_type sec_size;
6923
6924 internal_relocs = retrieve_internal_relocs (abfd, sec,
6925 link_info->keep_memory);
6926 if (internal_relocs == NULL)
6927 return ok;
6928
6929 sec_size = bfd_get_section_limit (abfd, sec);
6930 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6931 if (contents == NULL && sec_size != 0)
6932 {
6933 ok = FALSE;
6934 goto error_return;
6935 }
6936
6937 /* Record relocations against relaxable literal sections. */
6938 for (i = 0; i < sec->reloc_count; i++)
6939 {
6940 Elf_Internal_Rela *irel = &internal_relocs[i];
6941 r_reloc r_rel;
6942 asection *target_sec;
6943 xtensa_relax_info *target_relax_info;
6944
6945 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6946
6947 target_sec = r_reloc_get_section (&r_rel);
6948 target_relax_info = get_xtensa_relax_info (target_sec);
6949
6950 if (target_relax_info
6951 && (target_relax_info->is_relaxable_literal_section
6952 || target_relax_info->is_relaxable_asm_section))
6953 {
6954 xtensa_opcode opcode = XTENSA_UNDEFINED;
6955 int opnd = -1;
6956 bfd_boolean is_abs_literal = FALSE;
6957
6958 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6959 {
6960 /* None of the current alternate relocs are PC-relative,
6961 and only PC-relative relocs matter here. However, we
6962 still need to record the opcode for literal
6963 coalescing. */
6964 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6965 if (opcode == get_l32r_opcode ())
6966 {
6967 is_abs_literal = TRUE;
6968 opnd = 1;
6969 }
6970 else
6971 opcode = XTENSA_UNDEFINED;
6972 }
6973 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6974 {
6975 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6976 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6977 }
6978
6979 if (opcode != XTENSA_UNDEFINED)
6980 {
6981 int src_next = target_relax_info->src_next++;
6982 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6983
6984 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6985 is_abs_literal);
6986 }
6987 }
6988 }
6989
6990 /* Now get rid of ASM_EXPAND relocations. At this point, the
6991 src_relocs array for the target literal section may still be
6992 incomplete, but it must at least contain the entries for the L32R
6993 relocations associated with ASM_EXPANDs because they were just
6994 added in the preceding loop over the relocations. */
6995
6996 for (i = 0; i < sec->reloc_count; i++)
6997 {
6998 Elf_Internal_Rela *irel = &internal_relocs[i];
6999 bfd_boolean is_reachable;
7000
7001 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7002 &is_reachable))
7003 continue;
7004
7005 if (is_reachable)
7006 {
7007 Elf_Internal_Rela *l32r_irel;
7008 r_reloc r_rel;
7009 asection *target_sec;
7010 xtensa_relax_info *target_relax_info;
7011
7012 /* Mark the source_reloc for the L32R so that it will be
7013 removed in compute_removed_literals(), along with the
7014 associated literal. */
7015 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7016 irel, internal_relocs);
7017 if (l32r_irel == NULL)
7018 continue;
7019
7020 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7021
7022 target_sec = r_reloc_get_section (&r_rel);
7023 target_relax_info = get_xtensa_relax_info (target_sec);
7024
7025 if (target_relax_info
7026 && (target_relax_info->is_relaxable_literal_section
7027 || target_relax_info->is_relaxable_asm_section))
7028 {
7029 source_reloc *s_reloc;
7030
7031 /* Search the source_relocs for the entry corresponding to
7032 the l32r_irel. Note: The src_relocs array is not yet
7033 sorted, but it wouldn't matter anyway because we're
7034 searching by source offset instead of target offset. */
7035 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7036 target_relax_info->src_next,
7037 sec, l32r_irel);
7038 BFD_ASSERT (s_reloc);
7039 s_reloc->is_null = TRUE;
7040 }
7041
7042 /* Convert this reloc to ASM_SIMPLIFY. */
7043 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7044 R_XTENSA_ASM_SIMPLIFY);
7045 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7046
7047 pin_internal_relocs (sec, internal_relocs);
7048 }
7049 else
7050 {
7051 /* It is resolvable but doesn't reach. We resolve now
7052 by eliminating the relocation -- the call will remain
7053 expanded into L32R/CALLX. */
7054 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7055 pin_internal_relocs (sec, internal_relocs);
7056 }
7057 }
7058
7059 error_return:
7060 release_contents (sec, contents);
7061 release_internal_relocs (sec, internal_relocs);
7062 return ok;
7063}
7064
7065
7066/* Return TRUE if the asm expansion can be resolved. Generally it can
7067 be resolved on a final link or when a partial link locates it in the
7068 same section as the target. Set "is_reachable" flag if the target of
7069 the call is within the range of a direct call, given the current VMA
7070 for this section and the target section. */
7071
7072bfd_boolean
7fa3d080
BW
7073is_resolvable_asm_expansion (bfd *abfd,
7074 asection *sec,
7075 bfd_byte *contents,
7076 Elf_Internal_Rela *irel,
7077 struct bfd_link_info *link_info,
7078 bfd_boolean *is_reachable_p)
43cd72b9
BW
7079{
7080 asection *target_sec;
7081 bfd_vma target_offset;
7082 r_reloc r_rel;
7083 xtensa_opcode opcode, direct_call_opcode;
7084 bfd_vma self_address;
7085 bfd_vma dest_address;
7086 bfd_boolean uses_l32r;
7087 bfd_size_type sec_size;
7088
7089 *is_reachable_p = FALSE;
7090
7091 if (contents == NULL)
7092 return FALSE;
7093
7094 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7095 return FALSE;
7096
7097 sec_size = bfd_get_section_limit (abfd, sec);
7098 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7099 sec_size - irel->r_offset, &uses_l32r);
7100 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7101 if (!uses_l32r)
7102 return FALSE;
7103
7104 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7105 if (direct_call_opcode == XTENSA_UNDEFINED)
7106 return FALSE;
7107
7108 /* Check and see that the target resolves. */
7109 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7110 if (!r_reloc_is_defined (&r_rel))
7111 return FALSE;
7112
7113 target_sec = r_reloc_get_section (&r_rel);
7114 target_offset = r_rel.target_offset;
7115
7116 /* If the target is in a shared library, then it doesn't reach. This
7117 isn't supposed to come up because the compiler should never generate
7118 non-PIC calls on systems that use shared libraries, but the linker
7119 shouldn't crash regardless. */
7120 if (!target_sec->output_section)
7121 return FALSE;
7122
7123 /* For relocatable sections, we can only simplify when the output
7124 section of the target is the same as the output section of the
7125 source. */
7126 if (link_info->relocatable
7127 && (target_sec->output_section != sec->output_section
7128 || is_reloc_sym_weak (abfd, irel)))
7129 return FALSE;
7130
7131 self_address = (sec->output_section->vma
7132 + sec->output_offset + irel->r_offset + 3);
7133 dest_address = (target_sec->output_section->vma
7134 + target_sec->output_offset + target_offset);
7135
7136 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7137 self_address, dest_address);
7138
7139 if ((self_address >> CALL_SEGMENT_BITS) !=
7140 (dest_address >> CALL_SEGMENT_BITS))
7141 return FALSE;
7142
7143 return TRUE;
7144}
7145
7146
7147static Elf_Internal_Rela *
7fa3d080
BW
7148find_associated_l32r_irel (bfd *abfd,
7149 asection *sec,
7150 bfd_byte *contents,
7151 Elf_Internal_Rela *other_irel,
7152 Elf_Internal_Rela *internal_relocs)
43cd72b9
BW
7153{
7154 unsigned i;
e0001a05 7155
43cd72b9
BW
7156 for (i = 0; i < sec->reloc_count; i++)
7157 {
7158 Elf_Internal_Rela *irel = &internal_relocs[i];
e0001a05 7159
43cd72b9
BW
7160 if (irel == other_irel)
7161 continue;
7162 if (irel->r_offset != other_irel->r_offset)
7163 continue;
7164 if (is_l32r_relocation (abfd, sec, contents, irel))
7165 return irel;
7166 }
7167
7168 return NULL;
e0001a05
NC
7169}
7170
7171
cb337148
BW
7172static xtensa_opcode *
7173build_reloc_opcodes (bfd *abfd,
7174 asection *sec,
7175 bfd_byte *contents,
7176 Elf_Internal_Rela *internal_relocs)
7177{
7178 unsigned i;
7179 xtensa_opcode *reloc_opcodes =
7180 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7181 for (i = 0; i < sec->reloc_count; i++)
7182 {
7183 Elf_Internal_Rela *irel = &internal_relocs[i];
7184 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7185 }
7186 return reloc_opcodes;
7187}
7188
7189
43cd72b9
BW
7190/* The compute_text_actions function will build a list of potential
7191 transformation actions for code in the extended basic block of each
7192 longcall that is optimized to a direct call. From this list we
7193 generate a set of actions to actually perform that optimizes for
7194 space and, if not using size_opt, maintains branch target
7195 alignments.
e0001a05 7196
43cd72b9
BW
7197 These actions to be performed are placed on a per-section list.
7198 The actual changes are performed by relax_section() in the second
7199 pass. */
7200
7201bfd_boolean
7fa3d080
BW
7202compute_text_actions (bfd *abfd,
7203 asection *sec,
7204 struct bfd_link_info *link_info)
e0001a05 7205{
cb337148 7206 xtensa_opcode *reloc_opcodes = NULL;
43cd72b9 7207 xtensa_relax_info *relax_info;
e0001a05 7208 bfd_byte *contents;
43cd72b9 7209 Elf_Internal_Rela *internal_relocs;
e0001a05
NC
7210 bfd_boolean ok = TRUE;
7211 unsigned i;
43cd72b9
BW
7212 property_table_entry *prop_table = 0;
7213 int ptblsize = 0;
7214 bfd_size_type sec_size;
43cd72b9 7215
43cd72b9
BW
7216 relax_info = get_xtensa_relax_info (sec);
7217 BFD_ASSERT (relax_info);
25c6282a
BW
7218 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7219
7220 /* Do nothing if the section contains no optimized longcalls. */
43cd72b9
BW
7221 if (!relax_info->is_relaxable_asm_section)
7222 return ok;
e0001a05
NC
7223
7224 internal_relocs = retrieve_internal_relocs (abfd, sec,
7225 link_info->keep_memory);
e0001a05 7226
43cd72b9
BW
7227 if (internal_relocs)
7228 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7229 internal_reloc_compare);
7230
7231 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 7232 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 7233 if (contents == NULL && sec_size != 0)
e0001a05
NC
7234 {
7235 ok = FALSE;
7236 goto error_return;
7237 }
7238
43cd72b9
BW
7239 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7240 XTENSA_PROP_SEC_NAME, FALSE);
7241 if (ptblsize < 0)
7242 {
7243 ok = FALSE;
7244 goto error_return;
7245 }
7246
7247 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
7248 {
7249 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9
BW
7250 bfd_vma r_offset;
7251 property_table_entry *the_entry;
7252 int ptbl_idx;
7253 ebb_t *ebb;
7254 ebb_constraint ebb_table;
7255 bfd_size_type simplify_size;
7256
7257 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7258 continue;
7259 r_offset = irel->r_offset;
e0001a05 7260
43cd72b9
BW
7261 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7262 if (simplify_size == 0)
7263 {
7264 (*_bfd_error_handler)
7265 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7266 sec->owner, sec, r_offset);
7267 continue;
7268 }
e0001a05 7269
43cd72b9
BW
7270 /* If the instruction table is not around, then don't do this
7271 relaxation. */
7272 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7273 sec->vma + irel->r_offset);
7274 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7275 {
7276 text_action_add (&relax_info->action_list,
7277 ta_convert_longcall, sec, r_offset,
7278 0);
7279 continue;
7280 }
7281
7282 /* If the next longcall happens to be at the same address as an
7283 unreachable section of size 0, then skip forward. */
7284 ptbl_idx = the_entry - prop_table;
7285 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7286 && the_entry->size == 0
7287 && ptbl_idx + 1 < ptblsize
7288 && (prop_table[ptbl_idx + 1].address
7289 == prop_table[ptbl_idx].address))
7290 {
7291 ptbl_idx++;
7292 the_entry++;
7293 }
e0001a05 7294
99ded152 7295 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
43cd72b9
BW
7296 /* NO_REORDER is OK */
7297 continue;
e0001a05 7298
43cd72b9
BW
7299 init_ebb_constraint (&ebb_table);
7300 ebb = &ebb_table.ebb;
7301 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7302 internal_relocs, sec->reloc_count);
7303 ebb->start_offset = r_offset + simplify_size;
7304 ebb->end_offset = r_offset + simplify_size;
7305 ebb->start_ptbl_idx = ptbl_idx;
7306 ebb->end_ptbl_idx = ptbl_idx;
7307 ebb->start_reloc_idx = i;
7308 ebb->end_reloc_idx = i;
7309
cb337148
BW
7310 /* Precompute the opcode for each relocation. */
7311 if (reloc_opcodes == NULL)
7312 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7313 internal_relocs);
7314
43cd72b9
BW
7315 if (!extend_ebb_bounds (ebb)
7316 || !compute_ebb_proposed_actions (&ebb_table)
7317 || !compute_ebb_actions (&ebb_table)
7318 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
cb337148
BW
7319 internal_relocs, &ebb_table,
7320 reloc_opcodes)
43cd72b9 7321 || !check_section_ebb_reduces (&ebb_table))
e0001a05 7322 {
43cd72b9
BW
7323 /* If anything goes wrong or we get unlucky and something does
7324 not fit, with our plan because of expansion between
7325 critical branches, just convert to a NOP. */
7326
7327 text_action_add (&relax_info->action_list,
7328 ta_convert_longcall, sec, r_offset, 0);
7329 i = ebb_table.ebb.end_reloc_idx;
7330 free_ebb_constraint (&ebb_table);
7331 continue;
e0001a05 7332 }
43cd72b9
BW
7333
7334 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7335
7336 /* Update the index so we do not go looking at the relocations
7337 we have already processed. */
7338 i = ebb_table.ebb.end_reloc_idx;
7339 free_ebb_constraint (&ebb_table);
e0001a05
NC
7340 }
7341
43cd72b9 7342#if DEBUG
7fa3d080 7343 if (relax_info->action_list.head)
43cd72b9
BW
7344 print_action_list (stderr, &relax_info->action_list);
7345#endif
7346
7347error_return:
e0001a05
NC
7348 release_contents (sec, contents);
7349 release_internal_relocs (sec, internal_relocs);
43cd72b9
BW
7350 if (prop_table)
7351 free (prop_table);
cb337148
BW
7352 if (reloc_opcodes)
7353 free (reloc_opcodes);
43cd72b9 7354
e0001a05
NC
7355 return ok;
7356}
7357
7358
64b607e6
BW
7359/* Do not widen an instruction if it is preceeded by a
7360 loop opcode. It might cause misalignment. */
7361
7362static bfd_boolean
7363prev_instr_is_a_loop (bfd_byte *contents,
7364 bfd_size_type content_length,
7365 bfd_size_type offset)
7366{
7367 xtensa_opcode prev_opcode;
7368
7369 if (offset < 3)
7370 return FALSE;
7371 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7372 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7373}
7374
7375
43cd72b9 7376/* Find all of the possible actions for an extended basic block. */
e0001a05 7377
43cd72b9 7378bfd_boolean
7fa3d080 7379compute_ebb_proposed_actions (ebb_constraint *ebb_table)
e0001a05 7380{
43cd72b9
BW
7381 const ebb_t *ebb = &ebb_table->ebb;
7382 unsigned rel_idx = ebb->start_reloc_idx;
7383 property_table_entry *entry, *start_entry, *end_entry;
64b607e6
BW
7384 bfd_vma offset = 0;
7385 xtensa_isa isa = xtensa_default_isa;
7386 xtensa_format fmt;
7387 static xtensa_insnbuf insnbuf = NULL;
7388 static xtensa_insnbuf slotbuf = NULL;
7389
7390 if (insnbuf == NULL)
7391 {
7392 insnbuf = xtensa_insnbuf_alloc (isa);
7393 slotbuf = xtensa_insnbuf_alloc (isa);
7394 }
e0001a05 7395
43cd72b9
BW
7396 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7397 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
e0001a05 7398
43cd72b9 7399 for (entry = start_entry; entry <= end_entry; entry++)
e0001a05 7400 {
64b607e6 7401 bfd_vma start_offset, end_offset;
43cd72b9 7402 bfd_size_type insn_len;
e0001a05 7403
43cd72b9
BW
7404 start_offset = entry->address - ebb->sec->vma;
7405 end_offset = entry->address + entry->size - ebb->sec->vma;
e0001a05 7406
43cd72b9
BW
7407 if (entry == start_entry)
7408 start_offset = ebb->start_offset;
7409 if (entry == end_entry)
7410 end_offset = ebb->end_offset;
7411 offset = start_offset;
e0001a05 7412
43cd72b9
BW
7413 if (offset == entry->address - ebb->sec->vma
7414 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7415 {
7416 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7417 BFD_ASSERT (offset != end_offset);
7418 if (offset == end_offset)
7419 return FALSE;
e0001a05 7420
43cd72b9
BW
7421 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7422 offset);
43cd72b9 7423 if (insn_len == 0)
64b607e6
BW
7424 goto decode_error;
7425
43cd72b9
BW
7426 if (check_branch_target_aligned_address (offset, insn_len))
7427 align_type = EBB_REQUIRE_TGT_ALIGN;
7428
7429 ebb_propose_action (ebb_table, align_type, 0,
7430 ta_none, offset, 0, TRUE);
7431 }
7432
7433 while (offset != end_offset)
e0001a05 7434 {
43cd72b9 7435 Elf_Internal_Rela *irel;
e0001a05 7436 xtensa_opcode opcode;
e0001a05 7437
43cd72b9
BW
7438 while (rel_idx < ebb->end_reloc_idx
7439 && (ebb->relocs[rel_idx].r_offset < offset
7440 || (ebb->relocs[rel_idx].r_offset == offset
7441 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7442 != R_XTENSA_ASM_SIMPLIFY))))
7443 rel_idx++;
7444
7445 /* Check for longcall. */
7446 irel = &ebb->relocs[rel_idx];
7447 if (irel->r_offset == offset
7448 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7449 {
7450 bfd_size_type simplify_size;
e0001a05 7451
43cd72b9
BW
7452 simplify_size = get_asm_simplify_size (ebb->contents,
7453 ebb->content_length,
7454 irel->r_offset);
7455 if (simplify_size == 0)
64b607e6 7456 goto decode_error;
43cd72b9
BW
7457
7458 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7459 ta_convert_longcall, offset, 0, TRUE);
7460
7461 offset += simplify_size;
7462 continue;
7463 }
e0001a05 7464
64b607e6
BW
7465 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7466 goto decode_error;
7467 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7468 ebb->content_length - offset);
7469 fmt = xtensa_format_decode (isa, insnbuf);
7470 if (fmt == XTENSA_UNDEFINED)
7471 goto decode_error;
7472 insn_len = xtensa_format_length (isa, fmt);
7473 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7474 goto decode_error;
7475
7476 if (xtensa_format_num_slots (isa, fmt) != 1)
43cd72b9 7477 {
64b607e6
BW
7478 offset += insn_len;
7479 continue;
43cd72b9 7480 }
64b607e6
BW
7481
7482 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7483 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7484 if (opcode == XTENSA_UNDEFINED)
7485 goto decode_error;
7486
43cd72b9 7487 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
99ded152 7488 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6 7489 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
43cd72b9
BW
7490 {
7491 /* Add an instruction narrow action. */
7492 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7493 ta_narrow_insn, offset, 0, FALSE);
43cd72b9 7494 }
99ded152 7495 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
64b607e6
BW
7496 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7497 && ! prev_instr_is_a_loop (ebb->contents,
7498 ebb->content_length, offset))
43cd72b9
BW
7499 {
7500 /* Add an instruction widen action. */
7501 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7502 ta_widen_insn, offset, 0, FALSE);
43cd72b9 7503 }
64b607e6 7504 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
43cd72b9
BW
7505 {
7506 /* Check for branch targets. */
7507 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7508 ta_none, offset, 0, TRUE);
43cd72b9
BW
7509 }
7510
7511 offset += insn_len;
e0001a05
NC
7512 }
7513 }
7514
43cd72b9
BW
7515 if (ebb->ends_unreachable)
7516 {
7517 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7518 ta_fill, ebb->end_offset, 0, TRUE);
7519 }
e0001a05 7520
43cd72b9 7521 return TRUE;
64b607e6
BW
7522
7523 decode_error:
7524 (*_bfd_error_handler)
7525 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7526 ebb->sec->owner, ebb->sec, offset);
7527 return FALSE;
43cd72b9
BW
7528}
7529
7530
7531/* After all of the information has collected about the
7532 transformations possible in an EBB, compute the appropriate actions
7533 here in compute_ebb_actions. We still must check later to make
7534 sure that the actions do not break any relocations. The algorithm
7535 used here is pretty greedy. Basically, it removes as many no-ops
7536 as possible so that the end of the EBB has the same alignment
7537 characteristics as the original. First, it uses narrowing, then
7538 fill space at the end of the EBB, and finally widenings. If that
7539 does not work, it tries again with one fewer no-op removed. The
7540 optimization will only be performed if all of the branch targets
7541 that were aligned before transformation are also aligned after the
7542 transformation.
7543
7544 When the size_opt flag is set, ignore the branch target alignments,
7545 narrow all wide instructions, and remove all no-ops unless the end
7546 of the EBB prevents it. */
7547
7548bfd_boolean
7fa3d080 7549compute_ebb_actions (ebb_constraint *ebb_table)
43cd72b9
BW
7550{
7551 unsigned i = 0;
7552 unsigned j;
7553 int removed_bytes = 0;
7554 ebb_t *ebb = &ebb_table->ebb;
7555 unsigned seg_idx_start = 0;
7556 unsigned seg_idx_end = 0;
7557
7558 /* We perform this like the assembler relaxation algorithm: Start by
7559 assuming all instructions are narrow and all no-ops removed; then
7560 walk through.... */
7561
7562 /* For each segment of this that has a solid constraint, check to
7563 see if there are any combinations that will keep the constraint.
7564 If so, use it. */
7565 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
e0001a05 7566 {
43cd72b9
BW
7567 bfd_boolean requires_text_end_align = FALSE;
7568 unsigned longcall_count = 0;
7569 unsigned longcall_convert_count = 0;
7570 unsigned narrowable_count = 0;
7571 unsigned narrowable_convert_count = 0;
7572 unsigned widenable_count = 0;
7573 unsigned widenable_convert_count = 0;
e0001a05 7574
43cd72b9
BW
7575 proposed_action *action = NULL;
7576 int align = (1 << ebb_table->ebb.sec->alignment_power);
e0001a05 7577
43cd72b9 7578 seg_idx_start = seg_idx_end;
e0001a05 7579
43cd72b9
BW
7580 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7581 {
7582 action = &ebb_table->actions[i];
7583 if (action->action == ta_convert_longcall)
7584 longcall_count++;
7585 if (action->action == ta_narrow_insn)
7586 narrowable_count++;
7587 if (action->action == ta_widen_insn)
7588 widenable_count++;
7589 if (action->action == ta_fill)
7590 break;
7591 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7592 break;
7593 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7594 && !elf32xtensa_size_opt)
7595 break;
7596 }
7597 seg_idx_end = i;
e0001a05 7598
43cd72b9
BW
7599 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7600 requires_text_end_align = TRUE;
e0001a05 7601
43cd72b9
BW
7602 if (elf32xtensa_size_opt && !requires_text_end_align
7603 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7604 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7605 {
7606 longcall_convert_count = longcall_count;
7607 narrowable_convert_count = narrowable_count;
7608 widenable_convert_count = 0;
7609 }
7610 else
7611 {
7612 /* There is a constraint. Convert the max number of longcalls. */
7613 narrowable_convert_count = 0;
7614 longcall_convert_count = 0;
7615 widenable_convert_count = 0;
e0001a05 7616
43cd72b9 7617 for (j = 0; j < longcall_count; j++)
e0001a05 7618 {
43cd72b9
BW
7619 int removed = (longcall_count - j) * 3 & (align - 1);
7620 unsigned desire_narrow = (align - removed) & (align - 1);
7621 unsigned desire_widen = removed;
7622 if (desire_narrow <= narrowable_count)
7623 {
7624 narrowable_convert_count = desire_narrow;
7625 narrowable_convert_count +=
7626 (align * ((narrowable_count - narrowable_convert_count)
7627 / align));
7628 longcall_convert_count = (longcall_count - j);
7629 widenable_convert_count = 0;
7630 break;
7631 }
7632 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7633 {
7634 narrowable_convert_count = 0;
7635 longcall_convert_count = longcall_count - j;
7636 widenable_convert_count = desire_widen;
7637 break;
7638 }
7639 }
7640 }
e0001a05 7641
43cd72b9
BW
7642 /* Now the number of conversions are saved. Do them. */
7643 for (i = seg_idx_start; i < seg_idx_end; i++)
7644 {
7645 action = &ebb_table->actions[i];
7646 switch (action->action)
7647 {
7648 case ta_convert_longcall:
7649 if (longcall_convert_count != 0)
7650 {
7651 action->action = ta_remove_longcall;
7652 action->do_action = TRUE;
7653 action->removed_bytes += 3;
7654 longcall_convert_count--;
7655 }
7656 break;
7657 case ta_narrow_insn:
7658 if (narrowable_convert_count != 0)
7659 {
7660 action->do_action = TRUE;
7661 action->removed_bytes += 1;
7662 narrowable_convert_count--;
7663 }
7664 break;
7665 case ta_widen_insn:
7666 if (widenable_convert_count != 0)
7667 {
7668 action->do_action = TRUE;
7669 action->removed_bytes -= 1;
7670 widenable_convert_count--;
7671 }
7672 break;
7673 default:
7674 break;
e0001a05 7675 }
43cd72b9
BW
7676 }
7677 }
e0001a05 7678
43cd72b9
BW
7679 /* Now we move on to some local opts. Try to remove each of the
7680 remaining longcalls. */
e0001a05 7681
43cd72b9
BW
7682 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7683 {
7684 removed_bytes = 0;
7685 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 7686 {
43cd72b9
BW
7687 int old_removed_bytes = removed_bytes;
7688 proposed_action *action = &ebb_table->actions[i];
7689
7690 if (action->do_action && action->action == ta_convert_longcall)
7691 {
7692 bfd_boolean bad_alignment = FALSE;
7693 removed_bytes += 3;
7694 for (j = i + 1; j < ebb_table->action_count; j++)
7695 {
7696 proposed_action *new_action = &ebb_table->actions[j];
7697 bfd_vma offset = new_action->offset;
7698 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7699 {
7700 if (!check_branch_target_aligned
7701 (ebb_table->ebb.contents,
7702 ebb_table->ebb.content_length,
7703 offset, offset - removed_bytes))
7704 {
7705 bad_alignment = TRUE;
7706 break;
7707 }
7708 }
7709 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7710 {
7711 if (!check_loop_aligned (ebb_table->ebb.contents,
7712 ebb_table->ebb.content_length,
7713 offset,
7714 offset - removed_bytes))
7715 {
7716 bad_alignment = TRUE;
7717 break;
7718 }
7719 }
7720 if (new_action->action == ta_narrow_insn
7721 && !new_action->do_action
7722 && ebb_table->ebb.sec->alignment_power == 2)
7723 {
7724 /* Narrow an instruction and we are done. */
7725 new_action->do_action = TRUE;
7726 new_action->removed_bytes += 1;
7727 bad_alignment = FALSE;
7728 break;
7729 }
7730 if (new_action->action == ta_widen_insn
7731 && new_action->do_action
7732 && ebb_table->ebb.sec->alignment_power == 2)
7733 {
7734 /* Narrow an instruction and we are done. */
7735 new_action->do_action = FALSE;
7736 new_action->removed_bytes += 1;
7737 bad_alignment = FALSE;
7738 break;
7739 }
5c5d6806
BW
7740 if (new_action->do_action)
7741 removed_bytes += new_action->removed_bytes;
43cd72b9
BW
7742 }
7743 if (!bad_alignment)
7744 {
7745 action->removed_bytes += 3;
7746 action->action = ta_remove_longcall;
7747 action->do_action = TRUE;
7748 }
7749 }
7750 removed_bytes = old_removed_bytes;
7751 if (action->do_action)
7752 removed_bytes += action->removed_bytes;
e0001a05
NC
7753 }
7754 }
7755
43cd72b9
BW
7756 removed_bytes = 0;
7757 for (i = 0; i < ebb_table->action_count; ++i)
7758 {
7759 proposed_action *action = &ebb_table->actions[i];
7760 if (action->do_action)
7761 removed_bytes += action->removed_bytes;
7762 }
7763
7764 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7765 && ebb->ends_unreachable)
7766 {
7767 proposed_action *action;
7768 int br;
7769 int extra_space;
7770
7771 BFD_ASSERT (ebb_table->action_count != 0);
7772 action = &ebb_table->actions[ebb_table->action_count - 1];
7773 BFD_ASSERT (action->action == ta_fill);
7774 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7775
7776 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7777 br = action->removed_bytes + removed_bytes + extra_space;
7778 br = br & ((1 << ebb->sec->alignment_power ) - 1);
7779
7780 action->removed_bytes = extra_space - br;
7781 }
7782 return TRUE;
e0001a05
NC
7783}
7784
7785
03e94c08
BW
7786/* The xlate_map is a sorted array of address mappings designed to
7787 answer the offset_with_removed_text() query with a binary search instead
7788 of a linear search through the section's action_list. */
7789
7790typedef struct xlate_map_entry xlate_map_entry_t;
7791typedef struct xlate_map xlate_map_t;
7792
7793struct xlate_map_entry
7794{
7795 unsigned orig_address;
7796 unsigned new_address;
7797 unsigned size;
7798};
7799
7800struct xlate_map
7801{
7802 unsigned entry_count;
7803 xlate_map_entry_t *entry;
7804};
7805
7806
7807static int
7808xlate_compare (const void *a_v, const void *b_v)
7809{
7810 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7811 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7812 if (a->orig_address < b->orig_address)
7813 return -1;
7814 if (a->orig_address > (b->orig_address + b->size - 1))
7815 return 1;
7816 return 0;
7817}
7818
7819
7820static bfd_vma
7821xlate_offset_with_removed_text (const xlate_map_t *map,
7822 text_action_list *action_list,
7823 bfd_vma offset)
7824{
03e94c08
BW
7825 void *r;
7826 xlate_map_entry_t *e;
7827
7828 if (map == NULL)
7829 return offset_with_removed_text (action_list, offset);
7830
7831 if (map->entry_count == 0)
7832 return offset;
7833
03e94c08
BW
7834 r = bsearch (&offset, map->entry, map->entry_count,
7835 sizeof (xlate_map_entry_t), &xlate_compare);
7836 e = (xlate_map_entry_t *) r;
7837
7838 BFD_ASSERT (e != NULL);
7839 if (e == NULL)
7840 return offset;
7841 return e->new_address - e->orig_address + offset;
7842}
7843
7844
7845/* Build a binary searchable offset translation map from a section's
7846 action list. */
7847
7848static xlate_map_t *
7849build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7850{
7851 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7852 text_action_list *action_list = &relax_info->action_list;
7853 unsigned num_actions = 0;
7854 text_action *r;
7855 int removed;
7856 xlate_map_entry_t *current_entry;
7857
7858 if (map == NULL)
7859 return NULL;
7860
7861 num_actions = action_list_count (action_list);
7862 map->entry = (xlate_map_entry_t *)
7863 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7864 if (map->entry == NULL)
7865 {
7866 free (map);
7867 return NULL;
7868 }
7869 map->entry_count = 0;
7870
7871 removed = 0;
7872 current_entry = &map->entry[0];
7873
7874 current_entry->orig_address = 0;
7875 current_entry->new_address = 0;
7876 current_entry->size = 0;
7877
7878 for (r = action_list->head; r != NULL; r = r->next)
7879 {
7880 unsigned orig_size = 0;
7881 switch (r->action)
7882 {
7883 case ta_none:
7884 case ta_remove_insn:
7885 case ta_convert_longcall:
7886 case ta_remove_literal:
7887 case ta_add_literal:
7888 break;
7889 case ta_remove_longcall:
7890 orig_size = 6;
7891 break;
7892 case ta_narrow_insn:
7893 orig_size = 3;
7894 break;
7895 case ta_widen_insn:
7896 orig_size = 2;
7897 break;
7898 case ta_fill:
7899 break;
7900 }
7901 current_entry->size =
7902 r->offset + orig_size - current_entry->orig_address;
7903 if (current_entry->size != 0)
7904 {
7905 current_entry++;
7906 map->entry_count++;
7907 }
7908 current_entry->orig_address = r->offset + orig_size;
7909 removed += r->removed_bytes;
7910 current_entry->new_address = r->offset + orig_size - removed;
7911 current_entry->size = 0;
7912 }
7913
7914 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7915 - current_entry->orig_address);
7916 if (current_entry->size != 0)
7917 map->entry_count++;
7918
7919 return map;
7920}
7921
7922
7923/* Free an offset translation map. */
7924
7925static void
7926free_xlate_map (xlate_map_t *map)
7927{
7928 if (map && map->entry)
7929 free (map->entry);
7930 if (map)
7931 free (map);
7932}
7933
7934
43cd72b9
BW
7935/* Use check_section_ebb_pcrels_fit to make sure that all of the
7936 relocations in a section will fit if a proposed set of actions
7937 are performed. */
e0001a05 7938
43cd72b9 7939static bfd_boolean
7fa3d080
BW
7940check_section_ebb_pcrels_fit (bfd *abfd,
7941 asection *sec,
7942 bfd_byte *contents,
7943 Elf_Internal_Rela *internal_relocs,
cb337148
BW
7944 const ebb_constraint *constraint,
7945 const xtensa_opcode *reloc_opcodes)
e0001a05 7946{
43cd72b9
BW
7947 unsigned i, j;
7948 Elf_Internal_Rela *irel;
03e94c08
BW
7949 xlate_map_t *xmap = NULL;
7950 bfd_boolean ok = TRUE;
43cd72b9 7951 xtensa_relax_info *relax_info;
e0001a05 7952
43cd72b9 7953 relax_info = get_xtensa_relax_info (sec);
e0001a05 7954
03e94c08
BW
7955 if (relax_info && sec->reloc_count > 100)
7956 {
7957 xmap = build_xlate_map (sec, relax_info);
7958 /* NULL indicates out of memory, but the slow version
7959 can still be used. */
7960 }
7961
43cd72b9
BW
7962 for (i = 0; i < sec->reloc_count; i++)
7963 {
7964 r_reloc r_rel;
7965 bfd_vma orig_self_offset, orig_target_offset;
7966 bfd_vma self_offset, target_offset;
7967 int r_type;
7968 reloc_howto_type *howto;
7969 int self_removed_bytes, target_removed_bytes;
e0001a05 7970
43cd72b9
BW
7971 irel = &internal_relocs[i];
7972 r_type = ELF32_R_TYPE (irel->r_info);
e0001a05 7973
43cd72b9
BW
7974 howto = &elf_howto_table[r_type];
7975 /* We maintain the required invariant: PC-relative relocations
7976 that fit before linking must fit after linking. Thus we only
7977 need to deal with relocations to the same section that are
7978 PC-relative. */
1bbb5f21
BW
7979 if (r_type == R_XTENSA_ASM_SIMPLIFY
7980 || r_type == R_XTENSA_32_PCREL
43cd72b9
BW
7981 || !howto->pc_relative)
7982 continue;
e0001a05 7983
43cd72b9
BW
7984 r_reloc_init (&r_rel, abfd, irel, contents,
7985 bfd_get_section_limit (abfd, sec));
e0001a05 7986
43cd72b9
BW
7987 if (r_reloc_get_section (&r_rel) != sec)
7988 continue;
e0001a05 7989
43cd72b9
BW
7990 orig_self_offset = irel->r_offset;
7991 orig_target_offset = r_rel.target_offset;
e0001a05 7992
43cd72b9
BW
7993 self_offset = orig_self_offset;
7994 target_offset = orig_target_offset;
7995
7996 if (relax_info)
7997 {
03e94c08
BW
7998 self_offset =
7999 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8000 orig_self_offset);
8001 target_offset =
8002 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8003 orig_target_offset);
43cd72b9
BW
8004 }
8005
8006 self_removed_bytes = 0;
8007 target_removed_bytes = 0;
8008
8009 for (j = 0; j < constraint->action_count; ++j)
8010 {
8011 proposed_action *action = &constraint->actions[j];
8012 bfd_vma offset = action->offset;
8013 int removed_bytes = action->removed_bytes;
8014 if (offset < orig_self_offset
8015 || (offset == orig_self_offset && action->action == ta_fill
8016 && action->removed_bytes < 0))
8017 self_removed_bytes += removed_bytes;
8018 if (offset < orig_target_offset
8019 || (offset == orig_target_offset && action->action == ta_fill
8020 && action->removed_bytes < 0))
8021 target_removed_bytes += removed_bytes;
8022 }
8023 self_offset -= self_removed_bytes;
8024 target_offset -= target_removed_bytes;
8025
8026 /* Try to encode it. Get the operand and check. */
8027 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8028 {
8029 /* None of the current alternate relocs are PC-relative,
8030 and only PC-relative relocs matter here. */
8031 }
8032 else
8033 {
8034 xtensa_opcode opcode;
8035 int opnum;
8036
cb337148
BW
8037 if (reloc_opcodes)
8038 opcode = reloc_opcodes[i];
8039 else
8040 opcode = get_relocation_opcode (abfd, sec, contents, irel);
43cd72b9 8041 if (opcode == XTENSA_UNDEFINED)
03e94c08
BW
8042 {
8043 ok = FALSE;
8044 break;
8045 }
43cd72b9
BW
8046
8047 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8048 if (opnum == XTENSA_UNDEFINED)
03e94c08
BW
8049 {
8050 ok = FALSE;
8051 break;
8052 }
43cd72b9
BW
8053
8054 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
03e94c08
BW
8055 {
8056 ok = FALSE;
8057 break;
8058 }
43cd72b9
BW
8059 }
8060 }
8061
03e94c08
BW
8062 if (xmap)
8063 free_xlate_map (xmap);
8064
8065 return ok;
43cd72b9
BW
8066}
8067
8068
8069static bfd_boolean
7fa3d080 8070check_section_ebb_reduces (const ebb_constraint *constraint)
43cd72b9
BW
8071{
8072 int removed = 0;
8073 unsigned i;
8074
8075 for (i = 0; i < constraint->action_count; i++)
8076 {
8077 const proposed_action *action = &constraint->actions[i];
8078 if (action->do_action)
8079 removed += action->removed_bytes;
8080 }
8081 if (removed < 0)
e0001a05
NC
8082 return FALSE;
8083
8084 return TRUE;
8085}
8086
8087
43cd72b9 8088void
7fa3d080
BW
8089text_action_add_proposed (text_action_list *l,
8090 const ebb_constraint *ebb_table,
8091 asection *sec)
e0001a05
NC
8092{
8093 unsigned i;
8094
43cd72b9 8095 for (i = 0; i < ebb_table->action_count; i++)
e0001a05 8096 {
43cd72b9 8097 proposed_action *action = &ebb_table->actions[i];
e0001a05 8098
43cd72b9 8099 if (!action->do_action)
e0001a05 8100 continue;
43cd72b9
BW
8101 switch (action->action)
8102 {
8103 case ta_remove_insn:
8104 case ta_remove_longcall:
8105 case ta_convert_longcall:
8106 case ta_narrow_insn:
8107 case ta_widen_insn:
8108 case ta_fill:
8109 case ta_remove_literal:
8110 text_action_add (l, action->action, sec, action->offset,
8111 action->removed_bytes);
8112 break;
8113 case ta_none:
8114 break;
8115 default:
8116 BFD_ASSERT (0);
8117 break;
8118 }
e0001a05 8119 }
43cd72b9 8120}
e0001a05 8121
43cd72b9
BW
8122
8123int
7fa3d080 8124compute_fill_extra_space (property_table_entry *entry)
43cd72b9
BW
8125{
8126 int fill_extra_space;
8127
8128 if (!entry)
8129 return 0;
8130
8131 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8132 return 0;
8133
8134 fill_extra_space = entry->size;
8135 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8136 {
8137 /* Fill bytes for alignment:
8138 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8139 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8140 int nsm = (1 << pow) - 1;
8141 bfd_vma addr = entry->address + entry->size;
8142 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8143 fill_extra_space += align_fill;
8144 }
8145 return fill_extra_space;
e0001a05
NC
8146}
8147
43cd72b9 8148\f
e0001a05
NC
8149/* First relaxation pass. */
8150
43cd72b9
BW
8151/* If the section contains relaxable literals, check each literal to
8152 see if it has the same value as another literal that has already
8153 been seen, either in the current section or a previous one. If so,
8154 add an entry to the per-section list of removed literals. The
e0001a05
NC
8155 actual changes are deferred until the next pass. */
8156
8157static bfd_boolean
7fa3d080
BW
8158compute_removed_literals (bfd *abfd,
8159 asection *sec,
8160 struct bfd_link_info *link_info,
8161 value_map_hash_table *values)
e0001a05
NC
8162{
8163 xtensa_relax_info *relax_info;
8164 bfd_byte *contents;
8165 Elf_Internal_Rela *internal_relocs;
43cd72b9 8166 source_reloc *src_relocs, *rel;
e0001a05 8167 bfd_boolean ok = TRUE;
43cd72b9
BW
8168 property_table_entry *prop_table = NULL;
8169 int ptblsize;
8170 int i, prev_i;
8171 bfd_boolean last_loc_is_prev = FALSE;
8172 bfd_vma last_target_offset = 0;
8173 section_cache_t target_sec_cache;
8174 bfd_size_type sec_size;
8175
8176 init_section_cache (&target_sec_cache);
e0001a05
NC
8177
8178 /* Do nothing if it is not a relaxable literal section. */
8179 relax_info = get_xtensa_relax_info (sec);
8180 BFD_ASSERT (relax_info);
e0001a05
NC
8181 if (!relax_info->is_relaxable_literal_section)
8182 return ok;
8183
8184 internal_relocs = retrieve_internal_relocs (abfd, sec,
8185 link_info->keep_memory);
8186
43cd72b9 8187 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05 8188 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 8189 if (contents == NULL && sec_size != 0)
e0001a05
NC
8190 {
8191 ok = FALSE;
8192 goto error_return;
8193 }
8194
8195 /* Sort the source_relocs by target offset. */
8196 src_relocs = relax_info->src_relocs;
8197 qsort (src_relocs, relax_info->src_count,
8198 sizeof (source_reloc), source_reloc_compare);
43cd72b9
BW
8199 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8200 internal_reloc_compare);
e0001a05 8201
43cd72b9
BW
8202 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8203 XTENSA_PROP_SEC_NAME, FALSE);
8204 if (ptblsize < 0)
8205 {
8206 ok = FALSE;
8207 goto error_return;
8208 }
8209
8210 prev_i = -1;
e0001a05
NC
8211 for (i = 0; i < relax_info->src_count; i++)
8212 {
e0001a05 8213 Elf_Internal_Rela *irel = NULL;
e0001a05
NC
8214
8215 rel = &src_relocs[i];
43cd72b9
BW
8216 if (get_l32r_opcode () != rel->opcode)
8217 continue;
e0001a05
NC
8218 irel = get_irel_at_offset (sec, internal_relocs,
8219 rel->r_rel.target_offset);
8220
43cd72b9
BW
8221 /* If the relocation on this is not a simple R_XTENSA_32 or
8222 R_XTENSA_PLT then do not consider it. This may happen when
8223 the difference of two symbols is used in a literal. */
8224 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8225 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8226 continue;
8227
e0001a05
NC
8228 /* If the target_offset for this relocation is the same as the
8229 previous relocation, then we've already considered whether the
8230 literal can be coalesced. Skip to the next one.... */
43cd72b9
BW
8231 if (i != 0 && prev_i != -1
8232 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
e0001a05 8233 continue;
43cd72b9
BW
8234 prev_i = i;
8235
8236 if (last_loc_is_prev &&
8237 last_target_offset + 4 != rel->r_rel.target_offset)
8238 last_loc_is_prev = FALSE;
e0001a05
NC
8239
8240 /* Check if the relocation was from an L32R that is being removed
8241 because a CALLX was converted to a direct CALL, and check if
8242 there are no other relocations to the literal. */
99ded152
BW
8243 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8244 sec, prop_table, ptblsize))
e0001a05 8245 {
43cd72b9
BW
8246 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8247 irel, rel, prop_table, ptblsize))
e0001a05 8248 {
43cd72b9
BW
8249 ok = FALSE;
8250 goto error_return;
e0001a05 8251 }
43cd72b9 8252 last_target_offset = rel->r_rel.target_offset;
e0001a05
NC
8253 continue;
8254 }
8255
43cd72b9
BW
8256 if (!identify_literal_placement (abfd, sec, contents, link_info,
8257 values,
8258 &last_loc_is_prev, irel,
8259 relax_info->src_count - i, rel,
8260 prop_table, ptblsize,
8261 &target_sec_cache, rel->is_abs_literal))
e0001a05 8262 {
43cd72b9
BW
8263 ok = FALSE;
8264 goto error_return;
8265 }
8266 last_target_offset = rel->r_rel.target_offset;
8267 }
e0001a05 8268
43cd72b9
BW
8269#if DEBUG
8270 print_removed_literals (stderr, &relax_info->removed_list);
8271 print_action_list (stderr, &relax_info->action_list);
8272#endif /* DEBUG */
8273
8274error_return:
8275 if (prop_table) free (prop_table);
8276 clear_section_cache (&target_sec_cache);
8277
8278 release_contents (sec, contents);
8279 release_internal_relocs (sec, internal_relocs);
8280 return ok;
8281}
8282
8283
8284static Elf_Internal_Rela *
7fa3d080
BW
8285get_irel_at_offset (asection *sec,
8286 Elf_Internal_Rela *internal_relocs,
8287 bfd_vma offset)
43cd72b9
BW
8288{
8289 unsigned i;
8290 Elf_Internal_Rela *irel;
8291 unsigned r_type;
8292 Elf_Internal_Rela key;
8293
8294 if (!internal_relocs)
8295 return NULL;
8296
8297 key.r_offset = offset;
8298 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8299 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8300 if (!irel)
8301 return NULL;
8302
8303 /* bsearch does not guarantee which will be returned if there are
8304 multiple matches. We need the first that is not an alignment. */
8305 i = irel - internal_relocs;
8306 while (i > 0)
8307 {
8308 if (internal_relocs[i-1].r_offset != offset)
8309 break;
8310 i--;
8311 }
8312 for ( ; i < sec->reloc_count; i++)
8313 {
8314 irel = &internal_relocs[i];
8315 r_type = ELF32_R_TYPE (irel->r_info);
8316 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8317 return irel;
8318 }
8319
8320 return NULL;
8321}
8322
8323
8324bfd_boolean
7fa3d080
BW
8325is_removable_literal (const source_reloc *rel,
8326 int i,
8327 const source_reloc *src_relocs,
99ded152
BW
8328 int src_count,
8329 asection *sec,
8330 property_table_entry *prop_table,
8331 int ptblsize)
43cd72b9
BW
8332{
8333 const source_reloc *curr_rel;
99ded152
BW
8334 property_table_entry *entry;
8335
43cd72b9
BW
8336 if (!rel->is_null)
8337 return FALSE;
8338
99ded152
BW
8339 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8340 sec->vma + rel->r_rel.target_offset);
8341 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8342 return FALSE;
8343
43cd72b9
BW
8344 for (++i; i < src_count; ++i)
8345 {
8346 curr_rel = &src_relocs[i];
8347 /* If all others have the same target offset.... */
8348 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8349 return TRUE;
8350
8351 if (!curr_rel->is_null
8352 && !xtensa_is_property_section (curr_rel->source_sec)
8353 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8354 return FALSE;
8355 }
8356 return TRUE;
8357}
8358
8359
8360bfd_boolean
7fa3d080
BW
8361remove_dead_literal (bfd *abfd,
8362 asection *sec,
8363 struct bfd_link_info *link_info,
8364 Elf_Internal_Rela *internal_relocs,
8365 Elf_Internal_Rela *irel,
8366 source_reloc *rel,
8367 property_table_entry *prop_table,
8368 int ptblsize)
43cd72b9
BW
8369{
8370 property_table_entry *entry;
8371 xtensa_relax_info *relax_info;
8372
8373 relax_info = get_xtensa_relax_info (sec);
8374 if (!relax_info)
8375 return FALSE;
8376
8377 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8378 sec->vma + rel->r_rel.target_offset);
8379
8380 /* Mark the unused literal so that it will be removed. */
8381 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8382
8383 text_action_add (&relax_info->action_list,
8384 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8385
8386 /* If the section is 4-byte aligned, do not add fill. */
8387 if (sec->alignment_power > 2)
8388 {
8389 int fill_extra_space;
8390 bfd_vma entry_sec_offset;
8391 text_action *fa;
8392 property_table_entry *the_add_entry;
8393 int removed_diff;
8394
8395 if (entry)
8396 entry_sec_offset = entry->address - sec->vma + entry->size;
8397 else
8398 entry_sec_offset = rel->r_rel.target_offset + 4;
8399
8400 /* If the literal range is at the end of the section,
8401 do not add fill. */
8402 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8403 entry_sec_offset);
8404 fill_extra_space = compute_fill_extra_space (the_add_entry);
8405
8406 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8407 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8408 -4, fill_extra_space);
8409 if (fa)
8410 adjust_fill_action (fa, removed_diff);
8411 else
8412 text_action_add (&relax_info->action_list,
8413 ta_fill, sec, entry_sec_offset, removed_diff);
8414 }
8415
8416 /* Zero out the relocation on this literal location. */
8417 if (irel)
8418 {
8419 if (elf_hash_table (link_info)->dynamic_sections_created)
8420 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8421
8422 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8423 pin_internal_relocs (sec, internal_relocs);
8424 }
8425
8426 /* Do not modify "last_loc_is_prev". */
8427 return TRUE;
8428}
8429
8430
8431bfd_boolean
7fa3d080
BW
8432identify_literal_placement (bfd *abfd,
8433 asection *sec,
8434 bfd_byte *contents,
8435 struct bfd_link_info *link_info,
8436 value_map_hash_table *values,
8437 bfd_boolean *last_loc_is_prev_p,
8438 Elf_Internal_Rela *irel,
8439 int remaining_src_rels,
8440 source_reloc *rel,
8441 property_table_entry *prop_table,
8442 int ptblsize,
8443 section_cache_t *target_sec_cache,
8444 bfd_boolean is_abs_literal)
43cd72b9
BW
8445{
8446 literal_value val;
8447 value_map *val_map;
8448 xtensa_relax_info *relax_info;
8449 bfd_boolean literal_placed = FALSE;
8450 r_reloc r_rel;
8451 unsigned long value;
8452 bfd_boolean final_static_link;
8453 bfd_size_type sec_size;
8454
8455 relax_info = get_xtensa_relax_info (sec);
8456 if (!relax_info)
8457 return FALSE;
8458
8459 sec_size = bfd_get_section_limit (abfd, sec);
8460
8461 final_static_link =
8462 (!link_info->relocatable
8463 && !elf_hash_table (link_info)->dynamic_sections_created);
8464
8465 /* The placement algorithm first checks to see if the literal is
8466 already in the value map. If so and the value map is reachable
8467 from all uses, then the literal is moved to that location. If
8468 not, then we identify the last location where a fresh literal was
8469 placed. If the literal can be safely moved there, then we do so.
8470 If not, then we assume that the literal is not to move and leave
8471 the literal where it is, marking it as the last literal
8472 location. */
8473
8474 /* Find the literal value. */
8475 value = 0;
8476 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8477 if (!irel)
8478 {
8479 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8480 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8481 }
8482 init_literal_value (&val, &r_rel, value, is_abs_literal);
8483
8484 /* Check if we've seen another literal with the same value that
8485 is in the same output section. */
8486 val_map = value_map_get_cached_value (values, &val, final_static_link);
8487
8488 if (val_map
8489 && (r_reloc_get_section (&val_map->loc)->output_section
8490 == sec->output_section)
8491 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8492 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8493 {
8494 /* No change to last_loc_is_prev. */
8495 literal_placed = TRUE;
8496 }
8497
8498 /* For relocatable links, do not try to move literals. To do it
8499 correctly might increase the number of relocations in an input
8500 section making the default relocatable linking fail. */
8501 if (!link_info->relocatable && !literal_placed
8502 && values->has_last_loc && !(*last_loc_is_prev_p))
8503 {
8504 asection *target_sec = r_reloc_get_section (&values->last_loc);
8505 if (target_sec && target_sec->output_section == sec->output_section)
8506 {
8507 /* Increment the virtual offset. */
8508 r_reloc try_loc = values->last_loc;
8509 try_loc.virtual_offset += 4;
8510
8511 /* There is a last loc that was in the same output section. */
8512 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8513 && move_shared_literal (sec, link_info, rel,
8514 prop_table, ptblsize,
8515 &try_loc, &val, target_sec_cache))
e0001a05 8516 {
43cd72b9
BW
8517 values->last_loc.virtual_offset += 4;
8518 literal_placed = TRUE;
8519 if (!val_map)
8520 val_map = add_value_map (values, &val, &try_loc,
8521 final_static_link);
8522 else
8523 val_map->loc = try_loc;
e0001a05
NC
8524 }
8525 }
43cd72b9
BW
8526 }
8527
8528 if (!literal_placed)
8529 {
8530 /* Nothing worked, leave the literal alone but update the last loc. */
8531 values->has_last_loc = TRUE;
8532 values->last_loc = rel->r_rel;
8533 if (!val_map)
8534 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
e0001a05 8535 else
43cd72b9
BW
8536 val_map->loc = rel->r_rel;
8537 *last_loc_is_prev_p = TRUE;
e0001a05
NC
8538 }
8539
43cd72b9 8540 return TRUE;
e0001a05
NC
8541}
8542
8543
8544/* Check if the original relocations (presumably on L32R instructions)
8545 identified by reloc[0..N] can be changed to reference the literal
8546 identified by r_rel. If r_rel is out of range for any of the
8547 original relocations, then we don't want to coalesce the original
8548 literal with the one at r_rel. We only check reloc[0..N], where the
8549 offsets are all the same as for reloc[0] (i.e., they're all
8550 referencing the same literal) and where N is also bounded by the
8551 number of remaining entries in the "reloc" array. The "reloc" array
8552 is sorted by target offset so we know all the entries for the same
8553 literal will be contiguous. */
8554
8555static bfd_boolean
7fa3d080
BW
8556relocations_reach (source_reloc *reloc,
8557 int remaining_relocs,
8558 const r_reloc *r_rel)
e0001a05
NC
8559{
8560 bfd_vma from_offset, source_address, dest_address;
8561 asection *sec;
8562 int i;
8563
8564 if (!r_reloc_is_defined (r_rel))
8565 return FALSE;
8566
8567 sec = r_reloc_get_section (r_rel);
8568 from_offset = reloc[0].r_rel.target_offset;
8569
8570 for (i = 0; i < remaining_relocs; i++)
8571 {
8572 if (reloc[i].r_rel.target_offset != from_offset)
8573 break;
8574
8575 /* Ignore relocations that have been removed. */
8576 if (reloc[i].is_null)
8577 continue;
8578
8579 /* The original and new output section for these must be the same
8580 in order to coalesce. */
8581 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8582 != sec->output_section)
8583 return FALSE;
8584
d638e0ac
BW
8585 /* Absolute literals in the same output section can always be
8586 combined. */
8587 if (reloc[i].is_abs_literal)
8588 continue;
8589
43cd72b9
BW
8590 /* A literal with no PC-relative relocations can be moved anywhere. */
8591 if (reloc[i].opnd != -1)
e0001a05
NC
8592 {
8593 /* Otherwise, check to see that it fits. */
8594 source_address = (reloc[i].source_sec->output_section->vma
8595 + reloc[i].source_sec->output_offset
8596 + reloc[i].r_rel.rela.r_offset);
8597 dest_address = (sec->output_section->vma
8598 + sec->output_offset
8599 + r_rel->target_offset);
8600
43cd72b9
BW
8601 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8602 source_address, dest_address))
e0001a05
NC
8603 return FALSE;
8604 }
8605 }
8606
8607 return TRUE;
8608}
8609
8610
43cd72b9
BW
8611/* Move a literal to another literal location because it is
8612 the same as the other literal value. */
e0001a05 8613
43cd72b9 8614static bfd_boolean
7fa3d080
BW
8615coalesce_shared_literal (asection *sec,
8616 source_reloc *rel,
8617 property_table_entry *prop_table,
8618 int ptblsize,
8619 value_map *val_map)
e0001a05 8620{
43cd72b9
BW
8621 property_table_entry *entry;
8622 text_action *fa;
8623 property_table_entry *the_add_entry;
8624 int removed_diff;
8625 xtensa_relax_info *relax_info;
8626
8627 relax_info = get_xtensa_relax_info (sec);
8628 if (!relax_info)
8629 return FALSE;
8630
8631 entry = elf_xtensa_find_property_entry
8632 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
99ded152 8633 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
43cd72b9
BW
8634 return TRUE;
8635
8636 /* Mark that the literal will be coalesced. */
8637 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8638
8639 text_action_add (&relax_info->action_list,
8640 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8641
8642 /* If the section is 4-byte aligned, do not add fill. */
8643 if (sec->alignment_power > 2)
e0001a05 8644 {
43cd72b9
BW
8645 int fill_extra_space;
8646 bfd_vma entry_sec_offset;
8647
8648 if (entry)
8649 entry_sec_offset = entry->address - sec->vma + entry->size;
8650 else
8651 entry_sec_offset = rel->r_rel.target_offset + 4;
8652
8653 /* If the literal range is at the end of the section,
8654 do not add fill. */
8655 fill_extra_space = 0;
8656 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8657 entry_sec_offset);
8658 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8659 fill_extra_space = the_add_entry->size;
8660
8661 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8662 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8663 -4, fill_extra_space);
8664 if (fa)
8665 adjust_fill_action (fa, removed_diff);
8666 else
8667 text_action_add (&relax_info->action_list,
8668 ta_fill, sec, entry_sec_offset, removed_diff);
e0001a05 8669 }
43cd72b9
BW
8670
8671 return TRUE;
8672}
8673
8674
8675/* Move a literal to another location. This may actually increase the
8676 total amount of space used because of alignments so we need to do
8677 this carefully. Also, it may make a branch go out of range. */
8678
8679static bfd_boolean
7fa3d080
BW
8680move_shared_literal (asection *sec,
8681 struct bfd_link_info *link_info,
8682 source_reloc *rel,
8683 property_table_entry *prop_table,
8684 int ptblsize,
8685 const r_reloc *target_loc,
8686 const literal_value *lit_value,
8687 section_cache_t *target_sec_cache)
43cd72b9
BW
8688{
8689 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8690 text_action *fa, *target_fa;
8691 int removed_diff;
8692 xtensa_relax_info *relax_info, *target_relax_info;
8693 asection *target_sec;
8694 ebb_t *ebb;
8695 ebb_constraint ebb_table;
8696 bfd_boolean relocs_fit;
8697
8698 /* If this routine always returns FALSE, the literals that cannot be
8699 coalesced will not be moved. */
8700 if (elf32xtensa_no_literal_movement)
8701 return FALSE;
8702
8703 relax_info = get_xtensa_relax_info (sec);
8704 if (!relax_info)
8705 return FALSE;
8706
8707 target_sec = r_reloc_get_section (target_loc);
8708 target_relax_info = get_xtensa_relax_info (target_sec);
8709
8710 /* Literals to undefined sections may not be moved because they
8711 must report an error. */
8712 if (bfd_is_und_section (target_sec))
8713 return FALSE;
8714
8715 src_entry = elf_xtensa_find_property_entry
8716 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8717
8718 if (!section_cache_section (target_sec_cache, target_sec, link_info))
8719 return FALSE;
8720
8721 target_entry = elf_xtensa_find_property_entry
8722 (target_sec_cache->ptbl, target_sec_cache->pte_count,
8723 target_sec->vma + target_loc->target_offset);
8724
8725 if (!target_entry)
8726 return FALSE;
8727
8728 /* Make sure that we have not broken any branches. */
8729 relocs_fit = FALSE;
8730
8731 init_ebb_constraint (&ebb_table);
8732 ebb = &ebb_table.ebb;
8733 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8734 target_sec_cache->content_length,
8735 target_sec_cache->ptbl, target_sec_cache->pte_count,
8736 target_sec_cache->relocs, target_sec_cache->reloc_count);
8737
8738 /* Propose to add 4 bytes + worst-case alignment size increase to
8739 destination. */
8740 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8741 ta_fill, target_loc->target_offset,
8742 -4 - (1 << target_sec->alignment_power), TRUE);
8743
8744 /* Check all of the PC-relative relocations to make sure they still fit. */
8745 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8746 target_sec_cache->contents,
8747 target_sec_cache->relocs,
cb337148 8748 &ebb_table, NULL);
43cd72b9
BW
8749
8750 if (!relocs_fit)
8751 return FALSE;
8752
8753 text_action_add_literal (&target_relax_info->action_list,
8754 ta_add_literal, target_loc, lit_value, -4);
8755
8756 if (target_sec->alignment_power > 2 && target_entry != src_entry)
8757 {
8758 /* May need to add or remove some fill to maintain alignment. */
8759 int fill_extra_space;
8760 bfd_vma entry_sec_offset;
8761
8762 entry_sec_offset =
8763 target_entry->address - target_sec->vma + target_entry->size;
8764
8765 /* If the literal range is at the end of the section,
8766 do not add fill. */
8767 fill_extra_space = 0;
8768 the_add_entry =
8769 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8770 target_sec_cache->pte_count,
8771 entry_sec_offset);
8772 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8773 fill_extra_space = the_add_entry->size;
8774
8775 target_fa = find_fill_action (&target_relax_info->action_list,
8776 target_sec, entry_sec_offset);
8777 removed_diff = compute_removed_action_diff (target_fa, target_sec,
8778 entry_sec_offset, 4,
8779 fill_extra_space);
8780 if (target_fa)
8781 adjust_fill_action (target_fa, removed_diff);
8782 else
8783 text_action_add (&target_relax_info->action_list,
8784 ta_fill, target_sec, entry_sec_offset, removed_diff);
8785 }
8786
8787 /* Mark that the literal will be moved to the new location. */
8788 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8789
8790 /* Remove the literal. */
8791 text_action_add (&relax_info->action_list,
8792 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8793
8794 /* If the section is 4-byte aligned, do not add fill. */
8795 if (sec->alignment_power > 2 && target_entry != src_entry)
8796 {
8797 int fill_extra_space;
8798 bfd_vma entry_sec_offset;
8799
8800 if (src_entry)
8801 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8802 else
8803 entry_sec_offset = rel->r_rel.target_offset+4;
8804
8805 /* If the literal range is at the end of the section,
8806 do not add fill. */
8807 fill_extra_space = 0;
8808 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8809 entry_sec_offset);
8810 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8811 fill_extra_space = the_add_entry->size;
8812
8813 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8814 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8815 -4, fill_extra_space);
8816 if (fa)
8817 adjust_fill_action (fa, removed_diff);
8818 else
8819 text_action_add (&relax_info->action_list,
8820 ta_fill, sec, entry_sec_offset, removed_diff);
8821 }
8822
8823 return TRUE;
e0001a05
NC
8824}
8825
8826\f
8827/* Second relaxation pass. */
8828
8829/* Modify all of the relocations to point to the right spot, and if this
8830 is a relaxable section, delete the unwanted literals and fix the
43cd72b9 8831 section size. */
e0001a05 8832
43cd72b9 8833bfd_boolean
7fa3d080 8834relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
e0001a05
NC
8835{
8836 Elf_Internal_Rela *internal_relocs;
8837 xtensa_relax_info *relax_info;
8838 bfd_byte *contents;
8839 bfd_boolean ok = TRUE;
8840 unsigned i;
43cd72b9
BW
8841 bfd_boolean rv = FALSE;
8842 bfd_boolean virtual_action;
8843 bfd_size_type sec_size;
e0001a05 8844
43cd72b9 8845 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
8846 relax_info = get_xtensa_relax_info (sec);
8847 BFD_ASSERT (relax_info);
8848
43cd72b9
BW
8849 /* First translate any of the fixes that have been added already. */
8850 translate_section_fixes (sec);
8851
e0001a05
NC
8852 /* Handle property sections (e.g., literal tables) specially. */
8853 if (xtensa_is_property_section (sec))
8854 {
8855 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8856 return relax_property_section (abfd, sec, link_info);
8857 }
8858
43cd72b9
BW
8859 internal_relocs = retrieve_internal_relocs (abfd, sec,
8860 link_info->keep_memory);
7aa09196
SA
8861 if (!internal_relocs && !relax_info->action_list.head)
8862 return TRUE;
8863
43cd72b9
BW
8864 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8865 if (contents == NULL && sec_size != 0)
8866 {
8867 ok = FALSE;
8868 goto error_return;
8869 }
8870
8871 if (internal_relocs)
8872 {
8873 for (i = 0; i < sec->reloc_count; i++)
8874 {
8875 Elf_Internal_Rela *irel;
8876 xtensa_relax_info *target_relax_info;
8877 bfd_vma source_offset, old_source_offset;
8878 r_reloc r_rel;
8879 unsigned r_type;
8880 asection *target_sec;
8881
8882 /* Locally change the source address.
8883 Translate the target to the new target address.
8884 If it points to this section and has been removed,
8885 NULLify it.
8886 Write it back. */
8887
8888 irel = &internal_relocs[i];
8889 source_offset = irel->r_offset;
8890 old_source_offset = source_offset;
8891
8892 r_type = ELF32_R_TYPE (irel->r_info);
8893 r_reloc_init (&r_rel, abfd, irel, contents,
8894 bfd_get_section_limit (abfd, sec));
8895
8896 /* If this section could have changed then we may need to
8897 change the relocation's offset. */
8898
8899 if (relax_info->is_relaxable_literal_section
8900 || relax_info->is_relaxable_asm_section)
8901 {
9b7f5d20
BW
8902 pin_internal_relocs (sec, internal_relocs);
8903
43cd72b9
BW
8904 if (r_type != R_XTENSA_NONE
8905 && find_removed_literal (&relax_info->removed_list,
8906 irel->r_offset))
8907 {
8908 /* Remove this relocation. */
8909 if (elf_hash_table (link_info)->dynamic_sections_created)
8910 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8911 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8912 irel->r_offset = offset_with_removed_text
8913 (&relax_info->action_list, irel->r_offset);
43cd72b9
BW
8914 continue;
8915 }
8916
8917 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8918 {
8919 text_action *action =
8920 find_insn_action (&relax_info->action_list,
8921 irel->r_offset);
8922 if (action && (action->action == ta_convert_longcall
8923 || action->action == ta_remove_longcall))
8924 {
8925 bfd_reloc_status_type retval;
8926 char *error_message = NULL;
8927
8928 retval = contract_asm_expansion (contents, sec_size,
8929 irel, &error_message);
8930 if (retval != bfd_reloc_ok)
8931 {
8932 (*link_info->callbacks->reloc_dangerous)
8933 (link_info, error_message, abfd, sec,
8934 irel->r_offset);
8935 goto error_return;
8936 }
8937 /* Update the action so that the code that moves
8938 the contents will do the right thing. */
8939 if (action->action == ta_remove_longcall)
8940 action->action = ta_remove_insn;
8941 else
8942 action->action = ta_none;
8943 /* Refresh the info in the r_rel. */
8944 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8945 r_type = ELF32_R_TYPE (irel->r_info);
8946 }
8947 }
8948
8949 source_offset = offset_with_removed_text
8950 (&relax_info->action_list, irel->r_offset);
8951 irel->r_offset = source_offset;
8952 }
8953
8954 /* If the target section could have changed then
8955 we may need to change the relocation's target offset. */
8956
8957 target_sec = r_reloc_get_section (&r_rel);
43cd72b9 8958
ae326da8
BW
8959 /* For a reference to a discarded section from a DWARF section,
8960 i.e., where action_discarded is PRETEND, the symbol will
8961 eventually be modified to refer to the kept section (at least if
8962 the kept and discarded sections are the same size). Anticipate
8963 that here and adjust things accordingly. */
8964 if (! elf_xtensa_ignore_discarded_relocs (sec)
8965 && elf_xtensa_action_discarded (sec) == PRETEND
8966 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8967 && target_sec != NULL
8968 && elf_discarded_section (target_sec))
8969 {
8970 /* It would be natural to call _bfd_elf_check_kept_section
8971 here, but it's not exported from elflink.c. It's also a
8972 fairly expensive check. Adjusting the relocations to the
8973 discarded section is fairly harmless; it will only adjust
8974 some addends and difference values. If it turns out that
8975 _bfd_elf_check_kept_section fails later, it won't matter,
8976 so just compare the section names to find the right group
8977 member. */
8978 asection *kept = target_sec->kept_section;
8979 if (kept != NULL)
8980 {
8981 if ((kept->flags & SEC_GROUP) != 0)
8982 {
8983 asection *first = elf_next_in_group (kept);
8984 asection *s = first;
8985
8986 kept = NULL;
8987 while (s != NULL)
8988 {
8989 if (strcmp (s->name, target_sec->name) == 0)
8990 {
8991 kept = s;
8992 break;
8993 }
8994 s = elf_next_in_group (s);
8995 if (s == first)
8996 break;
8997 }
8998 }
8999 }
9000 if (kept != NULL
9001 && ((target_sec->rawsize != 0
9002 ? target_sec->rawsize : target_sec->size)
9003 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9004 target_sec = kept;
9005 }
9006
9007 target_relax_info = get_xtensa_relax_info (target_sec);
43cd72b9
BW
9008 if (target_relax_info
9009 && (target_relax_info->is_relaxable_literal_section
9010 || target_relax_info->is_relaxable_asm_section))
9011 {
9012 r_reloc new_reloc;
9b7f5d20 9013 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
43cd72b9
BW
9014
9015 if (r_type == R_XTENSA_DIFF8
9016 || r_type == R_XTENSA_DIFF16
9017 || r_type == R_XTENSA_DIFF32)
9018 {
9019 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
9020
9021 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9022 {
9023 (*link_info->callbacks->reloc_dangerous)
9024 (link_info, _("invalid relocation address"),
9025 abfd, sec, old_source_offset);
9026 goto error_return;
9027 }
9028
9029 switch (r_type)
9030 {
9031 case R_XTENSA_DIFF8:
9032 diff_value =
9033 bfd_get_8 (abfd, &contents[old_source_offset]);
9034 break;
9035 case R_XTENSA_DIFF16:
9036 diff_value =
9037 bfd_get_16 (abfd, &contents[old_source_offset]);
9038 break;
9039 case R_XTENSA_DIFF32:
9040 diff_value =
9041 bfd_get_32 (abfd, &contents[old_source_offset]);
9042 break;
9043 }
9044
9045 new_end_offset = offset_with_removed_text
9046 (&target_relax_info->action_list,
9047 r_rel.target_offset + diff_value);
9048 diff_value = new_end_offset - new_reloc.target_offset;
9049
9050 switch (r_type)
9051 {
9052 case R_XTENSA_DIFF8:
9053 diff_mask = 0xff;
9054 bfd_put_8 (abfd, diff_value,
9055 &contents[old_source_offset]);
9056 break;
9057 case R_XTENSA_DIFF16:
9058 diff_mask = 0xffff;
9059 bfd_put_16 (abfd, diff_value,
9060 &contents[old_source_offset]);
9061 break;
9062 case R_XTENSA_DIFF32:
9063 diff_mask = 0xffffffff;
9064 bfd_put_32 (abfd, diff_value,
9065 &contents[old_source_offset]);
9066 break;
9067 }
9068
9069 /* Check for overflow. */
9070 if ((diff_value & ~diff_mask) != 0)
9071 {
9072 (*link_info->callbacks->reloc_dangerous)
9073 (link_info, _("overflow after relaxation"),
9074 abfd, sec, old_source_offset);
9075 goto error_return;
9076 }
9077
9078 pin_contents (sec, contents);
9079 }
dc96b90a
BW
9080
9081 /* If the relocation still references a section in the same
9082 input file, modify the relocation directly instead of
9083 adding a "fix" record. */
9084 if (target_sec->owner == abfd)
9085 {
9086 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9087 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9088 irel->r_addend = new_reloc.rela.r_addend;
9089 pin_internal_relocs (sec, internal_relocs);
9090 }
9b7f5d20
BW
9091 else
9092 {
dc96b90a
BW
9093 bfd_vma addend_displacement;
9094 reloc_bfd_fix *fix;
9095
9096 addend_displacement =
9097 new_reloc.target_offset + new_reloc.virtual_offset;
9098 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9099 target_sec,
9100 addend_displacement, TRUE);
9101 add_fix (sec, fix);
9b7f5d20 9102 }
43cd72b9 9103 }
43cd72b9
BW
9104 }
9105 }
9106
9107 if ((relax_info->is_relaxable_literal_section
9108 || relax_info->is_relaxable_asm_section)
9109 && relax_info->action_list.head)
9110 {
9111 /* Walk through the planned actions and build up a table
9112 of move, copy and fill records. Use the move, copy and
9113 fill records to perform the actions once. */
9114
43cd72b9
BW
9115 int removed = 0;
9116 bfd_size_type final_size, copy_size, orig_insn_size;
9117 bfd_byte *scratch = NULL;
9118 bfd_byte *dup_contents = NULL;
a3ef2d63 9119 bfd_size_type orig_size = sec->size;
43cd72b9
BW
9120 bfd_vma orig_dot = 0;
9121 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9122 orig dot in physical memory. */
9123 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9124 bfd_vma dup_dot = 0;
9125
9126 text_action *action = relax_info->action_list.head;
9127
9128 final_size = sec->size;
9129 for (action = relax_info->action_list.head; action;
9130 action = action->next)
9131 {
9132 final_size -= action->removed_bytes;
9133 }
9134
9135 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9136 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9137
9138 /* The dot is the current fill location. */
9139#if DEBUG
9140 print_action_list (stderr, &relax_info->action_list);
9141#endif
9142
9143 for (action = relax_info->action_list.head; action;
9144 action = action->next)
9145 {
9146 virtual_action = FALSE;
9147 if (action->offset > orig_dot)
9148 {
9149 orig_dot += orig_dot_copied;
9150 orig_dot_copied = 0;
9151 orig_dot_vo = 0;
9152 /* Out of the virtual world. */
9153 }
9154
9155 if (action->offset > orig_dot)
9156 {
9157 copy_size = action->offset - orig_dot;
9158 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9159 orig_dot += copy_size;
9160 dup_dot += copy_size;
9161 BFD_ASSERT (action->offset == orig_dot);
9162 }
9163 else if (action->offset < orig_dot)
9164 {
9165 if (action->action == ta_fill
9166 && action->offset - action->removed_bytes == orig_dot)
9167 {
9168 /* This is OK because the fill only effects the dup_dot. */
9169 }
9170 else if (action->action == ta_add_literal)
9171 {
9172 /* TBD. Might need to handle this. */
9173 }
9174 }
9175 if (action->offset == orig_dot)
9176 {
9177 if (action->virtual_offset > orig_dot_vo)
9178 {
9179 if (orig_dot_vo == 0)
9180 {
9181 /* Need to copy virtual_offset bytes. Probably four. */
9182 copy_size = action->virtual_offset - orig_dot_vo;
9183 memmove (&dup_contents[dup_dot],
9184 &contents[orig_dot], copy_size);
9185 orig_dot_copied = copy_size;
9186 dup_dot += copy_size;
9187 }
9188 virtual_action = TRUE;
9189 }
9190 else
9191 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9192 }
9193 switch (action->action)
9194 {
9195 case ta_remove_literal:
9196 case ta_remove_insn:
9197 BFD_ASSERT (action->removed_bytes >= 0);
9198 orig_dot += action->removed_bytes;
9199 break;
9200
9201 case ta_narrow_insn:
9202 orig_insn_size = 3;
9203 copy_size = 2;
9204 memmove (scratch, &contents[orig_dot], orig_insn_size);
9205 BFD_ASSERT (action->removed_bytes == 1);
64b607e6 9206 rv = narrow_instruction (scratch, final_size, 0);
43cd72b9
BW
9207 BFD_ASSERT (rv);
9208 memmove (&dup_contents[dup_dot], scratch, copy_size);
9209 orig_dot += orig_insn_size;
9210 dup_dot += copy_size;
9211 break;
9212
9213 case ta_fill:
9214 if (action->removed_bytes >= 0)
9215 orig_dot += action->removed_bytes;
9216 else
9217 {
9218 /* Already zeroed in dup_contents. Just bump the
9219 counters. */
9220 dup_dot += (-action->removed_bytes);
9221 }
9222 break;
9223
9224 case ta_none:
9225 BFD_ASSERT (action->removed_bytes == 0);
9226 break;
9227
9228 case ta_convert_longcall:
9229 case ta_remove_longcall:
9230 /* These will be removed or converted before we get here. */
9231 BFD_ASSERT (0);
9232 break;
9233
9234 case ta_widen_insn:
9235 orig_insn_size = 2;
9236 copy_size = 3;
9237 memmove (scratch, &contents[orig_dot], orig_insn_size);
9238 BFD_ASSERT (action->removed_bytes == -1);
64b607e6 9239 rv = widen_instruction (scratch, final_size, 0);
43cd72b9
BW
9240 BFD_ASSERT (rv);
9241 memmove (&dup_contents[dup_dot], scratch, copy_size);
9242 orig_dot += orig_insn_size;
9243 dup_dot += copy_size;
9244 break;
9245
9246 case ta_add_literal:
9247 orig_insn_size = 0;
9248 copy_size = 4;
9249 BFD_ASSERT (action->removed_bytes == -4);
9250 /* TBD -- place the literal value here and insert
9251 into the table. */
9252 memset (&dup_contents[dup_dot], 0, 4);
9253 pin_internal_relocs (sec, internal_relocs);
9254 pin_contents (sec, contents);
9255
9256 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9257 relax_info, &internal_relocs, &action->value))
9258 goto error_return;
9259
9260 if (virtual_action)
9261 orig_dot_vo += copy_size;
9262
9263 orig_dot += orig_insn_size;
9264 dup_dot += copy_size;
9265 break;
9266
9267 default:
9268 /* Not implemented yet. */
9269 BFD_ASSERT (0);
9270 break;
9271 }
9272
43cd72b9
BW
9273 removed += action->removed_bytes;
9274 BFD_ASSERT (dup_dot <= final_size);
9275 BFD_ASSERT (orig_dot <= orig_size);
9276 }
9277
9278 orig_dot += orig_dot_copied;
9279 orig_dot_copied = 0;
9280
9281 if (orig_dot != orig_size)
9282 {
9283 copy_size = orig_size - orig_dot;
9284 BFD_ASSERT (orig_size > orig_dot);
9285 BFD_ASSERT (dup_dot + copy_size == final_size);
9286 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9287 orig_dot += copy_size;
9288 dup_dot += copy_size;
9289 }
9290 BFD_ASSERT (orig_size == orig_dot);
9291 BFD_ASSERT (final_size == dup_dot);
9292
9293 /* Move the dup_contents back. */
9294 if (final_size > orig_size)
9295 {
9296 /* Contents need to be reallocated. Swap the dup_contents into
9297 contents. */
9298 sec->contents = dup_contents;
9299 free (contents);
9300 contents = dup_contents;
9301 pin_contents (sec, contents);
9302 }
9303 else
9304 {
9305 BFD_ASSERT (final_size <= orig_size);
9306 memset (contents, 0, orig_size);
9307 memcpy (contents, dup_contents, final_size);
9308 free (dup_contents);
9309 }
9310 free (scratch);
9311 pin_contents (sec, contents);
9312
a3ef2d63
BW
9313 if (sec->rawsize == 0)
9314 sec->rawsize = sec->size;
43cd72b9
BW
9315 sec->size = final_size;
9316 }
9317
9318 error_return:
9319 release_internal_relocs (sec, internal_relocs);
9320 release_contents (sec, contents);
9321 return ok;
9322}
9323
9324
9325static bfd_boolean
7fa3d080 9326translate_section_fixes (asection *sec)
43cd72b9
BW
9327{
9328 xtensa_relax_info *relax_info;
9329 reloc_bfd_fix *r;
9330
9331 relax_info = get_xtensa_relax_info (sec);
9332 if (!relax_info)
9333 return TRUE;
9334
9335 for (r = relax_info->fix_list; r != NULL; r = r->next)
9336 if (!translate_reloc_bfd_fix (r))
9337 return FALSE;
e0001a05 9338
43cd72b9
BW
9339 return TRUE;
9340}
e0001a05 9341
e0001a05 9342
43cd72b9
BW
9343/* Translate a fix given the mapping in the relax info for the target
9344 section. If it has already been translated, no work is required. */
e0001a05 9345
43cd72b9 9346static bfd_boolean
7fa3d080 9347translate_reloc_bfd_fix (reloc_bfd_fix *fix)
43cd72b9
BW
9348{
9349 reloc_bfd_fix new_fix;
9350 asection *sec;
9351 xtensa_relax_info *relax_info;
9352 removed_literal *removed;
9353 bfd_vma new_offset, target_offset;
e0001a05 9354
43cd72b9
BW
9355 if (fix->translated)
9356 return TRUE;
e0001a05 9357
43cd72b9
BW
9358 sec = fix->target_sec;
9359 target_offset = fix->target_offset;
e0001a05 9360
43cd72b9
BW
9361 relax_info = get_xtensa_relax_info (sec);
9362 if (!relax_info)
9363 {
9364 fix->translated = TRUE;
9365 return TRUE;
9366 }
e0001a05 9367
43cd72b9 9368 new_fix = *fix;
e0001a05 9369
43cd72b9
BW
9370 /* The fix does not need to be translated if the section cannot change. */
9371 if (!relax_info->is_relaxable_literal_section
9372 && !relax_info->is_relaxable_asm_section)
9373 {
9374 fix->translated = TRUE;
9375 return TRUE;
9376 }
e0001a05 9377
43cd72b9
BW
9378 /* If the literal has been moved and this relocation was on an
9379 opcode, then the relocation should move to the new literal
9380 location. Otherwise, the relocation should move within the
9381 section. */
9382
9383 removed = FALSE;
9384 if (is_operand_relocation (fix->src_type))
9385 {
9386 /* Check if the original relocation is against a literal being
9387 removed. */
9388 removed = find_removed_literal (&relax_info->removed_list,
9389 target_offset);
e0001a05
NC
9390 }
9391
43cd72b9 9392 if (removed)
e0001a05 9393 {
43cd72b9 9394 asection *new_sec;
e0001a05 9395
43cd72b9
BW
9396 /* The fact that there is still a relocation to this literal indicates
9397 that the literal is being coalesced, not simply removed. */
9398 BFD_ASSERT (removed->to.abfd != NULL);
e0001a05 9399
43cd72b9
BW
9400 /* This was moved to some other address (possibly another section). */
9401 new_sec = r_reloc_get_section (&removed->to);
9402 if (new_sec != sec)
e0001a05 9403 {
43cd72b9
BW
9404 sec = new_sec;
9405 relax_info = get_xtensa_relax_info (sec);
9406 if (!relax_info ||
9407 (!relax_info->is_relaxable_literal_section
9408 && !relax_info->is_relaxable_asm_section))
e0001a05 9409 {
43cd72b9
BW
9410 target_offset = removed->to.target_offset;
9411 new_fix.target_sec = new_sec;
9412 new_fix.target_offset = target_offset;
9413 new_fix.translated = TRUE;
9414 *fix = new_fix;
9415 return TRUE;
e0001a05 9416 }
e0001a05 9417 }
43cd72b9
BW
9418 target_offset = removed->to.target_offset;
9419 new_fix.target_sec = new_sec;
e0001a05 9420 }
43cd72b9
BW
9421
9422 /* The target address may have been moved within its section. */
9423 new_offset = offset_with_removed_text (&relax_info->action_list,
9424 target_offset);
9425
9426 new_fix.target_offset = new_offset;
9427 new_fix.target_offset = new_offset;
9428 new_fix.translated = TRUE;
9429 *fix = new_fix;
9430 return TRUE;
e0001a05
NC
9431}
9432
9433
9434/* Fix up a relocation to take account of removed literals. */
9435
9b7f5d20
BW
9436static asection *
9437translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
e0001a05 9438{
e0001a05
NC
9439 xtensa_relax_info *relax_info;
9440 removed_literal *removed;
9b7f5d20
BW
9441 bfd_vma target_offset, base_offset;
9442 text_action *act;
e0001a05
NC
9443
9444 *new_rel = *orig_rel;
9445
9446 if (!r_reloc_is_defined (orig_rel))
9b7f5d20 9447 return sec ;
e0001a05
NC
9448
9449 relax_info = get_xtensa_relax_info (sec);
9b7f5d20
BW
9450 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9451 || relax_info->is_relaxable_asm_section));
e0001a05 9452
43cd72b9
BW
9453 target_offset = orig_rel->target_offset;
9454
9455 removed = FALSE;
9456 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9457 {
9458 /* Check if the original relocation is against a literal being
9459 removed. */
9460 removed = find_removed_literal (&relax_info->removed_list,
9461 target_offset);
9462 }
9463 if (removed && removed->to.abfd)
e0001a05
NC
9464 {
9465 asection *new_sec;
9466
9467 /* The fact that there is still a relocation to this literal indicates
9468 that the literal is being coalesced, not simply removed. */
9469 BFD_ASSERT (removed->to.abfd != NULL);
9470
43cd72b9
BW
9471 /* This was moved to some other address
9472 (possibly in another section). */
e0001a05
NC
9473 *new_rel = removed->to;
9474 new_sec = r_reloc_get_section (new_rel);
43cd72b9 9475 if (new_sec != sec)
e0001a05
NC
9476 {
9477 sec = new_sec;
9478 relax_info = get_xtensa_relax_info (sec);
43cd72b9
BW
9479 if (!relax_info
9480 || (!relax_info->is_relaxable_literal_section
9481 && !relax_info->is_relaxable_asm_section))
9b7f5d20 9482 return sec;
e0001a05 9483 }
43cd72b9 9484 target_offset = new_rel->target_offset;
e0001a05
NC
9485 }
9486
9b7f5d20
BW
9487 /* Find the base offset of the reloc symbol, excluding any addend from the
9488 reloc or from the section contents (for a partial_inplace reloc). Then
9489 find the adjusted values of the offsets due to relaxation. The base
9490 offset is needed to determine the change to the reloc's addend; the reloc
9491 addend should not be adjusted due to relaxations located before the base
9492 offset. */
9493
9494 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9495 act = relax_info->action_list.head;
9496 if (base_offset <= target_offset)
9497 {
9498 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9499 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9500 new_rel->target_offset = target_offset - base_removed - addend_removed;
9501 new_rel->rela.r_addend -= addend_removed;
9502 }
9503 else
9504 {
9505 /* Handle a negative addend. The base offset comes first. */
9506 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9507 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9508 new_rel->target_offset = target_offset - tgt_removed;
9509 new_rel->rela.r_addend += addend_removed;
9510 }
e0001a05 9511
9b7f5d20 9512 return sec;
e0001a05
NC
9513}
9514
9515
9516/* For dynamic links, there may be a dynamic relocation for each
9517 literal. The number of dynamic relocations must be computed in
9518 size_dynamic_sections, which occurs before relaxation. When a
9519 literal is removed, this function checks if there is a corresponding
9520 dynamic relocation and shrinks the size of the appropriate dynamic
9521 relocation section accordingly. At this point, the contents of the
9522 dynamic relocation sections have not yet been filled in, so there's
9523 nothing else that needs to be done. */
9524
9525static void
7fa3d080
BW
9526shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9527 bfd *abfd,
9528 asection *input_section,
9529 Elf_Internal_Rela *rel)
e0001a05 9530{
f0e6fdb2 9531 struct elf_xtensa_link_hash_table *htab;
e0001a05
NC
9532 Elf_Internal_Shdr *symtab_hdr;
9533 struct elf_link_hash_entry **sym_hashes;
9534 unsigned long r_symndx;
9535 int r_type;
9536 struct elf_link_hash_entry *h;
9537 bfd_boolean dynamic_symbol;
9538
f0e6fdb2 9539 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
9540 if (htab == NULL)
9541 return;
9542
e0001a05
NC
9543 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9544 sym_hashes = elf_sym_hashes (abfd);
9545
9546 r_type = ELF32_R_TYPE (rel->r_info);
9547 r_symndx = ELF32_R_SYM (rel->r_info);
9548
9549 if (r_symndx < symtab_hdr->sh_info)
9550 h = NULL;
9551 else
9552 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9553
4608f3d9 9554 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
e0001a05
NC
9555
9556 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9557 && (input_section->flags & SEC_ALLOC) != 0
9558 && (dynamic_symbol || info->shared))
9559 {
e0001a05
NC
9560 asection *srel;
9561 bfd_boolean is_plt = FALSE;
9562
e0001a05
NC
9563 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9564 {
f0e6fdb2 9565 srel = htab->srelplt;
e0001a05
NC
9566 is_plt = TRUE;
9567 }
9568 else
f0e6fdb2 9569 srel = htab->srelgot;
e0001a05
NC
9570
9571 /* Reduce size of the .rela.* section by one reloc. */
e0001a05 9572 BFD_ASSERT (srel != NULL);
eea6121a
AM
9573 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9574 srel->size -= sizeof (Elf32_External_Rela);
e0001a05
NC
9575
9576 if (is_plt)
9577 {
9578 asection *splt, *sgotplt, *srelgot;
9579 int reloc_index, chunk;
9580
9581 /* Find the PLT reloc index of the entry being removed. This
9582 is computed from the size of ".rela.plt". It is needed to
9583 figure out which PLT chunk to resize. Usually "last index
9584 = size - 1" since the index starts at zero, but in this
9585 context, the size has just been decremented so there's no
9586 need to subtract one. */
eea6121a 9587 reloc_index = srel->size / sizeof (Elf32_External_Rela);
e0001a05
NC
9588
9589 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
f0e6fdb2
BW
9590 splt = elf_xtensa_get_plt_section (info, chunk);
9591 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
e0001a05
NC
9592 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9593
9594 /* Check if an entire PLT chunk has just been eliminated. */
9595 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9596 {
9597 /* The two magic GOT entries for that chunk can go away. */
f0e6fdb2 9598 srelgot = htab->srelgot;
e0001a05
NC
9599 BFD_ASSERT (srelgot != NULL);
9600 srelgot->reloc_count -= 2;
eea6121a
AM
9601 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9602 sgotplt->size -= 8;
e0001a05
NC
9603
9604 /* There should be only one entry left (and it will be
9605 removed below). */
eea6121a
AM
9606 BFD_ASSERT (sgotplt->size == 4);
9607 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
e0001a05
NC
9608 }
9609
eea6121a
AM
9610 BFD_ASSERT (sgotplt->size >= 4);
9611 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
e0001a05 9612
eea6121a
AM
9613 sgotplt->size -= 4;
9614 splt->size -= PLT_ENTRY_SIZE;
e0001a05
NC
9615 }
9616 }
9617}
9618
9619
43cd72b9
BW
9620/* Take an r_rel and move it to another section. This usually
9621 requires extending the interal_relocation array and pinning it. If
9622 the original r_rel is from the same BFD, we can complete this here.
9623 Otherwise, we add a fix record to let the final link fix the
9624 appropriate address. Contents and internal relocations for the
9625 section must be pinned after calling this routine. */
9626
9627static bfd_boolean
7fa3d080
BW
9628move_literal (bfd *abfd,
9629 struct bfd_link_info *link_info,
9630 asection *sec,
9631 bfd_vma offset,
9632 bfd_byte *contents,
9633 xtensa_relax_info *relax_info,
9634 Elf_Internal_Rela **internal_relocs_p,
9635 const literal_value *lit)
43cd72b9
BW
9636{
9637 Elf_Internal_Rela *new_relocs = NULL;
9638 size_t new_relocs_count = 0;
9639 Elf_Internal_Rela this_rela;
9640 const r_reloc *r_rel;
9641
9642 r_rel = &lit->r_rel;
9643 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9644
9645 if (r_reloc_is_const (r_rel))
9646 bfd_put_32 (abfd, lit->value, contents + offset);
9647 else
9648 {
9649 int r_type;
9650 unsigned i;
43cd72b9
BW
9651 reloc_bfd_fix *fix;
9652 unsigned insert_at;
9653
9654 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
43cd72b9
BW
9655
9656 /* This is the difficult case. We have to create a fix up. */
9657 this_rela.r_offset = offset;
9658 this_rela.r_info = ELF32_R_INFO (0, r_type);
9659 this_rela.r_addend =
9660 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9661 bfd_put_32 (abfd, lit->value, contents + offset);
9662
9663 /* Currently, we cannot move relocations during a relocatable link. */
9664 BFD_ASSERT (!link_info->relocatable);
0f5f1638 9665 fix = reloc_bfd_fix_init (sec, offset, r_type,
43cd72b9
BW
9666 r_reloc_get_section (r_rel),
9667 r_rel->target_offset + r_rel->virtual_offset,
9668 FALSE);
9669 /* We also need to mark that relocations are needed here. */
9670 sec->flags |= SEC_RELOC;
9671
9672 translate_reloc_bfd_fix (fix);
9673 /* This fix has not yet been translated. */
9674 add_fix (sec, fix);
9675
9676 /* Add the relocation. If we have already allocated our own
9677 space for the relocations and we have room for more, then use
9678 it. Otherwise, allocate new space and move the literals. */
9679 insert_at = sec->reloc_count;
9680 for (i = 0; i < sec->reloc_count; ++i)
9681 {
9682 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9683 {
9684 insert_at = i;
9685 break;
9686 }
9687 }
9688
9689 if (*internal_relocs_p != relax_info->allocated_relocs
9690 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9691 {
9692 BFD_ASSERT (relax_info->allocated_relocs == NULL
9693 || sec->reloc_count == relax_info->relocs_count);
9694
9695 if (relax_info->allocated_relocs_count == 0)
9696 new_relocs_count = (sec->reloc_count + 2) * 2;
9697 else
9698 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9699
9700 new_relocs = (Elf_Internal_Rela *)
9701 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9702 if (!new_relocs)
9703 return FALSE;
9704
9705 /* We could handle this more quickly by finding the split point. */
9706 if (insert_at != 0)
9707 memcpy (new_relocs, *internal_relocs_p,
9708 insert_at * sizeof (Elf_Internal_Rela));
9709
9710 new_relocs[insert_at] = this_rela;
9711
9712 if (insert_at != sec->reloc_count)
9713 memcpy (new_relocs + insert_at + 1,
9714 (*internal_relocs_p) + insert_at,
9715 (sec->reloc_count - insert_at)
9716 * sizeof (Elf_Internal_Rela));
9717
9718 if (*internal_relocs_p != relax_info->allocated_relocs)
9719 {
9720 /* The first time we re-allocate, we can only free the
9721 old relocs if they were allocated with bfd_malloc.
9722 This is not true when keep_memory is in effect. */
9723 if (!link_info->keep_memory)
9724 free (*internal_relocs_p);
9725 }
9726 else
9727 free (*internal_relocs_p);
9728 relax_info->allocated_relocs = new_relocs;
9729 relax_info->allocated_relocs_count = new_relocs_count;
9730 elf_section_data (sec)->relocs = new_relocs;
9731 sec->reloc_count++;
9732 relax_info->relocs_count = sec->reloc_count;
9733 *internal_relocs_p = new_relocs;
9734 }
9735 else
9736 {
9737 if (insert_at != sec->reloc_count)
9738 {
9739 unsigned idx;
9740 for (idx = sec->reloc_count; idx > insert_at; idx--)
9741 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9742 }
9743 (*internal_relocs_p)[insert_at] = this_rela;
9744 sec->reloc_count++;
9745 if (relax_info->allocated_relocs)
9746 relax_info->relocs_count = sec->reloc_count;
9747 }
9748 }
9749 return TRUE;
9750}
9751
9752
e0001a05
NC
9753/* This is similar to relax_section except that when a target is moved,
9754 we shift addresses up. We also need to modify the size. This
9755 algorithm does NOT allow for relocations into the middle of the
9756 property sections. */
9757
43cd72b9 9758static bfd_boolean
7fa3d080
BW
9759relax_property_section (bfd *abfd,
9760 asection *sec,
9761 struct bfd_link_info *link_info)
e0001a05
NC
9762{
9763 Elf_Internal_Rela *internal_relocs;
9764 bfd_byte *contents;
1d25768e 9765 unsigned i;
e0001a05 9766 bfd_boolean ok = TRUE;
43cd72b9
BW
9767 bfd_boolean is_full_prop_section;
9768 size_t last_zfill_target_offset = 0;
9769 asection *last_zfill_target_sec = NULL;
9770 bfd_size_type sec_size;
1d25768e 9771 bfd_size_type entry_size;
e0001a05 9772
43cd72b9 9773 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
9774 internal_relocs = retrieve_internal_relocs (abfd, sec,
9775 link_info->keep_memory);
9776 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 9777 if (contents == NULL && sec_size != 0)
e0001a05
NC
9778 {
9779 ok = FALSE;
9780 goto error_return;
9781 }
9782
1d25768e
BW
9783 is_full_prop_section = xtensa_is_proptable_section (sec);
9784 if (is_full_prop_section)
9785 entry_size = 12;
9786 else
9787 entry_size = 8;
43cd72b9
BW
9788
9789 if (internal_relocs)
e0001a05 9790 {
43cd72b9 9791 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
9792 {
9793 Elf_Internal_Rela *irel;
9794 xtensa_relax_info *target_relax_info;
e0001a05
NC
9795 unsigned r_type;
9796 asection *target_sec;
43cd72b9
BW
9797 literal_value val;
9798 bfd_byte *size_p, *flags_p;
e0001a05
NC
9799
9800 /* Locally change the source address.
9801 Translate the target to the new target address.
9802 If it points to this section and has been removed, MOVE IT.
9803 Also, don't forget to modify the associated SIZE at
9804 (offset + 4). */
9805
9806 irel = &internal_relocs[i];
9807 r_type = ELF32_R_TYPE (irel->r_info);
9808 if (r_type == R_XTENSA_NONE)
9809 continue;
9810
43cd72b9
BW
9811 /* Find the literal value. */
9812 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9813 size_p = &contents[irel->r_offset + 4];
9814 flags_p = NULL;
9815 if (is_full_prop_section)
1d25768e
BW
9816 flags_p = &contents[irel->r_offset + 8];
9817 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
e0001a05 9818
43cd72b9 9819 target_sec = r_reloc_get_section (&val.r_rel);
e0001a05
NC
9820 target_relax_info = get_xtensa_relax_info (target_sec);
9821
9822 if (target_relax_info
43cd72b9
BW
9823 && (target_relax_info->is_relaxable_literal_section
9824 || target_relax_info->is_relaxable_asm_section ))
e0001a05
NC
9825 {
9826 /* Translate the relocation's destination. */
03669f1c
BW
9827 bfd_vma old_offset = val.r_rel.target_offset;
9828 bfd_vma new_offset;
e0001a05 9829 long old_size, new_size;
03669f1c
BW
9830 text_action *act = target_relax_info->action_list.head;
9831 new_offset = old_offset -
9832 removed_by_actions (&act, old_offset, FALSE);
e0001a05
NC
9833
9834 /* Assert that we are not out of bounds. */
43cd72b9 9835 old_size = bfd_get_32 (abfd, size_p);
03669f1c 9836 new_size = old_size;
43cd72b9
BW
9837
9838 if (old_size == 0)
9839 {
9840 /* Only the first zero-sized unreachable entry is
9841 allowed to expand. In this case the new offset
9842 should be the offset before the fill and the new
9843 size is the expansion size. For other zero-sized
9844 entries the resulting size should be zero with an
9845 offset before or after the fill address depending
9846 on whether the expanding unreachable entry
9847 preceeds it. */
03669f1c
BW
9848 if (last_zfill_target_sec == 0
9849 || last_zfill_target_sec != target_sec
9850 || last_zfill_target_offset != old_offset)
43cd72b9 9851 {
03669f1c
BW
9852 bfd_vma new_end_offset = new_offset;
9853
9854 /* Recompute the new_offset, but this time don't
9855 include any fill inserted by relaxation. */
9856 act = target_relax_info->action_list.head;
9857 new_offset = old_offset -
9858 removed_by_actions (&act, old_offset, TRUE);
43cd72b9
BW
9859
9860 /* If it is not unreachable and we have not yet
9861 seen an unreachable at this address, place it
9862 before the fill address. */
03669f1c
BW
9863 if (flags_p && (bfd_get_32 (abfd, flags_p)
9864 & XTENSA_PROP_UNREACHABLE) != 0)
43cd72b9 9865 {
03669f1c
BW
9866 new_size = new_end_offset - new_offset;
9867
43cd72b9 9868 last_zfill_target_sec = target_sec;
03669f1c 9869 last_zfill_target_offset = old_offset;
43cd72b9
BW
9870 }
9871 }
9872 }
9873 else
03669f1c
BW
9874 new_size -=
9875 removed_by_actions (&act, old_offset + old_size, TRUE);
43cd72b9 9876
e0001a05
NC
9877 if (new_size != old_size)
9878 {
9879 bfd_put_32 (abfd, new_size, size_p);
9880 pin_contents (sec, contents);
9881 }
43cd72b9 9882
03669f1c 9883 if (new_offset != old_offset)
e0001a05 9884 {
03669f1c 9885 bfd_vma diff = new_offset - old_offset;
e0001a05
NC
9886 irel->r_addend += diff;
9887 pin_internal_relocs (sec, internal_relocs);
9888 }
9889 }
9890 }
9891 }
9892
9893 /* Combine adjacent property table entries. This is also done in
9894 finish_dynamic_sections() but at that point it's too late to
9895 reclaim the space in the output section, so we do this twice. */
9896
43cd72b9 9897 if (internal_relocs && (!link_info->relocatable
1d25768e 9898 || xtensa_is_littable_section (sec)))
e0001a05
NC
9899 {
9900 Elf_Internal_Rela *last_irel = NULL;
1d25768e 9901 Elf_Internal_Rela *irel, *next_rel, *rel_end;
e0001a05 9902 int removed_bytes = 0;
1d25768e 9903 bfd_vma offset;
43cd72b9
BW
9904 flagword predef_flags;
9905
43cd72b9 9906 predef_flags = xtensa_get_property_predef_flags (sec);
e0001a05 9907
1d25768e 9908 /* Walk over memory and relocations at the same time.
e0001a05
NC
9909 This REQUIRES that the internal_relocs be sorted by offset. */
9910 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9911 internal_reloc_compare);
e0001a05
NC
9912
9913 pin_internal_relocs (sec, internal_relocs);
9914 pin_contents (sec, contents);
9915
1d25768e
BW
9916 next_rel = internal_relocs;
9917 rel_end = internal_relocs + sec->reloc_count;
9918
a3ef2d63 9919 BFD_ASSERT (sec->size % entry_size == 0);
e0001a05 9920
a3ef2d63 9921 for (offset = 0; offset < sec->size; offset += entry_size)
e0001a05 9922 {
1d25768e 9923 Elf_Internal_Rela *offset_rel, *extra_rel;
e0001a05 9924 bfd_vma bytes_to_remove, size, actual_offset;
1d25768e 9925 bfd_boolean remove_this_rel;
43cd72b9 9926 flagword flags;
e0001a05 9927
1d25768e
BW
9928 /* Find the first relocation for the entry at the current offset.
9929 Adjust the offsets of any extra relocations for the previous
9930 entry. */
9931 offset_rel = NULL;
9932 if (next_rel)
9933 {
9934 for (irel = next_rel; irel < rel_end; irel++)
9935 {
9936 if ((irel->r_offset == offset
9937 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9938 || irel->r_offset > offset)
9939 {
9940 offset_rel = irel;
9941 break;
9942 }
9943 irel->r_offset -= removed_bytes;
1d25768e
BW
9944 }
9945 }
e0001a05 9946
1d25768e
BW
9947 /* Find the next relocation (if there are any left). */
9948 extra_rel = NULL;
9949 if (offset_rel)
e0001a05 9950 {
1d25768e 9951 for (irel = offset_rel + 1; irel < rel_end; irel++)
e0001a05 9952 {
1d25768e
BW
9953 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9954 {
9955 extra_rel = irel;
9956 break;
9957 }
e0001a05 9958 }
e0001a05
NC
9959 }
9960
1d25768e
BW
9961 /* Check if there are relocations on the current entry. There
9962 should usually be a relocation on the offset field. If there
9963 are relocations on the size or flags, then we can't optimize
9964 this entry. Also, find the next relocation to examine on the
9965 next iteration. */
9966 if (offset_rel)
e0001a05 9967 {
1d25768e 9968 if (offset_rel->r_offset >= offset + entry_size)
e0001a05 9969 {
1d25768e
BW
9970 next_rel = offset_rel;
9971 /* There are no relocations on the current entry, but we
9972 might still be able to remove it if the size is zero. */
9973 offset_rel = NULL;
9974 }
9975 else if (offset_rel->r_offset > offset
9976 || (extra_rel
9977 && extra_rel->r_offset < offset + entry_size))
9978 {
9979 /* There is a relocation on the size or flags, so we can't
9980 do anything with this entry. Continue with the next. */
9981 next_rel = offset_rel;
9982 continue;
9983 }
9984 else
9985 {
9986 BFD_ASSERT (offset_rel->r_offset == offset);
9987 offset_rel->r_offset -= removed_bytes;
9988 next_rel = offset_rel + 1;
e0001a05 9989 }
e0001a05 9990 }
1d25768e
BW
9991 else
9992 next_rel = NULL;
e0001a05 9993
1d25768e 9994 remove_this_rel = FALSE;
e0001a05
NC
9995 bytes_to_remove = 0;
9996 actual_offset = offset - removed_bytes;
9997 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9998
43cd72b9
BW
9999 if (is_full_prop_section)
10000 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10001 else
10002 flags = predef_flags;
10003
1d25768e
BW
10004 if (size == 0
10005 && (flags & XTENSA_PROP_ALIGN) == 0
10006 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
e0001a05 10007 {
43cd72b9
BW
10008 /* Always remove entries with zero size and no alignment. */
10009 bytes_to_remove = entry_size;
1d25768e
BW
10010 if (offset_rel)
10011 remove_this_rel = TRUE;
e0001a05 10012 }
1d25768e
BW
10013 else if (offset_rel
10014 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
e0001a05 10015 {
1d25768e 10016 if (last_irel)
e0001a05 10017 {
1d25768e
BW
10018 flagword old_flags;
10019 bfd_vma old_size =
10020 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10021 bfd_vma old_address =
10022 (last_irel->r_addend
10023 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10024 bfd_vma new_address =
10025 (offset_rel->r_addend
10026 + bfd_get_32 (abfd, &contents[actual_offset]));
10027 if (is_full_prop_section)
10028 old_flags = bfd_get_32
10029 (abfd, &contents[last_irel->r_offset + 8]);
10030 else
10031 old_flags = predef_flags;
10032
10033 if ((ELF32_R_SYM (offset_rel->r_info)
10034 == ELF32_R_SYM (last_irel->r_info))
10035 && old_address + old_size == new_address
10036 && old_flags == flags
10037 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10038 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
e0001a05 10039 {
1d25768e
BW
10040 /* Fix the old size. */
10041 bfd_put_32 (abfd, old_size + size,
10042 &contents[last_irel->r_offset + 4]);
10043 bytes_to_remove = entry_size;
10044 remove_this_rel = TRUE;
e0001a05
NC
10045 }
10046 else
1d25768e 10047 last_irel = offset_rel;
e0001a05 10048 }
1d25768e
BW
10049 else
10050 last_irel = offset_rel;
e0001a05
NC
10051 }
10052
1d25768e 10053 if (remove_this_rel)
e0001a05 10054 {
1d25768e 10055 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3df502ae 10056 offset_rel->r_offset = 0;
e0001a05
NC
10057 }
10058
10059 if (bytes_to_remove != 0)
10060 {
10061 removed_bytes += bytes_to_remove;
a3ef2d63 10062 if (offset + bytes_to_remove < sec->size)
e0001a05 10063 memmove (&contents[actual_offset],
43cd72b9 10064 &contents[actual_offset + bytes_to_remove],
a3ef2d63 10065 sec->size - offset - bytes_to_remove);
e0001a05
NC
10066 }
10067 }
10068
43cd72b9 10069 if (removed_bytes)
e0001a05 10070 {
1d25768e
BW
10071 /* Fix up any extra relocations on the last entry. */
10072 for (irel = next_rel; irel < rel_end; irel++)
10073 irel->r_offset -= removed_bytes;
10074
e0001a05 10075 /* Clear the removed bytes. */
a3ef2d63 10076 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
e0001a05 10077
a3ef2d63
BW
10078 if (sec->rawsize == 0)
10079 sec->rawsize = sec->size;
10080 sec->size -= removed_bytes;
e901de89
BW
10081
10082 if (xtensa_is_littable_section (sec))
10083 {
f0e6fdb2
BW
10084 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10085 if (sgotloc)
10086 sgotloc->size -= removed_bytes;
e901de89 10087 }
e0001a05
NC
10088 }
10089 }
e901de89 10090
e0001a05
NC
10091 error_return:
10092 release_internal_relocs (sec, internal_relocs);
10093 release_contents (sec, contents);
10094 return ok;
10095}
10096
10097\f
10098/* Third relaxation pass. */
10099
10100/* Change symbol values to account for removed literals. */
10101
43cd72b9 10102bfd_boolean
7fa3d080 10103relax_section_symbols (bfd *abfd, asection *sec)
e0001a05
NC
10104{
10105 xtensa_relax_info *relax_info;
10106 unsigned int sec_shndx;
10107 Elf_Internal_Shdr *symtab_hdr;
10108 Elf_Internal_Sym *isymbuf;
10109 unsigned i, num_syms, num_locals;
10110
10111 relax_info = get_xtensa_relax_info (sec);
10112 BFD_ASSERT (relax_info);
10113
43cd72b9
BW
10114 if (!relax_info->is_relaxable_literal_section
10115 && !relax_info->is_relaxable_asm_section)
e0001a05
NC
10116 return TRUE;
10117
10118 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10119
10120 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10121 isymbuf = retrieve_local_syms (abfd);
10122
10123 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10124 num_locals = symtab_hdr->sh_info;
10125
10126 /* Adjust the local symbols defined in this section. */
10127 for (i = 0; i < num_locals; i++)
10128 {
10129 Elf_Internal_Sym *isym = &isymbuf[i];
10130
10131 if (isym->st_shndx == sec_shndx)
10132 {
03669f1c
BW
10133 text_action *act = relax_info->action_list.head;
10134 bfd_vma orig_addr = isym->st_value;
43cd72b9 10135
03669f1c 10136 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10137
03669f1c
BW
10138 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10139 isym->st_size -=
10140 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
e0001a05
NC
10141 }
10142 }
10143
10144 /* Now adjust the global symbols defined in this section. */
10145 for (i = 0; i < (num_syms - num_locals); i++)
10146 {
10147 struct elf_link_hash_entry *sym_hash;
10148
10149 sym_hash = elf_sym_hashes (abfd)[i];
10150
10151 if (sym_hash->root.type == bfd_link_hash_warning)
10152 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10153
10154 if ((sym_hash->root.type == bfd_link_hash_defined
10155 || sym_hash->root.type == bfd_link_hash_defweak)
10156 && sym_hash->root.u.def.section == sec)
10157 {
03669f1c
BW
10158 text_action *act = relax_info->action_list.head;
10159 bfd_vma orig_addr = sym_hash->root.u.def.value;
43cd72b9 10160
03669f1c
BW
10161 sym_hash->root.u.def.value -=
10162 removed_by_actions (&act, orig_addr, FALSE);
43cd72b9 10163
03669f1c
BW
10164 if (sym_hash->type == STT_FUNC)
10165 sym_hash->size -=
10166 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
e0001a05
NC
10167 }
10168 }
10169
10170 return TRUE;
10171}
10172
10173\f
10174/* "Fix" handling functions, called while performing relocations. */
10175
43cd72b9 10176static bfd_boolean
7fa3d080
BW
10177do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10178 bfd *input_bfd,
10179 asection *input_section,
10180 bfd_byte *contents)
e0001a05
NC
10181{
10182 r_reloc r_rel;
10183 asection *sec, *old_sec;
10184 bfd_vma old_offset;
10185 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05
NC
10186 reloc_bfd_fix *fix;
10187
10188 if (r_type == R_XTENSA_NONE)
43cd72b9 10189 return TRUE;
e0001a05 10190
43cd72b9
BW
10191 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10192 if (!fix)
10193 return TRUE;
e0001a05 10194
43cd72b9
BW
10195 r_reloc_init (&r_rel, input_bfd, rel, contents,
10196 bfd_get_section_limit (input_bfd, input_section));
e0001a05 10197 old_sec = r_reloc_get_section (&r_rel);
43cd72b9
BW
10198 old_offset = r_rel.target_offset;
10199
10200 if (!old_sec || !r_reloc_is_defined (&r_rel))
e0001a05 10201 {
43cd72b9
BW
10202 if (r_type != R_XTENSA_ASM_EXPAND)
10203 {
10204 (*_bfd_error_handler)
10205 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10206 input_bfd, input_section, rel->r_offset,
10207 elf_howto_table[r_type].name);
10208 return FALSE;
10209 }
e0001a05
NC
10210 /* Leave it be. Resolution will happen in a later stage. */
10211 }
10212 else
10213 {
10214 sec = fix->target_sec;
10215 rel->r_addend += ((sec->output_offset + fix->target_offset)
10216 - (old_sec->output_offset + old_offset));
10217 }
43cd72b9 10218 return TRUE;
e0001a05
NC
10219}
10220
10221
10222static void
7fa3d080
BW
10223do_fix_for_final_link (Elf_Internal_Rela *rel,
10224 bfd *input_bfd,
10225 asection *input_section,
10226 bfd_byte *contents,
10227 bfd_vma *relocationp)
e0001a05
NC
10228{
10229 asection *sec;
10230 int r_type = ELF32_R_TYPE (rel->r_info);
e0001a05 10231 reloc_bfd_fix *fix;
43cd72b9 10232 bfd_vma fixup_diff;
e0001a05
NC
10233
10234 if (r_type == R_XTENSA_NONE)
10235 return;
10236
43cd72b9
BW
10237 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10238 if (!fix)
e0001a05
NC
10239 return;
10240
10241 sec = fix->target_sec;
43cd72b9
BW
10242
10243 fixup_diff = rel->r_addend;
10244 if (elf_howto_table[fix->src_type].partial_inplace)
10245 {
10246 bfd_vma inplace_val;
10247 BFD_ASSERT (fix->src_offset
10248 < bfd_get_section_limit (input_bfd, input_section));
10249 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10250 fixup_diff += inplace_val;
10251 }
10252
e0001a05
NC
10253 *relocationp = (sec->output_section->vma
10254 + sec->output_offset
43cd72b9 10255 + fix->target_offset - fixup_diff);
e0001a05
NC
10256}
10257
10258\f
10259/* Miscellaneous utility functions.... */
10260
10261static asection *
f0e6fdb2 10262elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
e0001a05 10263{
f0e6fdb2
BW
10264 struct elf_xtensa_link_hash_table *htab;
10265 bfd *dynobj;
e0001a05
NC
10266 char plt_name[10];
10267
10268 if (chunk == 0)
f0e6fdb2
BW
10269 {
10270 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10271 if (htab == NULL)
10272 return NULL;
10273
f0e6fdb2
BW
10274 return htab->splt;
10275 }
e0001a05 10276
f0e6fdb2 10277 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
10278 sprintf (plt_name, ".plt.%u", chunk);
10279 return bfd_get_section_by_name (dynobj, plt_name);
10280}
10281
10282
10283static asection *
f0e6fdb2 10284elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
e0001a05 10285{
f0e6fdb2
BW
10286 struct elf_xtensa_link_hash_table *htab;
10287 bfd *dynobj;
e0001a05
NC
10288 char got_name[14];
10289
10290 if (chunk == 0)
f0e6fdb2
BW
10291 {
10292 htab = elf_xtensa_hash_table (info);
4dfe6ac6
NC
10293 if (htab == NULL)
10294 return NULL;
f0e6fdb2
BW
10295 return htab->sgotplt;
10296 }
e0001a05 10297
f0e6fdb2 10298 dynobj = elf_hash_table (info)->dynobj;
e0001a05
NC
10299 sprintf (got_name, ".got.plt.%u", chunk);
10300 return bfd_get_section_by_name (dynobj, got_name);
10301}
10302
10303
10304/* Get the input section for a given symbol index.
10305 If the symbol is:
10306 . a section symbol, return the section;
10307 . a common symbol, return the common section;
10308 . an undefined symbol, return the undefined section;
10309 . an indirect symbol, follow the links;
10310 . an absolute value, return the absolute section. */
10311
10312static asection *
7fa3d080 10313get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10314{
10315 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10316 asection *target_sec = NULL;
43cd72b9 10317 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10318 {
10319 Elf_Internal_Sym *isymbuf;
10320 unsigned int section_index;
10321
10322 isymbuf = retrieve_local_syms (abfd);
10323 section_index = isymbuf[r_symndx].st_shndx;
10324
10325 if (section_index == SHN_UNDEF)
10326 target_sec = bfd_und_section_ptr;
e0001a05
NC
10327 else if (section_index == SHN_ABS)
10328 target_sec = bfd_abs_section_ptr;
10329 else if (section_index == SHN_COMMON)
10330 target_sec = bfd_com_section_ptr;
43cd72b9 10331 else
cb33740c 10332 target_sec = bfd_section_from_elf_index (abfd, section_index);
e0001a05
NC
10333 }
10334 else
10335 {
10336 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10337 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10338
10339 while (h->root.type == bfd_link_hash_indirect
10340 || h->root.type == bfd_link_hash_warning)
10341 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10342
10343 switch (h->root.type)
10344 {
10345 case bfd_link_hash_defined:
10346 case bfd_link_hash_defweak:
10347 target_sec = h->root.u.def.section;
10348 break;
10349 case bfd_link_hash_common:
10350 target_sec = bfd_com_section_ptr;
10351 break;
10352 case bfd_link_hash_undefined:
10353 case bfd_link_hash_undefweak:
10354 target_sec = bfd_und_section_ptr;
10355 break;
10356 default: /* New indirect warning. */
10357 target_sec = bfd_und_section_ptr;
10358 break;
10359 }
10360 }
10361 return target_sec;
10362}
10363
10364
10365static struct elf_link_hash_entry *
7fa3d080 10366get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10367{
10368 unsigned long indx;
10369 struct elf_link_hash_entry *h;
10370 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10371
10372 if (r_symndx < symtab_hdr->sh_info)
10373 return NULL;
43cd72b9 10374
e0001a05
NC
10375 indx = r_symndx - symtab_hdr->sh_info;
10376 h = elf_sym_hashes (abfd)[indx];
10377 while (h->root.type == bfd_link_hash_indirect
10378 || h->root.type == bfd_link_hash_warning)
10379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10380 return h;
10381}
10382
10383
10384/* Get the section-relative offset for a symbol number. */
10385
10386static bfd_vma
7fa3d080 10387get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
e0001a05
NC
10388{
10389 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10390 bfd_vma offset = 0;
10391
43cd72b9 10392 if (r_symndx < symtab_hdr->sh_info)
e0001a05
NC
10393 {
10394 Elf_Internal_Sym *isymbuf;
10395 isymbuf = retrieve_local_syms (abfd);
10396 offset = isymbuf[r_symndx].st_value;
10397 }
10398 else
10399 {
10400 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10401 struct elf_link_hash_entry *h =
10402 elf_sym_hashes (abfd)[indx];
10403
10404 while (h->root.type == bfd_link_hash_indirect
10405 || h->root.type == bfd_link_hash_warning)
10406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10407 if (h->root.type == bfd_link_hash_defined
10408 || h->root.type == bfd_link_hash_defweak)
10409 offset = h->root.u.def.value;
10410 }
10411 return offset;
10412}
10413
10414
10415static bfd_boolean
7fa3d080 10416is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
43cd72b9
BW
10417{
10418 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10419 struct elf_link_hash_entry *h;
10420
10421 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10422 if (h && h->root.type == bfd_link_hash_defweak)
10423 return TRUE;
10424 return FALSE;
10425}
10426
10427
10428static bfd_boolean
7fa3d080
BW
10429pcrel_reloc_fits (xtensa_opcode opc,
10430 int opnd,
10431 bfd_vma self_address,
10432 bfd_vma dest_address)
e0001a05 10433{
43cd72b9
BW
10434 xtensa_isa isa = xtensa_default_isa;
10435 uint32 valp = dest_address;
10436 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10437 || xtensa_operand_encode (isa, opc, opnd, &valp))
10438 return FALSE;
10439 return TRUE;
e0001a05
NC
10440}
10441
10442
10443static bfd_boolean
7fa3d080 10444xtensa_is_property_section (asection *sec)
e0001a05 10445{
1d25768e
BW
10446 if (xtensa_is_insntable_section (sec)
10447 || xtensa_is_littable_section (sec)
10448 || xtensa_is_proptable_section (sec))
b614a702 10449 return TRUE;
e901de89 10450
1d25768e
BW
10451 return FALSE;
10452}
10453
10454
10455static bfd_boolean
10456xtensa_is_insntable_section (asection *sec)
10457{
10458 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10459 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
e901de89
BW
10460 return TRUE;
10461
e901de89
BW
10462 return FALSE;
10463}
10464
10465
10466static bfd_boolean
7fa3d080 10467xtensa_is_littable_section (asection *sec)
e901de89 10468{
1d25768e
BW
10469 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10470 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
b614a702 10471 return TRUE;
e901de89 10472
1d25768e
BW
10473 return FALSE;
10474}
10475
10476
10477static bfd_boolean
10478xtensa_is_proptable_section (asection *sec)
10479{
10480 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10481 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
e901de89 10482 return TRUE;
e0001a05 10483
e901de89 10484 return FALSE;
e0001a05
NC
10485}
10486
10487
43cd72b9 10488static int
7fa3d080 10489internal_reloc_compare (const void *ap, const void *bp)
e0001a05 10490{
43cd72b9
BW
10491 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10492 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10493
10494 if (a->r_offset != b->r_offset)
10495 return (a->r_offset - b->r_offset);
10496
10497 /* We don't need to sort on these criteria for correctness,
10498 but enforcing a more strict ordering prevents unstable qsort
10499 from behaving differently with different implementations.
10500 Without the code below we get correct but different results
10501 on Solaris 2.7 and 2.8. We would like to always produce the
10502 same results no matter the host. */
10503
10504 if (a->r_info != b->r_info)
10505 return (a->r_info - b->r_info);
10506
10507 return (a->r_addend - b->r_addend);
e0001a05
NC
10508}
10509
10510
10511static int
7fa3d080 10512internal_reloc_matches (const void *ap, const void *bp)
e0001a05
NC
10513{
10514 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10515 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10516
43cd72b9
BW
10517 /* Check if one entry overlaps with the other; this shouldn't happen
10518 except when searching for a match. */
e0001a05
NC
10519 return (a->r_offset - b->r_offset);
10520}
10521
10522
74869ac7
BW
10523/* Predicate function used to look up a section in a particular group. */
10524
10525static bfd_boolean
10526match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10527{
10528 const char *gname = inf;
10529 const char *group_name = elf_group_name (sec);
10530
10531 return (group_name == gname
10532 || (group_name != NULL
10533 && gname != NULL
10534 && strcmp (group_name, gname) == 0));
10535}
10536
10537
1d25768e
BW
10538static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10539
51c8ebc1
BW
10540static char *
10541xtensa_property_section_name (asection *sec, const char *base_name)
e0001a05 10542{
74869ac7
BW
10543 const char *suffix, *group_name;
10544 char *prop_sec_name;
74869ac7
BW
10545
10546 group_name = elf_group_name (sec);
10547 if (group_name)
10548 {
10549 suffix = strrchr (sec->name, '.');
10550 if (suffix == sec->name)
10551 suffix = 0;
10552 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10553 + (suffix ? strlen (suffix) : 0));
10554 strcpy (prop_sec_name, base_name);
10555 if (suffix)
10556 strcat (prop_sec_name, suffix);
10557 }
10558 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
e0001a05 10559 {
43cd72b9 10560 char *linkonce_kind = 0;
b614a702
BW
10561
10562 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
7db48a12 10563 linkonce_kind = "x.";
b614a702 10564 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
7db48a12 10565 linkonce_kind = "p.";
43cd72b9
BW
10566 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10567 linkonce_kind = "prop.";
e0001a05 10568 else
b614a702
BW
10569 abort ();
10570
43cd72b9
BW
10571 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10572 + strlen (linkonce_kind) + 1);
b614a702 10573 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
43cd72b9 10574 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
b614a702
BW
10575
10576 suffix = sec->name + linkonce_len;
096c35a7 10577 /* For backward compatibility, replace "t." instead of inserting
43cd72b9 10578 the new linkonce_kind (but not for "prop" sections). */
0112cd26 10579 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
43cd72b9
BW
10580 suffix += 2;
10581 strcat (prop_sec_name + linkonce_len, suffix);
74869ac7
BW
10582 }
10583 else
10584 prop_sec_name = strdup (base_name);
10585
51c8ebc1
BW
10586 return prop_sec_name;
10587}
10588
10589
10590static asection *
10591xtensa_get_property_section (asection *sec, const char *base_name)
10592{
10593 char *prop_sec_name;
10594 asection *prop_sec;
10595
10596 prop_sec_name = xtensa_property_section_name (sec, base_name);
10597 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10598 match_section_group,
10599 (void *) elf_group_name (sec));
10600 free (prop_sec_name);
10601 return prop_sec;
10602}
10603
10604
10605asection *
10606xtensa_make_property_section (asection *sec, const char *base_name)
10607{
10608 char *prop_sec_name;
10609 asection *prop_sec;
10610
74869ac7 10611 /* Check if the section already exists. */
51c8ebc1 10612 prop_sec_name = xtensa_property_section_name (sec, base_name);
74869ac7
BW
10613 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10614 match_section_group,
51c8ebc1 10615 (void *) elf_group_name (sec));
74869ac7
BW
10616 /* If not, create it. */
10617 if (! prop_sec)
10618 {
10619 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10620 flags |= (bfd_get_section_flags (sec->owner, sec)
10621 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10622
10623 prop_sec = bfd_make_section_anyway_with_flags
10624 (sec->owner, strdup (prop_sec_name), flags);
10625 if (! prop_sec)
10626 return 0;
b614a702 10627
51c8ebc1 10628 elf_group_name (prop_sec) = elf_group_name (sec);
e0001a05
NC
10629 }
10630
74869ac7
BW
10631 free (prop_sec_name);
10632 return prop_sec;
e0001a05
NC
10633}
10634
43cd72b9
BW
10635
10636flagword
7fa3d080 10637xtensa_get_property_predef_flags (asection *sec)
43cd72b9 10638{
1d25768e 10639 if (xtensa_is_insntable_section (sec))
43cd72b9 10640 return (XTENSA_PROP_INSN
99ded152 10641 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10642 | XTENSA_PROP_INSN_NO_REORDER);
10643
10644 if (xtensa_is_littable_section (sec))
10645 return (XTENSA_PROP_LITERAL
99ded152 10646 | XTENSA_PROP_NO_TRANSFORM
43cd72b9
BW
10647 | XTENSA_PROP_INSN_NO_REORDER);
10648
10649 return 0;
10650}
10651
e0001a05
NC
10652\f
10653/* Other functions called directly by the linker. */
10654
10655bfd_boolean
7fa3d080
BW
10656xtensa_callback_required_dependence (bfd *abfd,
10657 asection *sec,
10658 struct bfd_link_info *link_info,
10659 deps_callback_t callback,
10660 void *closure)
e0001a05
NC
10661{
10662 Elf_Internal_Rela *internal_relocs;
10663 bfd_byte *contents;
10664 unsigned i;
10665 bfd_boolean ok = TRUE;
43cd72b9
BW
10666 bfd_size_type sec_size;
10667
10668 sec_size = bfd_get_section_limit (abfd, sec);
e0001a05
NC
10669
10670 /* ".plt*" sections have no explicit relocations but they contain L32R
10671 instructions that reference the corresponding ".got.plt*" sections. */
10672 if ((sec->flags & SEC_LINKER_CREATED) != 0
0112cd26 10673 && CONST_STRNEQ (sec->name, ".plt"))
e0001a05
NC
10674 {
10675 asection *sgotplt;
10676
10677 /* Find the corresponding ".got.plt*" section. */
10678 if (sec->name[4] == '\0')
10679 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
10680 else
10681 {
10682 char got_name[14];
10683 int chunk = 0;
10684
10685 BFD_ASSERT (sec->name[4] == '.');
10686 chunk = strtol (&sec->name[5], NULL, 10);
10687
10688 sprintf (got_name, ".got.plt.%u", chunk);
10689 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
10690 }
10691 BFD_ASSERT (sgotplt);
10692
10693 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10694 section referencing a literal at the very beginning of
10695 ".got.plt". This is very close to the real dependence, anyway. */
43cd72b9 10696 (*callback) (sec, sec_size, sgotplt, 0, closure);
e0001a05
NC
10697 }
10698
13161072
BW
10699 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10700 when building uclibc, which runs "ld -b binary /dev/null". */
10701 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10702 return ok;
10703
e0001a05
NC
10704 internal_relocs = retrieve_internal_relocs (abfd, sec,
10705 link_info->keep_memory);
10706 if (internal_relocs == NULL
43cd72b9 10707 || sec->reloc_count == 0)
e0001a05
NC
10708 return ok;
10709
10710 /* Cache the contents for the duration of this scan. */
10711 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
43cd72b9 10712 if (contents == NULL && sec_size != 0)
e0001a05
NC
10713 {
10714 ok = FALSE;
10715 goto error_return;
10716 }
10717
43cd72b9
BW
10718 if (!xtensa_default_isa)
10719 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 10720
43cd72b9 10721 for (i = 0; i < sec->reloc_count; i++)
e0001a05
NC
10722 {
10723 Elf_Internal_Rela *irel = &internal_relocs[i];
43cd72b9 10724 if (is_l32r_relocation (abfd, sec, contents, irel))
e0001a05
NC
10725 {
10726 r_reloc l32r_rel;
10727 asection *target_sec;
10728 bfd_vma target_offset;
43cd72b9
BW
10729
10730 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
e0001a05
NC
10731 target_sec = NULL;
10732 target_offset = 0;
10733 /* L32Rs must be local to the input file. */
10734 if (r_reloc_is_defined (&l32r_rel))
10735 {
10736 target_sec = r_reloc_get_section (&l32r_rel);
43cd72b9 10737 target_offset = l32r_rel.target_offset;
e0001a05
NC
10738 }
10739 (*callback) (sec, irel->r_offset, target_sec, target_offset,
10740 closure);
10741 }
10742 }
10743
10744 error_return:
10745 release_internal_relocs (sec, internal_relocs);
10746 release_contents (sec, contents);
10747 return ok;
10748}
10749
2f89ff8d
L
10750/* The default literal sections should always be marked as "code" (i.e.,
10751 SHF_EXECINSTR). This is particularly important for the Linux kernel
10752 module loader so that the literals are not placed after the text. */
b35d266b 10753static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
2f89ff8d 10754{
0112cd26
NC
10755 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10756 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10757 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2caa7ca0 10758 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
0112cd26 10759 { NULL, 0, 0, 0, 0 }
7f4d3958 10760};
e0001a05 10761\f
ae95ffa6 10762#define ELF_TARGET_ID XTENSA_ELF_DATA
e0001a05
NC
10763#ifndef ELF_ARCH
10764#define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10765#define TARGET_LITTLE_NAME "elf32-xtensa-le"
10766#define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10767#define TARGET_BIG_NAME "elf32-xtensa-be"
10768#define ELF_ARCH bfd_arch_xtensa
10769
4af0a1d8
BW
10770#define ELF_MACHINE_CODE EM_XTENSA
10771#define ELF_MACHINE_ALT1 EM_XTENSA_OLD
e0001a05
NC
10772
10773#if XCHAL_HAVE_MMU
10774#define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10775#else /* !XCHAL_HAVE_MMU */
10776#define ELF_MAXPAGESIZE 1
10777#endif /* !XCHAL_HAVE_MMU */
10778#endif /* ELF_ARCH */
10779
10780#define elf_backend_can_gc_sections 1
10781#define elf_backend_can_refcount 1
10782#define elf_backend_plt_readonly 1
10783#define elf_backend_got_header_size 4
10784#define elf_backend_want_dynbss 0
10785#define elf_backend_want_got_plt 1
10786
10787#define elf_info_to_howto elf_xtensa_info_to_howto_rela
10788
28dbbc02
BW
10789#define bfd_elf32_mkobject elf_xtensa_mkobject
10790
e0001a05
NC
10791#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10792#define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10793#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10794#define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10795#define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
157090f7
AM
10796#define bfd_elf32_bfd_reloc_name_lookup \
10797 elf_xtensa_reloc_name_lookup
e0001a05 10798#define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
f0e6fdb2 10799#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
e0001a05
NC
10800
10801#define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10802#define elf_backend_check_relocs elf_xtensa_check_relocs
e0001a05
NC
10803#define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10804#define elf_backend_discard_info elf_xtensa_discard_info
10805#define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10806#define elf_backend_final_write_processing elf_xtensa_final_write_processing
10807#define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10808#define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10809#define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10810#define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10811#define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10812#define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
95147441 10813#define elf_backend_hide_symbol elf_xtensa_hide_symbol
e0001a05
NC
10814#define elf_backend_object_p elf_xtensa_object_p
10815#define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10816#define elf_backend_relocate_section elf_xtensa_relocate_section
10817#define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
28dbbc02 10818#define elf_backend_always_size_sections elf_xtensa_always_size_sections
74541ad4
AM
10819#define elf_backend_omit_section_dynsym \
10820 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
29ef7005 10821#define elf_backend_special_sections elf_xtensa_special_sections
a77dc2cc 10822#define elf_backend_action_discarded elf_xtensa_action_discarded
28dbbc02 10823#define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
e0001a05
NC
10824
10825#include "elf32-target.h"