]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - bfd/reloc.c
Add MMIX support
[thirdparty/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda
NC
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
dc810e39 68. {* No errors detected *}
252b5132
RH
69. bfd_reloc_ok,
70.
dc810e39 71. {* The relocation was performed, but there was an overflow. *}
252b5132
RH
72. bfd_reloc_overflow,
73.
dc810e39 74. {* The address to relocate was not within the section supplied. *}
252b5132
RH
75. bfd_reloc_outofrange,
76.
dc810e39 77. {* Used by special functions *}
252b5132
RH
78. bfd_reloc_continue,
79.
dc810e39 80. {* Unsupported relocation size requested. *}
252b5132
RH
81. bfd_reloc_notsupported,
82.
dc810e39 83. {* Unused *}
252b5132
RH
84. bfd_reloc_other,
85.
dc810e39 86. {* The symbol to relocate against was undefined. *}
252b5132
RH
87. bfd_reloc_undefined,
88.
dc810e39
AM
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
252b5132
RH
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
dc810e39 100. {* A pointer into the canonical table of pointers *}
252b5132
RH
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
dc810e39 103. {* offset in section *}
252b5132
RH
104. bfd_size_type address;
105.
dc810e39 106. {* addend for relocation value *}
252b5132
RH
107. bfd_vma addend;
108.
dc810e39 109. {* Pointer to how to perform the required relocation *}
252b5132
RH
110. reloc_howto_type *howto;
111.
112.} arelent;
113
114*/
115
116/*
117DESCRIPTION
118
119 Here is a description of each of the fields within an <<arelent>>:
120
121 o <<sym_ptr_ptr>>
122
123 The symbol table pointer points to a pointer to the symbol
124 associated with the relocation request. It is
125 the pointer into the table returned by the back end's
126 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
127 through a pointer to a pointer so that tools like the linker
128 can fix up all the symbols of the same name by modifying only
129 one pointer. The relocation routine looks in the symbol and
130 uses the base of the section the symbol is attached to and the
131 value of the symbol as the initial relocation offset. If the
132 symbol pointer is zero, then the section provided is looked up.
133
134 o <<address>>
135
136 The <<address>> field gives the offset in bytes from the base of
137 the section data which owns the relocation record to the first
138 byte of relocatable information. The actual data relocated
139 will be relative to this point; for example, a relocation
140 type which modifies the bottom two bytes of a four byte word
141 would not touch the first byte pointed to in a big endian
142 world.
143
144 o <<addend>>
145
146 The <<addend>> is a value provided by the back end to be added (!)
147 to the relocation offset. Its interpretation is dependent upon
148 the howto. For example, on the 68k the code:
149
252b5132
RH
150| char foo[];
151| main()
152| {
153| return foo[0x12345678];
154| }
155
156 Could be compiled into:
157
158| linkw fp,#-4
159| moveb @@#12345678,d0
160| extbl d0
161| unlk fp
162| rts
163
252b5132
RH
164 This could create a reloc pointing to <<foo>>, but leave the
165 offset in the data, something like:
166
252b5132
RH
167|RELOCATION RECORDS FOR [.text]:
168|offset type value
169|00000006 32 _foo
170|
171|00000000 4e56 fffc ; linkw fp,#-4
172|00000004 1039 1234 5678 ; moveb @@#12345678,d0
173|0000000a 49c0 ; extbl d0
174|0000000c 4e5e ; unlk fp
175|0000000e 4e75 ; rts
176
252b5132
RH
177 Using coff and an 88k, some instructions don't have enough
178 space in them to represent the full address range, and
179 pointers have to be loaded in two parts. So you'd get something like:
180
252b5132
RH
181| or.u r13,r0,hi16(_foo+0x12345678)
182| ld.b r2,r13,lo16(_foo+0x12345678)
183| jmp r1
184
252b5132
RH
185 This should create two relocs, both pointing to <<_foo>>, and with
186 0x12340000 in their addend field. The data would consist of:
187
252b5132
RH
188|RELOCATION RECORDS FOR [.text]:
189|offset type value
190|00000002 HVRT16 _foo+0x12340000
191|00000006 LVRT16 _foo+0x12340000
192|
193|00000000 5da05678 ; or.u r13,r0,0x5678
194|00000004 1c4d5678 ; ld.b r2,r13,0x5678
195|00000008 f400c001 ; jmp r1
196
252b5132
RH
197 The relocation routine digs out the value from the data, adds
198 it to the addend to get the original offset, and then adds the
199 value of <<_foo>>. Note that all 32 bits have to be kept around
200 somewhere, to cope with carry from bit 15 to bit 16.
201
202 One further example is the sparc and the a.out format. The
203 sparc has a similar problem to the 88k, in that some
204 instructions don't have room for an entire offset, but on the
205 sparc the parts are created in odd sized lumps. The designers of
206 the a.out format chose to not use the data within the section
207 for storing part of the offset; all the offset is kept within
208 the reloc. Anything in the data should be ignored.
209
210| save %sp,-112,%sp
211| sethi %hi(_foo+0x12345678),%g2
212| ldsb [%g2+%lo(_foo+0x12345678)],%i0
213| ret
214| restore
215
216 Both relocs contain a pointer to <<foo>>, and the offsets
217 contain junk.
218
252b5132
RH
219|RELOCATION RECORDS FOR [.text]:
220|offset type value
221|00000004 HI22 _foo+0x12345678
222|00000008 LO10 _foo+0x12345678
223|
224|00000000 9de3bf90 ; save %sp,-112,%sp
225|00000004 05000000 ; sethi %hi(_foo+0),%g2
226|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
227|0000000c 81c7e008 ; ret
228|00000010 81e80000 ; restore
229
252b5132
RH
230 o <<howto>>
231
232 The <<howto>> field can be imagined as a
233 relocation instruction. It is a pointer to a structure which
234 contains information on what to do with all of the other
235 information in the reloc record and data section. A back end
236 would normally have a relocation instruction set and turn
237 relocations into pointers to the correct structure on input -
238 but it would be possible to create each howto field on demand.
239
240*/
241
242/*
243SUBSUBSECTION
244 <<enum complain_overflow>>
245
246 Indicates what sort of overflow checking should be done when
247 performing a relocation.
248
249CODE_FRAGMENT
250.
251.enum complain_overflow
252.{
dc810e39 253. {* Do not complain on overflow. *}
252b5132
RH
254. complain_overflow_dont,
255.
dc810e39
AM
256. {* Complain if the bitfield overflows, whether it is considered
257. as signed or unsigned. *}
252b5132
RH
258. complain_overflow_bitfield,
259.
dc810e39
AM
260. {* Complain if the value overflows when considered as signed
261. number. *}
252b5132
RH
262. complain_overflow_signed,
263.
dc810e39
AM
264. {* Complain if the value overflows when considered as an
265. unsigned number. *}
252b5132
RH
266. complain_overflow_unsigned
267.};
268
269*/
270
271/*
272SUBSUBSECTION
273 <<reloc_howto_type>>
274
275 The <<reloc_howto_type>> is a structure which contains all the
276 information that libbfd needs to know to tie up a back end's data.
277
278CODE_FRAGMENT
279.struct symbol_cache_entry; {* Forward declaration *}
280.
281.struct reloc_howto_struct
282.{
dc810e39
AM
283. {* The type field has mainly a documentary use - the back end can
284. do what it wants with it, though normally the back end's
285. external idea of what a reloc number is stored
286. in this field. For example, a PC relative word relocation
287. in a coff environment has the type 023 - because that's
288. what the outside world calls a R_PCRWORD reloc. *}
252b5132
RH
289. unsigned int type;
290.
dc810e39
AM
291. {* The value the final relocation is shifted right by. This drops
292. unwanted data from the relocation. *}
252b5132
RH
293. unsigned int rightshift;
294.
dc810e39
AM
295. {* The size of the item to be relocated. This is *not* a
296. power-of-two measure. To get the number of bytes operated
297. on by a type of relocation, use bfd_get_reloc_size. *}
252b5132
RH
298. int size;
299.
dc810e39
AM
300. {* The number of bits in the item to be relocated. This is used
301. when doing overflow checking. *}
252b5132
RH
302. unsigned int bitsize;
303.
dc810e39
AM
304. {* Notes that the relocation is relative to the location in the
305. data section of the addend. The relocation function will
306. subtract from the relocation value the address of the location
307. being relocated. *}
252b5132
RH
308. boolean pc_relative;
309.
dc810e39
AM
310. {* The bit position of the reloc value in the destination.
311. The relocated value is left shifted by this amount. *}
252b5132
RH
312. unsigned int bitpos;
313.
dc810e39
AM
314. {* What type of overflow error should be checked for when
315. relocating. *}
252b5132
RH
316. enum complain_overflow complain_on_overflow;
317.
dc810e39
AM
318. {* If this field is non null, then the supplied function is
319. called rather than the normal function. This allows really
320. strange relocation methods to be accomodated (e.g., i960 callj
321. instructions). *}
252b5132 322. bfd_reloc_status_type (*special_function)
dc810e39
AM
323. PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
324. bfd *, char **));
252b5132 325.
dc810e39 326. {* The textual name of the relocation type. *}
252b5132
RH
327. char *name;
328.
dc810e39
AM
329. {* Some formats record a relocation addend in the section contents
330. rather than with the relocation. For ELF formats this is the
331. distinction between USE_REL and USE_RELA (though the code checks
332. for USE_REL == 1/0). The value of this field is TRUE if the
333. addend is recorded with the section contents; when performing a
334. partial link (ld -r) the section contents (the data) will be
335. modified. The value of this field is FALSE if addends are
336. recorded with the relocation (in arelent.addend); when performing
337. a partial link the relocation will be modified.
338. All relocations for all ELF USE_RELA targets should set this field
339. to FALSE (values of TRUE should be looked on with suspicion).
340. However, the converse is not true: not all relocations of all ELF
341. USE_REL targets set this field to TRUE. Why this is so is peculiar
342. to each particular target. For relocs that aren't used in partial
343. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
252b5132
RH
344. boolean partial_inplace;
345.
dc810e39
AM
346. {* The src_mask selects which parts of the read in data
347. are to be used in the relocation sum. E.g., if this was an 8 bit
348. byte of data which we read and relocated, this would be
349. 0x000000ff. When we have relocs which have an addend, such as
350. sun4 extended relocs, the value in the offset part of a
351. relocating field is garbage so we never use it. In this case
352. the mask would be 0x00000000. *}
252b5132
RH
353. bfd_vma src_mask;
354.
dc810e39
AM
355. {* The dst_mask selects which parts of the instruction are replaced
356. into the instruction. In most cases src_mask == dst_mask,
357. except in the above special case, where dst_mask would be
358. 0x000000ff, and src_mask would be 0x00000000. *}
252b5132
RH
359. bfd_vma dst_mask;
360.
dc810e39
AM
361. {* When some formats create PC relative instructions, they leave
362. the value of the pc of the place being relocated in the offset
363. slot of the instruction, so that a PC relative relocation can
364. be made just by adding in an ordinary offset (e.g., sun3 a.out).
365. Some formats leave the displacement part of an instruction
366. empty (e.g., m88k bcs); this flag signals the fact. *}
252b5132 367. boolean pcrel_offset;
252b5132
RH
368.};
369
370*/
371
372/*
373FUNCTION
374 The HOWTO Macro
375
376DESCRIPTION
377 The HOWTO define is horrible and will go away.
378
dc810e39
AM
379.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
380. { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
252b5132
RH
381
382DESCRIPTION
383 And will be replaced with the totally magic way. But for the
384 moment, we are compatible, so do it this way.
385
dc810e39
AM
386.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
387. HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
388. NAME, false, 0, 0, IN)
252b5132 389.
5f771d47
ILT
390
391DESCRIPTION
392 This is used to fill in an empty howto entry in an array.
393
394.#define EMPTY_HOWTO(C) \
dc810e39
AM
395. HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
396. NULL, false, 0, 0, false)
5f771d47
ILT
397.
398
252b5132
RH
399DESCRIPTION
400 Helper routine to turn a symbol into a relocation value.
401
dc810e39
AM
402.#define HOWTO_PREPARE(relocation, symbol) \
403. { \
404. if (symbol != (asymbol *) NULL) \
405. { \
406. if (bfd_is_com_section (symbol->section)) \
407. { \
408. relocation = 0; \
409. } \
410. else \
411. { \
412. relocation = symbol->value; \
413. } \
414. } \
415. }
252b5132
RH
416
417*/
418
419/*
420FUNCTION
421 bfd_get_reloc_size
422
423SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431unsigned int
432bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434{
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446}
447
448/*
449TYPEDEF
450 arelent_chain
451
452DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
dc810e39
AM
456.typedef struct relent_chain
457.{
252b5132 458. arelent relent;
dc810e39 459. struct relent_chain *next;
252b5132
RH
460.} arelent_chain;
461
462*/
463
464/* N_ONES produces N one bits, without overflowing machine arithmetic. */
465#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
466
467/*
468FUNCTION
469 bfd_check_overflow
470
471SYNOPSIS
472 bfd_reloc_status_type
473 bfd_check_overflow
474 (enum complain_overflow how,
475 unsigned int bitsize,
476 unsigned int rightshift,
477 unsigned int addrsize,
478 bfd_vma relocation);
479
480DESCRIPTION
481 Perform overflow checking on @var{relocation} which has
482 @var{bitsize} significant bits and will be shifted right by
483 @var{rightshift} bits, on a machine with addresses containing
484 @var{addrsize} significant bits. The result is either of
485 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
486
487*/
488
489bfd_reloc_status_type
490bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
491 enum complain_overflow how;
492 unsigned int bitsize;
493 unsigned int rightshift;
494 unsigned int addrsize;
495 bfd_vma relocation;
496{
497 bfd_vma fieldmask, addrmask, signmask, ss, a;
498 bfd_reloc_status_type flag = bfd_reloc_ok;
499
500 a = relocation;
501
502 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
503 we'll be permissive: extra bits in the field mask will
504 automatically extend the address mask for purposes of the
505 overflow check. */
506 fieldmask = N_ONES (bitsize);
507 addrmask = N_ONES (addrsize) | fieldmask;
508
509 switch (how)
510 {
511 case complain_overflow_dont:
512 break;
513
514 case complain_overflow_signed:
515 /* If any sign bits are set, all sign bits must be set. That
516 is, A must be a valid negative address after shifting. */
517 a = (a & addrmask) >> rightshift;
518 signmask = ~ (fieldmask >> 1);
519 ss = a & signmask;
520 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
521 flag = bfd_reloc_overflow;
522 break;
523
524 case complain_overflow_unsigned:
525 /* We have an overflow if the address does not fit in the field. */
526 a = (a & addrmask) >> rightshift;
527 if ((a & ~ fieldmask) != 0)
528 flag = bfd_reloc_overflow;
529 break;
530
531 case complain_overflow_bitfield:
532 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
533 explicitly allow an address wrap too, which means a bitfield
534 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
535 if the value has some, but not all, bits set outside the
536 field. */
252b5132 537 a >>= rightshift;
d5afc56e
AM
538 ss = a & ~ fieldmask;
539 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
540 flag = bfd_reloc_overflow;
252b5132
RH
541 break;
542
543 default:
544 abort ();
545 }
546
547 return flag;
548}
549
550/*
551FUNCTION
552 bfd_perform_relocation
553
554SYNOPSIS
555 bfd_reloc_status_type
556 bfd_perform_relocation
557 (bfd *abfd,
558 arelent *reloc_entry,
559 PTR data,
560 asection *input_section,
561 bfd *output_bfd,
562 char **error_message);
563
564DESCRIPTION
565 If @var{output_bfd} is supplied to this function, the
566 generated image will be relocatable; the relocations are
567 copied to the output file after they have been changed to
568 reflect the new state of the world. There are two ways of
569 reflecting the results of partial linkage in an output file:
570 by modifying the output data in place, and by modifying the
571 relocation record. Some native formats (e.g., basic a.out and
572 basic coff) have no way of specifying an addend in the
573 relocation type, so the addend has to go in the output data.
574 This is no big deal since in these formats the output data
575 slot will always be big enough for the addend. Complex reloc
576 types with addends were invented to solve just this problem.
577 The @var{error_message} argument is set to an error message if
578 this return @code{bfd_reloc_dangerous}.
579
580*/
581
252b5132
RH
582bfd_reloc_status_type
583bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
584 error_message)
585 bfd *abfd;
586 arelent *reloc_entry;
587 PTR data;
588 asection *input_section;
589 bfd *output_bfd;
590 char **error_message;
591{
592 bfd_vma relocation;
593 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 594 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
595 bfd_vma output_base = 0;
596 reloc_howto_type *howto = reloc_entry->howto;
597 asection *reloc_target_output_section;
598 asymbol *symbol;
599
600 symbol = *(reloc_entry->sym_ptr_ptr);
601 if (bfd_is_abs_section (symbol->section)
602 && output_bfd != (bfd *) NULL)
603 {
604 reloc_entry->address += input_section->output_offset;
605 return bfd_reloc_ok;
606 }
607
608 /* If we are not producing relocateable output, return an error if
609 the symbol is not defined. An undefined weak symbol is
610 considered to have a value of zero (SVR4 ABI, p. 4-27). */
611 if (bfd_is_und_section (symbol->section)
612 && (symbol->flags & BSF_WEAK) == 0
613 && output_bfd == (bfd *) NULL)
614 flag = bfd_reloc_undefined;
615
616 /* If there is a function supplied to handle this relocation type,
617 call it. It'll return `bfd_reloc_continue' if further processing
618 can be done. */
619 if (howto->special_function)
620 {
621 bfd_reloc_status_type cont;
622 cont = howto->special_function (abfd, reloc_entry, symbol, data,
623 input_section, output_bfd,
624 error_message);
625 if (cont != bfd_reloc_continue)
626 return cont;
627 }
628
629 /* Is the address of the relocation really within the section? */
9a968f43
NC
630 if (reloc_entry->address > input_section->_cooked_size /
631 bfd_octets_per_byte (abfd))
252b5132
RH
632 return bfd_reloc_outofrange;
633
634 /* Work out which section the relocation is targetted at and the
635 initial relocation command value. */
636
637 /* Get symbol value. (Common symbols are special.) */
638 if (bfd_is_com_section (symbol->section))
639 relocation = 0;
640 else
641 relocation = symbol->value;
642
252b5132
RH
643 reloc_target_output_section = symbol->section->output_section;
644
645 /* Convert input-section-relative symbol value to absolute. */
646 if (output_bfd && howto->partial_inplace == false)
647 output_base = 0;
648 else
649 output_base = reloc_target_output_section->vma;
650
651 relocation += output_base + symbol->section->output_offset;
652
653 /* Add in supplied addend. */
654 relocation += reloc_entry->addend;
655
656 /* Here the variable relocation holds the final address of the
657 symbol we are relocating against, plus any addend. */
658
659 if (howto->pc_relative == true)
660 {
661 /* This is a PC relative relocation. We want to set RELOCATION
662 to the distance between the address of the symbol and the
663 location. RELOCATION is already the address of the symbol.
664
665 We start by subtracting the address of the section containing
666 the location.
667
668 If pcrel_offset is set, we must further subtract the position
669 of the location within the section. Some targets arrange for
670 the addend to be the negative of the position of the location
671 within the section; for example, i386-aout does this. For
672 i386-aout, pcrel_offset is false. Some other targets do not
673 include the position of the location; for example, m88kbcs,
674 or ELF. For those targets, pcrel_offset is true.
675
676 If we are producing relocateable output, then we must ensure
677 that this reloc will be correctly computed when the final
678 relocation is done. If pcrel_offset is false we want to wind
679 up with the negative of the location within the section,
680 which means we must adjust the existing addend by the change
681 in the location within the section. If pcrel_offset is true
682 we do not want to adjust the existing addend at all.
683
684 FIXME: This seems logical to me, but for the case of
685 producing relocateable output it is not what the code
686 actually does. I don't want to change it, because it seems
687 far too likely that something will break. */
688
689 relocation -=
690 input_section->output_section->vma + input_section->output_offset;
691
692 if (howto->pcrel_offset == true)
693 relocation -= reloc_entry->address;
694 }
695
696 if (output_bfd != (bfd *) NULL)
697 {
698 if (howto->partial_inplace == false)
699 {
700 /* This is a partial relocation, and we want to apply the relocation
701 to the reloc entry rather than the raw data. Modify the reloc
702 inplace to reflect what we now know. */
703 reloc_entry->addend = relocation;
704 reloc_entry->address += input_section->output_offset;
705 return flag;
706 }
707 else
708 {
709 /* This is a partial relocation, but inplace, so modify the
710 reloc record a bit.
711
712 If we've relocated with a symbol with a section, change
713 into a ref to the section belonging to the symbol. */
714
715 reloc_entry->address += input_section->output_offset;
716
717 /* WTF?? */
718 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
719 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
720 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
721 {
722#if 1
723 /* For m68k-coff, the addend was being subtracted twice during
724 relocation with -r. Removing the line below this comment
725 fixes that problem; see PR 2953.
726
727However, Ian wrote the following, regarding removing the line below,
728which explains why it is still enabled: --djm
729
730If you put a patch like that into BFD you need to check all the COFF
731linkers. I am fairly certain that patch will break coff-i386 (e.g.,
732SCO); see coff_i386_reloc in coff-i386.c where I worked around the
733problem in a different way. There may very well be a reason that the
734code works as it does.
735
736Hmmm. The first obvious point is that bfd_perform_relocation should
737not have any tests that depend upon the flavour. It's seem like
738entirely the wrong place for such a thing. The second obvious point
739is that the current code ignores the reloc addend when producing
740relocateable output for COFF. That's peculiar. In fact, I really
741have no idea what the point of the line you want to remove is.
742
743A typical COFF reloc subtracts the old value of the symbol and adds in
744the new value to the location in the object file (if it's a pc
745relative reloc it adds the difference between the symbol value and the
746location). When relocating we need to preserve that property.
747
748BFD handles this by setting the addend to the negative of the old
749value of the symbol. Unfortunately it handles common symbols in a
750non-standard way (it doesn't subtract the old value) but that's a
751different story (we can't change it without losing backward
752compatibility with old object files) (coff-i386 does subtract the old
753value, to be compatible with existing coff-i386 targets, like SCO).
754
755So everything works fine when not producing relocateable output. When
756we are producing relocateable output, logically we should do exactly
757what we do when not producing relocateable output. Therefore, your
758patch is correct. In fact, it should probably always just set
759reloc_entry->addend to 0 for all cases, since it is, in fact, going to
760add the value into the object file. This won't hurt the COFF code,
761which doesn't use the addend; I'm not sure what it will do to other
762formats (the thing to check for would be whether any formats both use
763the addend and set partial_inplace).
764
765When I wanted to make coff-i386 produce relocateable output, I ran
766into the problem that you are running into: I wanted to remove that
767line. Rather than risk it, I made the coff-i386 relocs use a special
768function; it's coff_i386_reloc in coff-i386.c. The function
769specifically adds the addend field into the object file, knowing that
770bfd_perform_relocation is not going to. If you remove that line, then
771coff-i386.c will wind up adding the addend field in twice. It's
772trivial to fix; it just needs to be done.
773
774The problem with removing the line is just that it may break some
775working code. With BFD it's hard to be sure of anything. The right
776way to deal with this is simply to build and test at least all the
777supported COFF targets. It should be straightforward if time and disk
778space consuming. For each target:
779 1) build the linker
780 2) generate some executable, and link it using -r (I would
781 probably use paranoia.o and link against newlib/libc.a, which
782 for all the supported targets would be available in
783 /usr/cygnus/progressive/H-host/target/lib/libc.a).
784 3) make the change to reloc.c
785 4) rebuild the linker
786 5) repeat step 2
787 6) if the resulting object files are the same, you have at least
788 made it no worse
789 7) if they are different you have to figure out which version is
790 right
791*/
792 relocation -= reloc_entry->addend;
793#endif
794 reloc_entry->addend = 0;
795 }
796 else
797 {
798 reloc_entry->addend = relocation;
799 }
800 }
801 }
802 else
803 {
804 reloc_entry->addend = 0;
805 }
806
807 /* FIXME: This overflow checking is incomplete, because the value
808 might have overflowed before we get here. For a correct check we
809 need to compute the value in a size larger than bitsize, but we
810 can't reasonably do that for a reloc the same size as a host
811 machine word.
812 FIXME: We should also do overflow checking on the result after
813 adding in the value contained in the object file. */
814 if (howto->complain_on_overflow != complain_overflow_dont
815 && flag == bfd_reloc_ok)
816 flag = bfd_check_overflow (howto->complain_on_overflow,
817 howto->bitsize,
818 howto->rightshift,
819 bfd_arch_bits_per_address (abfd),
820 relocation);
821
822 /*
823 Either we are relocating all the way, or we don't want to apply
824 the relocation to the reloc entry (probably because there isn't
825 any room in the output format to describe addends to relocs)
826 */
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
853 /* Shift everything up to where it's going to be used */
854
855 relocation <<= (bfd_vma) howto->bitpos;
856
857 /* Wait for the day when all have the mask in them */
858
859 /* What we do:
860 i instruction to be left alone
861 o offset within instruction
862 r relocation offset to apply
863 S src mask
864 D dst mask
865 N ~dst mask
866 A part 1
867 B part 2
868 R result
869
870 Do this:
88b6bae0
AM
871 (( i i i i i o o o o o from bfd_get<size>
872 and S S S S S) to get the size offset we want
873 + r r r r r r r r r r) to get the final value to place
252b5132
RH
874 and D D D D D to chop to right size
875 -----------------------
88b6bae0 876 = A A A A A
252b5132 877 And this:
88b6bae0
AM
878 ( i i i i i o o o o o from bfd_get<size>
879 and N N N N N ) get instruction
252b5132 880 -----------------------
88b6bae0 881 = B B B B B
252b5132
RH
882
883 And then:
88b6bae0
AM
884 ( B B B B B
885 or A A A A A)
252b5132 886 -----------------------
88b6bae0 887 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
888 */
889
890#define DOIT(x) \
891 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
892
893 switch (howto->size)
894 {
895 case 0:
896 {
9a968f43 897 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 898 DOIT (x);
9a968f43 899 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
900 }
901 break;
902
903 case 1:
904 {
9a968f43 905 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 906 DOIT (x);
dc810e39 907 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
252b5132
RH
908 }
909 break;
910 case 2:
911 {
9a968f43 912 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 913 DOIT (x);
dc810e39 914 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
915 }
916 break;
917 case -2:
918 {
9a968f43 919 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
920 relocation = -relocation;
921 DOIT (x);
dc810e39 922 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
923 }
924 break;
925
926 case -1:
927 {
9a968f43 928 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
929 relocation = -relocation;
930 DOIT (x);
dc810e39 931 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
932 }
933 break;
934
935 case 3:
936 /* Do nothing */
937 break;
938
939 case 4:
940#ifdef BFD64
941 {
9a968f43 942 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 943 DOIT (x);
9a968f43 944 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
945 }
946#else
947 abort ();
948#endif
949 break;
950 default:
951 return bfd_reloc_other;
952 }
953
954 return flag;
955}
956
957/*
958FUNCTION
959 bfd_install_relocation
960
961SYNOPSIS
962 bfd_reloc_status_type
963 bfd_install_relocation
964 (bfd *abfd,
965 arelent *reloc_entry,
966 PTR data, bfd_vma data_start,
967 asection *input_section,
968 char **error_message);
969
970DESCRIPTION
971 This looks remarkably like <<bfd_perform_relocation>>, except it
972 does not expect that the section contents have been filled in.
973 I.e., it's suitable for use when creating, rather than applying
974 a relocation.
975
976 For now, this function should be considered reserved for the
977 assembler.
978
979*/
980
252b5132
RH
981bfd_reloc_status_type
982bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
983 input_section, error_message)
984 bfd *abfd;
985 arelent *reloc_entry;
986 PTR data_start;
987 bfd_vma data_start_offset;
988 asection *input_section;
989 char **error_message;
990{
991 bfd_vma relocation;
992 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 993 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
994 bfd_vma output_base = 0;
995 reloc_howto_type *howto = reloc_entry->howto;
996 asection *reloc_target_output_section;
997 asymbol *symbol;
998 bfd_byte *data;
999
1000 symbol = *(reloc_entry->sym_ptr_ptr);
1001 if (bfd_is_abs_section (symbol->section))
1002 {
1003 reloc_entry->address += input_section->output_offset;
1004 return bfd_reloc_ok;
1005 }
1006
1007 /* If there is a function supplied to handle this relocation type,
1008 call it. It'll return `bfd_reloc_continue' if further processing
1009 can be done. */
1010 if (howto->special_function)
1011 {
1012 bfd_reloc_status_type cont;
88b6bae0 1013
252b5132
RH
1014 /* XXX - The special_function calls haven't been fixed up to deal
1015 with creating new relocations and section contents. */
1016 cont = howto->special_function (abfd, reloc_entry, symbol,
1017 /* XXX - Non-portable! */
1018 ((bfd_byte *) data_start
1019 - data_start_offset),
1020 input_section, abfd, error_message);
1021 if (cont != bfd_reloc_continue)
1022 return cont;
1023 }
1024
1025 /* Is the address of the relocation really within the section? */
1026 if (reloc_entry->address > input_section->_cooked_size)
1027 return bfd_reloc_outofrange;
1028
1029 /* Work out which section the relocation is targetted at and the
1030 initial relocation command value. */
1031
1032 /* Get symbol value. (Common symbols are special.) */
1033 if (bfd_is_com_section (symbol->section))
1034 relocation = 0;
1035 else
1036 relocation = symbol->value;
1037
1038 reloc_target_output_section = symbol->section->output_section;
1039
1040 /* Convert input-section-relative symbol value to absolute. */
1041 if (howto->partial_inplace == false)
1042 output_base = 0;
1043 else
1044 output_base = reloc_target_output_section->vma;
1045
1046 relocation += output_base + symbol->section->output_offset;
1047
1048 /* Add in supplied addend. */
1049 relocation += reloc_entry->addend;
1050
1051 /* Here the variable relocation holds the final address of the
1052 symbol we are relocating against, plus any addend. */
1053
1054 if (howto->pc_relative == true)
1055 {
1056 /* This is a PC relative relocation. We want to set RELOCATION
1057 to the distance between the address of the symbol and the
1058 location. RELOCATION is already the address of the symbol.
1059
1060 We start by subtracting the address of the section containing
1061 the location.
1062
1063 If pcrel_offset is set, we must further subtract the position
1064 of the location within the section. Some targets arrange for
1065 the addend to be the negative of the position of the location
1066 within the section; for example, i386-aout does this. For
1067 i386-aout, pcrel_offset is false. Some other targets do not
1068 include the position of the location; for example, m88kbcs,
1069 or ELF. For those targets, pcrel_offset is true.
1070
1071 If we are producing relocateable output, then we must ensure
1072 that this reloc will be correctly computed when the final
1073 relocation is done. If pcrel_offset is false we want to wind
1074 up with the negative of the location within the section,
1075 which means we must adjust the existing addend by the change
1076 in the location within the section. If pcrel_offset is true
1077 we do not want to adjust the existing addend at all.
1078
1079 FIXME: This seems logical to me, but for the case of
1080 producing relocateable output it is not what the code
1081 actually does. I don't want to change it, because it seems
1082 far too likely that something will break. */
1083
1084 relocation -=
1085 input_section->output_section->vma + input_section->output_offset;
1086
1087 if (howto->pcrel_offset == true && howto->partial_inplace == true)
1088 relocation -= reloc_entry->address;
1089 }
1090
1091 if (howto->partial_inplace == false)
1092 {
1093 /* This is a partial relocation, and we want to apply the relocation
1094 to the reloc entry rather than the raw data. Modify the reloc
1095 inplace to reflect what we now know. */
1096 reloc_entry->addend = relocation;
1097 reloc_entry->address += input_section->output_offset;
1098 return flag;
1099 }
1100 else
1101 {
1102 /* This is a partial relocation, but inplace, so modify the
1103 reloc record a bit.
1104
1105 If we've relocated with a symbol with a section, change
1106 into a ref to the section belonging to the symbol. */
1107
1108 reloc_entry->address += input_section->output_offset;
1109
1110 /* WTF?? */
1111 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1112 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1113 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1114 {
1115#if 1
1116/* For m68k-coff, the addend was being subtracted twice during
1117 relocation with -r. Removing the line below this comment
1118 fixes that problem; see PR 2953.
1119
1120However, Ian wrote the following, regarding removing the line below,
1121which explains why it is still enabled: --djm
1122
1123If you put a patch like that into BFD you need to check all the COFF
1124linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1125SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1126problem in a different way. There may very well be a reason that the
1127code works as it does.
1128
1129Hmmm. The first obvious point is that bfd_install_relocation should
1130not have any tests that depend upon the flavour. It's seem like
1131entirely the wrong place for such a thing. The second obvious point
1132is that the current code ignores the reloc addend when producing
1133relocateable output for COFF. That's peculiar. In fact, I really
1134have no idea what the point of the line you want to remove is.
1135
1136A typical COFF reloc subtracts the old value of the symbol and adds in
1137the new value to the location in the object file (if it's a pc
1138relative reloc it adds the difference between the symbol value and the
1139location). When relocating we need to preserve that property.
1140
1141BFD handles this by setting the addend to the negative of the old
1142value of the symbol. Unfortunately it handles common symbols in a
1143non-standard way (it doesn't subtract the old value) but that's a
1144different story (we can't change it without losing backward
1145compatibility with old object files) (coff-i386 does subtract the old
1146value, to be compatible with existing coff-i386 targets, like SCO).
1147
1148So everything works fine when not producing relocateable output. When
1149we are producing relocateable output, logically we should do exactly
1150what we do when not producing relocateable output. Therefore, your
1151patch is correct. In fact, it should probably always just set
1152reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1153add the value into the object file. This won't hurt the COFF code,
1154which doesn't use the addend; I'm not sure what it will do to other
1155formats (the thing to check for would be whether any formats both use
1156the addend and set partial_inplace).
1157
1158When I wanted to make coff-i386 produce relocateable output, I ran
1159into the problem that you are running into: I wanted to remove that
1160line. Rather than risk it, I made the coff-i386 relocs use a special
1161function; it's coff_i386_reloc in coff-i386.c. The function
1162specifically adds the addend field into the object file, knowing that
1163bfd_install_relocation is not going to. If you remove that line, then
1164coff-i386.c will wind up adding the addend field in twice. It's
1165trivial to fix; it just needs to be done.
1166
1167The problem with removing the line is just that it may break some
1168working code. With BFD it's hard to be sure of anything. The right
1169way to deal with this is simply to build and test at least all the
1170supported COFF targets. It should be straightforward if time and disk
1171space consuming. For each target:
1172 1) build the linker
1173 2) generate some executable, and link it using -r (I would
1174 probably use paranoia.o and link against newlib/libc.a, which
1175 for all the supported targets would be available in
1176 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1177 3) make the change to reloc.c
1178 4) rebuild the linker
1179 5) repeat step 2
1180 6) if the resulting object files are the same, you have at least
1181 made it no worse
1182 7) if they are different you have to figure out which version is
1183 right
1184*/
1185 relocation -= reloc_entry->addend;
1186#endif
1187 reloc_entry->addend = 0;
1188 }
1189 else
1190 {
1191 reloc_entry->addend = relocation;
1192 }
1193 }
1194
1195 /* FIXME: This overflow checking is incomplete, because the value
1196 might have overflowed before we get here. For a correct check we
1197 need to compute the value in a size larger than bitsize, but we
1198 can't reasonably do that for a reloc the same size as a host
1199 machine word.
1200 FIXME: We should also do overflow checking on the result after
1201 adding in the value contained in the object file. */
1202 if (howto->complain_on_overflow != complain_overflow_dont)
1203 flag = bfd_check_overflow (howto->complain_on_overflow,
1204 howto->bitsize,
1205 howto->rightshift,
1206 bfd_arch_bits_per_address (abfd),
1207 relocation);
1208
1209 /*
1210 Either we are relocating all the way, or we don't want to apply
1211 the relocation to the reloc entry (probably because there isn't
1212 any room in the output format to describe addends to relocs)
1213 */
1214
1215 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1216 (OSF version 1.3, compiler version 3.11). It miscompiles the
1217 following program:
1218
1219 struct str
1220 {
1221 unsigned int i0;
1222 } s = { 0 };
1223
1224 int
1225 main ()
1226 {
1227 unsigned long x;
1228
1229 x = 0x100000000;
1230 x <<= (unsigned long) s.i0;
1231 if (x == 0)
1232 printf ("failed\n");
1233 else
1234 printf ("succeeded (%lx)\n", x);
1235 }
1236 */
1237
1238 relocation >>= (bfd_vma) howto->rightshift;
1239
1240 /* Shift everything up to where it's going to be used */
1241
1242 relocation <<= (bfd_vma) howto->bitpos;
1243
1244 /* Wait for the day when all have the mask in them */
1245
1246 /* What we do:
1247 i instruction to be left alone
1248 o offset within instruction
1249 r relocation offset to apply
1250 S src mask
1251 D dst mask
1252 N ~dst mask
1253 A part 1
1254 B part 2
1255 R result
1256
1257 Do this:
88b6bae0
AM
1258 (( i i i i i o o o o o from bfd_get<size>
1259 and S S S S S) to get the size offset we want
1260 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1261 and D D D D D to chop to right size
1262 -----------------------
88b6bae0 1263 = A A A A A
252b5132 1264 And this:
88b6bae0
AM
1265 ( i i i i i o o o o o from bfd_get<size>
1266 and N N N N N ) get instruction
252b5132 1267 -----------------------
88b6bae0 1268 = B B B B B
252b5132
RH
1269
1270 And then:
88b6bae0
AM
1271 ( B B B B B
1272 or A A A A A)
252b5132 1273 -----------------------
88b6bae0 1274 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1275 */
1276
1277#define DOIT(x) \
1278 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1279
9a968f43 1280 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1281
1282 switch (howto->size)
1283 {
1284 case 0:
1285 {
1286 char x = bfd_get_8 (abfd, (char *) data);
1287 DOIT (x);
1288 bfd_put_8 (abfd, x, (unsigned char *) data);
1289 }
1290 break;
1291
1292 case 1:
1293 {
1294 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1295 DOIT (x);
dc810e39 1296 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
252b5132
RH
1297 }
1298 break;
1299 case 2:
1300 {
1301 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1302 DOIT (x);
dc810e39 1303 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1304 }
1305 break;
1306 case -2:
1307 {
1308 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1309 relocation = -relocation;
1310 DOIT (x);
dc810e39 1311 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1312 }
1313 break;
1314
1315 case 3:
1316 /* Do nothing */
1317 break;
1318
1319 case 4:
1320 {
1321 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1322 DOIT (x);
1323 bfd_put_64 (abfd, x, (bfd_byte *) data);
1324 }
1325 break;
1326 default:
1327 return bfd_reloc_other;
1328 }
1329
1330 return flag;
1331}
1332
1333/* This relocation routine is used by some of the backend linkers.
1334 They do not construct asymbol or arelent structures, so there is no
1335 reason for them to use bfd_perform_relocation. Also,
1336 bfd_perform_relocation is so hacked up it is easier to write a new
1337 function than to try to deal with it.
1338
1339 This routine does a final relocation. Whether it is useful for a
1340 relocateable link depends upon how the object format defines
1341 relocations.
1342
1343 FIXME: This routine ignores any special_function in the HOWTO,
1344 since the existing special_function values have been written for
1345 bfd_perform_relocation.
1346
1347 HOWTO is the reloc howto information.
1348 INPUT_BFD is the BFD which the reloc applies to.
1349 INPUT_SECTION is the section which the reloc applies to.
1350 CONTENTS is the contents of the section.
1351 ADDRESS is the address of the reloc within INPUT_SECTION.
1352 VALUE is the value of the symbol the reloc refers to.
1353 ADDEND is the addend of the reloc. */
1354
1355bfd_reloc_status_type
1356_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1357 value, addend)
1358 reloc_howto_type *howto;
1359 bfd *input_bfd;
1360 asection *input_section;
1361 bfd_byte *contents;
1362 bfd_vma address;
1363 bfd_vma value;
1364 bfd_vma addend;
1365{
1366 bfd_vma relocation;
1367
1368 /* Sanity check the address. */
1369 if (address > input_section->_raw_size)
1370 return bfd_reloc_outofrange;
1371
1372 /* This function assumes that we are dealing with a basic relocation
1373 against a symbol. We want to compute the value of the symbol to
1374 relocate to. This is just VALUE, the value of the symbol, plus
1375 ADDEND, any addend associated with the reloc. */
1376 relocation = value + addend;
1377
1378 /* If the relocation is PC relative, we want to set RELOCATION to
1379 the distance between the symbol (currently in RELOCATION) and the
1380 location we are relocating. Some targets (e.g., i386-aout)
1381 arrange for the contents of the section to be the negative of the
1382 offset of the location within the section; for such targets
1383 pcrel_offset is false. Other targets (e.g., m88kbcs or ELF)
1384 simply leave the contents of the section as zero; for such
1385 targets pcrel_offset is true. If pcrel_offset is false we do not
1386 need to subtract out the offset of the location within the
1387 section (which is just ADDRESS). */
1388 if (howto->pc_relative)
1389 {
1390 relocation -= (input_section->output_section->vma
1391 + input_section->output_offset);
1392 if (howto->pcrel_offset)
1393 relocation -= address;
1394 }
1395
1396 return _bfd_relocate_contents (howto, input_bfd, relocation,
1397 contents + address);
1398}
1399
1400/* Relocate a given location using a given value and howto. */
1401
1402bfd_reloc_status_type
1403_bfd_relocate_contents (howto, input_bfd, relocation, location)
1404 reloc_howto_type *howto;
1405 bfd *input_bfd;
1406 bfd_vma relocation;
1407 bfd_byte *location;
1408{
1409 int size;
7442e600 1410 bfd_vma x = 0;
d5afc56e 1411 bfd_reloc_status_type flag;
252b5132
RH
1412 unsigned int rightshift = howto->rightshift;
1413 unsigned int bitpos = howto->bitpos;
1414
1415 /* If the size is negative, negate RELOCATION. This isn't very
1416 general. */
1417 if (howto->size < 0)
1418 relocation = -relocation;
1419
1420 /* Get the value we are going to relocate. */
1421 size = bfd_get_reloc_size (howto);
1422 switch (size)
1423 {
1424 default:
1425 case 0:
1426 abort ();
1427 case 1:
1428 x = bfd_get_8 (input_bfd, location);
1429 break;
1430 case 2:
1431 x = bfd_get_16 (input_bfd, location);
1432 break;
1433 case 4:
1434 x = bfd_get_32 (input_bfd, location);
1435 break;
1436 case 8:
1437#ifdef BFD64
1438 x = bfd_get_64 (input_bfd, location);
1439#else
1440 abort ();
1441#endif
1442 break;
1443 }
1444
1445 /* Check for overflow. FIXME: We may drop bits during the addition
1446 which we don't check for. We must either check at every single
1447 operation, which would be tedious, or we must do the computations
1448 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1449 flag = bfd_reloc_ok;
252b5132
RH
1450 if (howto->complain_on_overflow != complain_overflow_dont)
1451 {
1452 bfd_vma addrmask, fieldmask, signmask, ss;
1453 bfd_vma a, b, sum;
1454
1455 /* Get the values to be added together. For signed and unsigned
1456 relocations, we assume that all values should be truncated to
1457 the size of an address. For bitfields, all the bits matter.
1458 See also bfd_check_overflow. */
1459 fieldmask = N_ONES (howto->bitsize);
1460 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1461 a = relocation;
1462 b = x & howto->src_mask;
1463
1464 switch (howto->complain_on_overflow)
1465 {
1466 case complain_overflow_signed:
1467 a = (a & addrmask) >> rightshift;
1468
1469 /* If any sign bits are set, all sign bits must be set.
1470 That is, A must be a valid negative address after
1471 shifting. */
1472 signmask = ~ (fieldmask >> 1);
1473 ss = a & signmask;
1474 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1475 flag = bfd_reloc_overflow;
252b5132
RH
1476
1477 /* We only need this next bit of code if the sign bit of B
1478 is below the sign bit of A. This would only happen if
1479 SRC_MASK had fewer bits than BITSIZE. Note that if
1480 SRC_MASK has more bits than BITSIZE, we can get into
1481 trouble; we would need to verify that B is in range, as
1482 we do for A above. */
1483 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1484
1485 /* Set all the bits above the sign bit. */
1486 b = (b ^ signmask) - signmask;
252b5132
RH
1487
1488 b = (b & addrmask) >> bitpos;
1489
1490 /* Now we can do the addition. */
1491 sum = a + b;
1492
1493 /* See if the result has the correct sign. Bits above the
1494 sign bit are junk now; ignore them. If the sum is
1495 positive, make sure we did not have all negative inputs;
1496 if the sum is negative, make sure we did not have all
1497 positive inputs. The test below looks only at the sign
1498 bits, and it really just
1499 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1500 */
1501 signmask = (fieldmask >> 1) + 1;
1502 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1503 flag = bfd_reloc_overflow;
252b5132
RH
1504
1505 break;
1506
1507 case complain_overflow_unsigned:
1508 /* Checking for an unsigned overflow is relatively easy:
1509 trim the addresses and add, and trim the result as well.
1510 Overflow is normally indicated when the result does not
1511 fit in the field. However, we also need to consider the
1512 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1513 input is 0x80000000, and bfd_vma is only 32 bits; then we
1514 will get sum == 0, but there is an overflow, since the
1515 inputs did not fit in the field. Instead of doing a
1516 separate test, we can check for this by or-ing in the
1517 operands when testing for the sum overflowing its final
1518 field. */
1519 a = (a & addrmask) >> rightshift;
1520 b = (b & addrmask) >> bitpos;
1521 sum = (a + b) & addrmask;
1522 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1523 flag = bfd_reloc_overflow;
252b5132
RH
1524
1525 break;
1526
1527 case complain_overflow_bitfield:
d5afc56e 1528 /* Much like the signed check, but for a field one bit
8a4ac871 1529 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1530 bitfield to represent numbers in the range -2**n to
1531 2**n-1, where n is the number of bits in the field.
1532 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1533 overflow, which is exactly what we want. */
252b5132 1534 a >>= rightshift;
252b5132 1535
d5afc56e
AM
1536 signmask = ~ fieldmask;
1537 ss = a & signmask;
1538 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1539 flag = bfd_reloc_overflow;
252b5132 1540
d5afc56e 1541 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1542 b = (b ^ signmask) - signmask;
252b5132 1543
d5afc56e 1544 b >>= bitpos;
44257b8b 1545
252b5132 1546 sum = a + b;
d5afc56e 1547
8a4ac871
AM
1548 /* We mask with addrmask here to explicitly allow an address
1549 wrap-around. The Linux kernel relies on it, and it is
1550 the only way to write assembler code which can run when
1551 loaded at a location 0x80000000 away from the location at
1552 which it is linked. */
d5afc56e 1553 signmask = fieldmask + 1;
8a4ac871 1554 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1555 flag = bfd_reloc_overflow;
252b5132
RH
1556
1557 break;
1558
1559 default:
1560 abort ();
1561 }
1562 }
1563
1564 /* Put RELOCATION in the right bits. */
1565 relocation >>= (bfd_vma) rightshift;
1566 relocation <<= (bfd_vma) bitpos;
1567
1568 /* Add RELOCATION to the right bits of X. */
1569 x = ((x & ~howto->dst_mask)
1570 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1571
1572 /* Put the relocated value back in the object file. */
1573 switch (size)
1574 {
1575 default:
1576 case 0:
1577 abort ();
1578 case 1:
1579 bfd_put_8 (input_bfd, x, location);
1580 break;
1581 case 2:
1582 bfd_put_16 (input_bfd, x, location);
1583 break;
1584 case 4:
1585 bfd_put_32 (input_bfd, x, location);
1586 break;
1587 case 8:
1588#ifdef BFD64
1589 bfd_put_64 (input_bfd, x, location);
1590#else
1591 abort ();
1592#endif
1593 break;
1594 }
1595
d5afc56e 1596 return flag;
252b5132
RH
1597}
1598
1599/*
1600DOCDD
1601INODE
1602 howto manager, , typedef arelent, Relocations
1603
1604SECTION
1605 The howto manager
1606
1607 When an application wants to create a relocation, but doesn't
1608 know what the target machine might call it, it can find out by
1609 using this bit of code.
1610
1611*/
1612
1613/*
1614TYPEDEF
1615 bfd_reloc_code_type
1616
1617DESCRIPTION
1618 The insides of a reloc code. The idea is that, eventually, there
1619 will be one enumerator for every type of relocation we ever do.
1620 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1621 return a howto pointer.
1622
1623 This does mean that the application must determine the correct
1624 enumerator value; you can't get a howto pointer from a random set
1625 of attributes.
1626
1627SENUM
1628 bfd_reloc_code_real
1629
1630ENUM
1631 BFD_RELOC_64
1632ENUMX
1633 BFD_RELOC_32
1634ENUMX
1635 BFD_RELOC_26
1636ENUMX
1637 BFD_RELOC_24
1638ENUMX
1639 BFD_RELOC_16
1640ENUMX
1641 BFD_RELOC_14
1642ENUMX
1643 BFD_RELOC_8
1644ENUMDOC
1645 Basic absolute relocations of N bits.
1646
1647ENUM
1648 BFD_RELOC_64_PCREL
1649ENUMX
1650 BFD_RELOC_32_PCREL
1651ENUMX
1652 BFD_RELOC_24_PCREL
1653ENUMX
1654 BFD_RELOC_16_PCREL
1655ENUMX
1656 BFD_RELOC_12_PCREL
1657ENUMX
1658 BFD_RELOC_8_PCREL
1659ENUMDOC
1660 PC-relative relocations. Sometimes these are relative to the address
1661of the relocation itself; sometimes they are relative to the start of
1662the section containing the relocation. It depends on the specific target.
1663
1664The 24-bit relocation is used in some Intel 960 configurations.
1665
1666ENUM
1667 BFD_RELOC_32_GOT_PCREL
1668ENUMX
1669 BFD_RELOC_16_GOT_PCREL
1670ENUMX
1671 BFD_RELOC_8_GOT_PCREL
1672ENUMX
1673 BFD_RELOC_32_GOTOFF
1674ENUMX
1675 BFD_RELOC_16_GOTOFF
1676ENUMX
1677 BFD_RELOC_LO16_GOTOFF
1678ENUMX
1679 BFD_RELOC_HI16_GOTOFF
1680ENUMX
1681 BFD_RELOC_HI16_S_GOTOFF
1682ENUMX
1683 BFD_RELOC_8_GOTOFF
5bd4f169
AM
1684ENUMX
1685 BFD_RELOC_64_PLT_PCREL
252b5132
RH
1686ENUMX
1687 BFD_RELOC_32_PLT_PCREL
1688ENUMX
1689 BFD_RELOC_24_PLT_PCREL
1690ENUMX
1691 BFD_RELOC_16_PLT_PCREL
1692ENUMX
1693 BFD_RELOC_8_PLT_PCREL
5bd4f169
AM
1694ENUMX
1695 BFD_RELOC_64_PLTOFF
252b5132
RH
1696ENUMX
1697 BFD_RELOC_32_PLTOFF
1698ENUMX
1699 BFD_RELOC_16_PLTOFF
1700ENUMX
1701 BFD_RELOC_LO16_PLTOFF
1702ENUMX
1703 BFD_RELOC_HI16_PLTOFF
1704ENUMX
1705 BFD_RELOC_HI16_S_PLTOFF
1706ENUMX
1707 BFD_RELOC_8_PLTOFF
1708ENUMDOC
1709 For ELF.
1710
1711ENUM
1712 BFD_RELOC_68K_GLOB_DAT
1713ENUMX
1714 BFD_RELOC_68K_JMP_SLOT
1715ENUMX
1716 BFD_RELOC_68K_RELATIVE
1717ENUMDOC
1718 Relocations used by 68K ELF.
1719
1720ENUM
1721 BFD_RELOC_32_BASEREL
1722ENUMX
1723 BFD_RELOC_16_BASEREL
1724ENUMX
1725 BFD_RELOC_LO16_BASEREL
1726ENUMX
1727 BFD_RELOC_HI16_BASEREL
1728ENUMX
1729 BFD_RELOC_HI16_S_BASEREL
1730ENUMX
1731 BFD_RELOC_8_BASEREL
1732ENUMX
1733 BFD_RELOC_RVA
1734ENUMDOC
1735 Linkage-table relative.
1736
1737ENUM
1738 BFD_RELOC_8_FFnn
1739ENUMDOC
1740 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1741
1742ENUM
1743 BFD_RELOC_32_PCREL_S2
1744ENUMX
1745 BFD_RELOC_16_PCREL_S2
1746ENUMX
1747 BFD_RELOC_23_PCREL_S2
1748ENUMDOC
1749 These PC-relative relocations are stored as word displacements --
1750i.e., byte displacements shifted right two bits. The 30-bit word
1751displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1752SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1753signed 16-bit displacement is used on the MIPS, and the 23-bit
1754displacement is used on the Alpha.
1755
1756ENUM
1757 BFD_RELOC_HI22
1758ENUMX
1759 BFD_RELOC_LO10
1760ENUMDOC
1761 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1762the target word. These are used on the SPARC.
1763
1764ENUM
1765 BFD_RELOC_GPREL16
1766ENUMX
1767 BFD_RELOC_GPREL32
1768ENUMDOC
1769 For systems that allocate a Global Pointer register, these are
1770displacements off that register. These relocation types are
1771handled specially, because the value the register will have is
1772decided relatively late.
1773
252b5132
RH
1774ENUM
1775 BFD_RELOC_I960_CALLJ
1776ENUMDOC
1777 Reloc types used for i960/b.out.
1778
1779ENUM
1780 BFD_RELOC_NONE
1781ENUMX
1782 BFD_RELOC_SPARC_WDISP22
1783ENUMX
1784 BFD_RELOC_SPARC22
1785ENUMX
1786 BFD_RELOC_SPARC13
1787ENUMX
1788 BFD_RELOC_SPARC_GOT10
1789ENUMX
1790 BFD_RELOC_SPARC_GOT13
1791ENUMX
1792 BFD_RELOC_SPARC_GOT22
1793ENUMX
1794 BFD_RELOC_SPARC_PC10
1795ENUMX
1796 BFD_RELOC_SPARC_PC22
1797ENUMX
1798 BFD_RELOC_SPARC_WPLT30
1799ENUMX
1800 BFD_RELOC_SPARC_COPY
1801ENUMX
1802 BFD_RELOC_SPARC_GLOB_DAT
1803ENUMX
1804 BFD_RELOC_SPARC_JMP_SLOT
1805ENUMX
1806 BFD_RELOC_SPARC_RELATIVE
0f2712ed
NC
1807ENUMX
1808 BFD_RELOC_SPARC_UA16
252b5132
RH
1809ENUMX
1810 BFD_RELOC_SPARC_UA32
0f2712ed
NC
1811ENUMX
1812 BFD_RELOC_SPARC_UA64
252b5132
RH
1813ENUMDOC
1814 SPARC ELF relocations. There is probably some overlap with other
1815 relocation types already defined.
1816
1817ENUM
1818 BFD_RELOC_SPARC_BASE13
1819ENUMX
1820 BFD_RELOC_SPARC_BASE22
1821ENUMDOC
1822 I think these are specific to SPARC a.out (e.g., Sun 4).
1823
1824ENUMEQ
1825 BFD_RELOC_SPARC_64
1826 BFD_RELOC_64
1827ENUMX
1828 BFD_RELOC_SPARC_10
1829ENUMX
1830 BFD_RELOC_SPARC_11
1831ENUMX
1832 BFD_RELOC_SPARC_OLO10
1833ENUMX
1834 BFD_RELOC_SPARC_HH22
1835ENUMX
1836 BFD_RELOC_SPARC_HM10
1837ENUMX
1838 BFD_RELOC_SPARC_LM22
1839ENUMX
1840 BFD_RELOC_SPARC_PC_HH22
1841ENUMX
1842 BFD_RELOC_SPARC_PC_HM10
1843ENUMX
1844 BFD_RELOC_SPARC_PC_LM22
1845ENUMX
1846 BFD_RELOC_SPARC_WDISP16
1847ENUMX
1848 BFD_RELOC_SPARC_WDISP19
1849ENUMX
1850 BFD_RELOC_SPARC_7
1851ENUMX
1852 BFD_RELOC_SPARC_6
1853ENUMX
1854 BFD_RELOC_SPARC_5
1855ENUMEQX
1856 BFD_RELOC_SPARC_DISP64
1857 BFD_RELOC_64_PCREL
1858ENUMX
1859 BFD_RELOC_SPARC_PLT64
1860ENUMX
1861 BFD_RELOC_SPARC_HIX22
1862ENUMX
1863 BFD_RELOC_SPARC_LOX10
1864ENUMX
1865 BFD_RELOC_SPARC_H44
1866ENUMX
1867 BFD_RELOC_SPARC_M44
1868ENUMX
1869 BFD_RELOC_SPARC_L44
1870ENUMX
1871 BFD_RELOC_SPARC_REGISTER
1872ENUMDOC
1873 SPARC64 relocations
1874
1875ENUM
1876 BFD_RELOC_SPARC_REV32
1877ENUMDOC
1878 SPARC little endian relocation
1879
1880ENUM
1881 BFD_RELOC_ALPHA_GPDISP_HI16
1882ENUMDOC
1883 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1884 "addend" in some special way.
1885 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1886 writing; when reading, it will be the absolute section symbol. The
1887 addend is the displacement in bytes of the "lda" instruction from
1888 the "ldah" instruction (which is at the address of this reloc).
1889ENUM
1890 BFD_RELOC_ALPHA_GPDISP_LO16
1891ENUMDOC
1892 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1893 with GPDISP_HI16 relocs. The addend is ignored when writing the
1894 relocations out, and is filled in with the file's GP value on
1895 reading, for convenience.
1896
1897ENUM
1898 BFD_RELOC_ALPHA_GPDISP
1899ENUMDOC
1900 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1901 relocation except that there is no accompanying GPDISP_LO16
1902 relocation.
1903
1904ENUM
1905 BFD_RELOC_ALPHA_LITERAL
1906ENUMX
1907 BFD_RELOC_ALPHA_ELF_LITERAL
1908ENUMX
1909 BFD_RELOC_ALPHA_LITUSE
1910ENUMDOC
1911 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1912 the assembler turns it into a LDQ instruction to load the address of
1913 the symbol, and then fills in a register in the real instruction.
1914
1915 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1916 section symbol. The addend is ignored when writing, but is filled
1917 in with the file's GP value on reading, for convenience, as with the
1918 GPDISP_LO16 reloc.
1919
1920 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1921 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1922 but it generates output not based on the position within the .got
1923 section, but relative to the GP value chosen for the file during the
1924 final link stage.
1925
1926 The LITUSE reloc, on the instruction using the loaded address, gives
1927 information to the linker that it might be able to use to optimize
1928 away some literal section references. The symbol is ignored (read
1929 as the absolute section symbol), and the "addend" indicates the type
1930 of instruction using the register:
1931 1 - "memory" fmt insn
1932 2 - byte-manipulation (byte offset reg)
1933 3 - jsr (target of branch)
1934
252b5132
RH
1935ENUM
1936 BFD_RELOC_ALPHA_HINT
1937ENUMDOC
1938 The HINT relocation indicates a value that should be filled into the
1939 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1940 prediction logic which may be provided on some processors.
1941
1942ENUM
1943 BFD_RELOC_ALPHA_LINKAGE
1944ENUMDOC
1945 The LINKAGE relocation outputs a linkage pair in the object file,
1946 which is filled by the linker.
1947
1948ENUM
1949 BFD_RELOC_ALPHA_CODEADDR
1950ENUMDOC
1951 The CODEADDR relocation outputs a STO_CA in the object file,
1952 which is filled by the linker.
1953
dfe57ca0
RH
1954ENUM
1955 BFD_RELOC_ALPHA_GPREL_HI16
1956ENUMX
1957 BFD_RELOC_ALPHA_GPREL_LO16
1958ENUMDOC
dc810e39
AM
1959 The GPREL_HI/LO relocations together form a 32-bit offset from the
1960 GP register.
dfe57ca0 1961
252b5132
RH
1962ENUM
1963 BFD_RELOC_MIPS_JMP
1964ENUMDOC
1965 Bits 27..2 of the relocation address shifted right 2 bits;
1966 simple reloc otherwise.
1967
1968ENUM
1969 BFD_RELOC_MIPS16_JMP
1970ENUMDOC
1971 The MIPS16 jump instruction.
1972
1973ENUM
1974 BFD_RELOC_MIPS16_GPREL
1975ENUMDOC
1976 MIPS16 GP relative reloc.
1977
1978ENUM
1979 BFD_RELOC_HI16
1980ENUMDOC
1981 High 16 bits of 32-bit value; simple reloc.
1982ENUM
1983 BFD_RELOC_HI16_S
1984ENUMDOC
1985 High 16 bits of 32-bit value but the low 16 bits will be sign
1986 extended and added to form the final result. If the low 16
1987 bits form a negative number, we need to add one to the high value
1988 to compensate for the borrow when the low bits are added.
1989ENUM
1990 BFD_RELOC_LO16
1991ENUMDOC
1992 Low 16 bits.
1993ENUM
1994 BFD_RELOC_PCREL_HI16_S
1995ENUMDOC
1996 Like BFD_RELOC_HI16_S, but PC relative.
1997ENUM
1998 BFD_RELOC_PCREL_LO16
1999ENUMDOC
2000 Like BFD_RELOC_LO16, but PC relative.
2001
2002ENUMEQ
2003 BFD_RELOC_MIPS_GPREL
2004 BFD_RELOC_GPREL16
2005ENUMDOC
2006 Relocation relative to the global pointer.
2007
2008ENUM
2009 BFD_RELOC_MIPS_LITERAL
2010ENUMDOC
2011 Relocation against a MIPS literal section.
2012
2013ENUM
2014 BFD_RELOC_MIPS_GOT16
2015ENUMX
2016 BFD_RELOC_MIPS_CALL16
2017ENUMEQX
2018 BFD_RELOC_MIPS_GPREL32
2019 BFD_RELOC_GPREL32
2020ENUMX
2021 BFD_RELOC_MIPS_GOT_HI16
2022ENUMX
2023 BFD_RELOC_MIPS_GOT_LO16
2024ENUMX
2025 BFD_RELOC_MIPS_CALL_HI16
2026ENUMX
2027 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2028ENUMX
2029 BFD_RELOC_MIPS_SUB
2030ENUMX
2031 BFD_RELOC_MIPS_GOT_PAGE
2032ENUMX
2033 BFD_RELOC_MIPS_GOT_OFST
2034ENUMX
2035 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2036ENUMX
2037 BFD_RELOC_MIPS_SHIFT5
2038ENUMX
2039 BFD_RELOC_MIPS_SHIFT6
2040ENUMX
2041 BFD_RELOC_MIPS_INSERT_A
2042ENUMX
2043 BFD_RELOC_MIPS_INSERT_B
2044ENUMX
2045 BFD_RELOC_MIPS_DELETE
2046ENUMX
2047 BFD_RELOC_MIPS_HIGHEST
2048ENUMX
2049 BFD_RELOC_MIPS_HIGHER
2050ENUMX
2051 BFD_RELOC_MIPS_SCN_DISP
2052ENUMX
2053 BFD_RELOC_MIPS_REL16
2054ENUMX
2055 BFD_RELOC_MIPS_RELGOT
2056ENUMX
2057 BFD_RELOC_MIPS_JALR
252b5132
RH
2058COMMENT
2059ENUMDOC
2060 MIPS ELF relocations.
2061
2062COMMENT
2063
2064ENUM
2065 BFD_RELOC_386_GOT32
2066ENUMX
2067 BFD_RELOC_386_PLT32
2068ENUMX
2069 BFD_RELOC_386_COPY
2070ENUMX
2071 BFD_RELOC_386_GLOB_DAT
2072ENUMX
2073 BFD_RELOC_386_JUMP_SLOT
2074ENUMX
2075 BFD_RELOC_386_RELATIVE
2076ENUMX
2077 BFD_RELOC_386_GOTOFF
2078ENUMX
2079 BFD_RELOC_386_GOTPC
2080ENUMDOC
2081 i386/elf relocations
2082
8d88c4ca
NC
2083ENUM
2084 BFD_RELOC_X86_64_GOT32
2085ENUMX
2086 BFD_RELOC_X86_64_PLT32
2087ENUMX
2088 BFD_RELOC_X86_64_COPY
2089ENUMX
2090 BFD_RELOC_X86_64_GLOB_DAT
2091ENUMX
2092 BFD_RELOC_X86_64_JUMP_SLOT
2093ENUMX
2094 BFD_RELOC_X86_64_RELATIVE
2095ENUMX
2096 BFD_RELOC_X86_64_GOTPCREL
2097ENUMX
2098 BFD_RELOC_X86_64_32S
2099ENUMDOC
2100 x86-64/elf relocations
2101
252b5132
RH
2102ENUM
2103 BFD_RELOC_NS32K_IMM_8
2104ENUMX
2105 BFD_RELOC_NS32K_IMM_16
2106ENUMX
2107 BFD_RELOC_NS32K_IMM_32
2108ENUMX
2109 BFD_RELOC_NS32K_IMM_8_PCREL
2110ENUMX
2111 BFD_RELOC_NS32K_IMM_16_PCREL
2112ENUMX
2113 BFD_RELOC_NS32K_IMM_32_PCREL
2114ENUMX
2115 BFD_RELOC_NS32K_DISP_8
2116ENUMX
2117 BFD_RELOC_NS32K_DISP_16
2118ENUMX
2119 BFD_RELOC_NS32K_DISP_32
2120ENUMX
2121 BFD_RELOC_NS32K_DISP_8_PCREL
2122ENUMX
2123 BFD_RELOC_NS32K_DISP_16_PCREL
2124ENUMX
2125 BFD_RELOC_NS32K_DISP_32_PCREL
2126ENUMDOC
2127 ns32k relocations
2128
e135f41b
NC
2129ENUM
2130 BFD_RELOC_PDP11_DISP_8_PCREL
2131ENUMX
2132 BFD_RELOC_PDP11_DISP_6_PCREL
2133ENUMDOC
2134 PDP11 relocations
2135
0bcb993b
ILT
2136ENUM
2137 BFD_RELOC_PJ_CODE_HI16
2138ENUMX
2139 BFD_RELOC_PJ_CODE_LO16
2140ENUMX
2141 BFD_RELOC_PJ_CODE_DIR16
2142ENUMX
2143 BFD_RELOC_PJ_CODE_DIR32
2144ENUMX
2145 BFD_RELOC_PJ_CODE_REL16
2146ENUMX
2147 BFD_RELOC_PJ_CODE_REL32
2148ENUMDOC
2149 Picojava relocs. Not all of these appear in object files.
88b6bae0 2150
252b5132
RH
2151ENUM
2152 BFD_RELOC_PPC_B26
2153ENUMX
2154 BFD_RELOC_PPC_BA26
2155ENUMX
2156 BFD_RELOC_PPC_TOC16
2157ENUMX
2158 BFD_RELOC_PPC_B16
2159ENUMX
2160 BFD_RELOC_PPC_B16_BRTAKEN
2161ENUMX
2162 BFD_RELOC_PPC_B16_BRNTAKEN
2163ENUMX
2164 BFD_RELOC_PPC_BA16
2165ENUMX
2166 BFD_RELOC_PPC_BA16_BRTAKEN
2167ENUMX
2168 BFD_RELOC_PPC_BA16_BRNTAKEN
2169ENUMX
2170 BFD_RELOC_PPC_COPY
2171ENUMX
2172 BFD_RELOC_PPC_GLOB_DAT
2173ENUMX
2174 BFD_RELOC_PPC_JMP_SLOT
2175ENUMX
2176 BFD_RELOC_PPC_RELATIVE
2177ENUMX
2178 BFD_RELOC_PPC_LOCAL24PC
2179ENUMX
2180 BFD_RELOC_PPC_EMB_NADDR32
2181ENUMX
2182 BFD_RELOC_PPC_EMB_NADDR16
2183ENUMX
2184 BFD_RELOC_PPC_EMB_NADDR16_LO
2185ENUMX
2186 BFD_RELOC_PPC_EMB_NADDR16_HI
2187ENUMX
2188 BFD_RELOC_PPC_EMB_NADDR16_HA
2189ENUMX
2190 BFD_RELOC_PPC_EMB_SDAI16
2191ENUMX
2192 BFD_RELOC_PPC_EMB_SDA2I16
2193ENUMX
2194 BFD_RELOC_PPC_EMB_SDA2REL
2195ENUMX
2196 BFD_RELOC_PPC_EMB_SDA21
2197ENUMX
2198 BFD_RELOC_PPC_EMB_MRKREF
2199ENUMX
2200 BFD_RELOC_PPC_EMB_RELSEC16
2201ENUMX
2202 BFD_RELOC_PPC_EMB_RELST_LO
2203ENUMX
2204 BFD_RELOC_PPC_EMB_RELST_HI
2205ENUMX
2206 BFD_RELOC_PPC_EMB_RELST_HA
2207ENUMX
2208 BFD_RELOC_PPC_EMB_BIT_FLD
2209ENUMX
2210 BFD_RELOC_PPC_EMB_RELSDA
5bd4f169
AM
2211ENUMX
2212 BFD_RELOC_PPC64_HIGHER
2213ENUMX
2214 BFD_RELOC_PPC64_HIGHER_S
2215ENUMX
2216 BFD_RELOC_PPC64_HIGHEST
2217ENUMX
2218 BFD_RELOC_PPC64_HIGHEST_S
2219ENUMX
2220 BFD_RELOC_PPC64_TOC16_LO
2221ENUMX
2222 BFD_RELOC_PPC64_TOC16_HI
2223ENUMX
2224 BFD_RELOC_PPC64_TOC16_HA
2225ENUMX
2226 BFD_RELOC_PPC64_TOC
2227ENUMX
dc810e39 2228 BFD_RELOC_PPC64_PLTGOT16
5bd4f169
AM
2229ENUMX
2230 BFD_RELOC_PPC64_PLTGOT16_LO
2231ENUMX
2232 BFD_RELOC_PPC64_PLTGOT16_HI
2233ENUMX
2234 BFD_RELOC_PPC64_PLTGOT16_HA
2235ENUMX
2236 BFD_RELOC_PPC64_ADDR16_DS
2237ENUMX
2238 BFD_RELOC_PPC64_ADDR16_LO_DS
2239ENUMX
2240 BFD_RELOC_PPC64_GOT16_DS
2241ENUMX
2242 BFD_RELOC_PPC64_GOT16_LO_DS
2243ENUMX
2244 BFD_RELOC_PPC64_PLT16_LO_DS
2245ENUMX
2246 BFD_RELOC_PPC64_SECTOFF_DS
2247ENUMX
2248 BFD_RELOC_PPC64_SECTOFF_LO_DS
2249ENUMX
2250 BFD_RELOC_PPC64_TOC16_DS
2251ENUMX
2252 BFD_RELOC_PPC64_TOC16_LO_DS
2253ENUMX
2254 BFD_RELOC_PPC64_PLTGOT16_DS
2255ENUMX
2256 BFD_RELOC_PPC64_PLTGOT16_LO_DS
252b5132
RH
2257ENUMDOC
2258 Power(rs6000) and PowerPC relocations.
2259
5b93d8bb
AM
2260ENUM
2261 BFD_RELOC_I370_D12
2262ENUMDOC
2263 IBM 370/390 relocations
2264
252b5132
RH
2265ENUM
2266 BFD_RELOC_CTOR
2267ENUMDOC
2268 The type of reloc used to build a contructor table - at the moment
2269 probably a 32 bit wide absolute relocation, but the target can choose.
2270 It generally does map to one of the other relocation types.
2271
2272ENUM
2273 BFD_RELOC_ARM_PCREL_BRANCH
2274ENUMDOC
2275 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2276 not stored in the instruction.
dfc5f959
NC
2277ENUM
2278 BFD_RELOC_ARM_PCREL_BLX
2279ENUMDOC
2280 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2281 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2282 field in the instruction.
2283ENUM
2284 BFD_RELOC_THUMB_PCREL_BLX
2285ENUMDOC
2286 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2287 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2288 field in the instruction.
252b5132
RH
2289ENUM
2290 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2291ENUMX
2292 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2293ENUMX
2294 BFD_RELOC_ARM_OFFSET_IMM
2295ENUMX
2296 BFD_RELOC_ARM_SHIFT_IMM
2297ENUMX
2298 BFD_RELOC_ARM_SWI
2299ENUMX
2300 BFD_RELOC_ARM_MULTI
2301ENUMX
2302 BFD_RELOC_ARM_CP_OFF_IMM
2303ENUMX
2304 BFD_RELOC_ARM_ADR_IMM
2305ENUMX
2306 BFD_RELOC_ARM_LDR_IMM
2307ENUMX
2308 BFD_RELOC_ARM_LITERAL
2309ENUMX
2310 BFD_RELOC_ARM_IN_POOL
2311ENUMX
2312 BFD_RELOC_ARM_OFFSET_IMM8
2313ENUMX
2314 BFD_RELOC_ARM_HWLITERAL
2315ENUMX
2316 BFD_RELOC_ARM_THUMB_ADD
2317ENUMX
2318 BFD_RELOC_ARM_THUMB_IMM
2319ENUMX
2320 BFD_RELOC_ARM_THUMB_SHIFT
2321ENUMX
2322 BFD_RELOC_ARM_THUMB_OFFSET
2323ENUMX
2324 BFD_RELOC_ARM_GOT12
2325ENUMX
2326 BFD_RELOC_ARM_GOT32
2327ENUMX
2328 BFD_RELOC_ARM_JUMP_SLOT
2329ENUMX
2330 BFD_RELOC_ARM_COPY
2331ENUMX
2332 BFD_RELOC_ARM_GLOB_DAT
2333ENUMX
2334 BFD_RELOC_ARM_PLT32
2335ENUMX
2336 BFD_RELOC_ARM_RELATIVE
2337ENUMX
2338 BFD_RELOC_ARM_GOTOFF
2339ENUMX
2340 BFD_RELOC_ARM_GOTPC
2341ENUMDOC
2342 These relocs are only used within the ARM assembler. They are not
2343 (at present) written to any object files.
2344
2345ENUM
2346 BFD_RELOC_SH_PCDISP8BY2
2347ENUMX
2348 BFD_RELOC_SH_PCDISP12BY2
2349ENUMX
2350 BFD_RELOC_SH_IMM4
2351ENUMX
2352 BFD_RELOC_SH_IMM4BY2
2353ENUMX
2354 BFD_RELOC_SH_IMM4BY4
2355ENUMX
2356 BFD_RELOC_SH_IMM8
2357ENUMX
2358 BFD_RELOC_SH_IMM8BY2
2359ENUMX
2360 BFD_RELOC_SH_IMM8BY4
2361ENUMX
2362 BFD_RELOC_SH_PCRELIMM8BY2
2363ENUMX
2364 BFD_RELOC_SH_PCRELIMM8BY4
2365ENUMX
2366 BFD_RELOC_SH_SWITCH16
2367ENUMX
2368 BFD_RELOC_SH_SWITCH32
2369ENUMX
2370 BFD_RELOC_SH_USES
2371ENUMX
2372 BFD_RELOC_SH_COUNT
2373ENUMX
2374 BFD_RELOC_SH_ALIGN
2375ENUMX
2376 BFD_RELOC_SH_CODE
2377ENUMX
2378 BFD_RELOC_SH_DATA
2379ENUMX
2380 BFD_RELOC_SH_LABEL
015551fc
JR
2381ENUMX
2382 BFD_RELOC_SH_LOOP_START
2383ENUMX
2384 BFD_RELOC_SH_LOOP_END
3d96075c
L
2385ENUMX
2386 BFD_RELOC_SH_COPY
2387ENUMX
2388 BFD_RELOC_SH_GLOB_DAT
2389ENUMX
2390 BFD_RELOC_SH_JMP_SLOT
2391ENUMX
2392 BFD_RELOC_SH_RELATIVE
2393ENUMX
2394 BFD_RELOC_SH_GOTPC
252b5132
RH
2395ENUMDOC
2396 Hitachi SH relocs. Not all of these appear in object files.
2397
2398ENUM
2399 BFD_RELOC_THUMB_PCREL_BRANCH9
2400ENUMX
2401 BFD_RELOC_THUMB_PCREL_BRANCH12
2402ENUMX
2403 BFD_RELOC_THUMB_PCREL_BRANCH23
2404ENUMDOC
2405 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2406 be zero and is not stored in the instruction.
2407
2408ENUM
2409 BFD_RELOC_ARC_B22_PCREL
2410ENUMDOC
0d2bcfaf 2411 ARC Cores relocs.
252b5132
RH
2412 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2413 not stored in the instruction. The high 20 bits are installed in bits 26
2414 through 7 of the instruction.
2415ENUM
2416 BFD_RELOC_ARC_B26
2417ENUMDOC
2418 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2419 stored in the instruction. The high 24 bits are installed in bits 23
2420 through 0.
2421
2422ENUM
2423 BFD_RELOC_D10V_10_PCREL_R
2424ENUMDOC
2425 Mitsubishi D10V relocs.
2426 This is a 10-bit reloc with the right 2 bits
2427 assumed to be 0.
2428ENUM
2429 BFD_RELOC_D10V_10_PCREL_L
2430ENUMDOC
2431 Mitsubishi D10V relocs.
2432 This is a 10-bit reloc with the right 2 bits
2433 assumed to be 0. This is the same as the previous reloc
2434 except it is in the left container, i.e.,
2435 shifted left 15 bits.
2436ENUM
2437 BFD_RELOC_D10V_18
2438ENUMDOC
2439 This is an 18-bit reloc with the right 2 bits
2440 assumed to be 0.
2441ENUM
2442 BFD_RELOC_D10V_18_PCREL
2443ENUMDOC
2444 This is an 18-bit reloc with the right 2 bits
2445 assumed to be 0.
2446
2447ENUM
2448 BFD_RELOC_D30V_6
2449ENUMDOC
2450 Mitsubishi D30V relocs.
2451 This is a 6-bit absolute reloc.
2452ENUM
2453 BFD_RELOC_D30V_9_PCREL
2454ENUMDOC
88b6bae0
AM
2455 This is a 6-bit pc-relative reloc with
2456 the right 3 bits assumed to be 0.
252b5132
RH
2457ENUM
2458 BFD_RELOC_D30V_9_PCREL_R
2459ENUMDOC
88b6bae0 2460 This is a 6-bit pc-relative reloc with
252b5132
RH
2461 the right 3 bits assumed to be 0. Same
2462 as the previous reloc but on the right side
88b6bae0 2463 of the container.
252b5132
RH
2464ENUM
2465 BFD_RELOC_D30V_15
2466ENUMDOC
88b6bae0
AM
2467 This is a 12-bit absolute reloc with the
2468 right 3 bitsassumed to be 0.
252b5132
RH
2469ENUM
2470 BFD_RELOC_D30V_15_PCREL
2471ENUMDOC
88b6bae0
AM
2472 This is a 12-bit pc-relative reloc with
2473 the right 3 bits assumed to be 0.
252b5132
RH
2474ENUM
2475 BFD_RELOC_D30V_15_PCREL_R
2476ENUMDOC
88b6bae0 2477 This is a 12-bit pc-relative reloc with
252b5132
RH
2478 the right 3 bits assumed to be 0. Same
2479 as the previous reloc but on the right side
88b6bae0 2480 of the container.
252b5132
RH
2481ENUM
2482 BFD_RELOC_D30V_21
2483ENUMDOC
88b6bae0 2484 This is an 18-bit absolute reloc with
252b5132
RH
2485 the right 3 bits assumed to be 0.
2486ENUM
2487 BFD_RELOC_D30V_21_PCREL
2488ENUMDOC
88b6bae0 2489 This is an 18-bit pc-relative reloc with
252b5132
RH
2490 the right 3 bits assumed to be 0.
2491ENUM
2492 BFD_RELOC_D30V_21_PCREL_R
2493ENUMDOC
88b6bae0 2494 This is an 18-bit pc-relative reloc with
252b5132
RH
2495 the right 3 bits assumed to be 0. Same
2496 as the previous reloc but on the right side
2497 of the container.
2498ENUM
2499 BFD_RELOC_D30V_32
2500ENUMDOC
2501 This is a 32-bit absolute reloc.
2502ENUM
2503 BFD_RELOC_D30V_32_PCREL
2504ENUMDOC
2505 This is a 32-bit pc-relative reloc.
2506
2507ENUM
2508 BFD_RELOC_M32R_24
2509ENUMDOC
2510 Mitsubishi M32R relocs.
2511 This is a 24 bit absolute address.
2512ENUM
2513 BFD_RELOC_M32R_10_PCREL
2514ENUMDOC
2515 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2516ENUM
2517 BFD_RELOC_M32R_18_PCREL
2518ENUMDOC
2519 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2520ENUM
2521 BFD_RELOC_M32R_26_PCREL
2522ENUMDOC
2523 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2524ENUM
2525 BFD_RELOC_M32R_HI16_ULO
2526ENUMDOC
2527 This is a 16-bit reloc containing the high 16 bits of an address
2528 used when the lower 16 bits are treated as unsigned.
2529ENUM
2530 BFD_RELOC_M32R_HI16_SLO
2531ENUMDOC
2532 This is a 16-bit reloc containing the high 16 bits of an address
2533 used when the lower 16 bits are treated as signed.
2534ENUM
2535 BFD_RELOC_M32R_LO16
2536ENUMDOC
2537 This is a 16-bit reloc containing the lower 16 bits of an address.
2538ENUM
2539 BFD_RELOC_M32R_SDA16
2540ENUMDOC
2541 This is a 16-bit reloc containing the small data area offset for use in
2542 add3, load, and store instructions.
2543
2544ENUM
2545 BFD_RELOC_V850_9_PCREL
2546ENUMDOC
2547 This is a 9-bit reloc
2548ENUM
2549 BFD_RELOC_V850_22_PCREL
2550ENUMDOC
2551 This is a 22-bit reloc
2552
2553ENUM
2554 BFD_RELOC_V850_SDA_16_16_OFFSET
2555ENUMDOC
2556 This is a 16 bit offset from the short data area pointer.
2557ENUM
2558 BFD_RELOC_V850_SDA_15_16_OFFSET
2559ENUMDOC
2560 This is a 16 bit offset (of which only 15 bits are used) from the
2561 short data area pointer.
2562ENUM
2563 BFD_RELOC_V850_ZDA_16_16_OFFSET
2564ENUMDOC
2565 This is a 16 bit offset from the zero data area pointer.
2566ENUM
2567 BFD_RELOC_V850_ZDA_15_16_OFFSET
2568ENUMDOC
2569 This is a 16 bit offset (of which only 15 bits are used) from the
2570 zero data area pointer.
2571ENUM
2572 BFD_RELOC_V850_TDA_6_8_OFFSET
2573ENUMDOC
2574 This is an 8 bit offset (of which only 6 bits are used) from the
2575 tiny data area pointer.
2576ENUM
2577 BFD_RELOC_V850_TDA_7_8_OFFSET
2578ENUMDOC
2579 This is an 8bit offset (of which only 7 bits are used) from the tiny
2580 data area pointer.
2581ENUM
2582 BFD_RELOC_V850_TDA_7_7_OFFSET
2583ENUMDOC
2584 This is a 7 bit offset from the tiny data area pointer.
2585ENUM
2586 BFD_RELOC_V850_TDA_16_16_OFFSET
2587ENUMDOC
2588 This is a 16 bit offset from the tiny data area pointer.
2589COMMENT
2590ENUM
2591 BFD_RELOC_V850_TDA_4_5_OFFSET
2592ENUMDOC
2593 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2594 data area pointer.
2595ENUM
2596 BFD_RELOC_V850_TDA_4_4_OFFSET
2597ENUMDOC
2598 This is a 4 bit offset from the tiny data area pointer.
2599ENUM
2600 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2601ENUMDOC
2602 This is a 16 bit offset from the short data area pointer, with the
2603 bits placed non-contigously in the instruction.
2604ENUM
2605 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2606ENUMDOC
2607 This is a 16 bit offset from the zero data area pointer, with the
2608 bits placed non-contigously in the instruction.
2609ENUM
2610 BFD_RELOC_V850_CALLT_6_7_OFFSET
2611ENUMDOC
2612 This is a 6 bit offset from the call table base pointer.
2613ENUM
2614 BFD_RELOC_V850_CALLT_16_16_OFFSET
2615ENUMDOC
2616 This is a 16 bit offset from the call table base pointer.
2617COMMENT
2618
2619ENUM
2620 BFD_RELOC_MN10300_32_PCREL
2621ENUMDOC
2622 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2623 instruction.
2624ENUM
2625 BFD_RELOC_MN10300_16_PCREL
2626ENUMDOC
2627 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2628 instruction.
2629
2630ENUM
2631 BFD_RELOC_TIC30_LDP
2632ENUMDOC
2633 This is a 8bit DP reloc for the tms320c30, where the most
2634 significant 8 bits of a 24 bit word are placed into the least
2635 significant 8 bits of the opcode.
2636
81635ce4
TW
2637ENUM
2638 BFD_RELOC_TIC54X_PARTLS7
2639ENUMDOC
2640 This is a 7bit reloc for the tms320c54x, where the least
2641 significant 7 bits of a 16 bit word are placed into the least
2642 significant 7 bits of the opcode.
2643
2644ENUM
2645 BFD_RELOC_TIC54X_PARTMS9
2646ENUMDOC
2647 This is a 9bit DP reloc for the tms320c54x, where the most
2648 significant 9 bits of a 16 bit word are placed into the least
2649 significant 9 bits of the opcode.
2650
2651ENUM
2652 BFD_RELOC_TIC54X_23
2653ENUMDOC
2654 This is an extended address 23-bit reloc for the tms320c54x.
2655
2656ENUM
2657 BFD_RELOC_TIC54X_16_OF_23
2658ENUMDOC
3d855632
KH
2659 This is a 16-bit reloc for the tms320c54x, where the least
2660 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2661 the opcode.
2662
2663ENUM
2664 BFD_RELOC_TIC54X_MS7_OF_23
2665ENUMDOC
2666 This is a reloc for the tms320c54x, where the most
3d855632 2667 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2668 the opcode.
81635ce4 2669
252b5132
RH
2670ENUM
2671 BFD_RELOC_FR30_48
2672ENUMDOC
2673 This is a 48 bit reloc for the FR30 that stores 32 bits.
2674ENUM
2675 BFD_RELOC_FR30_20
2676ENUMDOC
2677 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2678 two sections.
2679ENUM
2680 BFD_RELOC_FR30_6_IN_4
2681ENUMDOC
2682 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2683 4 bits.
2684ENUM
2685 BFD_RELOC_FR30_8_IN_8
2686ENUMDOC
2687 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2688 into 8 bits.
2689ENUM
2690 BFD_RELOC_FR30_9_IN_8
2691ENUMDOC
2692 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2693 into 8 bits.
2694ENUM
2695 BFD_RELOC_FR30_10_IN_8
2696ENUMDOC
2697 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2698 into 8 bits.
2699ENUM
2700 BFD_RELOC_FR30_9_PCREL
2701ENUMDOC
2702 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2703 short offset into 8 bits.
2704ENUM
2705 BFD_RELOC_FR30_12_PCREL
2706ENUMDOC
2707 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2708 short offset into 11 bits.
88b6bae0 2709
252b5132
RH
2710ENUM
2711 BFD_RELOC_MCORE_PCREL_IMM8BY4
2712ENUMX
2713 BFD_RELOC_MCORE_PCREL_IMM11BY2
2714ENUMX
2715 BFD_RELOC_MCORE_PCREL_IMM4BY2
2716ENUMX
2717 BFD_RELOC_MCORE_PCREL_32
2718ENUMX
2719 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2720ENUMX
2721 BFD_RELOC_MCORE_RVA
252b5132
RH
2722ENUMDOC
2723 Motorola Mcore relocations.
88b6bae0 2724
3c3bdf30
NC
2725ENUM
2726 BFD_RELOC_MMIX_GETA
2727ENUMX
2728 BFD_RELOC_MMIX_GETA_1
2729ENUMX
2730 BFD_RELOC_MMIX_GETA_2
2731ENUMX
2732 BFD_RELOC_MMIX_GETA_3
2733ENUMDOC
2734 These are relocations for the GETA instruction.
2735ENUM
2736 BFD_RELOC_MMIX_CBRANCH
2737ENUMX
2738 BFD_RELOC_MMIX_CBRANCH_J
2739ENUMX
2740 BFD_RELOC_MMIX_CBRANCH_1
2741ENUMX
2742 BFD_RELOC_MMIX_CBRANCH_2
2743ENUMX
2744 BFD_RELOC_MMIX_CBRANCH_3
2745ENUMDOC
2746 These are relocations for a conditional branch instruction.
2747ENUM
2748 BFD_RELOC_MMIX_PUSHJ
2749ENUMX
2750 BFD_RELOC_MMIX_PUSHJ_1
2751ENUMX
2752 BFD_RELOC_MMIX_PUSHJ_2
2753ENUMX
2754 BFD_RELOC_MMIX_PUSHJ_3
2755ENUMDOC
2756 These are relocations for the PUSHJ instruction.
2757ENUM
2758 BFD_RELOC_MMIX_JMP
2759ENUMX
2760 BFD_RELOC_MMIX_JMP_1
2761ENUMX
2762 BFD_RELOC_MMIX_JMP_2
2763ENUMX
2764 BFD_RELOC_MMIX_JMP_3
2765ENUMDOC
2766 These are relocations for the JMP instruction.
2767ENUM
2768 BFD_RELOC_MMIX_ADDR19
2769ENUMDOC
2770 This is a relocation for a relative address as in a GETA instruction or
2771 a branch.
2772ENUM
2773 BFD_RELOC_MMIX_ADDR27
2774ENUMDOC
2775 This is a relocation for a relative address as in a JMP instruction.
2776ENUM
2777 BFD_RELOC_MMIX_REG_OR_BYTE
2778ENUMDOC
2779 This is a relocation for an instruction field that may be a general
2780 register or a value 0..255.
2781ENUM
2782 BFD_RELOC_MMIX_REG
2783ENUMDOC
2784 This is a relocation for an instruction field that may be a general
2785 register.
2786ENUM
2787 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
2788ENUMDOC
2789 This is a relocation for two instruction fields holding a register and
2790 an offset, the equivalent of the relocation.
2791ENUM
2792 BFD_RELOC_MMIX_LOCAL
2793ENUMDOC
2794 This relocation is an assertion that the expression is not allocated as
2795 a global register. It does not modify contents.
2796
adde6300
AM
2797ENUM
2798 BFD_RELOC_AVR_7_PCREL
2799ENUMDOC
2800 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
2801 short offset into 7 bits.
2802ENUM
2803 BFD_RELOC_AVR_13_PCREL
2804ENUMDOC
2805 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
2806 short offset into 12 bits.
2807ENUM
2808 BFD_RELOC_AVR_16_PM
2809ENUMDOC
2810 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 2811 program memory address) into 16 bits.
adde6300
AM
2812ENUM
2813 BFD_RELOC_AVR_LO8_LDI
2814ENUMDOC
2815 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2816 data memory address) into 8 bit immediate value of LDI insn.
2817ENUM
2818 BFD_RELOC_AVR_HI8_LDI
2819ENUMDOC
2820 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2821 of data memory address) into 8 bit immediate value of LDI insn.
2822ENUM
2823 BFD_RELOC_AVR_HH8_LDI
2824ENUMDOC
2825 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2826 of program memory address) into 8 bit immediate value of LDI insn.
2827ENUM
2828 BFD_RELOC_AVR_LO8_LDI_NEG
2829ENUMDOC
2830 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2831 (usually data memory address) into 8 bit immediate value of SUBI insn.
2832ENUM
2833 BFD_RELOC_AVR_HI8_LDI_NEG
2834ENUMDOC
2835 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2836 (high 8 bit of data memory address) into 8 bit immediate value of
2837 SUBI insn.
2838ENUM
2839 BFD_RELOC_AVR_HH8_LDI_NEG
2840ENUMDOC
2841 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2842 (most high 8 bit of program memory address) into 8 bit immediate value
2843 of LDI or SUBI insn.
2844ENUM
2845 BFD_RELOC_AVR_LO8_LDI_PM
2846ENUMDOC
2847 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
2848 command address) into 8 bit immediate value of LDI insn.
2849ENUM
2850 BFD_RELOC_AVR_HI8_LDI_PM
2851ENUMDOC
2852 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
2853 of command address) into 8 bit immediate value of LDI insn.
2854ENUM
2855 BFD_RELOC_AVR_HH8_LDI_PM
2856ENUMDOC
2857 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
2858 of command address) into 8 bit immediate value of LDI insn.
2859ENUM
2860 BFD_RELOC_AVR_LO8_LDI_PM_NEG
2861ENUMDOC
2862 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2863 (usually command address) into 8 bit immediate value of SUBI insn.
2864ENUM
2865 BFD_RELOC_AVR_HI8_LDI_PM_NEG
2866ENUMDOC
2867 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2868 (high 8 bit of 16 bit command address) into 8 bit immediate value
2869 of SUBI insn.
2870ENUM
2871 BFD_RELOC_AVR_HH8_LDI_PM_NEG
2872ENUMDOC
2873 This is a 16 bit reloc for the AVR that stores negated 8 bit value
2874 (high 6 bit of 22 bit command address) into 8 bit immediate
2875 value of SUBI insn.
2876ENUM
2877 BFD_RELOC_AVR_CALL
2878ENUMDOC
2879 This is a 32 bit reloc for the AVR that stores 23 bit value
2880 into 22 bits.
2881
a85d7ed0
NC
2882ENUM
2883 BFD_RELOC_390_12
2884ENUMDOC
2885 Direct 12 bit.
2886ENUM
2887 BFD_RELOC_390_GOT12
2888ENUMDOC
2889 12 bit GOT offset.
2890ENUM
2891 BFD_RELOC_390_PLT32
2892ENUMDOC
2893 32 bit PC relative PLT address.
2894ENUM
2895 BFD_RELOC_390_COPY
2896ENUMDOC
2897 Copy symbol at runtime.
2898ENUM
2899 BFD_RELOC_390_GLOB_DAT
2900ENUMDOC
2901 Create GOT entry.
2902ENUM
2903 BFD_RELOC_390_JMP_SLOT
2904ENUMDOC
2905 Create PLT entry.
2906ENUM
2907 BFD_RELOC_390_RELATIVE
2908ENUMDOC
2909 Adjust by program base.
2910ENUM
2911 BFD_RELOC_390_GOTPC
2912ENUMDOC
2913 32 bit PC relative offset to GOT.
2914ENUM
2915 BFD_RELOC_390_GOT16
2916ENUMDOC
2917 16 bit GOT offset.
2918ENUM
2919 BFD_RELOC_390_PC16DBL
2920ENUMDOC
2921 PC relative 16 bit shifted by 1.
2922ENUM
2923 BFD_RELOC_390_PLT16DBL
2924ENUMDOC
2925 16 bit PC rel. PLT shifted by 1.
2926ENUM
2927 BFD_RELOC_390_PC32DBL
2928ENUMDOC
2929 PC relative 32 bit shifted by 1.
2930ENUM
2931 BFD_RELOC_390_PLT32DBL
2932ENUMDOC
2933 32 bit PC rel. PLT shifted by 1.
2934ENUM
2935 BFD_RELOC_390_GOTPCDBL
2936ENUMDOC
2937 32 bit PC rel. GOT shifted by 1.
2938ENUM
2939 BFD_RELOC_390_GOT64
2940ENUMDOC
2941 64 bit GOT offset.
2942ENUM
2943 BFD_RELOC_390_PLT64
2944ENUMDOC
2945 64 bit PC relative PLT address.
2946ENUM
2947 BFD_RELOC_390_GOTENT
2948ENUMDOC
2949 32 bit rel. offset to GOT entry.
dc810e39 2950
252b5132
RH
2951ENUM
2952 BFD_RELOC_VTABLE_INHERIT
2953ENUMX
2954 BFD_RELOC_VTABLE_ENTRY
2955ENUMDOC
88b6bae0 2956 These two relocations are used by the linker to determine which of
252b5132
RH
2957 the entries in a C++ virtual function table are actually used. When
2958 the --gc-sections option is given, the linker will zero out the entries
2959 that are not used, so that the code for those functions need not be
2960 included in the output.
2961
2962 VTABLE_INHERIT is a zero-space relocation used to describe to the
2963 linker the inheritence tree of a C++ virtual function table. The
2964 relocation's symbol should be the parent class' vtable, and the
2965 relocation should be located at the child vtable.
2966
2967 VTABLE_ENTRY is a zero-space relocation that describes the use of a
2968 virtual function table entry. The reloc's symbol should refer to the
2969 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 2970 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
2971 is stored in the reloc's addend. For Rel hosts, we are forced to put
2972 this offset in the reloc's section offset.
2973
800eeca4
JW
2974ENUM
2975 BFD_RELOC_IA64_IMM14
2976ENUMX
2977 BFD_RELOC_IA64_IMM22
2978ENUMX
2979 BFD_RELOC_IA64_IMM64
2980ENUMX
2981 BFD_RELOC_IA64_DIR32MSB
2982ENUMX
2983 BFD_RELOC_IA64_DIR32LSB
2984ENUMX
2985 BFD_RELOC_IA64_DIR64MSB
2986ENUMX
2987 BFD_RELOC_IA64_DIR64LSB
2988ENUMX
2989 BFD_RELOC_IA64_GPREL22
2990ENUMX
2991 BFD_RELOC_IA64_GPREL64I
2992ENUMX
2993 BFD_RELOC_IA64_GPREL32MSB
2994ENUMX
2995 BFD_RELOC_IA64_GPREL32LSB
2996ENUMX
2997 BFD_RELOC_IA64_GPREL64MSB
2998ENUMX
2999 BFD_RELOC_IA64_GPREL64LSB
3000ENUMX
3001 BFD_RELOC_IA64_LTOFF22
3002ENUMX
3003 BFD_RELOC_IA64_LTOFF64I
3004ENUMX
3005 BFD_RELOC_IA64_PLTOFF22
3006ENUMX
3007 BFD_RELOC_IA64_PLTOFF64I
3008ENUMX
3009 BFD_RELOC_IA64_PLTOFF64MSB
3010ENUMX
3011 BFD_RELOC_IA64_PLTOFF64LSB
3012ENUMX
3013 BFD_RELOC_IA64_FPTR64I
3014ENUMX
3015 BFD_RELOC_IA64_FPTR32MSB
3016ENUMX
3017 BFD_RELOC_IA64_FPTR32LSB
3018ENUMX
3019 BFD_RELOC_IA64_FPTR64MSB
3020ENUMX
3021 BFD_RELOC_IA64_FPTR64LSB
3022ENUMX
3023 BFD_RELOC_IA64_PCREL21B
748abff6
RH
3024ENUMX
3025 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
3026ENUMX
3027 BFD_RELOC_IA64_PCREL21M
3028ENUMX
3029 BFD_RELOC_IA64_PCREL21F
748abff6
RH
3030ENUMX
3031 BFD_RELOC_IA64_PCREL22
3032ENUMX
3033 BFD_RELOC_IA64_PCREL60B
3034ENUMX
3035 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
3036ENUMX
3037 BFD_RELOC_IA64_PCREL32MSB
3038ENUMX
3039 BFD_RELOC_IA64_PCREL32LSB
3040ENUMX
3041 BFD_RELOC_IA64_PCREL64MSB
3042ENUMX
3043 BFD_RELOC_IA64_PCREL64LSB
3044ENUMX
3045 BFD_RELOC_IA64_LTOFF_FPTR22
3046ENUMX
3047 BFD_RELOC_IA64_LTOFF_FPTR64I
a4bd8390
JW
3048ENUMX
3049 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3050ENUMX
3051 BFD_RELOC_IA64_LTOFF_FPTR32LSB
800eeca4
JW
3052ENUMX
3053 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3054ENUMX
3055 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
3056ENUMX
3057 BFD_RELOC_IA64_SEGREL32MSB
3058ENUMX
3059 BFD_RELOC_IA64_SEGREL32LSB
3060ENUMX
3061 BFD_RELOC_IA64_SEGREL64MSB
3062ENUMX
3063 BFD_RELOC_IA64_SEGREL64LSB
3064ENUMX
3065 BFD_RELOC_IA64_SECREL32MSB
3066ENUMX
3067 BFD_RELOC_IA64_SECREL32LSB
3068ENUMX
3069 BFD_RELOC_IA64_SECREL64MSB
3070ENUMX
3071 BFD_RELOC_IA64_SECREL64LSB
3072ENUMX
3073 BFD_RELOC_IA64_REL32MSB
3074ENUMX
3075 BFD_RELOC_IA64_REL32LSB
3076ENUMX
3077 BFD_RELOC_IA64_REL64MSB
3078ENUMX
3079 BFD_RELOC_IA64_REL64LSB
3080ENUMX
3081 BFD_RELOC_IA64_LTV32MSB
3082ENUMX
3083 BFD_RELOC_IA64_LTV32LSB
3084ENUMX
3085 BFD_RELOC_IA64_LTV64MSB
3086ENUMX
3087 BFD_RELOC_IA64_LTV64LSB
3088ENUMX
3089 BFD_RELOC_IA64_IPLTMSB
3090ENUMX
3091 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
3092ENUMX
3093 BFD_RELOC_IA64_COPY
3094ENUMX
3095 BFD_RELOC_IA64_TPREL22
3096ENUMX
3097 BFD_RELOC_IA64_TPREL64MSB
3098ENUMX
3099 BFD_RELOC_IA64_TPREL64LSB
3100ENUMX
3101 BFD_RELOC_IA64_LTOFF_TP22
3102ENUMX
3103 BFD_RELOC_IA64_LTOFF22X
3104ENUMX
3105 BFD_RELOC_IA64_LDXMOV
3106ENUMDOC
3107 Intel IA64 Relocations.
60bcf0fa
NC
3108
3109ENUM
3110 BFD_RELOC_M68HC11_HI8
3111ENUMDOC
3112 Motorola 68HC11 reloc.
3113 This is the 8 bits high part of an absolute address.
3114ENUM
3115 BFD_RELOC_M68HC11_LO8
3116ENUMDOC
3117 Motorola 68HC11 reloc.
3118 This is the 8 bits low part of an absolute address.
3119ENUM
3120 BFD_RELOC_M68HC11_3B
3121ENUMDOC
3122 Motorola 68HC11 reloc.
3123 This is the 3 bits of a value.
3124
06c15ad7
HPN
3125ENUM
3126 BFD_RELOC_CRIS_BDISP8
3127ENUMX
3128 BFD_RELOC_CRIS_UNSIGNED_5
3129ENUMX
3130 BFD_RELOC_CRIS_SIGNED_6
3131ENUMX
3132 BFD_RELOC_CRIS_UNSIGNED_6
3133ENUMX
3134 BFD_RELOC_CRIS_UNSIGNED_4
3135ENUMDOC
3136 These relocs are only used within the CRIS assembler. They are not
3137 (at present) written to any object files.
58d29fc3
HPN
3138ENUM
3139 BFD_RELOC_CRIS_COPY
3140ENUMX
3141 BFD_RELOC_CRIS_GLOB_DAT
3142ENUMX
3143 BFD_RELOC_CRIS_JUMP_SLOT
3144ENUMX
3145 BFD_RELOC_CRIS_RELATIVE
3146ENUMDOC
3147 Relocs used in ELF shared libraries for CRIS.
3148ENUM
3149 BFD_RELOC_CRIS_32_GOT
3150ENUMDOC
3151 32-bit offset to symbol-entry within GOT.
3152ENUM
3153 BFD_RELOC_CRIS_16_GOT
3154ENUMDOC
3155 16-bit offset to symbol-entry within GOT.
3156ENUM
3157 BFD_RELOC_CRIS_32_GOTPLT
3158ENUMDOC
3159 32-bit offset to symbol-entry within GOT, with PLT handling.
3160ENUM
3161 BFD_RELOC_CRIS_16_GOTPLT
3162ENUMDOC
3163 16-bit offset to symbol-entry within GOT, with PLT handling.
3164ENUM
3165 BFD_RELOC_CRIS_32_GOTREL
3166ENUMDOC
3167 32-bit offset to symbol, relative to GOT.
3168ENUM
3169 BFD_RELOC_CRIS_32_PLT_GOTREL
3170ENUMDOC
3171 32-bit offset to symbol with PLT entry, relative to GOT.
3172ENUM
3173 BFD_RELOC_CRIS_32_PLT_PCREL
3174ENUMDOC
3175 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3176
a87fdb8d
JE
3177ENUM
3178 BFD_RELOC_860_COPY
3179ENUMX
3180 BFD_RELOC_860_GLOB_DAT
3181ENUMX
3182 BFD_RELOC_860_JUMP_SLOT
3183ENUMX
3184 BFD_RELOC_860_RELATIVE
3185ENUMX
3186 BFD_RELOC_860_PC26
3187ENUMX
3188 BFD_RELOC_860_PLT26
3189ENUMX
3190 BFD_RELOC_860_PC16
3191ENUMX
3192 BFD_RELOC_860_LOW0
3193ENUMX
3194 BFD_RELOC_860_SPLIT0
3195ENUMX
3196 BFD_RELOC_860_LOW1
3197ENUMX
3198 BFD_RELOC_860_SPLIT1
3199ENUMX
3200 BFD_RELOC_860_LOW2
3201ENUMX
3202 BFD_RELOC_860_SPLIT2
3203ENUMX
3204 BFD_RELOC_860_LOW3
3205ENUMX
3206 BFD_RELOC_860_LOGOT0
3207ENUMX
3208 BFD_RELOC_860_SPGOT0
3209ENUMX
3210 BFD_RELOC_860_LOGOT1
3211ENUMX
3212 BFD_RELOC_860_SPGOT1
3213ENUMX
3214 BFD_RELOC_860_LOGOTOFF0
3215ENUMX
3216 BFD_RELOC_860_SPGOTOFF0
3217ENUMX
3218 BFD_RELOC_860_LOGOTOFF1
3219ENUMX
3220 BFD_RELOC_860_SPGOTOFF1
3221ENUMX
3222 BFD_RELOC_860_LOGOTOFF2
3223ENUMX
3224 BFD_RELOC_860_LOGOTOFF3
3225ENUMX
3226 BFD_RELOC_860_LOPC
3227ENUMX
3228 BFD_RELOC_860_HIGHADJ
3229ENUMX
3230 BFD_RELOC_860_HAGOT
3231ENUMX
3232 BFD_RELOC_860_HAGOTOFF
3233ENUMX
3234 BFD_RELOC_860_HAPC
3235ENUMX
3236 BFD_RELOC_860_HIGH
3237ENUMX
3238 BFD_RELOC_860_HIGOT
3239ENUMX
3240 BFD_RELOC_860_HIGOTOFF
3241ENUMDOC
3242 Intel i860 Relocations.
3243
b3baf5d0
NC
3244ENUM
3245 BFD_RELOC_OPENRISC_ABS_26
3246ENUMX
3247 BFD_RELOC_OPENRISC_REL_26
3248ENUMDOC
3249 OpenRISC Relocations.
3250
e01b0e69
JR
3251ENUM
3252 BFD_RELOC_H8_DIR16A8
3253ENUMX
3254 BFD_RELOC_H8_DIR16R8
3255ENUMX
3256 BFD_RELOC_H8_DIR24A8
3257ENUMX
3258 BFD_RELOC_H8_DIR24R8
3259ENUMX
3260 BFD_RELOC_H8_DIR32A16
3261ENUMDOC
3262 H8 elf Relocations.
3263
252b5132
RH
3264ENDSENUM
3265 BFD_RELOC_UNUSED
3266CODE_FRAGMENT
3267.
3268.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3269*/
3270
252b5132
RH
3271/*
3272FUNCTION
3273 bfd_reloc_type_lookup
3274
3275SYNOPSIS
3276 reloc_howto_type *
3277 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3278
3279DESCRIPTION
3280 Return a pointer to a howto structure which, when
3281 invoked, will perform the relocation @var{code} on data from the
3282 architecture noted.
3283
3284*/
3285
252b5132
RH
3286reloc_howto_type *
3287bfd_reloc_type_lookup (abfd, code)
3288 bfd *abfd;
3289 bfd_reloc_code_real_type code;
3290{
3291 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3292}
3293
3294static reloc_howto_type bfd_howto_32 =
3295HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
3296
252b5132
RH
3297/*
3298INTERNAL_FUNCTION
3299 bfd_default_reloc_type_lookup
3300
3301SYNOPSIS
3302 reloc_howto_type *bfd_default_reloc_type_lookup
3303 (bfd *abfd, bfd_reloc_code_real_type code);
3304
3305DESCRIPTION
3306 Provides a default relocation lookup routine for any architecture.
3307
252b5132
RH
3308*/
3309
3310reloc_howto_type *
3311bfd_default_reloc_type_lookup (abfd, code)
3312 bfd *abfd;
3313 bfd_reloc_code_real_type code;
3314{
3315 switch (code)
3316 {
3317 case BFD_RELOC_CTOR:
3318 /* The type of reloc used in a ctor, which will be as wide as the
3319 address - so either a 64, 32, or 16 bitter. */
3320 switch (bfd_get_arch_info (abfd)->bits_per_address)
3321 {
3322 case 64:
3323 BFD_FAIL ();
3324 case 32:
3325 return &bfd_howto_32;
3326 case 16:
3327 BFD_FAIL ();
3328 default:
3329 BFD_FAIL ();
3330 }
3331 default:
3332 BFD_FAIL ();
3333 }
3334 return (reloc_howto_type *) NULL;
3335}
3336
3337/*
3338FUNCTION
3339 bfd_get_reloc_code_name
3340
3341SYNOPSIS
3342 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3343
3344DESCRIPTION
3345 Provides a printable name for the supplied relocation code.
3346 Useful mainly for printing error messages.
3347*/
3348
3349const char *
3350bfd_get_reloc_code_name (code)
3351 bfd_reloc_code_real_type code;
3352{
3353 if (code > BFD_RELOC_UNUSED)
3354 return 0;
3355 return bfd_reloc_code_real_names[(int)code];
3356}
3357
3358/*
3359INTERNAL_FUNCTION
3360 bfd_generic_relax_section
3361
3362SYNOPSIS
3363 boolean bfd_generic_relax_section
3364 (bfd *abfd,
3365 asection *section,
3366 struct bfd_link_info *,
3367 boolean *);
3368
3369DESCRIPTION
3370 Provides default handling for relaxing for back ends which
3371 don't do relaxing -- i.e., does nothing.
3372*/
3373
3374/*ARGSUSED*/
3375boolean
3376bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3377 bfd *abfd ATTRIBUTE_UNUSED;
3378 asection *section ATTRIBUTE_UNUSED;
3379 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3380 boolean *again;
3381{
3382 *again = false;
3383 return true;
3384}
3385
3386/*
3387INTERNAL_FUNCTION
3388 bfd_generic_gc_sections
3389
3390SYNOPSIS
3391 boolean bfd_generic_gc_sections
3392 (bfd *, struct bfd_link_info *);
3393
3394DESCRIPTION
3395 Provides default handling for relaxing for back ends which
3396 don't do section gc -- i.e., does nothing.
3397*/
3398
3399/*ARGSUSED*/
3400boolean
3401bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3402 bfd *abfd ATTRIBUTE_UNUSED;
3403 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132
RH
3404{
3405 return true;
3406}
3407
8550eb6e
JJ
3408/*
3409INTERNAL_FUNCTION
3410 bfd_generic_merge_sections
3411
3412SYNOPSIS
3413 boolean bfd_generic_merge_sections
3414 (bfd *, struct bfd_link_info *);
3415
3416DESCRIPTION
3417 Provides default handling for SEC_MERGE section merging for back ends
3418 which don't have SEC_MERGE support -- i.e., does nothing.
3419*/
3420
3421/*ARGSUSED*/
3422boolean
3423bfd_generic_merge_sections (abfd, link_info)
3424 bfd *abfd ATTRIBUTE_UNUSED;
3425 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3426{
3427 return true;
3428}
3429
252b5132
RH
3430/*
3431INTERNAL_FUNCTION
3432 bfd_generic_get_relocated_section_contents
3433
3434SYNOPSIS
3435 bfd_byte *
3436 bfd_generic_get_relocated_section_contents (bfd *abfd,
3437 struct bfd_link_info *link_info,
3438 struct bfd_link_order *link_order,
3439 bfd_byte *data,
3440 boolean relocateable,
3441 asymbol **symbols);
3442
3443DESCRIPTION
3444 Provides default handling of relocation effort for back ends
3445 which can't be bothered to do it efficiently.
3446
3447*/
3448
3449bfd_byte *
3450bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3451 relocateable, symbols)
3452 bfd *abfd;
3453 struct bfd_link_info *link_info;
3454 struct bfd_link_order *link_order;
3455 bfd_byte *data;
3456 boolean relocateable;
3457 asymbol **symbols;
3458{
3459 /* Get enough memory to hold the stuff */
3460 bfd *input_bfd = link_order->u.indirect.section->owner;
3461 asection *input_section = link_order->u.indirect.section;
3462
3463 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3464 arelent **reloc_vector = NULL;
3465 long reloc_count;
3466
3467 if (reloc_size < 0)
3468 goto error_return;
3469
dc810e39 3470 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
3471 if (reloc_vector == NULL && reloc_size != 0)
3472 goto error_return;
3473
3474 /* read in the section */
3475 if (!bfd_get_section_contents (input_bfd,
3476 input_section,
3477 (PTR) data,
dc810e39 3478 (bfd_vma) 0,
252b5132
RH
3479 input_section->_raw_size))
3480 goto error_return;
3481
3482 /* We're not relaxing the section, so just copy the size info */
3483 input_section->_cooked_size = input_section->_raw_size;
3484 input_section->reloc_done = true;
3485
3486 reloc_count = bfd_canonicalize_reloc (input_bfd,
3487 input_section,
3488 reloc_vector,
3489 symbols);
3490 if (reloc_count < 0)
3491 goto error_return;
3492
3493 if (reloc_count > 0)
3494 {
3495 arelent **parent;
3496 for (parent = reloc_vector; *parent != (arelent *) NULL;
3497 parent++)
3498 {
3499 char *error_message = (char *) NULL;
3500 bfd_reloc_status_type r =
3501 bfd_perform_relocation (input_bfd,
3502 *parent,
3503 (PTR) data,
3504 input_section,
3505 relocateable ? abfd : (bfd *) NULL,
3506 &error_message);
3507
3508 if (relocateable)
3509 {
3510 asection *os = input_section->output_section;
3511
3512 /* A partial link, so keep the relocs */
3513 os->orelocation[os->reloc_count] = *parent;
3514 os->reloc_count++;
3515 }
3516
3517 if (r != bfd_reloc_ok)
3518 {
3519 switch (r)
3520 {
3521 case bfd_reloc_undefined:
3522 if (!((*link_info->callbacks->undefined_symbol)
3523 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785
L
3524 input_bfd, input_section, (*parent)->address,
3525 true)))
252b5132
RH
3526 goto error_return;
3527 break;
3528 case bfd_reloc_dangerous:
3529 BFD_ASSERT (error_message != (char *) NULL);
3530 if (!((*link_info->callbacks->reloc_dangerous)
3531 (link_info, error_message, input_bfd, input_section,
3532 (*parent)->address)))
3533 goto error_return;
3534 break;
3535 case bfd_reloc_overflow:
3536 if (!((*link_info->callbacks->reloc_overflow)
3537 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
3538 (*parent)->howto->name, (*parent)->addend,
3539 input_bfd, input_section, (*parent)->address)))
3540 goto error_return;
3541 break;
3542 case bfd_reloc_outofrange:
3543 default:
3544 abort ();
3545 break;
3546 }
3547
3548 }
3549 }
3550 }
3551 if (reloc_vector != NULL)
3552 free (reloc_vector);
3553 return data;
3554
3555error_return:
3556 if (reloc_vector != NULL)
3557 free (reloc_vector);
3558 return NULL;
3559}