]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/elfxx-mips.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
250d07de 2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9 35#include "elf-bfd.h"
0ba9378a 36#include "ecoff-bfd.h"
b49e97c9
TS
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
2f0c68f2 40#include "dwarf2.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
9ab066b4
RS
50/* Types of TLS GOT entry. */
51enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56};
57
ead49a57 58/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
b15e6682
AO
76struct mips_got_entry
77{
3dff0dd1 78 /* One input bfd that needs the GOT entry. */
b15e6682 79 bfd *abfd;
f4416af6
AO
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 91 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
f4416af6
AO
94 struct mips_elf_link_hash_entry *h;
95 } d;
0f20cc35 96
9ab066b4
RS
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
0f20cc35
DJ
99 unsigned char tls_type;
100
9ab066b4
RS
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
b15e6682 105 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
b15e6682
AO
109};
110
13db6b44
RS
111/* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121struct mips_got_page_ref
122{
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130};
131
c224138d
RS
132/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135struct mips_got_page_range
136{
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140};
141
142/* This structure describes the range of addends that are applied to page
13db6b44 143 relocations against a given section. */
c224138d
RS
144struct mips_got_page_entry
145{
13db6b44
RS
146 /* The section that these entries are based on. */
147 asection *sec;
c224138d
RS
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152};
153
f0abc2a1 154/* This structure is used to hold .got information when linking. */
b49e97c9
TS
155
156struct mips_got_info
157{
b49e97c9
TS
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
23cc69b6
RS
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
0f20cc35
DJ
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
c224138d 167 /* The number of local .got entries, eventually including page entries. */
b49e97c9 168 unsigned int local_gotno;
c224138d
RS
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
ab361d49
RS
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
cb22ccf4
KCY
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
b15e6682
AO
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
13db6b44
RS
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
c224138d
RS
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
f4416af6
AO
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186};
187
d7206569 188/* Structure passed when merging bfds' gots. */
f4416af6
AO
189
190struct mips_elf_got_per_bfd_arg
191{
f4416af6
AO
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
c224138d
RS
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
0f20cc35
DJ
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
f4416af6
AO
213};
214
ab361d49
RS
215/* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
f4416af6 217
ab361d49 218struct mips_elf_traverse_got_arg
f4416af6 219{
ab361d49 220 struct bfd_link_info *info;
f4416af6
AO
221 struct mips_got_info *g;
222 int value;
0f20cc35
DJ
223};
224
f0abc2a1
AM
225struct _mips_elf_section_data
226{
227 struct bfd_elf_section_data elf;
228 union
229 {
f0abc2a1
AM
230 bfd_byte *tdata;
231 } u;
232};
233
234#define mips_elf_section_data(sec) \
68bfbfcc 235 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 236
d5eaccd7
RS
237#define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
4dfe6ac6 240 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 241
634835ae
RS
242/* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259#define GGA_NORMAL 0
260#define GGA_RELOC_ONLY 1
261#define GGA_NONE 2
262
861fb55a
DJ
263/* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290};
291
292/* Macros for populating a mips_elf_la25_stub. */
293
294#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
3734320d 296#define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
861fb55a 297#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
298#define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300#define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302#define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 304
b49e97c9
TS
305/* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308struct mips_elf_hash_sort_data
309{
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
0f20cc35
DJ
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
55f8b9d2 315 bfd_size_type min_got_dynindx;
f4416af6
AO
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 318 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 319 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 324 symbol without a GOT entry. */
55f8b9d2 325 bfd_size_type max_non_got_dynindx;
f16a9783
MS
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
b49e97c9
TS
331};
332
1bbce132
MR
333/* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338struct plt_entry
339{
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357};
358
b49e97c9
TS
359/* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362struct mips_elf_link_hash_entry
363{
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
861fb55a
DJ
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
b49e97c9
TS
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
b49e97c9
TS
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
b49e97c9
TS
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
7c5fcef7 387
f16a9783
MS
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
634835ae
RS
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
6ccf4795
RS
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
71782a75
RS
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
861fb55a
DJ
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
71782a75
RS
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
861fb55a
DJ
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
1bbce132
MR
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
b49e97c9
TS
429};
430
431/* MIPS ELF linker hash table. */
432
433struct mips_elf_link_hash_table
434{
435 struct elf_link_hash_table root;
861fb55a 436
b49e97c9
TS
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
861fb55a 439
b49e97c9
TS
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
861fb55a 442
e6aea42d
MR
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 445 bfd_boolean use_rld_obj_head;
861fb55a 446
b4082c70
DD
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
861fb55a 449
b49e97c9 450 /* This is set if we see any mips16 stub sections. */
b34976b6 451 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
452
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs;
455
833794fc
MR
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bfd_boolean insn32;
458
8b10b0b3
MR
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa;
461
3734320d
MF
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches;
464
0e53d9da
AN
465 /* True if we already reported the small-data section overflow. */
466 bfd_boolean small_data_overflow_reported;
861fb55a 467
47275900
MR
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bfd_boolean use_absolute_zero;
470
471 /* True if we have been configured for a GNU target. */
472 bfd_boolean gnu_target;
473
0a44bf69
RS
474 /* Shortcuts to some dynamic sections, or NULL if they are not
475 being used. */
0a44bf69 476 asection *srelplt2;
4e41d0d7 477 asection *sstubs;
861fb55a 478
a8028dd0
RS
479 /* The master GOT information. */
480 struct mips_got_info *got_info;
861fb55a 481
d222d210
RS
482 /* The global symbol in the GOT with the lowest index in the dynamic
483 symbol table. */
484 struct elf_link_hash_entry *global_gotsym;
485
861fb55a 486 /* The size of the PLT header in bytes. */
0a44bf69 487 bfd_vma plt_header_size;
861fb55a 488
1bbce132
MR
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size;
491
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size;
494
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset;
497
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset;
500
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index;
861fb55a 503
33bb52fb
RS
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count;
861fb55a 506
5108fc1b
RS
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size;
861fb55a
DJ
509
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno;
512
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection *strampoline;
516
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518 pairs. */
519 htab_t la25_stubs;
520
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
525
526 The function returns the new section on success, otherwise it
527 returns null. */
528 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44 529
1bbce132
MR
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
532};
533
4dfe6ac6
NC
534/* Get the MIPS ELF linker hash table from a link_info structure. */
535
536#define mips_elf_hash_table(p) \
0f55320b
AM
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
4dfe6ac6 540
861fb55a 541/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
542struct mips_htab_traverse_info
543{
861fb55a
DJ
544 /* The usual link-wide information. */
545 struct bfd_link_info *info;
546 bfd *output_bfd;
547
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
549 bfd_boolean error;
b49e97c9
TS
550};
551
6ae68ba3
MR
552/* MIPS ELF private object data. */
553
554struct mips_elf_obj_tdata
555{
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root;
558
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
560 bfd *abi_fp_bfd;
ee227692 561
b60bf9be
CF
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
563 bfd *abi_msa_bfd;
564
351cdf24
MF
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags;
567 bfd_boolean abiflags_valid;
568
ee227692
RS
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info *got;
698600e4
AM
571
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line *find_line_info;
576
577 /* An array of stub sections indexed by symbol number. */
578 asection **local_stubs;
579 asection **local_call_stubs;
580
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol *elf_data_symbol;
584 asymbol *elf_text_symbol;
585 asection *elf_data_section;
586 asection *elf_text_section;
6ae68ba3
MR
587};
588
589/* Get MIPS ELF private object data from BFD's tdata. */
590
591#define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
593
0f20cc35
DJ
594#define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 607 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 622
b49e97c9
TS
623/* Structure used to pass information to mips_elf_output_extsym. */
624
625struct extsym_info
626{
9e4aeb93
RS
627 bfd *abfd;
628 struct bfd_link_info *info;
b49e97c9
TS
629 struct ecoff_debug_info *debug;
630 const struct ecoff_debug_swap *swap;
b34976b6 631 bfd_boolean failed;
b49e97c9
TS
632};
633
8dc1a139 634/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
635
636static const char * const mips_elf_dynsym_rtproc_names[] =
637{
638 "_procedure_table",
639 "_procedure_string_table",
640 "_procedure_table_size",
641 NULL
642};
643
644/* These structures are used to generate the .compact_rel section on
8dc1a139 645 IRIX5. */
b49e97c9
TS
646
647typedef struct
648{
649 unsigned long id1; /* Always one? */
650 unsigned long num; /* Number of compact relocation entries. */
651 unsigned long id2; /* Always two? */
652 unsigned long offset; /* The file offset of the first relocation. */
653 unsigned long reserved0; /* Zero? */
654 unsigned long reserved1; /* Zero? */
655} Elf32_compact_rel;
656
657typedef struct
658{
659 bfd_byte id1[4];
660 bfd_byte num[4];
661 bfd_byte id2[4];
662 bfd_byte offset[4];
663 bfd_byte reserved0[4];
664 bfd_byte reserved1[4];
665} Elf32_External_compact_rel;
666
667typedef struct
668{
669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype : 4; /* Relocation types. See below. */
671 unsigned int dist2to : 8;
672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst; /* KONST field. See below. */
674 unsigned long vaddr; /* VADDR to be relocated. */
675} Elf32_crinfo;
676
677typedef struct
678{
679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype : 4; /* Relocation types. See below. */
681 unsigned int dist2to : 8;
682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst; /* KONST field. See below. */
684} Elf32_crinfo2;
685
686typedef struct
687{
688 bfd_byte info[4];
689 bfd_byte konst[4];
690 bfd_byte vaddr[4];
691} Elf32_External_crinfo;
692
693typedef struct
694{
695 bfd_byte info[4];
696 bfd_byte konst[4];
697} Elf32_External_crinfo2;
698
699/* These are the constants used to swap the bitfields in a crinfo. */
700
227d539b 701#define CRINFO_CTYPE (0x1U)
b49e97c9 702#define CRINFO_CTYPE_SH (31)
227d539b 703#define CRINFO_RTYPE (0xfU)
b49e97c9 704#define CRINFO_RTYPE_SH (27)
227d539b 705#define CRINFO_DIST2TO (0xffU)
b49e97c9 706#define CRINFO_DIST2TO_SH (19)
227d539b 707#define CRINFO_RELVADDR (0x7ffffU)
b49e97c9
TS
708#define CRINFO_RELVADDR_SH (0)
709
710/* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713#define CRF_MIPS_LONG 1
714#define CRF_MIPS_SHORT 0
715
716/* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
718
719 (type) (konst)
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
724 */
725
726#define CRT_MIPS_REL32 0xa
727#define CRT_MIPS_WORD 0xb
728#define CRT_MIPS_GPHI_LO 0xc
729#define CRT_MIPS_JMPAD 0xd
730
731#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
735\f
736/* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
738
739typedef struct runtime_pdr {
ae9a127f
NC
740 bfd_vma adr; /* Memory address of start of procedure. */
741 long regmask; /* Save register mask. */
742 long regoffset; /* Save register offset. */
743 long fregmask; /* Save floating point register mask. */
744 long fregoffset; /* Save floating point register offset. */
745 long frameoffset; /* Frame size. */
746 short framereg; /* Frame pointer register. */
747 short pcreg; /* Offset or reg of return pc. */
748 long irpss; /* Index into the runtime string table. */
b49e97c9 749 long reserved;
ae9a127f 750 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
751} RPDR, *pRPDR;
752#define cbRPDR sizeof (RPDR)
753#define rpdNil ((pRPDR) 0)
754\f
b15e6682 755static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757 struct mips_elf_link_hash_entry *, int);
b34976b6 758static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 759 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
760static bfd_vma mips_elf_high
761 (bfd_vma);
b34976b6 762static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765 bfd_vma *, asection *);
f4416af6 766static bfd_vma mips_elf_adjust_gp
9719ad41 767 (bfd *, struct mips_got_info *, bfd *);
f4416af6 768
b49e97c9
TS
769/* This will be used when we sort the dynamic relocation records. */
770static bfd *reldyn_sorting_bfd;
771
6d30f5b2
NC
772/* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774#define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
777
cd8d5a82
CF
778/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781#define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
783
784/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
786 all CPUs. */
787#define JALR_TO_BAL_P(abfd) 1
788
38a7df63
CF
789/* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792#define JR_TO_B_P(abfd) 1
793
861fb55a
DJ
794/* True if ABFD is a PIC object. */
795#define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
797
351cdf24
MF
798/* Nonzero if ABFD is using the O32 ABI. */
799#define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
801
b49e97c9 802/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
803#define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
805
4a14403c 806/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 807#define ABI_64_P(abfd) \
141ff970 808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 809
4a14403c
TS
810/* Nonzero if ABFD is using NewABI conventions. */
811#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
812
e8faf7d1
MR
813/* Nonzero if ABFD has microMIPS code. */
814#define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
816
7361da2c
AB
817/* Nonzero if ABFD is MIPS R6. */
818#define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
821
4a14403c 822/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
823#define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
825
b49e97c9
TS
826/* Whether we are trying to be compatible with IRIX at all. */
827#define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
829
830/* The name of the options section. */
831#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 833
cc2e31b9
RS
834/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
838
351cdf24
MF
839/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
842
943284cc
DJ
843/* Whether the section is readonly. */
844#define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
847
b49e97c9 848/* The name of the stub section. */
ca07892d 849#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
850
851/* The size of an external REL relocation. */
852#define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
854
0a44bf69
RS
855/* The size of an external RELA relocation. */
856#define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
858
b49e97c9
TS
859/* The size of an external dynamic table entry. */
860#define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
862
863/* The size of a GOT entry. */
864#define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
b4082c70
DD
867/* The size of the .rld_map section. */
868#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
870
b49e97c9
TS
871/* The size of a symbol-table entry. */
872#define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
874
875/* The default alignment for sections, as a power of two. */
876#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 877 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
878
879/* Get word-sized data. */
880#define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
882
883/* Put out word-sized data. */
884#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
885 (ABI_64_P (abfd) \
886 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
887 : bfd_put_32 (abfd, val, ptr))
888
861fb55a
DJ
889/* The opcode for word-sized loads (LW or LD). */
890#define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
892
b49e97c9 893/* Add a dynamic symbol table-entry. */
9719ad41 894#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 895 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
896
897#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 899
0a44bf69
RS
900/* The name of the dynamic relocation section. */
901#define MIPS_ELF_REL_DYN_NAME(INFO) \
90c14f0c
L
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
0a44bf69 904
b49e97c9
TS
905/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 908#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 909
51e38d68
RS
910/* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
912 module pointer. */
913#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
915
f4416af6 916/* The offset of $gp from the beginning of the .got section. */
0a44bf69 917#define ELF_MIPS_GP_OFFSET(INFO) \
90c14f0c
L
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919 ? 0x0 : 0x7ff0)
f4416af6
AO
920
921/* The maximum size of the GOT for it to be addressable using 16-bit
922 offsets from $gp. */
0a44bf69 923#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 924
6a691779 925/* Instructions which appear in a stub. */
3d6746ca
DD
926#define STUB_LW(abfd) \
927 ((ABI_64_P (abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 929 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 930#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 931#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 932#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
3734320d 933#define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
5108fc1b
RS
934#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
936#define STUB_LI16S(abfd, VAL) \
937 ((ABI_64_P (abfd) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
940
1bbce132
MR
941/* Likewise for the microMIPS ASE. */
942#define STUB_LW_MICROMIPS(abfd) \
943 (ABI_64_P (abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 947#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
948#define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 951#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
952#define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954#define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956#define STUB_LI16S_MICROMIPS(abfd, VAL) \
957 (ABI_64_P (abfd) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
960
5108fc1b
RS
961#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
963#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
965#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
967
968/* The name of the dynamic interpreter. This is put in the .interp
969 section. */
970
07d6d2b8
AM
971#define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
974 : "/usr/lib/libc.so.1")
975
976#ifdef BFD64
ee6423ed
AO
977#define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
979#define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981#define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983#define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985#else
ee6423ed 986#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
987#define ELF_R_SYM(bfd, i) \
988 (ELF32_R_SYM (i))
989#define ELF_R_TYPE(bfd, i) \
990 (ELF32_R_TYPE (i))
991#define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
993#endif
994\f
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
997
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1006
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1013
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1021 $f0/$f1 and $2/$3.)
1022
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1026
1027 We record any stubs that we find in the symbol table. */
1028
1029#define FN_STUB ".mips16.fn."
1030#define CALL_STUB ".mips16.call."
1031#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1032
1033#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1034#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1035#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1036\f
861fb55a 1037/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1038static const bfd_vma mips_o32_exec_plt0_entry[] =
1039{
861fb55a
DJ
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1044 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1048};
1049
3734320d
MF
1050/* The format of the first PLT entry in an O32 executable using compact
1051 jumps. */
1052static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1053{
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1062};
1063
861fb55a
DJ
1064/* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1066static const bfd_vma mips_n32_exec_plt0_entry[] =
1067{
861fb55a
DJ
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1072 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1076};
1077
3734320d
MF
1078/* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1080 instead. */
1081static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1082{
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1091};
1092
861fb55a
DJ
1093/* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_n64_exec_plt0_entry[] =
1096{
861fb55a
DJ
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1101 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1105};
1106
3734320d
MF
1107/* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1109 entries. */
1110static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1111{
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1120};
1121
1122
1bbce132
MR
1123/* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1127
1128 The trailing NOP is for alignment and correct disassembly only. */
1129static const bfd_vma micromips_o32_exec_plt0_entry[] =
1130{
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1139 0x0c00 /* nop */
1140};
1141
833794fc
MR
1142/* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1145{
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1150 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1154};
1155
1bbce132 1156/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1157static const bfd_vma mips_exec_plt_entry[] =
1158{
861fb55a
DJ
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1163};
1164
7361da2c
AB
1165static const bfd_vma mipsr6_exec_plt_entry[] =
1166{
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1171};
1172
3734320d
MF
1173static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1174{
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1179};
1180
1bbce132
MR
1181/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184static const bfd_vma mips16_o32_exec_plt_entry[] =
1185{
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1189 0xeb00, /* jr $3 */
1190 0x653b, /* move $25, $3 */
1191 0x6500, /* nop */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1193};
1194
1195/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197static const bfd_vma micromips_o32_exec_plt_entry[] =
1198{
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1203};
1204
833794fc
MR
1205/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1207{
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1212};
1213
0a44bf69 1214/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1215static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1216{
0a44bf69
RS
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1223};
1224
1225/* The format of subsequent PLT entries. */
6d30f5b2
NC
1226static const bfd_vma mips_vxworks_exec_plt_entry[] =
1227{
0a44bf69
RS
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1236};
1237
1238/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1239static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1240{
0a44bf69
RS
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1247};
1248
1249/* The format of subsequent PLT entries. */
6d30f5b2
NC
1250static const bfd_vma mips_vxworks_shared_plt_entry[] =
1251{
0a44bf69
RS
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1254};
1255\f
d21911ea
MR
1256/* microMIPS 32-bit opcode helper installer. */
1257
1258static void
1259bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1260{
1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1263}
1264
1265/* microMIPS 32-bit opcode helper retriever. */
1266
1267static bfd_vma
1268bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1269{
1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1271}
1272\f
b49e97c9
TS
1273/* Look up an entry in a MIPS ELF linker hash table. */
1274
1275#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1278 (copy), (follow)))
1279
1280/* Traverse a MIPS ELF linker hash table. */
1281
1282#define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1284 (&(table)->root, \
9719ad41 1285 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1286 (info)))
1287
0f20cc35
DJ
1288/* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1290
1291#define TP_OFFSET 0x7000
1292#define DTP_OFFSET 0x8000
1293
1294static bfd_vma
1295dtprel_base (struct bfd_link_info *info)
1296{
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info)->tls_sec == NULL)
1299 return 0;
1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1301}
1302
1303static bfd_vma
1304tprel_base (struct bfd_link_info *info)
1305{
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info)->tls_sec == NULL)
1308 return 0;
1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1310}
1311
b49e97c9
TS
1312/* Create an entry in a MIPS ELF linker hash table. */
1313
1314static struct bfd_hash_entry *
9719ad41
RS
1315mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1317{
1318 struct mips_elf_link_hash_entry *ret =
1319 (struct mips_elf_link_hash_entry *) entry;
1320
1321 /* Allocate the structure if it has not already been allocated by a
1322 subclass. */
9719ad41
RS
1323 if (ret == NULL)
1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325 if (ret == NULL)
b49e97c9
TS
1326 return (struct bfd_hash_entry *) ret;
1327
1328 /* Call the allocation method of the superclass. */
1329 ret = ((struct mips_elf_link_hash_entry *)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 table, string));
9719ad41 1332 if (ret != NULL)
b49e97c9
TS
1333 {
1334 /* Set local fields. */
1335 memset (&ret->esym, 0, sizeof (EXTR));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1338 ret->esym.ifd = -2;
861fb55a 1339 ret->la25_stub = 0;
b49e97c9 1340 ret->possibly_dynamic_relocs = 0;
b49e97c9 1341 ret->fn_stub = NULL;
b49e97c9
TS
1342 ret->call_stub = NULL;
1343 ret->call_fp_stub = NULL;
f16a9783 1344 ret->mipsxhash_loc = 0;
634835ae 1345 ret->global_got_area = GGA_NONE;
6ccf4795 1346 ret->got_only_for_calls = TRUE;
71782a75 1347 ret->readonly_reloc = FALSE;
861fb55a 1348 ret->has_static_relocs = FALSE;
71782a75
RS
1349 ret->no_fn_stub = FALSE;
1350 ret->need_fn_stub = FALSE;
861fb55a 1351 ret->has_nonpic_branches = FALSE;
33bb52fb 1352 ret->needs_lazy_stub = FALSE;
1bbce132 1353 ret->use_plt_entry = FALSE;
b49e97c9
TS
1354 }
1355
1356 return (struct bfd_hash_entry *) ret;
1357}
f0abc2a1 1358
6ae68ba3
MR
1359/* Allocate MIPS ELF private object data. */
1360
1361bfd_boolean
1362_bfd_mips_elf_mkobject (bfd *abfd)
1363{
1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 MIPS_ELF_DATA);
1366}
1367
f0abc2a1 1368bfd_boolean
9719ad41 1369_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1370{
f592407e
AM
1371 if (!sec->used_by_bfd)
1372 {
1373 struct _mips_elf_section_data *sdata;
986f0783 1374 size_t amt = sizeof (*sdata);
f0abc2a1 1375
f592407e
AM
1376 sdata = bfd_zalloc (abfd, amt);
1377 if (sdata == NULL)
1378 return FALSE;
1379 sec->used_by_bfd = sdata;
1380 }
f0abc2a1
AM
1381
1382 return _bfd_elf_new_section_hook (abfd, sec);
1383}
b49e97c9
TS
1384\f
1385/* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1387
b34976b6 1388bfd_boolean
9719ad41
RS
1389_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 struct ecoff_debug_info *debug)
b49e97c9
TS
1391{
1392 HDRR *symhdr;
1393 const struct ecoff_debug_swap *swap;
9719ad41 1394 char *ext_hdr;
b49e97c9
TS
1395
1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397 memset (debug, 0, sizeof (*debug));
1398
9719ad41 1399 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1400 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401 goto error_return;
1402
9719ad41 1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1404 swap->external_hdr_size))
b49e97c9
TS
1405 goto error_return;
1406
1407 symhdr = &debug->symbolic_header;
1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1409
1410 /* The symbolic header contains absolute file offsets and sizes to
1411 read. */
1412#define READ(ptr, offset, count, size, type) \
1f4361a7 1413 do \
b49e97c9 1414 { \
1f4361a7
AM
1415 size_t amt; \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1418 break; \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1420 { \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1423 } \
2bb3687b 1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
b49e97c9 1425 goto error_return; \
2bb3687b
AM
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
b49e97c9 1428 goto error_return; \
1f4361a7 1429 } while (0)
b49e97c9
TS
1430
1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 union aux_ext *);
1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1443#undef READ
1444
1445 debug->fdr = NULL;
b49e97c9 1446
b34976b6 1447 return TRUE;
b49e97c9
TS
1448
1449 error_return:
c9594989
AM
1450 free (ext_hdr);
1451 free (debug->line);
1452 free (debug->external_dnr);
1453 free (debug->external_pdr);
1454 free (debug->external_sym);
1455 free (debug->external_opt);
1456 free (debug->external_aux);
1457 free (debug->ss);
1458 free (debug->ssext);
1459 free (debug->external_fdr);
1460 free (debug->external_rfd);
1461 free (debug->external_ext);
b34976b6 1462 return FALSE;
b49e97c9
TS
1463}
1464\f
1465/* Swap RPDR (runtime procedure table entry) for output. */
1466
1467static void
9719ad41 1468ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1469{
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1481}
1482
1483/* Create a runtime procedure table from the .mdebug section. */
1484
b34976b6 1485static bfd_boolean
9719ad41
RS
1486mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
b49e97c9
TS
1489{
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
9719ad41 1494 void *rtproc;
b49e97c9
TS
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
9719ad41 1521 epdr = bfd_malloc (size * count);
b49e97c9
TS
1522 if (epdr == NULL)
1523 goto error_return;
1524
9719ad41 1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
9719ad41 1529 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
9719ad41 1534 sv = bfd_malloc (size * count);
b49e97c9
TS
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
9719ad41 1540 esym = bfd_malloc (size * count);
b49e97c9
TS
1541 if (esym == NULL)
1542 goto error_return;
1543
9719ad41 1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1545 goto error_return;
1546
1547 count = hdr->issMax;
9719ad41 1548 ss = bfd_malloc (count);
b49e97c9
TS
1549 if (ss == NULL)
1550 goto error_return;
f075ee0c 1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
9719ad41
RS
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
9719ad41 1575 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
9719ad41 1584 erp = rtproc;
b49e97c9
TS
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
eea6121a 1599 s->size = size;
9719ad41 1600 s->contents = rtproc;
b49e97c9
TS
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
8423293d 1604 s->map_head.link_order = NULL;
b49e97c9 1605
c9594989
AM
1606 free (epdr);
1607 free (rpdr);
1608 free (esym);
1609 free (ss);
1610 free (sv);
b34976b6 1611 return TRUE;
b49e97c9
TS
1612
1613 error_return:
c9594989
AM
1614 free (epdr);
1615 free (rpdr);
1616 free (esym);
1617 free (ss);
1618 free (sv);
b34976b6 1619 return FALSE;
b49e97c9 1620}
738e5348 1621\f
861fb55a
DJ
1622/* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1624
1625static bfd_boolean
1626mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 struct mips_elf_link_hash_entry *h,
1628 const char *prefix, asection *s, bfd_vma value,
1629 bfd_vma size)
1630{
a848a227 1631 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1632 struct bfd_link_hash_entry *bh;
1633 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1634 char *name;
1635 bfd_boolean res;
861fb55a 1636
a848a227 1637 if (micromips_p)
df58fc94
RS
1638 value |= 1;
1639
861fb55a 1640 /* Create a new symbol. */
e1fa0163 1641 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1642 bh = NULL;
e1fa0163
NC
1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 BSF_LOCAL, s, value, NULL,
1645 TRUE, FALSE, &bh);
1646 free (name);
1647 if (! res)
861fb55a
DJ
1648 return FALSE;
1649
1650 /* Make it a local function. */
1651 elfh = (struct elf_link_hash_entry *) bh;
1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653 elfh->size = size;
1654 elfh->forced_local = 1;
a848a227
MR
1655 if (micromips_p)
1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1657 return TRUE;
1658}
1659
738e5348
RS
1660/* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1662 to read. */
1663
1664static bfd_boolean
1665mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 struct mips_elf_link_hash_entry *h,
1667 const char *prefix)
1668{
1669 struct bfd_link_hash_entry *bh;
1670 struct elf_link_hash_entry *elfh;
e1fa0163 1671 char *name;
738e5348
RS
1672 asection *s;
1673 bfd_vma value;
e1fa0163 1674 bfd_boolean res;
738e5348
RS
1675
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 || h->root.root.type == bfd_link_hash_defweak);
1679 s = h->root.root.u.def.section;
1680 value = h->root.root.u.def.value;
1681
1682 /* Create a new symbol. */
e1fa0163 1683 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1684 bh = NULL;
e1fa0163
NC
1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 BSF_LOCAL, s, value, NULL,
1687 TRUE, FALSE, &bh);
1688 free (name);
1689 if (! res)
738e5348
RS
1690 return FALSE;
1691
1692 /* Make it local and copy the other attributes from H. */
1693 elfh = (struct elf_link_hash_entry *) bh;
1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695 elfh->other = h->root.other;
1696 elfh->size = h->root.size;
1697 elfh->forced_local = 1;
1698 return TRUE;
1699}
1700
1701/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1703
1704static bfd_boolean
1705section_allows_mips16_refs_p (asection *section)
1706{
1707 const char *name;
1708
fd361982 1709 name = bfd_section_name (section);
738e5348
RS
1710 return (FN_STUB_P (name)
1711 || CALL_STUB_P (name)
1712 || CALL_FP_STUB_P (name)
1713 || strcmp (name, ".pdr") == 0);
1714}
1715
1716/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1719
1720static unsigned long
cb4437b8
MR
1721mips16_stub_symndx (const struct elf_backend_data *bed,
1722 asection *sec ATTRIBUTE_UNUSED,
502e814e 1723 const Elf_Internal_Rela *relocs,
738e5348
RS
1724 const Elf_Internal_Rela *relend)
1725{
cb4437b8 1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1727 const Elf_Internal_Rela *rel;
1728
cb4437b8
MR
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733 return ELF_R_SYM (sec->owner, rel->r_info);
1734
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs < relend)
1738 return ELF_R_SYM (sec->owner, relocs->r_info);
1739
1740 return 0;
1741}
b49e97c9
TS
1742
1743/* Check the mips16 stubs for a particular symbol, and see if we can
1744 discard them. */
1745
861fb55a
DJ
1746static void
1747mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 struct mips_elf_link_hash_entry *h)
b49e97c9 1749{
738e5348
RS
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h->fn_stub != NULL
1753 && h->root.dynindx != -1)
1754 {
1755 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756 h->need_fn_stub = TRUE;
1757 }
1758
b49e97c9
TS
1759 if (h->fn_stub != NULL
1760 && ! h->need_fn_stub)
1761 {
1762 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
eea6121a 1765 h->fn_stub->size = 0;
b49e97c9
TS
1766 h->fn_stub->flags &= ~SEC_RELOC;
1767 h->fn_stub->reloc_count = 0;
1768 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1769 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1770 }
1771
1772 if (h->call_stub != NULL
30c09090 1773 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1774 {
1775 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
eea6121a 1778 h->call_stub->size = 0;
b49e97c9
TS
1779 h->call_stub->flags &= ~SEC_RELOC;
1780 h->call_stub->reloc_count = 0;
1781 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1782 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1783 }
1784
1785 if (h->call_fp_stub != NULL
30c09090 1786 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1787 {
1788 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
eea6121a 1791 h->call_fp_stub->size = 0;
b49e97c9
TS
1792 h->call_fp_stub->flags &= ~SEC_RELOC;
1793 h->call_fp_stub->reloc_count = 0;
1794 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1795 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1796 }
861fb55a
DJ
1797}
1798
1799/* Hashtable callbacks for mips_elf_la25_stubs. */
1800
1801static hashval_t
1802mips_elf_la25_stub_hash (const void *entry_)
1803{
1804 const struct mips_elf_la25_stub *entry;
1805
1806 entry = (struct mips_elf_la25_stub *) entry_;
1807 return entry->h->root.root.u.def.section->id
1808 + entry->h->root.root.u.def.value;
1809}
1810
1811static int
1812mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1813{
1814 const struct mips_elf_la25_stub *entry1, *entry2;
1815
1816 entry1 = (struct mips_elf_la25_stub *) entry1_;
1817 entry2 = (struct mips_elf_la25_stub *) entry2_;
1818 return ((entry1->h->root.root.u.def.section
1819 == entry2->h->root.root.u.def.section)
1820 && (entry1->h->root.root.u.def.value
1821 == entry2->h->root.root.u.def.value));
1822}
1823
1824/* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1826 success. */
1827
1828bfd_boolean
1829_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 asection *(*fn) (const char *, asection *,
1831 asection *))
1832{
1833 struct mips_elf_link_hash_table *htab;
1834
1835 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1836 if (htab == NULL)
1837 return FALSE;
1838
861fb55a
DJ
1839 htab->add_stub_section = fn;
1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 mips_elf_la25_stub_eq, NULL);
1842 if (htab->la25_stubs == NULL)
1843 return FALSE;
1844
1845 return TRUE;
1846}
1847
1848/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
861fb55a
DJ
1853
1854static bfd_boolean
1855mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1856{
1857 return ((h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 && h->root.def_regular
1860 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1861 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1862 && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1866}
1867
8f0c309a
CLT
1868/* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1870
1871static bfd_vma
1872mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 asection **sec)
1874{
1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1876 {
1877 BFD_ASSERT (stub->h->need_fn_stub);
1878 *sec = stub->h->fn_stub;
1879 return 0;
1880 }
1881 else
1882 {
1883 *sec = stub->h->root.root.u.def.section;
1884 return stub->h->root.root.u.def.value;
1885 }
1886}
1887
861fb55a
DJ
1888/* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1891
1892static bfd_boolean
1893mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 struct bfd_link_info *info)
1895{
1896 struct mips_elf_link_hash_table *htab;
1897 char *name;
1898 asection *s, *input_section;
1899 unsigned int align;
1900
1901 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1902 if (htab == NULL)
1903 return FALSE;
861fb55a
DJ
1904
1905 /* Create a unique name for the new section. */
1906 name = bfd_malloc (11 + sizeof (".text.stub."));
1907 if (name == NULL)
1908 return FALSE;
1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1910
1911 /* Create the section. */
8f0c309a 1912 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1913 s = htab->add_stub_section (name, input_section,
1914 input_section->output_section);
1915 if (s == NULL)
1916 return FALSE;
1917
1918 /* Make sure that any padding goes before the stub. */
1919 align = input_section->alignment_power;
fd361982 1920 if (!bfd_set_section_alignment (s, align))
861fb55a
DJ
1921 return FALSE;
1922 if (align > 3)
1923 s->size = (1 << align) - 8;
1924
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927 stub->stub_section = s;
1928 stub->offset = s->size;
1929
1930 /* Allocate room for it. */
1931 s->size += 8;
1932 return TRUE;
1933}
1934
1935/* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1938
1939static bfd_boolean
1940mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 struct bfd_link_info *info)
1942{
1943 struct mips_elf_link_hash_table *htab;
1944 asection *s;
1945
1946 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1947 if (htab == NULL)
1948 return FALSE;
861fb55a
DJ
1949
1950 /* Create a trampoline section, if we haven't already. */
1951 s = htab->strampoline;
1952 if (s == NULL)
1953 {
1954 asection *input_section = stub->h->root.root.u.def.section;
1955 s = htab->add_stub_section (".text", NULL,
1956 input_section->output_section);
fd361982 1957 if (s == NULL || !bfd_set_section_alignment (s, 4))
861fb55a
DJ
1958 return FALSE;
1959 htab->strampoline = s;
1960 }
1961
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964 stub->stub_section = s;
1965 stub->offset = s->size;
1966
1967 /* Allocate room for it. */
1968 s->size += 16;
1969 return TRUE;
1970}
1971
1972/* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1974
1975static bfd_boolean
1976mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 struct mips_elf_link_hash_entry *h)
1978{
1979 struct mips_elf_link_hash_table *htab;
1980 struct mips_elf_la25_stub search, *stub;
1981 bfd_boolean use_trampoline_p;
1982 asection *s;
1983 bfd_vma value;
1984 void **slot;
1985
861fb55a
DJ
1986 /* Describe the stub we want. */
1987 search.stub_section = NULL;
1988 search.offset = 0;
1989 search.h = h;
1990
1991 /* See if we've already created an equivalent stub. */
1992 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1993 if (htab == NULL)
1994 return FALSE;
1995
861fb55a
DJ
1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997 if (slot == NULL)
1998 return FALSE;
1999
2000 stub = (struct mips_elf_la25_stub *) *slot;
2001 if (stub != NULL)
2002 {
2003 /* We can reuse the existing stub. */
2004 h->la25_stub = stub;
2005 return TRUE;
2006 }
2007
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub = bfd_malloc (sizeof (search));
2010 if (stub == NULL)
2011 return FALSE;
2012 *stub = search;
2013 *slot = stub;
2014
8f0c309a
CLT
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019 value &= ~1;
8f0c309a
CLT
2020 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2021
861fb55a
DJ
2022 h->la25_stub = stub;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub, info)
2025 : mips_elf_add_la25_intro (stub, info));
2026}
2027
2028/* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2030
2031static bfd_boolean
2032mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2033{
2034 struct mips_htab_traverse_info *hti;
2035
2036 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 2037 if (!bfd_link_relocatable (hti->info))
861fb55a 2038 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 2039
861fb55a
DJ
2040 if (mips_elf_local_pic_function_p (h))
2041 {
ba85c43e
NC
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 return TRUE;
2046
861fb55a
DJ
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2051 stub. */
0e1862bb 2052 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2053 {
2054 if (!PIC_OBJECT_P (hti->output_bfd))
2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2056 }
2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2058 {
2059 hti->error = TRUE;
2060 return FALSE;
2061 }
2062 }
b34976b6 2063 return TRUE;
b49e97c9
TS
2064}
2065\f
d6f16593
MR
2066/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2068 are 32 bits.
2069
2070 The format of these instructions is:
2071
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
07d6d2b8 2075 | Immediate 15:0 |
d6f16593
MR
2076 +-----------------------------------------------+
2077
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2080
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2091 instruction.
2092
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2099
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101 defined as
2102
2103 big-endian:
2104 +--------+----------------------+
07d6d2b8
AM
2105 | | |
2106 | | targ26-16 |
2107 |31 26|25 0|
d6f16593
MR
2108 +--------+----------------------+
2109
2110 little-endian:
2111 +----------+------+-------------+
07d6d2b8
AM
2112 | | | |
2113 | sub1 | | sub2 |
2114 |0 9|10 15|16 31|
d6f16593
MR
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2118
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2124
738e5348
RS
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2128 immediate fields:
2129
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2135
2136 A typical instruction will have a format like this:
d6f16593
MR
2137
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2143
2144 EXTEND is the five bit value 11110. Major is the instruction
2145 opcode.
2146
738e5348
RS
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2149 little-endian system.
2150
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
738e5348
RS
2154
2155static inline bfd_boolean
2156mips16_reloc_p (int r_type)
2157{
2158 switch (r_type)
2159 {
2160 case R_MIPS16_26:
2161 case R_MIPS16_GPREL:
2162 case R_MIPS16_GOT16:
2163 case R_MIPS16_CALL16:
2164 case R_MIPS16_HI16:
2165 case R_MIPS16_LO16:
d0f13682
CLT
2166 case R_MIPS16_TLS_GD:
2167 case R_MIPS16_TLS_LDM:
2168 case R_MIPS16_TLS_DTPREL_HI16:
2169 case R_MIPS16_TLS_DTPREL_LO16:
2170 case R_MIPS16_TLS_GOTTPREL:
2171 case R_MIPS16_TLS_TPREL_HI16:
2172 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2173 case R_MIPS16_PC16_S1:
738e5348
RS
2174 return TRUE;
2175
2176 default:
2177 return FALSE;
2178 }
2179}
2180
df58fc94
RS
2181/* Check if a microMIPS reloc. */
2182
2183static inline bfd_boolean
2184micromips_reloc_p (unsigned int r_type)
2185{
2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2187}
2188
2189/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2192
2193static inline bfd_boolean
2194micromips_reloc_shuffle_p (unsigned int r_type)
2195{
2196 return (micromips_reloc_p (r_type)
2197 && r_type != R_MICROMIPS_PC7_S1
2198 && r_type != R_MICROMIPS_PC10_S1);
2199}
2200
738e5348
RS
2201static inline bfd_boolean
2202got16_reloc_p (int r_type)
2203{
df58fc94
RS
2204 return (r_type == R_MIPS_GOT16
2205 || r_type == R_MIPS16_GOT16
2206 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2207}
2208
2209static inline bfd_boolean
2210call16_reloc_p (int r_type)
2211{
df58fc94
RS
2212 return (r_type == R_MIPS_CALL16
2213 || r_type == R_MIPS16_CALL16
2214 || r_type == R_MICROMIPS_CALL16);
2215}
2216
2217static inline bfd_boolean
2218got_disp_reloc_p (unsigned int r_type)
2219{
2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2221}
2222
2223static inline bfd_boolean
2224got_page_reloc_p (unsigned int r_type)
2225{
2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2227}
2228
df58fc94
RS
2229static inline bfd_boolean
2230got_lo16_reloc_p (unsigned int r_type)
2231{
2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2233}
2234
2235static inline bfd_boolean
2236call_hi16_reloc_p (unsigned int r_type)
2237{
2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2239}
2240
2241static inline bfd_boolean
2242call_lo16_reloc_p (unsigned int r_type)
2243{
2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2245}
2246
2247static inline bfd_boolean
2248hi16_reloc_p (int r_type)
2249{
df58fc94
RS
2250 return (r_type == R_MIPS_HI16
2251 || r_type == R_MIPS16_HI16
7361da2c
AB
2252 || r_type == R_MICROMIPS_HI16
2253 || r_type == R_MIPS_PCHI16);
738e5348 2254}
d6f16593 2255
738e5348
RS
2256static inline bfd_boolean
2257lo16_reloc_p (int r_type)
2258{
df58fc94
RS
2259 return (r_type == R_MIPS_LO16
2260 || r_type == R_MIPS16_LO16
7361da2c
AB
2261 || r_type == R_MICROMIPS_LO16
2262 || r_type == R_MIPS_PCLO16);
738e5348
RS
2263}
2264
2265static inline bfd_boolean
2266mips16_call_reloc_p (int r_type)
2267{
2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2269}
d6f16593 2270
38a7df63
CF
2271static inline bfd_boolean
2272jal_reloc_p (int r_type)
2273{
df58fc94
RS
2274 return (r_type == R_MIPS_26
2275 || r_type == R_MIPS16_26
2276 || r_type == R_MICROMIPS_26_S1);
2277}
2278
99aefae6
MR
2279static inline bfd_boolean
2280b_reloc_p (int r_type)
2281{
2282 return (r_type == R_MIPS_PC26_S2
2283 || r_type == R_MIPS_PC21_S2
2284 || r_type == R_MIPS_PC16
c9775dde 2285 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2286 || r_type == R_MIPS16_PC16_S1
2287 || r_type == R_MICROMIPS_PC16_S1
2288 || r_type == R_MICROMIPS_PC10_S1
2289 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2290}
2291
7361da2c
AB
2292static inline bfd_boolean
2293aligned_pcrel_reloc_p (int r_type)
2294{
2295 return (r_type == R_MIPS_PC18_S3
2296 || r_type == R_MIPS_PC19_S2);
2297}
2298
9d862524
MR
2299static inline bfd_boolean
2300branch_reloc_p (int r_type)
2301{
2302 return (r_type == R_MIPS_26
2303 || r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2);
2307}
2308
c9775dde
MR
2309static inline bfd_boolean
2310mips16_branch_reloc_p (int r_type)
2311{
2312 return (r_type == R_MIPS16_26
2313 || r_type == R_MIPS16_PC16_S1);
2314}
2315
df58fc94
RS
2316static inline bfd_boolean
2317micromips_branch_reloc_p (int r_type)
2318{
2319 return (r_type == R_MICROMIPS_26_S1
2320 || r_type == R_MICROMIPS_PC16_S1
2321 || r_type == R_MICROMIPS_PC10_S1
2322 || r_type == R_MICROMIPS_PC7_S1);
2323}
2324
2325static inline bfd_boolean
2326tls_gd_reloc_p (unsigned int r_type)
2327{
d0f13682
CLT
2328 return (r_type == R_MIPS_TLS_GD
2329 || r_type == R_MIPS16_TLS_GD
2330 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2331}
2332
2333static inline bfd_boolean
2334tls_ldm_reloc_p (unsigned int r_type)
2335{
d0f13682
CLT
2336 return (r_type == R_MIPS_TLS_LDM
2337 || r_type == R_MIPS16_TLS_LDM
2338 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2339}
2340
2341static inline bfd_boolean
2342tls_gottprel_reloc_p (unsigned int r_type)
2343{
d0f13682
CLT
2344 return (r_type == R_MIPS_TLS_GOTTPREL
2345 || r_type == R_MIPS16_TLS_GOTTPREL
2346 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2347}
2348
d6f16593 2349void
df58fc94
RS
2350_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2352{
df58fc94 2353 bfd_vma first, second, val;
d6f16593 2354
df58fc94 2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2356 return;
2357
df58fc94
RS
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first = bfd_get_16 (abfd, data);
2360 second = bfd_get_16 (abfd, data + 2);
2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362 val = first << 16 | second;
2363 else if (r_type != R_MIPS16_26)
2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2366 else
df58fc94
RS
2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2369 bfd_put_32 (abfd, val, data);
2370}
2371
2372void
df58fc94
RS
2373_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2375{
df58fc94 2376 bfd_vma first, second, val;
d6f16593 2377
df58fc94 2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2379 return;
2380
2381 val = bfd_get_32 (abfd, data);
df58fc94 2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2383 {
df58fc94
RS
2384 second = val & 0xffff;
2385 first = val >> 16;
2386 }
2387 else if (r_type != R_MIPS16_26)
2388 {
2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2391 }
2392 else
2393 {
df58fc94
RS
2394 second = val & 0xffff;
2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 | ((val >> 21) & 0x1f);
d6f16593 2397 }
df58fc94
RS
2398 bfd_put_16 (abfd, second, data + 2);
2399 bfd_put_16 (abfd, first, data);
d6f16593
MR
2400}
2401
b49e97c9 2402bfd_reloc_status_type
9719ad41
RS
2403_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 arelent *reloc_entry, asection *input_section,
2405 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2406{
2407 bfd_vma relocation;
a7ebbfdf 2408 bfd_signed_vma val;
30ac9238 2409 bfd_reloc_status_type status;
b49e97c9
TS
2410
2411 if (bfd_is_com_section (symbol->section))
2412 relocation = 0;
2413 else
2414 relocation = symbol->value;
2415
2416 relocation += symbol->section->output_section->vma;
2417 relocation += symbol->section->output_offset;
2418
07515404 2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2420 return bfd_reloc_outofrange;
2421
b49e97c9 2422 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2423 val = reloc_entry->addend;
2424
30ac9238 2425 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2426
b49e97c9 2427 /* Adjust val for the final section location and GP value. If we
1049f94e 2428 are producing relocatable output, we don't want to do this for
b49e97c9 2429 an external symbol. */
1049f94e 2430 if (! relocatable
b49e97c9
TS
2431 || (symbol->flags & BSF_SECTION_SYM) != 0)
2432 val += relocation - gp;
2433
a7ebbfdf
TS
2434 if (reloc_entry->howto->partial_inplace)
2435 {
30ac9238
RS
2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 (bfd_byte *) data
2438 + reloc_entry->address);
2439 if (status != bfd_reloc_ok)
2440 return status;
a7ebbfdf
TS
2441 }
2442 else
2443 reloc_entry->addend = val;
b49e97c9 2444
1049f94e 2445 if (relocatable)
b49e97c9 2446 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2447
2448 return bfd_reloc_ok;
2449}
2450
2451/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2454 INPUT_SECTION. */
2455
2456struct mips_hi16
2457{
2458 struct mips_hi16 *next;
2459 bfd_byte *data;
2460 asection *input_section;
2461 arelent rel;
2462};
2463
2464/* FIXME: This should not be a static variable. */
2465
2466static struct mips_hi16 *mips_hi16_list;
2467
2468/* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2471
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2476
2477bfd_reloc_status_type
2478_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 asection *input_section, bfd *output_bfd,
2481 char **error_message ATTRIBUTE_UNUSED)
2482{
2483 struct mips_hi16 *n;
2484
07515404 2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2486 return bfd_reloc_outofrange;
2487
2488 n = bfd_malloc (sizeof *n);
2489 if (n == NULL)
2490 return bfd_reloc_outofrange;
2491
2492 n->next = mips_hi16_list;
2493 n->data = data;
2494 n->input_section = input_section;
2495 n->rel = *reloc_entry;
2496 mips_hi16_list = n;
2497
2498 if (output_bfd != NULL)
2499 reloc_entry->address += input_section->output_offset;
2500
2501 return bfd_reloc_ok;
2502}
2503
738e5348 2504/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2507
2508bfd_reloc_status_type
2509_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512{
2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
e6f7f6d1
AM
2514 || bfd_is_und_section (bfd_asymbol_section (symbol))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol)))
30ac9238
RS
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 input_section, output_bfd,
2519 error_message);
2520
2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 input_section, output_bfd, error_message);
2523}
2524
2525/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2528
2529bfd_reloc_status_type
2530_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533{
2534 bfd_vma vallo;
d6f16593 2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2536
07515404 2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2538 return bfd_reloc_outofrange;
2539
df58fc94 2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2541 location);
df58fc94
RS
2542 vallo = bfd_get_32 (abfd, location);
2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2544 location);
d6f16593 2545
30ac9238
RS
2546 while (mips_hi16_list != NULL)
2547 {
2548 bfd_reloc_status_type ret;
2549 struct mips_hi16 *hi;
2550
2551 hi = mips_hi16_list;
2552
738e5348
RS
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi->rel.howto->type == R_MIPS_GOT16)
2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2560 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2564
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2568
30ac9238
RS
2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 hi->input_section, output_bfd,
2571 error_message);
2572 if (ret != bfd_reloc_ok)
2573 return ret;
2574
2575 mips_hi16_list = hi->next;
2576 free (hi);
2577 }
2578
2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 input_section, output_bfd,
2581 error_message);
2582}
2583
2584/* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2587
2588bfd_reloc_status_type
2589_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 asection *input_section, bfd *output_bfd,
2592 char **error_message ATTRIBUTE_UNUSED)
2593{
2594 bfd_signed_vma val;
2595 bfd_reloc_status_type status;
2596 bfd_boolean relocatable;
2597
2598 relocatable = (output_bfd != NULL);
2599
07515404 2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2601 return bfd_reloc_outofrange;
2602
2603 /* Build up the field adjustment in VAL. */
2604 val = 0;
2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2606 {
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val += symbol->section->output_section->vma;
2611 val += symbol->section->output_offset;
2612 }
2613
2614 if (!relocatable)
2615 {
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val += symbol->value;
2619 if (reloc_entry->howto->pc_relative)
2620 {
2621 val -= input_section->output_section->vma;
2622 val -= input_section->output_offset;
2623 val -= reloc_entry->address;
2624 }
2625 }
2626
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable && !reloc_entry->howto->partial_inplace)
2632 reloc_entry->addend += val;
2633 else
2634 {
d6f16593
MR
2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2636
30ac9238
RS
2637 /* Add in the separate addend, if any. */
2638 val += reloc_entry->addend;
2639
2640 /* Add VAL to the relocation field. */
df58fc94
RS
2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2642 location);
30ac9238 2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2644 location);
df58fc94
RS
2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2646 location);
d6f16593 2647
30ac9238
RS
2648 if (status != bfd_reloc_ok)
2649 return status;
2650 }
2651
2652 if (relocatable)
2653 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2654
2655 return bfd_reloc_ok;
2656}
2657\f
2658/* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2660
2661static void
9719ad41
RS
2662bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 Elf32_gptab *in)
b49e97c9
TS
2664{
2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2667}
2668
2669static void
9719ad41
RS
2670bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 Elf32_External_gptab *ex)
b49e97c9
TS
2672{
2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2675}
2676
2677static void
9719ad41
RS
2678bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 Elf32_External_compact_rel *ex)
b49e97c9
TS
2680{
2681 H_PUT_32 (abfd, in->id1, ex->id1);
2682 H_PUT_32 (abfd, in->num, ex->num);
2683 H_PUT_32 (abfd, in->id2, ex->id2);
2684 H_PUT_32 (abfd, in->offset, ex->offset);
2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2687}
2688
2689static void
9719ad41
RS
2690bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 Elf32_External_crinfo *ex)
b49e97c9
TS
2692{
2693 unsigned long l;
2694
2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699 H_PUT_32 (abfd, l, ex->info);
2700 H_PUT_32 (abfd, in->konst, ex->konst);
2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2702}
b49e97c9
TS
2703\f
2704/* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2707
2708void
9719ad41
RS
2709bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 Elf32_RegInfo *in)
b49e97c9
TS
2711{
2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2718}
2719
2720void
9719ad41
RS
2721bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 Elf32_External_RegInfo *ex)
b49e97c9
TS
2723{
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2730}
2731
2732/* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2737
2738void
9719ad41
RS
2739bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2741{
2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2749}
2750
2751void
9719ad41
RS
2752bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 Elf64_External_RegInfo *ex)
b49e97c9
TS
2754{
2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2762}
2763
2764/* Swap in an options header. */
2765
2766void
9719ad41
RS
2767bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 Elf_Internal_Options *in)
b49e97c9
TS
2769{
2770 in->kind = H_GET_8 (abfd, ex->kind);
2771 in->size = H_GET_8 (abfd, ex->size);
2772 in->section = H_GET_16 (abfd, ex->section);
2773 in->info = H_GET_32 (abfd, ex->info);
2774}
2775
2776/* Swap out an options header. */
2777
2778void
9719ad41
RS
2779bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 Elf_External_Options *ex)
b49e97c9
TS
2781{
2782 H_PUT_8 (abfd, in->kind, ex->kind);
2783 H_PUT_8 (abfd, in->size, ex->size);
2784 H_PUT_16 (abfd, in->section, ex->section);
2785 H_PUT_32 (abfd, in->info, ex->info);
2786}
351cdf24
MF
2787
2788/* Swap in an abiflags structure. */
2789
2790void
2791bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 const Elf_External_ABIFlags_v0 *ex,
2793 Elf_Internal_ABIFlags_v0 *in)
2794{
2795 in->version = H_GET_16 (abfd, ex->version);
2796 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803 in->ases = H_GET_32 (abfd, ex->ases);
2804 in->flags1 = H_GET_32 (abfd, ex->flags1);
2805 in->flags2 = H_GET_32 (abfd, ex->flags2);
2806}
2807
2808/* Swap out an abiflags structure. */
2809
2810void
2811bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 const Elf_Internal_ABIFlags_v0 *in,
2813 Elf_External_ABIFlags_v0 *ex)
2814{
2815 H_PUT_16 (abfd, in->version, ex->version);
2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823 H_PUT_32 (abfd, in->ases, ex->ases);
2824 H_PUT_32 (abfd, in->flags1, ex->flags1);
2825 H_PUT_32 (abfd, in->flags2, ex->flags2);
2826}
b49e97c9
TS
2827\f
2828/* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2830
2831static int
9719ad41 2832sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2833{
947216bf
AM
2834 Elf_Internal_Rela int_reloc1;
2835 Elf_Internal_Rela int_reloc2;
6870500c 2836 int diff;
b49e97c9 2837
947216bf
AM
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2840
6870500c
RS
2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842 if (diff != 0)
2843 return diff;
2844
2845 if (int_reloc1.r_offset < int_reloc2.r_offset)
2846 return -1;
2847 if (int_reloc1.r_offset > int_reloc2.r_offset)
2848 return 1;
2849 return 0;
b49e97c9
TS
2850}
2851
f4416af6
AO
2852/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2853
2854static int
7e3102a7
AM
2855sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2857{
7e3102a7 2858#ifdef BFD64
f4416af6
AO
2859 Elf_Internal_Rela int_reloc1[3];
2860 Elf_Internal_Rela int_reloc2[3];
2861
2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863 (reldyn_sorting_bfd, arg1, int_reloc1);
2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865 (reldyn_sorting_bfd, arg2, int_reloc2);
2866
6870500c
RS
2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868 return -1;
2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870 return 1;
2871
2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873 return -1;
2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875 return 1;
2876 return 0;
7e3102a7
AM
2877#else
2878 abort ();
2879#endif
f4416af6
AO
2880}
2881
2882
b49e97c9
TS
2883/* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2896
b34976b6 2897static bfd_boolean
9719ad41 2898mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2899{
9719ad41 2900 struct extsym_info *einfo = data;
b34976b6 2901 bfd_boolean strip;
b49e97c9
TS
2902 asection *sec, *output_section;
2903
b49e97c9 2904 if (h->root.indx == -2)
b34976b6 2905 strip = FALSE;
f5385ebf 2906 else if ((h->root.def_dynamic
77cfaee6
AM
2907 || h->root.ref_dynamic
2908 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2909 && !h->root.def_regular
2910 && !h->root.ref_regular)
b34976b6 2911 strip = TRUE;
b49e97c9
TS
2912 else if (einfo->info->strip == strip_all
2913 || (einfo->info->strip == strip_some
2914 && bfd_hash_lookup (einfo->info->keep_hash,
2915 h->root.root.root.string,
b34976b6
AM
2916 FALSE, FALSE) == NULL))
2917 strip = TRUE;
b49e97c9 2918 else
b34976b6 2919 strip = FALSE;
b49e97c9
TS
2920
2921 if (strip)
b34976b6 2922 return TRUE;
b49e97c9
TS
2923
2924 if (h->esym.ifd == -2)
2925 {
2926 h->esym.jmptbl = 0;
2927 h->esym.cobol_main = 0;
2928 h->esym.weakext = 0;
2929 h->esym.reserved = 0;
2930 h->esym.ifd = ifdNil;
2931 h->esym.asym.value = 0;
2932 h->esym.asym.st = stGlobal;
2933
2934 if (h->root.root.type == bfd_link_hash_undefined
2935 || h->root.root.type == bfd_link_hash_undefweak)
2936 {
2937 const char *name;
2938
2939 /* Use undefined class. Also, set class and type for some
07d6d2b8 2940 special symbols. */
b49e97c9
TS
2941 name = h->root.root.root.string;
2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2944 {
2945 h->esym.asym.sc = scData;
2946 h->esym.asym.st = stLabel;
2947 h->esym.asym.value = 0;
2948 }
2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2950 {
2951 h->esym.asym.sc = scAbs;
2952 h->esym.asym.st = stLabel;
2953 h->esym.asym.value =
2954 mips_elf_hash_table (einfo->info)->procedure_count;
2955 }
b49e97c9
TS
2956 else
2957 h->esym.asym.sc = scUndefined;
2958 }
2959 else if (h->root.root.type != bfd_link_hash_defined
2960 && h->root.root.type != bfd_link_hash_defweak)
2961 h->esym.asym.sc = scAbs;
2962 else
2963 {
2964 const char *name;
2965
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section == NULL)
2972 h->esym.asym.sc = scUndefined;
2973 else
2974 {
fd361982 2975 name = bfd_section_name (output_section);
b49e97c9
TS
2976
2977 if (strcmp (name, ".text") == 0)
2978 h->esym.asym.sc = scText;
2979 else if (strcmp (name, ".data") == 0)
2980 h->esym.asym.sc = scData;
2981 else if (strcmp (name, ".sdata") == 0)
2982 h->esym.asym.sc = scSData;
2983 else if (strcmp (name, ".rodata") == 0
2984 || strcmp (name, ".rdata") == 0)
2985 h->esym.asym.sc = scRData;
2986 else if (strcmp (name, ".bss") == 0)
2987 h->esym.asym.sc = scBss;
2988 else if (strcmp (name, ".sbss") == 0)
2989 h->esym.asym.sc = scSBss;
2990 else if (strcmp (name, ".init") == 0)
2991 h->esym.asym.sc = scInit;
2992 else if (strcmp (name, ".fini") == 0)
2993 h->esym.asym.sc = scFini;
2994 else
2995 h->esym.asym.sc = scAbs;
2996 }
2997 }
2998
2999 h->esym.asym.reserved = 0;
3000 h->esym.asym.index = indexNil;
3001 }
3002
3003 if (h->root.root.type == bfd_link_hash_common)
3004 h->esym.asym.value = h->root.root.u.c.size;
3005 else if (h->root.root.type == bfd_link_hash_defined
3006 || h->root.root.type == bfd_link_hash_defweak)
3007 {
3008 if (h->esym.asym.sc == scCommon)
3009 h->esym.asym.sc = scBss;
3010 else if (h->esym.asym.sc == scSCommon)
3011 h->esym.asym.sc = scSBss;
3012
3013 sec = h->root.root.u.def.section;
3014 output_section = sec->output_section;
3015 if (output_section != NULL)
3016 h->esym.asym.value = (h->root.root.u.def.value
3017 + sec->output_offset
3018 + output_section->vma);
3019 else
3020 h->esym.asym.value = 0;
3021 }
33bb52fb 3022 else
b49e97c9
TS
3023 {
3024 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
3025
3026 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 3028
33bb52fb 3029 if (hd->needs_lazy_stub)
b49e97c9 3030 {
1bbce132
MR
3031 BFD_ASSERT (hd->root.plt.plist != NULL);
3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
3033 /* Set type and value for a symbol with a function stub. */
3034 h->esym.asym.st = stProc;
3035 sec = hd->root.root.u.def.section;
3036 if (sec == NULL)
3037 h->esym.asym.value = 0;
3038 else
3039 {
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
1bbce132 3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3047 }
b49e97c9
TS
3048 }
3049 }
3050
3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 h->root.root.root.string,
3053 &h->esym))
3054 {
b34976b6
AM
3055 einfo->failed = TRUE;
3056 return FALSE;
b49e97c9
TS
3057 }
3058
b34976b6 3059 return TRUE;
b49e97c9
TS
3060}
3061
3062/* A comparison routine used to sort .gptab entries. */
3063
3064static int
9719ad41 3065gptab_compare (const void *p1, const void *p2)
b49e97c9 3066{
9719ad41
RS
3067 const Elf32_gptab *a1 = p1;
3068 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3069
3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3071}
3072\f
b15e6682 3073/* Functions to manage the got entry hash table. */
f4416af6
AO
3074
3075/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076 hash number. */
3077
3078static INLINE hashval_t
9719ad41 3079mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3080{
3081#ifdef BFD64
3082 return addr + (addr >> 32);
3083#else
3084 return addr;
3085#endif
3086}
3087
f4416af6 3088static hashval_t
d9bf376d 3089mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3090{
3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3092
e641e783 3093 return (entry->symndx
9ab066b4
RS
3094 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 : entry->symndx >= 0 ? (entry->abfd->id
3098 + mips_elf_hash_bfd_vma (entry->d.addend))
3099 : entry->d.h->root.root.root.hash));
f4416af6
AO
3100}
3101
3102static int
3dff0dd1 3103mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3104{
3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3107
e641e783 3108 return (e1->symndx == e2->symndx
9ab066b4
RS
3109 && e1->tls_type == e2->tls_type
3110 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 && e1->d.addend == e2->d.addend)
3114 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3115}
c224138d 3116
13db6b44
RS
3117static hashval_t
3118mips_got_page_ref_hash (const void *ref_)
3119{
3120 const struct mips_got_page_ref *ref;
3121
3122 ref = (const struct mips_got_page_ref *) ref_;
3123 return ((ref->symndx >= 0
3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 : ref->u.h->root.root.root.hash)
3126 + mips_elf_hash_bfd_vma (ref->addend));
3127}
3128
3129static int
3130mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3131{
3132 const struct mips_got_page_ref *ref1, *ref2;
3133
3134 ref1 = (const struct mips_got_page_ref *) ref1_;
3135 ref2 = (const struct mips_got_page_ref *) ref2_;
3136 return (ref1->symndx == ref2->symndx
3137 && (ref1->symndx < 0
3138 ? ref1->u.h == ref2->u.h
3139 : ref1->u.abfd == ref2->u.abfd)
3140 && ref1->addend == ref2->addend);
3141}
3142
c224138d
RS
3143static hashval_t
3144mips_got_page_entry_hash (const void *entry_)
3145{
3146 const struct mips_got_page_entry *entry;
3147
3148 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3149 return entry->sec->id;
c224138d
RS
3150}
3151
3152static int
3153mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3154{
3155 const struct mips_got_page_entry *entry1, *entry2;
3156
3157 entry1 = (const struct mips_got_page_entry *) entry1_;
3158 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3159 return entry1->sec == entry2->sec;
c224138d 3160}
b15e6682 3161\f
3dff0dd1 3162/* Create and return a new mips_got_info structure. */
5334aa52
RS
3163
3164static struct mips_got_info *
3dff0dd1 3165mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3166{
3167 struct mips_got_info *g;
3168
3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170 if (g == NULL)
3171 return NULL;
3172
3dff0dd1
RS
3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3175 if (g->got_entries == NULL)
3176 return NULL;
3177
13db6b44
RS
3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 mips_got_page_ref_eq, NULL);
3180 if (g->got_page_refs == NULL)
5334aa52
RS
3181 return NULL;
3182
3183 return g;
3184}
3185
ee227692
RS
3186/* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3188
3189static struct mips_got_info *
3190mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3191{
3192 struct mips_elf_obj_tdata *tdata;
3193
3194 if (!is_mips_elf (abfd))
3195 return NULL;
3196
3197 tdata = mips_elf_tdata (abfd);
3198 if (!tdata->got && create_p)
3dff0dd1 3199 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3200 return tdata->got;
3201}
3202
d7206569
RS
3203/* Record that ABFD should use output GOT G. */
3204
3205static void
3206mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3207{
3208 struct mips_elf_obj_tdata *tdata;
3209
3210 BFD_ASSERT (is_mips_elf (abfd));
3211 tdata = mips_elf_tdata (abfd);
3212 if (tdata->got)
3213 {
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata->got->got_entries);
13db6b44
RS
3217 htab_delete (tdata->got->got_page_refs);
3218 if (tdata->got->got_page_entries)
3219 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3220 }
3221 tdata->got = g;
3222}
3223
0a44bf69
RS
3224/* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
f4416af6
AO
3227
3228static asection *
0a44bf69 3229mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3230{
0a44bf69 3231 const char *dname;
f4416af6 3232 asection *sreloc;
0a44bf69 3233 bfd *dynobj;
f4416af6 3234
0a44bf69
RS
3235 dname = MIPS_ELF_REL_DYN_NAME (info);
3236 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3237 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3238 if (sreloc == NULL && create_p)
3239 {
3d4d4302
AM
3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 (SEC_ALLOC
3242 | SEC_LOAD
3243 | SEC_HAS_CONTENTS
3244 | SEC_IN_MEMORY
3245 | SEC_LINKER_CREATED
3246 | SEC_READONLY));
f4416af6 3247 if (sreloc == NULL
fd361982
AM
3248 || !bfd_set_section_alignment (sreloc,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3250 return NULL;
3251 }
3252 return sreloc;
3253}
3254
e641e783
RS
3255/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3256
3257static int
3258mips_elf_reloc_tls_type (unsigned int r_type)
3259{
3260 if (tls_gd_reloc_p (r_type))
3261 return GOT_TLS_GD;
3262
3263 if (tls_ldm_reloc_p (r_type))
3264 return GOT_TLS_LDM;
3265
3266 if (tls_gottprel_reloc_p (r_type))
3267 return GOT_TLS_IE;
3268
9ab066b4 3269 return GOT_TLS_NONE;
e641e783
RS
3270}
3271
3272/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3273
3274static int
3275mips_tls_got_entries (unsigned int type)
3276{
3277 switch (type)
3278 {
3279 case GOT_TLS_GD:
3280 case GOT_TLS_LDM:
3281 return 2;
3282
3283 case GOT_TLS_IE:
3284 return 1;
3285
9ab066b4 3286 case GOT_TLS_NONE:
e641e783
RS
3287 return 0;
3288 }
3289 abort ();
3290}
3291
0f20cc35
DJ
3292/* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3294 is NULL). */
3295
3296static int
3297mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 struct elf_link_hash_entry *h)
3299{
3300 int indx = 0;
0f20cc35
DJ
3301 bfd_boolean need_relocs = FALSE;
3302 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3303
1cb83cac
MR
3304 if (h != NULL
3305 && h->dynindx != -1
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3308 indx = h->dynindx;
3309
9143e72c 3310 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3311 && (h == NULL
3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 || h->root.type != bfd_link_hash_undefweak))
3314 need_relocs = TRUE;
3315
3316 if (!need_relocs)
e641e783 3317 return 0;
0f20cc35 3318
9ab066b4 3319 switch (tls_type)
0f20cc35 3320 {
e641e783
RS
3321 case GOT_TLS_GD:
3322 return indx != 0 ? 2 : 1;
0f20cc35 3323
e641e783
RS
3324 case GOT_TLS_IE:
3325 return 1;
0f20cc35 3326
e641e783 3327 case GOT_TLS_LDM:
9143e72c 3328 return bfd_link_dll (info) ? 1 : 0;
0f20cc35 3329
e641e783
RS
3330 default:
3331 return 0;
3332 }
0f20cc35
DJ
3333}
3334
ab361d49
RS
3335/* Add the number of GOT entries and TLS relocations required by ENTRY
3336 to G. */
0f20cc35 3337
ab361d49
RS
3338static void
3339mips_elf_count_got_entry (struct bfd_link_info *info,
3340 struct mips_got_info *g,
3341 struct mips_got_entry *entry)
0f20cc35 3342{
9ab066b4 3343 if (entry->tls_type)
ab361d49 3344 {
9ab066b4
RS
3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3347 entry->symndx < 0
3348 ? &entry->d.h->root : NULL);
3349 }
3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351 g->local_gotno += 1;
3352 else
3353 g->global_gotno += 1;
0f20cc35
DJ
3354}
3355
0f20cc35
DJ
3356/* Output a simple dynamic relocation into SRELOC. */
3357
3358static void
3359mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 asection *sreloc,
861fb55a 3361 unsigned long reloc_index,
0f20cc35
DJ
3362 unsigned long indx,
3363 int r_type,
3364 bfd_vma offset)
3365{
3366 Elf_Internal_Rela rel[3];
3367
3368 memset (rel, 0, sizeof (rel));
3369
3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3372
3373 if (ABI_64_P (output_bfd))
3374 {
3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 (output_bfd, &rel[0],
3377 (sreloc->contents
861fb55a 3378 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3379 }
3380 else
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd, &rel[0],
3383 (sreloc->contents
861fb55a 3384 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3385}
3386
3387/* Initialize a set of TLS GOT entries for one symbol. */
3388
3389static void
9ab066b4
RS
3390mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 struct mips_got_entry *entry,
0f20cc35
DJ
3392 struct mips_elf_link_hash_entry *h,
3393 bfd_vma value)
3394{
1cb83cac 3395 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
23cc69b6 3396 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3397 int indx;
3398 asection *sreloc, *sgot;
9ab066b4 3399 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3400 bfd_boolean need_relocs = FALSE;
3401
23cc69b6 3402 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3403 if (htab == NULL)
3404 return;
3405
ce558b89 3406 sgot = htab->root.sgot;
0f20cc35
DJ
3407
3408 indx = 0;
1cb83cac
MR
3409 if (h != NULL
3410 && h->root.dynindx != -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413 indx = h->root.dynindx;
0f20cc35 3414
9ab066b4 3415 if (entry->tls_initialized)
0f20cc35
DJ
3416 return;
3417
9143e72c 3418 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3419 && (h == NULL
3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 || h->root.type != bfd_link_hash_undefweak))
3422 need_relocs = TRUE;
3423
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 || h->root.root.type == bfd_link_hash_undefweak);
3429
3430 /* Emit necessary relocations. */
0a44bf69 3431 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3432 got_offset = entry->gotidx;
0f20cc35 3433
9ab066b4 3434 switch (entry->tls_type)
0f20cc35 3435 {
e641e783
RS
3436 case GOT_TLS_GD:
3437 /* General Dynamic. */
3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3439
3440 if (need_relocs)
3441 {
3442 mips_elf_output_dynamic_relocation
861fb55a 3443 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3445 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3446
3447 if (indx)
3448 mips_elf_output_dynamic_relocation
861fb55a 3449 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3451 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3452 else
3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3454 sgot->contents + got_offset2);
0f20cc35
DJ
3455 }
3456 else
3457 {
3458 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3459 sgot->contents + got_offset);
0f20cc35 3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3461 sgot->contents + got_offset2);
0f20cc35 3462 }
e641e783 3463 break;
0f20cc35 3464
e641e783
RS
3465 case GOT_TLS_IE:
3466 /* Initial Exec model. */
0f20cc35
DJ
3467 if (need_relocs)
3468 {
3469 if (indx == 0)
3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3471 sgot->contents + got_offset);
0f20cc35
DJ
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3474 sgot->contents + got_offset);
0f20cc35
DJ
3475
3476 mips_elf_output_dynamic_relocation
861fb55a 3477 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3479 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3480 }
3481 else
3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3483 sgot->contents + got_offset);
3484 break;
0f20cc35 3485
e641e783 3486 case GOT_TLS_LDM:
0f20cc35
DJ
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd, 0,
3490 sgot->contents + got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd));
3492
9143e72c 3493 if (!bfd_link_dll (info))
0f20cc35
DJ
3494 MIPS_ELF_PUT_WORD (abfd, 1,
3495 sgot->contents + got_offset);
3496 else
3497 mips_elf_output_dynamic_relocation
861fb55a 3498 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3501 break;
3502
3503 default:
3504 abort ();
0f20cc35
DJ
3505 }
3506
9ab066b4 3507 entry->tls_initialized = TRUE;
e641e783 3508}
0f20cc35 3509
0a44bf69
RS
3510/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3513
3514static bfd_vma
3515mips_elf_gotplt_index (struct bfd_link_info *info,
3516 struct elf_link_hash_entry *h)
3517{
1bbce132 3518 bfd_vma got_address, got_value;
0a44bf69
RS
3519 struct mips_elf_link_hash_table *htab;
3520
3521 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3522 BFD_ASSERT (htab != NULL);
3523
1bbce132
MR
3524 BFD_ASSERT (h->plt.plist != NULL);
3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3526
3527 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3528 got_address = (htab->root.sgotplt->output_section->vma
3529 + htab->root.sgotplt->output_offset
1bbce132
MR
3530 + (h->plt.plist->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3532
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 + htab->root.hgot->root.u.def.section->output_offset
3536 + htab->root.hgot->root.u.def.value);
3537
3538 return got_address - got_value;
3539}
3540
5c18022e 3541/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
b49e97c9
TS
3545
3546static bfd_vma
9719ad41 3547mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3548 bfd_vma value, unsigned long r_symndx,
0f20cc35 3549 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3550{
a8028dd0 3551 struct mips_elf_link_hash_table *htab;
b15e6682 3552 struct mips_got_entry *entry;
b49e97c9 3553
a8028dd0 3554 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3555 BFD_ASSERT (htab != NULL);
3556
a8028dd0
RS
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 r_symndx, h, r_type);
0f20cc35 3559 if (!entry)
b15e6682 3560 return MINUS_ONE;
0f20cc35 3561
e641e783 3562 if (entry->tls_type)
9ab066b4
RS
3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564 return entry->gotidx;
b49e97c9
TS
3565}
3566
13fbec83 3567/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3568
3569static bfd_vma
13fbec83
RS
3570mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 struct elf_link_hash_entry *h)
3572{
3573 struct mips_elf_link_hash_table *htab;
3574 long global_got_dynindx;
3575 struct mips_got_info *g;
3576 bfd_vma got_index;
3577
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3580
3581 global_got_dynindx = 0;
3582 if (htab->global_gotsym != NULL)
3583 global_got_dynindx = htab->global_gotsym->dynindx;
3584
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3588 GOT offset. */
3589 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590 g = mips_elf_bfd_got (obfd, FALSE);
3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3593 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3594
3595 return got_index;
3596}
3597
3598/* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3600
3601static bfd_vma
3602mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3604{
a8028dd0 3605 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3606 struct mips_got_info *g;
3607 struct mips_got_entry lookup, *entry;
3608 bfd_vma gotidx;
b49e97c9 3609
a8028dd0 3610 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3611 BFD_ASSERT (htab != NULL);
3612
6c42ddb9
RS
3613 g = mips_elf_bfd_got (ibfd, FALSE);
3614 BFD_ASSERT (g);
f4416af6 3615
6c42ddb9
RS
3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3618 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3619
6c42ddb9
RS
3620 lookup.abfd = ibfd;
3621 lookup.symndx = -1;
3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623 entry = htab_find (g->got_entries, &lookup);
3624 BFD_ASSERT (entry);
0f20cc35 3625
6c42ddb9 3626 gotidx = entry->gotidx;
ce558b89 3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3628
6c42ddb9 3629 if (lookup.tls_type)
0f20cc35 3630 {
0f20cc35
DJ
3631 bfd_vma value = MINUS_ONE;
3632
3633 if ((h->root.type == bfd_link_hash_defined
3634 || h->root.type == bfd_link_hash_defweak)
3635 && h->root.u.def.section->output_section)
3636 value = (h->root.u.def.value
3637 + h->root.u.def.section->output_offset
3638 + h->root.u.def.section->output_section->vma);
3639
9ab066b4 3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3641 }
6c42ddb9 3642 return gotidx;
b49e97c9
TS
3643}
3644
5c18022e
RS
3645/* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3649 offset of the GOT entry from VALUE. */
b49e97c9
TS
3650
3651static bfd_vma
9719ad41 3652mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3653 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3654{
91d6fa6a 3655 bfd_vma page, got_index;
b15e6682 3656 struct mips_got_entry *entry;
b49e97c9 3657
0a44bf69 3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3661
b15e6682
AO
3662 if (!entry)
3663 return MINUS_ONE;
143d77c5 3664
91d6fa6a 3665 got_index = entry->gotidx;
b49e97c9
TS
3666
3667 if (offsetp)
f4416af6 3668 *offsetp = value - entry->d.address;
b49e97c9 3669
91d6fa6a 3670 return got_index;
b49e97c9
TS
3671}
3672
738e5348 3673/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
b49e97c9
TS
3676
3677static bfd_vma
9719ad41 3678mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3679 bfd_vma value, bfd_boolean external)
b49e97c9 3680{
b15e6682 3681 struct mips_got_entry *entry;
b49e97c9 3682
0a44bf69
RS
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3687 if (! external)
0a44bf69 3688 value = mips_elf_high (value) << 16;
b49e97c9 3689
738e5348
RS
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
a8028dd0
RS
3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 NULL, R_MIPS_GOT16);
b15e6682
AO
3695 if (entry)
3696 return entry->gotidx;
3697 else
3698 return MINUS_ONE;
b49e97c9
TS
3699}
3700
3701/* Returns the offset for the entry at the INDEXth position
3702 in the GOT. */
3703
3704static bfd_vma
a8028dd0 3705mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3706 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3707{
a8028dd0 3708 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3709 asection *sgot;
3710 bfd_vma gp;
3711
a8028dd0 3712 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3713 BFD_ASSERT (htab != NULL);
3714
ce558b89 3715 sgot = htab->root.sgot;
f4416af6 3716 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3718
91d6fa6a 3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3720}
3721
0a44bf69
RS
3722/* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725 instead. */
b49e97c9 3726
b15e6682 3727static struct mips_got_entry *
0a44bf69 3728mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3729 bfd *ibfd, bfd_vma value,
5c18022e 3730 unsigned long r_symndx,
0f20cc35
DJ
3731 struct mips_elf_link_hash_entry *h,
3732 int r_type)
b49e97c9 3733{
ebc53538
RS
3734 struct mips_got_entry lookup, *entry;
3735 void **loc;
f4416af6 3736 struct mips_got_info *g;
0a44bf69 3737 struct mips_elf_link_hash_table *htab;
6c42ddb9 3738 bfd_vma gotidx;
0a44bf69
RS
3739
3740 htab = mips_elf_hash_table (info);
4dfe6ac6 3741 BFD_ASSERT (htab != NULL);
b15e6682 3742
d7206569 3743 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3744 if (g == NULL)
3745 {
d7206569 3746 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3747 BFD_ASSERT (g != NULL);
3748 }
b15e6682 3749
020d7251
RS
3750 /* This function shouldn't be called for symbols that live in the global
3751 area of the GOT. */
3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3753
ebc53538
RS
3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755 if (lookup.tls_type)
3756 {
3757 lookup.abfd = ibfd;
df58fc94 3758 if (tls_ldm_reloc_p (r_type))
0f20cc35 3759 {
ebc53538
RS
3760 lookup.symndx = 0;
3761 lookup.d.addend = 0;
0f20cc35
DJ
3762 }
3763 else if (h == NULL)
3764 {
ebc53538
RS
3765 lookup.symndx = r_symndx;
3766 lookup.d.addend = 0;
0f20cc35
DJ
3767 }
3768 else
ebc53538
RS
3769 {
3770 lookup.symndx = -1;
3771 lookup.d.h = h;
3772 }
0f20cc35 3773
ebc53538
RS
3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775 BFD_ASSERT (entry);
0f20cc35 3776
6c42ddb9 3777 gotidx = entry->gotidx;
ce558b89 3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3779
ebc53538 3780 return entry;
0f20cc35
DJ
3781 }
3782
ebc53538
RS
3783 lookup.abfd = NULL;
3784 lookup.symndx = -1;
3785 lookup.d.address = value;
3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787 if (!loc)
b15e6682 3788 return NULL;
143d77c5 3789
ebc53538
RS
3790 entry = (struct mips_got_entry *) *loc;
3791 if (entry)
3792 return entry;
b15e6682 3793
cb22ccf4 3794 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3795 {
3796 /* We didn't allocate enough space in the GOT. */
4eca0228 3797 _bfd_error_handler
b49e97c9
TS
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value);
b15e6682 3800 return NULL;
b49e97c9
TS
3801 }
3802
ebc53538
RS
3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804 if (!entry)
3805 return NULL;
3806
cb22ccf4
KCY
3807 if (got16_reloc_p (r_type)
3808 || call16_reloc_p (r_type)
3809 || got_page_reloc_p (r_type)
3810 || got_disp_reloc_p (r_type))
3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812 else
3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3814
ebc53538
RS
3815 *entry = lookup;
3816 *loc = entry;
3817
ce558b89 3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3819
5c18022e 3820 /* These GOT entries need a dynamic relocation on VxWorks. */
90c14f0c 3821 if (htab->root.target_os == is_vxworks)
0a44bf69
RS
3822 {
3823 Elf_Internal_Rela outrel;
5c18022e 3824 asection *s;
91d6fa6a 3825 bfd_byte *rloc;
0a44bf69 3826 bfd_vma got_address;
0a44bf69
RS
3827
3828 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3829 got_address = (htab->root.sgot->output_section->vma
3830 + htab->root.sgot->output_offset
ebc53538 3831 + entry->gotidx);
0a44bf69 3832
91d6fa6a 3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3834 outrel.r_offset = got_address;
5c18022e
RS
3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836 outrel.r_addend = value;
91d6fa6a 3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3838 }
3839
ebc53538 3840 return entry;
b49e97c9
TS
3841}
3842
d4596a51
RS
3843/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3847
3848static bfd_size_type
3849count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3850{
3851 bfd_size_type count;
3852
3853 count = 0;
0e1862bb
L
3854 if (bfd_link_pic (info)
3855 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3856 {
3857 asection *p;
3858 const struct elf_backend_data *bed;
3859
3860 bed = get_elf_backend_data (output_bfd);
3861 for (p = output_bfd->sections; p ; p = p->next)
3862 if ((p->flags & SEC_EXCLUDE) == 0
3863 && (p->flags & SEC_ALLOC) != 0
7f923b7f 3864 && elf_hash_table (info)->dynamic_relocs
d4596a51
RS
3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 ++count;
3867 }
3868 return count;
3869}
3870
b49e97c9 3871/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3872 appear towards the end. */
b49e97c9 3873
b34976b6 3874static bfd_boolean
d4596a51 3875mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3876{
a8028dd0 3877 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3878 struct mips_elf_hash_sort_data hsd;
3879 struct mips_got_info *g;
b49e97c9 3880
a8028dd0 3881 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3882 BFD_ASSERT (htab != NULL);
3883
0f8c4b60 3884 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3885 return TRUE;
3886
a8028dd0 3887 g = htab->got_info;
d4596a51
RS
3888 if (g == NULL)
3889 return TRUE;
f4416af6 3890
b49e97c9 3891 hsd.low = NULL;
23cc69b6
RS
3892 hsd.max_unref_got_dynindx
3893 = hsd.min_got_dynindx
0f8c4b60 3894 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
f16a9783
MS
3899 hsd.output_bfd = abfd;
3900 if (htab->root.dynobj != NULL
3901 && htab->root.dynamic_sections_created
3902 && info->emit_gnu_hash)
3903 {
3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905 BFD_ASSERT (s != NULL);
3906 hsd.mipsxhash = s->contents;
3907 BFD_ASSERT (hsd.mipsxhash != NULL);
3908 }
3909 else
3910 hsd.mipsxhash = NULL;
0f8c4b60 3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3912
3913 /* There should have been enough room in the symbol table to
44c410de 3914 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3919
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
d222d210 3922 htab->global_gotsym = hsd.low;
b49e97c9 3923
b34976b6 3924 return TRUE;
b49e97c9
TS
3925}
3926
3927/* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3929 index. */
3930
b34976b6 3931static bfd_boolean
9719ad41 3932mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3933{
9719ad41 3934 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3935
b49e97c9
TS
3936 /* Symbols without dynamic symbol table entries aren't interesting
3937 at all. */
3938 if (h->root.dynindx == -1)
b34976b6 3939 return TRUE;
b49e97c9 3940
634835ae 3941 switch (h->global_got_area)
f4416af6 3942 {
634835ae 3943 case GGA_NONE:
e17b0c35
MR
3944 if (h->root.forced_local)
3945 h->root.dynindx = hsd->max_local_dynindx++;
3946 else
3947 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3948 break;
0f20cc35 3949
634835ae 3950 case GGA_NORMAL:
b49e97c9
TS
3951 h->root.dynindx = --hsd->min_got_dynindx;
3952 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3953 break;
3954
3955 case GGA_RELOC_ONLY:
634835ae
RS
3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 hsd->low = (struct elf_link_hash_entry *) h;
3958 h->root.dynindx = hsd->max_unref_got_dynindx++;
3959 break;
b49e97c9
TS
3960 }
3961
f16a9783
MS
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 hsd->mipsxhash + h->mipsxhash_loc);
3967
b34976b6 3968 return TRUE;
b49e97c9
TS
3969}
3970
ee227692
RS
3971/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3974
3975static bfd_boolean
3976mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 struct mips_got_entry *lookup)
3978{
3979 struct mips_elf_link_hash_table *htab;
3980 struct mips_got_entry *entry;
3981 struct mips_got_info *g;
3982 void **loc, **bfd_loc;
3983
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab = mips_elf_hash_table (info);
3986 g = htab->got_info;
3987 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988 if (!loc)
3989 return FALSE;
3990
3991 /* Populate the entry if it isn't already. */
3992 entry = (struct mips_got_entry *) *loc;
3993 if (!entry)
3994 {
3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996 if (!entry)
3997 return FALSE;
3998
9ab066b4 3999 lookup->tls_initialized = FALSE;
ee227692
RS
4000 lookup->gotidx = -1;
4001 *entry = *lookup;
4002 *loc = entry;
4003 }
4004
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g = mips_elf_bfd_got (abfd, TRUE);
4007 if (!g)
4008 return FALSE;
4009
4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011 if (!bfd_loc)
4012 return FALSE;
4013
4014 if (!*bfd_loc)
4015 *bfd_loc = entry;
4016 return TRUE;
4017}
4018
e641e783
RS
4019/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 4021 using the GOT entry for calls. */
b49e97c9 4022
b34976b6 4023static bfd_boolean
9719ad41
RS
4024mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 bfd *abfd, struct bfd_link_info *info,
e641e783 4026 bfd_boolean for_call, int r_type)
b49e97c9 4027{
a8028dd0 4028 struct mips_elf_link_hash_table *htab;
634835ae 4029 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
4030 struct mips_got_entry entry;
4031 unsigned char tls_type;
a8028dd0
RS
4032
4033 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4034 BFD_ASSERT (htab != NULL);
4035
634835ae 4036 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
4037 if (!for_call)
4038 hmips->got_only_for_calls = FALSE;
f4416af6 4039
b49e97c9
TS
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4041 table. */
7c5fcef7
L
4042 if (h->dynindx == -1)
4043 {
4044 switch (ELF_ST_VISIBILITY (h->other))
4045 {
4046 case STV_INTERNAL:
4047 case STV_HIDDEN:
47275900 4048 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
4049 break;
4050 }
c152c796 4051 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4052 return FALSE;
7c5fcef7 4053 }
b49e97c9 4054
ee227692 4055 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 4057 hmips->global_got_area = GGA_NORMAL;
86324f90 4058
f4416af6
AO
4059 entry.abfd = abfd;
4060 entry.symndx = -1;
4061 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4062 entry.tls_type = tls_type;
4063 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4064}
f4416af6 4065
e641e783
RS
4066/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4068
4069static bfd_boolean
9719ad41 4070mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4071 struct bfd_link_info *info, int r_type)
f4416af6 4072{
a8028dd0
RS
4073 struct mips_elf_link_hash_table *htab;
4074 struct mips_got_info *g;
ee227692 4075 struct mips_got_entry entry;
f4416af6 4076
a8028dd0 4077 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4078 BFD_ASSERT (htab != NULL);
4079
a8028dd0
RS
4080 g = htab->got_info;
4081 BFD_ASSERT (g != NULL);
4082
f4416af6
AO
4083 entry.abfd = abfd;
4084 entry.symndx = symndx;
4085 entry.d.addend = addend;
e641e783 4086 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4087 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4088}
c224138d 4089
13db6b44
RS
4090/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4092 to ABFD. */
c224138d
RS
4093
4094static bfd_boolean
13db6b44
RS
4095mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 long symndx, struct elf_link_hash_entry *h,
4097 bfd_signed_vma addend)
c224138d 4098{
a8028dd0 4099 struct mips_elf_link_hash_table *htab;
ee227692 4100 struct mips_got_info *g1, *g2;
13db6b44 4101 struct mips_got_page_ref lookup, *entry;
ee227692 4102 void **loc, **bfd_loc;
c224138d 4103
a8028dd0 4104 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4105 BFD_ASSERT (htab != NULL);
4106
ee227692
RS
4107 g1 = htab->got_info;
4108 BFD_ASSERT (g1 != NULL);
a8028dd0 4109
13db6b44
RS
4110 if (h)
4111 {
4112 lookup.symndx = -1;
4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4114 }
4115 else
4116 {
4117 lookup.symndx = symndx;
4118 lookup.u.abfd = abfd;
4119 }
4120 lookup.addend = addend;
4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4122 if (loc == NULL)
4123 return FALSE;
4124
13db6b44 4125 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4126 if (!entry)
4127 {
4128 entry = bfd_alloc (abfd, sizeof (*entry));
4129 if (!entry)
4130 return FALSE;
4131
13db6b44 4132 *entry = lookup;
c224138d
RS
4133 *loc = entry;
4134 }
4135
ee227692
RS
4136 /* Add the same entry to the BFD's GOT. */
4137 g2 = mips_elf_bfd_got (abfd, TRUE);
4138 if (!g2)
4139 return FALSE;
4140
13db6b44 4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4142 if (!bfd_loc)
4143 return FALSE;
4144
4145 if (!*bfd_loc)
4146 *bfd_loc = entry;
4147
c224138d
RS
4148 return TRUE;
4149}
33bb52fb
RS
4150
4151/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4152
4153static void
4154mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 unsigned int n)
4156{
4157 asection *s;
4158 struct mips_elf_link_hash_table *htab;
4159
4160 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4161 BFD_ASSERT (htab != NULL);
4162
33bb52fb
RS
4163 s = mips_elf_rel_dyn_section (info, FALSE);
4164 BFD_ASSERT (s != NULL);
4165
90c14f0c 4166 if (htab->root.target_os == is_vxworks)
33bb52fb
RS
4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168 else
4169 {
4170 if (s->size == 0)
4171 {
4172 /* Make room for a null element. */
4173 s->size += MIPS_ELF_REL_SIZE (abfd);
4174 ++s->reloc_count;
4175 }
4176 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4177 }
4178}
4179\f
476366af
RS
4180/* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4184
4185static int
4186mips_elf_check_recreate_got (void **entryp, void *data)
4187{
4188 struct mips_got_entry *entry;
476366af 4189 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4190
4191 entry = (struct mips_got_entry *) *entryp;
476366af 4192 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4193 if (entry->abfd != NULL && entry->symndx == -1)
4194 {
4195 struct mips_elf_link_hash_entry *h;
4196
4197 h = entry->d.h;
4198 if (h->root.root.type == bfd_link_hash_indirect
4199 || h->root.root.type == bfd_link_hash_warning)
4200 {
476366af 4201 arg->value = TRUE;
33bb52fb
RS
4202 return 0;
4203 }
4204 }
476366af 4205 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4206 return 1;
4207}
4208
476366af
RS
4209/* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4213
4214static int
4215mips_elf_recreate_got (void **entryp, void *data)
4216{
72e7511a 4217 struct mips_got_entry new_entry, *entry;
476366af 4218 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4219 void **slot;
4220
33bb52fb 4221 entry = (struct mips_got_entry *) *entryp;
476366af 4222 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4223 if (entry->abfd != NULL
4224 && entry->symndx == -1
4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4227 {
4228 struct mips_elf_link_hash_entry *h;
4229
72e7511a
RS
4230 new_entry = *entry;
4231 entry = &new_entry;
33bb52fb 4232 h = entry->d.h;
72e7511a 4233 do
634835ae
RS
4234 {
4235 BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4237 }
72e7511a
RS
4238 while (h->root.root.type == bfd_link_hash_indirect
4239 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4240 entry->d.h = h;
4241 }
476366af 4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4243 if (slot == NULL)
4244 {
476366af 4245 arg->g = NULL;
33bb52fb
RS
4246 return 0;
4247 }
4248 if (*slot == NULL)
72e7511a
RS
4249 {
4250 if (entry == &new_entry)
4251 {
4252 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 if (!entry)
4254 {
476366af 4255 arg->g = NULL;
72e7511a
RS
4256 return 0;
4257 }
4258 *entry = new_entry;
4259 }
4260 *slot = entry;
476366af 4261 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4262 }
33bb52fb
RS
4263 return 1;
4264}
4265
13db6b44
RS
4266/* Return the maximum number of GOT page entries required for RANGE. */
4267
4268static bfd_vma
4269mips_elf_pages_for_range (const struct mips_got_page_range *range)
4270{
4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4272}
4273
4274/* Record that G requires a page entry that can reach SEC + ADDEND. */
4275
4276static bfd_boolean
b75d42bc 4277mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4278 asection *sec, bfd_signed_vma addend)
4279{
b75d42bc 4280 struct mips_got_info *g = arg->g;
13db6b44
RS
4281 struct mips_got_page_entry lookup, *entry;
4282 struct mips_got_page_range **range_ptr, *range;
4283 bfd_vma old_pages, new_pages;
4284 void **loc;
4285
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4287 lookup.sec = sec;
4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289 if (loc == NULL)
4290 return FALSE;
4291
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry = (struct mips_got_page_entry *) *loc;
4295 if (!entry)
4296 {
b75d42bc 4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4298 if (!entry)
4299 return FALSE;
4300
4301 entry->sec = sec;
4302 *loc = entry;
4303 }
4304
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4306 with ADDEND. */
4307 range_ptr = &entry->ranges;
4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309 range_ptr = &(*range_ptr)->next;
4310
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4314 range = *range_ptr;
4315 if (!range || addend < range->min_addend - 0xffff)
4316 {
b75d42bc 4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4318 if (!range)
4319 return FALSE;
4320
4321 range->next = *range_ptr;
4322 range->min_addend = addend;
4323 range->max_addend = addend;
4324
4325 *range_ptr = range;
4326 entry->num_pages++;
4327 g->page_gotno++;
4328 return TRUE;
4329 }
4330
4331 /* Remember how many pages the old range contributed. */
4332 old_pages = mips_elf_pages_for_range (range);
4333
4334 /* Update the ranges. */
4335 if (addend < range->min_addend)
4336 range->min_addend = addend;
4337 else if (addend > range->max_addend)
4338 {
4339 if (range->next && addend >= range->next->min_addend - 0xffff)
4340 {
4341 old_pages += mips_elf_pages_for_range (range->next);
4342 range->max_addend = range->next->max_addend;
4343 range->next = range->next->next;
4344 }
4345 else
4346 range->max_addend = addend;
4347 }
4348
4349 /* Record any change in the total estimate. */
4350 new_pages = mips_elf_pages_for_range (range);
4351 if (old_pages != new_pages)
4352 {
4353 entry->num_pages += new_pages - old_pages;
4354 g->page_gotno += new_pages - old_pages;
4355 }
4356
4357 return TRUE;
4358}
4359
4360/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4364
4365static bfd_boolean
4366mips_elf_resolve_got_page_ref (void **refp, void *data)
4367{
4368 struct mips_got_page_ref *ref;
4369 struct mips_elf_traverse_got_arg *arg;
4370 struct mips_elf_link_hash_table *htab;
4371 asection *sec;
4372 bfd_vma addend;
4373
4374 ref = (struct mips_got_page_ref *) *refp;
4375 arg = (struct mips_elf_traverse_got_arg *) data;
4376 htab = mips_elf_hash_table (arg->info);
4377
4378 if (ref->symndx < 0)
4379 {
4380 struct mips_elf_link_hash_entry *h;
4381
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4383 h = ref->u.h;
4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 return 1;
4386
4387 /* Ignore undefined symbols; we'll issue an error later if
4388 appropriate. */
4389 if (!((h->root.root.type == bfd_link_hash_defined
4390 || h->root.root.type == bfd_link_hash_defweak)
4391 && h->root.root.u.def.section))
4392 return 1;
4393
4394 sec = h->root.root.u.def.section;
4395 addend = h->root.root.u.def.value + ref->addend;
4396 }
4397 else
4398 {
4399 Elf_Internal_Sym *isym;
4400
4401 /* Read in the symbol. */
f1dfbfdb 4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
13db6b44
RS
4403 ref->symndx);
4404 if (isym == NULL)
4405 {
4406 arg->g = NULL;
4407 return 0;
4408 }
4409
4410 /* Get the associated input section. */
4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412 if (sec == NULL)
4413 {
4414 arg->g = NULL;
4415 return 0;
4416 }
4417
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec->flags & SEC_MERGE)
4423 {
4424 void *secinfo;
4425
4426 secinfo = elf_section_data (sec)->sec_info;
4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 isym->st_value + ref->addend);
4430 else
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value) + ref->addend;
4433 }
4434 else
4435 addend = isym->st_value + ref->addend;
4436 }
b75d42bc 4437 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4438 {
4439 arg->g = NULL;
4440 return 0;
4441 }
4442 return 1;
4443}
4444
33bb52fb 4445/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
33bb52fb
RS
4449
4450static bfd_boolean
476366af
RS
4451mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 struct mips_got_info *g)
33bb52fb 4453{
476366af
RS
4454 struct mips_elf_traverse_got_arg tga;
4455 struct mips_got_info oldg;
4456
4457 oldg = *g;
33bb52fb 4458
476366af
RS
4459 tga.info = info;
4460 tga.g = g;
4461 tga.value = FALSE;
4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463 if (tga.value)
33bb52fb 4464 {
476366af
RS
4465 *g = oldg;
4466 g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 mips_elf_got_entry_hash,
4468 mips_elf_got_entry_eq, NULL);
4469 if (!g->got_entries)
33bb52fb
RS
4470 return FALSE;
4471
476366af
RS
4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473 if (!tga.g)
4474 return FALSE;
4475
4476 htab_delete (oldg.got_entries);
33bb52fb 4477 }
13db6b44
RS
4478
4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 mips_got_page_entry_eq, NULL);
4481 if (g->got_page_entries == NULL)
4482 return FALSE;
4483
4484 tga.info = info;
4485 tga.g = g;
4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4487
33bb52fb
RS
4488 return TRUE;
4489}
4490
c5d6fa44
RS
4491/* Return true if a GOT entry for H should live in the local rather than
4492 global GOT area. */
4493
4494static bfd_boolean
4495mips_use_local_got_p (struct bfd_link_info *info,
4496 struct mips_elf_link_hash_entry *h)
4497{
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h->root.dynindx == -1)
4503 return TRUE;
4504
47275900
MR
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h->root.root))
4509 return FALSE;
4510
c5d6fa44
RS
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516 return TRUE;
4517
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
0e1862bb 4521 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4522 return TRUE;
4523
4524 return FALSE;
4525}
4526
6c42ddb9
RS
4527/* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4532
4533static int
d4596a51 4534mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4535{
020d7251 4536 struct bfd_link_info *info;
6ccf4795 4537 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4538 struct mips_got_info *g;
4539
020d7251 4540 info = (struct bfd_link_info *) data;
6ccf4795
RS
4541 htab = mips_elf_hash_table (info);
4542 g = htab->got_info;
d4596a51 4543 if (h->global_got_area != GGA_NONE)
33bb52fb 4544 {
020d7251 4545 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h->global_got_area = GGA_NONE;
90c14f0c 4552 else if (htab->root.target_os == is_vxworks
6ccf4795 4553 && h->got_only_for_calls
1bbce132 4554 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h->global_got_area = GGA_NONE;
6c42ddb9 4559 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4560 {
6c42ddb9 4561 g->reloc_only_gotno++;
23cc69b6 4562 g->global_gotno++;
23cc69b6 4563 }
33bb52fb
RS
4564 }
4565 return 1;
4566}
f4416af6 4567\f
d7206569
RS
4568/* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4570
4571static int
d7206569 4572mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4573{
d7206569
RS
4574 struct mips_got_entry *entry;
4575 struct mips_elf_traverse_got_arg *arg;
4576 void **slot;
f4416af6 4577
d7206569
RS
4578 entry = (struct mips_got_entry *) *entryp;
4579 arg = (struct mips_elf_traverse_got_arg *) data;
4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581 if (!slot)
f4416af6 4582 {
d7206569
RS
4583 arg->g = NULL;
4584 return 0;
f4416af6 4585 }
d7206569 4586 if (!*slot)
c224138d 4587 {
d7206569
RS
4588 *slot = entry;
4589 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4590 }
f4416af6
AO
4591 return 1;
4592}
4593
d7206569
RS
4594/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4596
4597static int
d7206569 4598mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4599{
d7206569
RS
4600 struct mips_got_page_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
c224138d 4603
d7206569
RS
4604 entry = (struct mips_got_page_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607 if (!slot)
c224138d 4608 {
d7206569 4609 arg->g = NULL;
c224138d
RS
4610 return 0;
4611 }
d7206569
RS
4612 if (!*slot)
4613 {
4614 *slot = entry;
4615 arg->g->page_gotno += entry->num_pages;
4616 }
c224138d
RS
4617 return 1;
4618}
4619
d7206569
RS
4620/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4624 callback.) */
c224138d
RS
4625
4626static int
d7206569 4627mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4628 struct mips_got_info *to,
4629 struct mips_elf_got_per_bfd_arg *arg)
4630{
d7206569 4631 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4632 unsigned int estimate;
4633
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate = arg->max_pages;
4636 if (estimate >= from->page_gotno + to->page_gotno)
4637 estimate = from->page_gotno + to->page_gotno;
4638
e2ece73c 4639 /* And conservatively estimate how many local and TLS entries
c224138d 4640 would be needed. */
e2ece73c
RS
4641 estimate += from->local_gotno + to->local_gotno;
4642 estimate += from->tls_gotno + to->tls_gotno;
4643
17214937
RS
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
e2ece73c 4646 conservatively as well. */
17214937 4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4648 estimate += arg->global_count;
4649 else
4650 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4651
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate > arg->max_count)
4654 return -1;
4655
c224138d 4656 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4657 tga.info = arg->info;
4658 tga.g = to;
4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660 if (!tga.g)
c224138d
RS
4661 return 0;
4662
d7206569
RS
4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664 if (!tga.g)
c224138d
RS
4665 return 0;
4666
d7206569 4667 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4668 return 1;
4669}
4670
d7206569 4671/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4677
d7206569
RS
4678static bfd_boolean
4679mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4681{
c224138d
RS
4682 unsigned int estimate;
4683 int result;
4684
476366af 4685 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4686 return FALSE;
4687
c224138d
RS
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate = arg->max_pages;
4690 if (estimate > g->page_gotno)
4691 estimate = g->page_gotno;
4692 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4693
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
c224138d 4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4699
c224138d 4700 if (estimate <= arg->max_count)
f4416af6 4701 {
c224138d
RS
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4704 if (!arg->primary)
4705 {
d7206569
RS
4706 arg->primary = g;
4707 return TRUE;
c224138d 4708 }
f4416af6 4709
c224138d 4710 /* Try merging with the primary GOT. */
d7206569 4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4712 if (result >= 0)
4713 return result;
f4416af6 4714 }
c224138d 4715
f4416af6 4716 /* If we can merge with the last-created got, do it. */
c224138d 4717 if (arg->current)
f4416af6 4718 {
d7206569 4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4720 if (result >= 0)
4721 return result;
f4416af6 4722 }
c224138d 4723
f4416af6
AO
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
c224138d
RS
4727 g->next = arg->current;
4728 arg->current = g;
0f20cc35 4729
d7206569 4730 return TRUE;
0f20cc35
DJ
4731}
4732
72e7511a
RS
4733/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4736
4737static bfd_boolean
4738mips_elf_set_gotidx (void **entryp, long gotidx)
4739{
4740 struct mips_got_entry *entry;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 if (entry->gotidx > 0)
4744 {
4745 struct mips_got_entry *new_entry;
4746
4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748 if (!new_entry)
4749 return FALSE;
4750
4751 *new_entry = *entry;
4752 *entryp = new_entry;
4753 entry = new_entry;
4754 }
4755 entry->gotidx = gotidx;
4756 return TRUE;
4757}
4758
4759/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4762
4763static int
72e7511a 4764mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4765{
72e7511a
RS
4766 struct mips_got_entry *entry;
4767 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4768
4769 /* We're only interested in TLS symbols. */
72e7511a 4770 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4771 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4772 return 1;
4773
72e7511a 4774 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4776 {
6c42ddb9
RS
4777 arg->g = NULL;
4778 return 0;
f4416af6
AO
4779 }
4780
ead49a57 4781 /* Account for the entries we've just allocated. */
9ab066b4 4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4783 return 1;
4784}
4785
ab361d49
RS
4786/* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
f4416af6 4789
f4416af6 4790static int
ab361d49 4791mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4792{
ab361d49
RS
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
f4416af6 4795
ab361d49
RS
4796 entry = (struct mips_got_entry *) *entryp;
4797 arg = (struct mips_elf_traverse_got_arg *) data;
4798 if (entry->abfd != NULL
4799 && entry->symndx == -1
4800 && entry->d.h->global_got_area != GGA_NONE)
4801 entry->d.h->global_got_area = arg->value;
4802 return 1;
4803}
4804
4805/* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
72e7511a 4808 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4809
4810static int
4811mips_elf_set_global_gotidx (void **entryp, void *data)
4812{
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4815
ab361d49
RS
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4821 {
cb22ccf4 4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4823 {
4824 arg->g = NULL;
4825 return 0;
4826 }
cb22ccf4 4827 arg->g->assigned_low_gotno += 1;
72e7511a 4828
0e1862bb 4829 if (bfd_link_pic (arg->info)
ab361d49
RS
4830 || (elf_hash_table (arg->info)->dynamic_sections_created
4831 && entry->d.h->root.def_dynamic
4832 && !entry->d.h->root.def_regular))
4833 arg->g->relocs += 1;
f4416af6
AO
4834 }
4835
4836 return 1;
4837}
4838
33bb52fb
RS
4839/* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4842
0626d451 4843static int
33bb52fb 4844mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4845{
33bb52fb
RS
4846 struct bfd_link_info *info;
4847 struct mips_elf_link_hash_table *htab;
4848 struct mips_got_entry *entry;
0626d451 4849
33bb52fb
RS
4850 entry = (struct mips_got_entry *) *entryp;
4851 info = (struct bfd_link_info *) data;
4852 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4853 BFD_ASSERT (htab != NULL);
4854
0626d451
RS
4855 if (entry->abfd != NULL
4856 && entry->symndx == -1
33bb52fb 4857 && entry->d.h->needs_lazy_stub)
f4416af6 4858 {
33bb52fb
RS
4859 entry->d.h->needs_lazy_stub = FALSE;
4860 htab->lazy_stub_count--;
f4416af6 4861 }
143d77c5 4862
f4416af6
AO
4863 return 1;
4864}
4865
f4416af6
AO
4866/* Return the offset of an input bfd IBFD's GOT from the beginning of
4867 the primary GOT. */
4868static bfd_vma
9719ad41 4869mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4870{
d7206569 4871 if (!g->next)
f4416af6
AO
4872 return 0;
4873
d7206569 4874 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4875 if (! g)
4876 return 0;
4877
4878 BFD_ASSERT (g->next);
4879
4880 g = g->next;
143d77c5 4881
0f20cc35
DJ
4882 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4884}
4885
4886/* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4888
4889static bfd_boolean
9719ad41 4890mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4891 asection *got, bfd_size_type pages)
f4416af6 4892{
a8028dd0 4893 struct mips_elf_link_hash_table *htab;
f4416af6 4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4895 struct mips_elf_traverse_got_arg tga;
a8028dd0 4896 struct mips_got_info *g, *gg;
33bb52fb 4897 unsigned int assign, needed_relocs;
d7206569 4898 bfd *dynobj, *ibfd;
f4416af6 4899
33bb52fb 4900 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4901 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4902 BFD_ASSERT (htab != NULL);
4903
a8028dd0 4904 g = htab->got_info;
f4416af6 4905
f4416af6
AO
4906 got_per_bfd_arg.obfd = abfd;
4907 got_per_bfd_arg.info = info;
f4416af6
AO
4908 got_per_bfd_arg.current = NULL;
4909 got_per_bfd_arg.primary = NULL;
0a44bf69 4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4911 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4912 - htab->reserved_gotno);
c224138d 4913 got_per_bfd_arg.max_pages = pages;
0f20cc35 4914 /* The number of globals that will be included in the primary GOT.
ab361d49 4915 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4916 information. */
4917 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4918
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
c72f2fb2 4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4923 {
4924 gg = mips_elf_bfd_got (ibfd, FALSE);
4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 return FALSE;
4927 }
f4416af6 4928
0f20cc35 4929 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4930 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4931 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4932 else
4933 g->next = got_per_bfd_arg.primary;
4934 g->next->next = got_per_bfd_arg.current;
4935
4936 /* GG is now the master GOT, and G is the primary GOT. */
4937 gg = g;
4938 g = g->next;
4939
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4944 list. */
d7206569 4945 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4946
634835ae
RS
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
23cc69b6 4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4951 g->global_gotno = gg->global_gotno;
f4416af6 4952
ab361d49
RS
4953 tga.info = info;
4954 tga.value = GGA_RELOC_ONLY;
4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956 tga.value = GGA_NORMAL;
4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4958
4959 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg->local_gotno = -g->global_gotno;
4973 gg->global_gotno = g->global_gotno;
0f20cc35 4974 gg->tls_gotno = 0;
f4416af6
AO
4975 assign = 0;
4976 gg->next = gg;
4977
4978 do
4979 {
4980 struct mips_got_info *gn;
4981
861fb55a 4982 assign += htab->reserved_gotno;
cb22ccf4 4983 g->assigned_low_gotno = assign;
c224138d
RS
4984 g->local_gotno += assign;
4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4986 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4988
ead49a57
RS
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4992 gn = g->next;
4993 g->next = gg->next;
4994 gg->next = g;
4995
0f20cc35
DJ
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4999 tga.g = g;
5000 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002 if (!tga.g)
5003 return FALSE;
1fd20d70 5004 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 5005
ead49a57 5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 5007 g = gn;
0626d451 5008
33bb52fb
RS
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
0626d451 5011 if (g)
33bb52fb 5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
5013 }
5014 while (g);
5015
59b08994 5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
5017
5018 needed_relocs = 0;
33bb52fb
RS
5019 for (g = gg->next; g && g->next != gg; g = g->next)
5020 {
5021 unsigned int save_assign;
5022
ab361d49
RS
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
cb22ccf4
KCY
5025 save_assign = g->assigned_low_gotno;
5026 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
5027 tga.info = info;
5028 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029 tga.g = g;
5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
5031 if (!tga.g)
5032 return FALSE;
cb22ccf4
KCY
5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034 g->assigned_low_gotno = save_assign;
72e7511a 5035
0e1862bb 5036 if (bfd_link_pic (info))
33bb52fb 5037 {
cb22ccf4
KCY
5038 g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
5040 + g->next->global_gotno
5041 + g->next->tls_gotno
861fb55a 5042 + htab->reserved_gotno);
33bb52fb 5043 }
ab361d49 5044 needed_relocs += g->relocs;
33bb52fb 5045 }
ab361d49 5046 needed_relocs += g->relocs;
33bb52fb
RS
5047
5048 if (needed_relocs)
5049 mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 needed_relocs);
143d77c5 5051
f4416af6
AO
5052 return TRUE;
5053}
143d77c5 5054
b49e97c9
TS
5055\f
5056/* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5058
5059static const Elf_Internal_Rela *
9719ad41
RS
5060mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 const Elf_Internal_Rela *relocation,
5062 const Elf_Internal_Rela *relend)
b49e97c9 5063{
c000e262
TS
5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5065
b49e97c9
TS
5066 while (relocation < relend)
5067 {
c000e262
TS
5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5070 return relocation;
5071
5072 ++relocation;
5073 }
5074
5075 /* We didn't find it. */
b49e97c9
TS
5076 return NULL;
5077}
5078
020d7251 5079/* Return whether an input relocation is against a local symbol. */
b49e97c9 5080
b34976b6 5081static bfd_boolean
9719ad41
RS
5082mips_elf_local_relocation_p (bfd *input_bfd,
5083 const Elf_Internal_Rela *relocation,
020d7251 5084 asection **local_sections)
b49e97c9
TS
5085{
5086 unsigned long r_symndx;
5087 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5088 size_t extsymoff;
5089
5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5093
5094 if (r_symndx < extsymoff)
b34976b6 5095 return TRUE;
b49e97c9 5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5097 return TRUE;
b49e97c9 5098
b34976b6 5099 return FALSE;
b49e97c9
TS
5100}
5101\f
5102/* Sign-extend VALUE, which has the indicated number of BITS. */
5103
a7ebbfdf 5104bfd_vma
9719ad41 5105_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5106{
5107 if (value & ((bfd_vma) 1 << (bits - 1)))
5108 /* VALUE is negative. */
5109 value |= ((bfd_vma) - 1) << bits;
5110
5111 return value;
5112}
5113
5114/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5115 range expressible by a signed number with the indicated number of
b49e97c9
TS
5116 BITS. */
5117
b34976b6 5118static bfd_boolean
9719ad41 5119mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5120{
5121 bfd_signed_vma svalue = (bfd_signed_vma) value;
5122
5123 if (svalue > (1 << (bits - 1)) - 1)
5124 /* The value is too big. */
b34976b6 5125 return TRUE;
b49e97c9
TS
5126 else if (svalue < -(1 << (bits - 1)))
5127 /* The value is too small. */
b34976b6 5128 return TRUE;
b49e97c9
TS
5129
5130 /* All is well. */
b34976b6 5131 return FALSE;
b49e97c9
TS
5132}
5133
5134/* Calculate the %high function. */
5135
5136static bfd_vma
9719ad41 5137mips_elf_high (bfd_vma value)
b49e97c9
TS
5138{
5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5140}
5141
5142/* Calculate the %higher function. */
5143
5144static bfd_vma
9719ad41 5145mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5146{
5147#ifdef BFD64
5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149#else
5150 abort ();
c5ae1840 5151 return MINUS_ONE;
b49e97c9
TS
5152#endif
5153}
5154
5155/* Calculate the %highest function. */
5156
5157static bfd_vma
9719ad41 5158mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5159{
5160#ifdef BFD64
b15e6682 5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5162#else
5163 abort ();
c5ae1840 5164 return MINUS_ONE;
b49e97c9
TS
5165#endif
5166}
5167\f
5168/* Create the .compact_rel section. */
5169
b34976b6 5170static bfd_boolean
9719ad41
RS
5171mips_elf_create_compact_rel_section
5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5173{
5174 flagword flags;
5175 register asection *s;
5176
3d4d4302 5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5178 {
5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 | SEC_READONLY);
5181
3d4d4302 5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5183 if (s == NULL
fd361982 5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5185 return FALSE;
b49e97c9 5186
eea6121a 5187 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5188 }
5189
b34976b6 5190 return TRUE;
b49e97c9
TS
5191}
5192
5193/* Create the .got section to hold the global offset table. */
5194
b34976b6 5195static bfd_boolean
23cc69b6 5196mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5197{
5198 flagword flags;
5199 register asection *s;
5200 struct elf_link_hash_entry *h;
14a793b2 5201 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5202 struct mips_elf_link_hash_table *htab;
5203
5204 htab = mips_elf_hash_table (info);
4dfe6ac6 5205 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5206
5207 /* This function may be called more than once. */
ce558b89 5208 if (htab->root.sgot)
23cc69b6 5209 return TRUE;
b49e97c9
TS
5210
5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED);
5213
72b4917c
TS
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
87e0a731 5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5217 if (s == NULL
fd361982 5218 || !bfd_set_section_alignment (s, 4))
b34976b6 5219 return FALSE;
ce558b89 5220 htab->root.sgot = s;
b49e97c9
TS
5221
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
14a793b2 5225 bh = NULL;
b49e97c9
TS
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5228 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5229 return FALSE;
14a793b2
AM
5230
5231 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5232 h->non_elf = 0;
5233 h->def_regular = 1;
b49e97c9 5234 h->type = STT_OBJECT;
2f9efdfc 5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5236 elf_hash_table (info)->hgot = h;
b49e97c9 5237
0e1862bb 5238 if (bfd_link_pic (info)
c152c796 5239 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5240 return FALSE;
b49e97c9 5241
3dff0dd1 5242 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5245
861fb55a 5246 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 SEC_ALLOC | SEC_LOAD
5249 | SEC_HAS_CONTENTS
5250 | SEC_IN_MEMORY
5251 | SEC_LINKER_CREATED);
861fb55a
DJ
5252 if (s == NULL)
5253 return FALSE;
ce558b89 5254 htab->root.sgotplt = s;
0a44bf69 5255
b34976b6 5256 return TRUE;
b49e97c9 5257}
b49e97c9 5258\f
0a44bf69
RS
5259/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5262
5263static bfd_boolean
5264is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5265{
90c14f0c 5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks
0e1862bb 5267 && bfd_link_pic (info)
0a44bf69
RS
5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5270}
861fb55a
DJ
5271
5272/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5275 stub. */
5276
5277static bfd_boolean
8f0c309a
CLT
5278mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5280{
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd))
5287 return FALSE;
5288
5289 switch (r_type)
5290 {
5291 case R_MIPS_26:
5292 case R_MIPS_PC16:
7361da2c
AB
5293 case R_MIPS_PC21_S2:
5294 case R_MIPS_PC26_S2:
df58fc94
RS
5295 case R_MICROMIPS_26_S1:
5296 case R_MICROMIPS_PC7_S1:
5297 case R_MICROMIPS_PC10_S1:
5298 case R_MICROMIPS_PC16_S1:
5299 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5300 return TRUE;
5301
8f0c309a
CLT
5302 case R_MIPS16_26:
5303 return !target_is_16_bit_code_p;
5304
861fb55a
DJ
5305 default:
5306 return FALSE;
5307 }
5308}
0a44bf69 5309\f
47275900
MR
5310/* Obtain the field relocated by RELOCATION. */
5311
5312static bfd_vma
5313mips_elf_obtain_contents (reloc_howto_type *howto,
5314 const Elf_Internal_Rela *relocation,
5315 bfd *input_bfd, bfd_byte *contents)
5316{
5317 bfd_vma x = 0;
5318 bfd_byte *location = contents + relocation->r_offset;
5319 unsigned int size = bfd_get_reloc_size (howto);
5320
5321 /* Obtain the bytes. */
5322 if (size != 0)
5323 x = bfd_get (8 * size, input_bfd, location);
5324
5325 return x;
5326}
5327
98e10ffa
MR
5328/* Store the field relocated by RELOCATION. */
5329
5330static void
5331mips_elf_store_contents (reloc_howto_type *howto,
5332 const Elf_Internal_Rela *relocation,
5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5334{
5335 bfd_byte *location = contents + relocation->r_offset;
5336 unsigned int size = bfd_get_reloc_size (howto);
5337
5338 /* Put the value into the output. */
5339 if (size != 0)
5340 bfd_put (8 * size, input_bfd, x, location);
5341}
5342
47275900
MR
5343/* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5348*/
5349
5350static bfd_boolean
5351mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 const Elf_Internal_Rela *relocation,
5353 reloc_howto_type *howto, bfd_boolean doit)
5354{
5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356 bfd_byte *location = contents + relocation->r_offset;
5357 bfd_boolean nullified = TRUE;
5358 bfd_vma x;
5359
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5361
5362 /* Obtain the current value. */
5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5364
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type)
5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
227d539b 5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */
47275900
MR
5371 else if (micromips_reloc_p (r_type)
5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5377 else
5378 nullified = FALSE;
5379
5380 /* Put the value into the output. */
5381 if (doit && nullified)
5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5383
5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5385
5386 return nullified;
5387}
5388
b49e97c9
TS
5389/* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5392
5393 The result of the relocation calculation is stored in VALUEP.
38a7df63 5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5396
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5401
5402static bfd_reloc_status_type
9719ad41 5403mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
47275900 5404 asection *input_section, bfd_byte *contents,
9719ad41
RS
5405 struct bfd_link_info *info,
5406 const Elf_Internal_Rela *relocation,
5407 bfd_vma addend, reloc_howto_type *howto,
5408 Elf_Internal_Sym *local_syms,
5409 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5410 const char **namep,
5411 bfd_boolean *cross_mode_jump_p,
9719ad41 5412 bfd_boolean save_addend)
b49e97c9
TS
5413{
5414 /* The eventual value we will return. */
5415 bfd_vma value;
5416 /* The address of the symbol against which the relocation is
5417 occurring. */
5418 bfd_vma symbol = 0;
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
0a61c8c2 5421 bfd_vma gp;
b49e97c9
TS
5422 /* The place (section offset or address) of the storage unit being
5423 relocated. */
5424 bfd_vma p;
5425 /* The value of GP used to create the relocatable object. */
0a61c8c2 5426 bfd_vma gp0;
b49e97c9
TS
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g = MINUS_ONE;
5431 /* The section in which the symbol referenced by the relocation is
5432 located. */
5433 asection *sec = NULL;
5434 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5435 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5436 symbol. */
b34976b6 5437 bfd_boolean local_p, was_local_p;
77434823
MR
5438 /* TRUE if the symbol referred to by this relocation is a section
5439 symbol. */
5440 bfd_boolean section_p = FALSE;
b34976b6
AM
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5446 Elf_Internal_Shdr *symtab_hdr;
5447 size_t extsymoff;
5448 unsigned long r_symndx;
5449 int r_type;
b34976b6 5450 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5451 relocation value. */
b34976b6
AM
5452 bfd_boolean overflowed_p;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5455 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5456 struct mips_elf_link_hash_table *htab;
5457 bfd *dynobj;
ad951203 5458 bfd_boolean resolved_to_zero;
0a44bf69
RS
5459
5460 dynobj = elf_hash_table (info)->dynobj;
5461 htab = mips_elf_hash_table (info);
4dfe6ac6 5462 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5463
5464 /* Parse the relocation. */
5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467 p = (input_section->output_section->vma
5468 + input_section->output_offset
5469 + relocation->r_offset);
5470
5471 /* Assume that there will be no overflow. */
b34976b6 5472 overflowed_p = FALSE;
b49e97c9
TS
5473
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5478 local_sections);
bce03d3d 5479 was_local_p = local_p;
b49e97c9
TS
5480 if (! elf_bad_symtab (input_bfd))
5481 extsymoff = symtab_hdr->sh_info;
5482 else
5483 {
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5486 extsymoff = 0;
5487 }
5488
5489 /* Figure out the value of the symbol. */
5490 if (local_p)
5491 {
9d862524 5492 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5493 Elf_Internal_Sym *sym;
5494
5495 sym = local_syms + r_symndx;
5496 sec = local_sections[r_symndx];
5497
77434823
MR
5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5499
b49e97c9 5500 symbol = sec->output_section->vma + sec->output_offset;
77434823 5501 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5502 symbol += sym->st_value;
77434823 5503 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5504 {
5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 addend -= symbol;
5507 addend += sec->output_section->vma + sec->output_offset;
5508 }
b49e97c9 5509
df58fc94
RS
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5512 ++symbol;
5513
5514 /* Record the name of this symbol, for our caller. */
5515 *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 symtab_hdr->sh_link,
5517 sym->st_name);
ceab86af 5518 if (*namep == NULL || **namep == '\0')
fd361982 5519 *namep = bfd_section_name (sec);
b49e97c9 5520
9d862524 5521 /* For relocations against a section symbol and ones against no
07d6d2b8 5522 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5523 if (section_p || r_symndx == STN_UNDEF)
5524 {
5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 target_is_micromips_code_p = (addend & 1) && micromips_p;
5527 }
5528 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5529 from the value of the symbol plus addend. */
9d862524
MR
5530 else if (bfd_is_abs_section (sec))
5531 {
5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5534 }
5535 /* Otherwise just use the regular symbol annotation available. */
5536 else
5537 {
5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5540 }
b49e97c9
TS
5541 }
5542 else
5543 {
560e09e9
NC
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5545
b49e97c9
TS
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h = ((struct mips_elf_link_hash_entry *)
5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h->root.root.type == bfd_link_hash_indirect
5551 || h->root.root.type == bfd_link_hash_warning)
5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5553
5554 /* Record the name of this symbol, for our caller. */
5555 *namep = h->root.root.root.string;
5556
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
560e09e9 5559 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5560 && ! NEWABI_P (input_bfd))
5561 {
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5565 return bfd_reloc_notsupported;
5566
b34976b6 5567 gp_disp_p = TRUE;
b49e97c9 5568 }
bbe506e8
TS
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p = TRUE;
5573
5574
b49e97c9
TS
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5578 its defined. */
5579 else if ((h->root.root.type == bfd_link_hash_defined
5580 || h->root.root.type == bfd_link_hash_defweak)
5581 && h->root.root.u.def.section)
5582 {
5583 sec = h->root.root.u.def.section;
5584 if (sec->output_section)
5585 symbol = (h->root.root.u.def.value
5586 + sec->output_section->vma
5587 + sec->output_offset);
5588 else
5589 symbol = h->root.root.u.def.value;
5590 }
5591 else if (h->root.root.type == bfd_link_hash_undefweak)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5595 addresses. */
5596 symbol = 0;
59c2e50f 5597 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 symbol = 0;
a4d0f181
TS
5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5602 {
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5605 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5608 somehow as well. */
0e1862bb 5609 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 symbol = 0;
5612 }
5e2b0d47
NC
5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5614 {
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5622 symbol = 0;
5623 }
b49e97c9
TS
5624 else
5625 {
95a51568
FS
5626 bfd_boolean reject_undefined
5627 = (info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 && !info->warn_unresolved_syms)
5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT;
dfb93f11 5630
95a51568 5631 info->callbacks->undefined_symbol
1a72702b 5632 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5633 input_section, relocation->r_offset, reject_undefined);
5634
5635 if (reject_undefined)
5636 return bfd_reloc_undefined;
5637
5638 symbol = 0;
b49e97c9
TS
5639 }
5640
30c09090 5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5643 }
5644
738e5348
RS
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5647
5648 (a) the relocation is for a MIPS16 JAL;
5649
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5652
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type != R_MIPS16_26
0e1862bb 5655 && !bfd_link_relocatable (info)
738e5348
RS
5656 && ((h != NULL
5657 && h->fn_stub != NULL
5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5659 || (local_p
698600e4
AM
5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5662 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5663 {
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5666 stub. */
5667 if (local_p)
8f0c309a 5668 {
698600e4 5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5670 value = 0;
5671 }
b49e97c9
TS
5672 else
5673 {
5674 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5675 if (h->la25_stub)
5676 {
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec = h->la25_stub->stub_section;
5680 value = h->la25_stub->offset;
5681 }
5682 else
5683 {
5684 sec = h->fn_stub;
5685 value = 0;
5686 }
b49e97c9
TS
5687 }
5688
8f0c309a 5689 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p = FALSE;
b49e97c9 5692 }
1bbce132
MR
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
0e1862bb 5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5699 || (local_p
698600e4
AM
5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5703 {
b9d58d71 5704 if (local_p)
698600e4 5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5706 else
b49e97c9 5707 {
b9d58d71
TS
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5710 file. */
5711 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5712 {
b9d58d71 5713 asection *o;
68ffbac6 5714
b9d58d71
TS
5715 sec = NULL;
5716 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5717 {
fd361982 5718 if (CALL_FP_STUB_P (bfd_section_name (o)))
b9d58d71
TS
5719 {
5720 sec = h->call_fp_stub;
5721 break;
5722 }
b49e97c9 5723 }
b9d58d71
TS
5724 if (sec == NULL)
5725 sec = h->call_stub;
b49e97c9 5726 }
b9d58d71 5727 else if (h->call_stub != NULL)
b49e97c9 5728 sec = h->call_stub;
b9d58d71
TS
5729 else
5730 sec = h->call_fp_stub;
07d6d2b8 5731 }
b49e97c9 5732
eea6121a 5733 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5734 symbol = sec->output_section->vma + sec->output_offset;
5735 }
861fb55a
DJ
5736 /* If this is a direct call to a PIC function, redirect to the
5737 non-PIC stub. */
5738 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 target_is_16_bit_code_p))
c7318def
MR
5741 {
5742 symbol = (h->la25_stub->stub_section->output_section->vma
5743 + h->la25_stub->stub_section->output_offset
5744 + h->la25_stub->offset);
5745 if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 symbol |= 1;
5747 }
1bbce132
MR
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5752 one. */
54806ffa
MR
5753 else if ((mips16_branch_reloc_p (r_type)
5754 || micromips_branch_reloc_p (r_type))
0e1862bb 5755 && !bfd_link_relocatable (info)
1bbce132
MR
5756 && h != NULL
5757 && h->use_plt_entry
5758 && h->root.plt.plist->comp_offset != MINUS_ONE
5759 && h->root.plt.plist->mips_offset != MINUS_ONE)
5760 {
5761 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5762
ce558b89 5763 sec = htab->root.splt;
1bbce132
MR
5764 symbol = (sec->output_section->vma
5765 + sec->output_offset
5766 + htab->plt_header_size
5767 + htab->plt_mips_offset
5768 + h->root.plt.plist->comp_offset
5769 + 1);
5770
5771 target_is_16_bit_code_p = !micromips_p;
5772 target_is_micromips_code_p = micromips_p;
5773 }
b49e97c9 5774
df58fc94 5775 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5778 {
4eca0228 5779 _bfd_error_handler
df58fc94
RS
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported;
5782 }
5783
b49e97c9 5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5789 acceptable. */
0e1862bb 5790 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5791 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5792 && ((mips16_branch_reloc_p (r_type)
5793 && !target_is_16_bit_code_p)
5794 || (micromips_branch_reloc_p (r_type)
df58fc94 5795 && !target_is_micromips_code_p)
9d862524
MR
5796 || ((branch_reloc_p (r_type)
5797 || r_type == R_MIPS_JALR)
df58fc94
RS
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p))));
b49e97c9 5800
47275900
MR
5801 resolved_to_zero = (h != NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5803
5804 switch (r_type)
5805 {
5806 case R_MIPS16_CALL16:
5807 case R_MIPS16_GOT16:
5808 case R_MIPS_CALL16:
5809 case R_MIPS_GOT16:
5810 case R_MIPS_GOT_PAGE:
5811 case R_MIPS_GOT_DISP:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_PAGE:
5817 case R_MICROMIPS_GOT_DISP:
5818 case R_MICROMIPS_GOT_LO16:
5819 case R_MICROMIPS_CALL_LO16:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info)
5822 && mips_elf_nullify_got_load (input_bfd, contents,
5823 relocation, howto, TRUE))
5824 return bfd_reloc_continue;
5825
5826 /* Fall through. */
5827 case R_MIPS_GOT_HI16:
5828 case R_MIPS_CALL_HI16:
5829 case R_MICROMIPS_GOT_HI16:
5830 case R_MICROMIPS_CALL_HI16:
5831 if (resolved_to_zero
5832 && htab->use_absolute_zero
5833 && bfd_link_pic (info))
5834 {
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 FALSE, FALSE, FALSE);
5838 BFD_ASSERT (h != NULL);
5839 }
5840 break;
5841 }
5842
c5d6fa44 5843 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5844
0a61c8c2
RS
5845 gp0 = _bfd_get_gp_value (input_bfd);
5846 gp = _bfd_get_gp_value (abfd);
23cc69b6 5847 if (htab->got_info)
a8028dd0 5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5849
5850 if (gnu_local_gp_p)
5851 symbol = gp;
5852
df58fc94
RS
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5857 {
df58fc94
RS
5858 r_type = (micromips_reloc_p (r_type)
5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5860 addend = 0;
5861 }
5862
e77760d2 5863 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5864 to need it, get it now. */
b49e97c9
TS
5865 switch (r_type)
5866 {
738e5348
RS
5867 case R_MIPS16_CALL16:
5868 case R_MIPS16_GOT16:
b49e97c9
TS
5869 case R_MIPS_CALL16:
5870 case R_MIPS_GOT16:
5871 case R_MIPS_GOT_DISP:
5872 case R_MIPS_GOT_HI16:
5873 case R_MIPS_CALL_HI16:
5874 case R_MIPS_GOT_LO16:
5875 case R_MIPS_CALL_LO16:
df58fc94
RS
5876 case R_MICROMIPS_CALL16:
5877 case R_MICROMIPS_GOT16:
5878 case R_MICROMIPS_GOT_DISP:
5879 case R_MICROMIPS_GOT_HI16:
5880 case R_MICROMIPS_CALL_HI16:
5881 case R_MICROMIPS_GOT_LO16:
5882 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5883 case R_MIPS_TLS_GD:
5884 case R_MIPS_TLS_GOTTPREL:
5885 case R_MIPS_TLS_LDM:
d0f13682
CLT
5886 case R_MIPS16_TLS_GD:
5887 case R_MIPS16_TLS_GOTTPREL:
5888 case R_MIPS16_TLS_LDM:
df58fc94
RS
5889 case R_MICROMIPS_TLS_GD:
5890 case R_MICROMIPS_TLS_GOTTPREL:
5891 case R_MICROMIPS_TLS_LDM:
b49e97c9 5892 /* Find the index into the GOT where this value is located. */
df58fc94 5893 if (tls_ldm_reloc_p (r_type))
0f20cc35 5894 {
0a44bf69 5895 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5896 0, 0, NULL, r_type);
0f20cc35
DJ
5897 if (g == MINUS_ONE)
5898 return bfd_reloc_outofrange;
5899 }
5900 else if (!local_p)
b49e97c9 5901 {
0a44bf69
RS
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
90c14f0c 5904 if (htab->root.target_os == is_vxworks
df58fc94
RS
5905 && (call_hi16_reloc_p (r_type)
5906 || call_lo16_reloc_p (r_type)
738e5348 5907 || call16_reloc_p (r_type)))
0a44bf69
RS
5908 {
5909 BFD_ASSERT (addend == 0);
5910 BFD_ASSERT (h->root.needs_plt);
5911 g = mips_elf_gotplt_index (info, &h->root);
5912 }
5913 else
b49e97c9 5914 {
020d7251 5915 BFD_ASSERT (addend == 0);
13fbec83
RS
5916 g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 &h->root, r_type);
e641e783 5918 if (!TLS_RELOC_P (r_type)
020d7251
RS
5919 && !elf_hash_table (info)->dynamic_sections_created)
5920 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5922 }
5923 }
90c14f0c 5924 else if (htab->root.target_os != is_vxworks
738e5348 5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5926 /* The calculation below does not involve "g". */
b49e97c9
TS
5927 break;
5928 else
5929 {
5c18022e 5930 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5931 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5932 if (g == MINUS_ONE)
5933 return bfd_reloc_outofrange;
5934 }
5935
5936 /* Convert GOT indices to actual offsets. */
a8028dd0 5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5938 break;
b49e97c9
TS
5939 }
5940
0a44bf69
RS
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h != NULL && is_gott_symbol (info, &h->root))
5944 {
5945 Elf_Internal_Rela outrel;
5946 bfd_byte *loc;
5947 asection *s;
5948
5949 s = mips_elf_rel_dyn_section (info, FALSE);
5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5951
5952 outrel.r_offset = (input_section->output_section->vma
5953 + input_section->output_offset
5954 + relocation->r_offset);
5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956 outrel.r_addend = addend;
5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5958
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5961 DT_TEXTREL tag. */
5962 if (MIPS_ELF_READONLY_SECTION (input_section))
5963 info->flags |= DF_TEXTREL;
5964
0a44bf69
RS
5965 *valuep = 0;
5966 return bfd_reloc_ok;
5967 }
5968
b49e97c9
TS
5969 /* Figure out what kind of relocation is being performed. */
5970 switch (r_type)
5971 {
5972 case R_MIPS_NONE:
5973 return bfd_reloc_continue;
5974
5975 case R_MIPS_16:
c3eb94b4
MF
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend;
b49e97c9
TS
5979 overflowed_p = mips_elf_overflow_p (value, 16);
5980 break;
5981
5982 case R_MIPS_32:
5983 case R_MIPS_REL32:
5984 case R_MIPS_64:
0e1862bb 5985 if ((bfd_link_pic (info)
861fb55a 5986 || (htab->root.dynamic_sections_created
b49e97c9 5987 && h != NULL
f5385ebf 5988 && h->root.def_dynamic
861fb55a
DJ
5989 && !h->root.def_regular
5990 && !h->has_static_relocs))
cf35638d 5991 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5992 && (h == NULL
5993 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 && !resolved_to_zero))
b49e97c9
TS
5996 && (input_section->flags & SEC_ALLOC) != 0)
5997 {
861fb55a 5998 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
861fb55a
DJ
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
b49e97c9
TS
6004 value = addend;
6005 if (!mips_elf_create_dynamic_relocation (abfd,
6006 info,
6007 relocation,
6008 h,
6009 sec,
6010 symbol,
6011 &value,
6012 input_section))
6013 return bfd_reloc_undefined;
6014 }
6015 else
6016 {
6017 if (r_type != R_MIPS_REL32)
6018 value = symbol + addend;
6019 else
6020 value = addend;
6021 }
6022 value &= howto->dst_mask;
092dcd75
CD
6023 break;
6024
6025 case R_MIPS_PC32:
6026 value = symbol + addend - p;
6027 value &= howto->dst_mask;
b49e97c9
TS
6028 break;
6029
b49e97c9
TS
6030 case R_MIPS16_26:
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6036 case R_MIPS_26:
df58fc94
RS
6037 case R_MICROMIPS_26_S1:
6038 {
6039 unsigned int shift;
6040
df58fc94
RS
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6043
77434823 6044 if (howto->partial_inplace && !section_p)
df58fc94 6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
6046 else
6047 value = addend;
bc27bb05
MR
6048 value += symbol;
6049
9d862524
MR
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6052 symbols. */
6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 && (*cross_mode_jump_p
6055 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
6057 return bfd_reloc_outofrange;
6058
6059 value >>= shift;
77434823 6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 value &= howto->dst_mask;
6063 }
b49e97c9
TS
6064 break;
6065
0f20cc35 6066 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 6067 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 6068 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
6069 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 & howto->dst_mask);
6071 break;
6072
6073 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
6074 case R_MIPS_TLS_DTPREL32:
6075 case R_MIPS_TLS_DTPREL64:
d0f13682 6076 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 6077 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_HI16:
d0f13682 6082 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 6083 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
6084 value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 & howto->dst_mask);
6086 break;
6087
6088 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
6089 case R_MIPS_TLS_TPREL32:
6090 case R_MIPS_TLS_TPREL64:
6091 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 6092 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094 break;
6095
b49e97c9 6096 case R_MIPS_HI16:
d6f16593 6097 case R_MIPS16_HI16:
df58fc94 6098 case R_MICROMIPS_HI16:
b49e97c9
TS
6099 if (!gp_disp_p)
6100 {
6101 value = mips_elf_high (addend + symbol);
6102 value &= howto->dst_mask;
6103 }
6104 else
6105 {
d6f16593 6106 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6109 8: sll $v0,16
d6f16593
MR
6110 12: addu $v0,$v1
6111 14: move $gp,$v0
6112 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
d6f16593 6116 if (r_type == R_MIPS16_HI16)
888b9c01 6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type == R_MICROMIPS_HI16)
6122 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
6123 else
6124 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
6125 }
6126 break;
6127
6128 case R_MIPS_LO16:
d6f16593 6129 case R_MIPS16_LO16:
df58fc94
RS
6130 case R_MICROMIPS_LO16:
6131 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
6132 if (!gp_disp_p)
6133 value = (symbol + addend) & howto->dst_mask;
6134 else
6135 {
d6f16593
MR
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type == R_MIPS16_LO16)
888b9c01 6139 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
6140 else if (r_type == R_MICROMIPS_LO16
6141 || r_type == R_MICROMIPS_HI0_LO16)
6142 value = addend + gp - p + 3;
d6f16593
MR
6143 else
6144 value = addend + gp - p + 4;
b49e97c9 6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 6146 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6149 this:
6150
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6153 addu $gp,$gp,$t9
6154
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6161 }
6162 break;
6163
6164 case R_MIPS_LITERAL:
df58fc94 6165 case R_MICROMIPS_LITERAL:
b49e97c9
TS
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6169 here. */
6170
6171 /* Fall through. */
6172
6173 case R_MIPS16_GPREL:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16:
df58fc94
RS
6179 case R_MICROMIPS_GPREL7_S2:
6180 case R_MICROMIPS_GPREL16:
bce03d3d
AO
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto->partial_inplace)
a7ebbfdf 6185 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
6186 value = symbol + addend - gp;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6191 to them before. */
6192 if (was_local_p)
6193 value += gp0;
538baf8b
AB
6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6196 break;
6197
738e5348
RS
6198 case R_MIPS16_GOT16:
6199 case R_MIPS16_CALL16:
b49e97c9
TS
6200 case R_MIPS_GOT16:
6201 case R_MIPS_CALL16:
df58fc94
RS
6202 case R_MICROMIPS_GOT16:
6203 case R_MICROMIPS_CALL16:
0a44bf69 6204 /* VxWorks does not have separate local and global semantics for
738e5348 6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
90c14f0c 6206 if (htab->root.target_os != is_vxworks && local_p)
b49e97c9 6207 {
5c18022e 6208 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6209 symbol + addend, !was_local_p);
b49e97c9
TS
6210 if (value == MINUS_ONE)
6211 return bfd_reloc_outofrange;
6212 value
a8028dd0 6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6216 }
6217
6218 /* Fall through. */
6219
0f20cc35
DJ
6220 case R_MIPS_TLS_GD:
6221 case R_MIPS_TLS_GOTTPREL:
6222 case R_MIPS_TLS_LDM:
b49e97c9 6223 case R_MIPS_GOT_DISP:
d0f13682
CLT
6224 case R_MIPS16_TLS_GD:
6225 case R_MIPS16_TLS_GOTTPREL:
6226 case R_MIPS16_TLS_LDM:
df58fc94
RS
6227 case R_MICROMIPS_TLS_GD:
6228 case R_MICROMIPS_TLS_GOTTPREL:
6229 case R_MICROMIPS_TLS_LDM:
6230 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6231 value = g;
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6234
6235 case R_MIPS_GPREL32:
bce03d3d
AO
6236 value = (addend + symbol + gp0 - gp);
6237 if (!save_addend)
6238 value &= howto->dst_mask;
b49e97c9
TS
6239 break;
6240
6241 case R_MIPS_PC16:
bad36eac 6242 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6243 if (howto->partial_inplace)
6244 addend = _bfd_mips_elf_sign_extend (addend, 18);
6245
9d862524 6246 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
9d862524
MR
6249 if (*cross_mode_jump_p
6250 ? ((symbol + addend) & 3) != 1
6251 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6252 return bfd_reloc_outofrange;
6253
6254 value = symbol + addend - p;
538baf8b
AB
6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6257 value >>= howto->rightshift;
6258 value &= howto->dst_mask;
b49e97c9
TS
6259 break;
6260
c9775dde
MR
6261 case R_MIPS16_PC16_S1:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 17);
6264
6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6266 && (*cross_mode_jump_p
6267 ? ((symbol + addend) & 3) != 0
6268 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6269 return bfd_reloc_outofrange;
6270
6271 value = symbol + addend - p;
6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 overflowed_p = mips_elf_overflow_p (value, 17);
6274 value >>= howto->rightshift;
6275 value &= howto->dst_mask;
6276 break;
6277
7361da2c
AB
6278 case R_MIPS_PC21_S2:
6279 if (howto->partial_inplace)
6280 addend = _bfd_mips_elf_sign_extend (addend, 23);
6281
6282 if ((symbol + addend) & 3)
6283 return bfd_reloc_outofrange;
6284
6285 value = symbol + addend - p;
538baf8b
AB
6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6288 value >>= howto->rightshift;
6289 value &= howto->dst_mask;
6290 break;
6291
6292 case R_MIPS_PC26_S2:
6293 if (howto->partial_inplace)
6294 addend = _bfd_mips_elf_sign_extend (addend, 28);
6295
6296 if ((symbol + addend) & 3)
6297 return bfd_reloc_outofrange;
6298
6299 value = symbol + addend - p;
538baf8b
AB
6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6302 value >>= howto->rightshift;
6303 value &= howto->dst_mask;
6304 break;
6305
6306 case R_MIPS_PC18_S3:
6307 if (howto->partial_inplace)
6308 addend = _bfd_mips_elf_sign_extend (addend, 21);
6309
6310 if ((symbol + addend) & 7)
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MIPS_PC19_S2:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 21);
6323
6324 if ((symbol + addend) & 3)
6325 return bfd_reloc_outofrange;
6326
6327 value = symbol + addend - p;
538baf8b
AB
6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6330 value >>= howto->rightshift;
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCHI16:
6335 value = mips_elf_high (symbol + addend - p);
7361da2c
AB
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MIPS_PCLO16:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 16);
6342 value = symbol + addend - p;
6343 value &= howto->dst_mask;
6344 break;
6345
df58fc94 6346 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6349
6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 && (*cross_mode_jump_p
6352 ? ((symbol + addend + 2) & 3) != 0
6353 : ((symbol + addend + 2) & 1) == 0))
6354 return bfd_reloc_outofrange;
6355
c3eb94b4 6356 value = symbol + addend - p;
538baf8b
AB
6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6359 value >>= howto->rightshift;
6360 value &= howto->dst_mask;
6361 break;
6362
6363 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6364 if (howto->partial_inplace)
6365 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6366
6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 && (*cross_mode_jump_p
6369 ? ((symbol + addend + 2) & 3) != 0
6370 : ((symbol + addend + 2) & 1) == 0))
6371 return bfd_reloc_outofrange;
6372
c3eb94b4 6373 value = symbol + addend - p;
538baf8b
AB
6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6376 value >>= howto->rightshift;
6377 value &= howto->dst_mask;
6378 break;
6379
6380 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6381 if (howto->partial_inplace)
6382 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6383
6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 && (*cross_mode_jump_p
6386 ? ((symbol + addend) & 3) != 0
6387 : ((symbol + addend) & 1) == 0))
6388 return bfd_reloc_outofrange;
6389
c3eb94b4 6390 value = symbol + addend - p;
538baf8b
AB
6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6393 value >>= howto->rightshift;
6394 value &= howto->dst_mask;
6395 break;
6396
6397 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6398 if (howto->partial_inplace)
6399 addend = _bfd_mips_elf_sign_extend (addend, 25);
6400 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6403 value >>= howto->rightshift;
6404 value &= howto->dst_mask;
6405 break;
6406
b49e97c9
TS
6407 case R_MIPS_GOT_HI16:
6408 case R_MIPS_CALL_HI16:
df58fc94
RS
6409 case R_MICROMIPS_GOT_HI16:
6410 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6414 value = g;
6415 value = mips_elf_high (value);
6416 value &= howto->dst_mask;
6417 break;
6418
6419 case R_MIPS_GOT_LO16:
6420 case R_MIPS_CALL_LO16:
df58fc94
RS
6421 case R_MICROMIPS_GOT_LO16:
6422 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6423 value = g & howto->dst_mask;
6424 break;
6425
6426 case R_MIPS_GOT_PAGE:
df58fc94 6427 case R_MICROMIPS_GOT_PAGE:
5c18022e 6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6429 if (value == MINUS_ONE)
6430 return bfd_reloc_outofrange;
a8028dd0 6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6432 overflowed_p = mips_elf_overflow_p (value, 16);
6433 break;
6434
6435 case R_MIPS_GOT_OFST:
df58fc94 6436 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6437 if (local_p)
5c18022e 6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6439 else
6440 value = addend;
b49e97c9
TS
6441 overflowed_p = mips_elf_overflow_p (value, 16);
6442 break;
6443
6444 case R_MIPS_SUB:
df58fc94 6445 case R_MICROMIPS_SUB:
b49e97c9
TS
6446 value = symbol - addend;
6447 value &= howto->dst_mask;
6448 break;
6449
6450 case R_MIPS_HIGHER:
df58fc94 6451 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6452 value = mips_elf_higher (addend + symbol);
6453 value &= howto->dst_mask;
6454 break;
6455
6456 case R_MIPS_HIGHEST:
df58fc94 6457 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6458 value = mips_elf_highest (addend + symbol);
6459 value &= howto->dst_mask;
6460 break;
6461
6462 case R_MIPS_SCN_DISP:
df58fc94 6463 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6464 value = symbol + addend - sec->output_offset;
6465 value &= howto->dst_mask;
6466 break;
6467
b49e97c9 6468 case R_MIPS_JALR:
df58fc94 6469 case R_MICROMIPS_JALR:
1367d393
ILT
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6472 when the symbol does not resolve locally. */
6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6474 return bfd_reloc_continue;
c1556ecd
MR
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p)
6477 return bfd_reloc_continue;
1367d393 6478 value = symbol + addend;
c1556ecd
MR
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 return bfd_reloc_continue;
1367d393 6482 break;
b49e97c9 6483
1367d393 6484 case R_MIPS_PJUMP:
b49e97c9
TS
6485 case R_MIPS_GNU_VTINHERIT:
6486 case R_MIPS_GNU_VTENTRY:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue;
6489
6490 default:
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported;
6493 }
6494
6495 /* Store the VALUE for our caller. */
6496 *valuep = value;
6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6498}
6499
b49e97c9
TS
6500/* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
68ffbac6 6503 relocation applies.
38a7df63 6504 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6506
b34976b6 6507 Returns FALSE if anything goes wrong. */
b49e97c9 6508
b34976b6 6509static bfd_boolean
9719ad41
RS
6510mips_elf_perform_relocation (struct bfd_link_info *info,
6511 reloc_howto_type *howto,
6512 const Elf_Internal_Rela *relocation,
6513 bfd_vma value, bfd *input_bfd,
6514 asection *input_section, bfd_byte *contents,
38a7df63 6515 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6516{
6517 bfd_vma x;
6518 bfd_byte *location;
6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6520
6521 /* Figure out where the relocation is occurring. */
6522 location = contents + relocation->r_offset;
6523
df58fc94 6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6525
b49e97c9
TS
6526 /* Obtain the current value. */
6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6528
6529 /* Clear the field we are setting. */
6530 x &= ~howto->dst_mask;
6531
b49e97c9
TS
6532 /* Set the field. */
6533 x |= (value & howto->dst_mask);
6534
a6ebf616 6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6536 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6537 {
6538 bfd_vma opcode = x >> 26;
6539
6540 if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 : opcode == 0x1d)
6543 {
6544 info->callbacks->einfo
2c1c9679 6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6546 input_bfd, input_section, relocation->r_offset);
6547 return TRUE;
6548 }
6549 }
38a7df63 6550 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6551 {
b34976b6 6552 bfd_boolean ok;
b49e97c9
TS
6553 bfd_vma opcode = x >> 26;
6554 bfd_vma jalx_opcode;
6555
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type == R_MIPS16_26)
6558 {
6559 ok = ((opcode == 0x6) || (opcode == 0x7));
6560 jalx_opcode = 0x7;
6561 }
df58fc94
RS
6562 else if (r_type == R_MICROMIPS_26_S1)
6563 {
6564 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 jalx_opcode = 0x3c;
6566 }
b49e97c9
TS
6567 else
6568 {
6569 ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 jalx_opcode = 0x1d;
6571 }
6572
3bdf9505 6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6574 convert J or JALS to JALX. */
b49e97c9
TS
6575 if (!ok)
6576 {
5f68df25 6577 info->callbacks->einfo
2c1c9679 6578 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd, input_section, relocation->r_offset);
6581 return TRUE;
b49e97c9
TS
6582 }
6583
6584 /* Make this the JALX opcode. */
2365f8d7 6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
b49e97c9 6586 }
9d862524
MR
6587 else if (cross_mode_jump_p && b_reloc_p (r_type))
6588 {
a6ebf616
MR
6589 bfd_boolean ok = FALSE;
6590 bfd_vma opcode = x >> 16;
6591 bfd_vma jalx_opcode = 0;
70e65ca8 6592 bfd_vma sign_bit = 0;
a6ebf616
MR
6593 bfd_vma addr;
6594 bfd_vma dest;
6595
6596 if (r_type == R_MICROMIPS_PC16_S1)
6597 {
6598 ok = opcode == 0x4060;
6599 jalx_opcode = 0x3c;
70e65ca8 6600 sign_bit = 0x10000;
a6ebf616
MR
6601 value <<= 1;
6602 }
6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6604 {
6605 ok = opcode == 0x411;
6606 jalx_opcode = 0x1d;
70e65ca8 6607 sign_bit = 0x20000;
a6ebf616
MR
6608 value <<= 2;
6609 }
6610
8b10b0b3 6611 if (ok && !bfd_link_pic (info))
a6ebf616 6612 {
8b10b0b3
MR
6613 addr = (input_section->output_section->vma
6614 + input_section->output_offset
6615 + relocation->r_offset
6616 + 4);
70e65ca8
MR
6617 dest = (addr
6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6619
8b10b0b3
MR
6620 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6621 {
6622 info->callbacks->einfo
2c1c9679 6623 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6624 "to JALX: relocation out of range\n"),
6625 input_bfd, input_section, relocation->r_offset);
6626 return TRUE;
6627 }
a6ebf616 6628
8b10b0b3
MR
6629 /* Make this the JALX opcode. */
6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6631 }
6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6633 {
6634 info->callbacks->einfo
2c1c9679 6635 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6636 input_bfd, input_section, relocation->r_offset);
6637 return TRUE;
6638 }
9d862524 6639 }
b49e97c9 6640
38a7df63
CF
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642 range. */
0e1862bb 6643 if (!bfd_link_relocatable (info)
38a7df63 6644 && !cross_mode_jump_p
cd8d5a82
CF
6645 && ((JAL_TO_BAL_P (input_bfd)
6646 && r_type == R_MIPS_26
0e392101 6647 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6648 || (JALR_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_JALR
0e392101 6650 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6651 || (JR_TO_B_P (input_bfd)
6652 && r_type == R_MIPS_JALR
0e392101 6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6654 {
6655 bfd_vma addr;
6656 bfd_vma dest;
6657 bfd_signed_vma off;
6658
6659 addr = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + relocation->r_offset
6662 + 4);
6663 if (r_type == R_MIPS_26)
6664 dest = (value << 2) | ((addr >> 28) << 28);
6665 else
6666 dest = value;
6667 off = dest - addr;
6668 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6669 {
0e392101 6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6672 else
6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6674 }
1367d393
ILT
6675 }
6676
b49e97c9 6677 /* Put the value into the output. */
98e10ffa 6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
d6f16593 6679
0e1862bb 6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6681 location);
d6f16593 6682
b34976b6 6683 return TRUE;
b49e97c9 6684}
b49e97c9 6685\f
b49e97c9
TS
6686/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6690
b34976b6 6691static bfd_boolean
9719ad41
RS
6692mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 struct bfd_link_info *info,
6694 const Elf_Internal_Rela *rel,
6695 struct mips_elf_link_hash_entry *h,
6696 asection *sec, bfd_vma symbol,
6697 bfd_vma *addendp, asection *input_section)
b49e97c9 6698{
947216bf 6699 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6700 asection *sreloc;
6701 bfd *dynobj;
6702 int r_type;
5d41f0b6
RS
6703 long indx;
6704 bfd_boolean defined_p;
0a44bf69 6705 struct mips_elf_link_hash_table *htab;
b49e97c9 6706
0a44bf69 6707 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6708 BFD_ASSERT (htab != NULL);
6709
b49e97c9
TS
6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6712 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6713 BFD_ASSERT (sreloc != NULL);
6714 BFD_ASSERT (sreloc->contents != NULL);
6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6716 < sreloc->size);
b49e97c9 6717
b49e97c9
TS
6718 outrel[0].r_offset =
6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6720 if (ABI_64_P (output_bfd))
6721 {
6722 outrel[1].r_offset =
6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724 outrel[2].r_offset =
6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6726 }
b49e97c9 6727
c5ae1840 6728 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6729 /* The relocation field has been deleted. */
5d41f0b6
RS
6730 return TRUE;
6731
6732 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6733 {
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6737 *addendp += symbol;
5d41f0b6 6738 return TRUE;
0d591ff7 6739 }
b49e97c9 6740
5d41f0b6
RS
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
d4a77f3f 6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6744 {
90c14f0c
L
6745 BFD_ASSERT (htab->root.target_os == is_vxworks
6746 || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6747 indx = h->root.dynindx;
6748 if (SGI_COMPAT (output_bfd))
6749 defined_p = h->root.def_regular;
6750 else
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6755 defined_p = FALSE;
6756 }
b49e97c9
TS
6757 else
6758 {
5d41f0b6
RS
6759 if (sec != NULL && bfd_is_abs_section (sec))
6760 indx = 0;
6761 else if (sec == NULL || sec->owner == NULL)
fdd07405 6762 {
5d41f0b6
RS
6763 bfd_set_error (bfd_error_bad_value);
6764 return FALSE;
b49e97c9
TS
6765 }
6766 else
6767 {
5d41f0b6 6768 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6769 if (indx == 0)
6770 {
6771 asection *osec = htab->root.text_index_section;
6772 indx = elf_section_data (osec)->dynindx;
6773 }
5d41f0b6
RS
6774 if (indx == 0)
6775 abort ();
b49e97c9
TS
6776 }
6777
5d41f0b6
RS
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6788 as well. */
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd))
6794 indx = 0;
6795 defined_p = TRUE;
b49e97c9
TS
6796 }
6797
5d41f0b6
RS
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p && r_type != R_MIPS_REL32)
6803 *addendp += symbol;
6804
90c14f0c 6805 if (htab->root.target_os == is_vxworks)
0a44bf69
RS
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808 else
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 R_MIPS_REL32);
6813
5d41f0b6
RS
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 ABI_64_P (output_bfd)
6828 ? R_MIPS_64
6829 : R_MIPS_NONE);
6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6831
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel[0].r_offset += (input_section->output_section->vma
6835 + input_section->output_offset);
6836 outrel[1].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[2].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6840
b49e97c9
TS
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd))
6845 {
6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 (output_bfd, &outrel[0],
6848 (sreloc->contents
6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6850 }
90c14f0c 6851 else if (htab->root.target_os == is_vxworks)
0a44bf69
RS
6852 {
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel[0].r_addend = *addendp;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents
6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6859 }
b49e97c9 6860 else
947216bf
AM
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd, &outrel[0],
6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6864
b49e97c9
TS
6865 /* We've now added another relocation. */
6866 ++sreloc->reloc_count;
6867
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871 |= SHF_WRITE;
6872
6873 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6874 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6875 {
3d4d4302 6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6877 bfd_byte *cr;
6878
6879 if (scpt)
6880 {
6881 Elf32_crinfo cptrel;
6882
6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 cptrel.vaddr = (rel->r_offset
6885 + input_section->output_section->vma
6886 + input_section->output_offset);
6887 if (r_type == R_MIPS_REL32)
6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 else
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 mips_elf_set_cr_dist2to (cptrel, 0);
6892 cptrel.konst = *addendp;
6893
6894 cr = (scpt->contents
6895 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6896 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 ((Elf32_External_crinfo *) cr
6899 + scpt->reloc_count));
6900 ++scpt->reloc_count;
6901 }
6902 }
6903
943284cc
DJ
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6906 DT_TEXTREL tag. */
6907 if (MIPS_ELF_READONLY_SECTION (input_section))
6908 info->flags |= DF_TEXTREL;
6909
b34976b6 6910 return TRUE;
b49e97c9
TS
6911}
6912\f
b49e97c9
TS
6913/* Return the MACH for a MIPS e_flags value. */
6914
6915unsigned long
9719ad41 6916_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6917{
6918 switch (flags & EF_MIPS_MACH)
6919 {
6920 case E_MIPS_MACH_3900:
6921 return bfd_mach_mips3900;
6922
6923 case E_MIPS_MACH_4010:
6924 return bfd_mach_mips4010;
6925
6926 case E_MIPS_MACH_4100:
6927 return bfd_mach_mips4100;
6928
6929 case E_MIPS_MACH_4111:
6930 return bfd_mach_mips4111;
6931
00707a0e
RS
6932 case E_MIPS_MACH_4120:
6933 return bfd_mach_mips4120;
6934
b49e97c9
TS
6935 case E_MIPS_MACH_4650:
6936 return bfd_mach_mips4650;
6937
00707a0e
RS
6938 case E_MIPS_MACH_5400:
6939 return bfd_mach_mips5400;
6940
6941 case E_MIPS_MACH_5500:
6942 return bfd_mach_mips5500;
6943
e407c74b
NC
6944 case E_MIPS_MACH_5900:
6945 return bfd_mach_mips5900;
6946
0d2e43ed
ILT
6947 case E_MIPS_MACH_9000:
6948 return bfd_mach_mips9000;
6949
b49e97c9
TS
6950 case E_MIPS_MACH_SB1:
6951 return bfd_mach_mips_sb1;
6952
350cc38d
MS
6953 case E_MIPS_MACH_LS2E:
6954 return bfd_mach_mips_loongson_2e;
6955
6956 case E_MIPS_MACH_LS2F:
6957 return bfd_mach_mips_loongson_2f;
6958
ac8cb70f
CX
6959 case E_MIPS_MACH_GS464:
6960 return bfd_mach_mips_gs464;
fd503541 6961
bd782c07
CX
6962 case E_MIPS_MACH_GS464E:
6963 return bfd_mach_mips_gs464e;
6964
9108bc33
CX
6965 case E_MIPS_MACH_GS264E:
6966 return bfd_mach_mips_gs264e;
6967
2c629856
N
6968 case E_MIPS_MACH_OCTEON3:
6969 return bfd_mach_mips_octeon3;
6970
432233b3
AP
6971 case E_MIPS_MACH_OCTEON2:
6972 return bfd_mach_mips_octeon2;
6973
6f179bd0
AN
6974 case E_MIPS_MACH_OCTEON:
6975 return bfd_mach_mips_octeon;
6976
52b6b6b9
JM
6977 case E_MIPS_MACH_XLR:
6978 return bfd_mach_mips_xlr;
6979
38bf472a
MR
6980 case E_MIPS_MACH_IAMR2:
6981 return bfd_mach_mips_interaptiv_mr2;
6982
b49e97c9
TS
6983 default:
6984 switch (flags & EF_MIPS_ARCH)
6985 {
6986 default:
6987 case E_MIPS_ARCH_1:
6988 return bfd_mach_mips3000;
b49e97c9
TS
6989
6990 case E_MIPS_ARCH_2:
6991 return bfd_mach_mips6000;
b49e97c9
TS
6992
6993 case E_MIPS_ARCH_3:
6994 return bfd_mach_mips4000;
b49e97c9
TS
6995
6996 case E_MIPS_ARCH_4:
6997 return bfd_mach_mips8000;
b49e97c9
TS
6998
6999 case E_MIPS_ARCH_5:
7000 return bfd_mach_mips5;
b49e97c9
TS
7001
7002 case E_MIPS_ARCH_32:
7003 return bfd_mach_mipsisa32;
b49e97c9
TS
7004
7005 case E_MIPS_ARCH_64:
7006 return bfd_mach_mipsisa64;
af7ee8bf
CD
7007
7008 case E_MIPS_ARCH_32R2:
7009 return bfd_mach_mipsisa32r2;
5f74bc13
CD
7010
7011 case E_MIPS_ARCH_64R2:
7012 return bfd_mach_mipsisa64r2;
7361da2c
AB
7013
7014 case E_MIPS_ARCH_32R6:
7015 return bfd_mach_mipsisa32r6;
7016
7017 case E_MIPS_ARCH_64R6:
7018 return bfd_mach_mipsisa64r6;
b49e97c9
TS
7019 }
7020 }
7021
7022 return 0;
7023}
7024
7025/* Return printable name for ABI. */
7026
7027static INLINE char *
9719ad41 7028elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
7029{
7030 flagword flags;
7031
7032 flags = elf_elfheader (abfd)->e_flags;
7033 switch (flags & EF_MIPS_ABI)
7034 {
7035 case 0:
7036 if (ABI_N32_P (abfd))
7037 return "N32";
7038 else if (ABI_64_P (abfd))
7039 return "64";
7040 else
7041 return "none";
7042 case E_MIPS_ABI_O32:
7043 return "O32";
7044 case E_MIPS_ABI_O64:
7045 return "O64";
7046 case E_MIPS_ABI_EABI32:
7047 return "EABI32";
7048 case E_MIPS_ABI_EABI64:
7049 return "EABI64";
7050 default:
7051 return "unknown abi";
7052 }
7053}
7054\f
7055/* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060static asection mips_elf_scom_section;
7f3a18cf
AM
7061static const asymbol mips_elf_scom_symbol =
7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section);
7063static asection mips_elf_scom_section =
7064 BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol,
7065 ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA);
b49e97c9
TS
7066
7067/* MIPS ELF also uses an acommon section, which represents an
7068 allocated common symbol which may be overridden by a
7069 definition in a shared library. */
7070static asection mips_elf_acom_section;
7f3a18cf
AM
7071static const asymbol mips_elf_acom_symbol =
7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section);
7073static asection mips_elf_acom_section =
7074 BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol,
7075 ".acommon", 0, SEC_ALLOC);
b49e97c9 7076
738e5348 7077/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
7078
7079void
9719ad41 7080_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
7081{
7082 elf_symbol_type *elfsym;
7083
738e5348 7084 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
7085 elfsym = (elf_symbol_type *) asym;
7086 switch (elfsym->internal_elf_sym.st_shndx)
7087 {
7088 case SHN_MIPS_ACOMMON:
7089 /* This section is used in a dynamically linked executable file.
7090 It is an allocated common section. The dynamic linker can
7091 either resolve these symbols to something in a shared
7092 library, or it can just leave them here. For our purposes,
7093 we can consider these symbols to be in a new section. */
b49e97c9
TS
7094 asym->section = &mips_elf_acom_section;
7095 break;
7096
7097 case SHN_COMMON:
7098 /* Common symbols less than the GP size are automatically
7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7100 if (asym->value > elf_gp_size (abfd)
b59eed79 7101 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
7102 || IRIX_COMPAT (abfd) == ict_irix6)
7103 break;
7104 /* Fall through. */
7105 case SHN_MIPS_SCOMMON:
b49e97c9
TS
7106 asym->section = &mips_elf_scom_section;
7107 asym->value = elfsym->internal_elf_sym.st_size;
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 asym->section = bfd_und_section_ptr;
7112 break;
7113
b49e97c9 7114 case SHN_MIPS_TEXT:
00b4930b
TS
7115 {
7116 asection *section = bfd_get_section_by_name (abfd, ".text");
7117
00b4930b
TS
7118 if (section != NULL)
7119 {
7120 asym->section = section;
7121 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 7122 to the base of the .text section. So subtract the section
00b4930b
TS
7123 base address to make it an offset. */
7124 asym->value -= section->vma;
7125 }
7126 }
b49e97c9
TS
7127 break;
7128
7129 case SHN_MIPS_DATA:
00b4930b
TS
7130 {
7131 asection *section = bfd_get_section_by_name (abfd, ".data");
7132
00b4930b
TS
7133 if (section != NULL)
7134 {
7135 asym->section = section;
7136 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 7137 to the base of the .data section. So subtract the section
00b4930b
TS
7138 base address to make it an offset. */
7139 asym->value -= section->vma;
7140 }
7141 }
b49e97c9 7142 break;
b49e97c9 7143 }
738e5348 7144
df58fc94
RS
7145 /* If this is an odd-valued function symbol, assume it's a MIPS16
7146 or microMIPS one. */
738e5348
RS
7147 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7148 && (asym->value & 1) != 0)
7149 {
7150 asym->value--;
e8faf7d1 7151 if (MICROMIPS_P (abfd))
df58fc94
RS
7152 elfsym->internal_elf_sym.st_other
7153 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7154 else
7155 elfsym->internal_elf_sym.st_other
7156 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7157 }
b49e97c9
TS
7158}
7159\f
8c946ed5
RS
7160/* Implement elf_backend_eh_frame_address_size. This differs from
7161 the default in the way it handles EABI64.
7162
7163 EABI64 was originally specified as an LP64 ABI, and that is what
7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7165 historically accepted the combination of -mabi=eabi and -mlong32,
7166 and this ILP32 variation has become semi-official over time.
7167 Both forms use elf32 and have pointer-sized FDE addresses.
7168
7169 If an EABI object was generated by GCC 4.0 or above, it will have
7170 an empty .gcc_compiled_longXX section, where XX is the size of longs
7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7172 have no special marking to distinguish them from LP64 objects.
7173
7174 We don't want users of the official LP64 ABI to be punished for the
7175 existence of the ILP32 variant, but at the same time, we don't want
7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177 We therefore take the following approach:
7178
7179 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7180 determine the pointer size.
8c946ed5
RS
7181
7182 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7184
7185 - Otherwise punt.
7186
7187 The second check is enough to detect LP64 objects generated by pre-4.0
7188 compilers because, in the kind of output generated by those compilers,
7189 the first relocation will be associated with either a CIE personality
7190 routine or an FDE start address. Furthermore, the compilers never
7191 used a special (non-pointer) encoding for this ABI.
7192
7193 Checking the relocation type should also be safe because there is no
7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7195 did so. */
7196
7197unsigned int
76c20d54 7198_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7199{
7200 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7201 return 8;
7202 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7203 {
7204 bfd_boolean long32_p, long64_p;
7205
7206 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7207 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7208 if (long32_p && long64_p)
7209 return 0;
7210 if (long32_p)
7211 return 4;
7212 if (long64_p)
7213 return 8;
7214
7215 if (sec->reloc_count > 0
7216 && elf_section_data (sec)->relocs != NULL
7217 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7218 == R_MIPS_64))
7219 return 8;
7220
7221 return 0;
7222 }
7223 return 4;
7224}
7225\f
174fd7f9
RS
7226/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227 relocations against two unnamed section symbols to resolve to the
7228 same address. For example, if we have code like:
7229
7230 lw $4,%got_disp(.data)($gp)
7231 lw $25,%got_disp(.text)($gp)
7232 jalr $25
7233
7234 then the linker will resolve both relocations to .data and the program
7235 will jump there rather than to .text.
7236
7237 We can work around this problem by giving names to local section symbols.
7238 This is also what the MIPSpro tools do. */
7239
7240bfd_boolean
7241_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7242{
c77cb2a0 7243 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
174fd7f9
RS
7244}
7245\f
b49e97c9
TS
7246/* Work over a section just before writing it out. This routine is
7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7249 a better way. */
7250
b34976b6 7251bfd_boolean
9719ad41 7252_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7253{
7254 if (hdr->sh_type == SHT_MIPS_REGINFO
7255 && hdr->sh_size > 0)
7256 {
7257 bfd_byte buf[4];
7258
b49e97c9
TS
7259 BFD_ASSERT (hdr->contents == NULL);
7260
2d6dda71
MR
7261 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7262 {
7263 _bfd_error_handler
2c1c9679 7264 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7265 "expected %" PRIu64 ", got %" PRIu64),
7266 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7267 (uint64_t) hdr->sh_size);
2d6dda71
MR
7268 bfd_set_error (bfd_error_bad_value);
7269 return FALSE;
7270 }
7271
b49e97c9
TS
7272 if (bfd_seek (abfd,
7273 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7274 SEEK_SET) != 0)
b34976b6 7275 return FALSE;
b49e97c9 7276 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7277 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7278 return FALSE;
b49e97c9
TS
7279 }
7280
7281 if (hdr->sh_type == SHT_MIPS_OPTIONS
7282 && hdr->bfd_section != NULL
f0abc2a1
AM
7283 && mips_elf_section_data (hdr->bfd_section) != NULL
7284 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7285 {
7286 bfd_byte *contents, *l, *lend;
7287
f0abc2a1
AM
7288 /* We stored the section contents in the tdata field in the
7289 set_section_contents routine. We save the section contents
7290 so that we don't have to read them again.
b49e97c9
TS
7291 At this point we know that elf_gp is set, so we can look
7292 through the section contents to see if there is an
7293 ODK_REGINFO structure. */
7294
f0abc2a1 7295 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7296 l = contents;
7297 lend = contents + hdr->sh_size;
7298 while (l + sizeof (Elf_External_Options) <= lend)
7299 {
7300 Elf_Internal_Options intopt;
7301
7302 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7303 &intopt);
1bc8074d
MR
7304 if (intopt.size < sizeof (Elf_External_Options))
7305 {
4eca0228 7306 _bfd_error_handler
695344c0 7307 /* xgettext:c-format */
2c1c9679 7308 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7309 " its header"),
1bc8074d
MR
7310 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7311 break;
7312 }
b49e97c9
TS
7313 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7314 {
7315 bfd_byte buf[8];
7316
7317 if (bfd_seek (abfd,
7318 (hdr->sh_offset
7319 + (l - contents)
7320 + sizeof (Elf_External_Options)
7321 + (sizeof (Elf64_External_RegInfo) - 8)),
7322 SEEK_SET) != 0)
b34976b6 7323 return FALSE;
b49e97c9 7324 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7325 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7326 return FALSE;
b49e97c9
TS
7327 }
7328 else if (intopt.kind == ODK_REGINFO)
7329 {
7330 bfd_byte buf[4];
7331
7332 if (bfd_seek (abfd,
7333 (hdr->sh_offset
7334 + (l - contents)
7335 + sizeof (Elf_External_Options)
7336 + (sizeof (Elf32_External_RegInfo) - 4)),
7337 SEEK_SET) != 0)
b34976b6 7338 return FALSE;
b49e97c9 7339 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7340 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7341 return FALSE;
b49e97c9
TS
7342 }
7343 l += intopt.size;
7344 }
7345 }
7346
7347 if (hdr->bfd_section != NULL)
7348 {
fd361982 7349 const char *name = bfd_section_name (hdr->bfd_section);
b49e97c9 7350
2d0f9ad9
JM
7351 /* .sbss is not handled specially here because the GNU/Linux
7352 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 changing it back to NOBITS breaks the binary. The entry in
7354 _bfd_mips_elf_special_sections will ensure the correct flags
7355 are set on .sbss if BFD creates it without reading it from an
7356 input file, and without special handling here the flags set
7357 on it in an input file will be followed. */
b49e97c9
TS
7358 if (strcmp (name, ".sdata") == 0
7359 || strcmp (name, ".lit8") == 0
7360 || strcmp (name, ".lit4") == 0)
fd6f9d17 7361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7362 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7363 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7364 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7365 hdr->sh_flags = 0;
b49e97c9
TS
7366 else if (strcmp (name, ".rtproc") == 0)
7367 {
7368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7369 {
7370 unsigned int adjust;
7371
7372 adjust = hdr->sh_size % hdr->sh_addralign;
7373 if (adjust != 0)
7374 hdr->sh_size += hdr->sh_addralign - adjust;
7375 }
7376 }
7377 }
7378
b34976b6 7379 return TRUE;
b49e97c9
TS
7380}
7381
7382/* Handle a MIPS specific section when reading an object file. This
7383 is called when elfcode.h finds a section with an unknown type.
bf577467 7384 This routine supports both the 32-bit and 64-bit ELF ABI. */
b49e97c9 7385
b34976b6 7386bfd_boolean
6dc132d9
L
7387_bfd_mips_elf_section_from_shdr (bfd *abfd,
7388 Elf_Internal_Shdr *hdr,
7389 const char *name,
7390 int shindex)
b49e97c9
TS
7391{
7392 flagword flags = 0;
7393
7394 /* There ought to be a place to keep ELF backend specific flags, but
7395 at the moment there isn't one. We just keep track of the
7396 sections by their name, instead. Fortunately, the ABI gives
7397 suggested names for all the MIPS specific sections, so we will
7398 probably get away with this. */
7399 switch (hdr->sh_type)
7400 {
7401 case SHT_MIPS_LIBLIST:
7402 if (strcmp (name, ".liblist") != 0)
b34976b6 7403 return FALSE;
b49e97c9
TS
7404 break;
7405 case SHT_MIPS_MSYM:
7406 if (strcmp (name, ".msym") != 0)
b34976b6 7407 return FALSE;
b49e97c9
TS
7408 break;
7409 case SHT_MIPS_CONFLICT:
7410 if (strcmp (name, ".conflict") != 0)
b34976b6 7411 return FALSE;
b49e97c9
TS
7412 break;
7413 case SHT_MIPS_GPTAB:
0112cd26 7414 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7415 return FALSE;
b49e97c9
TS
7416 break;
7417 case SHT_MIPS_UCODE:
7418 if (strcmp (name, ".ucode") != 0)
b34976b6 7419 return FALSE;
b49e97c9
TS
7420 break;
7421 case SHT_MIPS_DEBUG:
7422 if (strcmp (name, ".mdebug") != 0)
b34976b6 7423 return FALSE;
b49e97c9
TS
7424 flags = SEC_DEBUGGING;
7425 break;
7426 case SHT_MIPS_REGINFO:
7427 if (strcmp (name, ".reginfo") != 0
7428 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7429 return FALSE;
b49e97c9
TS
7430 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7431 break;
7432 case SHT_MIPS_IFACE:
7433 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7434 return FALSE;
b49e97c9
TS
7435 break;
7436 case SHT_MIPS_CONTENT:
0112cd26 7437 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7438 return FALSE;
b49e97c9
TS
7439 break;
7440 case SHT_MIPS_OPTIONS:
cc2e31b9 7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7442 return FALSE;
b49e97c9 7443 break;
351cdf24
MF
7444 case SHT_MIPS_ABIFLAGS:
7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7446 return FALSE;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
b49e97c9 7449 case SHT_MIPS_DWARF:
1b315056 7450 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7451 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7452 return FALSE;
b49e97c9
TS
7453 break;
7454 case SHT_MIPS_SYMBOL_LIB:
7455 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7456 return FALSE;
b49e97c9
TS
7457 break;
7458 case SHT_MIPS_EVENTS:
0112cd26
NC
7459 if (! CONST_STRNEQ (name, ".MIPS.events")
7460 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7461 return FALSE;
b49e97c9 7462 break;
f16a9783
MS
7463 case SHT_MIPS_XHASH:
7464 if (strcmp (name, ".MIPS.xhash") != 0)
7465 return FALSE;
b49e97c9 7466 default:
cc2e31b9 7467 break;
b49e97c9
TS
7468 }
7469
6dc132d9 7470 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7471 return FALSE;
b49e97c9 7472
bf577467
AM
7473 if (hdr->sh_flags & SHF_MIPS_GPREL)
7474 flags |= SEC_SMALL_DATA;
7475
b49e97c9
TS
7476 if (flags)
7477 {
fd361982
AM
7478 if (!bfd_set_section_flags (hdr->bfd_section,
7479 (bfd_section_flags (hdr->bfd_section)
7480 | flags)))
b34976b6 7481 return FALSE;
b49e97c9
TS
7482 }
7483
351cdf24
MF
7484 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7485 {
7486 Elf_External_ABIFlags_v0 ext;
7487
7488 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7489 &ext, 0, sizeof ext))
7490 return FALSE;
7491 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7492 &mips_elf_tdata (abfd)->abiflags);
7493 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7494 return FALSE;
7495 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7496 }
7497
b49e97c9
TS
7498 /* FIXME: We should record sh_info for a .gptab section. */
7499
7500 /* For a .reginfo section, set the gp value in the tdata information
7501 from the contents of this section. We need the gp value while
7502 processing relocs, so we just get it now. The .reginfo section
7503 is not used in the 64-bit MIPS ELF ABI. */
7504 if (hdr->sh_type == SHT_MIPS_REGINFO)
7505 {
7506 Elf32_External_RegInfo ext;
7507 Elf32_RegInfo s;
7508
9719ad41
RS
7509 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7510 &ext, 0, sizeof ext))
b34976b6 7511 return FALSE;
b49e97c9
TS
7512 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7513 elf_gp (abfd) = s.ri_gp_value;
7514 }
7515
7516 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7517 set the gp value based on what we find. We may see both
7518 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7519 they should agree. */
7520 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7521 {
7522 bfd_byte *contents, *l, *lend;
7523
9719ad41 7524 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7525 if (contents == NULL)
b34976b6 7526 return FALSE;
b49e97c9 7527 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7528 0, hdr->sh_size))
b49e97c9
TS
7529 {
7530 free (contents);
b34976b6 7531 return FALSE;
b49e97c9
TS
7532 }
7533 l = contents;
7534 lend = contents + hdr->sh_size;
7535 while (l + sizeof (Elf_External_Options) <= lend)
7536 {
7537 Elf_Internal_Options intopt;
7538
7539 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7540 &intopt);
1bc8074d
MR
7541 if (intopt.size < sizeof (Elf_External_Options))
7542 {
4eca0228 7543 _bfd_error_handler
695344c0 7544 /* xgettext:c-format */
2c1c9679 7545 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7546 " its header"),
1bc8074d
MR
7547 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7548 break;
7549 }
b49e97c9
TS
7550 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7551 {
7552 Elf64_Internal_RegInfo intreg;
7553
7554 bfd_mips_elf64_swap_reginfo_in
7555 (abfd,
7556 ((Elf64_External_RegInfo *)
7557 (l + sizeof (Elf_External_Options))),
7558 &intreg);
7559 elf_gp (abfd) = intreg.ri_gp_value;
7560 }
7561 else if (intopt.kind == ODK_REGINFO)
7562 {
7563 Elf32_RegInfo intreg;
7564
7565 bfd_mips_elf32_swap_reginfo_in
7566 (abfd,
7567 ((Elf32_External_RegInfo *)
7568 (l + sizeof (Elf_External_Options))),
7569 &intreg);
7570 elf_gp (abfd) = intreg.ri_gp_value;
7571 }
7572 l += intopt.size;
7573 }
7574 free (contents);
7575 }
7576
b34976b6 7577 return TRUE;
b49e97c9
TS
7578}
7579
7580/* Set the correct type for a MIPS ELF section. We do this by the
7581 section name, which is a hack, but ought to work. This routine is
7582 used by both the 32-bit and the 64-bit ABI. */
7583
b34976b6 7584bfd_boolean
9719ad41 7585_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7586{
fd361982 7587 const char *name = bfd_section_name (sec);
b49e97c9
TS
7588
7589 if (strcmp (name, ".liblist") == 0)
7590 {
7591 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7592 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7593 /* The sh_link field is set in final_write_processing. */
7594 }
7595 else if (strcmp (name, ".conflict") == 0)
7596 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7597 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7598 {
7599 hdr->sh_type = SHT_MIPS_GPTAB;
7600 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7601 /* The sh_info field is set in final_write_processing. */
7602 }
7603 else if (strcmp (name, ".ucode") == 0)
7604 hdr->sh_type = SHT_MIPS_UCODE;
7605 else if (strcmp (name, ".mdebug") == 0)
7606 {
7607 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7608 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7609 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7610 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7611 hdr->sh_entsize = 0;
7612 else
7613 hdr->sh_entsize = 1;
7614 }
7615 else if (strcmp (name, ".reginfo") == 0)
7616 {
7617 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7618 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7619 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7620 if (SGI_COMPAT (abfd))
7621 {
7622 if ((abfd->flags & DYNAMIC) != 0)
7623 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7624 else
7625 hdr->sh_entsize = 1;
7626 }
7627 else
7628 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7629 }
7630 else if (SGI_COMPAT (abfd)
7631 && (strcmp (name, ".hash") == 0
7632 || strcmp (name, ".dynamic") == 0
7633 || strcmp (name, ".dynstr") == 0))
7634 {
7635 if (SGI_COMPAT (abfd))
7636 hdr->sh_entsize = 0;
7637#if 0
8dc1a139 7638 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7639 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7640#endif
7641 }
7642 else if (strcmp (name, ".got") == 0
7643 || strcmp (name, ".srdata") == 0
7644 || strcmp (name, ".sdata") == 0
7645 || strcmp (name, ".sbss") == 0
7646 || strcmp (name, ".lit4") == 0
7647 || strcmp (name, ".lit8") == 0)
7648 hdr->sh_flags |= SHF_MIPS_GPREL;
7649 else if (strcmp (name, ".MIPS.interfaces") == 0)
7650 {
7651 hdr->sh_type = SHT_MIPS_IFACE;
7652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7653 }
0112cd26 7654 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7655 {
7656 hdr->sh_type = SHT_MIPS_CONTENT;
7657 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7658 /* The sh_info field is set in final_write_processing. */
7659 }
cc2e31b9 7660 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7661 {
7662 hdr->sh_type = SHT_MIPS_OPTIONS;
7663 hdr->sh_entsize = 1;
7664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7665 }
351cdf24
MF
7666 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7667 {
7668 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7669 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7670 }
1b315056 7671 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7672 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7673 {
7674 hdr->sh_type = SHT_MIPS_DWARF;
7675
7676 /* Irix facilities such as libexc expect a single .debug_frame
7677 per executable, the system ones have NOSTRIP set and the linker
7678 doesn't merge sections with different flags so ... */
7679 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7680 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7681 }
b49e97c9
TS
7682 else if (strcmp (name, ".MIPS.symlib") == 0)
7683 {
7684 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7685 /* The sh_link and sh_info fields are set in
07d6d2b8 7686 final_write_processing. */
b49e97c9 7687 }
0112cd26
NC
7688 else if (CONST_STRNEQ (name, ".MIPS.events")
7689 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7690 {
7691 hdr->sh_type = SHT_MIPS_EVENTS;
7692 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7693 /* The sh_link field is set in final_write_processing. */
7694 }
7695 else if (strcmp (name, ".msym") == 0)
7696 {
7697 hdr->sh_type = SHT_MIPS_MSYM;
7698 hdr->sh_flags |= SHF_ALLOC;
7699 hdr->sh_entsize = 8;
7700 }
f16a9783
MS
7701 else if (strcmp (name, ".MIPS.xhash") == 0)
7702 {
7703 hdr->sh_type = SHT_MIPS_XHASH;
7704 hdr->sh_flags |= SHF_ALLOC;
7705 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7706 }
b49e97c9 7707
7a79a000
TS
7708 /* The generic elf_fake_sections will set up REL_HDR using the default
7709 kind of relocations. We used to set up a second header for the
7710 non-default kind of relocations here, but only NewABI would use
7711 these, and the IRIX ld doesn't like resulting empty RELA sections.
7712 Thus we create those header only on demand now. */
b49e97c9 7713
b34976b6 7714 return TRUE;
b49e97c9
TS
7715}
7716
7717/* Given a BFD section, try to locate the corresponding ELF section
7718 index. This is used by both the 32-bit and the 64-bit ABI.
7719 Actually, it's not clear to me that the 64-bit ABI supports these,
7720 but for non-PIC objects we will certainly want support for at least
7721 the .scommon section. */
7722
b34976b6 7723bfd_boolean
9719ad41
RS
7724_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7725 asection *sec, int *retval)
b49e97c9 7726{
fd361982 7727 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
b49e97c9
TS
7728 {
7729 *retval = SHN_MIPS_SCOMMON;
b34976b6 7730 return TRUE;
b49e97c9 7731 }
fd361982 7732 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
b49e97c9
TS
7733 {
7734 *retval = SHN_MIPS_ACOMMON;
b34976b6 7735 return TRUE;
b49e97c9 7736 }
b34976b6 7737 return FALSE;
b49e97c9
TS
7738}
7739\f
7740/* Hook called by the linker routine which adds symbols from an object
7741 file. We must handle the special MIPS section numbers here. */
7742
b34976b6 7743bfd_boolean
9719ad41 7744_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7745 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7746 flagword *flagsp ATTRIBUTE_UNUSED,
7747 asection **secp, bfd_vma *valp)
b49e97c9
TS
7748{
7749 if (SGI_COMPAT (abfd)
7750 && (abfd->flags & DYNAMIC) != 0
7751 && strcmp (*namep, "_rld_new_interface") == 0)
7752 {
8dc1a139 7753 /* Skip IRIX5 rld entry name. */
b49e97c9 7754 *namep = NULL;
b34976b6 7755 return TRUE;
b49e97c9
TS
7756 }
7757
eedecc07
DD
7758 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7759 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7760 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7761 a magic symbol resolved by the linker, we ignore this bogus definition
7762 of _gp_disp. New ABI objects do not suffer from this problem so this
7763 is not done for them. */
7764 if (!NEWABI_P(abfd)
7765 && (sym->st_shndx == SHN_ABS)
7766 && (strcmp (*namep, "_gp_disp") == 0))
7767 {
7768 *namep = NULL;
7769 return TRUE;
7770 }
7771
b49e97c9
TS
7772 switch (sym->st_shndx)
7773 {
7774 case SHN_COMMON:
7775 /* Common symbols less than the GP size are automatically
7776 treated as SHN_MIPS_SCOMMON symbols. */
7777 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7778 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7779 || IRIX_COMPAT (abfd) == ict_irix6)
7780 break;
7781 /* Fall through. */
7782 case SHN_MIPS_SCOMMON:
7783 *secp = bfd_make_section_old_way (abfd, ".scommon");
10885e24 7784 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
b49e97c9
TS
7785 *valp = sym->st_size;
7786 break;
7787
7788 case SHN_MIPS_TEXT:
7789 /* This section is used in a shared object. */
698600e4 7790 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7791 {
7792 asymbol *elf_text_symbol;
7793 asection *elf_text_section;
986f0783 7794 size_t amt = sizeof (asection);
b49e97c9
TS
7795
7796 elf_text_section = bfd_zalloc (abfd, amt);
7797 if (elf_text_section == NULL)
b34976b6 7798 return FALSE;
b49e97c9
TS
7799
7800 amt = sizeof (asymbol);
7801 elf_text_symbol = bfd_zalloc (abfd, amt);
7802 if (elf_text_symbol == NULL)
b34976b6 7803 return FALSE;
b49e97c9
TS
7804
7805 /* Initialize the section. */
7806
698600e4
AM
7807 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7808 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7809
7810 elf_text_section->symbol = elf_text_symbol;
698600e4 7811 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7812
7813 elf_text_section->name = ".text";
7814 elf_text_section->flags = SEC_NO_FLAGS;
7815 elf_text_section->output_section = NULL;
7816 elf_text_section->owner = abfd;
7817 elf_text_symbol->name = ".text";
7818 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7819 elf_text_symbol->section = elf_text_section;
7820 }
7821 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7822 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7823 so I took it out. */
698600e4 7824 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7825 break;
7826
7827 case SHN_MIPS_ACOMMON:
7828 /* Fall through. XXX Can we treat this as allocated data? */
7829 case SHN_MIPS_DATA:
7830 /* This section is used in a shared object. */
698600e4 7831 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7832 {
7833 asymbol *elf_data_symbol;
7834 asection *elf_data_section;
986f0783 7835 size_t amt = sizeof (asection);
b49e97c9
TS
7836
7837 elf_data_section = bfd_zalloc (abfd, amt);
7838 if (elf_data_section == NULL)
b34976b6 7839 return FALSE;
b49e97c9
TS
7840
7841 amt = sizeof (asymbol);
7842 elf_data_symbol = bfd_zalloc (abfd, amt);
7843 if (elf_data_symbol == NULL)
b34976b6 7844 return FALSE;
b49e97c9
TS
7845
7846 /* Initialize the section. */
7847
698600e4
AM
7848 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7849 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7850
7851 elf_data_section->symbol = elf_data_symbol;
698600e4 7852 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7853
7854 elf_data_section->name = ".data";
7855 elf_data_section->flags = SEC_NO_FLAGS;
7856 elf_data_section->output_section = NULL;
7857 elf_data_section->owner = abfd;
7858 elf_data_symbol->name = ".data";
7859 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7860 elf_data_symbol->section = elf_data_section;
7861 }
7862 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7863 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7864 so I took it out. */
698600e4 7865 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7866 break;
7867
7868 case SHN_MIPS_SUNDEFINED:
7869 *secp = bfd_und_section_ptr;
7870 break;
7871 }
7872
7873 if (SGI_COMPAT (abfd)
0e1862bb 7874 && ! bfd_link_pic (info)
f13a99db 7875 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7876 && strcmp (*namep, "__rld_obj_head") == 0)
7877 {
7878 struct elf_link_hash_entry *h;
14a793b2 7879 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7880
7881 /* Mark __rld_obj_head as dynamic. */
14a793b2 7882 bh = NULL;
b49e97c9 7883 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7884 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7885 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7886 return FALSE;
14a793b2
AM
7887
7888 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7889 h->non_elf = 0;
7890 h->def_regular = 1;
b49e97c9
TS
7891 h->type = STT_OBJECT;
7892
c152c796 7893 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7894 return FALSE;
b49e97c9 7895
b34976b6 7896 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7897 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7898 }
7899
7900 /* If this is a mips16 text symbol, add 1 to the value to make it
7901 odd. This will cause something like .word SYM to come up with
7902 the right value when it is loaded into the PC. */
df58fc94 7903 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7904 ++*valp;
7905
b34976b6 7906 return TRUE;
b49e97c9
TS
7907}
7908
7909/* This hook function is called before the linker writes out a global
7910 symbol. We mark symbols as small common if appropriate. This is
7911 also where we undo the increment of the value for a mips16 symbol. */
7912
6e0b88f1 7913int
9719ad41
RS
7914_bfd_mips_elf_link_output_symbol_hook
7915 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7916 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7917 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7918{
7919 /* If we see a common symbol, which implies a relocatable link, then
7920 if a symbol was small common in an input file, mark it as small
7921 common in the output file. */
7922 if (sym->st_shndx == SHN_COMMON
7923 && strcmp (input_sec->name, ".scommon") == 0)
7924 sym->st_shndx = SHN_MIPS_SCOMMON;
7925
df58fc94 7926 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7927 sym->st_value &= ~1;
b49e97c9 7928
6e0b88f1 7929 return 1;
b49e97c9
TS
7930}
7931\f
7932/* Functions for the dynamic linker. */
7933
7934/* Create dynamic sections when linking against a dynamic object. */
7935
b34976b6 7936bfd_boolean
9719ad41 7937_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7938{
7939 struct elf_link_hash_entry *h;
14a793b2 7940 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7941 flagword flags;
7942 register asection *s;
7943 const char * const *namep;
0a44bf69 7944 struct mips_elf_link_hash_table *htab;
b49e97c9 7945
0a44bf69 7946 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7947 BFD_ASSERT (htab != NULL);
7948
b49e97c9
TS
7949 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7950 | SEC_LINKER_CREATED | SEC_READONLY);
7951
0a44bf69
RS
7952 /* The psABI requires a read-only .dynamic section, but the VxWorks
7953 EABI doesn't. */
90c14f0c 7954 if (htab->root.target_os != is_vxworks)
b49e97c9 7955 {
3d4d4302 7956 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7957 if (s != NULL)
7958 {
fd361982 7959 if (!bfd_set_section_flags (s, flags))
0a44bf69
RS
7960 return FALSE;
7961 }
b49e97c9
TS
7962 }
7963
7964 /* We need to create .got section. */
23cc69b6 7965 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7966 return FALSE;
7967
0a44bf69 7968 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7969 return FALSE;
b49e97c9 7970
b49e97c9 7971 /* Create .stub section. */
3d4d4302
AM
7972 s = bfd_make_section_anyway_with_flags (abfd,
7973 MIPS_ELF_STUB_SECTION_NAME (abfd),
7974 flags | SEC_CODE);
4e41d0d7 7975 if (s == NULL
fd361982 7976 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4e41d0d7
RS
7977 return FALSE;
7978 htab->sstubs = s;
b49e97c9 7979
e6aea42d 7980 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7981 && bfd_link_executable (info)
3d4d4302 7982 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7983 {
3d4d4302
AM
7984 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7985 flags &~ (flagword) SEC_READONLY);
b49e97c9 7986 if (s == NULL
fd361982 7987 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7988 return FALSE;
b49e97c9
TS
7989 }
7990
f16a9783
MS
7991 /* Create .MIPS.xhash section. */
7992 if (info->emit_gnu_hash)
7993 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
7994 flags | SEC_READONLY);
7995
b49e97c9
TS
7996 /* On IRIX5, we adjust add some additional symbols and change the
7997 alignments of several sections. There is no ABI documentation
7998 indicating that this is necessary on IRIX6, nor any evidence that
7999 the linker takes such action. */
8000 if (IRIX_COMPAT (abfd) == ict_irix5)
8001 {
8002 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8003 {
14a793b2 8004 bh = NULL;
b49e97c9 8005 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
8006 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8007 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8008 return FALSE;
14a793b2
AM
8009
8010 h = (struct elf_link_hash_entry *) bh;
12f09816 8011 h->mark = 1;
f5385ebf
AM
8012 h->non_elf = 0;
8013 h->def_regular = 1;
b49e97c9
TS
8014 h->type = STT_SECTION;
8015
c152c796 8016 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8017 return FALSE;
b49e97c9
TS
8018 }
8019
8020 /* We need to create a .compact_rel section. */
8021 if (SGI_COMPAT (abfd))
8022 {
8023 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 8024 return FALSE;
b49e97c9
TS
8025 }
8026
44c410de 8027 /* Change alignments of some sections. */
3d4d4302 8028 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 8029 if (s != NULL)
fd361982 8030 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8031
3d4d4302 8032 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 8033 if (s != NULL)
fd361982 8034 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8035
3d4d4302 8036 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 8037 if (s != NULL)
fd361982 8038 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8039
3d4d4302 8040 /* ??? */
b49e97c9
TS
8041 s = bfd_get_section_by_name (abfd, ".reginfo");
8042 if (s != NULL)
fd361982 8043 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8044
3d4d4302 8045 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 8046 if (s != NULL)
fd361982 8047 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
8048 }
8049
0e1862bb 8050 if (bfd_link_executable (info))
b49e97c9 8051 {
14a793b2
AM
8052 const char *name;
8053
8054 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8055 bh = NULL;
8056 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
8057 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8058 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8059 return FALSE;
14a793b2
AM
8060
8061 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
8062 h->non_elf = 0;
8063 h->def_regular = 1;
b49e97c9
TS
8064 h->type = STT_SECTION;
8065
c152c796 8066 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8067 return FALSE;
b49e97c9
TS
8068
8069 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8070 {
8071 /* __rld_map is a four byte word located in the .data section
8072 and is filled in by the rtld to contain a pointer to
8073 the _r_debug structure. Its symbol value will be set in
8074 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 8075 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 8076 BFD_ASSERT (s != NULL);
14a793b2 8077
0abfb97a
L
8078 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8079 bh = NULL;
8080 if (!(_bfd_generic_link_add_one_symbol
8081 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8082 get_elf_backend_data (abfd)->collect, &bh)))
8083 return FALSE;
b49e97c9 8084
0abfb97a
L
8085 h = (struct elf_link_hash_entry *) bh;
8086 h->non_elf = 0;
8087 h->def_regular = 1;
8088 h->type = STT_OBJECT;
8089
8090 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8091 return FALSE;
b4082c70 8092 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
8093 }
8094 }
8095
861fb55a 8096 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 8097 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
8098 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8099 return FALSE;
8100
1bbce132 8101 /* Do the usual VxWorks handling. */
90c14f0c 8102 if (htab->root.target_os == is_vxworks
1bbce132
MR
8103 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8104 return FALSE;
0a44bf69 8105
b34976b6 8106 return TRUE;
b49e97c9
TS
8107}
8108\f
c224138d
RS
8109/* Return true if relocation REL against section SEC is a REL rather than
8110 RELA relocation. RELOCS is the first relocation in the section and
8111 ABFD is the bfd that contains SEC. */
8112
8113static bfd_boolean
8114mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8115 const Elf_Internal_Rela *relocs,
8116 const Elf_Internal_Rela *rel)
8117{
8118 Elf_Internal_Shdr *rel_hdr;
8119 const struct elf_backend_data *bed;
8120
d4730f92
BS
8121 /* To determine which flavor of relocation this is, we depend on the
8122 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8123 rel_hdr = elf_section_data (sec)->rel.hdr;
8124 if (rel_hdr == NULL)
8125 return FALSE;
c224138d 8126 bed = get_elf_backend_data (abfd);
d4730f92
BS
8127 return ((size_t) (rel - relocs)
8128 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
8129}
8130
8131/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8132 HOWTO is the relocation's howto and CONTENTS points to the contents
8133 of the section that REL is against. */
8134
8135static bfd_vma
8136mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8137 reloc_howto_type *howto, bfd_byte *contents)
8138{
8139 bfd_byte *location;
8140 unsigned int r_type;
8141 bfd_vma addend;
17c6c9d9 8142 bfd_vma bytes;
c224138d
RS
8143
8144 r_type = ELF_R_TYPE (abfd, rel->r_info);
8145 location = contents + rel->r_offset;
8146
8147 /* Get the addend, which is stored in the input file. */
df58fc94 8148 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 8149 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 8150 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 8151
17c6c9d9
MR
8152 addend = bytes & howto->src_mask;
8153
8154 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8155 accordingly. */
8156 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8157 addend <<= 1;
8158
8159 return addend;
c224138d
RS
8160}
8161
8162/* REL is a relocation in ABFD that needs a partnering LO16 relocation
8163 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8164 and update *ADDEND with the final addend. Return true on success
8165 or false if the LO16 could not be found. RELEND is the exclusive
8166 upper bound on the relocations for REL's section. */
8167
8168static bfd_boolean
8169mips_elf_add_lo16_rel_addend (bfd *abfd,
8170 const Elf_Internal_Rela *rel,
8171 const Elf_Internal_Rela *relend,
8172 bfd_byte *contents, bfd_vma *addend)
8173{
8174 unsigned int r_type, lo16_type;
8175 const Elf_Internal_Rela *lo16_relocation;
8176 reloc_howto_type *lo16_howto;
8177 bfd_vma l;
8178
8179 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8180 if (mips16_reloc_p (r_type))
c224138d 8181 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8182 else if (micromips_reloc_p (r_type))
8183 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8184 else if (r_type == R_MIPS_PCHI16)
8185 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8186 else
8187 lo16_type = R_MIPS_LO16;
8188
8189 /* The combined value is the sum of the HI16 addend, left-shifted by
8190 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8191 code does a `lui' of the HI16 value, and then an `addiu' of the
8192 LO16 value.)
8193
8194 Scan ahead to find a matching LO16 relocation.
8195
8196 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8197 be immediately following. However, for the IRIX6 ABI, the next
8198 relocation may be a composed relocation consisting of several
8199 relocations for the same address. In that case, the R_MIPS_LO16
8200 relocation may occur as one of these. We permit a similar
8201 extension in general, as that is useful for GCC.
8202
8203 In some cases GCC dead code elimination removes the LO16 but keeps
8204 the corresponding HI16. This is strictly speaking a violation of
8205 the ABI but not immediately harmful. */
8206 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8207 if (lo16_relocation == NULL)
8208 return FALSE;
8209
8210 /* Obtain the addend kept there. */
8211 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8212 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8213
8214 l <<= lo16_howto->rightshift;
8215 l = _bfd_mips_elf_sign_extend (l, 16);
8216
8217 *addend <<= 16;
8218 *addend += l;
8219 return TRUE;
8220}
8221
8222/* Try to read the contents of section SEC in bfd ABFD. Return true and
8223 store the contents in *CONTENTS on success. Assume that *CONTENTS
8224 already holds the contents if it is nonull on entry. */
8225
8226static bfd_boolean
8227mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8228{
8229 if (*contents)
8230 return TRUE;
8231
8232 /* Get cached copy if it exists. */
8233 if (elf_section_data (sec)->this_hdr.contents != NULL)
8234 {
8235 *contents = elf_section_data (sec)->this_hdr.contents;
8236 return TRUE;
8237 }
8238
8239 return bfd_malloc_and_get_section (abfd, sec, contents);
8240}
8241
1bbce132
MR
8242/* Make a new PLT record to keep internal data. */
8243
8244static struct plt_entry *
8245mips_elf_make_plt_record (bfd *abfd)
8246{
8247 struct plt_entry *entry;
8248
8249 entry = bfd_zalloc (abfd, sizeof (*entry));
8250 if (entry == NULL)
8251 return NULL;
8252
8253 entry->stub_offset = MINUS_ONE;
8254 entry->mips_offset = MINUS_ONE;
8255 entry->comp_offset = MINUS_ONE;
8256 entry->gotplt_index = MINUS_ONE;
8257 return entry;
8258}
8259
47275900
MR
8260/* Define the special `__gnu_absolute_zero' symbol. We only need this
8261 for PIC code, as otherwise there is no load-time relocation involved
8262 and local GOT entries whose value is zero at static link time will
8263 retain their value at load time. */
8264
8265static bfd_boolean
8266mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8267 struct mips_elf_link_hash_table *htab,
8268 unsigned int r_type)
8269{
8270 union
8271 {
8272 struct elf_link_hash_entry *eh;
8273 struct bfd_link_hash_entry *bh;
8274 }
8275 hzero;
8276
8277 BFD_ASSERT (!htab->use_absolute_zero);
8278 BFD_ASSERT (bfd_link_pic (info));
8279
8280 hzero.bh = NULL;
8281 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8282 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8283 NULL, FALSE, FALSE, &hzero.bh))
8284 return FALSE;
8285
8286 BFD_ASSERT (hzero.bh != NULL);
8287 hzero.eh->size = 0;
8288 hzero.eh->type = STT_NOTYPE;
8289 hzero.eh->other = STV_PROTECTED;
8290 hzero.eh->def_regular = 1;
8291 hzero.eh->non_elf = 0;
8292
8293 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8294 return FALSE;
8295
8296 htab->use_absolute_zero = TRUE;
8297
8298 return TRUE;
8299}
8300
b49e97c9 8301/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8302 allocate space in the global offset table and record the need for
8303 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8304
b34976b6 8305bfd_boolean
9719ad41
RS
8306_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8307 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8308{
8309 const char *name;
8310 bfd *dynobj;
8311 Elf_Internal_Shdr *symtab_hdr;
8312 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8313 size_t extsymoff;
8314 const Elf_Internal_Rela *rel;
8315 const Elf_Internal_Rela *rel_end;
b49e97c9 8316 asection *sreloc;
9c5bfbb7 8317 const struct elf_backend_data *bed;
0a44bf69 8318 struct mips_elf_link_hash_table *htab;
c224138d
RS
8319 bfd_byte *contents;
8320 bfd_vma addend;
8321 reloc_howto_type *howto;
b49e97c9 8322
0e1862bb 8323 if (bfd_link_relocatable (info))
b34976b6 8324 return TRUE;
b49e97c9 8325
0a44bf69 8326 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8327 BFD_ASSERT (htab != NULL);
8328
b49e97c9
TS
8329 dynobj = elf_hash_table (info)->dynobj;
8330 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8331 sym_hashes = elf_sym_hashes (abfd);
8332 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8333
738e5348 8334 bed = get_elf_backend_data (abfd);
056bafd4 8335 rel_end = relocs + sec->reloc_count;
738e5348 8336
b49e97c9
TS
8337 /* Check for the mips16 stub sections. */
8338
fd361982 8339 name = bfd_section_name (sec);
b9d58d71 8340 if (FN_STUB_P (name))
b49e97c9
TS
8341 {
8342 unsigned long r_symndx;
8343
8344 /* Look at the relocation information to figure out which symbol
07d6d2b8 8345 this is for. */
b49e97c9 8346
cb4437b8 8347 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8348 if (r_symndx == 0)
8349 {
4eca0228 8350 _bfd_error_handler
695344c0 8351 /* xgettext:c-format */
2c1c9679 8352 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8353 " stub section `%s'"),
8354 abfd, name);
8355 bfd_set_error (bfd_error_bad_value);
8356 return FALSE;
8357 }
b49e97c9
TS
8358
8359 if (r_symndx < extsymoff
8360 || sym_hashes[r_symndx - extsymoff] == NULL)
8361 {
8362 asection *o;
8363
8364 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8365 needed if there is some relocation in this BFD, other
8366 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8367 for (o = abfd->sections; o != NULL; o = o->next)
8368 {
8369 Elf_Internal_Rela *sec_relocs;
8370 const Elf_Internal_Rela *r, *rend;
8371
8372 /* We can ignore stub sections when looking for relocs. */
8373 if ((o->flags & SEC_RELOC) == 0
8374 || o->reloc_count == 0
738e5348 8375 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8376 continue;
8377
45d6a902 8378 sec_relocs
9719ad41 8379 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8380 info->keep_memory);
b49e97c9 8381 if (sec_relocs == NULL)
b34976b6 8382 return FALSE;
b49e97c9
TS
8383
8384 rend = sec_relocs + o->reloc_count;
8385 for (r = sec_relocs; r < rend; r++)
8386 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8387 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8388 break;
8389
6cdc0ccc 8390 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8391 free (sec_relocs);
8392
8393 if (r < rend)
8394 break;
8395 }
8396
8397 if (o == NULL)
8398 {
8399 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8400 not need it. Since this function is called before
8401 the linker maps input sections to output sections, we
8402 can easily discard it by setting the SEC_EXCLUDE
8403 flag. */
b49e97c9 8404 sec->flags |= SEC_EXCLUDE;
b34976b6 8405 return TRUE;
b49e97c9
TS
8406 }
8407
8408 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8409 this BFD. */
698600e4 8410 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8411 {
8412 unsigned long symcount;
8413 asection **n;
8414 bfd_size_type amt;
8415
8416 if (elf_bad_symtab (abfd))
8417 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8418 else
8419 symcount = symtab_hdr->sh_info;
8420 amt = symcount * sizeof (asection *);
9719ad41 8421 n = bfd_zalloc (abfd, amt);
b49e97c9 8422 if (n == NULL)
b34976b6 8423 return FALSE;
698600e4 8424 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8425 }
8426
b9d58d71 8427 sec->flags |= SEC_KEEP;
698600e4 8428 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8429
8430 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8431 That flag is used to see whether we need to look through
8432 the global symbol table for stubs. We don't need to set
8433 it here, because we just have a local stub. */
b49e97c9
TS
8434 }
8435 else
8436 {
8437 struct mips_elf_link_hash_entry *h;
8438
8439 h = ((struct mips_elf_link_hash_entry *)
8440 sym_hashes[r_symndx - extsymoff]);
8441
973a3492
L
8442 while (h->root.root.type == bfd_link_hash_indirect
8443 || h->root.root.type == bfd_link_hash_warning)
8444 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8445
b49e97c9
TS
8446 /* H is the symbol this stub is for. */
8447
b9d58d71
TS
8448 /* If we already have an appropriate stub for this function, we
8449 don't need another one, so we can discard this one. Since
8450 this function is called before the linker maps input sections
8451 to output sections, we can easily discard it by setting the
8452 SEC_EXCLUDE flag. */
8453 if (h->fn_stub != NULL)
8454 {
8455 sec->flags |= SEC_EXCLUDE;
8456 return TRUE;
8457 }
8458
8459 sec->flags |= SEC_KEEP;
b49e97c9 8460 h->fn_stub = sec;
b34976b6 8461 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8462 }
8463 }
b9d58d71 8464 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8465 {
8466 unsigned long r_symndx;
8467 struct mips_elf_link_hash_entry *h;
8468 asection **loc;
8469
8470 /* Look at the relocation information to figure out which symbol
07d6d2b8 8471 this is for. */
b49e97c9 8472
cb4437b8 8473 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8474 if (r_symndx == 0)
8475 {
4eca0228 8476 _bfd_error_handler
695344c0 8477 /* xgettext:c-format */
2c1c9679 8478 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8479 " stub section `%s'"),
8480 abfd, name);
8481 bfd_set_error (bfd_error_bad_value);
8482 return FALSE;
8483 }
b49e97c9
TS
8484
8485 if (r_symndx < extsymoff
8486 || sym_hashes[r_symndx - extsymoff] == NULL)
8487 {
b9d58d71 8488 asection *o;
b49e97c9 8489
b9d58d71 8490 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8491 needed if there is some relocation (R_MIPS16_26) in this BFD
8492 that refers to this symbol. */
b9d58d71
TS
8493 for (o = abfd->sections; o != NULL; o = o->next)
8494 {
8495 Elf_Internal_Rela *sec_relocs;
8496 const Elf_Internal_Rela *r, *rend;
8497
8498 /* We can ignore stub sections when looking for relocs. */
8499 if ((o->flags & SEC_RELOC) == 0
8500 || o->reloc_count == 0
738e5348 8501 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8502 continue;
8503
8504 sec_relocs
8505 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8506 info->keep_memory);
8507 if (sec_relocs == NULL)
8508 return FALSE;
8509
8510 rend = sec_relocs + o->reloc_count;
8511 for (r = sec_relocs; r < rend; r++)
8512 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8513 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8514 break;
8515
8516 if (elf_section_data (o)->relocs != sec_relocs)
8517 free (sec_relocs);
8518
8519 if (r < rend)
8520 break;
8521 }
8522
8523 if (o == NULL)
8524 {
8525 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8526 not need it. Since this function is called before
8527 the linker maps input sections to output sections, we
8528 can easily discard it by setting the SEC_EXCLUDE
8529 flag. */
b9d58d71
TS
8530 sec->flags |= SEC_EXCLUDE;
8531 return TRUE;
8532 }
8533
8534 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8535 this BFD. */
698600e4 8536 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8537 {
8538 unsigned long symcount;
8539 asection **n;
8540 bfd_size_type amt;
8541
8542 if (elf_bad_symtab (abfd))
8543 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8544 else
8545 symcount = symtab_hdr->sh_info;
8546 amt = symcount * sizeof (asection *);
8547 n = bfd_zalloc (abfd, amt);
8548 if (n == NULL)
8549 return FALSE;
698600e4 8550 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8551 }
b49e97c9 8552
b9d58d71 8553 sec->flags |= SEC_KEEP;
698600e4 8554 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8555
b9d58d71 8556 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8557 That flag is used to see whether we need to look through
8558 the global symbol table for stubs. We don't need to set
8559 it here, because we just have a local stub. */
b9d58d71 8560 }
b49e97c9 8561 else
b49e97c9 8562 {
b9d58d71
TS
8563 h = ((struct mips_elf_link_hash_entry *)
8564 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8565
b9d58d71 8566 /* H is the symbol this stub is for. */
68ffbac6 8567
b9d58d71
TS
8568 if (CALL_FP_STUB_P (name))
8569 loc = &h->call_fp_stub;
8570 else
8571 loc = &h->call_stub;
68ffbac6 8572
b9d58d71
TS
8573 /* If we already have an appropriate stub for this function, we
8574 don't need another one, so we can discard this one. Since
8575 this function is called before the linker maps input sections
8576 to output sections, we can easily discard it by setting the
8577 SEC_EXCLUDE flag. */
8578 if (*loc != NULL)
8579 {
8580 sec->flags |= SEC_EXCLUDE;
8581 return TRUE;
8582 }
b49e97c9 8583
b9d58d71
TS
8584 sec->flags |= SEC_KEEP;
8585 *loc = sec;
8586 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8587 }
b49e97c9
TS
8588 }
8589
b49e97c9 8590 sreloc = NULL;
c224138d 8591 contents = NULL;
b49e97c9
TS
8592 for (rel = relocs; rel < rel_end; ++rel)
8593 {
8594 unsigned long r_symndx;
8595 unsigned int r_type;
8596 struct elf_link_hash_entry *h;
861fb55a 8597 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8598 bfd_boolean call_reloc_p;
8599 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8600
8601 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8602 r_type = ELF_R_TYPE (abfd, rel->r_info);
8603
8604 if (r_symndx < extsymoff)
8605 h = NULL;
8606 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8607 {
4eca0228 8608 _bfd_error_handler
695344c0 8609 /* xgettext:c-format */
2c1c9679 8610 (_("%pB: malformed reloc detected for section %s"),
d003868e 8611 abfd, name);
b49e97c9 8612 bfd_set_error (bfd_error_bad_value);
b34976b6 8613 return FALSE;
b49e97c9
TS
8614 }
8615 else
8616 {
8617 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8618 if (h != NULL)
8619 {
8620 while (h->root.type == bfd_link_hash_indirect
8621 || h->root.type == bfd_link_hash_warning)
8622 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8623 }
861fb55a 8624 }
b49e97c9 8625
861fb55a
DJ
8626 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8627 relocation into a dynamic one. */
8628 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8629
8630 /* Set CALL_RELOC_P to true if the relocation is for a call,
8631 and if pointer equality therefore doesn't matter. */
8632 call_reloc_p = FALSE;
8633
8634 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
c4b126b8
L
8635 into account when deciding how to define the symbol. */
8636 constrain_symbol_p = TRUE;
c5d6fa44 8637
861fb55a
DJ
8638 switch (r_type)
8639 {
861fb55a
DJ
8640 case R_MIPS_CALL16:
8641 case R_MIPS_CALL_HI16:
8642 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8643 case R_MIPS16_CALL16:
8644 case R_MICROMIPS_CALL16:
8645 case R_MICROMIPS_CALL_HI16:
8646 case R_MICROMIPS_CALL_LO16:
8647 call_reloc_p = TRUE;
8648 /* Fall through. */
8649
8650 case R_MIPS_GOT16:
861fb55a
DJ
8651 case R_MIPS_GOT_LO16:
8652 case R_MIPS_GOT_PAGE:
861fb55a 8653 case R_MIPS_GOT_DISP:
47275900
MR
8654 case R_MIPS16_GOT16:
8655 case R_MICROMIPS_GOT16:
8656 case R_MICROMIPS_GOT_LO16:
8657 case R_MICROMIPS_GOT_PAGE:
8658 case R_MICROMIPS_GOT_DISP:
8659 /* If we have a symbol that will resolve to zero at static link
8660 time and it is used by a GOT relocation applied to code we
8661 cannot relax to an immediate zero load, then we will be using
8662 the special `__gnu_absolute_zero' symbol whose value is zero
8663 at dynamic load time. We ignore HI16-type GOT relocations at
8664 this stage, because their handling will depend entirely on
8665 the corresponding LO16-type GOT relocation. */
8666 if (!call_hi16_reloc_p (r_type)
8667 && h != NULL
8668 && bfd_link_pic (info)
8669 && !htab->use_absolute_zero
8670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8671 {
8672 bfd_boolean rel_reloc;
8673
8674 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8675 return FALSE;
8676
8677 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8678 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8679
8680 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8681 FALSE))
8682 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8683 return FALSE;
8684 }
8685
8686 /* Fall through. */
8687 case R_MIPS_GOT_HI16:
8688 case R_MIPS_GOT_OFST:
861fb55a
DJ
8689 case R_MIPS_TLS_GOTTPREL:
8690 case R_MIPS_TLS_GD:
8691 case R_MIPS_TLS_LDM:
d0f13682
CLT
8692 case R_MIPS16_TLS_GOTTPREL:
8693 case R_MIPS16_TLS_GD:
8694 case R_MIPS16_TLS_LDM:
df58fc94 8695 case R_MICROMIPS_GOT_HI16:
df58fc94 8696 case R_MICROMIPS_GOT_OFST:
df58fc94
RS
8697 case R_MICROMIPS_TLS_GOTTPREL:
8698 case R_MICROMIPS_TLS_GD:
8699 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8700 if (dynobj == NULL)
8701 elf_hash_table (info)->dynobj = dynobj = abfd;
8702 if (!mips_elf_create_got_section (dynobj, info))
8703 return FALSE;
90c14f0c
L
8704 if (htab->root.target_os == is_vxworks
8705 && !bfd_link_pic (info))
b49e97c9 8706 {
4eca0228 8707 _bfd_error_handler
695344c0 8708 /* xgettext:c-format */
2dcf00ce
AM
8709 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8710 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8711 bfd_set_error (bfd_error_bad_value);
8712 return FALSE;
b49e97c9 8713 }
c5d6fa44 8714 can_make_dynamic_p = TRUE;
861fb55a 8715 break;
b49e97c9 8716
c5d6fa44 8717 case R_MIPS_NONE:
99da6b5f 8718 case R_MIPS_JALR:
df58fc94 8719 case R_MICROMIPS_JALR:
c5d6fa44
RS
8720 /* These relocations have empty fields and are purely there to
8721 provide link information. The symbol value doesn't matter. */
8722 constrain_symbol_p = FALSE;
8723 break;
8724
8725 case R_MIPS_GPREL16:
8726 case R_MIPS_GPREL32:
8727 case R_MIPS16_GPREL:
8728 case R_MICROMIPS_GPREL16:
8729 /* GP-relative relocations always resolve to a definition in a
8730 regular input file, ignoring the one-definition rule. This is
8731 important for the GP setup sequence in NewABI code, which
8732 always resolves to a local function even if other relocations
8733 against the symbol wouldn't. */
8734 constrain_symbol_p = FALSE;
99da6b5f
AN
8735 break;
8736
861fb55a
DJ
8737 case R_MIPS_32:
8738 case R_MIPS_REL32:
8739 case R_MIPS_64:
8740 /* In VxWorks executables, references to external symbols
8741 must be handled using copy relocs or PLT entries; it is not
8742 possible to convert this relocation into a dynamic one.
8743
8744 For executables that use PLTs and copy-relocs, we have a
8745 choice between converting the relocation into a dynamic
8746 one or using copy relocations or PLT entries. It is
8747 usually better to do the former, unless the relocation is
8748 against a read-only section. */
0e1862bb 8749 if ((bfd_link_pic (info)
861fb55a 8750 || (h != NULL
90c14f0c 8751 && htab->root.target_os != is_vxworks
861fb55a
DJ
8752 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8753 && !(!info->nocopyreloc
8754 && !PIC_OBJECT_P (abfd)
8755 && MIPS_ELF_READONLY_SECTION (sec))))
8756 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8757 {
861fb55a 8758 can_make_dynamic_p = TRUE;
b49e97c9
TS
8759 if (dynobj == NULL)
8760 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8761 }
c5d6fa44 8762 break;
b49e97c9 8763
861fb55a
DJ
8764 case R_MIPS_26:
8765 case R_MIPS_PC16:
7361da2c
AB
8766 case R_MIPS_PC21_S2:
8767 case R_MIPS_PC26_S2:
861fb55a 8768 case R_MIPS16_26:
c9775dde 8769 case R_MIPS16_PC16_S1:
df58fc94
RS
8770 case R_MICROMIPS_26_S1:
8771 case R_MICROMIPS_PC7_S1:
8772 case R_MICROMIPS_PC10_S1:
8773 case R_MICROMIPS_PC16_S1:
8774 case R_MICROMIPS_PC23_S2:
c5d6fa44 8775 call_reloc_p = TRUE;
861fb55a 8776 break;
b49e97c9
TS
8777 }
8778
0a44bf69
RS
8779 if (h)
8780 {
c5d6fa44
RS
8781 if (constrain_symbol_p)
8782 {
8783 if (!can_make_dynamic_p)
8784 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8785
8786 if (!call_reloc_p)
8787 h->pointer_equality_needed = 1;
8788
8789 /* We must not create a stub for a symbol that has
8790 relocations related to taking the function's address.
8791 This doesn't apply to VxWorks, where CALL relocs refer
8792 to a .got.plt entry instead of a normal .got entry. */
90c14f0c
L
8793 if (htab->root.target_os != is_vxworks
8794 && (!can_make_dynamic_p || !call_reloc_p))
c5d6fa44
RS
8795 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8796 }
8797
0a44bf69
RS
8798 /* Relocations against the special VxWorks __GOTT_BASE__ and
8799 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8800 room for them in .rela.dyn. */
8801 if (is_gott_symbol (info, h))
8802 {
8803 if (sreloc == NULL)
8804 {
8805 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8806 if (sreloc == NULL)
8807 return FALSE;
8808 }
8809 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8810 if (MIPS_ELF_READONLY_SECTION (sec))
8811 /* We tell the dynamic linker that there are
8812 relocations against the text segment. */
8813 info->flags |= DF_TEXTREL;
0a44bf69
RS
8814 }
8815 }
df58fc94
RS
8816 else if (call_lo16_reloc_p (r_type)
8817 || got_lo16_reloc_p (r_type)
8818 || got_disp_reloc_p (r_type)
90c14f0c
L
8819 || (got16_reloc_p (r_type)
8820 && htab->root.target_os == is_vxworks))
b49e97c9
TS
8821 {
8822 /* We may need a local GOT entry for this relocation. We
8823 don't count R_MIPS_GOT_PAGE because we can estimate the
8824 maximum number of pages needed by looking at the size of
738e5348
RS
8825 the segment. Similar comments apply to R_MIPS*_GOT16 and
8826 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8827 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8828 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8829 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8830 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8831 rel->r_addend, info, r_type))
f4416af6 8832 return FALSE;
b49e97c9
TS
8833 }
8834
8f0c309a
CLT
8835 if (h != NULL
8836 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8837 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8838 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8839
b49e97c9
TS
8840 switch (r_type)
8841 {
8842 case R_MIPS_CALL16:
738e5348 8843 case R_MIPS16_CALL16:
df58fc94 8844 case R_MICROMIPS_CALL16:
b49e97c9
TS
8845 if (h == NULL)
8846 {
4eca0228 8847 _bfd_error_handler
695344c0 8848 /* xgettext:c-format */
2dcf00ce
AM
8849 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8850 abfd, (uint64_t) rel->r_offset);
b49e97c9 8851 bfd_set_error (bfd_error_bad_value);
b34976b6 8852 return FALSE;
b49e97c9
TS
8853 }
8854 /* Fall through. */
8855
8856 case R_MIPS_CALL_HI16:
8857 case R_MIPS_CALL_LO16:
df58fc94
RS
8858 case R_MICROMIPS_CALL_HI16:
8859 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8860 if (h != NULL)
8861 {
6ccf4795
RS
8862 /* Make sure there is room in the regular GOT to hold the
8863 function's address. We may eliminate it in favour of
8864 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8865 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8866 r_type))
b34976b6 8867 return FALSE;
b49e97c9
TS
8868
8869 /* We need a stub, not a plt entry for the undefined
8870 function. But we record it as if it needs plt. See
c152c796 8871 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8872 h->needs_plt = 1;
b49e97c9
TS
8873 h->type = STT_FUNC;
8874 }
8875 break;
8876
0fdc1bf1 8877 case R_MIPS_GOT_PAGE:
df58fc94 8878 case R_MICROMIPS_GOT_PAGE:
738e5348 8879 case R_MIPS16_GOT16:
b49e97c9
TS
8880 case R_MIPS_GOT16:
8881 case R_MIPS_GOT_HI16:
8882 case R_MIPS_GOT_LO16:
df58fc94
RS
8883 case R_MICROMIPS_GOT16:
8884 case R_MICROMIPS_GOT_HI16:
8885 case R_MICROMIPS_GOT_LO16:
8886 if (!h || got_page_reloc_p (r_type))
c224138d 8887 {
3a3b6725
DJ
8888 /* This relocation needs (or may need, if h != NULL) a
8889 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8890 know for sure until we know whether the symbol is
8891 preemptible. */
c224138d
RS
8892 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8893 {
8894 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8895 return FALSE;
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8897 addend = mips_elf_read_rel_addend (abfd, rel,
8898 howto, contents);
9684f078 8899 if (got16_reloc_p (r_type))
c224138d
RS
8900 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8901 contents, &addend);
8902 else
8903 addend <<= howto->rightshift;
8904 }
8905 else
8906 addend = rel->r_addend;
13db6b44
RS
8907 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8908 h, addend))
c224138d 8909 return FALSE;
13db6b44
RS
8910
8911 if (h)
8912 {
8913 struct mips_elf_link_hash_entry *hmips =
8914 (struct mips_elf_link_hash_entry *) h;
8915
8916 /* This symbol is definitely not overridable. */
8917 if (hmips->root.def_regular
0e1862bb 8918 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8919 && ! hmips->root.forced_local))
8920 h = NULL;
8921 }
c224138d 8922 }
13db6b44
RS
8923 /* If this is a global, overridable symbol, GOT_PAGE will
8924 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8925 /* Fall through. */
8926
b49e97c9 8927 case R_MIPS_GOT_DISP:
df58fc94 8928 case R_MICROMIPS_GOT_DISP:
6ccf4795 8929 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8930 FALSE, r_type))
b34976b6 8931 return FALSE;
b49e97c9
TS
8932 break;
8933
0f20cc35 8934 case R_MIPS_TLS_GOTTPREL:
d0f13682 8935 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8936 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8937 if (bfd_link_pic (info))
0f20cc35
DJ
8938 info->flags |= DF_STATIC_TLS;
8939 /* Fall through */
8940
8941 case R_MIPS_TLS_LDM:
d0f13682 8942 case R_MIPS16_TLS_LDM:
df58fc94
RS
8943 case R_MICROMIPS_TLS_LDM:
8944 if (tls_ldm_reloc_p (r_type))
0f20cc35 8945 {
cf35638d 8946 r_symndx = STN_UNDEF;
0f20cc35
DJ
8947 h = NULL;
8948 }
8949 /* Fall through */
8950
8951 case R_MIPS_TLS_GD:
d0f13682 8952 case R_MIPS16_TLS_GD:
df58fc94 8953 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8954 /* This symbol requires a global offset table entry, or two
8955 for TLS GD relocations. */
e641e783
RS
8956 if (h != NULL)
8957 {
8958 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8959 FALSE, r_type))
8960 return FALSE;
8961 }
8962 else
8963 {
8964 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8965 rel->r_addend,
8966 info, r_type))
8967 return FALSE;
8968 }
0f20cc35
DJ
8969 break;
8970
b49e97c9
TS
8971 case R_MIPS_32:
8972 case R_MIPS_REL32:
8973 case R_MIPS_64:
0a44bf69
RS
8974 /* In VxWorks executables, references to external symbols
8975 are handled using copy relocs or PLT stubs, so there's
8976 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8977 if (can_make_dynamic_p)
b49e97c9
TS
8978 {
8979 if (sreloc == NULL)
8980 {
0a44bf69 8981 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8982 if (sreloc == NULL)
f4416af6 8983 return FALSE;
b49e97c9 8984 }
0e1862bb 8985 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8986 {
8987 /* When creating a shared object, we must copy these
8988 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8989 relocs. Make room for this reloc in .rel(a).dyn. */
8990 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8991 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8992 /* We tell the dynamic linker that there are
8993 relocations against the text segment. */
8994 info->flags |= DF_TEXTREL;
8995 }
b49e97c9
TS
8996 else
8997 {
8998 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8999
9a59ad6b
DJ
9000 /* For a shared object, we must copy this relocation
9001 unless the symbol turns out to be undefined and
9002 weak with non-default visibility, in which case
9003 it will be left as zero.
9004
9005 We could elide R_MIPS_REL32 for locally binding symbols
9006 in shared libraries, but do not yet do so.
9007
9008 For an executable, we only need to copy this
9009 reloc if the symbol is defined in a dynamic
9010 object. */
b49e97c9
TS
9011 hmips = (struct mips_elf_link_hash_entry *) h;
9012 ++hmips->possibly_dynamic_relocs;
943284cc 9013 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9014 /* We need it to tell the dynamic linker if there
9015 are relocations against the text segment. */
9016 hmips->readonly_reloc = TRUE;
b49e97c9 9017 }
b49e97c9
TS
9018 }
9019
9020 if (SGI_COMPAT (abfd))
9021 mips_elf_hash_table (info)->compact_rel_size +=
9022 sizeof (Elf32_External_crinfo);
9023 break;
9024
9025 case R_MIPS_26:
9026 case R_MIPS_GPREL16:
9027 case R_MIPS_LITERAL:
9028 case R_MIPS_GPREL32:
df58fc94
RS
9029 case R_MICROMIPS_26_S1:
9030 case R_MICROMIPS_GPREL16:
9031 case R_MICROMIPS_LITERAL:
9032 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
9033 if (SGI_COMPAT (abfd))
9034 mips_elf_hash_table (info)->compact_rel_size +=
9035 sizeof (Elf32_External_crinfo);
9036 break;
9037
9038 /* This relocation describes the C++ object vtable hierarchy.
9039 Reconstruct it for later use during GC. */
9040 case R_MIPS_GNU_VTINHERIT:
c152c796 9041 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 9042 return FALSE;
b49e97c9
TS
9043 break;
9044
9045 /* This relocation describes which C++ vtable entries are actually
9046 used. Record for later use during GC. */
9047 case R_MIPS_GNU_VTENTRY:
a0ea3a14 9048 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 9049 return FALSE;
b49e97c9
TS
9050 break;
9051
9052 default:
9053 break;
9054 }
9055
1bbce132 9056 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
9057 yet if we are going to create a PLT in the first place, but
9058 we only record whether the relocation requires a standard MIPS
9059 or a compressed code entry anyway. If we don't make a PLT after
9060 all, then we'll just ignore these arrangements. Likewise if
9061 a PLT entry is not created because the symbol is satisfied
9062 locally. */
1bbce132 9063 if (h != NULL
54806ffa
MR
9064 && (branch_reloc_p (r_type)
9065 || mips16_branch_reloc_p (r_type)
9066 || micromips_branch_reloc_p (r_type))
1bbce132
MR
9067 && !SYMBOL_CALLS_LOCAL (info, h))
9068 {
9069 if (h->plt.plist == NULL)
9070 h->plt.plist = mips_elf_make_plt_record (abfd);
9071 if (h->plt.plist == NULL)
9072 return FALSE;
9073
54806ffa 9074 if (branch_reloc_p (r_type))
1bbce132
MR
9075 h->plt.plist->need_mips = TRUE;
9076 else
9077 h->plt.plist->need_comp = TRUE;
9078 }
9079
738e5348
RS
9080 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9081 if there is one. We only need to handle global symbols here;
9082 we decide whether to keep or delete stubs for local symbols
9083 when processing the stub's relocations. */
b49e97c9 9084 if (h != NULL
738e5348
RS
9085 && !mips16_call_reloc_p (r_type)
9086 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
9087 {
9088 struct mips_elf_link_hash_entry *mh;
9089
9090 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 9091 mh->need_fn_stub = TRUE;
b49e97c9 9092 }
861fb55a
DJ
9093
9094 /* Refuse some position-dependent relocations when creating a
9095 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9096 not PIC, but we can create dynamic relocations and the result
9097 will be fine. Also do not refuse R_MIPS_LO16, which can be
9098 combined with R_MIPS_GOT16. */
0e1862bb 9099 if (bfd_link_pic (info))
861fb55a
DJ
9100 {
9101 switch (r_type)
9102 {
b474a202
FS
9103 case R_MIPS_TLS_TPREL_HI16:
9104 case R_MIPS16_TLS_TPREL_HI16:
9105 case R_MICROMIPS_TLS_TPREL_HI16:
9106 case R_MIPS_TLS_TPREL_LO16:
9107 case R_MIPS16_TLS_TPREL_LO16:
9108 case R_MICROMIPS_TLS_TPREL_LO16:
9109 /* These are okay in PIE, but not in a shared library. */
9110 if (bfd_link_executable (info))
9111 break;
9112
9113 /* FALLTHROUGH */
9114
861fb55a
DJ
9115 case R_MIPS16_HI16:
9116 case R_MIPS_HI16:
9117 case R_MIPS_HIGHER:
9118 case R_MIPS_HIGHEST:
df58fc94
RS
9119 case R_MICROMIPS_HI16:
9120 case R_MICROMIPS_HIGHER:
9121 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
9122 /* Don't refuse a high part relocation if it's against
9123 no symbol (e.g. part of a compound relocation). */
cf35638d 9124 if (r_symndx == STN_UNDEF)
861fb55a
DJ
9125 break;
9126
3c7687b9 9127 /* Likewise an absolute symbol. */
304f09d0 9128 if (h != NULL && bfd_is_abs_symbol (&h->root))
3c7687b9
MR
9129 break;
9130
861fb55a
DJ
9131 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9132 and has a special meaning. */
9133 if (!NEWABI_P (abfd) && h != NULL
9134 && strcmp (h->root.root.string, "_gp_disp") == 0)
9135 break;
9136
0fc1eb3c
RS
9137 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9138 if (is_gott_symbol (info, h))
9139 break;
9140
861fb55a
DJ
9141 /* FALLTHROUGH */
9142
9143 case R_MIPS16_26:
9144 case R_MIPS_26:
df58fc94 9145 case R_MICROMIPS_26_S1:
304f09d0
FS
9146 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9147 /* An error for unsupported relocations is raised as part
9148 of the above search, so we can skip the following. */
9149 if (howto != NULL)
9150 info->callbacks->einfo
9151 /* xgettext:c-format */
9152 (_("%X%H: relocation %s against `%s' cannot be used"
9153 " when making a shared object; recompile with -fPIC\n"),
9154 abfd, sec, rel->r_offset, howto->name,
9155 (h) ? h->root.root.string : "a local symbol");
aff68bd0 9156 break;
861fb55a
DJ
9157 default:
9158 break;
9159 }
9160 }
b49e97c9
TS
9161 }
9162
b34976b6 9163 return TRUE;
b49e97c9
TS
9164}
9165\f
9a59ad6b
DJ
9166/* Allocate space for global sym dynamic relocs. */
9167
9168static bfd_boolean
9169allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9170{
9171 struct bfd_link_info *info = inf;
9172 bfd *dynobj;
9173 struct mips_elf_link_hash_entry *hmips;
9174 struct mips_elf_link_hash_table *htab;
9175
9176 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9177 BFD_ASSERT (htab != NULL);
9178
9a59ad6b
DJ
9179 dynobj = elf_hash_table (info)->dynobj;
9180 hmips = (struct mips_elf_link_hash_entry *) h;
9181
9182 /* VxWorks executables are handled elsewhere; we only need to
9183 allocate relocations in shared objects. */
90c14f0c 9184 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9185 return TRUE;
9186
7686d77d
AM
9187 /* Ignore indirect symbols. All relocations against such symbols
9188 will be redirected to the target symbol. */
9189 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9190 return TRUE;
9191
9a59ad6b
DJ
9192 /* If this symbol is defined in a dynamic object, or we are creating
9193 a shared library, we will need to copy any R_MIPS_32 or
9194 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9195 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9196 && hmips->possibly_dynamic_relocs != 0
9197 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9198 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9199 || bfd_link_pic (info)))
9a59ad6b
DJ
9200 {
9201 bfd_boolean do_copy = TRUE;
9202
9203 if (h->root.type == bfd_link_hash_undefweak)
9204 {
262e07d0
MR
9205 /* Do not copy relocations for undefined weak symbols that
9206 we are not going to export. */
9207 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
9208 do_copy = FALSE;
9209
9210 /* Make sure undefined weak symbols are output as a dynamic
9211 symbol in PIEs. */
9212 else if (h->dynindx == -1 && !h->forced_local)
9213 {
9214 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9215 return FALSE;
9216 }
9217 }
9218
9219 if (do_copy)
9220 {
aff469fa 9221 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9222 the SVR4 psABI requires it to have a dynamic symbol table
9223 index greater that DT_MIPS_GOTSYM if there are dynamic
9224 relocations against it.
9225
9226 VxWorks does not enforce the same mapping between the GOT
9227 and the symbol table, so the same requirement does not
9228 apply there. */
90c14f0c 9229 if (htab->root.target_os != is_vxworks)
6ccf4795
RS
9230 {
9231 if (hmips->global_got_area > GGA_RELOC_ONLY)
9232 hmips->global_got_area = GGA_RELOC_ONLY;
9233 hmips->got_only_for_calls = FALSE;
9234 }
aff469fa 9235
9a59ad6b
DJ
9236 mips_elf_allocate_dynamic_relocations
9237 (dynobj, info, hmips->possibly_dynamic_relocs);
9238 if (hmips->readonly_reloc)
9239 /* We tell the dynamic linker that there are relocations
9240 against the text segment. */
9241 info->flags |= DF_TEXTREL;
9242 }
9243 }
9244
9245 return TRUE;
9246}
9247
b49e97c9
TS
9248/* Adjust a symbol defined by a dynamic object and referenced by a
9249 regular object. The current definition is in some section of the
9250 dynamic object, but we're not including those sections. We have to
9251 change the definition to something the rest of the link can
9252 understand. */
9253
b34976b6 9254bfd_boolean
9719ad41
RS
9255_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9256 struct elf_link_hash_entry *h)
b49e97c9
TS
9257{
9258 bfd *dynobj;
9259 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9260 struct mips_elf_link_hash_table *htab;
5474d94f 9261 asection *s, *srel;
b49e97c9 9262
5108fc1b 9263 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9264 BFD_ASSERT (htab != NULL);
9265
b49e97c9 9266 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9267 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9268
9269 /* Make sure we know what is going on here. */
8e4979ac
NC
9270 if (dynobj == NULL
9271 || (! h->needs_plt
9272 && ! h->is_weakalias
9273 && (! h->def_dynamic
9274 || ! h->ref_regular
9275 || h->def_regular)))
9276 {
9277 if (h->type == STT_GNU_IFUNC)
9278 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9279 h->root.root.string);
9280 else
9281 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9282 h->root.root.string);
9283 return TRUE;
9284 }
b49e97c9 9285
b49e97c9 9286 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9287
861fb55a
DJ
9288 /* If there are call relocations against an externally-defined symbol,
9289 see whether we can create a MIPS lazy-binding stub for it. We can
9290 only do this if all references to the function are through call
9291 relocations, and in that case, the traditional lazy-binding stubs
9292 are much more efficient than PLT entries.
9293
9294 Traditional stubs are only available on SVR4 psABI-based systems;
9295 VxWorks always uses PLTs instead. */
90c14f0c
L
9296 if (htab->root.target_os != is_vxworks
9297 && h->needs_plt
9298 && !hmips->no_fn_stub)
b49e97c9
TS
9299 {
9300 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9301 return TRUE;
b49e97c9
TS
9302
9303 /* If this symbol is not defined in a regular file, then set
9304 the symbol to the stub location. This is required to make
9305 function pointers compare as equal between the normal
9306 executable and the shared library. */
4b8377e7
MR
9307 if (!h->def_regular
9308 && !bfd_is_abs_section (htab->sstubs->output_section))
b49e97c9 9309 {
33bb52fb
RS
9310 hmips->needs_lazy_stub = TRUE;
9311 htab->lazy_stub_count++;
b34976b6 9312 return TRUE;
b49e97c9
TS
9313 }
9314 }
861fb55a
DJ
9315 /* As above, VxWorks requires PLT entries for externally-defined
9316 functions that are only accessed through call relocations.
b49e97c9 9317
861fb55a
DJ
9318 Both VxWorks and non-VxWorks targets also need PLT entries if there
9319 are static-only relocations against an externally-defined function.
9320 This can technically occur for shared libraries if there are
9321 branches to the symbol, although it is unlikely that this will be
9322 used in practice due to the short ranges involved. It can occur
9323 for any relative or absolute relocation in executables; in that
9324 case, the PLT entry becomes the function's canonical address. */
9325 else if (((h->needs_plt && !hmips->no_fn_stub)
9326 || (h->type == STT_FUNC && hmips->has_static_relocs))
9327 && htab->use_plts_and_copy_relocs
9328 && !SYMBOL_CALLS_LOCAL (info, h)
9329 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9330 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9331 {
1bbce132
MR
9332 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9333 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9334
9335 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9336 basic setup. Also work out PLT entry sizes. We'll need them
9337 for PLT offset calculations. */
1bbce132 9338 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9339 {
ce558b89 9340 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9341 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9342
861fb55a
DJ
9343 /* If we're using the PLT additions to the psABI, each PLT
9344 entry is 16 bytes and the PLT0 entry is 32 bytes.
9345 Encourage better cache usage by aligning. We do this
9346 lazily to avoid pessimizing traditional objects. */
90c14f0c 9347 if (htab->root.target_os != is_vxworks
fd361982 9348 && !bfd_set_section_alignment (htab->root.splt, 5))
861fb55a 9349 return FALSE;
0a44bf69 9350
861fb55a
DJ
9351 /* Make sure that .got.plt is word-aligned. We do this lazily
9352 for the same reason as above. */
fd361982 9353 if (!bfd_set_section_alignment (htab->root.sgotplt,
861fb55a
DJ
9354 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9355 return FALSE;
0a44bf69 9356
861fb55a
DJ
9357 /* On non-VxWorks targets, the first two entries in .got.plt
9358 are reserved. */
90c14f0c 9359 if (htab->root.target_os != is_vxworks)
1bbce132
MR
9360 htab->plt_got_index
9361 += (get_elf_backend_data (dynobj)->got_header_size
9362 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9363
861fb55a
DJ
9364 /* On VxWorks, also allocate room for the header's
9365 .rela.plt.unloaded entries. */
90c14f0c
L
9366 if (htab->root.target_os == is_vxworks
9367 && !bfd_link_pic (info))
0a44bf69 9368 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9369
9370 /* Now work out the sizes of individual PLT entries. */
90c14f0c
L
9371 if (htab->root.target_os == is_vxworks
9372 && bfd_link_pic (info))
1bbce132
MR
9373 htab->plt_mips_entry_size
9374 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
90c14f0c 9375 else if (htab->root.target_os == is_vxworks)
1bbce132
MR
9376 htab->plt_mips_entry_size
9377 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9378 else if (newabi_p)
9379 htab->plt_mips_entry_size
9380 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9381 else if (!micromips_p)
1bbce132
MR
9382 {
9383 htab->plt_mips_entry_size
9384 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9385 htab->plt_comp_entry_size
833794fc
MR
9386 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9387 }
9388 else if (htab->insn32)
9389 {
9390 htab->plt_mips_entry_size
9391 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9392 htab->plt_comp_entry_size
9393 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9394 }
9395 else
9396 {
9397 htab->plt_mips_entry_size
9398 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9399 htab->plt_comp_entry_size
833794fc 9400 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9401 }
0a44bf69
RS
9402 }
9403
1bbce132
MR
9404 if (h->plt.plist == NULL)
9405 h->plt.plist = mips_elf_make_plt_record (dynobj);
9406 if (h->plt.plist == NULL)
9407 return FALSE;
9408
9409 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9410 n32 or n64, so always use a standard entry there.
1bbce132 9411
07d6d2b8
AM
9412 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9413 all MIPS16 calls will go via that stub, and there is no benefit
9414 to having a MIPS16 entry. And in the case of call_stub a
9415 standard entry actually has to be used as the stub ends with a J
9416 instruction. */
1bbce132 9417 if (newabi_p
90c14f0c 9418 || htab->root.target_os == is_vxworks
1bbce132
MR
9419 || hmips->call_stub
9420 || hmips->call_fp_stub)
9421 {
9422 h->plt.plist->need_mips = TRUE;
9423 h->plt.plist->need_comp = FALSE;
9424 }
9425
9426 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9427 have a free choice of whether to use standard or compressed
9428 entries. Prefer microMIPS entries if the object is known to
9429 contain microMIPS code, so that it becomes possible to create
9430 pure microMIPS binaries. Prefer standard entries otherwise,
9431 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9432 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9433 {
9434 if (micromips_p)
9435 h->plt.plist->need_comp = TRUE;
9436 else
9437 h->plt.plist->need_mips = TRUE;
9438 }
9439
9440 if (h->plt.plist->need_mips)
9441 {
9442 h->plt.plist->mips_offset = htab->plt_mips_offset;
9443 htab->plt_mips_offset += htab->plt_mips_entry_size;
9444 }
9445 if (h->plt.plist->need_comp)
9446 {
9447 h->plt.plist->comp_offset = htab->plt_comp_offset;
9448 htab->plt_comp_offset += htab->plt_comp_entry_size;
9449 }
9450
9451 /* Reserve the corresponding .got.plt entry now too. */
9452 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9453
9454 /* If the output file has no definition of the symbol, set the
861fb55a 9455 symbol's value to the address of the stub. */
0e1862bb 9456 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9457 hmips->use_plt_entry = TRUE;
0a44bf69 9458
1bbce132 9459 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
90c14f0c 9460 htab->root.srelplt->size += (htab->root.target_os == is_vxworks
ce558b89
AM
9461 ? MIPS_ELF_RELA_SIZE (dynobj)
9462 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9463
9464 /* Make room for the .rela.plt.unloaded relocations. */
90c14f0c 9465 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9466 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9467
861fb55a
DJ
9468 /* All relocations against this symbol that could have been made
9469 dynamic will now refer to the PLT entry instead. */
9470 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9471
0a44bf69
RS
9472 return TRUE;
9473 }
9474
9475 /* If this is a weak symbol, and there is a real definition, the
9476 processor independent code will have arranged for us to see the
9477 real definition first, and we can just use the same value. */
60d67dc8 9478 if (h->is_weakalias)
0a44bf69 9479 {
60d67dc8
AM
9480 struct elf_link_hash_entry *def = weakdef (h);
9481 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9482 h->root.u.def.section = def->root.u.def.section;
9483 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9484 return TRUE;
9485 }
9486
861fb55a
DJ
9487 /* Otherwise, there is nothing further to do for symbols defined
9488 in regular objects. */
9489 if (h->def_regular)
0a44bf69
RS
9490 return TRUE;
9491
861fb55a
DJ
9492 /* There's also nothing more to do if we'll convert all relocations
9493 against this symbol into dynamic relocations. */
9494 if (!hmips->has_static_relocs)
9495 return TRUE;
9496
9497 /* We're now relying on copy relocations. Complain if we have
9498 some that we can't convert. */
0e1862bb 9499 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9500 {
4eca0228
AM
9501 _bfd_error_handler (_("non-dynamic relocations refer to "
9502 "dynamic symbol %s"),
9503 h->root.root.string);
861fb55a
DJ
9504 bfd_set_error (bfd_error_bad_value);
9505 return FALSE;
9506 }
9507
0a44bf69
RS
9508 /* We must allocate the symbol in our .dynbss section, which will
9509 become part of the .bss section of the executable. There will be
9510 an entry for this symbol in the .dynsym section. The dynamic
9511 object will contain position independent code, so all references
9512 from the dynamic object to this symbol will go through the global
9513 offset table. The dynamic linker will use the .dynsym entry to
9514 determine the address it must put in the global offset table, so
9515 both the dynamic object and the regular object will refer to the
9516 same memory location for the variable. */
9517
5474d94f
AM
9518 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9519 {
9520 s = htab->root.sdynrelro;
9521 srel = htab->root.sreldynrelro;
9522 }
9523 else
9524 {
9525 s = htab->root.sdynbss;
9526 srel = htab->root.srelbss;
9527 }
0a44bf69
RS
9528 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9529 {
90c14f0c 9530 if (htab->root.target_os == is_vxworks)
5474d94f 9531 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9532 else
9533 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9534 h->needs_copy = 1;
9535 }
9536
861fb55a
DJ
9537 /* All relocations against this symbol that could have been made
9538 dynamic will now refer to the local copy instead. */
9539 hmips->possibly_dynamic_relocs = 0;
9540
5474d94f 9541 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9542}
b49e97c9
TS
9543\f
9544/* This function is called after all the input files have been read,
9545 and the input sections have been assigned to output sections. We
9546 check for any mips16 stub sections that we can discard. */
9547
b34976b6 9548bfd_boolean
9719ad41
RS
9549_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9550 struct bfd_link_info *info)
b49e97c9 9551{
351cdf24 9552 asection *sect;
0a44bf69 9553 struct mips_elf_link_hash_table *htab;
861fb55a 9554 struct mips_htab_traverse_info hti;
0a44bf69
RS
9555
9556 htab = mips_elf_hash_table (info);
4dfe6ac6 9557 BFD_ASSERT (htab != NULL);
f4416af6 9558
b49e97c9 9559 /* The .reginfo section has a fixed size. */
351cdf24
MF
9560 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9561 if (sect != NULL)
6798f8bf 9562 {
fd361982 9563 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
6798f8bf
MR
9564 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9565 }
351cdf24
MF
9566
9567 /* The .MIPS.abiflags section has a fixed size. */
9568 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9569 if (sect != NULL)
6798f8bf 9570 {
fd361982 9571 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
6798f8bf
MR
9572 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9573 }
b49e97c9 9574
861fb55a
DJ
9575 hti.info = info;
9576 hti.output_bfd = output_bfd;
9577 hti.error = FALSE;
9578 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9579 mips_elf_check_symbols, &hti);
9580 if (hti.error)
9581 return FALSE;
f4416af6 9582
33bb52fb
RS
9583 return TRUE;
9584}
9585
9586/* If the link uses a GOT, lay it out and work out its size. */
9587
9588static bfd_boolean
9589mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9590{
9591 bfd *dynobj;
9592 asection *s;
9593 struct mips_got_info *g;
33bb52fb
RS
9594 bfd_size_type loadable_size = 0;
9595 bfd_size_type page_gotno;
d7206569 9596 bfd *ibfd;
ab361d49 9597 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9598 struct mips_elf_link_hash_table *htab;
9599
9600 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9601 BFD_ASSERT (htab != NULL);
9602
ce558b89 9603 s = htab->root.sgot;
f4416af6 9604 if (s == NULL)
b34976b6 9605 return TRUE;
b49e97c9 9606
33bb52fb 9607 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9608 g = htab->got_info;
9609
861fb55a
DJ
9610 /* Allocate room for the reserved entries. VxWorks always reserves
9611 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9612 BFD_ASSERT (g->assigned_low_gotno == 0);
90c14f0c 9613 if (htab->root.target_os == is_vxworks)
861fb55a
DJ
9614 htab->reserved_gotno = 3;
9615 else
9616 htab->reserved_gotno = 2;
9617 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9618 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9619
6c42ddb9
RS
9620 /* Decide which symbols need to go in the global part of the GOT and
9621 count the number of reloc-only GOT symbols. */
020d7251 9622 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9623
13db6b44
RS
9624 if (!mips_elf_resolve_final_got_entries (info, g))
9625 return FALSE;
9626
33bb52fb
RS
9627 /* Calculate the total loadable size of the output. That
9628 will give us the maximum number of GOT_PAGE entries
9629 required. */
c72f2fb2 9630 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9631 {
9632 asection *subsection;
5108fc1b 9633
d7206569 9634 for (subsection = ibfd->sections;
33bb52fb
RS
9635 subsection;
9636 subsection = subsection->next)
9637 {
9638 if ((subsection->flags & SEC_ALLOC) == 0)
9639 continue;
9640 loadable_size += ((subsection->size + 0xf)
9641 &~ (bfd_size_type) 0xf);
9642 }
9643 }
f4416af6 9644
90c14f0c 9645 if (htab->root.target_os == is_vxworks)
738e5348 9646 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9647 relocations against local symbols evaluate to "G", and the EABI does
9648 not include R_MIPS_GOT_PAGE. */
c224138d 9649 page_gotno = 0;
0a44bf69
RS
9650 else
9651 /* Assume there are two loadable segments consisting of contiguous
9652 sections. Is 5 enough? */
c224138d
RS
9653 page_gotno = (loadable_size >> 16) + 5;
9654
13db6b44 9655 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9656 conservative. */
9657 if (page_gotno > g->page_gotno)
9658 page_gotno = g->page_gotno;
f4416af6 9659
c224138d 9660 g->local_gotno += page_gotno;
cb22ccf4 9661 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9662
ab361d49
RS
9663 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9664 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9665 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9666
0a44bf69
RS
9667 /* VxWorks does not support multiple GOTs. It initializes $gp to
9668 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9669 dynamic loader. */
90c14f0c
L
9670 if (htab->root.target_os != is_vxworks
9671 && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9672 {
a8028dd0 9673 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9674 return FALSE;
9675 }
9676 else
9677 {
d7206569
RS
9678 /* Record that all bfds use G. This also has the effect of freeing
9679 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9680 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9681 if (mips_elf_bfd_got (ibfd, FALSE))
9682 mips_elf_replace_bfd_got (ibfd, g);
9683 mips_elf_replace_bfd_got (output_bfd, g);
9684
33bb52fb 9685 /* Set up TLS entries. */
0f20cc35 9686 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9687 tga.info = info;
9688 tga.g = g;
9689 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9690 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9691 if (!tga.g)
9692 return FALSE;
1fd20d70
RS
9693 BFD_ASSERT (g->tls_assigned_gotno
9694 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9695
57093f5e 9696 /* Each VxWorks GOT entry needs an explicit relocation. */
90c14f0c 9697 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
57093f5e
RS
9698 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9699
33bb52fb 9700 /* Allocate room for the TLS relocations. */
ab361d49
RS
9701 if (g->relocs)
9702 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9703 }
b49e97c9 9704
b34976b6 9705 return TRUE;
b49e97c9
TS
9706}
9707
33bb52fb
RS
9708/* Estimate the size of the .MIPS.stubs section. */
9709
9710static void
9711mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9712{
9713 struct mips_elf_link_hash_table *htab;
9714 bfd_size_type dynsymcount;
9715
9716 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9717 BFD_ASSERT (htab != NULL);
9718
33bb52fb
RS
9719 if (htab->lazy_stub_count == 0)
9720 return;
9721
9722 /* IRIX rld assumes that a function stub isn't at the end of the .text
9723 section, so add a dummy entry to the end. */
9724 htab->lazy_stub_count++;
9725
9726 /* Get a worst-case estimate of the number of dynamic symbols needed.
9727 At this point, dynsymcount does not account for section symbols
9728 and count_section_dynsyms may overestimate the number that will
9729 be needed. */
9730 dynsymcount = (elf_hash_table (info)->dynsymcount
9731 + count_section_dynsyms (output_bfd, info));
9732
1bbce132
MR
9733 /* Determine the size of one stub entry. There's no disadvantage
9734 from using microMIPS code here, so for the sake of pure-microMIPS
9735 binaries we prefer it whenever there's any microMIPS code in
9736 output produced at all. This has a benefit of stubs being
833794fc
MR
9737 shorter by 4 bytes each too, unless in the insn32 mode. */
9738 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9739 htab->function_stub_size = (dynsymcount > 0x10000
9740 ? MIPS_FUNCTION_STUB_BIG_SIZE
9741 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9742 else if (htab->insn32)
9743 htab->function_stub_size = (dynsymcount > 0x10000
9744 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9745 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9746 else
9747 htab->function_stub_size = (dynsymcount > 0x10000
9748 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9749 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9750
9751 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9752}
9753
1bbce132
MR
9754/* A mips_elf_link_hash_traverse callback for which DATA points to a
9755 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9756 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9757
9758static bfd_boolean
af924177 9759mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9760{
1bbce132 9761 struct mips_htab_traverse_info *hti = data;
33bb52fb 9762 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9763 struct bfd_link_info *info;
9764 bfd *output_bfd;
9765
9766 info = hti->info;
9767 output_bfd = hti->output_bfd;
9768 htab = mips_elf_hash_table (info);
9769 BFD_ASSERT (htab != NULL);
33bb52fb 9770
33bb52fb
RS
9771 if (h->needs_lazy_stub)
9772 {
1bbce132
MR
9773 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9774 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9775 bfd_vma isa_bit = micromips_p;
9776
9777 BFD_ASSERT (htab->root.dynobj != NULL);
9778 if (h->root.plt.plist == NULL)
9779 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9780 if (h->root.plt.plist == NULL)
9781 {
9782 hti->error = TRUE;
9783 return FALSE;
9784 }
33bb52fb 9785 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9786 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9787 h->root.plt.plist->stub_offset = htab->sstubs->size;
9788 h->root.other = other;
33bb52fb
RS
9789 htab->sstubs->size += htab->function_stub_size;
9790 }
9791 return TRUE;
9792}
9793
9794/* Allocate offsets in the stubs section to each symbol that needs one.
9795 Set the final size of the .MIPS.stub section. */
9796
1bbce132 9797static bfd_boolean
33bb52fb
RS
9798mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9799{
1bbce132
MR
9800 bfd *output_bfd = info->output_bfd;
9801 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9802 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9803 bfd_vma isa_bit = micromips_p;
33bb52fb 9804 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9805 struct mips_htab_traverse_info hti;
9806 struct elf_link_hash_entry *h;
9807 bfd *dynobj;
33bb52fb
RS
9808
9809 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9810 BFD_ASSERT (htab != NULL);
9811
33bb52fb 9812 if (htab->lazy_stub_count == 0)
1bbce132 9813 return TRUE;
33bb52fb
RS
9814
9815 htab->sstubs->size = 0;
1bbce132
MR
9816 hti.info = info;
9817 hti.output_bfd = output_bfd;
9818 hti.error = FALSE;
9819 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9820 if (hti.error)
9821 return FALSE;
33bb52fb
RS
9822 htab->sstubs->size += htab->function_stub_size;
9823 BFD_ASSERT (htab->sstubs->size
9824 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9825
9826 dynobj = elf_hash_table (info)->dynobj;
9827 BFD_ASSERT (dynobj != NULL);
9828 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9829 if (h == NULL)
9830 return FALSE;
9831 h->root.u.def.value = isa_bit;
9832 h->other = other;
9833 h->type = STT_FUNC;
9834
9835 return TRUE;
9836}
9837
9838/* A mips_elf_link_hash_traverse callback for which DATA points to a
9839 bfd_link_info. If H uses the address of a PLT entry as the value
9840 of the symbol, then set the entry in the symbol table now. Prefer
9841 a standard MIPS PLT entry. */
9842
9843static bfd_boolean
9844mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9845{
9846 struct bfd_link_info *info = data;
9847 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9848 struct mips_elf_link_hash_table *htab;
9849 unsigned int other;
9850 bfd_vma isa_bit;
9851 bfd_vma val;
9852
9853 htab = mips_elf_hash_table (info);
9854 BFD_ASSERT (htab != NULL);
9855
9856 if (h->use_plt_entry)
9857 {
9858 BFD_ASSERT (h->root.plt.plist != NULL);
9859 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9860 || h->root.plt.plist->comp_offset != MINUS_ONE);
9861
9862 val = htab->plt_header_size;
9863 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9864 {
9865 isa_bit = 0;
9866 val += h->root.plt.plist->mips_offset;
9867 other = 0;
9868 }
9869 else
9870 {
9871 isa_bit = 1;
9872 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9873 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9874 }
9875 val += isa_bit;
9876 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9877 resolution stub; this stub will become the canonical function
9878 address. */
90c14f0c 9879 if (htab->root.target_os == is_vxworks)
1bbce132
MR
9880 val += 8;
9881
ce558b89 9882 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9883 h->root.root.u.def.value = val;
9884 h->root.other = other;
9885 }
9886
9887 return TRUE;
33bb52fb
RS
9888}
9889
b49e97c9
TS
9890/* Set the sizes of the dynamic sections. */
9891
b34976b6 9892bfd_boolean
9719ad41
RS
9893_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9894 struct bfd_link_info *info)
b49e97c9
TS
9895{
9896 bfd *dynobj;
861fb55a 9897 asection *s, *sreldyn;
b34976b6 9898 bfd_boolean reltext;
0a44bf69 9899 struct mips_elf_link_hash_table *htab;
b49e97c9 9900
0a44bf69 9901 htab = mips_elf_hash_table (info);
4dfe6ac6 9902 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9903 dynobj = elf_hash_table (info)->dynobj;
9904 BFD_ASSERT (dynobj != NULL);
9905
9906 if (elf_hash_table (info)->dynamic_sections_created)
9907 {
9908 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9909 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9910 {
3d4d4302 9911 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9912 BFD_ASSERT (s != NULL);
eea6121a 9913 s->size
b49e97c9
TS
9914 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9915 s->contents
9916 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9917 }
861fb55a 9918
1bbce132 9919 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9920 are using it. For the sake of cache alignment always use
9921 a standard header whenever any standard entries are present
9922 even if microMIPS entries are present as well. This also
9923 lets the microMIPS header rely on the value of $v0 only set
9924 by microMIPS entries, for a small size reduction.
1bbce132 9925
07d6d2b8
AM
9926 Set symbol table entry values for symbols that use the
9927 address of their PLT entry now that we can calculate it.
1bbce132 9928
07d6d2b8
AM
9929 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9930 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9931 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9932 {
1bbce132
MR
9933 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9934 && !htab->plt_mips_offset);
9935 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9936 bfd_vma isa_bit = micromips_p;
861fb55a 9937 struct elf_link_hash_entry *h;
1bbce132 9938 bfd_vma size;
861fb55a
DJ
9939
9940 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9941 BFD_ASSERT (htab->root.sgotplt->size == 0);
9942 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9943
90c14f0c 9944 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
1bbce132 9945 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
90c14f0c 9946 else if (htab->root.target_os == is_vxworks)
1bbce132
MR
9947 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9948 else if (ABI_64_P (output_bfd))
9949 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9950 else if (ABI_N32_P (output_bfd))
9951 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9952 else if (!micromips_p)
9953 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9954 else if (htab->insn32)
9955 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9956 else
9957 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9958
1bbce132
MR
9959 htab->plt_header_is_comp = micromips_p;
9960 htab->plt_header_size = size;
ce558b89
AM
9961 htab->root.splt->size = (size
9962 + htab->plt_mips_offset
9963 + htab->plt_comp_offset);
9964 htab->root.sgotplt->size = (htab->plt_got_index
9965 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9966
9967 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9968
9969 if (htab->root.hplt == NULL)
9970 {
ce558b89 9971 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9972 "_PROCEDURE_LINKAGE_TABLE_");
9973 htab->root.hplt = h;
9974 if (h == NULL)
9975 return FALSE;
9976 }
9977
9978 h = htab->root.hplt;
9979 h->root.u.def.value = isa_bit;
9980 h->other = other;
861fb55a
DJ
9981 h->type = STT_FUNC;
9982 }
9983 }
4e41d0d7 9984
9a59ad6b 9985 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9986 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9987
33bb52fb
RS
9988 mips_elf_estimate_stub_size (output_bfd, info);
9989
9990 if (!mips_elf_lay_out_got (output_bfd, info))
9991 return FALSE;
9992
9993 mips_elf_lay_out_lazy_stubs (info);
9994
b49e97c9
TS
9995 /* The check_relocs and adjust_dynamic_symbol entry points have
9996 determined the sizes of the various dynamic sections. Allocate
9997 memory for them. */
b34976b6 9998 reltext = FALSE;
b49e97c9
TS
9999 for (s = dynobj->sections; s != NULL; s = s->next)
10000 {
10001 const char *name;
b49e97c9
TS
10002
10003 /* It's OK to base decisions on the section name, because none
10004 of the dynobj section names depend upon the input files. */
fd361982 10005 name = bfd_section_name (s);
b49e97c9
TS
10006
10007 if ((s->flags & SEC_LINKER_CREATED) == 0)
10008 continue;
10009
0112cd26 10010 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 10011 {
c456f082 10012 if (s->size != 0)
b49e97c9
TS
10013 {
10014 const char *outname;
10015 asection *target;
10016
10017 /* If this relocation section applies to a read only
07d6d2b8
AM
10018 section, then we probably need a DT_TEXTREL entry.
10019 If the relocation section is .rel(a).dyn, we always
10020 assert a DT_TEXTREL entry rather than testing whether
10021 there exists a relocation to a read only section or
10022 not. */
fd361982 10023 outname = bfd_section_name (s->output_section);
b49e97c9
TS
10024 target = bfd_get_section_by_name (output_bfd, outname + 4);
10025 if ((target != NULL
10026 && (target->flags & SEC_READONLY) != 0
10027 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 10028 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 10029 reltext = TRUE;
b49e97c9
TS
10030
10031 /* We use the reloc_count field as a counter if we need
10032 to copy relocs into the output file. */
0a44bf69 10033 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 10034 s->reloc_count = 0;
f4416af6
AO
10035
10036 /* If combreloc is enabled, elf_link_sort_relocs() will
10037 sort relocations, but in a different way than we do,
10038 and before we're done creating relocations. Also, it
10039 will move them around between input sections'
10040 relocation's contents, so our sorting would be
10041 broken, so don't let it run. */
10042 info->combreloc = 0;
b49e97c9
TS
10043 }
10044 }
0e1862bb 10045 else if (bfd_link_executable (info)
b49e97c9 10046 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 10047 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 10048 {
5108fc1b 10049 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 10050 rtld to contain a pointer to the _r_debug structure. */
b4082c70 10051 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
10052 }
10053 else if (SGI_COMPAT (output_bfd)
0112cd26 10054 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 10055 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 10056 else if (s == htab->root.splt)
861fb55a
DJ
10057 {
10058 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
10059 room for an extra nop to fill the delay slot. This is
10060 for CPUs without load interlocking. */
10061 if (! LOAD_INTERLOCKS_P (output_bfd)
90c14f0c
L
10062 && htab->root.target_os != is_vxworks
10063 && s->size > 0)
861fb55a
DJ
10064 s->size += 4;
10065 }
0112cd26 10066 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
10067 && s != htab->root.sgot
10068 && s != htab->root.sgotplt
861fb55a 10069 && s != htab->sstubs
5474d94f
AM
10070 && s != htab->root.sdynbss
10071 && s != htab->root.sdynrelro)
b49e97c9
TS
10072 {
10073 /* It's not one of our sections, so don't allocate space. */
10074 continue;
10075 }
10076
c456f082 10077 if (s->size == 0)
b49e97c9 10078 {
8423293d 10079 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
10080 continue;
10081 }
10082
c456f082
AM
10083 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10084 continue;
10085
b49e97c9 10086 /* Allocate memory for the section contents. */
eea6121a 10087 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 10088 if (s->contents == NULL)
b49e97c9
TS
10089 {
10090 bfd_set_error (bfd_error_no_memory);
b34976b6 10091 return FALSE;
b49e97c9
TS
10092 }
10093 }
10094
10095 if (elf_hash_table (info)->dynamic_sections_created)
10096 {
10097 /* Add some entries to the .dynamic section. We fill in the
10098 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10099 must add the entries now so that we get the correct size for
5750dcec 10100 the .dynamic section. */
af5978fb
RS
10101
10102 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 10103 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
10104 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10105 may only look at the first one they see. */
0e1862bb 10106 if (!bfd_link_pic (info)
af5978fb
RS
10107 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10108 return FALSE;
b49e97c9 10109
0e1862bb 10110 if (bfd_link_executable (info)
a5499fa4
MF
10111 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10112 return FALSE;
10113
5750dcec
DJ
10114 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10115 used by the debugger. */
0e1862bb 10116 if (bfd_link_executable (info)
5750dcec
DJ
10117 && !SGI_COMPAT (output_bfd)
10118 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10119 return FALSE;
10120
90c14f0c
L
10121 if (reltext
10122 && (SGI_COMPAT (output_bfd)
10123 || htab->root.target_os == is_vxworks))
b49e97c9
TS
10124 info->flags |= DF_TEXTREL;
10125
10126 if ((info->flags & DF_TEXTREL) != 0)
10127 {
10128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 10129 return FALSE;
943284cc
DJ
10130
10131 /* Clear the DF_TEXTREL flag. It will be set again if we
10132 write out an actual text relocation; we may not, because
10133 at this point we do not know whether e.g. any .eh_frame
10134 absolute relocations have been converted to PC-relative. */
10135 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
10136 }
10137
10138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 10139 return FALSE;
b49e97c9 10140
861fb55a 10141 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
90c14f0c 10142 if (htab->root.target_os == is_vxworks)
b49e97c9 10143 {
0a44bf69
RS
10144 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10145 use any of the DT_MIPS_* tags. */
861fb55a 10146 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10147 {
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10149 return FALSE;
b49e97c9 10150
0a44bf69
RS
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10152 return FALSE;
b49e97c9 10153
0a44bf69
RS
10154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10155 return FALSE;
10156 }
b49e97c9 10157 }
0a44bf69
RS
10158 else
10159 {
db841b6f
MR
10160 if (sreldyn && sreldyn->size > 0
10161 && !bfd_is_abs_section (sreldyn->output_section))
0a44bf69
RS
10162 {
10163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10164 return FALSE;
b49e97c9 10165
0a44bf69
RS
10166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10167 return FALSE;
b49e97c9 10168
0a44bf69
RS
10169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10170 return FALSE;
10171 }
b49e97c9 10172
0a44bf69
RS
10173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10174 return FALSE;
b49e97c9 10175
0a44bf69
RS
10176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10177 return FALSE;
b49e97c9 10178
0a44bf69
RS
10179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10180 return FALSE;
b49e97c9 10181
0a44bf69
RS
10182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10183 return FALSE;
b49e97c9 10184
0a44bf69
RS
10185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10186 return FALSE;
b49e97c9 10187
0a44bf69
RS
10188 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10189 return FALSE;
b49e97c9 10190
0a44bf69
RS
10191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10192 return FALSE;
10193
f16a9783
MS
10194 if (info->emit_gnu_hash
10195 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10196 return FALSE;
10197
0a44bf69
RS
10198 if (IRIX_COMPAT (dynobj) == ict_irix5
10199 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10200 return FALSE;
10201
10202 if (IRIX_COMPAT (dynobj) == ict_irix6
10203 && (bfd_get_section_by_name
af0edeb8 10204 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10205 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10206 return FALSE;
10207 }
ce558b89 10208 if (htab->root.splt->size > 0)
861fb55a
DJ
10209 {
10210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10211 return FALSE;
10212
10213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10214 return FALSE;
10215
10216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10217 return FALSE;
10218
10219 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10220 return FALSE;
10221 }
90c14f0c 10222 if (htab->root.target_os == is_vxworks
7a2b07ff
NS
10223 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10224 return FALSE;
b49e97c9
TS
10225 }
10226
b34976b6 10227 return TRUE;
b49e97c9
TS
10228}
10229\f
81d43bff
RS
10230/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10231 Adjust its R_ADDEND field so that it is correct for the output file.
10232 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10233 and sections respectively; both use symbol indexes. */
10234
10235static void
10236mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10237 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10238 asection **local_sections, Elf_Internal_Rela *rel)
10239{
10240 unsigned int r_type, r_symndx;
10241 Elf_Internal_Sym *sym;
10242 asection *sec;
10243
020d7251 10244 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10245 {
10246 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10247 if (gprel16_reloc_p (r_type)
81d43bff 10248 || r_type == R_MIPS_GPREL32
df58fc94 10249 || literal_reloc_p (r_type))
81d43bff
RS
10250 {
10251 rel->r_addend += _bfd_get_gp_value (input_bfd);
10252 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10253 }
10254
10255 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10256 sym = local_syms + r_symndx;
10257
10258 /* Adjust REL's addend to account for section merging. */
0e1862bb 10259 if (!bfd_link_relocatable (info))
81d43bff
RS
10260 {
10261 sec = local_sections[r_symndx];
10262 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10263 }
10264
10265 /* This would normally be done by the rela_normal code in elflink.c. */
10266 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10267 rel->r_addend += local_sections[r_symndx]->output_offset;
10268 }
10269}
10270
545fd46b
MR
10271/* Handle relocations against symbols from removed linkonce sections,
10272 or sections discarded by a linker script. We use this wrapper around
10273 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10274 on 64-bit ELF targets. In this case for any relocation handled, which
10275 always be the first in a triplet, the remaining two have to be processed
10276 together with the first, even if they are R_MIPS_NONE. It is the symbol
10277 index referred by the first reloc that applies to all the three and the
10278 remaining two never refer to an object symbol. And it is the final
10279 relocation (the last non-null one) that determines the output field of
10280 the whole relocation so retrieve the corresponding howto structure for
10281 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10282
10283 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10284 and therefore requires to be pasted in a loop. It also defines a block
10285 and does not protect any of its arguments, hence the extra brackets. */
10286
10287static void
10288mips_reloc_against_discarded_section (bfd *output_bfd,
10289 struct bfd_link_info *info,
10290 bfd *input_bfd, asection *input_section,
10291 Elf_Internal_Rela **rel,
10292 const Elf_Internal_Rela **relend,
10293 bfd_boolean rel_reloc,
10294 reloc_howto_type *howto,
10295 bfd_byte *contents)
10296{
10297 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10298 int count = bed->s->int_rels_per_ext_rel;
10299 unsigned int r_type;
10300 int i;
10301
10302 for (i = count - 1; i > 0; i--)
10303 {
10304 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10305 if (r_type != R_MIPS_NONE)
10306 {
10307 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10308 break;
10309 }
10310 }
10311 do
10312 {
10313 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10314 (*rel), count, (*relend),
10315 howto, i, contents);
10316 }
10317 while (0);
10318}
10319
b49e97c9
TS
10320/* Relocate a MIPS ELF section. */
10321
b34976b6 10322bfd_boolean
9719ad41
RS
10323_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10324 bfd *input_bfd, asection *input_section,
10325 bfd_byte *contents, Elf_Internal_Rela *relocs,
10326 Elf_Internal_Sym *local_syms,
10327 asection **local_sections)
b49e97c9
TS
10328{
10329 Elf_Internal_Rela *rel;
10330 const Elf_Internal_Rela *relend;
10331 bfd_vma addend = 0;
b34976b6 10332 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10333
056bafd4 10334 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10335 for (rel = relocs; rel < relend; ++rel)
10336 {
10337 const char *name;
c9adbffe 10338 bfd_vma value = 0;
b49e97c9 10339 reloc_howto_type *howto;
ad3d9127 10340 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10341 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10342 REL relocation. */
b34976b6 10343 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10344 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10345 const char *msg;
ab96bf03
AM
10346 unsigned long r_symndx;
10347 asection *sec;
749b8d9d
L
10348 Elf_Internal_Shdr *symtab_hdr;
10349 struct elf_link_hash_entry *h;
d4730f92 10350 bfd_boolean rel_reloc;
b49e97c9 10351
d4730f92
BS
10352 rel_reloc = (NEWABI_P (input_bfd)
10353 && mips_elf_rel_relocation_p (input_bfd, input_section,
10354 relocs, rel));
b49e97c9 10355 /* Find the relocation howto for this relocation. */
d4730f92 10356 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10357
10358 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10359 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10360 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10361 {
10362 sec = local_sections[r_symndx];
10363 h = NULL;
10364 }
ab96bf03
AM
10365 else
10366 {
ab96bf03 10367 unsigned long extsymoff;
ab96bf03 10368
ab96bf03
AM
10369 extsymoff = 0;
10370 if (!elf_bad_symtab (input_bfd))
10371 extsymoff = symtab_hdr->sh_info;
10372 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10373 while (h->root.type == bfd_link_hash_indirect
10374 || h->root.type == bfd_link_hash_warning)
10375 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10376
10377 sec = NULL;
10378 if (h->root.type == bfd_link_hash_defined
10379 || h->root.type == bfd_link_hash_defweak)
10380 sec = h->root.u.def.section;
10381 }
10382
dbaa2011 10383 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10384 {
10385 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10386 input_section, &rel, &relend,
10387 rel_reloc, howto, contents);
10388 continue;
10389 }
ab96bf03 10390
4a14403c 10391 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10392 {
10393 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10394 64-bit code, but make sure all their addresses are in the
10395 lowermost or uppermost 32-bit section of the 64-bit address
10396 space. Thus, when they use an R_MIPS_64 they mean what is
10397 usually meant by R_MIPS_32, with the exception that the
10398 stored value is sign-extended to 64 bits. */
b34976b6 10399 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10400
10401 /* On big-endian systems, we need to lie about the position
10402 of the reloc. */
10403 if (bfd_big_endian (input_bfd))
10404 rel->r_offset += 4;
10405 }
b49e97c9
TS
10406
10407 if (!use_saved_addend_p)
10408 {
b49e97c9
TS
10409 /* If these relocations were originally of the REL variety,
10410 we must pull the addend out of the field that will be
10411 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10412 RELA relocation. */
10413 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10414 relocs, rel))
b49e97c9 10415 {
b34976b6 10416 rela_relocation_p = FALSE;
c224138d
RS
10417 addend = mips_elf_read_rel_addend (input_bfd, rel,
10418 howto, contents);
738e5348
RS
10419 if (hi16_reloc_p (r_type)
10420 || (got16_reloc_p (r_type)
b49e97c9 10421 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10422 local_sections)))
b49e97c9 10423 {
c224138d
RS
10424 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10425 contents, &addend))
749b8d9d 10426 {
749b8d9d
L
10427 if (h)
10428 name = h->root.root.string;
10429 else
10430 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10431 local_syms + r_symndx,
10432 sec);
4eca0228 10433 _bfd_error_handler
695344c0 10434 /* xgettext:c-format */
2c1c9679 10435 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10436 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10437 input_bfd, name,
2dcf00ce 10438 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10439 }
b49e97c9 10440 }
30ac9238
RS
10441 else
10442 addend <<= howto->rightshift;
b49e97c9
TS
10443 }
10444 else
10445 addend = rel->r_addend;
81d43bff
RS
10446 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10447 local_syms, local_sections, rel);
b49e97c9
TS
10448 }
10449
0e1862bb 10450 if (bfd_link_relocatable (info))
b49e97c9 10451 {
4a14403c 10452 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10453 && bfd_big_endian (input_bfd))
10454 rel->r_offset -= 4;
10455
81d43bff 10456 if (!rela_relocation_p && rel->r_addend)
5a659663 10457 {
81d43bff 10458 addend += rel->r_addend;
738e5348 10459 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10460 addend = mips_elf_high (addend);
10461 else if (r_type == R_MIPS_HIGHER)
10462 addend = mips_elf_higher (addend);
10463 else if (r_type == R_MIPS_HIGHEST)
10464 addend = mips_elf_highest (addend);
30ac9238
RS
10465 else
10466 addend >>= howto->rightshift;
b49e97c9 10467
30ac9238
RS
10468 /* We use the source mask, rather than the destination
10469 mask because the place to which we are writing will be
10470 source of the addend in the final link. */
b49e97c9
TS
10471 addend &= howto->src_mask;
10472
5a659663 10473 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10474 /* See the comment above about using R_MIPS_64 in the 32-bit
10475 ABI. Here, we need to update the addend. It would be
10476 possible to get away with just using the R_MIPS_32 reloc
10477 but for endianness. */
10478 {
10479 bfd_vma sign_bits;
10480 bfd_vma low_bits;
10481 bfd_vma high_bits;
10482
10483 if (addend & ((bfd_vma) 1 << 31))
10484#ifdef BFD64
10485 sign_bits = ((bfd_vma) 1 << 32) - 1;
10486#else
10487 sign_bits = -1;
10488#endif
10489 else
10490 sign_bits = 0;
10491
10492 /* If we don't know that we have a 64-bit type,
10493 do two separate stores. */
10494 if (bfd_big_endian (input_bfd))
10495 {
10496 /* Store the sign-bits (which are most significant)
10497 first. */
10498 low_bits = sign_bits;
10499 high_bits = addend;
10500 }
10501 else
10502 {
10503 low_bits = addend;
10504 high_bits = sign_bits;
10505 }
10506 bfd_put_32 (input_bfd, low_bits,
10507 contents + rel->r_offset);
10508 bfd_put_32 (input_bfd, high_bits,
10509 contents + rel->r_offset + 4);
10510 continue;
10511 }
10512
10513 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10514 input_bfd, input_section,
b34976b6
AM
10515 contents, FALSE))
10516 return FALSE;
b49e97c9
TS
10517 }
10518
10519 /* Go on to the next relocation. */
10520 continue;
10521 }
10522
10523 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10524 relocations for the same offset. In that case we are
10525 supposed to treat the output of each relocation as the addend
10526 for the next. */
10527 if (rel + 1 < relend
10528 && rel->r_offset == rel[1].r_offset
10529 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10530 use_saved_addend_p = TRUE;
b49e97c9 10531 else
b34976b6 10532 use_saved_addend_p = FALSE;
b49e97c9
TS
10533
10534 /* Figure out what value we are supposed to relocate. */
10535 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
47275900
MR
10536 input_section, contents,
10537 info, rel, addend, howto,
10538 local_syms, local_sections,
10539 &value, &name, &cross_mode_jump_p,
bce03d3d 10540 use_saved_addend_p))
b49e97c9
TS
10541 {
10542 case bfd_reloc_continue:
10543 /* There's nothing to do. */
10544 continue;
10545
10546 case bfd_reloc_undefined:
10547 /* mips_elf_calculate_relocation already called the
10548 undefined_symbol callback. There's no real point in
10549 trying to perform the relocation at this point, so we
10550 just skip ahead to the next relocation. */
10551 continue;
10552
10553 case bfd_reloc_notsupported:
10554 msg = _("internal error: unsupported relocation error");
10555 info->callbacks->warning
10556 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10557 return FALSE;
b49e97c9
TS
10558
10559 case bfd_reloc_overflow:
10560 if (use_saved_addend_p)
10561 /* Ignore overflow until we reach the last relocation for
10562 a given location. */
10563 ;
10564 else
10565 {
0e53d9da
AN
10566 struct mips_elf_link_hash_table *htab;
10567
10568 htab = mips_elf_hash_table (info);
4dfe6ac6 10569 BFD_ASSERT (htab != NULL);
b49e97c9 10570 BFD_ASSERT (name != NULL);
0e53d9da 10571 if (!htab->small_data_overflow_reported
9684f078 10572 && (gprel16_reloc_p (howto->type)
df58fc94 10573 || literal_reloc_p (howto->type)))
0e53d9da 10574 {
91d6fa6a
NC
10575 msg = _("small-data section exceeds 64KB;"
10576 " lower small-data size limit (see option -G)");
0e53d9da
AN
10577
10578 htab->small_data_overflow_reported = TRUE;
10579 (*info->callbacks->einfo) ("%P: %s\n", msg);
10580 }
1a72702b
AM
10581 (*info->callbacks->reloc_overflow)
10582 (info, NULL, name, howto->name, (bfd_vma) 0,
10583 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10584 }
10585 break;
10586
10587 case bfd_reloc_ok:
10588 break;
10589
df58fc94 10590 case bfd_reloc_outofrange:
7db9a74e 10591 msg = NULL;
df58fc94 10592 if (jal_reloc_p (howto->type))
9d862524 10593 msg = (cross_mode_jump_p
2c1c9679 10594 ? _("cannot convert a jump to JALX "
9d862524
MR
10595 "for a non-word-aligned address")
10596 : (howto->type == R_MIPS16_26
2c1c9679
AM
10597 ? _("jump to a non-word-aligned address")
10598 : _("jump to a non-instruction-aligned address")));
99aefae6 10599 else if (b_reloc_p (howto->type))
a6ebf616 10600 msg = (cross_mode_jump_p
2c1c9679 10601 ? _("cannot convert a branch to JALX "
a6ebf616 10602 "for a non-word-aligned address")
2c1c9679 10603 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10604 else if (aligned_pcrel_reloc_p (howto->type))
10605 msg = _("PC-relative load from unaligned address");
10606 if (msg)
df58fc94 10607 {
de341542 10608 info->callbacks->einfo
ed53407e
MR
10609 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10610 break;
7361da2c 10611 }
df58fc94
RS
10612 /* Fall through. */
10613
b49e97c9
TS
10614 default:
10615 abort ();
10616 break;
10617 }
10618
10619 /* If we've got another relocation for the address, keep going
10620 until we reach the last one. */
10621 if (use_saved_addend_p)
10622 {
10623 addend = value;
10624 continue;
10625 }
10626
4a14403c 10627 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10628 /* See the comment above about using R_MIPS_64 in the 32-bit
10629 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10630 that calculated the right value. Now, however, we
10631 sign-extend the 32-bit result to 64-bits, and store it as a
10632 64-bit value. We are especially generous here in that we
10633 go to extreme lengths to support this usage on systems with
10634 only a 32-bit VMA. */
10635 {
10636 bfd_vma sign_bits;
10637 bfd_vma low_bits;
10638 bfd_vma high_bits;
10639
10640 if (value & ((bfd_vma) 1 << 31))
10641#ifdef BFD64
10642 sign_bits = ((bfd_vma) 1 << 32) - 1;
10643#else
10644 sign_bits = -1;
10645#endif
10646 else
10647 sign_bits = 0;
10648
10649 /* If we don't know that we have a 64-bit type,
10650 do two separate stores. */
10651 if (bfd_big_endian (input_bfd))
10652 {
10653 /* Undo what we did above. */
10654 rel->r_offset -= 4;
10655 /* Store the sign-bits (which are most significant)
10656 first. */
10657 low_bits = sign_bits;
10658 high_bits = value;
10659 }
10660 else
10661 {
10662 low_bits = value;
10663 high_bits = sign_bits;
10664 }
10665 bfd_put_32 (input_bfd, low_bits,
10666 contents + rel->r_offset);
10667 bfd_put_32 (input_bfd, high_bits,
10668 contents + rel->r_offset + 4);
10669 continue;
10670 }
10671
10672 /* Actually perform the relocation. */
10673 if (! mips_elf_perform_relocation (info, howto, rel, value,
10674 input_bfd, input_section,
38a7df63 10675 contents, cross_mode_jump_p))
b34976b6 10676 return FALSE;
b49e97c9
TS
10677 }
10678
b34976b6 10679 return TRUE;
b49e97c9
TS
10680}
10681\f
861fb55a
DJ
10682/* A function that iterates over each entry in la25_stubs and fills
10683 in the code for each one. DATA points to a mips_htab_traverse_info. */
10684
10685static int
10686mips_elf_create_la25_stub (void **slot, void *data)
10687{
10688 struct mips_htab_traverse_info *hti;
10689 struct mips_elf_link_hash_table *htab;
10690 struct mips_elf_la25_stub *stub;
10691 asection *s;
10692 bfd_byte *loc;
10693 bfd_vma offset, target, target_high, target_low;
3734320d
MF
10694 bfd_vma branch_pc;
10695 bfd_signed_vma pcrel_offset = 0;
861fb55a
DJ
10696
10697 stub = (struct mips_elf_la25_stub *) *slot;
10698 hti = (struct mips_htab_traverse_info *) data;
10699 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10700 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10701
10702 /* Create the section contents, if we haven't already. */
10703 s = stub->stub_section;
10704 loc = s->contents;
10705 if (loc == NULL)
10706 {
10707 loc = bfd_malloc (s->size);
10708 if (loc == NULL)
10709 {
10710 hti->error = TRUE;
10711 return FALSE;
10712 }
10713 s->contents = loc;
10714 }
10715
10716 /* Work out where in the section this stub should go. */
10717 offset = stub->offset;
10718
3734320d
MF
10719 /* We add 8 here to account for the LUI/ADDIU instructions
10720 before the branch instruction. This cannot be moved down to
10721 where pcrel_offset is calculated as 's' is updated in
10722 mips_elf_get_la25_target. */
10723 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10724
861fb55a 10725 /* Work out the target address. */
8f0c309a
CLT
10726 target = mips_elf_get_la25_target (stub, &s);
10727 target += s->output_section->vma + s->output_offset;
10728
861fb55a
DJ
10729 target_high = ((target + 0x8000) >> 16) & 0xffff;
10730 target_low = (target & 0xffff);
10731
3734320d
MF
10732 /* Calculate the PC of the compact branch instruction (for the case where
10733 compact branches are used for either microMIPSR6 or MIPSR6 with
10734 compact branches. Add 4-bytes to account for BC using the PC of the
10735 next instruction as the base. */
10736 pcrel_offset = target - (branch_pc + 4);
10737
861fb55a
DJ
10738 if (stub->stub_section != htab->strampoline)
10739 {
df58fc94 10740 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10741 of the section and write the two instructions at the end. */
10742 memset (loc, 0, offset);
10743 loc += offset;
df58fc94
RS
10744 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10745 {
d21911ea
MR
10746 bfd_put_micromips_32 (hti->output_bfd,
10747 LA25_LUI_MICROMIPS (target_high),
10748 loc);
10749 bfd_put_micromips_32 (hti->output_bfd,
10750 LA25_ADDIU_MICROMIPS (target_low),
10751 loc + 4);
df58fc94
RS
10752 }
10753 else
10754 {
10755 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10756 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10757 }
861fb55a
DJ
10758 }
10759 else
10760 {
10761 /* This is trampoline. */
10762 loc += offset;
df58fc94
RS
10763 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10764 {
d21911ea
MR
10765 bfd_put_micromips_32 (hti->output_bfd,
10766 LA25_LUI_MICROMIPS (target_high), loc);
10767 bfd_put_micromips_32 (hti->output_bfd,
10768 LA25_J_MICROMIPS (target), loc + 4);
10769 bfd_put_micromips_32 (hti->output_bfd,
10770 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10771 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10772 }
10773 else
10774 {
10775 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
3734320d
MF
10776 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10777 {
10778 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10779 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10780 }
10781 else
10782 {
10783 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10784 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10785 }
df58fc94
RS
10786 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10787 }
861fb55a
DJ
10788 }
10789 return TRUE;
10790}
10791
b49e97c9
TS
10792/* If NAME is one of the special IRIX6 symbols defined by the linker,
10793 adjust it appropriately now. */
10794
10795static void
9719ad41
RS
10796mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10797 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10798{
10799 /* The linker script takes care of providing names and values for
10800 these, but we must place them into the right sections. */
10801 static const char* const text_section_symbols[] = {
10802 "_ftext",
10803 "_etext",
10804 "__dso_displacement",
10805 "__elf_header",
10806 "__program_header_table",
10807 NULL
10808 };
10809
10810 static const char* const data_section_symbols[] = {
10811 "_fdata",
10812 "_edata",
10813 "_end",
10814 "_fbss",
10815 NULL
10816 };
10817
10818 const char* const *p;
10819 int i;
10820
10821 for (i = 0; i < 2; ++i)
10822 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10823 *p;
10824 ++p)
10825 if (strcmp (*p, name) == 0)
10826 {
10827 /* All of these symbols are given type STT_SECTION by the
10828 IRIX6 linker. */
10829 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10830 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10831
10832 /* The IRIX linker puts these symbols in special sections. */
10833 if (i == 0)
10834 sym->st_shndx = SHN_MIPS_TEXT;
10835 else
10836 sym->st_shndx = SHN_MIPS_DATA;
10837
10838 break;
10839 }
10840}
10841
10842/* Finish up dynamic symbol handling. We set the contents of various
10843 dynamic sections here. */
10844
b34976b6 10845bfd_boolean
9719ad41
RS
10846_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10847 struct bfd_link_info *info,
10848 struct elf_link_hash_entry *h,
10849 Elf_Internal_Sym *sym)
b49e97c9
TS
10850{
10851 bfd *dynobj;
b49e97c9 10852 asection *sgot;
f4416af6 10853 struct mips_got_info *g, *gg;
b49e97c9 10854 const char *name;
3d6746ca 10855 int idx;
5108fc1b 10856 struct mips_elf_link_hash_table *htab;
738e5348 10857 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10858
5108fc1b 10859 htab = mips_elf_hash_table (info);
4dfe6ac6 10860 BFD_ASSERT (htab != NULL);
b49e97c9 10861 dynobj = elf_hash_table (info)->dynobj;
738e5348 10862 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10863
90c14f0c 10864 BFD_ASSERT (htab->root.target_os != is_vxworks);
861fb55a 10865
1bbce132
MR
10866 if (h->plt.plist != NULL
10867 && (h->plt.plist->mips_offset != MINUS_ONE
10868 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10869 {
10870 /* We've decided to create a PLT entry for this symbol. */
10871 bfd_byte *loc;
1bbce132 10872 bfd_vma header_address, got_address;
861fb55a 10873 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10874 bfd_vma got_index;
10875 bfd_vma isa_bit;
10876
10877 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10878
10879 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10880 BFD_ASSERT (h->dynindx != -1);
ce558b89 10881 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10882 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10883 BFD_ASSERT (!h->def_regular);
10884
10885 /* Calculate the address of the PLT header. */
1bbce132 10886 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10887 header_address = (htab->root.splt->output_section->vma
10888 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10889
10890 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10891 got_address = (htab->root.sgotplt->output_section->vma
10892 + htab->root.sgotplt->output_offset
1bbce132
MR
10893 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10894
861fb55a
DJ
10895 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10896 got_address_low = got_address & 0xffff;
10897
789ff5b6
MR
10898 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10899 cannot be loaded in two instructions. */
10900 if (ABI_64_P (output_bfd)
10901 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10902 {
10903 _bfd_error_handler
10904 /* xgettext:c-format */
10905 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10906 "supported; consider using `-Ttext-segment=...'"),
10907 output_bfd,
10908 htab->root.sgotplt->output_section,
10909 (int64_t) got_address);
10910 bfd_set_error (bfd_error_no_error);
10911 return FALSE;
10912 }
10913
861fb55a 10914 /* Initially point the .got.plt entry at the PLT header. */
6a382bce
MR
10915 loc = (htab->root.sgotplt->contents
10916 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10917 if (ABI_64_P (output_bfd))
10918 bfd_put_64 (output_bfd, header_address, loc);
10919 else
10920 bfd_put_32 (output_bfd, header_address, loc);
10921
1bbce132 10922 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10923 does not matter, we just have to pick one). */
1bbce132
MR
10924 if (h->plt.plist->mips_offset != MINUS_ONE)
10925 {
10926 const bfd_vma *plt_entry;
10927 bfd_vma plt_offset;
861fb55a 10928
1bbce132 10929 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10930
ce558b89 10931 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10932
1bbce132 10933 /* Find out where the .plt entry should go. */
ce558b89 10934 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10935
10936 /* Pick the load opcode. */
10937 load = MIPS_ELF_LOAD_WORD (output_bfd);
10938
10939 /* Fill in the PLT entry itself. */
7361da2c
AB
10940
10941 if (MIPSR6_P (output_bfd))
3734320d
MF
10942 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10943 : mipsr6_exec_plt_entry;
7361da2c
AB
10944 else
10945 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10946 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10947 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10948 loc + 4);
10949
3734320d
MF
10950 if (! LOAD_INTERLOCKS_P (output_bfd)
10951 || (MIPSR6_P (output_bfd) && htab->compact_branches))
1bbce132
MR
10952 {
10953 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10954 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10955 }
10956 else
10957 {
10958 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10959 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10960 loc + 12);
10961 }
6d30f5b2 10962 }
1bbce132
MR
10963
10964 /* Now the compressed entry. They come after any standard ones. */
10965 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10966 {
1bbce132
MR
10967 bfd_vma plt_offset;
10968
10969 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10970 + h->plt.plist->comp_offset);
10971
ce558b89 10972 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10973
10974 /* Find out where the .plt entry should go. */
ce558b89 10975 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10976
10977 /* Fill in the PLT entry itself. */
833794fc
MR
10978 if (!MICROMIPS_P (output_bfd))
10979 {
10980 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10981
10982 bfd_put_16 (output_bfd, plt_entry[0], loc);
10983 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10984 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10985 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10986 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10987 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10988 bfd_put_32 (output_bfd, got_address, loc + 12);
10989 }
10990 else if (htab->insn32)
10991 {
10992 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10993
10994 bfd_put_16 (output_bfd, plt_entry[0], loc);
10995 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10996 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10997 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10998 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10999 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11000 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11001 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11002 }
11003 else
1bbce132
MR
11004 {
11005 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11006 bfd_signed_vma gotpc_offset;
11007 bfd_vma loc_address;
11008
11009 BFD_ASSERT (got_address % 4 == 0);
11010
ce558b89
AM
11011 loc_address = (htab->root.splt->output_section->vma
11012 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
11013 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11014
11015 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11016 if (gotpc_offset + 0x1000000 >= 0x2000000)
11017 {
4eca0228 11018 _bfd_error_handler
695344c0 11019 /* xgettext:c-format */
2dcf00ce 11020 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
11021 "beyond the range of ADDIUPC"),
11022 output_bfd,
ce558b89 11023 htab->root.sgotplt->output_section,
2dcf00ce 11024 (int64_t) gotpc_offset,
c08bb8dd 11025 htab->root.splt->output_section);
1bbce132
MR
11026 bfd_set_error (bfd_error_no_error);
11027 return FALSE;
11028 }
11029 bfd_put_16 (output_bfd,
11030 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11031 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11032 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11033 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11034 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11035 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11036 }
6d30f5b2 11037 }
861fb55a
DJ
11038
11039 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11040 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 11041 got_index - 2, h->dynindx,
861fb55a
DJ
11042 R_MIPS_JUMP_SLOT, got_address);
11043
11044 /* We distinguish between PLT entries and lazy-binding stubs by
11045 giving the former an st_other value of STO_MIPS_PLT. Set the
11046 flag and leave the value if there are any relocations in the
11047 binary where pointer equality matters. */
11048 sym->st_shndx = SHN_UNDEF;
11049 if (h->pointer_equality_needed)
1bbce132 11050 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 11051 else
1bbce132
MR
11052 {
11053 sym->st_value = 0;
11054 sym->st_other = 0;
11055 }
861fb55a 11056 }
1bbce132
MR
11057
11058 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 11059 {
861fb55a 11060 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
11061 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11062 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11063 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 11064 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
11065 bfd_vma isa_bit = micromips_p;
11066 bfd_vma stub_big_size;
11067
833794fc 11068 if (!micromips_p)
1bbce132 11069 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
11070 else if (htab->insn32)
11071 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11072 else
11073 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
11074
11075 /* This symbol has a stub. Set it up. */
11076
11077 BFD_ASSERT (h->dynindx != -1);
11078
1bbce132 11079 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
11080
11081 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
11082 sign extension at runtime in the stub, resulting in a negative
11083 index value. */
11084 if (h->dynindx & ~0x7fffffff)
b34976b6 11085 return FALSE;
b49e97c9
TS
11086
11087 /* Fill the stub. */
1bbce132
MR
11088 if (micromips_p)
11089 {
11090 idx = 0;
11091 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11092 stub + idx);
11093 idx += 4;
833794fc
MR
11094 if (htab->insn32)
11095 {
11096 bfd_put_micromips_32 (output_bfd,
40fc1451 11097 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
11098 idx += 4;
11099 }
11100 else
11101 {
11102 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11103 idx += 2;
11104 }
1bbce132
MR
11105 if (stub_size == stub_big_size)
11106 {
11107 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11108
11109 bfd_put_micromips_32 (output_bfd,
11110 STUB_LUI_MICROMIPS (dynindx_hi),
11111 stub + idx);
11112 idx += 4;
11113 }
833794fc
MR
11114 if (htab->insn32)
11115 {
11116 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11117 stub + idx);
11118 idx += 4;
11119 }
11120 else
11121 {
11122 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11123 idx += 2;
11124 }
1bbce132
MR
11125
11126 /* If a large stub is not required and sign extension is not a
11127 problem, then use legacy code in the stub. */
11128 if (stub_size == stub_big_size)
11129 bfd_put_micromips_32 (output_bfd,
11130 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11131 stub + idx);
11132 else if (h->dynindx & ~0x7fff)
11133 bfd_put_micromips_32 (output_bfd,
11134 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11135 stub + idx);
11136 else
11137 bfd_put_micromips_32 (output_bfd,
11138 STUB_LI16S_MICROMIPS (output_bfd,
11139 h->dynindx),
11140 stub + idx);
11141 }
3d6746ca 11142 else
1bbce132
MR
11143 {
11144 idx = 0;
11145 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11146 idx += 4;
40fc1451 11147 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
11148 idx += 4;
11149 if (stub_size == stub_big_size)
11150 {
11151 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11152 stub + idx);
11153 idx += 4;
11154 }
3734320d
MF
11155
11156 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11157 {
11158 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11159 idx += 4;
11160 }
1bbce132
MR
11161
11162 /* If a large stub is not required and sign extension is not a
11163 problem, then use legacy code in the stub. */
11164 if (stub_size == stub_big_size)
11165 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11166 stub + idx);
11167 else if (h->dynindx & ~0x7fff)
11168 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11169 stub + idx);
11170 else
11171 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11172 stub + idx);
3734320d
MF
11173 idx += 4;
11174
11175 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11176 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
1bbce132 11177 }
5108fc1b 11178
1bbce132
MR
11179 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11180 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11181 stub, stub_size);
b49e97c9 11182
1bbce132 11183 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
11184 only for the referenced symbol. */
11185 sym->st_shndx = SHN_UNDEF;
11186
11187 /* The run-time linker uses the st_value field of the symbol
11188 to reset the global offset table entry for this external
11189 to its stub address when unlinking a shared object. */
4e41d0d7
RS
11190 sym->st_value = (htab->sstubs->output_section->vma
11191 + htab->sstubs->output_offset
1bbce132
MR
11192 + h->plt.plist->stub_offset
11193 + isa_bit);
11194 sym->st_other = other;
b49e97c9
TS
11195 }
11196
738e5348
RS
11197 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11198 refer to the stub, since only the stub uses the standard calling
11199 conventions. */
11200 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11201 {
11202 BFD_ASSERT (hmips->need_fn_stub);
11203 sym->st_value = (hmips->fn_stub->output_section->vma
11204 + hmips->fn_stub->output_offset);
11205 sym->st_size = hmips->fn_stub->size;
11206 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11207 }
11208
b49e97c9 11209 BFD_ASSERT (h->dynindx != -1
f5385ebf 11210 || h->forced_local);
b49e97c9 11211
ce558b89 11212 sgot = htab->root.sgot;
a8028dd0 11213 g = htab->got_info;
b49e97c9
TS
11214 BFD_ASSERT (g != NULL);
11215
11216 /* Run through the global symbol table, creating GOT entries for all
11217 the symbols that need them. */
020d7251 11218 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11219 {
11220 bfd_vma offset;
11221 bfd_vma value;
11222
6eaa6adc 11223 value = sym->st_value;
13fbec83 11224 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11225 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11226 }
11227
e641e783 11228 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11229 {
11230 struct mips_got_entry e, *p;
0626d451 11231 bfd_vma entry;
f4416af6 11232 bfd_vma offset;
f4416af6
AO
11233
11234 gg = g;
11235
11236 e.abfd = output_bfd;
11237 e.symndx = -1;
738e5348 11238 e.d.h = hmips;
9ab066b4 11239 e.tls_type = GOT_TLS_NONE;
143d77c5 11240
f4416af6
AO
11241 for (g = g->next; g->next != gg; g = g->next)
11242 {
11243 if (g->got_entries
11244 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11245 &e)))
11246 {
11247 offset = p->gotidx;
ce558b89 11248 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11249 if (bfd_link_pic (info)
0626d451
RS
11250 || (elf_hash_table (info)->dynamic_sections_created
11251 && p->d.h != NULL
f5385ebf
AM
11252 && p->d.h->root.def_dynamic
11253 && !p->d.h->root.def_regular))
0626d451
RS
11254 {
11255 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11256 the various compatibility problems, it's easier to mock
11257 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11258 mips_elf_create_dynamic_relocation to calculate the
11259 appropriate addend. */
11260 Elf_Internal_Rela rel[3];
11261
11262 memset (rel, 0, sizeof (rel));
11263 if (ABI_64_P (output_bfd))
11264 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11265 else
11266 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11267 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11268
11269 entry = 0;
11270 if (! (mips_elf_create_dynamic_relocation
11271 (output_bfd, info, rel,
11272 e.d.h, NULL, sym->st_value, &entry, sgot)))
11273 return FALSE;
11274 }
11275 else
11276 entry = sym->st_value;
11277 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11278 }
11279 }
11280 }
11281
b49e97c9
TS
11282 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11283 name = h->root.root.string;
9637f6ef 11284 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11285 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11286 sym->st_shndx = SHN_ABS;
11287 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11288 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11289 {
11290 sym->st_shndx = SHN_ABS;
11291 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11292 sym->st_value = 1;
11293 }
b49e97c9
TS
11294 else if (SGI_COMPAT (output_bfd))
11295 {
11296 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11297 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11298 {
11299 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11300 sym->st_other = STO_PROTECTED;
11301 sym->st_value = 0;
11302 sym->st_shndx = SHN_MIPS_DATA;
11303 }
11304 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11305 {
11306 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11307 sym->st_other = STO_PROTECTED;
11308 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11309 sym->st_shndx = SHN_ABS;
11310 }
11311 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11312 {
11313 if (h->type == STT_FUNC)
11314 sym->st_shndx = SHN_MIPS_TEXT;
11315 else if (h->type == STT_OBJECT)
11316 sym->st_shndx = SHN_MIPS_DATA;
11317 }
11318 }
11319
861fb55a
DJ
11320 /* Emit a copy reloc, if needed. */
11321 if (h->needs_copy)
11322 {
11323 asection *s;
11324 bfd_vma symval;
11325
11326 BFD_ASSERT (h->dynindx != -1);
11327 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11328
11329 s = mips_elf_rel_dyn_section (info, FALSE);
11330 symval = (h->root.u.def.section->output_section->vma
11331 + h->root.u.def.section->output_offset
11332 + h->root.u.def.value);
11333 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11334 h->dynindx, R_MIPS_COPY, symval);
11335 }
11336
b49e97c9
TS
11337 /* Handle the IRIX6-specific symbols. */
11338 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11339 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11340
cbf8d970
MR
11341 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11342 to treat compressed symbols like any other. */
30c09090 11343 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11344 {
11345 BFD_ASSERT (sym->st_value & 1);
11346 sym->st_other -= STO_MIPS16;
11347 }
cbf8d970
MR
11348 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11349 {
11350 BFD_ASSERT (sym->st_value & 1);
11351 sym->st_other -= STO_MICROMIPS;
11352 }
b49e97c9 11353
b34976b6 11354 return TRUE;
b49e97c9
TS
11355}
11356
0a44bf69
RS
11357/* Likewise, for VxWorks. */
11358
11359bfd_boolean
11360_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11361 struct bfd_link_info *info,
11362 struct elf_link_hash_entry *h,
11363 Elf_Internal_Sym *sym)
11364{
11365 bfd *dynobj;
11366 asection *sgot;
11367 struct mips_got_info *g;
11368 struct mips_elf_link_hash_table *htab;
020d7251 11369 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11370
11371 htab = mips_elf_hash_table (info);
4dfe6ac6 11372 BFD_ASSERT (htab != NULL);
0a44bf69 11373 dynobj = elf_hash_table (info)->dynobj;
020d7251 11374 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11375
1bbce132 11376 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11377 {
6d79d2ed 11378 bfd_byte *loc;
1bbce132 11379 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11380 Elf_Internal_Rela rel;
11381 static const bfd_vma *plt_entry;
1bbce132
MR
11382 bfd_vma gotplt_index;
11383 bfd_vma plt_offset;
11384
11385 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11386 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11387
11388 BFD_ASSERT (h->dynindx != -1);
ce558b89 11389 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11390 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11391 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11392
11393 /* Calculate the address of the .plt entry. */
ce558b89
AM
11394 plt_address = (htab->root.splt->output_section->vma
11395 + htab->root.splt->output_offset
1bbce132 11396 + plt_offset);
0a44bf69
RS
11397
11398 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11399 got_address = (htab->root.sgotplt->output_section->vma
11400 + htab->root.sgotplt->output_offset
1bbce132 11401 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11402
11403 /* Calculate the offset of the .got.plt entry from
11404 _GLOBAL_OFFSET_TABLE_. */
11405 got_offset = mips_elf_gotplt_index (info, h);
11406
11407 /* Calculate the offset for the branch at the start of the PLT
11408 entry. The branch jumps to the beginning of .plt. */
1bbce132 11409 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11410
11411 /* Fill in the initial value of the .got.plt entry. */
11412 bfd_put_32 (output_bfd, plt_address,
ce558b89 11413 (htab->root.sgotplt->contents
1bbce132 11414 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11415
11416 /* Find out where the .plt entry should go. */
ce558b89 11417 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11418
0e1862bb 11419 if (bfd_link_pic (info))
0a44bf69
RS
11420 {
11421 plt_entry = mips_vxworks_shared_plt_entry;
11422 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11423 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11424 }
11425 else
11426 {
11427 bfd_vma got_address_high, got_address_low;
11428
11429 plt_entry = mips_vxworks_exec_plt_entry;
11430 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11431 got_address_low = got_address & 0xffff;
11432
11433 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11434 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11435 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11436 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11437 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11438 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11439 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11440 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11441
11442 loc = (htab->srelplt2->contents
1bbce132 11443 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11444
11445 /* Emit a relocation for the .got.plt entry. */
11446 rel.r_offset = got_address;
11447 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11448 rel.r_addend = plt_offset;
0a44bf69
RS
11449 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11450
11451 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11452 loc += sizeof (Elf32_External_Rela);
11453 rel.r_offset = plt_address + 8;
11454 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11455 rel.r_addend = got_offset;
11456 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11457
11458 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11459 loc += sizeof (Elf32_External_Rela);
11460 rel.r_offset += 4;
11461 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11462 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11463 }
11464
11465 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11466 loc = (htab->root.srelplt->contents
1bbce132 11467 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11468 rel.r_offset = got_address;
11469 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11470 rel.r_addend = 0;
11471 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11472
11473 if (!h->def_regular)
11474 sym->st_shndx = SHN_UNDEF;
11475 }
11476
11477 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11478
ce558b89 11479 sgot = htab->root.sgot;
a8028dd0 11480 g = htab->got_info;
0a44bf69
RS
11481 BFD_ASSERT (g != NULL);
11482
11483 /* See if this symbol has an entry in the GOT. */
020d7251 11484 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11485 {
11486 bfd_vma offset;
11487 Elf_Internal_Rela outrel;
11488 bfd_byte *loc;
11489 asection *s;
11490
11491 /* Install the symbol value in the GOT. */
13fbec83 11492 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11493 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11494
11495 /* Add a dynamic relocation for it. */
11496 s = mips_elf_rel_dyn_section (info, FALSE);
11497 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11498 outrel.r_offset = (sgot->output_section->vma
11499 + sgot->output_offset
11500 + offset);
11501 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11502 outrel.r_addend = 0;
11503 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11504 }
11505
11506 /* Emit a copy reloc, if needed. */
11507 if (h->needs_copy)
11508 {
11509 Elf_Internal_Rela rel;
5474d94f
AM
11510 asection *srel;
11511 bfd_byte *loc;
0a44bf69
RS
11512
11513 BFD_ASSERT (h->dynindx != -1);
11514
11515 rel.r_offset = (h->root.u.def.section->output_section->vma
11516 + h->root.u.def.section->output_offset
11517 + h->root.u.def.value);
11518 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11519 rel.r_addend = 0;
afbf7e8e 11520 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11521 srel = htab->root.sreldynrelro;
11522 else
11523 srel = htab->root.srelbss;
11524 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11525 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11526 ++srel->reloc_count;
0a44bf69
RS
11527 }
11528
df58fc94
RS
11529 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11530 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11531 sym->st_value &= ~1;
11532
11533 return TRUE;
11534}
11535
861fb55a
DJ
11536/* Write out a plt0 entry to the beginning of .plt. */
11537
1bbce132 11538static bfd_boolean
861fb55a
DJ
11539mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11540{
11541 bfd_byte *loc;
11542 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11543 static const bfd_vma *plt_entry;
11544 struct mips_elf_link_hash_table *htab;
11545
11546 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11547 BFD_ASSERT (htab != NULL);
11548
861fb55a 11549 if (ABI_64_P (output_bfd))
3734320d
MF
11550 plt_entry = (htab->compact_branches
11551 ? mipsr6_n64_exec_plt0_entry_compact
11552 : mips_n64_exec_plt0_entry);
861fb55a 11553 else if (ABI_N32_P (output_bfd))
3734320d
MF
11554 plt_entry = (htab->compact_branches
11555 ? mipsr6_n32_exec_plt0_entry_compact
11556 : mips_n32_exec_plt0_entry);
833794fc 11557 else if (!htab->plt_header_is_comp)
3734320d
MF
11558 plt_entry = (htab->compact_branches
11559 ? mipsr6_o32_exec_plt0_entry_compact
11560 : mips_o32_exec_plt0_entry);
833794fc
MR
11561 else if (htab->insn32)
11562 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11563 else
11564 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11565
11566 /* Calculate the value of .got.plt. */
ce558b89
AM
11567 gotplt_value = (htab->root.sgotplt->output_section->vma
11568 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11569 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11570 gotplt_value_low = gotplt_value & 0xffff;
11571
11572 /* The PLT sequence is not safe for N64 if .got.plt's address can
11573 not be loaded in two instructions. */
789ff5b6
MR
11574 if (ABI_64_P (output_bfd)
11575 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11576 {
11577 _bfd_error_handler
11578 /* xgettext:c-format */
11579 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11580 "supported; consider using `-Ttext-segment=...'"),
11581 output_bfd,
11582 htab->root.sgotplt->output_section,
11583 (int64_t) gotplt_value);
11584 bfd_set_error (bfd_error_no_error);
11585 return FALSE;
11586 }
861fb55a
DJ
11587
11588 /* Install the PLT header. */
ce558b89 11589 loc = htab->root.splt->contents;
1bbce132
MR
11590 if (plt_entry == micromips_o32_exec_plt0_entry)
11591 {
11592 bfd_vma gotpc_offset;
11593 bfd_vma loc_address;
11594 size_t i;
11595
11596 BFD_ASSERT (gotplt_value % 4 == 0);
11597
ce558b89
AM
11598 loc_address = (htab->root.splt->output_section->vma
11599 + htab->root.splt->output_offset);
1bbce132
MR
11600 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11601
11602 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11603 if (gotpc_offset + 0x1000000 >= 0x2000000)
11604 {
4eca0228 11605 _bfd_error_handler
695344c0 11606 /* xgettext:c-format */
2dcf00ce
AM
11607 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11608 "beyond the range of ADDIUPC"),
1bbce132 11609 output_bfd,
ce558b89 11610 htab->root.sgotplt->output_section,
2dcf00ce 11611 (int64_t) gotpc_offset,
c08bb8dd 11612 htab->root.splt->output_section);
1bbce132
MR
11613 bfd_set_error (bfd_error_no_error);
11614 return FALSE;
11615 }
11616 bfd_put_16 (output_bfd,
11617 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11618 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11619 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11620 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11621 }
833794fc
MR
11622 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11623 {
11624 size_t i;
11625
11626 bfd_put_16 (output_bfd, plt_entry[0], loc);
11627 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11628 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11629 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11630 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11631 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11632 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11633 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11634 }
1bbce132
MR
11635 else
11636 {
11637 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11638 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11639 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11640 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11641 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11642 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11643 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11644 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11645 }
11646
11647 return TRUE;
861fb55a
DJ
11648}
11649
0a44bf69
RS
11650/* Install the PLT header for a VxWorks executable and finalize the
11651 contents of .rela.plt.unloaded. */
11652
11653static void
11654mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11655{
11656 Elf_Internal_Rela rela;
11657 bfd_byte *loc;
11658 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11659 static const bfd_vma *plt_entry;
11660 struct mips_elf_link_hash_table *htab;
11661
11662 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11663 BFD_ASSERT (htab != NULL);
11664
0a44bf69
RS
11665 plt_entry = mips_vxworks_exec_plt0_entry;
11666
11667 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11668 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11669 + htab->root.hgot->root.u.def.section->output_offset
11670 + htab->root.hgot->root.u.def.value);
11671
11672 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11673 got_value_low = got_value & 0xffff;
11674
11675 /* Calculate the address of the PLT header. */
ce558b89
AM
11676 plt_address = (htab->root.splt->output_section->vma
11677 + htab->root.splt->output_offset);
0a44bf69
RS
11678
11679 /* Install the PLT header. */
ce558b89 11680 loc = htab->root.splt->contents;
0a44bf69
RS
11681 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11682 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11683 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11684 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11685 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11686 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11687
11688 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11689 loc = htab->srelplt2->contents;
11690 rela.r_offset = plt_address;
11691 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11692 rela.r_addend = 0;
11693 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11694 loc += sizeof (Elf32_External_Rela);
11695
11696 /* Output the relocation for the following addiu of
11697 %lo(_GLOBAL_OFFSET_TABLE_). */
11698 rela.r_offset += 4;
11699 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11700 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11701 loc += sizeof (Elf32_External_Rela);
11702
11703 /* Fix up the remaining relocations. They may have the wrong
11704 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11705 in which symbols were output. */
11706 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11707 {
11708 Elf_Internal_Rela rel;
11709
11710 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11711 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11712 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11713 loc += sizeof (Elf32_External_Rela);
11714
11715 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11716 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11717 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11718 loc += sizeof (Elf32_External_Rela);
11719
11720 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11721 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11722 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11723 loc += sizeof (Elf32_External_Rela);
11724 }
11725}
11726
11727/* Install the PLT header for a VxWorks shared library. */
11728
11729static void
11730mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11731{
11732 unsigned int i;
11733 struct mips_elf_link_hash_table *htab;
11734
11735 htab = mips_elf_hash_table (info);
4dfe6ac6 11736 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11737
11738 /* We just need to copy the entry byte-by-byte. */
11739 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11740 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11741 htab->root.splt->contents + i * 4);
0a44bf69
RS
11742}
11743
b49e97c9
TS
11744/* Finish up the dynamic sections. */
11745
b34976b6 11746bfd_boolean
9719ad41
RS
11747_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11748 struct bfd_link_info *info)
b49e97c9
TS
11749{
11750 bfd *dynobj;
11751 asection *sdyn;
11752 asection *sgot;
f4416af6 11753 struct mips_got_info *gg, *g;
0a44bf69 11754 struct mips_elf_link_hash_table *htab;
b49e97c9 11755
0a44bf69 11756 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11757 BFD_ASSERT (htab != NULL);
11758
b49e97c9
TS
11759 dynobj = elf_hash_table (info)->dynobj;
11760
3d4d4302 11761 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11762
ce558b89 11763 sgot = htab->root.sgot;
23cc69b6 11764 gg = htab->got_info;
b49e97c9
TS
11765
11766 if (elf_hash_table (info)->dynamic_sections_created)
11767 {
11768 bfd_byte *b;
943284cc 11769 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11770
11771 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11772 BFD_ASSERT (gg != NULL);
11773
d7206569 11774 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11775 BFD_ASSERT (g != NULL);
11776
11777 for (b = sdyn->contents;
eea6121a 11778 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11779 b += MIPS_ELF_DYN_SIZE (dynobj))
11780 {
11781 Elf_Internal_Dyn dyn;
11782 const char *name;
11783 size_t elemsize;
11784 asection *s;
b34976b6 11785 bfd_boolean swap_out_p;
b49e97c9
TS
11786
11787 /* Read in the current dynamic entry. */
11788 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11789
11790 /* Assume that we're going to modify it and write it out. */
b34976b6 11791 swap_out_p = TRUE;
b49e97c9
TS
11792
11793 switch (dyn.d_tag)
11794 {
11795 case DT_RELENT:
b49e97c9
TS
11796 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11797 break;
11798
0a44bf69 11799 case DT_RELAENT:
90c14f0c 11800 BFD_ASSERT (htab->root.target_os == is_vxworks);
0a44bf69
RS
11801 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11802 break;
11803
b49e97c9
TS
11804 case DT_STRSZ:
11805 /* Rewrite DT_STRSZ. */
11806 dyn.d_un.d_val =
11807 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11808 break;
11809
11810 case DT_PLTGOT:
ce558b89 11811 s = htab->root.sgot;
861fb55a
DJ
11812 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11813 break;
11814
11815 case DT_MIPS_PLTGOT:
ce558b89 11816 s = htab->root.sgotplt;
861fb55a 11817 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11818 break;
11819
11820 case DT_MIPS_RLD_VERSION:
11821 dyn.d_un.d_val = 1; /* XXX */
11822 break;
11823
11824 case DT_MIPS_FLAGS:
11825 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11826 break;
11827
b49e97c9 11828 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11829 {
11830 time_t t;
11831 time (&t);
11832 dyn.d_un.d_val = t;
11833 }
b49e97c9
TS
11834 break;
11835
11836 case DT_MIPS_ICHECKSUM:
11837 /* XXX FIXME: */
b34976b6 11838 swap_out_p = FALSE;
b49e97c9
TS
11839 break;
11840
11841 case DT_MIPS_IVERSION:
11842 /* XXX FIXME: */
b34976b6 11843 swap_out_p = FALSE;
b49e97c9
TS
11844 break;
11845
11846 case DT_MIPS_BASE_ADDRESS:
11847 s = output_bfd->sections;
11848 BFD_ASSERT (s != NULL);
11849 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11850 break;
11851
11852 case DT_MIPS_LOCAL_GOTNO:
11853 dyn.d_un.d_val = g->local_gotno;
11854 break;
11855
11856 case DT_MIPS_UNREFEXTNO:
11857 /* The index into the dynamic symbol table which is the
11858 entry of the first external symbol that is not
11859 referenced within the same object. */
11860 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11861 break;
11862
11863 case DT_MIPS_GOTSYM:
d222d210 11864 if (htab->global_gotsym)
b49e97c9 11865 {
d222d210 11866 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11867 break;
11868 }
11869 /* In case if we don't have global got symbols we default
11870 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11871 DT_MIPS_SYMTABNO. */
11872 /* Fall through. */
b49e97c9
TS
11873
11874 case DT_MIPS_SYMTABNO:
11875 name = ".dynsym";
11876 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11877 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11878
131e2f8e
MF
11879 if (s != NULL)
11880 dyn.d_un.d_val = s->size / elemsize;
11881 else
11882 dyn.d_un.d_val = 0;
b49e97c9
TS
11883 break;
11884
11885 case DT_MIPS_HIPAGENO:
861fb55a 11886 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11887 break;
11888
11889 case DT_MIPS_RLD_MAP:
b4082c70
DD
11890 {
11891 struct elf_link_hash_entry *h;
11892 h = mips_elf_hash_table (info)->rld_symbol;
11893 if (!h)
11894 {
11895 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11896 swap_out_p = FALSE;
11897 break;
11898 }
11899 s = h->root.u.def.section;
a5499fa4
MF
11900
11901 /* The MIPS_RLD_MAP tag stores the absolute address of the
11902 debug pointer. */
b4082c70
DD
11903 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11904 + h->root.u.def.value);
11905 }
b49e97c9
TS
11906 break;
11907
a5499fa4
MF
11908 case DT_MIPS_RLD_MAP_REL:
11909 {
11910 struct elf_link_hash_entry *h;
11911 bfd_vma dt_addr, rld_addr;
11912 h = mips_elf_hash_table (info)->rld_symbol;
11913 if (!h)
11914 {
11915 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11916 swap_out_p = FALSE;
11917 break;
11918 }
11919 s = h->root.u.def.section;
11920
11921 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11922 pointer, relative to the address of the tag. */
11923 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11924 + (b - sdyn->contents));
a5499fa4
MF
11925 rld_addr = (s->output_section->vma + s->output_offset
11926 + h->root.u.def.value);
11927 dyn.d_un.d_ptr = rld_addr - dt_addr;
11928 }
11929 break;
11930
b49e97c9
TS
11931 case DT_MIPS_OPTIONS:
11932 s = (bfd_get_section_by_name
11933 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11934 dyn.d_un.d_ptr = s->vma;
11935 break;
11936
0a44bf69 11937 case DT_PLTREL:
861fb55a 11938 BFD_ASSERT (htab->use_plts_and_copy_relocs);
90c14f0c 11939 if (htab->root.target_os == is_vxworks)
861fb55a
DJ
11940 dyn.d_un.d_val = DT_RELA;
11941 else
11942 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11943 break;
11944
11945 case DT_PLTRELSZ:
861fb55a 11946 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11947 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11948 break;
11949
11950 case DT_JMPREL:
861fb55a 11951 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11952 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11953 + htab->root.srelplt->output_offset);
0a44bf69
RS
11954 break;
11955
943284cc
DJ
11956 case DT_TEXTREL:
11957 /* If we didn't need any text relocations after all, delete
11958 the dynamic tag. */
11959 if (!(info->flags & DF_TEXTREL))
11960 {
11961 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11962 swap_out_p = FALSE;
11963 }
11964 break;
11965
11966 case DT_FLAGS:
11967 /* If we didn't need any text relocations after all, clear
11968 DF_TEXTREL from DT_FLAGS. */
11969 if (!(info->flags & DF_TEXTREL))
11970 dyn.d_un.d_val &= ~DF_TEXTREL;
11971 else
11972 swap_out_p = FALSE;
11973 break;
11974
f16a9783
MS
11975 case DT_MIPS_XHASH:
11976 name = ".MIPS.xhash";
11977 s = bfd_get_linker_section (dynobj, name);
11978 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11979 break;
11980
b49e97c9 11981 default:
b34976b6 11982 swap_out_p = FALSE;
90c14f0c 11983 if (htab->root.target_os == is_vxworks
7a2b07ff
NS
11984 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11985 swap_out_p = TRUE;
b49e97c9
TS
11986 break;
11987 }
11988
943284cc 11989 if (swap_out_p || dyn_skipped)
b49e97c9 11990 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11991 (dynobj, &dyn, b - dyn_skipped);
11992
11993 if (dyn_to_skip)
11994 {
11995 dyn_skipped += dyn_to_skip;
11996 dyn_to_skip = 0;
11997 }
b49e97c9 11998 }
943284cc
DJ
11999
12000 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12001 if (dyn_skipped > 0)
12002 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
12003 }
12004
b55fd4d4
DJ
12005 if (sgot != NULL && sgot->size > 0
12006 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 12007 {
90c14f0c 12008 if (htab->root.target_os == is_vxworks)
0a44bf69
RS
12009 {
12010 /* The first entry of the global offset table points to the
12011 ".dynamic" section. The second is initialized by the
12012 loader and contains the shared library identifier.
12013 The third is also initialized by the loader and points
12014 to the lazy resolution stub. */
12015 MIPS_ELF_PUT_WORD (output_bfd,
12016 sdyn->output_offset + sdyn->output_section->vma,
12017 sgot->contents);
12018 MIPS_ELF_PUT_WORD (output_bfd, 0,
12019 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12020 MIPS_ELF_PUT_WORD (output_bfd, 0,
12021 sgot->contents
12022 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12023 }
12024 else
12025 {
12026 /* The first entry of the global offset table will be filled at
12027 runtime. The second entry will be used by some runtime loaders.
12028 This isn't the case of IRIX rld. */
12029 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 12030 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
12031 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12032 }
b49e97c9 12033
54938e2a
TS
12034 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12035 = MIPS_ELF_GOT_SIZE (output_bfd);
12036 }
b49e97c9 12037
f4416af6
AO
12038 /* Generate dynamic relocations for the non-primary gots. */
12039 if (gg != NULL && gg->next)
12040 {
12041 Elf_Internal_Rela rel[3];
12042 bfd_vma addend = 0;
12043
12044 memset (rel, 0, sizeof (rel));
12045 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12046
12047 for (g = gg->next; g->next != gg; g = g->next)
12048 {
91d6fa6a 12049 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 12050 + g->next->tls_gotno;
f4416af6 12051
9719ad41 12052 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 12053 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
12054 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12055 sgot->contents
91d6fa6a 12056 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 12057
0e1862bb 12058 if (! bfd_link_pic (info))
f4416af6
AO
12059 continue;
12060
cb22ccf4 12061 for (; got_index < g->local_gotno; got_index++)
f4416af6 12062 {
cb22ccf4
KCY
12063 if (got_index >= g->assigned_low_gotno
12064 && got_index <= g->assigned_high_gotno)
12065 continue;
12066
f4416af6 12067 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 12068 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
12069 if (!(mips_elf_create_dynamic_relocation
12070 (output_bfd, info, rel, NULL,
12071 bfd_abs_section_ptr,
12072 0, &addend, sgot)))
12073 return FALSE;
12074 BFD_ASSERT (addend == 0);
12075 }
12076 }
12077 }
12078
3133ddbf
DJ
12079 /* The generation of dynamic relocations for the non-primary gots
12080 adds more dynamic relocations. We cannot count them until
12081 here. */
12082
12083 if (elf_hash_table (info)->dynamic_sections_created)
12084 {
12085 bfd_byte *b;
12086 bfd_boolean swap_out_p;
12087
12088 BFD_ASSERT (sdyn != NULL);
12089
12090 for (b = sdyn->contents;
12091 b < sdyn->contents + sdyn->size;
12092 b += MIPS_ELF_DYN_SIZE (dynobj))
12093 {
12094 Elf_Internal_Dyn dyn;
12095 asection *s;
12096
12097 /* Read in the current dynamic entry. */
12098 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12099
12100 /* Assume that we're going to modify it and write it out. */
12101 swap_out_p = TRUE;
12102
12103 switch (dyn.d_tag)
12104 {
12105 case DT_RELSZ:
12106 /* Reduce DT_RELSZ to account for any relocations we
12107 decided not to make. This is for the n64 irix rld,
12108 which doesn't seem to apply any relocations if there
12109 are trailing null entries. */
0a44bf69 12110 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
12111 dyn.d_un.d_val = (s->reloc_count
12112 * (ABI_64_P (output_bfd)
12113 ? sizeof (Elf64_Mips_External_Rel)
12114 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
12115 /* Adjust the section size too. Tools like the prelinker
12116 can reasonably expect the values to the same. */
db841b6f 12117 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
bcfdf036
RS
12118 elf_section_data (s->output_section)->this_hdr.sh_size
12119 = dyn.d_un.d_val;
3133ddbf
DJ
12120 break;
12121
12122 default:
12123 swap_out_p = FALSE;
12124 break;
12125 }
12126
12127 if (swap_out_p)
12128 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12129 (dynobj, &dyn, b);
12130 }
12131 }
12132
b49e97c9 12133 {
b49e97c9
TS
12134 asection *s;
12135 Elf32_compact_rel cpt;
12136
b49e97c9
TS
12137 if (SGI_COMPAT (output_bfd))
12138 {
12139 /* Write .compact_rel section out. */
3d4d4302 12140 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
12141 if (s != NULL)
12142 {
12143 cpt.id1 = 1;
12144 cpt.num = s->reloc_count;
12145 cpt.id2 = 2;
12146 cpt.offset = (s->output_section->filepos
12147 + sizeof (Elf32_External_compact_rel));
12148 cpt.reserved0 = 0;
12149 cpt.reserved1 = 0;
12150 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12151 ((Elf32_External_compact_rel *)
12152 s->contents));
12153
12154 /* Clean up a dummy stub function entry in .text. */
55e61b8a
AM
12155 if (htab->sstubs != NULL
12156 && htab->sstubs->contents != NULL)
b49e97c9
TS
12157 {
12158 file_ptr dummy_offset;
12159
4e41d0d7
RS
12160 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12161 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12162 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 12163 htab->function_stub_size);
b49e97c9
TS
12164 }
12165 }
12166 }
12167
0a44bf69
RS
12168 /* The psABI says that the dynamic relocations must be sorted in
12169 increasing order of r_symndx. The VxWorks EABI doesn't require
12170 this, and because the code below handles REL rather than RELA
12171 relocations, using it for VxWorks would be outright harmful. */
90c14f0c 12172 if (htab->root.target_os != is_vxworks)
b49e97c9 12173 {
0a44bf69
RS
12174 s = mips_elf_rel_dyn_section (info, FALSE);
12175 if (s != NULL
12176 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12177 {
12178 reldyn_sorting_bfd = output_bfd;
b49e97c9 12179
0a44bf69
RS
12180 if (ABI_64_P (output_bfd))
12181 qsort ((Elf64_External_Rel *) s->contents + 1,
12182 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12183 sort_dynamic_relocs_64);
12184 else
12185 qsort ((Elf32_External_Rel *) s->contents + 1,
12186 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12187 sort_dynamic_relocs);
12188 }
b49e97c9 12189 }
b49e97c9
TS
12190 }
12191
ce558b89 12192 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 12193 {
90c14f0c 12194 if (htab->root.target_os == is_vxworks)
861fb55a 12195 {
0e1862bb 12196 if (bfd_link_pic (info))
861fb55a
DJ
12197 mips_vxworks_finish_shared_plt (output_bfd, info);
12198 else
12199 mips_vxworks_finish_exec_plt (output_bfd, info);
12200 }
0a44bf69 12201 else
861fb55a 12202 {
0e1862bb 12203 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
12204 if (!mips_finish_exec_plt (output_bfd, info))
12205 return FALSE;
861fb55a 12206 }
0a44bf69 12207 }
b34976b6 12208 return TRUE;
b49e97c9
TS
12209}
12210
b49e97c9 12211
64543e1a
RS
12212/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12213
12214static void
9719ad41 12215mips_set_isa_flags (bfd *abfd)
b49e97c9 12216{
64543e1a 12217 flagword val;
b49e97c9
TS
12218
12219 switch (bfd_get_mach (abfd))
12220 {
12221 default:
c7c860d2
YS
12222 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12223 val = E_MIPS_ARCH_3;
12224 else
12225 val = E_MIPS_ARCH_1;
12226 break;
12227
b49e97c9
TS
12228 case bfd_mach_mips3000:
12229 val = E_MIPS_ARCH_1;
12230 break;
12231
12232 case bfd_mach_mips3900:
12233 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12234 break;
12235
12236 case bfd_mach_mips6000:
12237 val = E_MIPS_ARCH_2;
12238 break;
12239
b417536f
MR
12240 case bfd_mach_mips4010:
12241 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12242 break;
12243
b49e97c9
TS
12244 case bfd_mach_mips4000:
12245 case bfd_mach_mips4300:
12246 case bfd_mach_mips4400:
12247 case bfd_mach_mips4600:
12248 val = E_MIPS_ARCH_3;
12249 break;
12250
b49e97c9
TS
12251 case bfd_mach_mips4100:
12252 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12253 break;
12254
12255 case bfd_mach_mips4111:
12256 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12257 break;
12258
00707a0e
RS
12259 case bfd_mach_mips4120:
12260 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12261 break;
12262
b49e97c9
TS
12263 case bfd_mach_mips4650:
12264 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12265 break;
12266
00707a0e
RS
12267 case bfd_mach_mips5400:
12268 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12269 break;
12270
12271 case bfd_mach_mips5500:
12272 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12273 break;
12274
e407c74b
NC
12275 case bfd_mach_mips5900:
12276 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12277 break;
12278
0d2e43ed
ILT
12279 case bfd_mach_mips9000:
12280 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12281 break;
12282
b49e97c9 12283 case bfd_mach_mips5000:
5a7ea749 12284 case bfd_mach_mips7000:
b49e97c9
TS
12285 case bfd_mach_mips8000:
12286 case bfd_mach_mips10000:
12287 case bfd_mach_mips12000:
3aa3176b
TS
12288 case bfd_mach_mips14000:
12289 case bfd_mach_mips16000:
b49e97c9
TS
12290 val = E_MIPS_ARCH_4;
12291 break;
12292
12293 case bfd_mach_mips5:
12294 val = E_MIPS_ARCH_5;
12295 break;
12296
350cc38d
MS
12297 case bfd_mach_mips_loongson_2e:
12298 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12299 break;
12300
12301 case bfd_mach_mips_loongson_2f:
12302 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12303 break;
12304
b49e97c9
TS
12305 case bfd_mach_mips_sb1:
12306 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12307 break;
12308
ac8cb70f
CX
12309 case bfd_mach_mips_gs464:
12310 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
d051516a
NC
12311 break;
12312
bd782c07
CX
12313 case bfd_mach_mips_gs464e:
12314 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12315 break;
12316
9108bc33
CX
12317 case bfd_mach_mips_gs264e:
12318 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12319 break;
12320
6f179bd0 12321 case bfd_mach_mips_octeon:
dd6a37e7 12322 case bfd_mach_mips_octeonp:
6f179bd0
AN
12323 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12324 break;
12325
2c629856
N
12326 case bfd_mach_mips_octeon3:
12327 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12328 break;
12329
52b6b6b9
JM
12330 case bfd_mach_mips_xlr:
12331 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12332 break;
12333
432233b3
AP
12334 case bfd_mach_mips_octeon2:
12335 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12336 break;
12337
b49e97c9
TS
12338 case bfd_mach_mipsisa32:
12339 val = E_MIPS_ARCH_32;
12340 break;
12341
12342 case bfd_mach_mipsisa64:
12343 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12344 break;
12345
12346 case bfd_mach_mipsisa32r2:
ae52f483
AB
12347 case bfd_mach_mipsisa32r3:
12348 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12349 val = E_MIPS_ARCH_32R2;
12350 break;
5f74bc13 12351
38bf472a
MR
12352 case bfd_mach_mips_interaptiv_mr2:
12353 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12354 break;
12355
5f74bc13 12356 case bfd_mach_mipsisa64r2:
ae52f483
AB
12357 case bfd_mach_mipsisa64r3:
12358 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12359 val = E_MIPS_ARCH_64R2;
12360 break;
7361da2c
AB
12361
12362 case bfd_mach_mipsisa32r6:
12363 val = E_MIPS_ARCH_32R6;
12364 break;
12365
12366 case bfd_mach_mipsisa64r6:
12367 val = E_MIPS_ARCH_64R6;
12368 break;
b49e97c9 12369 }
b49e97c9
TS
12370 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12371 elf_elfheader (abfd)->e_flags |= val;
12372
64543e1a
RS
12373}
12374
12375
28dbcedc
AM
12376/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12377 Don't do so for code sections. We want to keep ordering of HI16/LO16
12378 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12379 relocs to be sorted. */
12380
12381bfd_boolean
12382_bfd_mips_elf_sort_relocs_p (asection *sec)
12383{
12384 return (sec->flags & SEC_CODE) == 0;
12385}
12386
12387
64543e1a
RS
12388/* The final processing done just before writing out a MIPS ELF object
12389 file. This gets the MIPS architecture right based on the machine
12390 number. This is used by both the 32-bit and the 64-bit ABI. */
12391
12392void
cc364be6 12393_bfd_mips_final_write_processing (bfd *abfd)
64543e1a
RS
12394{
12395 unsigned int i;
12396 Elf_Internal_Shdr **hdrpp;
12397 const char *name;
12398 asection *sec;
12399
12400 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12401 is nonzero. This is for compatibility with old objects, which used
12402 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12403 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12404 mips_set_isa_flags (abfd);
12405
b49e97c9
TS
12406 /* Set the sh_info field for .gptab sections and other appropriate
12407 info for each special section. */
12408 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12409 i < elf_numsections (abfd);
12410 i++, hdrpp++)
12411 {
12412 switch ((*hdrpp)->sh_type)
12413 {
12414 case SHT_MIPS_MSYM:
12415 case SHT_MIPS_LIBLIST:
12416 sec = bfd_get_section_by_name (abfd, ".dynstr");
12417 if (sec != NULL)
12418 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12419 break;
12420
12421 case SHT_MIPS_GPTAB:
12422 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12423 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12424 BFD_ASSERT (name != NULL
0112cd26 12425 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12426 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12427 BFD_ASSERT (sec != NULL);
12428 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12429 break;
12430
12431 case SHT_MIPS_CONTENT:
12432 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12433 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12434 BFD_ASSERT (name != NULL
0112cd26 12435 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12436 sec = bfd_get_section_by_name (abfd,
12437 name + sizeof ".MIPS.content" - 1);
12438 BFD_ASSERT (sec != NULL);
12439 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12440 break;
12441
12442 case SHT_MIPS_SYMBOL_LIB:
12443 sec = bfd_get_section_by_name (abfd, ".dynsym");
12444 if (sec != NULL)
12445 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12446 sec = bfd_get_section_by_name (abfd, ".liblist");
12447 if (sec != NULL)
12448 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12449 break;
12450
12451 case SHT_MIPS_EVENTS:
12452 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12453 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12454 BFD_ASSERT (name != NULL);
0112cd26 12455 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12456 sec = bfd_get_section_by_name (abfd,
12457 name + sizeof ".MIPS.events" - 1);
12458 else
12459 {
0112cd26 12460 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12461 sec = bfd_get_section_by_name (abfd,
12462 (name
12463 + sizeof ".MIPS.post_rel" - 1));
12464 }
12465 BFD_ASSERT (sec != NULL);
12466 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12467 break;
12468
f16a9783
MS
12469 case SHT_MIPS_XHASH:
12470 sec = bfd_get_section_by_name (abfd, ".dynsym");
12471 if (sec != NULL)
12472 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
b49e97c9
TS
12473 }
12474 }
12475}
06f44071 12476
cc364be6
AM
12477bfd_boolean
12478_bfd_mips_elf_final_write_processing (bfd *abfd)
06f44071 12479{
cc364be6
AM
12480 _bfd_mips_final_write_processing (abfd);
12481 return _bfd_elf_final_write_processing (abfd);
06f44071 12482}
b49e97c9 12483\f
8dc1a139 12484/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12485 segments. */
12486
12487int
a6b96beb
AM
12488_bfd_mips_elf_additional_program_headers (bfd *abfd,
12489 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12490{
12491 asection *s;
12492 int ret = 0;
12493
12494 /* See if we need a PT_MIPS_REGINFO segment. */
12495 s = bfd_get_section_by_name (abfd, ".reginfo");
12496 if (s && (s->flags & SEC_LOAD))
12497 ++ret;
12498
351cdf24
MF
12499 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12500 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12501 ++ret;
12502
b49e97c9
TS
12503 /* See if we need a PT_MIPS_OPTIONS segment. */
12504 if (IRIX_COMPAT (abfd) == ict_irix6
12505 && bfd_get_section_by_name (abfd,
12506 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12507 ++ret;
12508
12509 /* See if we need a PT_MIPS_RTPROC segment. */
12510 if (IRIX_COMPAT (abfd) == ict_irix5
12511 && bfd_get_section_by_name (abfd, ".dynamic")
12512 && bfd_get_section_by_name (abfd, ".mdebug"))
12513 ++ret;
12514
98c904a8
RS
12515 /* Allocate a PT_NULL header in dynamic objects. See
12516 _bfd_mips_elf_modify_segment_map for details. */
12517 if (!SGI_COMPAT (abfd)
12518 && bfd_get_section_by_name (abfd, ".dynamic"))
12519 ++ret;
12520
b49e97c9
TS
12521 return ret;
12522}
12523
8dc1a139 12524/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12525
b34976b6 12526bfd_boolean
9719ad41 12527_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12528 struct bfd_link_info *info)
b49e97c9
TS
12529{
12530 asection *s;
12531 struct elf_segment_map *m, **pm;
986f0783 12532 size_t amt;
b49e97c9
TS
12533
12534 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12535 segment. */
12536 s = bfd_get_section_by_name (abfd, ".reginfo");
12537 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12538 {
12bd6957 12539 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12540 if (m->p_type == PT_MIPS_REGINFO)
12541 break;
12542 if (m == NULL)
12543 {
12544 amt = sizeof *m;
9719ad41 12545 m = bfd_zalloc (abfd, amt);
b49e97c9 12546 if (m == NULL)
b34976b6 12547 return FALSE;
b49e97c9
TS
12548
12549 m->p_type = PT_MIPS_REGINFO;
12550 m->count = 1;
12551 m->sections[0] = s;
12552
12553 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12554 pm = &elf_seg_map (abfd);
b49e97c9
TS
12555 while (*pm != NULL
12556 && ((*pm)->p_type == PT_PHDR
12557 || (*pm)->p_type == PT_INTERP))
12558 pm = &(*pm)->next;
12559
12560 m->next = *pm;
12561 *pm = m;
12562 }
12563 }
12564
351cdf24
MF
12565 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12566 segment. */
12567 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12568 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12569 {
12570 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12571 if (m->p_type == PT_MIPS_ABIFLAGS)
12572 break;
12573 if (m == NULL)
12574 {
12575 amt = sizeof *m;
12576 m = bfd_zalloc (abfd, amt);
12577 if (m == NULL)
12578 return FALSE;
12579
12580 m->p_type = PT_MIPS_ABIFLAGS;
12581 m->count = 1;
12582 m->sections[0] = s;
12583
12584 /* We want to put it after the PHDR and INTERP segments. */
12585 pm = &elf_seg_map (abfd);
12586 while (*pm != NULL
12587 && ((*pm)->p_type == PT_PHDR
12588 || (*pm)->p_type == PT_INTERP))
12589 pm = &(*pm)->next;
12590
12591 m->next = *pm;
12592 *pm = m;
12593 }
12594 }
12595
b49e97c9
TS
12596 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12597 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12598 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12599 table. */
c1fd6598
AO
12600 if (NEWABI_P (abfd)
12601 /* On non-IRIX6 new abi, we'll have already created a segment
12602 for this section, so don't create another. I'm not sure this
12603 is not also the case for IRIX 6, but I can't test it right
12604 now. */
12605 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12606 {
12607 for (s = abfd->sections; s; s = s->next)
12608 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12609 break;
12610
12611 if (s)
12612 {
12613 struct elf_segment_map *options_segment;
12614
12bd6957 12615 pm = &elf_seg_map (abfd);
98a8deaf
RS
12616 while (*pm != NULL
12617 && ((*pm)->p_type == PT_PHDR
12618 || (*pm)->p_type == PT_INTERP))
12619 pm = &(*pm)->next;
b49e97c9 12620
8ded5a0f
AM
12621 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12622 {
12623 amt = sizeof (struct elf_segment_map);
12624 options_segment = bfd_zalloc (abfd, amt);
12625 options_segment->next = *pm;
12626 options_segment->p_type = PT_MIPS_OPTIONS;
12627 options_segment->p_flags = PF_R;
12628 options_segment->p_flags_valid = TRUE;
12629 options_segment->count = 1;
12630 options_segment->sections[0] = s;
12631 *pm = options_segment;
12632 }
b49e97c9
TS
12633 }
12634 }
12635 else
12636 {
12637 if (IRIX_COMPAT (abfd) == ict_irix5)
12638 {
12639 /* If there are .dynamic and .mdebug sections, we make a room
12640 for the RTPROC header. FIXME: Rewrite without section names. */
12641 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12642 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12643 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12644 {
12bd6957 12645 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12646 if (m->p_type == PT_MIPS_RTPROC)
12647 break;
12648 if (m == NULL)
12649 {
12650 amt = sizeof *m;
9719ad41 12651 m = bfd_zalloc (abfd, amt);
b49e97c9 12652 if (m == NULL)
b34976b6 12653 return FALSE;
b49e97c9
TS
12654
12655 m->p_type = PT_MIPS_RTPROC;
12656
12657 s = bfd_get_section_by_name (abfd, ".rtproc");
12658 if (s == NULL)
12659 {
12660 m->count = 0;
12661 m->p_flags = 0;
12662 m->p_flags_valid = 1;
12663 }
12664 else
12665 {
12666 m->count = 1;
12667 m->sections[0] = s;
12668 }
12669
12670 /* We want to put it after the DYNAMIC segment. */
12bd6957 12671 pm = &elf_seg_map (abfd);
b49e97c9
TS
12672 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12673 pm = &(*pm)->next;
12674 if (*pm != NULL)
12675 pm = &(*pm)->next;
12676
12677 m->next = *pm;
12678 *pm = m;
12679 }
12680 }
12681 }
8dc1a139 12682 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12683 .dynstr, .dynsym, and .hash sections, and everything in
12684 between. */
12bd6957 12685 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12686 pm = &(*pm)->next)
12687 if ((*pm)->p_type == PT_DYNAMIC)
12688 break;
12689 m = *pm;
f6f62d6f
RS
12690 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12691 glibc's dynamic linker has traditionally derived the number of
12692 tags from the p_filesz field, and sometimes allocates stack
12693 arrays of that size. An overly-big PT_DYNAMIC segment can
12694 be actively harmful in such cases. Making PT_DYNAMIC contain
12695 other sections can also make life hard for the prelinker,
12696 which might move one of the other sections to a different
12697 PT_LOAD segment. */
12698 if (SGI_COMPAT (abfd)
12699 && m != NULL
12700 && m->count == 1
12701 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12702 {
12703 static const char *sec_names[] =
12704 {
12705 ".dynamic", ".dynstr", ".dynsym", ".hash"
12706 };
12707 bfd_vma low, high;
12708 unsigned int i, c;
12709 struct elf_segment_map *n;
12710
792b4a53 12711 low = ~(bfd_vma) 0;
b49e97c9
TS
12712 high = 0;
12713 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12714 {
12715 s = bfd_get_section_by_name (abfd, sec_names[i]);
12716 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12717 {
12718 bfd_size_type sz;
12719
12720 if (low > s->vma)
12721 low = s->vma;
eea6121a 12722 sz = s->size;
b49e97c9
TS
12723 if (high < s->vma + sz)
12724 high = s->vma + sz;
12725 }
12726 }
12727
12728 c = 0;
12729 for (s = abfd->sections; s != NULL; s = s->next)
12730 if ((s->flags & SEC_LOAD) != 0
12731 && s->vma >= low
eea6121a 12732 && s->vma + s->size <= high)
b49e97c9
TS
12733 ++c;
12734
986f0783 12735 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
9719ad41 12736 n = bfd_zalloc (abfd, amt);
b49e97c9 12737 if (n == NULL)
b34976b6 12738 return FALSE;
b49e97c9
TS
12739 *n = *m;
12740 n->count = c;
12741
12742 i = 0;
12743 for (s = abfd->sections; s != NULL; s = s->next)
12744 {
12745 if ((s->flags & SEC_LOAD) != 0
12746 && s->vma >= low
eea6121a 12747 && s->vma + s->size <= high)
b49e97c9
TS
12748 {
12749 n->sections[i] = s;
12750 ++i;
12751 }
12752 }
12753
12754 *pm = n;
12755 }
12756 }
12757
98c904a8
RS
12758 /* Allocate a spare program header in dynamic objects so that tools
12759 like the prelinker can add an extra PT_LOAD entry.
12760
12761 If the prelinker needs to make room for a new PT_LOAD entry, its
12762 standard procedure is to move the first (read-only) sections into
12763 the new (writable) segment. However, the MIPS ABI requires
12764 .dynamic to be in a read-only segment, and the section will often
12765 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12766
12767 Although the prelinker could in principle move .dynamic to a
12768 writable segment, it seems better to allocate a spare program
12769 header instead, and avoid the need to move any sections.
12770 There is a long tradition of allocating spare dynamic tags,
12771 so allocating a spare program header seems like a natural
7c8b76cc
JM
12772 extension.
12773
12774 If INFO is NULL, we may be copying an already prelinked binary
12775 with objcopy or strip, so do not add this header. */
12776 if (info != NULL
12777 && !SGI_COMPAT (abfd)
98c904a8
RS
12778 && bfd_get_section_by_name (abfd, ".dynamic"))
12779 {
12bd6957 12780 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12781 if ((*pm)->p_type == PT_NULL)
12782 break;
12783 if (*pm == NULL)
12784 {
12785 m = bfd_zalloc (abfd, sizeof (*m));
12786 if (m == NULL)
12787 return FALSE;
12788
12789 m->p_type = PT_NULL;
12790 *pm = m;
12791 }
12792 }
12793
b34976b6 12794 return TRUE;
b49e97c9
TS
12795}
12796\f
12797/* Return the section that should be marked against GC for a given
12798 relocation. */
12799
12800asection *
9719ad41 12801_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12802 struct bfd_link_info *info,
9719ad41
RS
12803 Elf_Internal_Rela *rel,
12804 struct elf_link_hash_entry *h,
12805 Elf_Internal_Sym *sym)
b49e97c9
TS
12806{
12807 /* ??? Do mips16 stub sections need to be handled special? */
12808
12809 if (h != NULL)
07adf181
AM
12810 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12811 {
12812 case R_MIPS_GNU_VTINHERIT:
12813 case R_MIPS_GNU_VTENTRY:
12814 return NULL;
12815 }
b49e97c9 12816
07adf181 12817 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12818}
12819
351cdf24
MF
12820/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12821
12822bfd_boolean
12823_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12824 elf_gc_mark_hook_fn gc_mark_hook)
12825{
12826 bfd *sub;
12827
12828 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12829
12830 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12831 {
12832 asection *o;
12833
12834 if (! is_mips_elf (sub))
12835 continue;
12836
12837 for (o = sub->sections; o != NULL; o = o->next)
12838 if (!o->gc_mark
fd361982 12839 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
351cdf24
MF
12840 {
12841 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12842 return FALSE;
12843 }
12844 }
12845
12846 return TRUE;
12847}
b49e97c9
TS
12848\f
12849/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12850 hiding the old indirect symbol. Process additional relocation
12851 information. Also called for weakdefs, in which case we just let
12852 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12853
12854void
fcfa13d2 12855_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12856 struct elf_link_hash_entry *dir,
12857 struct elf_link_hash_entry *ind)
b49e97c9
TS
12858{
12859 struct mips_elf_link_hash_entry *dirmips, *indmips;
12860
fcfa13d2 12861 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12862
861fb55a
DJ
12863 dirmips = (struct mips_elf_link_hash_entry *) dir;
12864 indmips = (struct mips_elf_link_hash_entry *) ind;
12865 /* Any absolute non-dynamic relocations against an indirect or weak
12866 definition will be against the target symbol. */
12867 if (indmips->has_static_relocs)
12868 dirmips->has_static_relocs = TRUE;
12869
b49e97c9
TS
12870 if (ind->root.type != bfd_link_hash_indirect)
12871 return;
12872
b49e97c9
TS
12873 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12874 if (indmips->readonly_reloc)
b34976b6 12875 dirmips->readonly_reloc = TRUE;
b49e97c9 12876 if (indmips->no_fn_stub)
b34976b6 12877 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12878 if (indmips->fn_stub)
12879 {
12880 dirmips->fn_stub = indmips->fn_stub;
12881 indmips->fn_stub = NULL;
12882 }
12883 if (indmips->need_fn_stub)
12884 {
12885 dirmips->need_fn_stub = TRUE;
12886 indmips->need_fn_stub = FALSE;
12887 }
12888 if (indmips->call_stub)
12889 {
12890 dirmips->call_stub = indmips->call_stub;
12891 indmips->call_stub = NULL;
12892 }
12893 if (indmips->call_fp_stub)
12894 {
12895 dirmips->call_fp_stub = indmips->call_fp_stub;
12896 indmips->call_fp_stub = NULL;
12897 }
634835ae
RS
12898 if (indmips->global_got_area < dirmips->global_got_area)
12899 dirmips->global_got_area = indmips->global_got_area;
12900 if (indmips->global_got_area < GGA_NONE)
12901 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12902 if (indmips->has_nonpic_branches)
12903 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12904}
47275900
MR
12905
12906/* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12907 to hide it. It has to remain global (it will also be protected) so as to
12908 be assigned a global GOT entry, which will then remain unchanged at load
12909 time. */
12910
12911void
12912_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12913 struct elf_link_hash_entry *entry,
12914 bfd_boolean force_local)
12915{
12916 struct mips_elf_link_hash_table *htab;
12917
12918 htab = mips_elf_hash_table (info);
12919 BFD_ASSERT (htab != NULL);
12920 if (htab->use_absolute_zero
12921 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12922 return;
12923
12924 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12925}
b49e97c9 12926\f
d01414a5
TS
12927#define PDR_SIZE 32
12928
b34976b6 12929bfd_boolean
9719ad41
RS
12930_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12931 struct bfd_link_info *info)
d01414a5
TS
12932{
12933 asection *o;
b34976b6 12934 bfd_boolean ret = FALSE;
d01414a5
TS
12935 unsigned char *tdata;
12936 size_t i, skip;
12937
12938 o = bfd_get_section_by_name (abfd, ".pdr");
12939 if (! o)
b34976b6 12940 return FALSE;
eea6121a 12941 if (o->size == 0)
b34976b6 12942 return FALSE;
eea6121a 12943 if (o->size % PDR_SIZE != 0)
b34976b6 12944 return FALSE;
d01414a5
TS
12945 if (o->output_section != NULL
12946 && bfd_is_abs_section (o->output_section))
b34976b6 12947 return FALSE;
d01414a5 12948
eea6121a 12949 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12950 if (! tdata)
b34976b6 12951 return FALSE;
d01414a5 12952
9719ad41 12953 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12954 info->keep_memory);
d01414a5
TS
12955 if (!cookie->rels)
12956 {
12957 free (tdata);
b34976b6 12958 return FALSE;
d01414a5
TS
12959 }
12960
12961 cookie->rel = cookie->rels;
12962 cookie->relend = cookie->rels + o->reloc_count;
12963
eea6121a 12964 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12965 {
c152c796 12966 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12967 {
12968 tdata[i] = 1;
12969 skip ++;
12970 }
12971 }
12972
12973 if (skip != 0)
12974 {
f0abc2a1 12975 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12976 if (o->rawsize == 0)
12977 o->rawsize = o->size;
eea6121a 12978 o->size -= skip * PDR_SIZE;
b34976b6 12979 ret = TRUE;
d01414a5
TS
12980 }
12981 else
12982 free (tdata);
12983
12984 if (! info->keep_memory)
12985 free (cookie->rels);
12986
12987 return ret;
12988}
12989
b34976b6 12990bfd_boolean
9719ad41 12991_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12992{
12993 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12994 return TRUE;
12995 return FALSE;
53bfd6b4 12996}
d01414a5 12997
b34976b6 12998bfd_boolean
c7b8f16e
JB
12999_bfd_mips_elf_write_section (bfd *output_bfd,
13000 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 13001 asection *sec, bfd_byte *contents)
d01414a5
TS
13002{
13003 bfd_byte *to, *from, *end;
13004 int i;
13005
13006 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 13007 return FALSE;
d01414a5 13008
f0abc2a1 13009 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 13010 return FALSE;
d01414a5
TS
13011
13012 to = contents;
eea6121a 13013 end = contents + sec->size;
d01414a5
TS
13014 for (from = contents, i = 0;
13015 from < end;
13016 from += PDR_SIZE, i++)
13017 {
f0abc2a1 13018 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
13019 continue;
13020 if (to != from)
13021 memcpy (to, from, PDR_SIZE);
13022 to += PDR_SIZE;
13023 }
13024 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 13025 sec->output_offset, sec->size);
b34976b6 13026 return TRUE;
d01414a5 13027}
53bfd6b4 13028\f
df58fc94
RS
13029/* microMIPS code retains local labels for linker relaxation. Omit them
13030 from output by default for clarity. */
13031
13032bfd_boolean
13033_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13034{
13035 return _bfd_elf_is_local_label_name (abfd, sym->name);
13036}
13037
b49e97c9
TS
13038/* MIPS ELF uses a special find_nearest_line routine in order the
13039 handle the ECOFF debugging information. */
13040
13041struct mips_elf_find_line
13042{
13043 struct ecoff_debug_info d;
13044 struct ecoff_find_line i;
13045};
13046
b34976b6 13047bfd_boolean
fb167eb2
AM
13048_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13049 asection *section, bfd_vma offset,
9719ad41
RS
13050 const char **filename_ptr,
13051 const char **functionname_ptr,
fb167eb2
AM
13052 unsigned int *line_ptr,
13053 unsigned int *discriminator_ptr)
b49e97c9
TS
13054{
13055 asection *msec;
13056
fb167eb2 13057 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 13058 filename_ptr, functionname_ptr,
fb167eb2
AM
13059 line_ptr, discriminator_ptr,
13060 dwarf_debug_sections,
7f3bf384
AM
13061 &elf_tdata (abfd)->dwarf2_find_line_info)
13062 == 1)
e7679060 13063 return TRUE;
46d09186 13064
e7679060
AM
13065 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13066 filename_ptr, functionname_ptr,
13067 line_ptr))
13068 {
13069 if (!*functionname_ptr)
13070 _bfd_elf_find_function (abfd, symbols, section, offset,
13071 *filename_ptr ? NULL : filename_ptr,
13072 functionname_ptr);
46d09186
NC
13073 return TRUE;
13074 }
b49e97c9
TS
13075
13076 msec = bfd_get_section_by_name (abfd, ".mdebug");
13077 if (msec != NULL)
13078 {
13079 flagword origflags;
13080 struct mips_elf_find_line *fi;
13081 const struct ecoff_debug_swap * const swap =
13082 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13083
13084 /* If we are called during a link, mips_elf_final_link may have
13085 cleared the SEC_HAS_CONTENTS field. We force it back on here
13086 if appropriate (which it normally will be). */
13087 origflags = msec->flags;
13088 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13089 msec->flags |= SEC_HAS_CONTENTS;
13090
698600e4 13091 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
13092 if (fi == NULL)
13093 {
13094 bfd_size_type external_fdr_size;
13095 char *fraw_src;
13096 char *fraw_end;
13097 struct fdr *fdr_ptr;
13098 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13099
9719ad41 13100 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
13101 if (fi == NULL)
13102 {
13103 msec->flags = origflags;
b34976b6 13104 return FALSE;
b49e97c9
TS
13105 }
13106
13107 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13108 {
13109 msec->flags = origflags;
b34976b6 13110 return FALSE;
b49e97c9
TS
13111 }
13112
13113 /* Swap in the FDR information. */
13114 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 13115 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
13116 if (fi->d.fdr == NULL)
13117 {
13118 msec->flags = origflags;
b34976b6 13119 return FALSE;
b49e97c9
TS
13120 }
13121 external_fdr_size = swap->external_fdr_size;
13122 fdr_ptr = fi->d.fdr;
13123 fraw_src = (char *) fi->d.external_fdr;
13124 fraw_end = (fraw_src
13125 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13126 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 13127 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 13128
698600e4 13129 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
13130
13131 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
13132 find_nearest_line is either called all the time, as in
13133 objdump -l, so the information should be saved, or it is
13134 rarely called, as in ld error messages, so the memory
13135 wasted is unimportant. Still, it would probably be a
13136 good idea for free_cached_info to throw it away. */
b49e97c9
TS
13137 }
13138
13139 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13140 &fi->i, filename_ptr, functionname_ptr,
13141 line_ptr))
13142 {
13143 msec->flags = origflags;
b34976b6 13144 return TRUE;
b49e97c9
TS
13145 }
13146
13147 msec->flags = origflags;
13148 }
13149
13150 /* Fall back on the generic ELF find_nearest_line routine. */
13151
fb167eb2 13152 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 13153 filename_ptr, functionname_ptr,
fb167eb2 13154 line_ptr, discriminator_ptr);
b49e97c9 13155}
4ab527b0
FF
13156
13157bfd_boolean
13158_bfd_mips_elf_find_inliner_info (bfd *abfd,
13159 const char **filename_ptr,
13160 const char **functionname_ptr,
13161 unsigned int *line_ptr)
13162{
13163 bfd_boolean found;
13164 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13165 functionname_ptr, line_ptr,
13166 & elf_tdata (abfd)->dwarf2_find_line_info);
13167 return found;
13168}
13169
b49e97c9
TS
13170\f
13171/* When are writing out the .options or .MIPS.options section,
13172 remember the bytes we are writing out, so that we can install the
13173 GP value in the section_processing routine. */
13174
b34976b6 13175bfd_boolean
9719ad41
RS
13176_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13177 const void *location,
13178 file_ptr offset, bfd_size_type count)
b49e97c9 13179{
cc2e31b9 13180 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
13181 {
13182 bfd_byte *c;
13183
13184 if (elf_section_data (section) == NULL)
13185 {
986f0783 13186 size_t amt = sizeof (struct bfd_elf_section_data);
9719ad41 13187 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 13188 if (elf_section_data (section) == NULL)
b34976b6 13189 return FALSE;
b49e97c9 13190 }
f0abc2a1 13191 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
13192 if (c == NULL)
13193 {
eea6121a 13194 c = bfd_zalloc (abfd, section->size);
b49e97c9 13195 if (c == NULL)
b34976b6 13196 return FALSE;
f0abc2a1 13197 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
13198 }
13199
9719ad41 13200 memcpy (c + offset, location, count);
b49e97c9
TS
13201 }
13202
13203 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13204 count);
13205}
13206
13207/* This is almost identical to bfd_generic_get_... except that some
13208 MIPS relocations need to be handled specially. Sigh. */
13209
13210bfd_byte *
9719ad41
RS
13211_bfd_elf_mips_get_relocated_section_contents
13212 (bfd *abfd,
13213 struct bfd_link_info *link_info,
13214 struct bfd_link_order *link_order,
13215 bfd_byte *data,
13216 bfd_boolean relocatable,
13217 asymbol **symbols)
b49e97c9
TS
13218{
13219 /* Get enough memory to hold the stuff */
13220 bfd *input_bfd = link_order->u.indirect.section->owner;
13221 asection *input_section = link_order->u.indirect.section;
eea6121a 13222 bfd_size_type sz;
b49e97c9
TS
13223
13224 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13225 arelent **reloc_vector = NULL;
13226 long reloc_count;
13227
13228 if (reloc_size < 0)
13229 goto error_return;
13230
9719ad41 13231 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13232 if (reloc_vector == NULL && reloc_size != 0)
13233 goto error_return;
13234
13235 /* read in the section */
eea6121a
AM
13236 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13237 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13238 goto error_return;
13239
b49e97c9
TS
13240 reloc_count = bfd_canonicalize_reloc (input_bfd,
13241 input_section,
13242 reloc_vector,
13243 symbols);
13244 if (reloc_count < 0)
13245 goto error_return;
13246
13247 if (reloc_count > 0)
13248 {
13249 arelent **parent;
13250 /* for mips */
13251 int gp_found;
13252 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13253
13254 {
13255 struct bfd_hash_entry *h;
13256 struct bfd_link_hash_entry *lh;
13257 /* Skip all this stuff if we aren't mixing formats. */
13258 if (abfd && input_bfd
13259 && abfd->xvec == input_bfd->xvec)
13260 lh = 0;
13261 else
13262 {
b34976b6 13263 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13264 lh = (struct bfd_link_hash_entry *) h;
13265 }
13266 lookup:
13267 if (lh)
13268 {
13269 switch (lh->type)
13270 {
13271 case bfd_link_hash_undefined:
13272 case bfd_link_hash_undefweak:
13273 case bfd_link_hash_common:
13274 gp_found = 0;
13275 break;
13276 case bfd_link_hash_defined:
13277 case bfd_link_hash_defweak:
13278 gp_found = 1;
13279 gp = lh->u.def.value;
13280 break;
13281 case bfd_link_hash_indirect:
13282 case bfd_link_hash_warning:
13283 lh = lh->u.i.link;
13284 /* @@FIXME ignoring warning for now */
13285 goto lookup;
13286 case bfd_link_hash_new:
13287 default:
13288 abort ();
13289 }
13290 }
13291 else
13292 gp_found = 0;
13293 }
13294 /* end mips */
9719ad41 13295 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13296 {
9719ad41 13297 char *error_message = NULL;
b49e97c9
TS
13298 bfd_reloc_status_type r;
13299
13300 /* Specific to MIPS: Deal with relocation types that require
13301 knowing the gp of the output bfd. */
13302 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13303
8236346f
EC
13304 /* If we've managed to find the gp and have a special
13305 function for the relocation then go ahead, else default
13306 to the generic handling. */
13307 if (gp_found
13308 && (*parent)->howto->special_function
13309 == _bfd_mips_elf32_gprel16_reloc)
13310 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13311 input_section, relocatable,
13312 data, gp);
13313 else
86324f90 13314 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13315 input_section,
13316 relocatable ? abfd : NULL,
13317 &error_message);
b49e97c9 13318
1049f94e 13319 if (relocatable)
b49e97c9
TS
13320 {
13321 asection *os = input_section->output_section;
13322
13323 /* A partial link, so keep the relocs */
13324 os->orelocation[os->reloc_count] = *parent;
13325 os->reloc_count++;
13326 }
13327
13328 if (r != bfd_reloc_ok)
13329 {
13330 switch (r)
13331 {
13332 case bfd_reloc_undefined:
1a72702b
AM
13333 (*link_info->callbacks->undefined_symbol)
13334 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13335 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13336 break;
13337 case bfd_reloc_dangerous:
9719ad41 13338 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13339 (*link_info->callbacks->reloc_dangerous)
13340 (link_info, error_message,
13341 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13342 break;
13343 case bfd_reloc_overflow:
1a72702b
AM
13344 (*link_info->callbacks->reloc_overflow)
13345 (link_info, NULL,
13346 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13347 (*parent)->howto->name, (*parent)->addend,
13348 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13349 break;
13350 case bfd_reloc_outofrange:
13351 default:
13352 abort ();
13353 break;
13354 }
13355
13356 }
13357 }
13358 }
c9594989 13359 free (reloc_vector);
b49e97c9
TS
13360 return data;
13361
dc1e8a47 13362 error_return:
c9594989 13363 free (reloc_vector);
b49e97c9
TS
13364 return NULL;
13365}
13366\f
df58fc94
RS
13367static bfd_boolean
13368mips_elf_relax_delete_bytes (bfd *abfd,
13369 asection *sec, bfd_vma addr, int count)
13370{
13371 Elf_Internal_Shdr *symtab_hdr;
13372 unsigned int sec_shndx;
13373 bfd_byte *contents;
13374 Elf_Internal_Rela *irel, *irelend;
13375 Elf_Internal_Sym *isym;
13376 Elf_Internal_Sym *isymend;
13377 struct elf_link_hash_entry **sym_hashes;
13378 struct elf_link_hash_entry **end_hashes;
13379 struct elf_link_hash_entry **start_hashes;
13380 unsigned int symcount;
13381
13382 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13383 contents = elf_section_data (sec)->this_hdr.contents;
13384
13385 irel = elf_section_data (sec)->relocs;
13386 irelend = irel + sec->reloc_count;
13387
13388 /* Actually delete the bytes. */
13389 memmove (contents + addr, contents + addr + count,
13390 (size_t) (sec->size - addr - count));
13391 sec->size -= count;
13392
13393 /* Adjust all the relocs. */
13394 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13395 {
13396 /* Get the new reloc address. */
13397 if (irel->r_offset > addr)
13398 irel->r_offset -= count;
13399 }
13400
13401 BFD_ASSERT (addr % 2 == 0);
13402 BFD_ASSERT (count % 2 == 0);
13403
13404 /* Adjust the local symbols defined in this section. */
13405 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13406 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13407 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13408 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13409 isym->st_value -= count;
13410
13411 /* Now adjust the global symbols defined in this section. */
13412 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13413 - symtab_hdr->sh_info);
13414 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13415 end_hashes = sym_hashes + symcount;
13416
13417 for (; sym_hashes < end_hashes; sym_hashes++)
13418 {
13419 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13420
13421 if ((sym_hash->root.type == bfd_link_hash_defined
13422 || sym_hash->root.type == bfd_link_hash_defweak)
13423 && sym_hash->root.u.def.section == sec)
13424 {
2309ddf2 13425 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13426
df58fc94
RS
13427 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13428 value &= MINUS_TWO;
13429 if (value > addr)
13430 sym_hash->root.u.def.value -= count;
13431 }
13432 }
13433
13434 return TRUE;
13435}
13436
13437
13438/* Opcodes needed for microMIPS relaxation as found in
13439 opcodes/micromips-opc.c. */
13440
13441struct opcode_descriptor {
13442 unsigned long match;
13443 unsigned long mask;
13444};
13445
13446/* The $ra register aka $31. */
13447
13448#define RA 31
13449
13450/* 32-bit instruction format register fields. */
13451
13452#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13453#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13454
13455/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13456
13457#define OP16_VALID_REG(r) \
13458 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13459
13460
13461/* 32-bit and 16-bit branches. */
13462
13463static const struct opcode_descriptor b_insns_32[] = {
13464 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13465 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13466 { 0, 0 } /* End marker for find_match(). */
13467};
13468
13469static const struct opcode_descriptor bc_insn_32 =
13470 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13471
13472static const struct opcode_descriptor bz_insn_32 =
13473 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13474
13475static const struct opcode_descriptor bzal_insn_32 =
13476 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13477
13478static const struct opcode_descriptor beq_insn_32 =
13479 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13480
13481static const struct opcode_descriptor b_insn_16 =
13482 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13483
13484static const struct opcode_descriptor bz_insn_16 =
c088dedf 13485 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13486
13487
13488/* 32-bit and 16-bit branch EQ and NE zero. */
13489
13490/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13491 eq and second the ne. This convention is used when replacing a
13492 32-bit BEQ/BNE with the 16-bit version. */
13493
13494#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13495
13496static const struct opcode_descriptor bz_rs_insns_32[] = {
13497 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13498 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13499 { 0, 0 } /* End marker for find_match(). */
13500};
13501
13502static const struct opcode_descriptor bz_rt_insns_32[] = {
13503 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13504 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13505 { 0, 0 } /* End marker for find_match(). */
13506};
13507
13508static const struct opcode_descriptor bzc_insns_32[] = {
13509 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13510 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13511 { 0, 0 } /* End marker for find_match(). */
13512};
13513
13514static const struct opcode_descriptor bz_insns_16[] = {
13515 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13516 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13517 { 0, 0 } /* End marker for find_match(). */
13518};
13519
13520/* Switch between a 5-bit register index and its 3-bit shorthand. */
13521
e67f83e5 13522#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13523#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13524
13525
13526/* 32-bit instructions with a delay slot. */
13527
13528static const struct opcode_descriptor jal_insn_32_bd16 =
13529 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13530
13531static const struct opcode_descriptor jal_insn_32_bd32 =
13532 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13533
13534static const struct opcode_descriptor jal_x_insn_32_bd32 =
13535 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13536
13537static const struct opcode_descriptor j_insn_32 =
13538 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13539
13540static const struct opcode_descriptor jalr_insn_32 =
13541 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13542
13543/* This table can be compacted, because no opcode replacement is made. */
13544
13545static const struct opcode_descriptor ds_insns_32_bd16[] = {
13546 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13547
13548 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13549 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13550
13551 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13552 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13553 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13554 { 0, 0 } /* End marker for find_match(). */
13555};
13556
13557/* This table can be compacted, because no opcode replacement is made. */
13558
13559static const struct opcode_descriptor ds_insns_32_bd32[] = {
13560 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13561
13562 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13563 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13564 { 0, 0 } /* End marker for find_match(). */
13565};
13566
13567
13568/* 16-bit instructions with a delay slot. */
13569
13570static const struct opcode_descriptor jalr_insn_16_bd16 =
13571 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13572
13573static const struct opcode_descriptor jalr_insn_16_bd32 =
13574 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13575
13576static const struct opcode_descriptor jr_insn_16 =
13577 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13578
13579#define JR16_REG(opcode) ((opcode) & 0x1f)
13580
13581/* This table can be compacted, because no opcode replacement is made. */
13582
13583static const struct opcode_descriptor ds_insns_16_bd16[] = {
13584 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13585
13586 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13587 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13588 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13589 { 0, 0 } /* End marker for find_match(). */
13590};
13591
13592
13593/* LUI instruction. */
13594
13595static const struct opcode_descriptor lui_insn =
13596 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13597
13598
13599/* ADDIU instruction. */
13600
13601static const struct opcode_descriptor addiu_insn =
13602 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13603
13604static const struct opcode_descriptor addiupc_insn =
13605 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13606
13607#define ADDIUPC_REG_FIELD(r) \
13608 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13609
13610
13611/* Relaxable instructions in a JAL delay slot: MOVE. */
13612
13613/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13614 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13615#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13616#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13617
13618#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13619#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13620
13621static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13622 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13623 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13624 { 0, 0 } /* End marker for find_match(). */
13625};
13626
13627static const struct opcode_descriptor move_insn_16 =
13628 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13629
13630
13631/* NOP instructions. */
13632
13633static const struct opcode_descriptor nop_insn_32 =
13634 { /* "nop", "", */ 0x00000000, 0xffffffff };
13635
13636static const struct opcode_descriptor nop_insn_16 =
13637 { /* "nop", "", */ 0x0c00, 0xffff };
13638
13639
13640/* Instruction match support. */
13641
13642#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13643
13644static int
13645find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13646{
13647 unsigned long indx;
13648
13649 for (indx = 0; insn[indx].mask != 0; indx++)
13650 if (MATCH (opcode, insn[indx]))
13651 return indx;
13652
13653 return -1;
13654}
13655
13656
13657/* Branch and delay slot decoding support. */
13658
13659/* If PTR points to what *might* be a 16-bit branch or jump, then
13660 return the minimum length of its delay slot, otherwise return 0.
13661 Non-zero results are not definitive as we might be checking against
13662 the second half of another instruction. */
13663
13664static int
13665check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13666{
13667 unsigned long opcode;
13668 int bdsize;
13669
13670 opcode = bfd_get_16 (abfd, ptr);
13671 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13672 /* 16-bit branch/jump with a 32-bit delay slot. */
13673 bdsize = 4;
13674 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13675 || find_match (opcode, ds_insns_16_bd16) >= 0)
13676 /* 16-bit branch/jump with a 16-bit delay slot. */
13677 bdsize = 2;
13678 else
13679 /* No delay slot. */
13680 bdsize = 0;
13681
13682 return bdsize;
13683}
13684
13685/* If PTR points to what *might* be a 32-bit branch or jump, then
13686 return the minimum length of its delay slot, otherwise return 0.
13687 Non-zero results are not definitive as we might be checking against
13688 the second half of another instruction. */
13689
13690static int
13691check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13692{
13693 unsigned long opcode;
13694 int bdsize;
13695
d21911ea 13696 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13697 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13698 /* 32-bit branch/jump with a 32-bit delay slot. */
13699 bdsize = 4;
13700 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13701 /* 32-bit branch/jump with a 16-bit delay slot. */
13702 bdsize = 2;
13703 else
13704 /* No delay slot. */
13705 bdsize = 0;
13706
13707 return bdsize;
13708}
13709
13710/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13711 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13712
13713static bfd_boolean
13714check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13715{
13716 unsigned long opcode;
13717
13718 opcode = bfd_get_16 (abfd, ptr);
13719 if (MATCH (opcode, b_insn_16)
13720 /* B16 */
13721 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13722 /* JR16 */
13723 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13724 /* BEQZ16, BNEZ16 */
13725 || (MATCH (opcode, jalr_insn_16_bd32)
13726 /* JALR16 */
13727 && reg != JR16_REG (opcode) && reg != RA))
13728 return TRUE;
13729
13730 return FALSE;
13731}
13732
13733/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13734 then return TRUE, otherwise FALSE. */
13735
f41e5fcc 13736static bfd_boolean
df58fc94
RS
13737check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13738{
13739 unsigned long opcode;
13740
d21911ea 13741 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13742 if (MATCH (opcode, j_insn_32)
13743 /* J */
13744 || MATCH (opcode, bc_insn_32)
13745 /* BC1F, BC1T, BC2F, BC2T */
13746 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13747 /* JAL, JALX */
13748 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13749 /* BGEZ, BGTZ, BLEZ, BLTZ */
13750 || (MATCH (opcode, bzal_insn_32)
13751 /* BGEZAL, BLTZAL */
13752 && reg != OP32_SREG (opcode) && reg != RA)
13753 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13754 /* JALR, JALR.HB, BEQ, BNE */
13755 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13756 return TRUE;
13757
13758 return FALSE;
13759}
13760
80cab405
MR
13761/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13762 IRELEND) at OFFSET indicate that there must be a compact branch there,
13763 then return TRUE, otherwise FALSE. */
df58fc94
RS
13764
13765static bfd_boolean
80cab405
MR
13766check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13767 const Elf_Internal_Rela *internal_relocs,
13768 const Elf_Internal_Rela *irelend)
df58fc94 13769{
80cab405
MR
13770 const Elf_Internal_Rela *irel;
13771 unsigned long opcode;
13772
d21911ea 13773 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13774 if (find_match (opcode, bzc_insns_32) < 0)
13775 return FALSE;
df58fc94
RS
13776
13777 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13778 if (irel->r_offset == offset
13779 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13780 return TRUE;
13781
df58fc94
RS
13782 return FALSE;
13783}
80cab405
MR
13784
13785/* Bitsize checking. */
13786#define IS_BITSIZE(val, N) \
13787 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13788 - (1ULL << ((N) - 1))) == (val))
13789
df58fc94
RS
13790\f
13791bfd_boolean
13792_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13793 struct bfd_link_info *link_info,
13794 bfd_boolean *again)
13795{
833794fc 13796 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13797 Elf_Internal_Shdr *symtab_hdr;
13798 Elf_Internal_Rela *internal_relocs;
13799 Elf_Internal_Rela *irel, *irelend;
13800 bfd_byte *contents = NULL;
13801 Elf_Internal_Sym *isymbuf = NULL;
13802
13803 /* Assume nothing changes. */
13804 *again = FALSE;
13805
13806 /* We don't have to do anything for a relocatable link, if
13807 this section does not have relocs, or if this is not a
13808 code section. */
13809
0e1862bb 13810 if (bfd_link_relocatable (link_info)
df58fc94
RS
13811 || (sec->flags & SEC_RELOC) == 0
13812 || sec->reloc_count == 0
13813 || (sec->flags & SEC_CODE) == 0)
13814 return TRUE;
13815
13816 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13817
13818 /* Get a copy of the native relocations. */
13819 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13820 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13821 link_info->keep_memory));
13822 if (internal_relocs == NULL)
13823 goto error_return;
13824
13825 /* Walk through them looking for relaxing opportunities. */
13826 irelend = internal_relocs + sec->reloc_count;
13827 for (irel = internal_relocs; irel < irelend; irel++)
13828 {
13829 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13830 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13831 bfd_boolean target_is_micromips_code_p;
13832 unsigned long opcode;
13833 bfd_vma symval;
13834 bfd_vma pcrval;
2309ddf2 13835 bfd_byte *ptr;
df58fc94
RS
13836 int fndopc;
13837
13838 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13839 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13840 int delcnt = 0;
13841 int deloff = 0;
13842
13843 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13844 this reloc. */
df58fc94
RS
13845 if (r_type != R_MICROMIPS_HI16
13846 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13847 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13848 continue;
13849
13850 /* Get the section contents if we haven't done so already. */
13851 if (contents == NULL)
13852 {
13853 /* Get cached copy if it exists. */
13854 if (elf_section_data (sec)->this_hdr.contents != NULL)
13855 contents = elf_section_data (sec)->this_hdr.contents;
13856 /* Go get them off disk. */
13857 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13858 goto error_return;
13859 }
2309ddf2 13860 ptr = contents + irel->r_offset;
df58fc94
RS
13861
13862 /* Read this BFD's local symbols if we haven't done so already. */
13863 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13864 {
13865 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13866 if (isymbuf == NULL)
13867 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13868 symtab_hdr->sh_info, 0,
13869 NULL, NULL, NULL);
13870 if (isymbuf == NULL)
13871 goto error_return;
13872 }
13873
13874 /* Get the value of the symbol referred to by the reloc. */
13875 if (r_symndx < symtab_hdr->sh_info)
13876 {
13877 /* A local symbol. */
13878 Elf_Internal_Sym *isym;
13879 asection *sym_sec;
13880
13881 isym = isymbuf + r_symndx;
13882 if (isym->st_shndx == SHN_UNDEF)
13883 sym_sec = bfd_und_section_ptr;
13884 else if (isym->st_shndx == SHN_ABS)
13885 sym_sec = bfd_abs_section_ptr;
13886 else if (isym->st_shndx == SHN_COMMON)
13887 sym_sec = bfd_com_section_ptr;
13888 else
13889 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13890 symval = (isym->st_value
13891 + sym_sec->output_section->vma
13892 + sym_sec->output_offset);
13893 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13894 }
13895 else
13896 {
13897 unsigned long indx;
13898 struct elf_link_hash_entry *h;
13899
13900 /* An external symbol. */
13901 indx = r_symndx - symtab_hdr->sh_info;
13902 h = elf_sym_hashes (abfd)[indx];
13903 BFD_ASSERT (h != NULL);
13904
13905 if (h->root.type != bfd_link_hash_defined
13906 && h->root.type != bfd_link_hash_defweak)
13907 /* This appears to be a reference to an undefined
13908 symbol. Just ignore it -- it will be caught by the
13909 regular reloc processing. */
13910 continue;
13911
13912 symval = (h->root.u.def.value
13913 + h->root.u.def.section->output_section->vma
13914 + h->root.u.def.section->output_offset);
13915 target_is_micromips_code_p = (!h->needs_plt
13916 && ELF_ST_IS_MICROMIPS (h->other));
13917 }
13918
13919
13920 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13921 section contents, the section relocs, and the BFD symbol
13922 table. We must tell the rest of the code not to free up this
13923 information. It would be possible to instead create a table
13924 of changes which have to be made, as is done in coff-mips.c;
13925 that would be more work, but would require less memory when
13926 the linker is run. */
df58fc94
RS
13927
13928 /* Only 32-bit instructions relaxed. */
13929 if (irel->r_offset + 4 > sec->size)
13930 continue;
13931
d21911ea 13932 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13933
13934 /* This is the pc-relative distance from the instruction the
07d6d2b8 13935 relocation is applied to, to the symbol referred. */
df58fc94
RS
13936 pcrval = (symval
13937 - (sec->output_section->vma + sec->output_offset)
13938 - irel->r_offset);
13939
13940 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13941 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13942 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13943
07d6d2b8 13944 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13945
07d6d2b8
AM
13946 where pcrval has first to be adjusted to apply against the LO16
13947 location (we make the adjustment later on, when we have figured
13948 out the offset). */
df58fc94
RS
13949 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13950 {
80cab405 13951 bfd_boolean bzc = FALSE;
df58fc94
RS
13952 unsigned long nextopc;
13953 unsigned long reg;
13954 bfd_vma offset;
13955
13956 /* Give up if the previous reloc was a HI16 against this symbol
13957 too. */
13958 if (irel > internal_relocs
13959 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13960 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13961 continue;
13962
13963 /* Or if the next reloc is not a LO16 against this symbol. */
13964 if (irel + 1 >= irelend
13965 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13966 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13967 continue;
13968
13969 /* Or if the second next reloc is a LO16 against this symbol too. */
13970 if (irel + 2 >= irelend
13971 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13972 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13973 continue;
13974
80cab405
MR
13975 /* See if the LUI instruction *might* be in a branch delay slot.
13976 We check whether what looks like a 16-bit branch or jump is
13977 actually an immediate argument to a compact branch, and let
13978 it through if so. */
df58fc94 13979 if (irel->r_offset >= 2
2309ddf2 13980 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13981 && !(irel->r_offset >= 4
80cab405
MR
13982 && (bzc = check_relocated_bzc (abfd,
13983 ptr - 4, irel->r_offset - 4,
13984 internal_relocs, irelend))))
df58fc94
RS
13985 continue;
13986 if (irel->r_offset >= 4
80cab405 13987 && !bzc
2309ddf2 13988 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13989 continue;
13990
13991 reg = OP32_SREG (opcode);
13992
13993 /* We only relax adjacent instructions or ones separated with
13994 a branch or jump that has a delay slot. The branch or jump
13995 must not fiddle with the register used to hold the address.
13996 Subtract 4 for the LUI itself. */
13997 offset = irel[1].r_offset - irel[0].r_offset;
13998 switch (offset - 4)
13999 {
14000 case 0:
14001 break;
14002 case 2:
2309ddf2 14003 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
14004 break;
14005 continue;
14006 case 4:
2309ddf2 14007 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
14008 break;
14009 continue;
14010 default:
14011 continue;
14012 }
14013
d21911ea 14014 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
14015
14016 /* Give up unless the same register is used with both
14017 relocations. */
14018 if (OP32_SREG (nextopc) != reg)
14019 continue;
14020
14021 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14022 and rounding up to take masking of the two LSBs into account. */
14023 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14024
14025 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14026 if (IS_BITSIZE (symval, 16))
14027 {
14028 /* Fix the relocation's type. */
14029 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14030
14031 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
14032 source register in bits 20:16. This register becomes $0
14033 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
14034 nextopc &= ~0x001f0000;
14035 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14036 contents + irel[1].r_offset);
14037 }
14038
14039 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14040 We add 4 to take LUI deletion into account while checking
14041 the PC-relative distance. */
14042 else if (symval % 4 == 0
14043 && IS_BITSIZE (pcrval + 4, 25)
14044 && MATCH (nextopc, addiu_insn)
14045 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14046 && OP16_VALID_REG (OP32_TREG (nextopc)))
14047 {
14048 /* Fix the relocation's type. */
14049 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14050
14051 /* Replace ADDIU with the ADDIUPC version. */
14052 nextopc = (addiupc_insn.match
14053 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14054
d21911ea
MR
14055 bfd_put_micromips_32 (abfd, nextopc,
14056 contents + irel[1].r_offset);
df58fc94
RS
14057 }
14058
14059 /* Can't do anything, give up, sigh... */
14060 else
14061 continue;
14062
14063 /* Fix the relocation's type. */
14064 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14065
14066 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14067 delcnt = 4;
14068 deloff = 0;
14069 }
14070
14071 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
14072 employed by the compiler/assembler, compact branches are not
14073 always generated. Obviously, this can/will be fixed elsewhere,
14074 but there is no drawback in double checking it here. */
df58fc94
RS
14075 else if (r_type == R_MICROMIPS_PC16_S1
14076 && irel->r_offset + 5 < sec->size
14077 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14078 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
14079 && ((!insn32
14080 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14081 nop_insn_16) ? 2 : 0))
14082 || (irel->r_offset + 7 < sec->size
14083 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14084 ptr + 4),
14085 nop_insn_32) ? 4 : 0))))
df58fc94
RS
14086 {
14087 unsigned long reg;
14088
14089 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14090
14091 /* Replace BEQZ/BNEZ with the compact version. */
14092 opcode = (bzc_insns_32[fndopc].match
14093 | BZC32_REG_FIELD (reg)
14094 | (opcode & 0xffff)); /* Addend value. */
14095
d21911ea 14096 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 14097
833794fc
MR
14098 /* Delete the delay slot NOP: two or four bytes from
14099 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
14100 deloff = 4;
14101 }
14102
14103 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 14104 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14105 else if (!insn32
14106 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14107 && IS_BITSIZE (pcrval - 2, 11)
14108 && find_match (opcode, b_insns_32) >= 0)
14109 {
14110 /* Fix the relocation's type. */
14111 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14112
a8685210 14113 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14114 bfd_put_16 (abfd,
14115 (b_insn_16.match
14116 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 14117 ptr);
df58fc94
RS
14118
14119 /* Delete 2 bytes from irel->r_offset + 2. */
14120 delcnt = 2;
14121 deloff = 2;
14122 }
14123
14124 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 14125 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14126 else if (!insn32
14127 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14128 && IS_BITSIZE (pcrval - 2, 8)
14129 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14130 && OP16_VALID_REG (OP32_SREG (opcode)))
14131 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14132 && OP16_VALID_REG (OP32_TREG (opcode)))))
14133 {
14134 unsigned long reg;
14135
14136 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14137
14138 /* Fix the relocation's type. */
14139 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14140
a8685210 14141 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14142 bfd_put_16 (abfd,
14143 (bz_insns_16[fndopc].match
14144 | BZ16_REG_FIELD (reg)
14145 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 14146 ptr);
df58fc94
RS
14147
14148 /* Delete 2 bytes from irel->r_offset + 2. */
14149 delcnt = 2;
14150 deloff = 2;
14151 }
14152
14153 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
14154 else if (!insn32
14155 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
14156 && target_is_micromips_code_p
14157 && irel->r_offset + 7 < sec->size
14158 && MATCH (opcode, jal_insn_32_bd32))
14159 {
14160 unsigned long n32opc;
14161 bfd_boolean relaxed = FALSE;
14162
d21911ea 14163 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
14164
14165 if (MATCH (n32opc, nop_insn_32))
14166 {
14167 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 14168 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
14169
14170 relaxed = TRUE;
14171 }
14172 else if (find_match (n32opc, move_insns_32) >= 0)
14173 {
14174 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14175 bfd_put_16 (abfd,
14176 (move_insn_16.match
14177 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14178 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 14179 ptr + 4);
df58fc94
RS
14180
14181 relaxed = TRUE;
14182 }
14183 /* Other 32-bit instructions relaxable to 16-bit
14184 instructions will be handled here later. */
14185
14186 if (relaxed)
14187 {
14188 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 14189 with 16-bit delay slot. */
d21911ea 14190 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
14191
14192 /* Delete 2 bytes from irel->r_offset + 6. */
14193 delcnt = 2;
14194 deloff = 6;
14195 }
14196 }
14197
14198 if (delcnt != 0)
14199 {
14200 /* Note that we've changed the relocs, section contents, etc. */
14201 elf_section_data (sec)->relocs = internal_relocs;
14202 elf_section_data (sec)->this_hdr.contents = contents;
14203 symtab_hdr->contents = (unsigned char *) isymbuf;
14204
14205 /* Delete bytes depending on the delcnt and deloff. */
14206 if (!mips_elf_relax_delete_bytes (abfd, sec,
14207 irel->r_offset + deloff, delcnt))
14208 goto error_return;
14209
14210 /* That will change things, so we should relax again.
14211 Note that this is not required, and it may be slow. */
14212 *again = TRUE;
14213 }
14214 }
14215
14216 if (isymbuf != NULL
14217 && symtab_hdr->contents != (unsigned char *) isymbuf)
14218 {
14219 if (! link_info->keep_memory)
14220 free (isymbuf);
14221 else
14222 {
14223 /* Cache the symbols for elf_link_input_bfd. */
14224 symtab_hdr->contents = (unsigned char *) isymbuf;
14225 }
14226 }
14227
14228 if (contents != NULL
14229 && elf_section_data (sec)->this_hdr.contents != contents)
14230 {
14231 if (! link_info->keep_memory)
14232 free (contents);
14233 else
14234 {
14235 /* Cache the section contents for elf_link_input_bfd. */
14236 elf_section_data (sec)->this_hdr.contents = contents;
14237 }
14238 }
14239
c9594989 14240 if (elf_section_data (sec)->relocs != internal_relocs)
df58fc94
RS
14241 free (internal_relocs);
14242
14243 return TRUE;
14244
14245 error_return:
c9594989 14246 if (symtab_hdr->contents != (unsigned char *) isymbuf)
df58fc94 14247 free (isymbuf);
c9594989 14248 if (elf_section_data (sec)->this_hdr.contents != contents)
df58fc94 14249 free (contents);
c9594989 14250 if (elf_section_data (sec)->relocs != internal_relocs)
df58fc94
RS
14251 free (internal_relocs);
14252
14253 return FALSE;
14254}
14255\f
b49e97c9
TS
14256/* Create a MIPS ELF linker hash table. */
14257
14258struct bfd_link_hash_table *
9719ad41 14259_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14260{
14261 struct mips_elf_link_hash_table *ret;
986f0783 14262 size_t amt = sizeof (struct mips_elf_link_hash_table);
b49e97c9 14263
7bf52ea2 14264 ret = bfd_zmalloc (amt);
9719ad41 14265 if (ret == NULL)
b49e97c9
TS
14266 return NULL;
14267
66eb6687
AM
14268 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14269 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14270 sizeof (struct mips_elf_link_hash_entry),
14271 MIPS_ELF_DATA))
b49e97c9 14272 {
e2d34d7d 14273 free (ret);
b49e97c9
TS
14274 return NULL;
14275 }
1bbce132
MR
14276 ret->root.init_plt_refcount.plist = NULL;
14277 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14278
b49e97c9
TS
14279 return &ret->root.root;
14280}
0a44bf69
RS
14281
14282/* Likewise, but indicate that the target is VxWorks. */
14283
14284struct bfd_link_hash_table *
14285_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14286{
14287 struct bfd_link_hash_table *ret;
14288
14289 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14290 if (ret)
14291 {
14292 struct mips_elf_link_hash_table *htab;
14293
14294 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a 14295 htab->use_plts_and_copy_relocs = TRUE;
0a44bf69
RS
14296 }
14297 return ret;
14298}
861fb55a
DJ
14299
14300/* A function that the linker calls if we are allowed to use PLTs
14301 and copy relocs. */
14302
14303void
14304_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14305{
14306 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14307}
833794fc
MR
14308
14309/* A function that the linker calls to select between all or only
8b10b0b3 14310 32-bit microMIPS instructions, and between making or ignoring
47275900
MR
14311 branch relocation checks for invalid transitions between ISA modes.
14312 Also record whether we have been configured for a GNU target. */
833794fc
MR
14313
14314void
8b10b0b3 14315_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
47275900
MR
14316 bfd_boolean ignore_branch_isa,
14317 bfd_boolean gnu_target)
833794fc 14318{
8b10b0b3
MR
14319 mips_elf_hash_table (info)->insn32 = insn32;
14320 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
47275900 14321 mips_elf_hash_table (info)->gnu_target = gnu_target;
833794fc 14322}
3734320d
MF
14323
14324/* A function that the linker calls to enable use of compact branches in
14325 linker generated code for MIPSR6. */
14326
14327void
14328_bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14329{
14330 mips_elf_hash_table (info)->compact_branches = on;
14331}
14332
b49e97c9 14333\f
c97c330b
MF
14334/* Structure for saying that BFD machine EXTENSION extends BASE. */
14335
14336struct mips_mach_extension
14337{
14338 unsigned long extension, base;
14339};
14340
14341
14342/* An array describing how BFD machines relate to one another. The entries
14343 are ordered topologically with MIPS I extensions listed last. */
14344
14345static const struct mips_mach_extension mips_mach_extensions[] =
14346{
14347 /* MIPS64r2 extensions. */
14348 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14349 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14350 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14351 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
9108bc33 14352 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
bd782c07 14353 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
ac8cb70f 14354 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
c97c330b
MF
14355
14356 /* MIPS64 extensions. */
14357 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14358 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14359 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14360
14361 /* MIPS V extensions. */
14362 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14363
14364 /* R10000 extensions. */
14365 { bfd_mach_mips12000, bfd_mach_mips10000 },
14366 { bfd_mach_mips14000, bfd_mach_mips10000 },
14367 { bfd_mach_mips16000, bfd_mach_mips10000 },
14368
14369 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14370 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14371 better to allow vr5400 and vr5500 code to be merged anyway, since
14372 many libraries will just use the core ISA. Perhaps we could add
14373 some sort of ASE flag if this ever proves a problem. */
14374 { bfd_mach_mips5500, bfd_mach_mips5400 },
14375 { bfd_mach_mips5400, bfd_mach_mips5000 },
14376
14377 /* MIPS IV extensions. */
14378 { bfd_mach_mips5, bfd_mach_mips8000 },
14379 { bfd_mach_mips10000, bfd_mach_mips8000 },
14380 { bfd_mach_mips5000, bfd_mach_mips8000 },
14381 { bfd_mach_mips7000, bfd_mach_mips8000 },
14382 { bfd_mach_mips9000, bfd_mach_mips8000 },
14383
14384 /* VR4100 extensions. */
14385 { bfd_mach_mips4120, bfd_mach_mips4100 },
14386 { bfd_mach_mips4111, bfd_mach_mips4100 },
14387
14388 /* MIPS III extensions. */
14389 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14390 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14391 { bfd_mach_mips8000, bfd_mach_mips4000 },
14392 { bfd_mach_mips4650, bfd_mach_mips4000 },
14393 { bfd_mach_mips4600, bfd_mach_mips4000 },
14394 { bfd_mach_mips4400, bfd_mach_mips4000 },
14395 { bfd_mach_mips4300, bfd_mach_mips4000 },
14396 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14397 { bfd_mach_mips5900, bfd_mach_mips4000 },
14398
38bf472a
MR
14399 /* MIPS32r3 extensions. */
14400 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14401
14402 /* MIPS32r2 extensions. */
14403 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14404
c97c330b
MF
14405 /* MIPS32 extensions. */
14406 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14407
14408 /* MIPS II extensions. */
14409 { bfd_mach_mips4000, bfd_mach_mips6000 },
14410 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14411 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14412
14413 /* MIPS I extensions. */
14414 { bfd_mach_mips6000, bfd_mach_mips3000 },
14415 { bfd_mach_mips3900, bfd_mach_mips3000 }
14416};
14417
14418/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14419
14420static bfd_boolean
14421mips_mach_extends_p (unsigned long base, unsigned long extension)
14422{
14423 size_t i;
14424
14425 if (extension == base)
14426 return TRUE;
14427
14428 if (base == bfd_mach_mipsisa32
14429 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14430 return TRUE;
14431
14432 if (base == bfd_mach_mipsisa32r2
14433 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14434 return TRUE;
14435
14436 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14437 if (extension == mips_mach_extensions[i].extension)
14438 {
14439 extension = mips_mach_extensions[i].base;
14440 if (extension == base)
14441 return TRUE;
14442 }
14443
14444 return FALSE;
14445}
14446
14447/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14448
14449static unsigned long
14450bfd_mips_isa_ext_mach (unsigned int isa_ext)
14451{
14452 switch (isa_ext)
14453 {
07d6d2b8
AM
14454 case AFL_EXT_3900: return bfd_mach_mips3900;
14455 case AFL_EXT_4010: return bfd_mach_mips4010;
14456 case AFL_EXT_4100: return bfd_mach_mips4100;
14457 case AFL_EXT_4111: return bfd_mach_mips4111;
14458 case AFL_EXT_4120: return bfd_mach_mips4120;
14459 case AFL_EXT_4650: return bfd_mach_mips4650;
14460 case AFL_EXT_5400: return bfd_mach_mips5400;
14461 case AFL_EXT_5500: return bfd_mach_mips5500;
14462 case AFL_EXT_5900: return bfd_mach_mips5900;
14463 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14464 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14465 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
07d6d2b8 14466 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14467 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14468 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14469 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14470 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14471 default: return bfd_mach_mips3000;
c97c330b
MF
14472 }
14473}
14474
351cdf24
MF
14475/* Return the .MIPS.abiflags value representing each ISA Extension. */
14476
14477unsigned int
14478bfd_mips_isa_ext (bfd *abfd)
14479{
14480 switch (bfd_get_mach (abfd))
14481 {
07d6d2b8
AM
14482 case bfd_mach_mips3900: return AFL_EXT_3900;
14483 case bfd_mach_mips4010: return AFL_EXT_4010;
14484 case bfd_mach_mips4100: return AFL_EXT_4100;
14485 case bfd_mach_mips4111: return AFL_EXT_4111;
14486 case bfd_mach_mips4120: return AFL_EXT_4120;
14487 case bfd_mach_mips4650: return AFL_EXT_4650;
14488 case bfd_mach_mips5400: return AFL_EXT_5400;
14489 case bfd_mach_mips5500: return AFL_EXT_5500;
14490 case bfd_mach_mips5900: return AFL_EXT_5900;
14491 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14492 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14493 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
07d6d2b8
AM
14494 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14495 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14496 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14497 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14498 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14499 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14500 case bfd_mach_mips_interaptiv_mr2:
14501 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14502 default: return 0;
c97c330b
MF
14503 }
14504}
14505
14506/* Encode ISA level and revision as a single value. */
14507#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14508
14509/* Decode a single value into level and revision. */
14510#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14511#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14512
14513/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14514
14515static void
14516update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14517{
c97c330b 14518 int new_isa = 0;
351cdf24
MF
14519 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14520 {
c97c330b
MF
14521 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14522 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14523 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14524 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14525 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14526 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14527 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14528 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14529 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14530 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14531 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14532 default:
4eca0228 14533 _bfd_error_handler
695344c0 14534 /* xgettext:c-format */
2c1c9679 14535 (_("%pB: unknown architecture %s"),
351cdf24
MF
14536 abfd, bfd_printable_name (abfd));
14537 }
14538
c97c330b
MF
14539 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14540 {
14541 abiflags->isa_level = ISA_LEVEL (new_isa);
14542 abiflags->isa_rev = ISA_REV (new_isa);
14543 }
14544
14545 /* Update the isa_ext if ABFD describes a further extension. */
14546 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14547 bfd_get_mach (abfd)))
14548 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14549}
14550
14551/* Return true if the given ELF header flags describe a 32-bit binary. */
14552
14553static bfd_boolean
14554mips_32bit_flags_p (flagword flags)
14555{
14556 return ((flags & EF_MIPS_32BITMODE) != 0
14557 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14558 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14559 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14560 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14561 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14562 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14563 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14564}
14565
14566/* Infer the content of the ABI flags based on the elf header. */
14567
14568static void
14569infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14570{
14571 obj_attribute *in_attr;
14572
14573 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14574 update_mips_abiflags_isa (abfd, abiflags);
14575
14576 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14577 abiflags->gpr_size = AFL_REG_32;
14578 else
14579 abiflags->gpr_size = AFL_REG_64;
14580
14581 abiflags->cpr1_size = AFL_REG_NONE;
14582
14583 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14584 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14585
14586 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14587 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14588 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14589 && abiflags->gpr_size == AFL_REG_32))
14590 abiflags->cpr1_size = AFL_REG_32;
14591 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14592 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14593 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14594 abiflags->cpr1_size = AFL_REG_64;
14595
14596 abiflags->cpr2_size = AFL_REG_NONE;
14597
14598 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14599 abiflags->ases |= AFL_ASE_MDMX;
14600 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14601 abiflags->ases |= AFL_ASE_MIPS16;
14602 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14603 abiflags->ases |= AFL_ASE_MICROMIPS;
14604
14605 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14606 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14607 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14608 && abiflags->isa_level >= 32
bdc6c06e 14609 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
351cdf24
MF
14610 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14611}
14612
b49e97c9
TS
14613/* We need to use a special link routine to handle the .reginfo and
14614 the .mdebug sections. We need to merge all instances of these
14615 sections together, not write them all out sequentially. */
14616
b34976b6 14617bfd_boolean
9719ad41 14618_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14619{
b49e97c9
TS
14620 asection *o;
14621 struct bfd_link_order *p;
14622 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14623 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14624 Elf32_RegInfo reginfo;
14625 struct ecoff_debug_info debug;
861fb55a 14626 struct mips_htab_traverse_info hti;
7a2a6943
NC
14627 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14628 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14629 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14630 void *mdebug_handle = NULL;
b49e97c9
TS
14631 asection *s;
14632 EXTR esym;
14633 unsigned int i;
14634 bfd_size_type amt;
0a44bf69 14635 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14636
14637 static const char * const secname[] =
14638 {
14639 ".text", ".init", ".fini", ".data",
14640 ".rodata", ".sdata", ".sbss", ".bss"
14641 };
14642 static const int sc[] =
14643 {
14644 scText, scInit, scFini, scData,
14645 scRData, scSData, scSBss, scBss
14646 };
14647
0a44bf69 14648 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14649 BFD_ASSERT (htab != NULL);
14650
64575f78
MR
14651 /* Sort the dynamic symbols so that those with GOT entries come after
14652 those without. */
d4596a51
RS
14653 if (!mips_elf_sort_hash_table (abfd, info))
14654 return FALSE;
b49e97c9 14655
861fb55a
DJ
14656 /* Create any scheduled LA25 stubs. */
14657 hti.info = info;
14658 hti.output_bfd = abfd;
14659 hti.error = FALSE;
14660 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14661 if (hti.error)
14662 return FALSE;
14663
b49e97c9
TS
14664 /* Get a value for the GP register. */
14665 if (elf_gp (abfd) == 0)
14666 {
14667 struct bfd_link_hash_entry *h;
14668
b34976b6 14669 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14670 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14671 elf_gp (abfd) = (h->u.def.value
14672 + h->u.def.section->output_section->vma
14673 + h->u.def.section->output_offset);
90c14f0c 14674 else if (htab->root.target_os == is_vxworks
0a44bf69
RS
14675 && (h = bfd_link_hash_lookup (info->hash,
14676 "_GLOBAL_OFFSET_TABLE_",
14677 FALSE, FALSE, TRUE))
14678 && h->type == bfd_link_hash_defined)
14679 elf_gp (abfd) = (h->u.def.section->output_section->vma
14680 + h->u.def.section->output_offset
14681 + h->u.def.value);
0e1862bb 14682 else if (bfd_link_relocatable (info))
b49e97c9
TS
14683 {
14684 bfd_vma lo = MINUS_ONE;
14685
14686 /* Find the GP-relative section with the lowest offset. */
9719ad41 14687 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14688 if (o->vma < lo
14689 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14690 lo = o->vma;
14691
14692 /* And calculate GP relative to that. */
0a44bf69 14693 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14694 }
14695 else
14696 {
14697 /* If the relocate_section function needs to do a reloc
14698 involving the GP value, it should make a reloc_dangerous
14699 callback to warn that GP is not defined. */
14700 }
14701 }
14702
14703 /* Go through the sections and collect the .reginfo and .mdebug
14704 information. */
351cdf24 14705 abiflags_sec = NULL;
b49e97c9
TS
14706 reginfo_sec = NULL;
14707 mdebug_sec = NULL;
14708 gptab_data_sec = NULL;
14709 gptab_bss_sec = NULL;
9719ad41 14710 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14711 {
351cdf24
MF
14712 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14713 {
14714 /* We have found the .MIPS.abiflags section in the output file.
14715 Look through all the link_orders comprising it and remove them.
14716 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14717 for (p = o->map_head.link_order; p != NULL; p = p->next)
14718 {
14719 asection *input_section;
14720
14721 if (p->type != bfd_indirect_link_order)
14722 {
14723 if (p->type == bfd_data_link_order)
14724 continue;
14725 abort ();
14726 }
14727
14728 input_section = p->u.indirect.section;
14729
14730 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14731 elf_link_input_bfd ignores this section. */
14732 input_section->flags &= ~SEC_HAS_CONTENTS;
14733 }
14734
14735 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14736 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14737
14738 /* Skip this section later on (I don't think this currently
14739 matters, but someday it might). */
14740 o->map_head.link_order = NULL;
14741
14742 abiflags_sec = o;
14743 }
14744
b49e97c9
TS
14745 if (strcmp (o->name, ".reginfo") == 0)
14746 {
14747 memset (&reginfo, 0, sizeof reginfo);
14748
14749 /* We have found the .reginfo section in the output file.
14750 Look through all the link_orders comprising it and merge
14751 the information together. */
8423293d 14752 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14753 {
14754 asection *input_section;
14755 bfd *input_bfd;
14756 Elf32_External_RegInfo ext;
14757 Elf32_RegInfo sub;
6798f8bf 14758 bfd_size_type sz;
b49e97c9
TS
14759
14760 if (p->type != bfd_indirect_link_order)
14761 {
14762 if (p->type == bfd_data_link_order)
14763 continue;
14764 abort ();
14765 }
14766
14767 input_section = p->u.indirect.section;
14768 input_bfd = input_section->owner;
14769
6798f8bf
MR
14770 sz = (input_section->size < sizeof (ext)
14771 ? input_section->size : sizeof (ext));
14772 memset (&ext, 0, sizeof (ext));
b49e97c9 14773 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14774 &ext, 0, sz))
b34976b6 14775 return FALSE;
b49e97c9
TS
14776
14777 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14778
14779 reginfo.ri_gprmask |= sub.ri_gprmask;
14780 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14781 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14782 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14783 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14784
14785 /* ri_gp_value is set by the function
1c5e4ee9 14786 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14787 finally written out. */
14788
14789 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14790 elf_link_input_bfd ignores this section. */
14791 input_section->flags &= ~SEC_HAS_CONTENTS;
14792 }
14793
14794 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14795 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14796
14797 /* Skip this section later on (I don't think this currently
14798 matters, but someday it might). */
8423293d 14799 o->map_head.link_order = NULL;
b49e97c9
TS
14800
14801 reginfo_sec = o;
14802 }
14803
14804 if (strcmp (o->name, ".mdebug") == 0)
14805 {
14806 struct extsym_info einfo;
14807 bfd_vma last;
14808
14809 /* We have found the .mdebug section in the output file.
14810 Look through all the link_orders comprising it and merge
14811 the information together. */
14812 symhdr->magic = swap->sym_magic;
14813 /* FIXME: What should the version stamp be? */
14814 symhdr->vstamp = 0;
14815 symhdr->ilineMax = 0;
14816 symhdr->cbLine = 0;
14817 symhdr->idnMax = 0;
14818 symhdr->ipdMax = 0;
14819 symhdr->isymMax = 0;
14820 symhdr->ioptMax = 0;
14821 symhdr->iauxMax = 0;
14822 symhdr->issMax = 0;
14823 symhdr->issExtMax = 0;
14824 symhdr->ifdMax = 0;
14825 symhdr->crfd = 0;
14826 symhdr->iextMax = 0;
14827
14828 /* We accumulate the debugging information itself in the
14829 debug_info structure. */
14830 debug.line = NULL;
14831 debug.external_dnr = NULL;
14832 debug.external_pdr = NULL;
14833 debug.external_sym = NULL;
14834 debug.external_opt = NULL;
14835 debug.external_aux = NULL;
14836 debug.ss = NULL;
14837 debug.ssext = debug.ssext_end = NULL;
14838 debug.external_fdr = NULL;
14839 debug.external_rfd = NULL;
14840 debug.external_ext = debug.external_ext_end = NULL;
14841
14842 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14843 if (mdebug_handle == NULL)
b34976b6 14844 return FALSE;
b49e97c9
TS
14845
14846 esym.jmptbl = 0;
14847 esym.cobol_main = 0;
14848 esym.weakext = 0;
14849 esym.reserved = 0;
14850 esym.ifd = ifdNil;
14851 esym.asym.iss = issNil;
14852 esym.asym.st = stLocal;
14853 esym.asym.reserved = 0;
14854 esym.asym.index = indexNil;
14855 last = 0;
14856 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14857 {
14858 esym.asym.sc = sc[i];
14859 s = bfd_get_section_by_name (abfd, secname[i]);
14860 if (s != NULL)
14861 {
14862 esym.asym.value = s->vma;
eea6121a 14863 last = s->vma + s->size;
b49e97c9
TS
14864 }
14865 else
14866 esym.asym.value = last;
14867 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14868 secname[i], &esym))
b34976b6 14869 return FALSE;
b49e97c9
TS
14870 }
14871
8423293d 14872 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14873 {
14874 asection *input_section;
14875 bfd *input_bfd;
14876 const struct ecoff_debug_swap *input_swap;
14877 struct ecoff_debug_info input_debug;
14878 char *eraw_src;
14879 char *eraw_end;
14880
14881 if (p->type != bfd_indirect_link_order)
14882 {
14883 if (p->type == bfd_data_link_order)
14884 continue;
14885 abort ();
14886 }
14887
14888 input_section = p->u.indirect.section;
14889 input_bfd = input_section->owner;
14890
d5eaccd7 14891 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14892 {
14893 /* I don't know what a non MIPS ELF bfd would be
14894 doing with a .mdebug section, but I don't really
14895 want to deal with it. */
14896 continue;
14897 }
14898
14899 input_swap = (get_elf_backend_data (input_bfd)
14900 ->elf_backend_ecoff_debug_swap);
14901
eea6121a 14902 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14903
14904 /* The ECOFF linking code expects that we have already
14905 read in the debugging information and set up an
14906 ecoff_debug_info structure, so we do that now. */
14907 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14908 &input_debug))
b34976b6 14909 return FALSE;
b49e97c9
TS
14910
14911 if (! (bfd_ecoff_debug_accumulate
14912 (mdebug_handle, abfd, &debug, swap, input_bfd,
14913 &input_debug, input_swap, info)))
b34976b6 14914 return FALSE;
b49e97c9
TS
14915
14916 /* Loop through the external symbols. For each one with
14917 interesting information, try to find the symbol in
14918 the linker global hash table and save the information
14919 for the output external symbols. */
14920 eraw_src = input_debug.external_ext;
14921 eraw_end = (eraw_src
14922 + (input_debug.symbolic_header.iextMax
14923 * input_swap->external_ext_size));
14924 for (;
14925 eraw_src < eraw_end;
14926 eraw_src += input_swap->external_ext_size)
14927 {
14928 EXTR ext;
14929 const char *name;
14930 struct mips_elf_link_hash_entry *h;
14931
9719ad41 14932 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14933 if (ext.asym.sc == scNil
14934 || ext.asym.sc == scUndefined
14935 || ext.asym.sc == scSUndefined)
14936 continue;
14937
14938 name = input_debug.ssext + ext.asym.iss;
14939 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14940 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14941 if (h == NULL || h->esym.ifd != -2)
14942 continue;
14943
14944 if (ext.ifd != -1)
14945 {
14946 BFD_ASSERT (ext.ifd
14947 < input_debug.symbolic_header.ifdMax);
14948 ext.ifd = input_debug.ifdmap[ext.ifd];
14949 }
14950
14951 h->esym = ext;
14952 }
14953
14954 /* Free up the information we just read. */
14955 free (input_debug.line);
14956 free (input_debug.external_dnr);
14957 free (input_debug.external_pdr);
14958 free (input_debug.external_sym);
14959 free (input_debug.external_opt);
14960 free (input_debug.external_aux);
14961 free (input_debug.ss);
14962 free (input_debug.ssext);
14963 free (input_debug.external_fdr);
14964 free (input_debug.external_rfd);
14965 free (input_debug.external_ext);
14966
14967 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14968 elf_link_input_bfd ignores this section. */
14969 input_section->flags &= ~SEC_HAS_CONTENTS;
14970 }
14971
0e1862bb 14972 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14973 {
14974 /* Create .rtproc section. */
87e0a731 14975 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14976 if (rtproc_sec == NULL)
14977 {
14978 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14979 | SEC_LINKER_CREATED | SEC_READONLY);
14980
87e0a731
AM
14981 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14982 ".rtproc",
14983 flags);
b49e97c9 14984 if (rtproc_sec == NULL
fd361982 14985 || !bfd_set_section_alignment (rtproc_sec, 4))
b34976b6 14986 return FALSE;
b49e97c9
TS
14987 }
14988
14989 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14990 info, rtproc_sec,
14991 &debug))
b34976b6 14992 return FALSE;
b49e97c9
TS
14993 }
14994
14995 /* Build the external symbol information. */
14996 einfo.abfd = abfd;
14997 einfo.info = info;
14998 einfo.debug = &debug;
14999 einfo.swap = swap;
b34976b6 15000 einfo.failed = FALSE;
b49e97c9 15001 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 15002 mips_elf_output_extsym, &einfo);
b49e97c9 15003 if (einfo.failed)
b34976b6 15004 return FALSE;
b49e97c9
TS
15005
15006 /* Set the size of the .mdebug section. */
eea6121a 15007 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
15008
15009 /* Skip this section later on (I don't think this currently
15010 matters, but someday it might). */
8423293d 15011 o->map_head.link_order = NULL;
b49e97c9
TS
15012
15013 mdebug_sec = o;
15014 }
15015
0112cd26 15016 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
15017 {
15018 const char *subname;
15019 unsigned int c;
15020 Elf32_gptab *tab;
15021 Elf32_External_gptab *ext_tab;
15022 unsigned int j;
15023
15024 /* The .gptab.sdata and .gptab.sbss sections hold
15025 information describing how the small data area would
15026 change depending upon the -G switch. These sections
15027 not used in executables files. */
0e1862bb 15028 if (! bfd_link_relocatable (info))
b49e97c9 15029 {
8423293d 15030 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15031 {
15032 asection *input_section;
15033
15034 if (p->type != bfd_indirect_link_order)
15035 {
15036 if (p->type == bfd_data_link_order)
15037 continue;
15038 abort ();
15039 }
15040
15041 input_section = p->u.indirect.section;
15042
15043 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15044 elf_link_input_bfd ignores this section. */
15045 input_section->flags &= ~SEC_HAS_CONTENTS;
15046 }
15047
15048 /* Skip this section later on (I don't think this
15049 currently matters, but someday it might). */
8423293d 15050 o->map_head.link_order = NULL;
b49e97c9
TS
15051
15052 /* Really remove the section. */
5daa8fe7 15053 bfd_section_list_remove (abfd, o);
b49e97c9
TS
15054 --abfd->section_count;
15055
15056 continue;
15057 }
15058
15059 /* There is one gptab for initialized data, and one for
15060 uninitialized data. */
15061 if (strcmp (o->name, ".gptab.sdata") == 0)
15062 gptab_data_sec = o;
15063 else if (strcmp (o->name, ".gptab.sbss") == 0)
15064 gptab_bss_sec = o;
15065 else
15066 {
4eca0228 15067 _bfd_error_handler
695344c0 15068 /* xgettext:c-format */
871b3ab2 15069 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 15070 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 15071 return FALSE;
b49e97c9
TS
15072 }
15073
15074 /* The linker script always combines .gptab.data and
15075 .gptab.sdata into .gptab.sdata, and likewise for
15076 .gptab.bss and .gptab.sbss. It is possible that there is
15077 no .sdata or .sbss section in the output file, in which
15078 case we must change the name of the output section. */
15079 subname = o->name + sizeof ".gptab" - 1;
15080 if (bfd_get_section_by_name (abfd, subname) == NULL)
15081 {
15082 if (o == gptab_data_sec)
15083 o->name = ".gptab.data";
15084 else
15085 o->name = ".gptab.bss";
15086 subname = o->name + sizeof ".gptab" - 1;
15087 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15088 }
15089
15090 /* Set up the first entry. */
15091 c = 1;
15092 amt = c * sizeof (Elf32_gptab);
9719ad41 15093 tab = bfd_malloc (amt);
b49e97c9 15094 if (tab == NULL)
b34976b6 15095 return FALSE;
b49e97c9
TS
15096 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15097 tab[0].gt_header.gt_unused = 0;
15098
15099 /* Combine the input sections. */
8423293d 15100 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15101 {
15102 asection *input_section;
15103 bfd *input_bfd;
15104 bfd_size_type size;
15105 unsigned long last;
15106 bfd_size_type gpentry;
15107
15108 if (p->type != bfd_indirect_link_order)
15109 {
15110 if (p->type == bfd_data_link_order)
15111 continue;
15112 abort ();
15113 }
15114
15115 input_section = p->u.indirect.section;
15116 input_bfd = input_section->owner;
15117
15118 /* Combine the gptab entries for this input section one
15119 by one. We know that the input gptab entries are
15120 sorted by ascending -G value. */
eea6121a 15121 size = input_section->size;
b49e97c9
TS
15122 last = 0;
15123 for (gpentry = sizeof (Elf32_External_gptab);
15124 gpentry < size;
15125 gpentry += sizeof (Elf32_External_gptab))
15126 {
15127 Elf32_External_gptab ext_gptab;
15128 Elf32_gptab int_gptab;
15129 unsigned long val;
15130 unsigned long add;
b34976b6 15131 bfd_boolean exact;
b49e97c9
TS
15132 unsigned int look;
15133
15134 if (! (bfd_get_section_contents
9719ad41
RS
15135 (input_bfd, input_section, &ext_gptab, gpentry,
15136 sizeof (Elf32_External_gptab))))
b49e97c9
TS
15137 {
15138 free (tab);
b34976b6 15139 return FALSE;
b49e97c9
TS
15140 }
15141
15142 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15143 &int_gptab);
15144 val = int_gptab.gt_entry.gt_g_value;
15145 add = int_gptab.gt_entry.gt_bytes - last;
15146
b34976b6 15147 exact = FALSE;
b49e97c9
TS
15148 for (look = 1; look < c; look++)
15149 {
15150 if (tab[look].gt_entry.gt_g_value >= val)
15151 tab[look].gt_entry.gt_bytes += add;
15152
15153 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 15154 exact = TRUE;
b49e97c9
TS
15155 }
15156
15157 if (! exact)
15158 {
15159 Elf32_gptab *new_tab;
15160 unsigned int max;
15161
15162 /* We need a new table entry. */
15163 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 15164 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
15165 if (new_tab == NULL)
15166 {
15167 free (tab);
b34976b6 15168 return FALSE;
b49e97c9
TS
15169 }
15170 tab = new_tab;
15171 tab[c].gt_entry.gt_g_value = val;
15172 tab[c].gt_entry.gt_bytes = add;
15173
15174 /* Merge in the size for the next smallest -G
15175 value, since that will be implied by this new
15176 value. */
15177 max = 0;
15178 for (look = 1; look < c; look++)
15179 {
15180 if (tab[look].gt_entry.gt_g_value < val
15181 && (max == 0
15182 || (tab[look].gt_entry.gt_g_value
15183 > tab[max].gt_entry.gt_g_value)))
15184 max = look;
15185 }
15186 if (max != 0)
15187 tab[c].gt_entry.gt_bytes +=
15188 tab[max].gt_entry.gt_bytes;
15189
15190 ++c;
15191 }
15192
15193 last = int_gptab.gt_entry.gt_bytes;
15194 }
15195
15196 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15197 elf_link_input_bfd ignores this section. */
15198 input_section->flags &= ~SEC_HAS_CONTENTS;
15199 }
15200
15201 /* The table must be sorted by -G value. */
15202 if (c > 2)
15203 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15204
15205 /* Swap out the table. */
15206 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 15207 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
15208 if (ext_tab == NULL)
15209 {
15210 free (tab);
b34976b6 15211 return FALSE;
b49e97c9
TS
15212 }
15213
15214 for (j = 0; j < c; j++)
15215 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15216 free (tab);
15217
eea6121a 15218 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
15219 o->contents = (bfd_byte *) ext_tab;
15220
15221 /* Skip this section later on (I don't think this currently
15222 matters, but someday it might). */
8423293d 15223 o->map_head.link_order = NULL;
b49e97c9
TS
15224 }
15225 }
15226
15227 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 15228 if (!bfd_elf_final_link (abfd, info))
b34976b6 15229 return FALSE;
b49e97c9
TS
15230
15231 /* Now write out the computed sections. */
15232
351cdf24
MF
15233 if (abiflags_sec != NULL)
15234 {
15235 Elf_External_ABIFlags_v0 ext;
15236 Elf_Internal_ABIFlags_v0 *abiflags;
15237
15238 abiflags = &mips_elf_tdata (abfd)->abiflags;
15239
15240 /* Set up the abiflags if no valid input sections were found. */
15241 if (!mips_elf_tdata (abfd)->abiflags_valid)
15242 {
15243 infer_mips_abiflags (abfd, abiflags);
15244 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15245 }
15246 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15247 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15248 return FALSE;
15249 }
15250
9719ad41 15251 if (reginfo_sec != NULL)
b49e97c9
TS
15252 {
15253 Elf32_External_RegInfo ext;
15254
15255 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15256 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15257 return FALSE;
b49e97c9
TS
15258 }
15259
9719ad41 15260 if (mdebug_sec != NULL)
b49e97c9
TS
15261 {
15262 BFD_ASSERT (abfd->output_has_begun);
15263 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15264 swap, info,
15265 mdebug_sec->filepos))
b34976b6 15266 return FALSE;
b49e97c9
TS
15267
15268 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15269 }
15270
9719ad41 15271 if (gptab_data_sec != NULL)
b49e97c9
TS
15272 {
15273 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15274 gptab_data_sec->contents,
eea6121a 15275 0, gptab_data_sec->size))
b34976b6 15276 return FALSE;
b49e97c9
TS
15277 }
15278
9719ad41 15279 if (gptab_bss_sec != NULL)
b49e97c9
TS
15280 {
15281 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15282 gptab_bss_sec->contents,
eea6121a 15283 0, gptab_bss_sec->size))
b34976b6 15284 return FALSE;
b49e97c9
TS
15285 }
15286
15287 if (SGI_COMPAT (abfd))
15288 {
15289 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15290 if (rtproc_sec != NULL)
15291 {
15292 if (! bfd_set_section_contents (abfd, rtproc_sec,
15293 rtproc_sec->contents,
eea6121a 15294 0, rtproc_sec->size))
b34976b6 15295 return FALSE;
b49e97c9
TS
15296 }
15297 }
15298
b34976b6 15299 return TRUE;
b49e97c9
TS
15300}
15301\f
b2e9744f
MR
15302/* Merge object file header flags from IBFD into OBFD. Raise an error
15303 if there are conflicting settings. */
15304
15305static bfd_boolean
50e03d47 15306mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15307{
50e03d47 15308 bfd *obfd = info->output_bfd;
b2e9744f
MR
15309 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15310 flagword old_flags;
15311 flagword new_flags;
15312 bfd_boolean ok;
15313
15314 new_flags = elf_elfheader (ibfd)->e_flags;
15315 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15316 old_flags = elf_elfheader (obfd)->e_flags;
15317
15318 /* Check flag compatibility. */
15319
15320 new_flags &= ~EF_MIPS_NOREORDER;
15321 old_flags &= ~EF_MIPS_NOREORDER;
15322
15323 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15324 doesn't seem to matter. */
15325 new_flags &= ~EF_MIPS_XGOT;
15326 old_flags &= ~EF_MIPS_XGOT;
15327
15328 /* MIPSpro generates ucode info in n64 objects. Again, we should
15329 just be able to ignore this. */
15330 new_flags &= ~EF_MIPS_UCODE;
15331 old_flags &= ~EF_MIPS_UCODE;
15332
15333 /* DSOs should only be linked with CPIC code. */
15334 if ((ibfd->flags & DYNAMIC) != 0)
15335 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15336
15337 if (new_flags == old_flags)
15338 return TRUE;
15339
15340 ok = TRUE;
15341
15342 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15343 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15344 {
4eca0228 15345 _bfd_error_handler
871b3ab2 15346 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
15347 ibfd);
15348 ok = TRUE;
15349 }
15350
15351 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15352 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15353 if (! (new_flags & EF_MIPS_PIC))
15354 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15355
15356 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15357 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15358
15359 /* Compare the ISAs. */
15360 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15361 {
4eca0228 15362 _bfd_error_handler
871b3ab2 15363 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
15364 ibfd);
15365 ok = FALSE;
15366 }
15367 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15368 {
15369 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15370 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15371 {
15372 /* Copy the architecture info from IBFD to OBFD. Also copy
15373 the 32-bit flag (if set) so that we continue to recognise
15374 OBFD as a 32-bit binary. */
15375 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15376 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15377 elf_elfheader (obfd)->e_flags
15378 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15379
15380 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15381 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15382
15383 /* Copy across the ABI flags if OBFD doesn't use them
15384 and if that was what caused us to treat IBFD as 32-bit. */
15385 if ((old_flags & EF_MIPS_ABI) == 0
15386 && mips_32bit_flags_p (new_flags)
15387 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15388 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15389 }
15390 else
15391 {
15392 /* The ISAs aren't compatible. */
4eca0228 15393 _bfd_error_handler
695344c0 15394 /* xgettext:c-format */
871b3ab2 15395 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15396 ibfd,
15397 bfd_printable_name (ibfd),
15398 bfd_printable_name (obfd));
15399 ok = FALSE;
15400 }
15401 }
15402
15403 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15404 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15405
15406 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15407 does set EI_CLASS differently from any 32-bit ABI. */
15408 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15409 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15410 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15411 {
15412 /* Only error if both are set (to different values). */
15413 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15414 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15415 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15416 {
4eca0228 15417 _bfd_error_handler
695344c0 15418 /* xgettext:c-format */
871b3ab2 15419 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15420 ibfd,
15421 elf_mips_abi_name (ibfd),
15422 elf_mips_abi_name (obfd));
15423 ok = FALSE;
15424 }
15425 new_flags &= ~EF_MIPS_ABI;
15426 old_flags &= ~EF_MIPS_ABI;
15427 }
15428
15429 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15430 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15431 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15432 {
15433 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15434 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15435 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15436 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15437 int micro_mis = old_m16 && new_micro;
15438 int m16_mis = old_micro && new_m16;
15439
15440 if (m16_mis || micro_mis)
15441 {
4eca0228 15442 _bfd_error_handler
695344c0 15443 /* xgettext:c-format */
871b3ab2 15444 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15445 ibfd,
15446 m16_mis ? "MIPS16" : "microMIPS",
15447 m16_mis ? "microMIPS" : "MIPS16");
15448 ok = FALSE;
15449 }
15450
15451 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15452
15453 new_flags &= ~ EF_MIPS_ARCH_ASE;
15454 old_flags &= ~ EF_MIPS_ARCH_ASE;
15455 }
15456
15457 /* Compare NaN encodings. */
15458 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15459 {
695344c0 15460 /* xgettext:c-format */
871b3ab2 15461 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15462 ibfd,
15463 (new_flags & EF_MIPS_NAN2008
15464 ? "-mnan=2008" : "-mnan=legacy"),
15465 (old_flags & EF_MIPS_NAN2008
15466 ? "-mnan=2008" : "-mnan=legacy"));
15467 ok = FALSE;
15468 new_flags &= ~EF_MIPS_NAN2008;
15469 old_flags &= ~EF_MIPS_NAN2008;
15470 }
15471
15472 /* Compare FP64 state. */
15473 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15474 {
695344c0 15475 /* xgettext:c-format */
871b3ab2 15476 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15477 ibfd,
15478 (new_flags & EF_MIPS_FP64
15479 ? "-mfp64" : "-mfp32"),
15480 (old_flags & EF_MIPS_FP64
15481 ? "-mfp64" : "-mfp32"));
15482 ok = FALSE;
15483 new_flags &= ~EF_MIPS_FP64;
15484 old_flags &= ~EF_MIPS_FP64;
15485 }
15486
15487 /* Warn about any other mismatches */
15488 if (new_flags != old_flags)
15489 {
695344c0 15490 /* xgettext:c-format */
4eca0228 15491 _bfd_error_handler
871b3ab2 15492 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15493 "(%#x)"),
15494 ibfd, new_flags, old_flags);
b2e9744f
MR
15495 ok = FALSE;
15496 }
15497
15498 return ok;
15499}
15500
2cf19d5c
JM
15501/* Merge object attributes from IBFD into OBFD. Raise an error if
15502 there are conflicting attributes. */
15503static bfd_boolean
50e03d47 15504mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15505{
50e03d47 15506 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15507 obj_attribute *in_attr;
15508 obj_attribute *out_attr;
6ae68ba3 15509 bfd *abi_fp_bfd;
b60bf9be 15510 bfd *abi_msa_bfd;
6ae68ba3
MR
15511
15512 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15513 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15514 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15515 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15516
b60bf9be
CF
15517 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15518 if (!abi_msa_bfd
15519 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15520 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15521
2cf19d5c
JM
15522 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15523 {
15524 /* This is the first object. Copy the attributes. */
15525 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15526
15527 /* Use the Tag_null value to indicate the attributes have been
15528 initialized. */
15529 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15530
15531 return TRUE;
15532 }
15533
15534 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15535 non-conflicting ones. */
2cf19d5c
JM
15536 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15537 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15538 {
757a636f 15539 int out_fp, in_fp;
6ae68ba3 15540
757a636f
RS
15541 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15542 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15543 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15544 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15545 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15546 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15547 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15548 || in_fp == Val_GNU_MIPS_ABI_FP_64
15549 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15550 {
15551 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15552 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15553 }
15554 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15555 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15556 || out_fp == Val_GNU_MIPS_ABI_FP_64
15557 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15558 /* Keep the current setting. */;
15559 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15560 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15561 {
15562 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15563 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15564 }
15565 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15566 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15567 /* Keep the current setting. */;
757a636f
RS
15568 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15569 {
15570 const char *out_string, *in_string;
6ae68ba3 15571
757a636f
RS
15572 out_string = _bfd_mips_fp_abi_string (out_fp);
15573 in_string = _bfd_mips_fp_abi_string (in_fp);
15574 /* First warn about cases involving unrecognised ABIs. */
15575 if (!out_string && !in_string)
695344c0 15576 /* xgettext:c-format */
757a636f 15577 _bfd_error_handler
2c1c9679 15578 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15579 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15580 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15581 else if (!out_string)
15582 _bfd_error_handler
695344c0 15583 /* xgettext:c-format */
2c1c9679 15584 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15585 "(set by %pB), %pB uses %s"),
c08bb8dd 15586 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15587 else if (!in_string)
15588 _bfd_error_handler
695344c0 15589 /* xgettext:c-format */
2c1c9679 15590 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15591 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15592 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15593 else
15594 {
15595 /* If one of the bfds is soft-float, the other must be
15596 hard-float. The exact choice of hard-float ABI isn't
15597 really relevant to the error message. */
15598 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15599 out_string = "-mhard-float";
15600 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15601 in_string = "-mhard-float";
15602 _bfd_error_handler
695344c0 15603 /* xgettext:c-format */
2c1c9679 15604 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15605 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15606 }
15607 }
2cf19d5c
JM
15608 }
15609
b60bf9be
CF
15610 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15611 non-conflicting ones. */
15612 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15613 {
15614 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15615 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15616 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15617 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15618 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15619 {
15620 case Val_GNU_MIPS_ABI_MSA_128:
15621 _bfd_error_handler
695344c0 15622 /* xgettext:c-format */
2c1c9679 15623 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15624 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15625 obfd, "-mmsa", abi_msa_bfd,
15626 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15627 break;
15628
15629 default:
15630 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15631 {
15632 case Val_GNU_MIPS_ABI_MSA_128:
15633 _bfd_error_handler
695344c0 15634 /* xgettext:c-format */
2c1c9679 15635 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15636 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15637 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15638 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15639 break;
15640
15641 default:
15642 _bfd_error_handler
695344c0 15643 /* xgettext:c-format */
2c1c9679 15644 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15645 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15646 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15647 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15648 break;
15649 }
15650 }
15651 }
15652
2cf19d5c 15653 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15654 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15655}
15656
a3dc0a7f
MR
15657/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15658 there are conflicting settings. */
15659
15660static bfd_boolean
15661mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15662{
15663 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15664 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15665 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15666
15667 /* Update the output abiflags fp_abi using the computed fp_abi. */
15668 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15669
15670#define max(a, b) ((a) > (b) ? (a) : (b))
15671 /* Merge abiflags. */
15672 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15673 in_tdata->abiflags.isa_level);
15674 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15675 in_tdata->abiflags.isa_rev);
15676 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15677 in_tdata->abiflags.gpr_size);
15678 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15679 in_tdata->abiflags.cpr1_size);
15680 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15681 in_tdata->abiflags.cpr2_size);
15682#undef max
15683 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15684 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15685
15686 return TRUE;
15687}
15688
b49e97c9
TS
15689/* Merge backend specific data from an object file to the output
15690 object file when linking. */
15691
b34976b6 15692bfd_boolean
50e03d47 15693_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15694{
50e03d47 15695 bfd *obfd = info->output_bfd;
cf8502c1
MR
15696 struct mips_elf_obj_tdata *out_tdata;
15697 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15698 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15699 asection *sec;
d537eeb5 15700 bfd_boolean ok;
b49e97c9 15701
58238693 15702 /* Check if we have the same endianness. */
50e03d47 15703 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15704 {
4eca0228 15705 _bfd_error_handler
871b3ab2 15706 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15707 ibfd);
aa701218
AO
15708 return FALSE;
15709 }
b49e97c9 15710
d5eaccd7 15711 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15712 return TRUE;
b49e97c9 15713
cf8502c1
MR
15714 in_tdata = mips_elf_tdata (ibfd);
15715 out_tdata = mips_elf_tdata (obfd);
15716
aa701218
AO
15717 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15718 {
4eca0228 15719 _bfd_error_handler
871b3ab2 15720 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15721 ibfd);
aa701218
AO
15722 return FALSE;
15723 }
15724
23ba6f18
MR
15725 /* Check to see if the input BFD actually contains any sections. If not,
15726 then it has no attributes, and its flags may not have been initialized
15727 either, but it cannot actually cause any incompatibility. */
6b728d32 15728 /* FIXME: This excludes any input shared library from consideration. */
351cdf24
MF
15729 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15730 {
15731 /* Ignore synthetic sections and empty .text, .data and .bss sections
15732 which are automatically generated by gas. Also ignore fake
15733 (s)common sections, since merely defining a common symbol does
15734 not affect compatibility. */
15735 if ((sec->flags & SEC_IS_COMMON) == 0
15736 && strcmp (sec->name, ".reginfo")
15737 && strcmp (sec->name, ".mdebug")
15738 && (sec->size != 0
15739 || (strcmp (sec->name, ".text")
15740 && strcmp (sec->name, ".data")
15741 && strcmp (sec->name, ".bss"))))
15742 {
15743 null_input_bfd = FALSE;
15744 break;
15745 }
15746 }
15747 if (null_input_bfd)
15748 return TRUE;
15749
28d45e28 15750 /* Populate abiflags using existing information. */
23ba6f18
MR
15751 if (in_tdata->abiflags_valid)
15752 {
15753 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15754 Elf_Internal_ABIFlags_v0 in_abiflags;
15755 Elf_Internal_ABIFlags_v0 abiflags;
15756
15757 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15758 set. */
23ba6f18 15759 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15760 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15761
351cdf24 15762 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15763 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15764
15765 /* It is not possible to infer the correct ISA revision
07d6d2b8 15766 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15767 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15768 in_abiflags.isa_rev = 2;
15769
c97c330b
MF
15770 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15771 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15772 _bfd_error_handler
2c1c9679 15773 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15774 ".MIPS.abiflags"), ibfd);
15775 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15776 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15777 _bfd_error_handler
2c1c9679 15778 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15779 ".MIPS.abiflags"), ibfd);
15780 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15781 _bfd_error_handler
2c1c9679 15782 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15783 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15784 /* The isa_ext is allowed to be an extension of what can be inferred
15785 from e_flags. */
15786 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15787 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15788 _bfd_error_handler
2c1c9679 15789 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15790 ".MIPS.abiflags"), ibfd);
15791 if (in_abiflags.flags2 != 0)
4eca0228 15792 _bfd_error_handler
2c1c9679 15793 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15794 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15795 in_abiflags.flags2);
351cdf24 15796 }
28d45e28
MR
15797 else
15798 {
15799 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15800 in_tdata->abiflags_valid = TRUE;
15801 }
15802
cf8502c1 15803 if (!out_tdata->abiflags_valid)
351cdf24
MF
15804 {
15805 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15806 out_tdata->abiflags = in_tdata->abiflags;
15807 out_tdata->abiflags_valid = TRUE;
351cdf24 15808 }
b49e97c9
TS
15809
15810 if (! elf_flags_init (obfd))
15811 {
b34976b6 15812 elf_flags_init (obfd) = TRUE;
351cdf24 15813 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15814 elf_elfheader (obfd)->e_ident[EI_CLASS]
15815 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15816
15817 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15818 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15819 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15820 bfd_get_mach (ibfd))))
b49e97c9
TS
15821 {
15822 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15823 bfd_get_mach (ibfd)))
b34976b6 15824 return FALSE;
351cdf24
MF
15825
15826 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15827 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15828 }
15829
d537eeb5 15830 ok = TRUE;
b49e97c9 15831 }
d537eeb5 15832 else
50e03d47 15833 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15834
50e03d47 15835 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15836
a3dc0a7f 15837 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15838
d537eeb5 15839 if (!ok)
b49e97c9
TS
15840 {
15841 bfd_set_error (bfd_error_bad_value);
b34976b6 15842 return FALSE;
b49e97c9
TS
15843 }
15844
b34976b6 15845 return TRUE;
b49e97c9
TS
15846}
15847
15848/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15849
b34976b6 15850bfd_boolean
9719ad41 15851_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15852{
15853 BFD_ASSERT (!elf_flags_init (abfd)
15854 || elf_elfheader (abfd)->e_flags == flags);
15855
15856 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15857 elf_flags_init (abfd) = TRUE;
15858 return TRUE;
b49e97c9
TS
15859}
15860
ad9563d6
CM
15861char *
15862_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15863{
15864 switch (dtag)
15865 {
15866 default: return "";
15867 case DT_MIPS_RLD_VERSION:
15868 return "MIPS_RLD_VERSION";
15869 case DT_MIPS_TIME_STAMP:
15870 return "MIPS_TIME_STAMP";
15871 case DT_MIPS_ICHECKSUM:
15872 return "MIPS_ICHECKSUM";
15873 case DT_MIPS_IVERSION:
15874 return "MIPS_IVERSION";
15875 case DT_MIPS_FLAGS:
15876 return "MIPS_FLAGS";
15877 case DT_MIPS_BASE_ADDRESS:
15878 return "MIPS_BASE_ADDRESS";
15879 case DT_MIPS_MSYM:
15880 return "MIPS_MSYM";
15881 case DT_MIPS_CONFLICT:
15882 return "MIPS_CONFLICT";
15883 case DT_MIPS_LIBLIST:
15884 return "MIPS_LIBLIST";
15885 case DT_MIPS_LOCAL_GOTNO:
15886 return "MIPS_LOCAL_GOTNO";
15887 case DT_MIPS_CONFLICTNO:
15888 return "MIPS_CONFLICTNO";
15889 case DT_MIPS_LIBLISTNO:
15890 return "MIPS_LIBLISTNO";
15891 case DT_MIPS_SYMTABNO:
15892 return "MIPS_SYMTABNO";
15893 case DT_MIPS_UNREFEXTNO:
15894 return "MIPS_UNREFEXTNO";
15895 case DT_MIPS_GOTSYM:
15896 return "MIPS_GOTSYM";
15897 case DT_MIPS_HIPAGENO:
15898 return "MIPS_HIPAGENO";
15899 case DT_MIPS_RLD_MAP:
15900 return "MIPS_RLD_MAP";
a5499fa4
MF
15901 case DT_MIPS_RLD_MAP_REL:
15902 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15903 case DT_MIPS_DELTA_CLASS:
15904 return "MIPS_DELTA_CLASS";
15905 case DT_MIPS_DELTA_CLASS_NO:
15906 return "MIPS_DELTA_CLASS_NO";
15907 case DT_MIPS_DELTA_INSTANCE:
15908 return "MIPS_DELTA_INSTANCE";
15909 case DT_MIPS_DELTA_INSTANCE_NO:
15910 return "MIPS_DELTA_INSTANCE_NO";
15911 case DT_MIPS_DELTA_RELOC:
15912 return "MIPS_DELTA_RELOC";
15913 case DT_MIPS_DELTA_RELOC_NO:
15914 return "MIPS_DELTA_RELOC_NO";
15915 case DT_MIPS_DELTA_SYM:
15916 return "MIPS_DELTA_SYM";
15917 case DT_MIPS_DELTA_SYM_NO:
15918 return "MIPS_DELTA_SYM_NO";
15919 case DT_MIPS_DELTA_CLASSSYM:
15920 return "MIPS_DELTA_CLASSSYM";
15921 case DT_MIPS_DELTA_CLASSSYM_NO:
15922 return "MIPS_DELTA_CLASSSYM_NO";
15923 case DT_MIPS_CXX_FLAGS:
15924 return "MIPS_CXX_FLAGS";
15925 case DT_MIPS_PIXIE_INIT:
15926 return "MIPS_PIXIE_INIT";
15927 case DT_MIPS_SYMBOL_LIB:
15928 return "MIPS_SYMBOL_LIB";
15929 case DT_MIPS_LOCALPAGE_GOTIDX:
15930 return "MIPS_LOCALPAGE_GOTIDX";
15931 case DT_MIPS_LOCAL_GOTIDX:
15932 return "MIPS_LOCAL_GOTIDX";
15933 case DT_MIPS_HIDDEN_GOTIDX:
15934 return "MIPS_HIDDEN_GOTIDX";
15935 case DT_MIPS_PROTECTED_GOTIDX:
15936 return "MIPS_PROTECTED_GOT_IDX";
15937 case DT_MIPS_OPTIONS:
15938 return "MIPS_OPTIONS";
15939 case DT_MIPS_INTERFACE:
15940 return "MIPS_INTERFACE";
15941 case DT_MIPS_DYNSTR_ALIGN:
15942 return "DT_MIPS_DYNSTR_ALIGN";
15943 case DT_MIPS_INTERFACE_SIZE:
15944 return "DT_MIPS_INTERFACE_SIZE";
15945 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15946 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15947 case DT_MIPS_PERF_SUFFIX:
15948 return "DT_MIPS_PERF_SUFFIX";
15949 case DT_MIPS_COMPACT_SIZE:
15950 return "DT_MIPS_COMPACT_SIZE";
15951 case DT_MIPS_GP_VALUE:
15952 return "DT_MIPS_GP_VALUE";
15953 case DT_MIPS_AUX_DYNAMIC:
15954 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15955 case DT_MIPS_PLTGOT:
15956 return "DT_MIPS_PLTGOT";
15957 case DT_MIPS_RWPLT:
15958 return "DT_MIPS_RWPLT";
f16a9783
MS
15959 case DT_MIPS_XHASH:
15960 return "DT_MIPS_XHASH";
ad9563d6
CM
15961 }
15962}
15963
757a636f
RS
15964/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15965 not known. */
15966
15967const char *
15968_bfd_mips_fp_abi_string (int fp)
15969{
15970 switch (fp)
15971 {
15972 /* These strings aren't translated because they're simply
15973 option lists. */
15974 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15975 return "-mdouble-float";
15976
15977 case Val_GNU_MIPS_ABI_FP_SINGLE:
15978 return "-msingle-float";
15979
15980 case Val_GNU_MIPS_ABI_FP_SOFT:
15981 return "-msoft-float";
15982
351cdf24
MF
15983 case Val_GNU_MIPS_ABI_FP_OLD_64:
15984 return _("-mips32r2 -mfp64 (12 callee-saved)");
15985
15986 case Val_GNU_MIPS_ABI_FP_XX:
15987 return "-mfpxx";
15988
757a636f 15989 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15990 return "-mgp32 -mfp64";
15991
15992 case Val_GNU_MIPS_ABI_FP_64A:
15993 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15994
15995 default:
15996 return 0;
15997 }
15998}
15999
351cdf24
MF
16000static void
16001print_mips_ases (FILE *file, unsigned int mask)
16002{
16003 if (mask & AFL_ASE_DSP)
16004 fputs ("\n\tDSP ASE", file);
16005 if (mask & AFL_ASE_DSPR2)
16006 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
16007 if (mask & AFL_ASE_DSPR3)
16008 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
16009 if (mask & AFL_ASE_EVA)
16010 fputs ("\n\tEnhanced VA Scheme", file);
16011 if (mask & AFL_ASE_MCU)
16012 fputs ("\n\tMCU (MicroController) ASE", file);
16013 if (mask & AFL_ASE_MDMX)
16014 fputs ("\n\tMDMX ASE", file);
16015 if (mask & AFL_ASE_MIPS3D)
16016 fputs ("\n\tMIPS-3D ASE", file);
16017 if (mask & AFL_ASE_MT)
16018 fputs ("\n\tMT ASE", file);
16019 if (mask & AFL_ASE_SMARTMIPS)
16020 fputs ("\n\tSmartMIPS ASE", file);
16021 if (mask & AFL_ASE_VIRT)
16022 fputs ("\n\tVZ ASE", file);
16023 if (mask & AFL_ASE_MSA)
16024 fputs ("\n\tMSA ASE", file);
16025 if (mask & AFL_ASE_MIPS16)
16026 fputs ("\n\tMIPS16 ASE", file);
16027 if (mask & AFL_ASE_MICROMIPS)
16028 fputs ("\n\tMICROMIPS ASE", file);
16029 if (mask & AFL_ASE_XPA)
16030 fputs ("\n\tXPA ASE", file);
25499ac7
MR
16031 if (mask & AFL_ASE_MIPS16E2)
16032 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
16033 if (mask & AFL_ASE_CRC)
16034 fputs ("\n\tCRC ASE", file);
6f20c942
FS
16035 if (mask & AFL_ASE_GINV)
16036 fputs ("\n\tGINV ASE", file);
8095d2f7
CX
16037 if (mask & AFL_ASE_LOONGSON_MMI)
16038 fputs ("\n\tLoongson MMI ASE", file);
716c08de
CX
16039 if (mask & AFL_ASE_LOONGSON_CAM)
16040 fputs ("\n\tLoongson CAM ASE", file);
bdc6c06e
CX
16041 if (mask & AFL_ASE_LOONGSON_EXT)
16042 fputs ("\n\tLoongson EXT ASE", file);
a693765e
CX
16043 if (mask & AFL_ASE_LOONGSON_EXT2)
16044 fputs ("\n\tLoongson EXT2 ASE", file);
351cdf24
MF
16045 if (mask == 0)
16046 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
16047 else if ((mask & ~AFL_ASE_MASK) != 0)
16048 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
16049}
16050
16051static void
16052print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16053{
16054 switch (isa_ext)
16055 {
16056 case 0:
16057 fputs (_("None"), file);
16058 break;
16059 case AFL_EXT_XLR:
16060 fputs ("RMI XLR", file);
16061 break;
2c629856
N
16062 case AFL_EXT_OCTEON3:
16063 fputs ("Cavium Networks Octeon3", file);
16064 break;
351cdf24
MF
16065 case AFL_EXT_OCTEON2:
16066 fputs ("Cavium Networks Octeon2", file);
16067 break;
16068 case AFL_EXT_OCTEONP:
16069 fputs ("Cavium Networks OcteonP", file);
16070 break;
351cdf24
MF
16071 case AFL_EXT_OCTEON:
16072 fputs ("Cavium Networks Octeon", file);
16073 break;
16074 case AFL_EXT_5900:
16075 fputs ("Toshiba R5900", file);
16076 break;
16077 case AFL_EXT_4650:
16078 fputs ("MIPS R4650", file);
16079 break;
16080 case AFL_EXT_4010:
16081 fputs ("LSI R4010", file);
16082 break;
16083 case AFL_EXT_4100:
16084 fputs ("NEC VR4100", file);
16085 break;
16086 case AFL_EXT_3900:
16087 fputs ("Toshiba R3900", file);
16088 break;
16089 case AFL_EXT_10000:
16090 fputs ("MIPS R10000", file);
16091 break;
16092 case AFL_EXT_SB1:
16093 fputs ("Broadcom SB-1", file);
16094 break;
16095 case AFL_EXT_4111:
16096 fputs ("NEC VR4111/VR4181", file);
16097 break;
16098 case AFL_EXT_4120:
16099 fputs ("NEC VR4120", file);
16100 break;
16101 case AFL_EXT_5400:
16102 fputs ("NEC VR5400", file);
16103 break;
16104 case AFL_EXT_5500:
16105 fputs ("NEC VR5500", file);
16106 break;
16107 case AFL_EXT_LOONGSON_2E:
16108 fputs ("ST Microelectronics Loongson 2E", file);
16109 break;
16110 case AFL_EXT_LOONGSON_2F:
16111 fputs ("ST Microelectronics Loongson 2F", file);
16112 break;
38bf472a
MR
16113 case AFL_EXT_INTERAPTIV_MR2:
16114 fputs ("Imagination interAptiv MR2", file);
16115 break;
351cdf24 16116 default:
00ac7aa0 16117 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
16118 break;
16119 }
16120}
16121
16122static void
16123print_mips_fp_abi_value (FILE *file, int val)
16124{
16125 switch (val)
16126 {
16127 case Val_GNU_MIPS_ABI_FP_ANY:
16128 fprintf (file, _("Hard or soft float\n"));
16129 break;
16130 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16131 fprintf (file, _("Hard float (double precision)\n"));
16132 break;
16133 case Val_GNU_MIPS_ABI_FP_SINGLE:
16134 fprintf (file, _("Hard float (single precision)\n"));
16135 break;
16136 case Val_GNU_MIPS_ABI_FP_SOFT:
16137 fprintf (file, _("Soft float\n"));
16138 break;
16139 case Val_GNU_MIPS_ABI_FP_OLD_64:
16140 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16141 break;
16142 case Val_GNU_MIPS_ABI_FP_XX:
16143 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16144 break;
16145 case Val_GNU_MIPS_ABI_FP_64:
16146 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16147 break;
16148 case Val_GNU_MIPS_ABI_FP_64A:
16149 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16150 break;
16151 default:
16152 fprintf (file, "??? (%d)\n", val);
16153 break;
16154 }
16155}
16156
16157static int
16158get_mips_reg_size (int reg_size)
16159{
16160 return (reg_size == AFL_REG_NONE) ? 0
16161 : (reg_size == AFL_REG_32) ? 32
16162 : (reg_size == AFL_REG_64) ? 64
16163 : (reg_size == AFL_REG_128) ? 128
16164 : -1;
16165}
16166
b34976b6 16167bfd_boolean
9719ad41 16168_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 16169{
9719ad41 16170 FILE *file = ptr;
b49e97c9
TS
16171
16172 BFD_ASSERT (abfd != NULL && ptr != NULL);
16173
16174 /* Print normal ELF private data. */
16175 _bfd_elf_print_private_bfd_data (abfd, ptr);
16176
16177 /* xgettext:c-format */
16178 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16179
16180 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16181 fprintf (file, _(" [abi=O32]"));
16182 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16183 fprintf (file, _(" [abi=O64]"));
16184 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16185 fprintf (file, _(" [abi=EABI32]"));
16186 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16187 fprintf (file, _(" [abi=EABI64]"));
16188 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16189 fprintf (file, _(" [abi unknown]"));
16190 else if (ABI_N32_P (abfd))
16191 fprintf (file, _(" [abi=N32]"));
16192 else if (ABI_64_P (abfd))
16193 fprintf (file, _(" [abi=64]"));
16194 else
16195 fprintf (file, _(" [no abi set]"));
16196
16197 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 16198 fprintf (file, " [mips1]");
b49e97c9 16199 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 16200 fprintf (file, " [mips2]");
b49e97c9 16201 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 16202 fprintf (file, " [mips3]");
b49e97c9 16203 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 16204 fprintf (file, " [mips4]");
b49e97c9 16205 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 16206 fprintf (file, " [mips5]");
b49e97c9 16207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 16208 fprintf (file, " [mips32]");
b49e97c9 16209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 16210 fprintf (file, " [mips64]");
af7ee8bf 16211 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 16212 fprintf (file, " [mips32r2]");
5f74bc13 16213 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 16214 fprintf (file, " [mips64r2]");
7361da2c
AB
16215 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16216 fprintf (file, " [mips32r6]");
16217 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16218 fprintf (file, " [mips64r6]");
b49e97c9
TS
16219 else
16220 fprintf (file, _(" [unknown ISA]"));
16221
40d32fc6 16222 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 16223 fprintf (file, " [mdmx]");
40d32fc6
CD
16224
16225 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 16226 fprintf (file, " [mips16]");
40d32fc6 16227
df58fc94
RS
16228 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16229 fprintf (file, " [micromips]");
16230
ba92f887
MR
16231 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16232 fprintf (file, " [nan2008]");
16233
5baf5e34 16234 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 16235 fprintf (file, " [old fp64]");
5baf5e34 16236
b49e97c9 16237 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 16238 fprintf (file, " [32bitmode]");
b49e97c9
TS
16239 else
16240 fprintf (file, _(" [not 32bitmode]"));
16241
c0e3f241 16242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 16243 fprintf (file, " [noreorder]");
c0e3f241
CD
16244
16245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 16246 fprintf (file, " [PIC]");
c0e3f241
CD
16247
16248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 16249 fprintf (file, " [CPIC]");
c0e3f241
CD
16250
16251 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16252 fprintf (file, " [XGOT]");
c0e3f241
CD
16253
16254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16255 fprintf (file, " [UCODE]");
c0e3f241 16256
b49e97c9
TS
16257 fputc ('\n', file);
16258
351cdf24
MF
16259 if (mips_elf_tdata (abfd)->abiflags_valid)
16260 {
16261 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16262 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16263 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16264 if (abiflags->isa_rev > 1)
16265 fprintf (file, "r%d", abiflags->isa_rev);
16266 fprintf (file, "\nGPR size: %d",
16267 get_mips_reg_size (abiflags->gpr_size));
16268 fprintf (file, "\nCPR1 size: %d",
16269 get_mips_reg_size (abiflags->cpr1_size));
16270 fprintf (file, "\nCPR2 size: %d",
16271 get_mips_reg_size (abiflags->cpr2_size));
16272 fputs ("\nFP ABI: ", file);
16273 print_mips_fp_abi_value (file, abiflags->fp_abi);
16274 fputs ("ISA Extension: ", file);
16275 print_mips_isa_ext (file, abiflags->isa_ext);
16276 fputs ("\nASEs:", file);
16277 print_mips_ases (file, abiflags->ases);
16278 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16279 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16280 fputc ('\n', file);
16281 }
16282
b34976b6 16283 return TRUE;
b49e97c9 16284}
2f89ff8d 16285
b35d266b 16286const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16287{
07d6d2b8
AM
16288 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16289 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 16290 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 16291 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
16292 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16293 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
f16a9783 16294 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
07d6d2b8 16295 { NULL, 0, 0, 0, 0 }
2f89ff8d 16296};
5e2b0d47 16297
8992f0d7
TS
16298/* Merge non visibility st_other attributes. Ensure that the
16299 STO_OPTIONAL flag is copied into h->other, even if this is not a
16300 definiton of the symbol. */
5e2b0d47
NC
16301void
16302_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
5160d0f3 16303 unsigned int st_other,
5e2b0d47
NC
16304 bfd_boolean definition,
16305 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16306{
5160d0f3 16307 if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
8992f0d7
TS
16308 {
16309 unsigned char other;
16310
5160d0f3 16311 other = (definition ? st_other : h->other);
8992f0d7
TS
16312 other &= ~ELF_ST_VISIBILITY (-1);
16313 h->other = other | ELF_ST_VISIBILITY (h->other);
16314 }
16315
16316 if (!definition
5160d0f3 16317 && ELF_MIPS_IS_OPTIONAL (st_other))
5e2b0d47
NC
16318 h->other |= STO_OPTIONAL;
16319}
12ac1cf5
NC
16320
16321/* Decide whether an undefined symbol is special and can be ignored.
16322 This is the case for OPTIONAL symbols on IRIX. */
16323bfd_boolean
16324_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16325{
16326 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16327}
e0764319
NC
16328
16329bfd_boolean
16330_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16331{
16332 return (sym->st_shndx == SHN_COMMON
16333 || sym->st_shndx == SHN_MIPS_ACOMMON
16334 || sym->st_shndx == SHN_MIPS_SCOMMON);
16335}
861fb55a
DJ
16336
16337/* Return address for Ith PLT stub in section PLT, for relocation REL
16338 or (bfd_vma) -1 if it should not be included. */
16339
16340bfd_vma
16341_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16342 const arelent *rel ATTRIBUTE_UNUSED)
16343{
16344 return (plt->vma
16345 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16346 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16347}
16348
1bbce132
MR
16349/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16350 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16351 and .got.plt and also the slots may be of a different size each we walk
16352 the PLT manually fetching instructions and matching them against known
16353 patterns. To make things easier standard MIPS slots, if any, always come
16354 first. As we don't create proper ELF symbols we use the UDATA.I member
16355 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16356 with the ST_OTHER member of the ELF symbol. */
16357
16358long
16359_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16360 long symcount ATTRIBUTE_UNUSED,
16361 asymbol **syms ATTRIBUTE_UNUSED,
16362 long dynsymcount, asymbol **dynsyms,
16363 asymbol **ret)
16364{
16365 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16366 static const char microsuffix[] = "@micromipsplt";
16367 static const char m16suffix[] = "@mips16plt";
16368 static const char mipssuffix[] = "@plt";
16369
16370 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16372 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16373 Elf_Internal_Shdr *hdr;
16374 bfd_byte *plt_data;
16375 bfd_vma plt_offset;
16376 unsigned int other;
16377 bfd_vma entry_size;
16378 bfd_vma plt0_size;
16379 asection *relplt;
16380 bfd_vma opcode;
16381 asection *plt;
16382 asymbol *send;
16383 size_t size;
16384 char *names;
16385 long counti;
16386 arelent *p;
16387 asymbol *s;
16388 char *nend;
16389 long count;
16390 long pi;
16391 long i;
16392 long n;
16393
16394 *ret = NULL;
16395
16396 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16397 return 0;
16398
16399 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16400 if (relplt == NULL)
16401 return 0;
16402
16403 hdr = &elf_section_data (relplt)->this_hdr;
16404 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16405 return 0;
16406
16407 plt = bfd_get_section_by_name (abfd, ".plt");
16408 if (plt == NULL)
16409 return 0;
16410
16411 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16412 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16413 return -1;
16414 p = relplt->relocation;
16415
16416 /* Calculating the exact amount of space required for symbols would
16417 require two passes over the PLT, so just pessimise assuming two
16418 PLT slots per relocation. */
16419 count = relplt->size / hdr->sh_entsize;
16420 counti = count * bed->s->int_rels_per_ext_rel;
16421 size = 2 * count * sizeof (asymbol);
16422 size += count * (sizeof (mipssuffix) +
16423 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16424 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16425 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16426
16427 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16428 size += sizeof (asymbol) + sizeof (pltname);
16429
16430 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16431 return -1;
16432
16433 if (plt->size < 16)
16434 return -1;
16435
16436 s = *ret = bfd_malloc (size);
16437 if (s == NULL)
16438 return -1;
16439 send = s + 2 * count + 1;
16440
16441 names = (char *) send;
16442 nend = (char *) s + size;
16443 n = 0;
16444
16445 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16446 if (opcode == 0x3302fffe)
16447 {
16448 if (!micromips_p)
16449 return -1;
16450 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16451 other = STO_MICROMIPS;
16452 }
833794fc
MR
16453 else if (opcode == 0x0398c1d0)
16454 {
16455 if (!micromips_p)
16456 return -1;
16457 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16458 other = STO_MICROMIPS;
16459 }
1bbce132
MR
16460 else
16461 {
16462 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16463 other = 0;
16464 }
16465
16466 s->the_bfd = abfd;
16467 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16468 s->section = plt;
16469 s->value = 0;
16470 s->name = names;
16471 s->udata.i = other;
16472 memcpy (names, pltname, sizeof (pltname));
16473 names += sizeof (pltname);
16474 ++s, ++n;
16475
16476 pi = 0;
16477 for (plt_offset = plt0_size;
16478 plt_offset + 8 <= plt->size && s < send;
16479 plt_offset += entry_size)
16480 {
16481 bfd_vma gotplt_addr;
16482 const char *suffix;
16483 bfd_vma gotplt_hi;
16484 bfd_vma gotplt_lo;
16485 size_t suffixlen;
16486
16487 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16488
16489 /* Check if the second word matches the expected MIPS16 instruction. */
16490 if (opcode == 0x651aeb00)
16491 {
16492 if (micromips_p)
16493 return -1;
16494 /* Truncated table??? */
16495 if (plt_offset + 16 > plt->size)
16496 break;
16497 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16498 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16499 suffixlen = sizeof (m16suffix);
16500 suffix = m16suffix;
16501 other = STO_MIPS16;
16502 }
833794fc 16503 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16504 else if (opcode == 0xff220000)
16505 {
16506 if (!micromips_p)
16507 return -1;
16508 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16509 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16510 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16511 gotplt_lo <<= 2;
16512 gotplt_addr = gotplt_hi + gotplt_lo;
16513 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16514 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16515 suffixlen = sizeof (microsuffix);
16516 suffix = microsuffix;
16517 other = STO_MICROMIPS;
16518 }
833794fc
MR
16519 /* Likewise the expected microMIPS instruction (insn32 mode). */
16520 else if ((opcode & 0xffff0000) == 0xff2f0000)
16521 {
16522 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16523 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16524 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16525 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16526 gotplt_addr = gotplt_hi + gotplt_lo;
16527 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16528 suffixlen = sizeof (microsuffix);
16529 suffix = microsuffix;
16530 other = STO_MICROMIPS;
16531 }
1bbce132
MR
16532 /* Otherwise assume standard MIPS code. */
16533 else
16534 {
16535 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16536 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16537 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16538 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16539 gotplt_addr = gotplt_hi + gotplt_lo;
16540 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16541 suffixlen = sizeof (mipssuffix);
16542 suffix = mipssuffix;
16543 other = 0;
16544 }
16545 /* Truncated table??? */
16546 if (plt_offset + entry_size > plt->size)
16547 break;
16548
16549 for (i = 0;
16550 i < count && p[pi].address != gotplt_addr;
16551 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16552
16553 if (i < count)
16554 {
16555 size_t namelen;
16556 size_t len;
16557
16558 *s = **p[pi].sym_ptr_ptr;
16559 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16560 we are defining a symbol, ensure one of them is set. */
16561 if ((s->flags & BSF_LOCAL) == 0)
16562 s->flags |= BSF_GLOBAL;
16563 s->flags |= BSF_SYNTHETIC;
16564 s->section = plt;
16565 s->value = plt_offset;
16566 s->name = names;
16567 s->udata.i = other;
16568
16569 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16570 namelen = len + suffixlen;
16571 if (names + namelen > nend)
16572 break;
16573
16574 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16575 names += len;
16576 memcpy (names, suffix, suffixlen);
16577 names += suffixlen;
16578
16579 ++s, ++n;
16580 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16581 }
16582 }
16583
16584 free (plt_data);
16585
16586 return n;
16587}
16588
5e7fc731
MR
16589/* Return the ABI flags associated with ABFD if available. */
16590
16591Elf_Internal_ABIFlags_v0 *
16592bfd_mips_elf_get_abiflags (bfd *abfd)
16593{
16594 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16595
16596 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16597}
16598
bb29b84d
MR
16599/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16600 field. Taken from `libc-abis.h' generated at GNU libc build time.
16601 Using a MIPS_ prefix as other libc targets use different values. */
16602enum
16603{
16604 MIPS_LIBC_ABI_DEFAULT = 0,
16605 MIPS_LIBC_ABI_MIPS_PLT,
16606 MIPS_LIBC_ABI_UNIQUE,
16607 MIPS_LIBC_ABI_MIPS_O32_FP64,
47275900 16608 MIPS_LIBC_ABI_ABSOLUTE,
f16a9783 16609 MIPS_LIBC_ABI_XHASH,
bb29b84d
MR
16610 MIPS_LIBC_ABI_MAX
16611};
16612
ed7e9d0b
AM
16613bfd_boolean
16614_bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
861fb55a 16615{
47275900 16616 struct mips_elf_link_hash_table *htab = NULL;
861fb55a
DJ
16617 Elf_Internal_Ehdr *i_ehdrp;
16618
ed7e9d0b
AM
16619 if (!_bfd_elf_init_file_header (abfd, link_info))
16620 return FALSE;
16621
861fb55a
DJ
16622 i_ehdrp = elf_elfheader (abfd);
16623 if (link_info)
16624 {
16625 htab = mips_elf_hash_table (link_info);
4dfe6ac6 16626 BFD_ASSERT (htab != NULL);
861fb55a 16627 }
0af03126 16628
90c14f0c
L
16629 if (htab != NULL
16630 && htab->use_plts_and_copy_relocs
16631 && htab->root.target_os != is_vxworks)
47275900
MR
16632 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16633
351cdf24
MF
16634 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16635 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
bb29b84d 16636 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
334cd8a7 16637
47275900
MR
16638 /* Mark that we need support for absolute symbols in the dynamic loader. */
16639 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16640 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16641
f16a9783
MS
16642 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16643 if it is the only hash section that will be created. */
16644 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16645 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
ed7e9d0b 16646 return TRUE;
861fb55a 16647}
2f0c68f2
CM
16648
16649int
1ced1a5f
MR
16650_bfd_mips_elf_compact_eh_encoding
16651 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16652{
16653 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16654}
16655
16656/* Return the opcode for can't unwind. */
16657
16658int
1ced1a5f
MR
16659_bfd_mips_elf_cant_unwind_opcode
16660 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16661{
16662 return COMPACT_EH_CANT_UNWIND_OPCODE;
16663}
f16a9783
MS
16664
16665/* Record a position XLAT_LOC in the xlat translation table, associated with
16666 the hash entry H. The entry in the translation table will later be
16667 populated with the real symbol dynindx. */
16668
16669void
16670_bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16671 bfd_vma xlat_loc)
16672{
16673 struct mips_elf_link_hash_entry *hmips;
16674
16675 hmips = (struct mips_elf_link_hash_entry *) h;
16676 hmips->mipsxhash_loc = xlat_loc;
16677}