]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-arm.c
asintl.h/bucomm.h/ld.h: Prevent the inclusion of <libintl.h> from the Solaris
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b
AM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
b99bd4ef 28#include <string.h>
c19d1205 29#define NO_RELOC 0
b99bd4ef 30#include "as.h"
3882b010 31#include "safe-ctype.h"
b99bd4ef
NC
32
33/* Need TARGET_CPU. */
34#include "config.h"
35#include "subsegs.h"
36#include "obstack.h"
37#include "symbols.h"
38#include "listing.h"
39
f263249b
RE
40#include "opcode/arm.h"
41
b99bd4ef
NC
42#ifdef OBJ_ELF
43#include "elf/arm.h"
44#include "dwarf2dbg.h"
a394c00f 45#include "dw2gencfi.h"
b99bd4ef
NC
46#endif
47
7ed4c4c5 48/* XXX Set this to 1 after the next binutils release. */
03b1477f
RE
49#define WARN_DEPRECATED 0
50
7ed4c4c5
NC
51#ifdef OBJ_ELF
52/* Must be at least the size of the largest unwind opcode (currently two). */
53#define ARM_OPCODE_CHUNK_SIZE 8
54
55/* This structure holds the unwinding state. */
56
57static struct
58{
c19d1205
ZW
59 symbolS * proc_start;
60 symbolS * table_entry;
61 symbolS * personality_routine;
62 int personality_index;
7ed4c4c5 63 /* The segment containing the function. */
c19d1205
ZW
64 segT saved_seg;
65 subsegT saved_subseg;
7ed4c4c5
NC
66 /* Opcodes generated from this function. */
67 unsigned char * opcodes;
c19d1205
ZW
68 int opcode_count;
69 int opcode_alloc;
7ed4c4c5 70 /* The number of bytes pushed to the stack. */
c19d1205 71 offsetT frame_size;
7ed4c4c5
NC
72 /* We don't add stack adjustment opcodes immediately so that we can merge
73 multiple adjustments. We can also omit the final adjustment
74 when using a frame pointer. */
c19d1205 75 offsetT pending_offset;
7ed4c4c5 76 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
77 hold the reg+offset to use when restoring sp from a frame pointer. */
78 offsetT fp_offset;
79 int fp_reg;
7ed4c4c5 80 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 81 unsigned fp_used:1;
7ed4c4c5 82 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 83 unsigned sp_restored:1;
7ed4c4c5
NC
84} unwind;
85
84798bd6
JB
86/* Bit N indicates that an R_ARM_NONE relocation has been output for
87 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
88 emitted only once per section, to save unnecessary bloat. */
89static unsigned int marked_pr_dependency = 0;
90
7ed4c4c5
NC
91#endif /* OBJ_ELF */
92
33a392fb
PB
93enum arm_float_abi
94{
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98};
99
c19d1205 100/* Types of processor to assemble for. */
b89dddec
RE
101#define ARM_1 ARM_ARCH_V1
102#define ARM_2 ARM_ARCH_V2
103#define ARM_3 ARM_ARCH_V2S
104#define ARM_250 ARM_ARCH_V2S
105#define ARM_6 ARM_ARCH_V3
106#define ARM_7 ARM_ARCH_V3
107#define ARM_8 ARM_ARCH_V4
108#define ARM_9 ARM_ARCH_V4T
109#define ARM_STRONG ARM_ARCH_V4
c19d1205 110#define ARM_CPU_MASK 0x0000000f /* XXX? */
b99bd4ef
NC
111
112#ifndef CPU_DEFAULT
113#if defined __XSCALE__
b89dddec 114#define CPU_DEFAULT (ARM_ARCH_XSCALE)
b99bd4ef
NC
115#else
116#if defined __thumb__
c19d1205 117#define CPU_DEFAULT (ARM_ARCH_V5T)
b99bd4ef 118#else
c19d1205 119#define CPU_DEFAULT ARM_ANY
b99bd4ef
NC
120#endif
121#endif
122#endif
123
124#ifndef FPU_DEFAULT
c820d418
MM
125# ifdef TE_LINUX
126# define FPU_DEFAULT FPU_ARCH_FPA
127# elif defined (TE_NetBSD)
128# ifdef OBJ_ELF
129# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
130# else
131 /* Legacy a.out format. */
132# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
133# endif
4e7fd91e
PB
134# elif defined (TE_VXWORKS)
135# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
136# else
137 /* For backwards compatibility, default to FPA. */
138# define FPU_DEFAULT FPU_ARCH_FPA
139# endif
140#endif /* ifndef FPU_DEFAULT */
b99bd4ef 141
c19d1205 142#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 143
03b1477f 144static unsigned long cpu_variant;
b99bd4ef 145
b99bd4ef 146/* Flags stored in private area of BFD structure. */
c19d1205
ZW
147static int uses_apcs_26 = FALSE;
148static int atpcs = FALSE;
b34976b6
AM
149static int support_interwork = FALSE;
150static int uses_apcs_float = FALSE;
c19d1205 151static int pic_code = FALSE;
03b1477f
RE
152
153/* Variables that we set while parsing command-line options. Once all
154 options have been read we re-process these values to set the real
155 assembly flags. */
156static int legacy_cpu = -1;
157static int legacy_fpu = -1;
158
159static int mcpu_cpu_opt = -1;
160static int mcpu_fpu_opt = -1;
161static int march_cpu_opt = -1;
162static int march_fpu_opt = -1;
163static int mfpu_opt = -1;
33a392fb 164static int mfloat_abi_opt = -1;
7cc69913 165#ifdef OBJ_ELF
deeaaff8
DJ
166# ifdef EABI_DEFAULT
167static int meabi_flags = EABI_DEFAULT;
168# else
d507cf36 169static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 170# endif
7cc69913 171#endif
b99bd4ef 172
b99bd4ef 173#ifdef OBJ_ELF
c19d1205 174/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
175symbolS * GOT_symbol;
176#endif
177
b99bd4ef
NC
178/* 0: assemble for ARM,
179 1: assemble for Thumb,
180 2: assemble for Thumb even though target CPU does not support thumb
181 instructions. */
182static int thumb_mode = 0;
183
c19d1205
ZW
184/* If unified_syntax is true, we are processing the new unified
185 ARM/Thumb syntax. Important differences from the old ARM mode:
186
187 - Immediate operands do not require a # prefix.
188 - Conditional affixes always appear at the end of the
189 instruction. (For backward compatibility, those instructions
190 that formerly had them in the middle, continue to accept them
191 there.)
192 - The IT instruction may appear, and if it does is validated
193 against subsequent conditional affixes. It does not generate
194 machine code.
195
196 Important differences from the old Thumb mode:
197
198 - Immediate operands do not require a # prefix.
199 - Most of the V6T2 instructions are only available in unified mode.
200 - The .N and .W suffixes are recognized and honored (it is an error
201 if they cannot be honored).
202 - All instructions set the flags if and only if they have an 's' affix.
203 - Conditional affixes may be used. They are validated against
204 preceding IT instructions. Unlike ARM mode, you cannot use a
205 conditional affix except in the scope of an IT instruction. */
206
207static bfd_boolean unified_syntax = FALSE;
b99bd4ef
NC
208
209struct arm_it
210{
c19d1205 211 const char * error;
b99bd4ef 212 unsigned long instruction;
c19d1205
ZW
213 int size;
214 int size_req;
215 int cond;
0110f2b8
PB
216 /* Set to the opcode if the instruction needs relaxation.
217 Zero if the instruction is not relaxed. */
218 unsigned long relax;
b99bd4ef
NC
219 struct
220 {
221 bfd_reloc_code_real_type type;
c19d1205
ZW
222 expressionS exp;
223 int pc_rel;
b99bd4ef 224 } reloc;
b99bd4ef 225
c19d1205
ZW
226 struct
227 {
228 unsigned reg;
ca3f61f7
NC
229 signed int imm;
230 unsigned present : 1; /* Operand present. */
231 unsigned isreg : 1; /* Operand was a register. */
232 unsigned immisreg : 1; /* .imm field is a second register. */
233 unsigned hasreloc : 1; /* Operand has relocation suffix. */
234 unsigned writeback : 1; /* Operand has trailing ! */
235 unsigned preind : 1; /* Preindexed address. */
236 unsigned postind : 1; /* Postindexed address. */
237 unsigned negative : 1; /* Index register was negated. */
238 unsigned shifted : 1; /* Shift applied to operation. */
239 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 240 } operands[6];
b99bd4ef
NC
241};
242
c19d1205 243static struct arm_it inst;
b99bd4ef
NC
244
245#define NUM_FLOAT_VALS 8
246
05d2d07e 247const char * fp_const[] =
b99bd4ef
NC
248{
249 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
250};
251
c19d1205 252/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
253#define MAX_LITTLENUMS 6
254
255LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
256
257#define FAIL (-1)
258#define SUCCESS (0)
259
260#define SUFF_S 1
261#define SUFF_D 2
262#define SUFF_E 3
263#define SUFF_P 4
264
c19d1205
ZW
265#define CP_T_X 0x00008000
266#define CP_T_Y 0x00400000
b99bd4ef 267
c19d1205
ZW
268#define CONDS_BIT 0x00100000
269#define LOAD_BIT 0x00100000
b99bd4ef
NC
270
271#define DOUBLE_LOAD_FLAG 0x00000001
272
273struct asm_cond
274{
c19d1205 275 const char * template;
b99bd4ef
NC
276 unsigned long value;
277};
278
c19d1205 279#define COND_ALWAYS 0xE
b99bd4ef 280
b99bd4ef
NC
281struct asm_psr
282{
b34976b6 283 const char *template;
b99bd4ef
NC
284 unsigned long field;
285};
286
2d2255b5 287/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
288#define SPSR_BIT (1 << 22)
289
c19d1205
ZW
290/* The individual PSR flag bits. */
291#define PSR_c (1 << 16)
292#define PSR_x (1 << 17)
293#define PSR_s (1 << 18)
294#define PSR_f (1 << 19)
b99bd4ef 295
c19d1205 296struct reloc_entry
bfae80f2 297{
c19d1205
ZW
298 char *name;
299 bfd_reloc_code_real_type reloc;
bfae80f2
RE
300};
301
302enum vfp_sp_reg_pos
303{
304 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn
305};
306
307enum vfp_ldstm_type
308{
309 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
310};
311
c19d1205
ZW
312/* ARM register categories. This includes coprocessor numbers and various
313 architecture extensions' registers. */
314enum arm_reg_type
bfae80f2 315{
c19d1205
ZW
316 REG_TYPE_RN,
317 REG_TYPE_CP,
318 REG_TYPE_CN,
319 REG_TYPE_FN,
320 REG_TYPE_VFS,
321 REG_TYPE_VFD,
322 REG_TYPE_VFC,
323 REG_TYPE_MVF,
324 REG_TYPE_MVD,
325 REG_TYPE_MVFX,
326 REG_TYPE_MVDX,
327 REG_TYPE_MVAX,
328 REG_TYPE_DSPSC,
329 REG_TYPE_MMXWR,
330 REG_TYPE_MMXWC,
331 REG_TYPE_MMXWCG,
332 REG_TYPE_XSCALE,
bfae80f2
RE
333};
334
6c43fab6
RE
335/* Structure for a hash table entry for a register. */
336struct reg_entry
337{
c19d1205
ZW
338 const char *name;
339 unsigned char number;
340 unsigned char type;
341 unsigned char builtin;
6c43fab6
RE
342};
343
c19d1205
ZW
344/* Diagnostics used when we don't get a register of the expected type. */
345const char *const reg_expected_msgs[] =
346{
347 N_("ARM register expected"),
348 N_("bad or missing co-processor number"),
349 N_("co-processor register expected"),
350 N_("FPA register expected"),
351 N_("VFP single precision register expected"),
352 N_("VFP double precision register expected"),
353 N_("VFP system register expected"),
354 N_("Maverick MVF register expected"),
355 N_("Maverick MVD register expected"),
356 N_("Maverick MVFX register expected"),
357 N_("Maverick MVDX register expected"),
358 N_("Maverick MVAX register expected"),
359 N_("Maverick DSPSC register expected"),
360 N_("iWMMXt data register expected"),
361 N_("iWMMXt control register expected"),
362 N_("iWMMXt scalar register expected"),
363 N_("XScale accumulator register expected"),
6c43fab6
RE
364};
365
c19d1205
ZW
366/* Some well known registers that we refer to directly elsewhere. */
367#define REG_SP 13
368#define REG_LR 14
369#define REG_PC 15
404ff6b5 370
b99bd4ef
NC
371/* ARM instructions take 4bytes in the object file, Thumb instructions
372 take 2: */
c19d1205 373#define INSN_SIZE 4
b99bd4ef
NC
374
375struct asm_opcode
376{
377 /* Basic string to match. */
c19d1205
ZW
378 const char *template;
379
380 /* Parameters to instruction. */
381 unsigned char operands[8];
382
383 /* Conditional tag - see opcode_lookup. */
384 unsigned int tag : 4;
b99bd4ef
NC
385
386 /* Basic instruction code. */
c19d1205 387 unsigned int avalue : 28;
b99bd4ef 388
c19d1205
ZW
389 /* Thumb-format instruction code. */
390 unsigned int tvalue;
b99bd4ef 391
90e4755a 392 /* Which architecture variant provides this instruction. */
c19d1205
ZW
393 unsigned long avariant;
394 unsigned long tvariant;
395
396 /* Function to call to encode instruction in ARM format. */
397 void (* aencode) (void);
b99bd4ef 398
c19d1205
ZW
399 /* Function to call to encode instruction in Thumb format. */
400 void (* tencode) (void);
b99bd4ef
NC
401};
402
a737bd4d
NC
403/* Defines for various bits that we will want to toggle. */
404#define INST_IMMEDIATE 0x02000000
405#define OFFSET_REG 0x02000000
c19d1205 406#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
407#define SHIFT_BY_REG 0x00000010
408#define PRE_INDEX 0x01000000
409#define INDEX_UP 0x00800000
410#define WRITE_BACK 0x00200000
411#define LDM_TYPE_2_OR_3 0x00400000
90e4755a 412
a737bd4d
NC
413#define LITERAL_MASK 0xf000f000
414#define OPCODE_MASK 0xfe1fffff
415#define V4_STR_BIT 0x00000020
90e4755a 416
a737bd4d 417#define DATA_OP_SHIFT 21
90e4755a 418
a737bd4d
NC
419/* Codes to distinguish the arithmetic instructions. */
420#define OPCODE_AND 0
421#define OPCODE_EOR 1
422#define OPCODE_SUB 2
423#define OPCODE_RSB 3
424#define OPCODE_ADD 4
425#define OPCODE_ADC 5
426#define OPCODE_SBC 6
427#define OPCODE_RSC 7
428#define OPCODE_TST 8
429#define OPCODE_TEQ 9
430#define OPCODE_CMP 10
431#define OPCODE_CMN 11
432#define OPCODE_ORR 12
433#define OPCODE_MOV 13
434#define OPCODE_BIC 14
435#define OPCODE_MVN 15
90e4755a 436
a737bd4d
NC
437#define T_OPCODE_MUL 0x4340
438#define T_OPCODE_TST 0x4200
439#define T_OPCODE_CMN 0x42c0
440#define T_OPCODE_NEG 0x4240
441#define T_OPCODE_MVN 0x43c0
90e4755a 442
a737bd4d
NC
443#define T_OPCODE_ADD_R3 0x1800
444#define T_OPCODE_SUB_R3 0x1a00
445#define T_OPCODE_ADD_HI 0x4400
446#define T_OPCODE_ADD_ST 0xb000
447#define T_OPCODE_SUB_ST 0xb080
448#define T_OPCODE_ADD_SP 0xa800
449#define T_OPCODE_ADD_PC 0xa000
450#define T_OPCODE_ADD_I8 0x3000
451#define T_OPCODE_SUB_I8 0x3800
452#define T_OPCODE_ADD_I3 0x1c00
453#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 454
a737bd4d
NC
455#define T_OPCODE_ASR_R 0x4100
456#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
457#define T_OPCODE_LSR_R 0x40c0
458#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
459#define T_OPCODE_ASR_I 0x1000
460#define T_OPCODE_LSL_I 0x0000
461#define T_OPCODE_LSR_I 0x0800
b99bd4ef 462
a737bd4d
NC
463#define T_OPCODE_MOV_I8 0x2000
464#define T_OPCODE_CMP_I8 0x2800
465#define T_OPCODE_CMP_LR 0x4280
466#define T_OPCODE_MOV_HR 0x4600
467#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 468
a737bd4d
NC
469#define T_OPCODE_LDR_PC 0x4800
470#define T_OPCODE_LDR_SP 0x9800
471#define T_OPCODE_STR_SP 0x9000
472#define T_OPCODE_LDR_IW 0x6800
473#define T_OPCODE_STR_IW 0x6000
474#define T_OPCODE_LDR_IH 0x8800
475#define T_OPCODE_STR_IH 0x8000
476#define T_OPCODE_LDR_IB 0x7800
477#define T_OPCODE_STR_IB 0x7000
478#define T_OPCODE_LDR_RW 0x5800
479#define T_OPCODE_STR_RW 0x5000
480#define T_OPCODE_LDR_RH 0x5a00
481#define T_OPCODE_STR_RH 0x5200
482#define T_OPCODE_LDR_RB 0x5c00
483#define T_OPCODE_STR_RB 0x5400
c9b604bd 484
a737bd4d
NC
485#define T_OPCODE_PUSH 0xb400
486#define T_OPCODE_POP 0xbc00
b99bd4ef 487
2fc8bdac 488#define T_OPCODE_BRANCH 0xe000
b99bd4ef 489
a737bd4d 490#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 491#define THUMB_PP_PC_LR 0x0100
c19d1205
ZW
492#define THUMB_LOAD_BIT 0x0800
493
494#define BAD_ARGS _("bad arguments to instruction")
495#define BAD_PC _("r15 not allowed here")
496#define BAD_COND _("instruction cannot be conditional")
497#define BAD_OVERLAP _("registers may not be the same")
498#define BAD_HIREG _("lo register required")
499#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
500
501static struct hash_control *arm_ops_hsh;
502static struct hash_control *arm_cond_hsh;
503static struct hash_control *arm_shift_hsh;
504static struct hash_control *arm_psr_hsh;
505static struct hash_control *arm_reg_hsh;
506static struct hash_control *arm_reloc_hsh;
b99bd4ef 507
b99bd4ef
NC
508/* Stuff needed to resolve the label ambiguity
509 As:
510 ...
511 label: <insn>
512 may differ from:
513 ...
514 label:
c19d1205 515 <insn>
b99bd4ef
NC
516*/
517
518symbolS * last_label_seen;
b34976b6 519static int label_is_thumb_function_name = FALSE;
a737bd4d 520\f
3d0c9500
NC
521/* Literal pool structure. Held on a per-section
522 and per-sub-section basis. */
a737bd4d 523
c19d1205 524#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 525typedef struct literal_pool
b99bd4ef 526{
c19d1205
ZW
527 expressionS literals [MAX_LITERAL_POOL_SIZE];
528 unsigned int next_free_entry;
529 unsigned int id;
530 symbolS * symbol;
531 segT section;
532 subsegT sub_section;
61b5f74b 533 struct literal_pool * next;
3d0c9500 534} literal_pool;
b99bd4ef 535
3d0c9500
NC
536/* Pointer to a linked list of literal pools. */
537literal_pool * list_of_pools = NULL;
e27ec89e
PB
538
539/* State variables for IT block handling. */
540static bfd_boolean current_it_mask = 0;
541static int current_cc;
542
c19d1205
ZW
543\f
544/* Pure syntax. */
b99bd4ef 545
c19d1205
ZW
546/* This array holds the chars that always start a comment. If the
547 pre-processor is disabled, these aren't very useful. */
548const char comment_chars[] = "@";
3d0c9500 549
c19d1205
ZW
550/* This array holds the chars that only start a comment at the beginning of
551 a line. If the line seems to have the form '# 123 filename'
552 .line and .file directives will appear in the pre-processed output. */
553/* Note that input_file.c hand checks for '#' at the beginning of the
554 first line of the input file. This is because the compiler outputs
555 #NO_APP at the beginning of its output. */
556/* Also note that comments like this one will always work. */
557const char line_comment_chars[] = "#";
3d0c9500 558
c19d1205 559const char line_separator_chars[] = ";";
b99bd4ef 560
c19d1205
ZW
561/* Chars that can be used to separate mant
562 from exp in floating point numbers. */
563const char EXP_CHARS[] = "eE";
3d0c9500 564
c19d1205
ZW
565/* Chars that mean this number is a floating point constant. */
566/* As in 0f12.456 */
567/* or 0d1.2345e12 */
b99bd4ef 568
c19d1205 569const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 570
c19d1205
ZW
571/* Prefix characters that indicate the start of an immediate
572 value. */
573#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 574
c19d1205
ZW
575/* Separator character handling. */
576
577#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
578
579static inline int
580skip_past_char (char ** str, char c)
581{
582 if (**str == c)
583 {
584 (*str)++;
585 return SUCCESS;
3d0c9500 586 }
c19d1205
ZW
587 else
588 return FAIL;
589}
590#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 591
c19d1205
ZW
592/* Arithmetic expressions (possibly involving symbols). */
593
594/* Return TRUE if anything in the expression is a bignum. */
595
596static int
597walk_no_bignums (symbolS * sp)
598{
599 if (symbol_get_value_expression (sp)->X_op == O_big)
600 return 1;
601
602 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 603 {
c19d1205
ZW
604 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
605 || (symbol_get_value_expression (sp)->X_op_symbol
606 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
607 }
608
c19d1205 609 return 0;
3d0c9500
NC
610}
611
c19d1205
ZW
612static int in_my_get_expression = 0;
613
614/* Third argument to my_get_expression. */
615#define GE_NO_PREFIX 0
616#define GE_IMM_PREFIX 1
617#define GE_OPT_PREFIX 2
a737bd4d 618
b99bd4ef 619static int
c19d1205 620my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 621{
c19d1205
ZW
622 char * save_in;
623 segT seg;
b99bd4ef 624
c19d1205
ZW
625 /* In unified syntax, all prefixes are optional. */
626 if (unified_syntax)
627 prefix_mode = GE_OPT_PREFIX;
b99bd4ef 628
c19d1205 629 switch (prefix_mode)
b99bd4ef 630 {
c19d1205
ZW
631 case GE_NO_PREFIX: break;
632 case GE_IMM_PREFIX:
633 if (!is_immediate_prefix (**str))
634 {
635 inst.error = _("immediate expression requires a # prefix");
636 return FAIL;
637 }
638 (*str)++;
639 break;
640 case GE_OPT_PREFIX:
641 if (is_immediate_prefix (**str))
642 (*str)++;
643 break;
644 default: abort ();
645 }
b99bd4ef 646
c19d1205 647 memset (ep, 0, sizeof (expressionS));
b99bd4ef 648
c19d1205
ZW
649 save_in = input_line_pointer;
650 input_line_pointer = *str;
651 in_my_get_expression = 1;
652 seg = expression (ep);
653 in_my_get_expression = 0;
654
655 if (ep->X_op == O_illegal)
b99bd4ef 656 {
c19d1205
ZW
657 /* We found a bad expression in md_operand(). */
658 *str = input_line_pointer;
659 input_line_pointer = save_in;
660 if (inst.error == NULL)
661 inst.error = _("bad expression");
662 return 1;
663 }
b99bd4ef 664
c19d1205
ZW
665#ifdef OBJ_AOUT
666 if (seg != absolute_section
667 && seg != text_section
668 && seg != data_section
669 && seg != bss_section
670 && seg != undefined_section)
671 {
672 inst.error = _("bad segment");
673 *str = input_line_pointer;
674 input_line_pointer = save_in;
675 return 1;
b99bd4ef 676 }
c19d1205 677#endif
b99bd4ef 678
c19d1205
ZW
679 /* Get rid of any bignums now, so that we don't generate an error for which
680 we can't establish a line number later on. Big numbers are never valid
681 in instructions, which is where this routine is always called. */
682 if (ep->X_op == O_big
683 || (ep->X_add_symbol
684 && (walk_no_bignums (ep->X_add_symbol)
685 || (ep->X_op_symbol
686 && walk_no_bignums (ep->X_op_symbol)))))
687 {
688 inst.error = _("invalid constant");
689 *str = input_line_pointer;
690 input_line_pointer = save_in;
691 return 1;
692 }
b99bd4ef 693
c19d1205
ZW
694 *str = input_line_pointer;
695 input_line_pointer = save_in;
696 return 0;
b99bd4ef
NC
697}
698
c19d1205
ZW
699/* Turn a string in input_line_pointer into a floating point constant
700 of type TYPE, and store the appropriate bytes in *LITP. The number
701 of LITTLENUMS emitted is stored in *SIZEP. An error message is
702 returned, or NULL on OK.
b99bd4ef 703
c19d1205
ZW
704 Note that fp constants aren't represent in the normal way on the ARM.
705 In big endian mode, things are as expected. However, in little endian
706 mode fp constants are big-endian word-wise, and little-endian byte-wise
707 within the words. For example, (double) 1.1 in big endian mode is
708 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
709 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 710
c19d1205 711 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 712
c19d1205
ZW
713char *
714md_atof (int type, char * litP, int * sizeP)
715{
716 int prec;
717 LITTLENUM_TYPE words[MAX_LITTLENUMS];
718 char *t;
719 int i;
b99bd4ef 720
c19d1205
ZW
721 switch (type)
722 {
723 case 'f':
724 case 'F':
725 case 's':
726 case 'S':
727 prec = 2;
728 break;
b99bd4ef 729
c19d1205
ZW
730 case 'd':
731 case 'D':
732 case 'r':
733 case 'R':
734 prec = 4;
735 break;
b99bd4ef 736
c19d1205
ZW
737 case 'x':
738 case 'X':
739 prec = 6;
740 break;
b99bd4ef 741
c19d1205
ZW
742 case 'p':
743 case 'P':
744 prec = 6;
745 break;
a737bd4d 746
c19d1205
ZW
747 default:
748 *sizeP = 0;
749 return _("bad call to MD_ATOF()");
750 }
b99bd4ef 751
c19d1205
ZW
752 t = atof_ieee (input_line_pointer, type, words);
753 if (t)
754 input_line_pointer = t;
755 *sizeP = prec * 2;
b99bd4ef 756
c19d1205
ZW
757 if (target_big_endian)
758 {
759 for (i = 0; i < prec; i++)
760 {
761 md_number_to_chars (litP, (valueT) words[i], 2);
762 litP += 2;
763 }
764 }
765 else
766 {
767 if (cpu_variant & FPU_ARCH_VFP)
768 for (i = prec - 1; i >= 0; i--)
769 {
770 md_number_to_chars (litP, (valueT) words[i], 2);
771 litP += 2;
772 }
773 else
774 /* For a 4 byte float the order of elements in `words' is 1 0.
775 For an 8 byte float the order is 1 0 3 2. */
776 for (i = 0; i < prec; i += 2)
777 {
778 md_number_to_chars (litP, (valueT) words[i + 1], 2);
779 md_number_to_chars (litP + 2, (valueT) words[i], 2);
780 litP += 4;
781 }
782 }
b99bd4ef 783
c19d1205
ZW
784 return 0;
785}
b99bd4ef 786
c19d1205
ZW
787/* We handle all bad expressions here, so that we can report the faulty
788 instruction in the error message. */
789void
790md_operand (expressionS * expr)
791{
792 if (in_my_get_expression)
793 expr->X_op = O_illegal;
b99bd4ef
NC
794}
795
c19d1205 796/* Immediate values. */
b99bd4ef 797
c19d1205
ZW
798/* Generic immediate-value read function for use in directives.
799 Accepts anything that 'expression' can fold to a constant.
800 *val receives the number. */
801#ifdef OBJ_ELF
802static int
803immediate_for_directive (int *val)
b99bd4ef 804{
c19d1205
ZW
805 expressionS exp;
806 exp.X_op = O_illegal;
b99bd4ef 807
c19d1205
ZW
808 if (is_immediate_prefix (*input_line_pointer))
809 {
810 input_line_pointer++;
811 expression (&exp);
812 }
b99bd4ef 813
c19d1205
ZW
814 if (exp.X_op != O_constant)
815 {
816 as_bad (_("expected #constant"));
817 ignore_rest_of_line ();
818 return FAIL;
819 }
820 *val = exp.X_add_number;
821 return SUCCESS;
b99bd4ef 822}
c19d1205 823#endif
b99bd4ef 824
c19d1205 825/* Register parsing. */
b99bd4ef 826
c19d1205
ZW
827/* Generic register parser. CCP points to what should be the
828 beginning of a register name. If it is indeed a valid register
829 name, advance CCP over it and return the reg_entry structure;
830 otherwise return NULL. Does not issue diagnostics. */
831
832static struct reg_entry *
833arm_reg_parse_multi (char **ccp)
b99bd4ef 834{
c19d1205
ZW
835 char *start = *ccp;
836 char *p;
837 struct reg_entry *reg;
b99bd4ef 838
c19d1205
ZW
839#ifdef REGISTER_PREFIX
840 if (*start != REGISTER_PREFIX)
841 return FAIL;
842 start++;
843#endif
844#ifdef OPTIONAL_REGISTER_PREFIX
845 if (*start == OPTIONAL_REGISTER_PREFIX)
846 start++;
847#endif
b99bd4ef 848
c19d1205
ZW
849 p = start;
850 if (!ISALPHA (*p) || !is_name_beginner (*p))
851 return NULL;
b99bd4ef 852
c19d1205
ZW
853 do
854 p++;
855 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
856
857 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
858
859 if (!reg)
860 return NULL;
861
862 *ccp = p;
863 return reg;
b99bd4ef
NC
864}
865
c19d1205
ZW
866/* As above, but the register must be of type TYPE, and the return
867 value is the register number or NULL. */
868
b99bd4ef 869static int
c19d1205 870arm_reg_parse (char **ccp, enum arm_reg_type type)
b99bd4ef 871{
c19d1205
ZW
872 char *start = *ccp;
873 struct reg_entry *reg = arm_reg_parse_multi (ccp);
b99bd4ef 874
c19d1205
ZW
875 if (reg && reg->type == type)
876 return reg->number;
6057a28f 877
c19d1205
ZW
878 /* Alternative syntaxes are accepted for a few register classes. */
879 switch (type)
880 {
881 case REG_TYPE_MVF:
882 case REG_TYPE_MVD:
883 case REG_TYPE_MVFX:
884 case REG_TYPE_MVDX:
885 /* Generic coprocessor register names are allowed for these. */
886 if (reg->type == REG_TYPE_CN)
887 return reg->number;
888 break;
69b97547 889
c19d1205
ZW
890 case REG_TYPE_CP:
891 /* For backward compatibility, a bare number is valid here. */
892 {
893 unsigned long processor = strtoul (start, ccp, 10);
894 if (*ccp != start && processor <= 15)
895 return processor;
896 }
6057a28f 897
c19d1205
ZW
898 case REG_TYPE_MMXWC:
899 /* WC includes WCG. ??? I'm not sure this is true for all
900 instructions that take WC registers. */
901 if (reg->type == REG_TYPE_MMXWCG)
902 return reg->number;
6057a28f 903 break;
c19d1205 904
6057a28f 905 default:
c19d1205 906 break;
6057a28f
NC
907 }
908
c19d1205
ZW
909 *ccp = start;
910 return FAIL;
911}
69b97547 912
c19d1205
ZW
913/* Parse an ARM register list. Returns the bitmask, or FAIL. */
914static long
915parse_reg_list (char ** strp)
916{
917 char * str = * strp;
918 long range = 0;
919 int another_range;
a737bd4d 920
c19d1205
ZW
921 /* We come back here if we get ranges concatenated by '+' or '|'. */
922 do
6057a28f 923 {
c19d1205 924 another_range = 0;
a737bd4d 925
c19d1205
ZW
926 if (*str == '{')
927 {
928 int in_range = 0;
929 int cur_reg = -1;
a737bd4d 930
c19d1205
ZW
931 str++;
932 do
933 {
934 int reg;
6057a28f 935
c19d1205
ZW
936 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
937 {
938 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
939 return FAIL;
940 }
a737bd4d 941
c19d1205
ZW
942 if (in_range)
943 {
944 int i;
a737bd4d 945
c19d1205
ZW
946 if (reg <= cur_reg)
947 {
948 inst.error = _("bad range in register list");
949 return FAIL;
950 }
40a18ebd 951
c19d1205
ZW
952 for (i = cur_reg + 1; i < reg; i++)
953 {
954 if (range & (1 << i))
955 as_tsktsk
956 (_("Warning: duplicated register (r%d) in register list"),
957 i);
958 else
959 range |= 1 << i;
960 }
961 in_range = 0;
962 }
a737bd4d 963
c19d1205
ZW
964 if (range & (1 << reg))
965 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
966 reg);
967 else if (reg <= cur_reg)
968 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 969
c19d1205
ZW
970 range |= 1 << reg;
971 cur_reg = reg;
972 }
973 while (skip_past_comma (&str) != FAIL
974 || (in_range = 1, *str++ == '-'));
975 str--;
a737bd4d 976
c19d1205
ZW
977 if (*str++ != '}')
978 {
979 inst.error = _("missing `}'");
980 return FAIL;
981 }
982 }
983 else
984 {
985 expressionS expr;
40a18ebd 986
c19d1205
ZW
987 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
988 return FAIL;
40a18ebd 989
c19d1205
ZW
990 if (expr.X_op == O_constant)
991 {
992 if (expr.X_add_number
993 != (expr.X_add_number & 0x0000ffff))
994 {
995 inst.error = _("invalid register mask");
996 return FAIL;
997 }
a737bd4d 998
c19d1205
ZW
999 if ((range & expr.X_add_number) != 0)
1000 {
1001 int regno = range & expr.X_add_number;
a737bd4d 1002
c19d1205
ZW
1003 regno &= -regno;
1004 regno = (1 << regno) - 1;
1005 as_tsktsk
1006 (_("Warning: duplicated register (r%d) in register list"),
1007 regno);
1008 }
a737bd4d 1009
c19d1205
ZW
1010 range |= expr.X_add_number;
1011 }
1012 else
1013 {
1014 if (inst.reloc.type != 0)
1015 {
1016 inst.error = _("expression too complex");
1017 return FAIL;
1018 }
a737bd4d 1019
c19d1205
ZW
1020 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1021 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1022 inst.reloc.pc_rel = 0;
1023 }
1024 }
a737bd4d 1025
c19d1205
ZW
1026 if (*str == '|' || *str == '+')
1027 {
1028 str++;
1029 another_range = 1;
1030 }
a737bd4d 1031 }
c19d1205 1032 while (another_range);
a737bd4d 1033
c19d1205
ZW
1034 *strp = str;
1035 return range;
a737bd4d
NC
1036}
1037
c19d1205
ZW
1038/* Parse a VFP register list. If the string is invalid return FAIL.
1039 Otherwise return the number of registers, and set PBASE to the first
1040 register. Double precision registers are matched if DP is nonzero. */
6057a28f 1041
c19d1205 1042static int
ca3f61f7 1043parse_vfp_reg_list (char **str, unsigned int *pbase, int dp)
6057a28f 1044{
c19d1205
ZW
1045 int base_reg;
1046 int new_base;
1047 int regtype;
1048 int max_regs;
1049 int count = 0;
1050 int warned = 0;
1051 unsigned long mask = 0;
a737bd4d 1052 int i;
6057a28f 1053
c19d1205
ZW
1054 if (**str != '{')
1055 return FAIL;
6057a28f 1056
c19d1205 1057 (*str)++;
6057a28f 1058
c19d1205 1059 if (dp)
a737bd4d 1060 {
c19d1205
ZW
1061 regtype = REG_TYPE_VFD;
1062 max_regs = 16;
1063 }
1064 else
1065 {
1066 regtype = REG_TYPE_VFS;
1067 max_regs = 32;
1068 }
6057a28f 1069
c19d1205 1070 base_reg = max_regs;
a737bd4d 1071
c19d1205
ZW
1072 do
1073 {
1074 new_base = arm_reg_parse (str, regtype);
1075 if (new_base == FAIL)
a737bd4d 1076 {
c19d1205
ZW
1077 inst.error = gettext (reg_expected_msgs[regtype]);
1078 return FAIL;
1079 }
a737bd4d 1080
c19d1205
ZW
1081 if (new_base < base_reg)
1082 base_reg = new_base;
a737bd4d 1083
c19d1205
ZW
1084 if (mask & (1 << new_base))
1085 {
1086 inst.error = _("invalid register list");
1087 return FAIL;
a737bd4d 1088 }
a737bd4d 1089
c19d1205
ZW
1090 if ((mask >> new_base) != 0 && ! warned)
1091 {
1092 as_tsktsk (_("register list not in ascending order"));
1093 warned = 1;
1094 }
0bbf2aa4 1095
c19d1205
ZW
1096 mask |= 1 << new_base;
1097 count++;
0bbf2aa4 1098
c19d1205
ZW
1099 if (**str == '-') /* We have the start of a range expression */
1100 {
1101 int high_range;
0bbf2aa4 1102
c19d1205 1103 (*str)++;
0bbf2aa4 1104
c19d1205
ZW
1105 if ((high_range = arm_reg_parse (str, regtype)) == FAIL)
1106 {
1107 inst.error = gettext (reg_expected_msgs[regtype]);
1108 return FAIL;
1109 }
0bbf2aa4 1110
c19d1205
ZW
1111 if (high_range <= new_base)
1112 {
1113 inst.error = _("register range not in ascending order");
1114 return FAIL;
1115 }
0bbf2aa4 1116
c19d1205 1117 for (new_base++; new_base <= high_range; new_base++)
0bbf2aa4 1118 {
c19d1205 1119 if (mask & (1 << new_base))
0bbf2aa4 1120 {
c19d1205
ZW
1121 inst.error = _("invalid register list");
1122 return FAIL;
0bbf2aa4 1123 }
c19d1205
ZW
1124
1125 mask |= 1 << new_base;
1126 count++;
0bbf2aa4 1127 }
0bbf2aa4 1128 }
0bbf2aa4 1129 }
c19d1205 1130 while (skip_past_comma (str) != FAIL);
0bbf2aa4 1131
c19d1205 1132 (*str)++;
0bbf2aa4 1133
c19d1205
ZW
1134 /* Sanity check -- should have raised a parse error above. */
1135 if (count == 0 || count > max_regs)
1136 abort ();
1137
1138 *pbase = base_reg;
1139
1140 /* Final test -- the registers must be consecutive. */
1141 mask >>= base_reg;
1142 for (i = 0; i < count; i++)
1143 {
1144 if ((mask & (1u << i)) == 0)
1145 {
1146 inst.error = _("non-contiguous register range");
1147 return FAIL;
1148 }
1149 }
1150
1151 return count;
b99bd4ef
NC
1152}
1153
c19d1205
ZW
1154/* Parse an explicit relocation suffix on an expression. This is
1155 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1156 arm_reloc_hsh contains no entries, so this function can only
1157 succeed if there is no () after the word. Returns -1 on error,
1158 BFD_RELOC_UNUSED if there wasn't any suffix. */
1159static int
1160parse_reloc (char **str)
b99bd4ef 1161{
c19d1205
ZW
1162 struct reloc_entry *r;
1163 char *p, *q;
b99bd4ef 1164
c19d1205
ZW
1165 if (**str != '(')
1166 return BFD_RELOC_UNUSED;
b99bd4ef 1167
c19d1205
ZW
1168 p = *str + 1;
1169 q = p;
1170
1171 while (*q && *q != ')' && *q != ',')
1172 q++;
1173 if (*q != ')')
1174 return -1;
1175
1176 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1177 return -1;
1178
1179 *str = q + 1;
1180 return r->reloc;
b99bd4ef
NC
1181}
1182
c19d1205
ZW
1183/* Directives: register aliases. */
1184
b99bd4ef 1185static void
c19d1205 1186insert_reg_alias (char *str, int number, int type)
b99bd4ef 1187{
c19d1205
ZW
1188 struct reg_entry *new;
1189 const char *name;
b99bd4ef 1190
c19d1205
ZW
1191 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1192 {
1193 if (new->builtin)
1194 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1195
c19d1205
ZW
1196 /* Only warn about a redefinition if it's not defined as the
1197 same register. */
1198 else if (new->number != number || new->type != type)
1199 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1200
c19d1205
ZW
1201 return;
1202 }
b99bd4ef 1203
c19d1205
ZW
1204 name = xstrdup (str);
1205 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1206
c19d1205
ZW
1207 new->name = name;
1208 new->number = number;
1209 new->type = type;
1210 new->builtin = FALSE;
b99bd4ef 1211
c19d1205
ZW
1212 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1213 abort ();
1214}
b99bd4ef 1215
c19d1205 1216/* Look for the .req directive. This is of the form:
b99bd4ef 1217
c19d1205 1218 new_register_name .req existing_register_name
b99bd4ef 1219
c19d1205
ZW
1220 If we find one, or if it looks sufficiently like one that we want to
1221 handle any error here, return non-zero. Otherwise return zero. */
b99bd4ef 1222
c19d1205
ZW
1223static int
1224create_register_alias (char * newname, char *p)
1225{
1226 struct reg_entry *old;
1227 char *oldname, *nbuf;
1228 size_t nlen;
b99bd4ef 1229
c19d1205
ZW
1230 /* The input scrubber ensures that whitespace after the mnemonic is
1231 collapsed to single spaces. */
1232 oldname = p;
1233 if (strncmp (oldname, " .req ", 6) != 0)
1234 return 0;
b99bd4ef 1235
c19d1205
ZW
1236 oldname += 6;
1237 if (*oldname == '\0')
1238 return 0;
b99bd4ef 1239
c19d1205
ZW
1240 old = hash_find (arm_reg_hsh, oldname);
1241 if (!old)
b99bd4ef 1242 {
c19d1205
ZW
1243 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1244 return 1;
b99bd4ef
NC
1245 }
1246
c19d1205
ZW
1247 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1248 the desired alias name, and p points to its end. If not, then
1249 the desired alias name is in the global original_case_string. */
1250#ifdef TC_CASE_SENSITIVE
1251 nlen = p - newname;
1252#else
1253 newname = original_case_string;
1254 nlen = strlen (newname);
1255#endif
b99bd4ef 1256
c19d1205
ZW
1257 nbuf = alloca (nlen + 1);
1258 memcpy (nbuf, newname, nlen);
1259 nbuf[nlen] = '\0';
b99bd4ef 1260
c19d1205
ZW
1261 /* Create aliases under the new name as stated; an all-lowercase
1262 version of the new name; and an all-uppercase version of the new
1263 name. */
1264 insert_reg_alias (nbuf, old->number, old->type);
b99bd4ef 1265
c19d1205
ZW
1266 for (p = nbuf; *p; p++)
1267 *p = TOUPPER (*p);
1268
1269 if (strncmp (nbuf, newname, nlen))
1270 insert_reg_alias (nbuf, old->number, old->type);
1271
1272 for (p = nbuf; *p; p++)
1273 *p = TOLOWER (*p);
1274
1275 if (strncmp (nbuf, newname, nlen))
1276 insert_reg_alias (nbuf, old->number, old->type);
1277
1278 return 1;
b99bd4ef
NC
1279}
1280
c19d1205
ZW
1281/* Should never be called, as .req goes between the alias and the
1282 register name, not at the beginning of the line. */
b99bd4ef 1283static void
c19d1205 1284s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 1285{
c19d1205
ZW
1286 as_bad (_("invalid syntax for .req directive"));
1287}
b99bd4ef 1288
c19d1205
ZW
1289/* The .unreq directive deletes an alias which was previously defined
1290 by .req. For example:
b99bd4ef 1291
c19d1205
ZW
1292 my_alias .req r11
1293 .unreq my_alias */
b99bd4ef
NC
1294
1295static void
c19d1205 1296s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 1297{
c19d1205
ZW
1298 char * name;
1299 char saved_char;
b99bd4ef 1300
c19d1205
ZW
1301 name = input_line_pointer;
1302
1303 while (*input_line_pointer != 0
1304 && *input_line_pointer != ' '
1305 && *input_line_pointer != '\n')
1306 ++input_line_pointer;
1307
1308 saved_char = *input_line_pointer;
1309 *input_line_pointer = 0;
1310
1311 if (!*name)
1312 as_bad (_("invalid syntax for .unreq directive"));
1313 else
1314 {
1315 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
1316
1317 if (!reg)
1318 as_bad (_("unknown register alias '%s'"), name);
1319 else if (reg->builtin)
1320 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1321 name);
1322 else
1323 {
1324 hash_delete (arm_reg_hsh, name);
1325 free ((char *) reg->name);
1326 free (reg);
1327 }
1328 }
b99bd4ef 1329
c19d1205 1330 *input_line_pointer = saved_char;
b99bd4ef
NC
1331 demand_empty_rest_of_line ();
1332}
1333
c19d1205
ZW
1334/* Directives: Instruction set selection. */
1335
1336#ifdef OBJ_ELF
1337/* This code is to handle mapping symbols as defined in the ARM ELF spec.
1338 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
1339 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1340 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1341
1342static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef
NC
1343
1344static void
c19d1205 1345mapping_state (enum mstate state)
b99bd4ef 1346{
a737bd4d 1347 symbolS * symbolP;
c19d1205
ZW
1348 const char * symname;
1349 int type;
b99bd4ef 1350
c19d1205
ZW
1351 if (mapstate == state)
1352 /* The mapping symbol has already been emitted.
1353 There is nothing else to do. */
1354 return;
b99bd4ef 1355
c19d1205 1356 mapstate = state;
b99bd4ef 1357
c19d1205 1358 switch (state)
b99bd4ef 1359 {
c19d1205
ZW
1360 case MAP_DATA:
1361 symname = "$d";
1362 type = BSF_NO_FLAGS;
1363 break;
1364 case MAP_ARM:
1365 symname = "$a";
1366 type = BSF_NO_FLAGS;
1367 break;
1368 case MAP_THUMB:
1369 symname = "$t";
1370 type = BSF_NO_FLAGS;
1371 break;
1372 case MAP_UNDEFINED:
1373 return;
1374 default:
1375 abort ();
1376 }
1377
1378 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1379
1380 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
1381 symbol_table_insert (symbolP);
1382 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1383
1384 switch (state)
1385 {
1386 case MAP_ARM:
1387 THUMB_SET_FUNC (symbolP, 0);
1388 ARM_SET_THUMB (symbolP, 0);
1389 ARM_SET_INTERWORK (symbolP, support_interwork);
1390 break;
1391
1392 case MAP_THUMB:
1393 THUMB_SET_FUNC (symbolP, 1);
1394 ARM_SET_THUMB (symbolP, 1);
1395 ARM_SET_INTERWORK (symbolP, support_interwork);
1396 break;
1397
1398 case MAP_DATA:
1399 default:
1400 return;
1401 }
1402}
1403#else
1404#define mapping_state(x) /* nothing */
1405#endif
1406
1407/* Find the real, Thumb encoded start of a Thumb function. */
1408
1409static symbolS *
1410find_real_start (symbolS * symbolP)
1411{
1412 char * real_start;
1413 const char * name = S_GET_NAME (symbolP);
1414 symbolS * new_target;
1415
1416 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
1417#define STUB_NAME ".real_start_of"
1418
1419 if (name == NULL)
1420 abort ();
1421
37f6032b
ZW
1422 /* The compiler may generate BL instructions to local labels because
1423 it needs to perform a branch to a far away location. These labels
1424 do not have a corresponding ".real_start_of" label. We check
1425 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
1426 the ".real_start_of" convention for nonlocal branches. */
1427 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
1428 return symbolP;
1429
37f6032b 1430 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
1431 new_target = symbol_find (real_start);
1432
1433 if (new_target == NULL)
1434 {
1435 as_warn ("Failed to find real start of function: %s\n", name);
1436 new_target = symbolP;
1437 }
1438
c19d1205
ZW
1439 return new_target;
1440}
1441
1442static void
1443opcode_select (int width)
1444{
1445 switch (width)
1446 {
1447 case 16:
1448 if (! thumb_mode)
1449 {
1450 if (! (cpu_variant & ARM_EXT_V4T))
1451 as_bad (_("selected processor does not support THUMB opcodes"));
1452
1453 thumb_mode = 1;
1454 /* No need to force the alignment, since we will have been
1455 coming from ARM mode, which is word-aligned. */
1456 record_alignment (now_seg, 1);
1457 }
1458 mapping_state (MAP_THUMB);
1459 break;
1460
1461 case 32:
1462 if (thumb_mode)
1463 {
1464 if ((cpu_variant & ARM_ALL) == ARM_EXT_V4T)
1465 as_bad (_("selected processor does not support ARM opcodes"));
1466
1467 thumb_mode = 0;
1468
1469 if (!need_pass_2)
1470 frag_align (2, 0, 0);
1471
1472 record_alignment (now_seg, 1);
1473 }
1474 mapping_state (MAP_ARM);
1475 break;
1476
1477 default:
1478 as_bad (_("invalid instruction size selected (%d)"), width);
1479 }
1480}
1481
1482static void
1483s_arm (int ignore ATTRIBUTE_UNUSED)
1484{
1485 opcode_select (32);
1486 demand_empty_rest_of_line ();
1487}
1488
1489static void
1490s_thumb (int ignore ATTRIBUTE_UNUSED)
1491{
1492 opcode_select (16);
1493 demand_empty_rest_of_line ();
1494}
1495
1496static void
1497s_code (int unused ATTRIBUTE_UNUSED)
1498{
1499 int temp;
1500
1501 temp = get_absolute_expression ();
1502 switch (temp)
1503 {
1504 case 16:
1505 case 32:
1506 opcode_select (temp);
1507 break;
1508
1509 default:
1510 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
1511 }
1512}
1513
1514static void
1515s_force_thumb (int ignore ATTRIBUTE_UNUSED)
1516{
1517 /* If we are not already in thumb mode go into it, EVEN if
1518 the target processor does not support thumb instructions.
1519 This is used by gcc/config/arm/lib1funcs.asm for example
1520 to compile interworking support functions even if the
1521 target processor should not support interworking. */
1522 if (! thumb_mode)
1523 {
1524 thumb_mode = 2;
1525 record_alignment (now_seg, 1);
1526 }
1527
1528 demand_empty_rest_of_line ();
1529}
1530
1531static void
1532s_thumb_func (int ignore ATTRIBUTE_UNUSED)
1533{
1534 s_thumb (0);
1535
1536 /* The following label is the name/address of the start of a Thumb function.
1537 We need to know this for the interworking support. */
1538 label_is_thumb_function_name = TRUE;
1539}
1540
1541/* Perform a .set directive, but also mark the alias as
1542 being a thumb function. */
1543
1544static void
1545s_thumb_set (int equiv)
1546{
1547 /* XXX the following is a duplicate of the code for s_set() in read.c
1548 We cannot just call that code as we need to get at the symbol that
1549 is created. */
1550 char * name;
1551 char delim;
1552 char * end_name;
1553 symbolS * symbolP;
1554
1555 /* Especial apologies for the random logic:
1556 This just grew, and could be parsed much more simply!
1557 Dean - in haste. */
1558 name = input_line_pointer;
1559 delim = get_symbol_end ();
1560 end_name = input_line_pointer;
1561 *end_name = delim;
1562
1563 if (*input_line_pointer != ',')
1564 {
1565 *end_name = 0;
1566 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
1567 *end_name = delim;
1568 ignore_rest_of_line ();
1569 return;
1570 }
1571
1572 input_line_pointer++;
1573 *end_name = 0;
1574
1575 if (name[0] == '.' && name[1] == '\0')
1576 {
1577 /* XXX - this should not happen to .thumb_set. */
1578 abort ();
1579 }
1580
1581 if ((symbolP = symbol_find (name)) == NULL
1582 && (symbolP = md_undefined_symbol (name)) == NULL)
1583 {
1584#ifndef NO_LISTING
1585 /* When doing symbol listings, play games with dummy fragments living
1586 outside the normal fragment chain to record the file and line info
c19d1205 1587 for this symbol. */
b99bd4ef
NC
1588 if (listing & LISTING_SYMBOLS)
1589 {
1590 extern struct list_info_struct * listing_tail;
a737bd4d 1591 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
1592
1593 memset (dummy_frag, 0, sizeof (fragS));
1594 dummy_frag->fr_type = rs_fill;
1595 dummy_frag->line = listing_tail;
1596 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
1597 dummy_frag->fr_symbol = symbolP;
1598 }
1599 else
1600#endif
1601 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
1602
1603#ifdef OBJ_COFF
1604 /* "set" symbols are local unless otherwise specified. */
1605 SF_SET_LOCAL (symbolP);
1606#endif /* OBJ_COFF */
1607 } /* Make a new symbol. */
1608
1609 symbol_table_insert (symbolP);
1610
1611 * end_name = delim;
1612
1613 if (equiv
1614 && S_IS_DEFINED (symbolP)
1615 && S_GET_SEGMENT (symbolP) != reg_section)
1616 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
1617
1618 pseudo_set (symbolP);
1619
1620 demand_empty_rest_of_line ();
1621
c19d1205 1622 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
1623
1624 THUMB_SET_FUNC (symbolP, 1);
1625 ARM_SET_THUMB (symbolP, 1);
1626#if defined OBJ_ELF || defined OBJ_COFF
1627 ARM_SET_INTERWORK (symbolP, support_interwork);
1628#endif
1629}
1630
c19d1205 1631/* Directives: Mode selection. */
b99bd4ef 1632
c19d1205
ZW
1633/* .syntax [unified|divided] - choose the new unified syntax
1634 (same for Arm and Thumb encoding, modulo slight differences in what
1635 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 1636static void
c19d1205 1637s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 1638{
c19d1205
ZW
1639 char *name, delim;
1640
1641 name = input_line_pointer;
1642 delim = get_symbol_end ();
1643
1644 if (!strcasecmp (name, "unified"))
1645 unified_syntax = TRUE;
1646 else if (!strcasecmp (name, "divided"))
1647 unified_syntax = FALSE;
1648 else
1649 {
1650 as_bad (_("unrecognized syntax mode \"%s\""), name);
1651 return;
1652 }
1653 *input_line_pointer = delim;
b99bd4ef
NC
1654 demand_empty_rest_of_line ();
1655}
1656
c19d1205
ZW
1657/* Directives: sectioning and alignment. */
1658
1659/* Same as s_align_ptwo but align 0 => align 2. */
1660
b99bd4ef 1661static void
c19d1205 1662s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 1663{
a737bd4d 1664 int temp;
c19d1205
ZW
1665 long temp_fill;
1666 long max_alignment = 15;
b99bd4ef
NC
1667
1668 temp = get_absolute_expression ();
c19d1205
ZW
1669 if (temp > max_alignment)
1670 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
1671 else if (temp < 0)
b99bd4ef 1672 {
c19d1205
ZW
1673 as_bad (_("alignment negative. 0 assumed."));
1674 temp = 0;
1675 }
b99bd4ef 1676
c19d1205
ZW
1677 if (*input_line_pointer == ',')
1678 {
1679 input_line_pointer++;
1680 temp_fill = get_absolute_expression ();
b99bd4ef 1681 }
c19d1205
ZW
1682 else
1683 temp_fill = 0;
b99bd4ef 1684
c19d1205
ZW
1685 if (!temp)
1686 temp = 2;
b99bd4ef 1687
c19d1205
ZW
1688 /* Only make a frag if we HAVE to. */
1689 if (temp && !need_pass_2)
1690 frag_align (temp, (int) temp_fill, 0);
1691 demand_empty_rest_of_line ();
1692
1693 record_alignment (now_seg, temp);
b99bd4ef
NC
1694}
1695
c19d1205
ZW
1696static void
1697s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 1698{
c19d1205
ZW
1699 /* We don't support putting frags in the BSS segment, we fake it by
1700 marking in_bss, then looking at s_skip for clues. */
1701 subseg_set (bss_section, 0);
1702 demand_empty_rest_of_line ();
1703 mapping_state (MAP_DATA);
1704}
b99bd4ef 1705
c19d1205
ZW
1706static void
1707s_even (int ignore ATTRIBUTE_UNUSED)
1708{
1709 /* Never make frag if expect extra pass. */
1710 if (!need_pass_2)
1711 frag_align (1, 0, 0);
b99bd4ef 1712
c19d1205 1713 record_alignment (now_seg, 1);
b99bd4ef 1714
c19d1205 1715 demand_empty_rest_of_line ();
b99bd4ef
NC
1716}
1717
c19d1205 1718/* Directives: Literal pools. */
a737bd4d 1719
c19d1205
ZW
1720static literal_pool *
1721find_literal_pool (void)
a737bd4d 1722{
c19d1205 1723 literal_pool * pool;
a737bd4d 1724
c19d1205 1725 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 1726 {
c19d1205
ZW
1727 if (pool->section == now_seg
1728 && pool->sub_section == now_subseg)
1729 break;
a737bd4d
NC
1730 }
1731
c19d1205 1732 return pool;
a737bd4d
NC
1733}
1734
c19d1205
ZW
1735static literal_pool *
1736find_or_make_literal_pool (void)
a737bd4d 1737{
c19d1205
ZW
1738 /* Next literal pool ID number. */
1739 static unsigned int latest_pool_num = 1;
1740 literal_pool * pool;
a737bd4d 1741
c19d1205 1742 pool = find_literal_pool ();
a737bd4d 1743
c19d1205 1744 if (pool == NULL)
a737bd4d 1745 {
c19d1205
ZW
1746 /* Create a new pool. */
1747 pool = xmalloc (sizeof (* pool));
1748 if (! pool)
1749 return NULL;
a737bd4d 1750
c19d1205
ZW
1751 pool->next_free_entry = 0;
1752 pool->section = now_seg;
1753 pool->sub_section = now_subseg;
1754 pool->next = list_of_pools;
1755 pool->symbol = NULL;
1756
1757 /* Add it to the list. */
1758 list_of_pools = pool;
a737bd4d 1759 }
a737bd4d 1760
c19d1205
ZW
1761 /* New pools, and emptied pools, will have a NULL symbol. */
1762 if (pool->symbol == NULL)
a737bd4d 1763 {
c19d1205
ZW
1764 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1765 (valueT) 0, &zero_address_frag);
1766 pool->id = latest_pool_num ++;
a737bd4d
NC
1767 }
1768
c19d1205
ZW
1769 /* Done. */
1770 return pool;
a737bd4d
NC
1771}
1772
c19d1205
ZW
1773/* Add the literal in the global 'inst'
1774 structure to the relevent literal pool. */
b99bd4ef
NC
1775
1776static int
c19d1205 1777add_to_lit_pool (void)
b99bd4ef 1778{
c19d1205
ZW
1779 literal_pool * pool;
1780 unsigned int entry;
b99bd4ef 1781
c19d1205
ZW
1782 pool = find_or_make_literal_pool ();
1783
1784 /* Check if this literal value is already in the pool. */
1785 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 1786 {
c19d1205
ZW
1787 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
1788 && (inst.reloc.exp.X_op == O_constant)
1789 && (pool->literals[entry].X_add_number
1790 == inst.reloc.exp.X_add_number)
1791 && (pool->literals[entry].X_unsigned
1792 == inst.reloc.exp.X_unsigned))
1793 break;
1794
1795 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
1796 && (inst.reloc.exp.X_op == O_symbol)
1797 && (pool->literals[entry].X_add_number
1798 == inst.reloc.exp.X_add_number)
1799 && (pool->literals[entry].X_add_symbol
1800 == inst.reloc.exp.X_add_symbol)
1801 && (pool->literals[entry].X_op_symbol
1802 == inst.reloc.exp.X_op_symbol))
1803 break;
b99bd4ef
NC
1804 }
1805
c19d1205
ZW
1806 /* Do we need to create a new entry? */
1807 if (entry == pool->next_free_entry)
1808 {
1809 if (entry >= MAX_LITERAL_POOL_SIZE)
1810 {
1811 inst.error = _("literal pool overflow");
1812 return FAIL;
1813 }
1814
1815 pool->literals[entry] = inst.reloc.exp;
1816 pool->next_free_entry += 1;
1817 }
b99bd4ef 1818
c19d1205
ZW
1819 inst.reloc.exp.X_op = O_symbol;
1820 inst.reloc.exp.X_add_number = ((int) entry) * 4;
1821 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 1822
c19d1205 1823 return SUCCESS;
b99bd4ef
NC
1824}
1825
c19d1205
ZW
1826/* Can't use symbol_new here, so have to create a symbol and then at
1827 a later date assign it a value. Thats what these functions do. */
e16bb312 1828
c19d1205
ZW
1829static void
1830symbol_locate (symbolS * symbolP,
1831 const char * name, /* It is copied, the caller can modify. */
1832 segT segment, /* Segment identifier (SEG_<something>). */
1833 valueT valu, /* Symbol value. */
1834 fragS * frag) /* Associated fragment. */
1835{
1836 unsigned int name_length;
1837 char * preserved_copy_of_name;
e16bb312 1838
c19d1205
ZW
1839 name_length = strlen (name) + 1; /* +1 for \0. */
1840 obstack_grow (&notes, name, name_length);
1841 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 1842
c19d1205
ZW
1843#ifdef tc_canonicalize_symbol_name
1844 preserved_copy_of_name =
1845 tc_canonicalize_symbol_name (preserved_copy_of_name);
1846#endif
b99bd4ef 1847
c19d1205 1848 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 1849
c19d1205
ZW
1850 S_SET_SEGMENT (symbolP, segment);
1851 S_SET_VALUE (symbolP, valu);
1852 symbol_clear_list_pointers (symbolP);
b99bd4ef 1853
c19d1205 1854 symbol_set_frag (symbolP, frag);
b99bd4ef 1855
c19d1205
ZW
1856 /* Link to end of symbol chain. */
1857 {
1858 extern int symbol_table_frozen;
b99bd4ef 1859
c19d1205
ZW
1860 if (symbol_table_frozen)
1861 abort ();
1862 }
b99bd4ef 1863
c19d1205 1864 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 1865
c19d1205 1866 obj_symbol_new_hook (symbolP);
b99bd4ef 1867
c19d1205
ZW
1868#ifdef tc_symbol_new_hook
1869 tc_symbol_new_hook (symbolP);
1870#endif
1871
1872#ifdef DEBUG_SYMS
1873 verify_symbol_chain (symbol_rootP, symbol_lastP);
1874#endif /* DEBUG_SYMS */
b99bd4ef
NC
1875}
1876
b99bd4ef 1877
c19d1205
ZW
1878static void
1879s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 1880{
c19d1205
ZW
1881 unsigned int entry;
1882 literal_pool * pool;
1883 char sym_name[20];
b99bd4ef 1884
c19d1205
ZW
1885 pool = find_literal_pool ();
1886 if (pool == NULL
1887 || pool->symbol == NULL
1888 || pool->next_free_entry == 0)
1889 return;
b99bd4ef 1890
c19d1205 1891 mapping_state (MAP_DATA);
b99bd4ef 1892
c19d1205
ZW
1893 /* Align pool as you have word accesses.
1894 Only make a frag if we have to. */
1895 if (!need_pass_2)
1896 frag_align (2, 0, 0);
b99bd4ef 1897
c19d1205 1898 record_alignment (now_seg, 2);
b99bd4ef 1899
c19d1205 1900 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 1901
c19d1205
ZW
1902 symbol_locate (pool->symbol, sym_name, now_seg,
1903 (valueT) frag_now_fix (), frag_now);
1904 symbol_table_insert (pool->symbol);
b99bd4ef 1905
c19d1205 1906 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 1907
c19d1205
ZW
1908#if defined OBJ_COFF || defined OBJ_ELF
1909 ARM_SET_INTERWORK (pool->symbol, support_interwork);
1910#endif
6c43fab6 1911
c19d1205
ZW
1912 for (entry = 0; entry < pool->next_free_entry; entry ++)
1913 /* First output the expression in the instruction to the pool. */
1914 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 1915
c19d1205
ZW
1916 /* Mark the pool as empty. */
1917 pool->next_free_entry = 0;
1918 pool->symbol = NULL;
b99bd4ef
NC
1919}
1920
c19d1205
ZW
1921#ifdef OBJ_ELF
1922/* Forward declarations for functions below, in the MD interface
1923 section. */
1924static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
1925static valueT create_unwind_entry (int);
1926static void start_unwind_section (const segT, int);
1927static void add_unwind_opcode (valueT, int);
1928static void flush_pending_unwind (void);
b99bd4ef 1929
c19d1205 1930/* Directives: Data. */
b99bd4ef 1931
c19d1205
ZW
1932static void
1933s_arm_elf_cons (int nbytes)
1934{
1935 expressionS exp;
b99bd4ef 1936
c19d1205
ZW
1937#ifdef md_flush_pending_output
1938 md_flush_pending_output ();
1939#endif
b99bd4ef 1940
c19d1205 1941 if (is_it_end_of_statement ())
b99bd4ef 1942 {
c19d1205
ZW
1943 demand_empty_rest_of_line ();
1944 return;
b99bd4ef
NC
1945 }
1946
c19d1205
ZW
1947#ifdef md_cons_align
1948 md_cons_align (nbytes);
1949#endif
b99bd4ef 1950
c19d1205
ZW
1951 mapping_state (MAP_DATA);
1952 do
b99bd4ef 1953 {
c19d1205
ZW
1954 int reloc;
1955 char *base = input_line_pointer;
b99bd4ef 1956
c19d1205 1957 expression (& exp);
b99bd4ef 1958
c19d1205
ZW
1959 if (exp.X_op != O_symbol)
1960 emit_expr (&exp, (unsigned int) nbytes);
1961 else
1962 {
1963 char *before_reloc = input_line_pointer;
1964 reloc = parse_reloc (&input_line_pointer);
1965 if (reloc == -1)
1966 {
1967 as_bad (_("unrecognized relocation suffix"));
1968 ignore_rest_of_line ();
1969 return;
1970 }
1971 else if (reloc == BFD_RELOC_UNUSED)
1972 emit_expr (&exp, (unsigned int) nbytes);
1973 else
1974 {
1975 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
1976 int size = bfd_get_reloc_size (howto);
b99bd4ef 1977
2fc8bdac
ZW
1978 if (reloc == BFD_RELOC_ARM_PLT32)
1979 {
1980 as_bad (_("(plt) is only valid on branch targets"));
1981 reloc = BFD_RELOC_UNUSED;
1982 size = 0;
1983 }
1984
c19d1205 1985 if (size > nbytes)
2fc8bdac 1986 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
1987 howto->name, nbytes);
1988 else
1989 {
1990 /* We've parsed an expression stopping at O_symbol.
1991 But there may be more expression left now that we
1992 have parsed the relocation marker. Parse it again.
1993 XXX Surely there is a cleaner way to do this. */
1994 char *p = input_line_pointer;
1995 int offset;
1996 char *save_buf = alloca (input_line_pointer - base);
1997 memcpy (save_buf, base, input_line_pointer - base);
1998 memmove (base + (input_line_pointer - before_reloc),
1999 base, before_reloc - base);
2000
2001 input_line_pointer = base + (input_line_pointer-before_reloc);
2002 expression (&exp);
2003 memcpy (base, save_buf, p - base);
2004
2005 offset = nbytes - size;
2006 p = frag_more ((int) nbytes);
2007 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2008 size, &exp, 0, reloc);
2009 }
2010 }
2011 }
b99bd4ef 2012 }
c19d1205 2013 while (*input_line_pointer++ == ',');
b99bd4ef 2014
c19d1205
ZW
2015 /* Put terminator back into stream. */
2016 input_line_pointer --;
2017 demand_empty_rest_of_line ();
b99bd4ef
NC
2018}
2019
b99bd4ef 2020
c19d1205 2021/* Parse a .rel31 directive. */
b99bd4ef 2022
c19d1205
ZW
2023static void
2024s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2025{
2026 expressionS exp;
2027 char *p;
2028 valueT highbit;
b99bd4ef 2029
c19d1205
ZW
2030 highbit = 0;
2031 if (*input_line_pointer == '1')
2032 highbit = 0x80000000;
2033 else if (*input_line_pointer != '0')
2034 as_bad (_("expected 0 or 1"));
b99bd4ef 2035
c19d1205
ZW
2036 input_line_pointer++;
2037 if (*input_line_pointer != ',')
2038 as_bad (_("missing comma"));
2039 input_line_pointer++;
b99bd4ef 2040
c19d1205
ZW
2041#ifdef md_flush_pending_output
2042 md_flush_pending_output ();
2043#endif
b99bd4ef 2044
c19d1205
ZW
2045#ifdef md_cons_align
2046 md_cons_align (4);
2047#endif
b99bd4ef 2048
c19d1205 2049 mapping_state (MAP_DATA);
b99bd4ef 2050
c19d1205 2051 expression (&exp);
b99bd4ef 2052
c19d1205
ZW
2053 p = frag_more (4);
2054 md_number_to_chars (p, highbit, 4);
2055 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2056 BFD_RELOC_ARM_PREL31);
b99bd4ef 2057
c19d1205 2058 demand_empty_rest_of_line ();
b99bd4ef
NC
2059}
2060
c19d1205 2061/* Directives: AEABI stack-unwind tables. */
b99bd4ef 2062
c19d1205 2063/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 2064
c19d1205
ZW
2065static void
2066s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
2067{
2068 demand_empty_rest_of_line ();
2069 /* Mark the start of the function. */
2070 unwind.proc_start = expr_build_dot ();
b99bd4ef 2071
c19d1205
ZW
2072 /* Reset the rest of the unwind info. */
2073 unwind.opcode_count = 0;
2074 unwind.table_entry = NULL;
2075 unwind.personality_routine = NULL;
2076 unwind.personality_index = -1;
2077 unwind.frame_size = 0;
2078 unwind.fp_offset = 0;
2079 unwind.fp_reg = 13;
2080 unwind.fp_used = 0;
2081 unwind.sp_restored = 0;
2082}
b99bd4ef 2083
b99bd4ef 2084
c19d1205
ZW
2085/* Parse a handlerdata directive. Creates the exception handling table entry
2086 for the function. */
b99bd4ef 2087
c19d1205
ZW
2088static void
2089s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
2090{
2091 demand_empty_rest_of_line ();
2092 if (unwind.table_entry)
2093 as_bad (_("dupicate .handlerdata directive"));
f02232aa 2094
c19d1205
ZW
2095 create_unwind_entry (1);
2096}
a737bd4d 2097
c19d1205 2098/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 2099
c19d1205
ZW
2100static void
2101s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
2102{
2103 long where;
2104 char *ptr;
2105 valueT val;
f02232aa 2106
c19d1205 2107 demand_empty_rest_of_line ();
f02232aa 2108
c19d1205
ZW
2109 /* Add eh table entry. */
2110 if (unwind.table_entry == NULL)
2111 val = create_unwind_entry (0);
2112 else
2113 val = 0;
f02232aa 2114
c19d1205
ZW
2115 /* Add index table entry. This is two words. */
2116 start_unwind_section (unwind.saved_seg, 1);
2117 frag_align (2, 0, 0);
2118 record_alignment (now_seg, 2);
b99bd4ef 2119
c19d1205
ZW
2120 ptr = frag_more (8);
2121 where = frag_now_fix () - 8;
f02232aa 2122
c19d1205
ZW
2123 /* Self relative offset of the function start. */
2124 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
2125 BFD_RELOC_ARM_PREL31);
f02232aa 2126
c19d1205
ZW
2127 /* Indicate dependency on EHABI-defined personality routines to the
2128 linker, if it hasn't been done already. */
2129 if (unwind.personality_index >= 0 && unwind.personality_index < 3
2130 && !(marked_pr_dependency & (1 << unwind.personality_index)))
2131 {
2132 static const char *const name[] = {
2133 "__aeabi_unwind_cpp_pr0",
2134 "__aeabi_unwind_cpp_pr1",
2135 "__aeabi_unwind_cpp_pr2"
2136 };
2137 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
2138 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
2139 marked_pr_dependency |= 1 << unwind.personality_index;
2140 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
2141 = marked_pr_dependency;
2142 }
f02232aa 2143
c19d1205
ZW
2144 if (val)
2145 /* Inline exception table entry. */
2146 md_number_to_chars (ptr + 4, val, 4);
2147 else
2148 /* Self relative offset of the table entry. */
2149 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
2150 BFD_RELOC_ARM_PREL31);
f02232aa 2151
c19d1205
ZW
2152 /* Restore the original section. */
2153 subseg_set (unwind.saved_seg, unwind.saved_subseg);
2154}
f02232aa 2155
f02232aa 2156
c19d1205 2157/* Parse an unwind_cantunwind directive. */
b99bd4ef 2158
c19d1205
ZW
2159static void
2160s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
2161{
2162 demand_empty_rest_of_line ();
2163 if (unwind.personality_routine || unwind.personality_index != -1)
2164 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 2165
c19d1205
ZW
2166 unwind.personality_index = -2;
2167}
b99bd4ef 2168
b99bd4ef 2169
c19d1205 2170/* Parse a personalityindex directive. */
b99bd4ef 2171
c19d1205
ZW
2172static void
2173s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
2174{
2175 expressionS exp;
b99bd4ef 2176
c19d1205
ZW
2177 if (unwind.personality_routine || unwind.personality_index != -1)
2178 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 2179
c19d1205 2180 expression (&exp);
b99bd4ef 2181
c19d1205
ZW
2182 if (exp.X_op != O_constant
2183 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 2184 {
c19d1205
ZW
2185 as_bad (_("bad personality routine number"));
2186 ignore_rest_of_line ();
2187 return;
b99bd4ef
NC
2188 }
2189
c19d1205 2190 unwind.personality_index = exp.X_add_number;
b99bd4ef 2191
c19d1205
ZW
2192 demand_empty_rest_of_line ();
2193}
e16bb312 2194
e16bb312 2195
c19d1205 2196/* Parse a personality directive. */
e16bb312 2197
c19d1205
ZW
2198static void
2199s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
2200{
2201 char *name, *p, c;
a737bd4d 2202
c19d1205
ZW
2203 if (unwind.personality_routine || unwind.personality_index != -1)
2204 as_bad (_("duplicate .personality directive"));
a737bd4d 2205
c19d1205
ZW
2206 name = input_line_pointer;
2207 c = get_symbol_end ();
2208 p = input_line_pointer;
2209 unwind.personality_routine = symbol_find_or_make (name);
2210 *p = c;
2211 demand_empty_rest_of_line ();
2212}
e16bb312 2213
e16bb312 2214
c19d1205 2215/* Parse a directive saving core registers. */
e16bb312 2216
c19d1205
ZW
2217static void
2218s_arm_unwind_save_core (void)
e16bb312 2219{
c19d1205
ZW
2220 valueT op;
2221 long range;
2222 int n;
e16bb312 2223
c19d1205
ZW
2224 range = parse_reg_list (&input_line_pointer);
2225 if (range == FAIL)
e16bb312 2226 {
c19d1205
ZW
2227 as_bad (_("expected register list"));
2228 ignore_rest_of_line ();
2229 return;
2230 }
e16bb312 2231
c19d1205 2232 demand_empty_rest_of_line ();
e16bb312 2233
c19d1205
ZW
2234 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
2235 into .unwind_save {..., sp...}. We aren't bothered about the value of
2236 ip because it is clobbered by calls. */
2237 if (unwind.sp_restored && unwind.fp_reg == 12
2238 && (range & 0x3000) == 0x1000)
2239 {
2240 unwind.opcode_count--;
2241 unwind.sp_restored = 0;
2242 range = (range | 0x2000) & ~0x1000;
2243 unwind.pending_offset = 0;
2244 }
e16bb312 2245
c19d1205
ZW
2246 /* See if we can use the short opcodes. These pop a block of upto 8
2247 registers starting with r4, plus maybe r14. */
2248 for (n = 0; n < 8; n++)
2249 {
2250 /* Break at the first non-saved register. */
2251 if ((range & (1 << (n + 4))) == 0)
2252 break;
e16bb312 2253 }
c19d1205
ZW
2254 /* See if there are any other bits set. */
2255 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
e16bb312 2256 {
c19d1205
ZW
2257 /* Use the long form. */
2258 op = 0x8000 | ((range >> 4) & 0xfff);
2259 add_unwind_opcode (op, 2);
e16bb312 2260 }
c19d1205 2261 else
0dd132b6 2262 {
c19d1205
ZW
2263 /* Use the short form. */
2264 if (range & 0x4000)
2265 op = 0xa8; /* Pop r14. */
0dd132b6 2266 else
c19d1205
ZW
2267 op = 0xa0; /* Do not pop r14. */
2268 op |= (n - 1);
2269 add_unwind_opcode (op, 1);
2270 }
0dd132b6 2271
c19d1205
ZW
2272 /* Pop r0-r3. */
2273 if (range & 0xf)
2274 {
2275 op = 0xb100 | (range & 0xf);
2276 add_unwind_opcode (op, 2);
0dd132b6
NC
2277 }
2278
c19d1205
ZW
2279 /* Record the number of bytes pushed. */
2280 for (n = 0; n < 16; n++)
2281 {
2282 if (range & (1 << n))
2283 unwind.frame_size += 4;
2284 }
0dd132b6
NC
2285}
2286
c19d1205
ZW
2287
2288/* Parse a directive saving FPA registers. */
b99bd4ef
NC
2289
2290static void
c19d1205 2291s_arm_unwind_save_fpa (int reg)
b99bd4ef 2292{
c19d1205
ZW
2293 expressionS exp;
2294 int num_regs;
2295 valueT op;
b99bd4ef 2296
c19d1205
ZW
2297 /* Get Number of registers to transfer. */
2298 if (skip_past_comma (&input_line_pointer) != FAIL)
2299 expression (&exp);
2300 else
2301 exp.X_op = O_illegal;
b99bd4ef 2302
c19d1205 2303 if (exp.X_op != O_constant)
b99bd4ef 2304 {
c19d1205
ZW
2305 as_bad (_("expected , <constant>"));
2306 ignore_rest_of_line ();
b99bd4ef
NC
2307 return;
2308 }
2309
c19d1205
ZW
2310 num_regs = exp.X_add_number;
2311
2312 if (num_regs < 1 || num_regs > 4)
b99bd4ef 2313 {
c19d1205
ZW
2314 as_bad (_("number of registers must be in the range [1:4]"));
2315 ignore_rest_of_line ();
b99bd4ef
NC
2316 return;
2317 }
2318
c19d1205 2319 demand_empty_rest_of_line ();
b99bd4ef 2320
c19d1205
ZW
2321 if (reg == 4)
2322 {
2323 /* Short form. */
2324 op = 0xb4 | (num_regs - 1);
2325 add_unwind_opcode (op, 1);
2326 }
b99bd4ef
NC
2327 else
2328 {
c19d1205
ZW
2329 /* Long form. */
2330 op = 0xc800 | (reg << 4) | (num_regs - 1);
2331 add_unwind_opcode (op, 2);
b99bd4ef 2332 }
c19d1205 2333 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
2334}
2335
c19d1205
ZW
2336
2337/* Parse a directive saving VFP registers. */
b99bd4ef
NC
2338
2339static void
c19d1205 2340s_arm_unwind_save_vfp (void)
b99bd4ef 2341{
c19d1205 2342 int count;
ca3f61f7 2343 unsigned int reg;
c19d1205 2344 valueT op;
b99bd4ef 2345
c19d1205
ZW
2346 count = parse_vfp_reg_list (&input_line_pointer, &reg, 1);
2347 if (count == FAIL)
b99bd4ef 2348 {
c19d1205
ZW
2349 as_bad (_("expected register list"));
2350 ignore_rest_of_line ();
b99bd4ef
NC
2351 return;
2352 }
2353
c19d1205 2354 demand_empty_rest_of_line ();
b99bd4ef 2355
c19d1205 2356 if (reg == 8)
b99bd4ef 2357 {
c19d1205
ZW
2358 /* Short form. */
2359 op = 0xb8 | (count - 1);
2360 add_unwind_opcode (op, 1);
b99bd4ef 2361 }
c19d1205 2362 else
b99bd4ef 2363 {
c19d1205
ZW
2364 /* Long form. */
2365 op = 0xb300 | (reg << 4) | (count - 1);
2366 add_unwind_opcode (op, 2);
b99bd4ef 2367 }
c19d1205
ZW
2368 unwind.frame_size += count * 8 + 4;
2369}
b99bd4ef 2370
b99bd4ef 2371
c19d1205
ZW
2372/* Parse a directive saving iWMMXt data registers. */
2373
2374static void
2375s_arm_unwind_save_mmxwr (void)
2376{
2377 int reg;
2378 int hi_reg;
2379 int i;
2380 unsigned mask = 0;
2381 valueT op;
b99bd4ef 2382
c19d1205
ZW
2383 if (*input_line_pointer == '{')
2384 input_line_pointer++;
b99bd4ef 2385
c19d1205 2386 do
b99bd4ef 2387 {
c19d1205 2388 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 2389
c19d1205 2390 if (reg == FAIL)
b99bd4ef 2391 {
c19d1205
ZW
2392 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
2393 goto error;
b99bd4ef
NC
2394 }
2395
c19d1205
ZW
2396 if (mask >> reg)
2397 as_tsktsk (_("register list not in ascending order"));
2398 mask |= 1 << reg;
b99bd4ef 2399
c19d1205
ZW
2400 if (*input_line_pointer == '-')
2401 {
2402 input_line_pointer++;
2403 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
2404 if (hi_reg == FAIL)
2405 {
2406 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
2407 goto error;
2408 }
2409 else if (reg >= hi_reg)
2410 {
2411 as_bad (_("bad register range"));
2412 goto error;
2413 }
2414 for (; reg < hi_reg; reg++)
2415 mask |= 1 << reg;
2416 }
2417 }
2418 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 2419
c19d1205
ZW
2420 if (*input_line_pointer == '}')
2421 input_line_pointer++;
b99bd4ef 2422
c19d1205 2423 demand_empty_rest_of_line ();
b99bd4ef 2424
c19d1205
ZW
2425 /* Generate any deferred opcodes becuuse we're going to be looking at
2426 the list. */
2427 flush_pending_unwind ();
b99bd4ef 2428
c19d1205 2429 for (i = 0; i < 16; i++)
b99bd4ef 2430 {
c19d1205
ZW
2431 if (mask & (1 << i))
2432 unwind.frame_size += 8;
b99bd4ef
NC
2433 }
2434
c19d1205
ZW
2435 /* Attempt to combine with a previous opcode. We do this because gcc
2436 likes to output separate unwind directives for a single block of
2437 registers. */
2438 if (unwind.opcode_count > 0)
b99bd4ef 2439 {
c19d1205
ZW
2440 i = unwind.opcodes[unwind.opcode_count - 1];
2441 if ((i & 0xf8) == 0xc0)
2442 {
2443 i &= 7;
2444 /* Only merge if the blocks are contiguous. */
2445 if (i < 6)
2446 {
2447 if ((mask & 0xfe00) == (1 << 9))
2448 {
2449 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
2450 unwind.opcode_count--;
2451 }
2452 }
2453 else if (i == 6 && unwind.opcode_count >= 2)
2454 {
2455 i = unwind.opcodes[unwind.opcode_count - 2];
2456 reg = i >> 4;
2457 i &= 0xf;
b99bd4ef 2458
c19d1205
ZW
2459 op = 0xffff << (reg - 1);
2460 if (reg > 0
2461 || ((mask & op) == (1u << (reg - 1))))
2462 {
2463 op = (1 << (reg + i + 1)) - 1;
2464 op &= ~((1 << reg) - 1);
2465 mask |= op;
2466 unwind.opcode_count -= 2;
2467 }
2468 }
2469 }
b99bd4ef
NC
2470 }
2471
c19d1205
ZW
2472 hi_reg = 15;
2473 /* We want to generate opcodes in the order the registers have been
2474 saved, ie. descending order. */
2475 for (reg = 15; reg >= -1; reg--)
b99bd4ef 2476 {
c19d1205
ZW
2477 /* Save registers in blocks. */
2478 if (reg < 0
2479 || !(mask & (1 << reg)))
2480 {
2481 /* We found an unsaved reg. Generate opcodes to save the
2482 preceeding block. */
2483 if (reg != hi_reg)
2484 {
2485 if (reg == 9)
2486 {
2487 /* Short form. */
2488 op = 0xc0 | (hi_reg - 10);
2489 add_unwind_opcode (op, 1);
2490 }
2491 else
2492 {
2493 /* Long form. */
2494 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
2495 add_unwind_opcode (op, 2);
2496 }
2497 }
2498 hi_reg = reg - 1;
2499 }
b99bd4ef
NC
2500 }
2501
c19d1205
ZW
2502 return;
2503error:
2504 ignore_rest_of_line ();
b99bd4ef
NC
2505}
2506
2507static void
c19d1205 2508s_arm_unwind_save_mmxwcg (void)
b99bd4ef 2509{
c19d1205
ZW
2510 int reg;
2511 int hi_reg;
2512 unsigned mask = 0;
2513 valueT op;
b99bd4ef 2514
c19d1205
ZW
2515 if (*input_line_pointer == '{')
2516 input_line_pointer++;
b99bd4ef 2517
c19d1205 2518 do
b99bd4ef 2519 {
c19d1205 2520 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 2521
c19d1205
ZW
2522 if (reg == FAIL)
2523 {
2524 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
2525 goto error;
2526 }
b99bd4ef 2527
c19d1205
ZW
2528 reg -= 8;
2529 if (mask >> reg)
2530 as_tsktsk (_("register list not in ascending order"));
2531 mask |= 1 << reg;
b99bd4ef 2532
c19d1205
ZW
2533 if (*input_line_pointer == '-')
2534 {
2535 input_line_pointer++;
2536 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
2537 if (hi_reg == FAIL)
2538 {
2539 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
2540 goto error;
2541 }
2542 else if (reg >= hi_reg)
2543 {
2544 as_bad (_("bad register range"));
2545 goto error;
2546 }
2547 for (; reg < hi_reg; reg++)
2548 mask |= 1 << reg;
2549 }
b99bd4ef 2550 }
c19d1205 2551 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 2552
c19d1205
ZW
2553 if (*input_line_pointer == '}')
2554 input_line_pointer++;
b99bd4ef 2555
c19d1205
ZW
2556 demand_empty_rest_of_line ();
2557
2558 /* Generate any deferred opcodes becuuse we're going to be looking at
2559 the list. */
2560 flush_pending_unwind ();
b99bd4ef 2561
c19d1205 2562 for (reg = 0; reg < 16; reg++)
b99bd4ef 2563 {
c19d1205
ZW
2564 if (mask & (1 << reg))
2565 unwind.frame_size += 4;
b99bd4ef 2566 }
c19d1205
ZW
2567 op = 0xc700 | mask;
2568 add_unwind_opcode (op, 2);
2569 return;
2570error:
2571 ignore_rest_of_line ();
b99bd4ef
NC
2572}
2573
c19d1205
ZW
2574
2575/* Parse an unwind_save directive. */
2576
b99bd4ef 2577static void
c19d1205 2578s_arm_unwind_save (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2579{
c19d1205
ZW
2580 char *peek;
2581 struct reg_entry *reg;
2582 bfd_boolean had_brace = FALSE;
b99bd4ef 2583
c19d1205
ZW
2584 /* Figure out what sort of save we have. */
2585 peek = input_line_pointer;
b99bd4ef 2586
c19d1205 2587 if (*peek == '{')
b99bd4ef 2588 {
c19d1205
ZW
2589 had_brace = TRUE;
2590 peek++;
b99bd4ef
NC
2591 }
2592
c19d1205 2593 reg = arm_reg_parse_multi (&peek);
b99bd4ef 2594
c19d1205 2595 if (!reg)
b99bd4ef 2596 {
c19d1205
ZW
2597 as_bad (_("register expected"));
2598 ignore_rest_of_line ();
b99bd4ef
NC
2599 return;
2600 }
2601
c19d1205 2602 switch (reg->type)
b99bd4ef 2603 {
c19d1205
ZW
2604 case REG_TYPE_FN:
2605 if (had_brace)
2606 {
2607 as_bad (_("FPA .unwind_save does not take a register list"));
2608 ignore_rest_of_line ();
2609 return;
2610 }
2611 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 2612 return;
c19d1205
ZW
2613
2614 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
2615 case REG_TYPE_VFD: s_arm_unwind_save_vfp (); return;
2616 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
2617 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
2618
2619 default:
2620 as_bad (_(".unwind_save does not support this kind of register"));
2621 ignore_rest_of_line ();
b99bd4ef 2622 }
c19d1205 2623}
b99bd4ef 2624
b99bd4ef 2625
c19d1205
ZW
2626/* Parse an unwind_movsp directive. */
2627
2628static void
2629s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
2630{
2631 int reg;
2632 valueT op;
2633
2634 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2635 if (reg == FAIL)
b99bd4ef 2636 {
c19d1205
ZW
2637 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
2638 ignore_rest_of_line ();
b99bd4ef
NC
2639 return;
2640 }
c19d1205 2641 demand_empty_rest_of_line ();
b99bd4ef 2642
c19d1205 2643 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 2644 {
c19d1205 2645 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
2646 return;
2647 }
2648
c19d1205
ZW
2649 if (unwind.fp_reg != REG_SP)
2650 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 2651
c19d1205
ZW
2652 /* Generate opcode to restore the value. */
2653 op = 0x90 | reg;
2654 add_unwind_opcode (op, 1);
2655
2656 /* Record the information for later. */
2657 unwind.fp_reg = reg;
2658 unwind.fp_offset = unwind.frame_size;
2659 unwind.sp_restored = 1;
b05fe5cf
ZW
2660}
2661
c19d1205
ZW
2662/* Parse an unwind_pad directive. */
2663
b05fe5cf 2664static void
c19d1205 2665s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 2666{
c19d1205 2667 int offset;
b05fe5cf 2668
c19d1205
ZW
2669 if (immediate_for_directive (&offset) == FAIL)
2670 return;
b99bd4ef 2671
c19d1205
ZW
2672 if (offset & 3)
2673 {
2674 as_bad (_("stack increment must be multiple of 4"));
2675 ignore_rest_of_line ();
2676 return;
2677 }
b99bd4ef 2678
c19d1205
ZW
2679 /* Don't generate any opcodes, just record the details for later. */
2680 unwind.frame_size += offset;
2681 unwind.pending_offset += offset;
2682
2683 demand_empty_rest_of_line ();
2684}
2685
2686/* Parse an unwind_setfp directive. */
2687
2688static void
2689s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2690{
c19d1205
ZW
2691 int sp_reg;
2692 int fp_reg;
2693 int offset;
2694
2695 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2696 if (skip_past_comma (&input_line_pointer) == FAIL)
2697 sp_reg = FAIL;
2698 else
2699 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 2700
c19d1205
ZW
2701 if (fp_reg == FAIL || sp_reg == FAIL)
2702 {
2703 as_bad (_("expected <reg>, <reg>"));
2704 ignore_rest_of_line ();
2705 return;
2706 }
b99bd4ef 2707
c19d1205
ZW
2708 /* Optional constant. */
2709 if (skip_past_comma (&input_line_pointer) != FAIL)
2710 {
2711 if (immediate_for_directive (&offset) == FAIL)
2712 return;
2713 }
2714 else
2715 offset = 0;
a737bd4d 2716
c19d1205 2717 demand_empty_rest_of_line ();
a737bd4d 2718
c19d1205 2719 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 2720 {
c19d1205
ZW
2721 as_bad (_("register must be either sp or set by a previous"
2722 "unwind_movsp directive"));
2723 return;
a737bd4d
NC
2724 }
2725
c19d1205
ZW
2726 /* Don't generate any opcodes, just record the information for later. */
2727 unwind.fp_reg = fp_reg;
2728 unwind.fp_used = 1;
2729 if (sp_reg == 13)
2730 unwind.fp_offset = unwind.frame_size - offset;
2731 else
2732 unwind.fp_offset -= offset;
a737bd4d
NC
2733}
2734
c19d1205
ZW
2735/* Parse an unwind_raw directive. */
2736
2737static void
2738s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 2739{
c19d1205
ZW
2740 expressionS exp;
2741 /* This is an arbitary limit. */
2742 unsigned char op[16];
2743 int count;
a737bd4d 2744
c19d1205
ZW
2745 expression (&exp);
2746 if (exp.X_op == O_constant
2747 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 2748 {
c19d1205
ZW
2749 unwind.frame_size += exp.X_add_number;
2750 expression (&exp);
2751 }
2752 else
2753 exp.X_op = O_illegal;
a737bd4d 2754
c19d1205
ZW
2755 if (exp.X_op != O_constant)
2756 {
2757 as_bad (_("expected <offset>, <opcode>"));
2758 ignore_rest_of_line ();
2759 return;
2760 }
a737bd4d 2761
c19d1205 2762 count = 0;
a737bd4d 2763
c19d1205
ZW
2764 /* Parse the opcode. */
2765 for (;;)
2766 {
2767 if (count >= 16)
2768 {
2769 as_bad (_("unwind opcode too long"));
2770 ignore_rest_of_line ();
a737bd4d 2771 }
c19d1205 2772 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 2773 {
c19d1205
ZW
2774 as_bad (_("invalid unwind opcode"));
2775 ignore_rest_of_line ();
2776 return;
a737bd4d 2777 }
c19d1205 2778 op[count++] = exp.X_add_number;
a737bd4d 2779
c19d1205
ZW
2780 /* Parse the next byte. */
2781 if (skip_past_comma (&input_line_pointer) == FAIL)
2782 break;
a737bd4d 2783
c19d1205
ZW
2784 expression (&exp);
2785 }
b99bd4ef 2786
c19d1205
ZW
2787 /* Add the opcode bytes in reverse order. */
2788 while (count--)
2789 add_unwind_opcode (op[count], 1);
b99bd4ef 2790
c19d1205 2791 demand_empty_rest_of_line ();
b99bd4ef 2792}
c19d1205 2793#endif /* OBJ_ELF */
b99bd4ef 2794
c19d1205
ZW
2795/* This table describes all the machine specific pseudo-ops the assembler
2796 has to support. The fields are:
2797 pseudo-op name without dot
2798 function to call to execute this pseudo-op
2799 Integer arg to pass to the function. */
b99bd4ef 2800
c19d1205 2801const pseudo_typeS md_pseudo_table[] =
b99bd4ef 2802{
c19d1205
ZW
2803 /* Never called because '.req' does not start a line. */
2804 { "req", s_req, 0 },
2805 { "unreq", s_unreq, 0 },
2806 { "bss", s_bss, 0 },
2807 { "align", s_align, 0 },
2808 { "arm", s_arm, 0 },
2809 { "thumb", s_thumb, 0 },
2810 { "code", s_code, 0 },
2811 { "force_thumb", s_force_thumb, 0 },
2812 { "thumb_func", s_thumb_func, 0 },
2813 { "thumb_set", s_thumb_set, 0 },
2814 { "even", s_even, 0 },
2815 { "ltorg", s_ltorg, 0 },
2816 { "pool", s_ltorg, 0 },
2817 { "syntax", s_syntax, 0 },
2818#ifdef OBJ_ELF
2819 { "word", s_arm_elf_cons, 4 },
2820 { "long", s_arm_elf_cons, 4 },
2821 { "rel31", s_arm_rel31, 0 },
2822 { "fnstart", s_arm_unwind_fnstart, 0 },
2823 { "fnend", s_arm_unwind_fnend, 0 },
2824 { "cantunwind", s_arm_unwind_cantunwind, 0 },
2825 { "personality", s_arm_unwind_personality, 0 },
2826 { "personalityindex", s_arm_unwind_personalityindex, 0 },
2827 { "handlerdata", s_arm_unwind_handlerdata, 0 },
2828 { "save", s_arm_unwind_save, 0 },
2829 { "movsp", s_arm_unwind_movsp, 0 },
2830 { "pad", s_arm_unwind_pad, 0 },
2831 { "setfp", s_arm_unwind_setfp, 0 },
2832 { "unwind_raw", s_arm_unwind_raw, 0 },
2833#else
2834 { "word", cons, 4},
2835#endif
2836 { "extend", float_cons, 'x' },
2837 { "ldouble", float_cons, 'x' },
2838 { "packed", float_cons, 'p' },
2839 { 0, 0, 0 }
2840};
2841\f
2842/* Parser functions used exclusively in instruction operands. */
b99bd4ef 2843
c19d1205
ZW
2844/* Generic immediate-value read function for use in insn parsing.
2845 STR points to the beginning of the immediate (the leading #);
2846 VAL receives the value; if the value is outside [MIN, MAX]
2847 issue an error. PREFIX_OPT is true if the immediate prefix is
2848 optional. */
b99bd4ef 2849
c19d1205
ZW
2850static int
2851parse_immediate (char **str, int *val, int min, int max,
2852 bfd_boolean prefix_opt)
2853{
2854 expressionS exp;
2855 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
2856 if (exp.X_op != O_constant)
b99bd4ef 2857 {
c19d1205
ZW
2858 inst.error = _("constant expression required");
2859 return FAIL;
2860 }
b99bd4ef 2861
c19d1205
ZW
2862 if (exp.X_add_number < min || exp.X_add_number > max)
2863 {
2864 inst.error = _("immediate value out of range");
2865 return FAIL;
2866 }
b99bd4ef 2867
c19d1205
ZW
2868 *val = exp.X_add_number;
2869 return SUCCESS;
2870}
b99bd4ef 2871
c19d1205
ZW
2872/* Returns the pseudo-register number of an FPA immediate constant,
2873 or FAIL if there isn't a valid constant here. */
b99bd4ef 2874
c19d1205
ZW
2875static int
2876parse_fpa_immediate (char ** str)
2877{
2878 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2879 char * save_in;
2880 expressionS exp;
2881 int i;
2882 int j;
b99bd4ef 2883
c19d1205
ZW
2884 /* First try and match exact strings, this is to guarantee
2885 that some formats will work even for cross assembly. */
b99bd4ef 2886
c19d1205
ZW
2887 for (i = 0; fp_const[i]; i++)
2888 {
2889 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 2890 {
c19d1205 2891 char *start = *str;
b99bd4ef 2892
c19d1205
ZW
2893 *str += strlen (fp_const[i]);
2894 if (is_end_of_line[(unsigned char) **str])
2895 return i + 8;
2896 *str = start;
2897 }
2898 }
b99bd4ef 2899
c19d1205
ZW
2900 /* Just because we didn't get a match doesn't mean that the constant
2901 isn't valid, just that it is in a format that we don't
2902 automatically recognize. Try parsing it with the standard
2903 expression routines. */
b99bd4ef 2904
c19d1205 2905 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 2906
c19d1205
ZW
2907 /* Look for a raw floating point number. */
2908 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
2909 && is_end_of_line[(unsigned char) *save_in])
2910 {
2911 for (i = 0; i < NUM_FLOAT_VALS; i++)
2912 {
2913 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 2914 {
c19d1205
ZW
2915 if (words[j] != fp_values[i][j])
2916 break;
b99bd4ef
NC
2917 }
2918
c19d1205 2919 if (j == MAX_LITTLENUMS)
b99bd4ef 2920 {
c19d1205
ZW
2921 *str = save_in;
2922 return i + 8;
b99bd4ef
NC
2923 }
2924 }
2925 }
b99bd4ef 2926
c19d1205
ZW
2927 /* Try and parse a more complex expression, this will probably fail
2928 unless the code uses a floating point prefix (eg "0f"). */
2929 save_in = input_line_pointer;
2930 input_line_pointer = *str;
2931 if (expression (&exp) == absolute_section
2932 && exp.X_op == O_big
2933 && exp.X_add_number < 0)
2934 {
2935 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
2936 Ditto for 15. */
2937 if (gen_to_words (words, 5, (long) 15) == 0)
2938 {
2939 for (i = 0; i < NUM_FLOAT_VALS; i++)
2940 {
2941 for (j = 0; j < MAX_LITTLENUMS; j++)
2942 {
2943 if (words[j] != fp_values[i][j])
2944 break;
2945 }
b99bd4ef 2946
c19d1205
ZW
2947 if (j == MAX_LITTLENUMS)
2948 {
2949 *str = input_line_pointer;
2950 input_line_pointer = save_in;
2951 return i + 8;
2952 }
2953 }
2954 }
b99bd4ef
NC
2955 }
2956
c19d1205
ZW
2957 *str = input_line_pointer;
2958 input_line_pointer = save_in;
2959 inst.error = _("invalid FPA immediate expression");
2960 return FAIL;
b99bd4ef
NC
2961}
2962
c19d1205
ZW
2963/* Shift operands. */
2964enum shift_kind
b99bd4ef 2965{
c19d1205
ZW
2966 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
2967};
b99bd4ef 2968
c19d1205
ZW
2969struct asm_shift_name
2970{
2971 const char *name;
2972 enum shift_kind kind;
2973};
b99bd4ef 2974
c19d1205
ZW
2975/* Third argument to parse_shift. */
2976enum parse_shift_mode
2977{
2978 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
2979 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
2980 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
2981 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
2982 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
2983};
b99bd4ef 2984
c19d1205
ZW
2985/* Parse a <shift> specifier on an ARM data processing instruction.
2986 This has three forms:
b99bd4ef 2987
c19d1205
ZW
2988 (LSL|LSR|ASL|ASR|ROR) Rs
2989 (LSL|LSR|ASL|ASR|ROR) #imm
2990 RRX
b99bd4ef 2991
c19d1205
ZW
2992 Note that ASL is assimilated to LSL in the instruction encoding, and
2993 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 2994
c19d1205
ZW
2995static int
2996parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 2997{
c19d1205
ZW
2998 const struct asm_shift_name *shift_name;
2999 enum shift_kind shift;
3000 char *s = *str;
3001 char *p = s;
3002 int reg;
b99bd4ef 3003
c19d1205
ZW
3004 for (p = *str; ISALPHA (*p); p++)
3005 ;
b99bd4ef 3006
c19d1205 3007 if (p == *str)
b99bd4ef 3008 {
c19d1205
ZW
3009 inst.error = _("shift expression expected");
3010 return FAIL;
b99bd4ef
NC
3011 }
3012
c19d1205
ZW
3013 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
3014
3015 if (shift_name == NULL)
b99bd4ef 3016 {
c19d1205
ZW
3017 inst.error = _("shift expression expected");
3018 return FAIL;
b99bd4ef
NC
3019 }
3020
c19d1205 3021 shift = shift_name->kind;
b99bd4ef 3022
c19d1205
ZW
3023 switch (mode)
3024 {
3025 case NO_SHIFT_RESTRICT:
3026 case SHIFT_IMMEDIATE: break;
b99bd4ef 3027
c19d1205
ZW
3028 case SHIFT_LSL_OR_ASR_IMMEDIATE:
3029 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
3030 {
3031 inst.error = _("'LSL' or 'ASR' required");
3032 return FAIL;
3033 }
3034 break;
b99bd4ef 3035
c19d1205
ZW
3036 case SHIFT_LSL_IMMEDIATE:
3037 if (shift != SHIFT_LSL)
3038 {
3039 inst.error = _("'LSL' required");
3040 return FAIL;
3041 }
3042 break;
b99bd4ef 3043
c19d1205
ZW
3044 case SHIFT_ASR_IMMEDIATE:
3045 if (shift != SHIFT_ASR)
3046 {
3047 inst.error = _("'ASR' required");
3048 return FAIL;
3049 }
3050 break;
b99bd4ef 3051
c19d1205
ZW
3052 default: abort ();
3053 }
b99bd4ef 3054
c19d1205
ZW
3055 if (shift != SHIFT_RRX)
3056 {
3057 /* Whitespace can appear here if the next thing is a bare digit. */
3058 skip_whitespace (p);
b99bd4ef 3059
c19d1205
ZW
3060 if (mode == NO_SHIFT_RESTRICT
3061 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3062 {
3063 inst.operands[i].imm = reg;
3064 inst.operands[i].immisreg = 1;
3065 }
3066 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3067 return FAIL;
3068 }
3069 inst.operands[i].shift_kind = shift;
3070 inst.operands[i].shifted = 1;
3071 *str = p;
3072 return SUCCESS;
b99bd4ef
NC
3073}
3074
c19d1205 3075/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 3076
c19d1205
ZW
3077 #<immediate>
3078 #<immediate>, <rotate>
3079 <Rm>
3080 <Rm>, <shift>
b99bd4ef 3081
c19d1205
ZW
3082 where <shift> is defined by parse_shift above, and <rotate> is a
3083 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 3084 is deferred to md_apply_fix. */
b99bd4ef 3085
c19d1205
ZW
3086static int
3087parse_shifter_operand (char **str, int i)
3088{
3089 int value;
3090 expressionS expr;
b99bd4ef 3091
c19d1205
ZW
3092 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
3093 {
3094 inst.operands[i].reg = value;
3095 inst.operands[i].isreg = 1;
b99bd4ef 3096
c19d1205
ZW
3097 /* parse_shift will override this if appropriate */
3098 inst.reloc.exp.X_op = O_constant;
3099 inst.reloc.exp.X_add_number = 0;
b99bd4ef 3100
c19d1205
ZW
3101 if (skip_past_comma (str) == FAIL)
3102 return SUCCESS;
b99bd4ef 3103
c19d1205
ZW
3104 /* Shift operation on register. */
3105 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
3106 }
3107
c19d1205
ZW
3108 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
3109 return FAIL;
b99bd4ef 3110
c19d1205 3111 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 3112 {
c19d1205
ZW
3113 /* #x, y -- ie explicit rotation by Y. */
3114 if (my_get_expression (&expr, str, GE_NO_PREFIX))
3115 return FAIL;
b99bd4ef 3116
c19d1205
ZW
3117 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
3118 {
3119 inst.error = _("constant expression expected");
3120 return FAIL;
3121 }
b99bd4ef 3122
c19d1205
ZW
3123 value = expr.X_add_number;
3124 if (value < 0 || value > 30 || value % 2 != 0)
3125 {
3126 inst.error = _("invalid rotation");
3127 return FAIL;
3128 }
3129 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
3130 {
3131 inst.error = _("invalid constant");
3132 return FAIL;
3133 }
09d92015 3134
55cf6793 3135 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
3136 inst.reloc.exp.X_add_number
3137 = (((inst.reloc.exp.X_add_number << (32 - value))
3138 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
3139 }
3140
c19d1205
ZW
3141 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
3142 inst.reloc.pc_rel = 0;
3143 return SUCCESS;
09d92015
MM
3144}
3145
c19d1205
ZW
3146/* Parse all forms of an ARM address expression. Information is written
3147 to inst.operands[i] and/or inst.reloc.
09d92015 3148
c19d1205 3149 Preindexed addressing (.preind=1):
09d92015 3150
c19d1205
ZW
3151 [Rn, #offset] .reg=Rn .reloc.exp=offset
3152 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3153 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3154 .shift_kind=shift .reloc.exp=shift_imm
09d92015 3155
c19d1205 3156 These three may have a trailing ! which causes .writeback to be set also.
09d92015 3157
c19d1205 3158 Postindexed addressing (.postind=1, .writeback=1):
09d92015 3159
c19d1205
ZW
3160 [Rn], #offset .reg=Rn .reloc.exp=offset
3161 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3162 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3163 .shift_kind=shift .reloc.exp=shift_imm
09d92015 3164
c19d1205 3165 Unindexed addressing (.preind=0, .postind=0):
09d92015 3166
c19d1205 3167 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 3168
c19d1205 3169 Other:
09d92015 3170
c19d1205
ZW
3171 [Rn]{!} shorthand for [Rn,#0]{!}
3172 =immediate .isreg=0 .reloc.exp=immediate
3173 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 3174
c19d1205
ZW
3175 It is the caller's responsibility to check for addressing modes not
3176 supported by the instruction, and to set inst.reloc.type. */
3177
3178static int
3179parse_address (char **str, int i)
09d92015 3180{
c19d1205
ZW
3181 char *p = *str;
3182 int reg;
09d92015 3183
c19d1205 3184 if (skip_past_char (&p, '[') == FAIL)
09d92015 3185 {
c19d1205
ZW
3186 if (skip_past_char (&p, '=') == FAIL)
3187 {
3188 /* bare address - translate to PC-relative offset */
3189 inst.reloc.pc_rel = 1;
3190 inst.operands[i].reg = REG_PC;
3191 inst.operands[i].isreg = 1;
3192 inst.operands[i].preind = 1;
3193 }
3194 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 3195
c19d1205
ZW
3196 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
3197 return FAIL;
09d92015 3198
c19d1205
ZW
3199 *str = p;
3200 return SUCCESS;
09d92015
MM
3201 }
3202
c19d1205 3203 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 3204 {
c19d1205
ZW
3205 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3206 return FAIL;
09d92015 3207 }
c19d1205
ZW
3208 inst.operands[i].reg = reg;
3209 inst.operands[i].isreg = 1;
09d92015 3210
c19d1205 3211 if (skip_past_comma (&p) == SUCCESS)
09d92015 3212 {
c19d1205 3213 inst.operands[i].preind = 1;
09d92015 3214
c19d1205
ZW
3215 if (*p == '+') p++;
3216 else if (*p == '-') p++, inst.operands[i].negative = 1;
3217
3218 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 3219 {
c19d1205
ZW
3220 inst.operands[i].imm = reg;
3221 inst.operands[i].immisreg = 1;
3222
3223 if (skip_past_comma (&p) == SUCCESS)
3224 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
3225 return FAIL;
3226 }
3227 else
3228 {
3229 if (inst.operands[i].negative)
3230 {
3231 inst.operands[i].negative = 0;
3232 p--;
3233 }
3234 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3235 return FAIL;
09d92015
MM
3236 }
3237 }
3238
c19d1205 3239 if (skip_past_char (&p, ']') == FAIL)
09d92015 3240 {
c19d1205
ZW
3241 inst.error = _("']' expected");
3242 return FAIL;
09d92015
MM
3243 }
3244
c19d1205
ZW
3245 if (skip_past_char (&p, '!') == SUCCESS)
3246 inst.operands[i].writeback = 1;
09d92015 3247
c19d1205 3248 else if (skip_past_comma (&p) == SUCCESS)
09d92015 3249 {
c19d1205
ZW
3250 if (skip_past_char (&p, '{') == SUCCESS)
3251 {
3252 /* [Rn], {expr} - unindexed, with option */
3253 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 3254 0, 255, TRUE) == FAIL)
c19d1205 3255 return FAIL;
09d92015 3256
c19d1205
ZW
3257 if (skip_past_char (&p, '}') == FAIL)
3258 {
3259 inst.error = _("'}' expected at end of 'option' field");
3260 return FAIL;
3261 }
3262 if (inst.operands[i].preind)
3263 {
3264 inst.error = _("cannot combine index with option");
3265 return FAIL;
3266 }
3267 *str = p;
3268 return SUCCESS;
09d92015 3269 }
c19d1205
ZW
3270 else
3271 {
3272 inst.operands[i].postind = 1;
3273 inst.operands[i].writeback = 1;
09d92015 3274
c19d1205
ZW
3275 if (inst.operands[i].preind)
3276 {
3277 inst.error = _("cannot combine pre- and post-indexing");
3278 return FAIL;
3279 }
09d92015 3280
c19d1205
ZW
3281 if (*p == '+') p++;
3282 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 3283
c19d1205
ZW
3284 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3285 {
3286 inst.operands[i].imm = reg;
3287 inst.operands[i].immisreg = 1;
a737bd4d 3288
c19d1205
ZW
3289 if (skip_past_comma (&p) == SUCCESS)
3290 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
3291 return FAIL;
3292 }
3293 else
3294 {
3295 if (inst.operands[i].negative)
3296 {
3297 inst.operands[i].negative = 0;
3298 p--;
3299 }
3300 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3301 return FAIL;
3302 }
3303 }
a737bd4d
NC
3304 }
3305
c19d1205
ZW
3306 /* If at this point neither .preind nor .postind is set, we have a
3307 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
3308 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
3309 {
3310 inst.operands[i].preind = 1;
3311 inst.reloc.exp.X_op = O_constant;
3312 inst.reloc.exp.X_add_number = 0;
3313 }
3314 *str = p;
3315 return SUCCESS;
a737bd4d
NC
3316}
3317
c19d1205 3318/* Miscellaneous. */
a737bd4d 3319
c19d1205
ZW
3320/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
3321 or a bitmask suitable to be or-ed into the ARM msr instruction. */
3322static int
3323parse_psr (char **str)
09d92015 3324{
c19d1205
ZW
3325 char *p;
3326 unsigned long psr_field;
09d92015 3327
c19d1205
ZW
3328 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
3329 feature for ease of use and backwards compatibility. */
3330 p = *str;
3331 if (*p == 's' || *p == 'S')
3332 psr_field = SPSR_BIT;
3333 else if (*p == 'c' || *p == 'C')
3334 psr_field = 0;
3335 else
3336 goto error;
09d92015 3337
c19d1205
ZW
3338 p++;
3339 if (strncasecmp (p, "PSR", 3) != 0)
3340 goto error;
3341 p += 3;
09d92015 3342
c19d1205
ZW
3343 if (*p == '_')
3344 {
3345 /* A suffix follows. */
3346 const struct asm_psr *psr;
3347 char *start;
a737bd4d 3348
c19d1205
ZW
3349 p++;
3350 start = p;
a737bd4d 3351
c19d1205
ZW
3352 do
3353 p++;
3354 while (ISALNUM (*p) || *p == '_');
a737bd4d 3355
c19d1205
ZW
3356 psr = hash_find_n (arm_psr_hsh, start, p - start);
3357 if (!psr)
3358 goto error;
a737bd4d 3359
c19d1205 3360 psr_field |= psr->field;
a737bd4d 3361 }
c19d1205 3362 else
a737bd4d 3363 {
c19d1205
ZW
3364 if (ISALNUM (*p))
3365 goto error; /* Garbage after "[CS]PSR". */
3366
3367 psr_field |= (PSR_c | PSR_f);
a737bd4d 3368 }
c19d1205
ZW
3369 *str = p;
3370 return psr_field;
a737bd4d 3371
c19d1205
ZW
3372 error:
3373 inst.error = _("flag for {c}psr instruction expected");
3374 return FAIL;
a737bd4d
NC
3375}
3376
c19d1205
ZW
3377/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
3378 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 3379
c19d1205
ZW
3380static int
3381parse_cps_flags (char **str)
a737bd4d 3382{
c19d1205
ZW
3383 int val = 0;
3384 int saw_a_flag = 0;
3385 char *s = *str;
a737bd4d 3386
c19d1205
ZW
3387 for (;;)
3388 switch (*s++)
3389 {
3390 case '\0': case ',':
3391 goto done;
a737bd4d 3392
c19d1205
ZW
3393 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
3394 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
3395 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 3396
c19d1205
ZW
3397 default:
3398 inst.error = _("unrecognized CPS flag");
3399 return FAIL;
3400 }
a737bd4d 3401
c19d1205
ZW
3402 done:
3403 if (saw_a_flag == 0)
a737bd4d 3404 {
c19d1205
ZW
3405 inst.error = _("missing CPS flags");
3406 return FAIL;
a737bd4d 3407 }
a737bd4d 3408
c19d1205
ZW
3409 *str = s - 1;
3410 return val;
a737bd4d
NC
3411}
3412
c19d1205
ZW
3413/* Parse an endian specifier ("BE" or "LE", case insensitive);
3414 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
3415
3416static int
c19d1205 3417parse_endian_specifier (char **str)
a737bd4d 3418{
c19d1205
ZW
3419 int little_endian;
3420 char *s = *str;
a737bd4d 3421
c19d1205
ZW
3422 if (strncasecmp (s, "BE", 2))
3423 little_endian = 0;
3424 else if (strncasecmp (s, "LE", 2))
3425 little_endian = 1;
3426 else
a737bd4d 3427 {
c19d1205 3428 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
3429 return FAIL;
3430 }
3431
c19d1205 3432 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 3433 {
c19d1205 3434 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
3435 return FAIL;
3436 }
3437
c19d1205
ZW
3438 *str = s + 2;
3439 return little_endian;
3440}
a737bd4d 3441
c19d1205
ZW
3442/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
3443 value suitable for poking into the rotate field of an sxt or sxta
3444 instruction, or FAIL on error. */
3445
3446static int
3447parse_ror (char **str)
3448{
3449 int rot;
3450 char *s = *str;
3451
3452 if (strncasecmp (s, "ROR", 3) == 0)
3453 s += 3;
3454 else
a737bd4d 3455 {
c19d1205 3456 inst.error = _("missing rotation field after comma");
a737bd4d
NC
3457 return FAIL;
3458 }
c19d1205
ZW
3459
3460 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
3461 return FAIL;
3462
3463 switch (rot)
a737bd4d 3464 {
c19d1205
ZW
3465 case 0: *str = s; return 0x0;
3466 case 8: *str = s; return 0x1;
3467 case 16: *str = s; return 0x2;
3468 case 24: *str = s; return 0x3;
3469
3470 default:
3471 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
3472 return FAIL;
3473 }
c19d1205 3474}
a737bd4d 3475
c19d1205
ZW
3476/* Parse a conditional code (from conds[] below). The value returned is in the
3477 range 0 .. 14, or FAIL. */
3478static int
3479parse_cond (char **str)
3480{
3481 char *p, *q;
3482 const struct asm_cond *c;
a737bd4d 3483
c19d1205
ZW
3484 p = q = *str;
3485 while (ISALPHA (*q))
3486 q++;
a737bd4d 3487
c19d1205
ZW
3488 c = hash_find_n (arm_cond_hsh, p, q - p);
3489 if (!c)
a737bd4d 3490 {
c19d1205 3491 inst.error = _("condition required");
a737bd4d
NC
3492 return FAIL;
3493 }
3494
c19d1205
ZW
3495 *str = q;
3496 return c->value;
3497}
3498
92e90b6e
PB
3499/* Parse the operands of a table branch instruction. Similar to a memory
3500 operand. */
3501static int
3502parse_tb (char **str)
3503{
3504 char * p = *str;
3505 int reg;
3506
3507 if (skip_past_char (&p, '[') == FAIL)
3508 return FAIL;
3509
3510 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
3511 {
3512 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3513 return FAIL;
3514 }
3515 inst.operands[0].reg = reg;
3516
3517 if (skip_past_comma (&p) == FAIL)
3518 return FAIL;
3519
3520 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
3521 {
3522 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3523 return FAIL;
3524 }
3525 inst.operands[0].imm = reg;
3526
3527 if (skip_past_comma (&p) == SUCCESS)
3528 {
3529 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
3530 return FAIL;
3531 if (inst.reloc.exp.X_add_number != 1)
3532 {
3533 inst.error = _("invalid shift");
3534 return FAIL;
3535 }
3536 inst.operands[0].shifted = 1;
3537 }
3538
3539 if (skip_past_char (&p, ']') == FAIL)
3540 {
3541 inst.error = _("']' expected");
3542 return FAIL;
3543 }
3544 *str = p;
3545 return SUCCESS;
3546}
3547
c19d1205
ZW
3548/* Matcher codes for parse_operands. */
3549enum operand_parse_code
3550{
3551 OP_stop, /* end of line */
3552
3553 OP_RR, /* ARM register */
3554 OP_RRnpc, /* ARM register, not r15 */
3555 OP_RRnpcb, /* ARM register, not r15, in square brackets */
3556 OP_RRw, /* ARM register, not r15, optional trailing ! */
3557 OP_RCP, /* Coprocessor number */
3558 OP_RCN, /* Coprocessor register */
3559 OP_RF, /* FPA register */
3560 OP_RVS, /* VFP single precision register */
3561 OP_RVD, /* VFP double precision register */
3562 OP_RVC, /* VFP control register */
3563 OP_RMF, /* Maverick F register */
3564 OP_RMD, /* Maverick D register */
3565 OP_RMFX, /* Maverick FX register */
3566 OP_RMDX, /* Maverick DX register */
3567 OP_RMAX, /* Maverick AX register */
3568 OP_RMDS, /* Maverick DSPSC register */
3569 OP_RIWR, /* iWMMXt wR register */
3570 OP_RIWC, /* iWMMXt wC register */
3571 OP_RIWG, /* iWMMXt wCG register */
3572 OP_RXA, /* XScale accumulator register */
3573
3574 OP_REGLST, /* ARM register list */
3575 OP_VRSLST, /* VFP single-precision register list */
3576 OP_VRDLST, /* VFP double-precision register list */
3577
3578 OP_I7, /* immediate value 0 .. 7 */
3579 OP_I15, /* 0 .. 15 */
3580 OP_I16, /* 1 .. 16 */
3581 OP_I31, /* 0 .. 31 */
3582 OP_I31w, /* 0 .. 31, optional trailing ! */
3583 OP_I32, /* 1 .. 32 */
3584 OP_I63s, /* -64 .. 63 */
3585 OP_I255, /* 0 .. 255 */
3586 OP_Iffff, /* 0 .. 65535 */
3587
3588 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
3589 OP_I7b, /* 0 .. 7 */
3590 OP_I15b, /* 0 .. 15 */
3591 OP_I31b, /* 0 .. 31 */
3592
3593 OP_SH, /* shifter operand */
3594 OP_ADDR, /* Memory address expression (any mode) */
3595 OP_EXP, /* arbitrary expression */
3596 OP_EXPi, /* same, with optional immediate prefix */
3597 OP_EXPr, /* same, with optional relocation suffix */
3598
3599 OP_CPSF, /* CPS flags */
3600 OP_ENDI, /* Endianness specifier */
3601 OP_PSR, /* CPSR/SPSR mask for msr */
3602 OP_COND, /* conditional code */
92e90b6e 3603 OP_TB, /* Table branch. */
c19d1205
ZW
3604
3605 OP_RRnpc_I0, /* ARM register or literal 0 */
3606 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
3607 OP_RR_EXi, /* ARM register or expression with imm prefix */
3608 OP_RF_IF, /* FPA register or immediate */
3609 OP_RIWR_RIWC, /* iWMMXt R or C reg */
3610
3611 /* Optional operands. */
3612 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
3613 OP_oI31b, /* 0 .. 31 */
3614 OP_oIffffb, /* 0 .. 65535 */
3615 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
3616
3617 OP_oRR, /* ARM register */
3618 OP_oRRnpc, /* ARM register, not the PC */
3619 OP_oSHll, /* LSL immediate */
3620 OP_oSHar, /* ASR immediate */
3621 OP_oSHllar, /* LSL or ASR immediate */
3622 OP_oROR, /* ROR 0/8/16/24 */
3623
3624 OP_FIRST_OPTIONAL = OP_oI7b
3625};
a737bd4d 3626
c19d1205
ZW
3627/* Generic instruction operand parser. This does no encoding and no
3628 semantic validation; it merely squirrels values away in the inst
3629 structure. Returns SUCCESS or FAIL depending on whether the
3630 specified grammar matched. */
3631static int
ca3f61f7 3632parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
3633{
3634 unsigned const char *upat = pattern;
3635 char *backtrack_pos = 0;
3636 const char *backtrack_error = 0;
3637 int i, val, backtrack_index = 0;
3638
3639#define po_char_or_fail(chr) do { \
3640 if (skip_past_char (&str, chr) == FAIL) \
3641 goto bad_args; \
3642} while (0)
3643
3644#define po_reg_or_fail(regtype) do { \
3645 val = arm_reg_parse (&str, regtype); \
3646 if (val == FAIL) \
3647 { \
3648 inst.error = _(reg_expected_msgs[regtype]); \
3649 goto failure; \
3650 } \
3651 inst.operands[i].reg = val; \
3652 inst.operands[i].isreg = 1; \
3653} while (0)
3654
3655#define po_reg_or_goto(regtype, label) do { \
3656 val = arm_reg_parse (&str, regtype); \
3657 if (val == FAIL) \
3658 goto label; \
3659 \
3660 inst.operands[i].reg = val; \
3661 inst.operands[i].isreg = 1; \
3662} while (0)
3663
3664#define po_imm_or_fail(min, max, popt) do { \
3665 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
3666 goto failure; \
3667 inst.operands[i].imm = val; \
3668} while (0)
3669
3670#define po_misc_or_fail(expr) do { \
3671 if (expr) \
3672 goto failure; \
3673} while (0)
3674
3675 skip_whitespace (str);
3676
3677 for (i = 0; upat[i] != OP_stop; i++)
3678 {
3679 if (upat[i] >= OP_FIRST_OPTIONAL)
3680 {
3681 /* Remember where we are in case we need to backtrack. */
3682 assert (!backtrack_pos);
3683 backtrack_pos = str;
3684 backtrack_error = inst.error;
3685 backtrack_index = i;
3686 }
3687
3688 if (i > 0)
3689 po_char_or_fail (',');
3690
3691 switch (upat[i])
3692 {
3693 /* Registers */
3694 case OP_oRRnpc:
3695 case OP_RRnpc:
3696 case OP_oRR:
3697 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
3698 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
3699 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
3700 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
3701 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
3702 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
3703 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
3704 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
3705 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
3706 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
3707 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
3708 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
3709 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
3710 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
3711 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
3712 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
3713 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
3714
3715 case OP_RRnpcb:
3716 po_char_or_fail ('[');
3717 po_reg_or_fail (REG_TYPE_RN);
3718 po_char_or_fail (']');
3719 break;
a737bd4d 3720
c19d1205
ZW
3721 case OP_RRw:
3722 po_reg_or_fail (REG_TYPE_RN);
3723 if (skip_past_char (&str, '!') == SUCCESS)
3724 inst.operands[i].writeback = 1;
3725 break;
3726
3727 /* Immediates */
3728 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
3729 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
3730 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
3731 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
3732 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
3733 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
3734 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
3735 case OP_Iffff: po_imm_or_fail ( 0, 0xffff, FALSE); break;
3736
3737 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
3738 case OP_oI7b:
3739 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
3740 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
3741 case OP_oI31b:
3742 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
3743 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
3744
3745 /* Immediate variants */
3746 case OP_oI255c:
3747 po_char_or_fail ('{');
3748 po_imm_or_fail (0, 255, TRUE);
3749 po_char_or_fail ('}');
3750 break;
3751
3752 case OP_I31w:
3753 /* The expression parser chokes on a trailing !, so we have
3754 to find it first and zap it. */
3755 {
3756 char *s = str;
3757 while (*s && *s != ',')
3758 s++;
3759 if (s[-1] == '!')
3760 {
3761 s[-1] = '\0';
3762 inst.operands[i].writeback = 1;
3763 }
3764 po_imm_or_fail (0, 31, TRUE);
3765 if (str == s - 1)
3766 str = s;
3767 }
3768 break;
3769
3770 /* Expressions */
3771 case OP_EXPi: EXPi:
3772 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3773 GE_OPT_PREFIX));
3774 break;
3775
3776 case OP_EXP:
3777 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3778 GE_NO_PREFIX));
3779 break;
3780
3781 case OP_EXPr: EXPr:
3782 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3783 GE_NO_PREFIX));
3784 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 3785 {
c19d1205
ZW
3786 val = parse_reloc (&str);
3787 if (val == -1)
3788 {
3789 inst.error = _("unrecognized relocation suffix");
3790 goto failure;
3791 }
3792 else if (val != BFD_RELOC_UNUSED)
3793 {
3794 inst.operands[i].imm = val;
3795 inst.operands[i].hasreloc = 1;
3796 }
a737bd4d 3797 }
c19d1205 3798 break;
a737bd4d 3799
c19d1205
ZW
3800 /* Register or expression */
3801 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
3802 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 3803
c19d1205
ZW
3804 /* Register or immediate */
3805 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
3806 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 3807
c19d1205
ZW
3808 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
3809 IF:
3810 if (!is_immediate_prefix (*str))
3811 goto bad_args;
3812 str++;
3813 val = parse_fpa_immediate (&str);
3814 if (val == FAIL)
3815 goto failure;
3816 /* FPA immediates are encoded as registers 8-15.
3817 parse_fpa_immediate has already applied the offset. */
3818 inst.operands[i].reg = val;
3819 inst.operands[i].isreg = 1;
3820 break;
09d92015 3821
c19d1205
ZW
3822 /* Two kinds of register */
3823 case OP_RIWR_RIWC:
3824 {
3825 struct reg_entry *rege = arm_reg_parse_multi (&str);
3826 if (rege->type != REG_TYPE_MMXWR
3827 && rege->type != REG_TYPE_MMXWC
3828 && rege->type != REG_TYPE_MMXWCG)
3829 {
3830 inst.error = _("iWMMXt data or control register expected");
3831 goto failure;
3832 }
3833 inst.operands[i].reg = rege->number;
3834 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
3835 }
3836 break;
09d92015 3837
c19d1205
ZW
3838 /* Misc */
3839 case OP_CPSF: val = parse_cps_flags (&str); break;
3840 case OP_ENDI: val = parse_endian_specifier (&str); break;
3841 case OP_oROR: val = parse_ror (&str); break;
3842 case OP_PSR: val = parse_psr (&str); break;
3843 case OP_COND: val = parse_cond (&str); break;
3844
92e90b6e
PB
3845 case OP_TB:
3846 po_misc_or_fail (parse_tb (&str));
3847 break;
3848
c19d1205
ZW
3849 /* Register lists */
3850 case OP_REGLST:
3851 val = parse_reg_list (&str);
3852 if (*str == '^')
3853 {
3854 inst.operands[1].writeback = 1;
3855 str++;
3856 }
3857 break;
09d92015 3858
c19d1205
ZW
3859 case OP_VRSLST:
3860 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 0);
3861 break;
09d92015 3862
c19d1205
ZW
3863 case OP_VRDLST:
3864 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 1);
3865 break;
a737bd4d 3866
c19d1205
ZW
3867 /* Addressing modes */
3868 case OP_ADDR:
3869 po_misc_or_fail (parse_address (&str, i));
3870 break;
09d92015 3871
c19d1205
ZW
3872 case OP_SH:
3873 po_misc_or_fail (parse_shifter_operand (&str, i));
3874 break;
09d92015 3875
c19d1205
ZW
3876 case OP_oSHll:
3877 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
3878 break;
09d92015 3879
c19d1205
ZW
3880 case OP_oSHar:
3881 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
3882 break;
09d92015 3883
c19d1205
ZW
3884 case OP_oSHllar:
3885 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
3886 break;
09d92015 3887
c19d1205
ZW
3888 default:
3889 as_fatal ("unhandled operand code %d", upat[i]);
3890 }
09d92015 3891
c19d1205
ZW
3892 /* Various value-based sanity checks and shared operations. We
3893 do not signal immediate failures for the register constraints;
3894 this allows a syntax error to take precedence. */
3895 switch (upat[i])
3896 {
3897 case OP_oRRnpc:
3898 case OP_RRnpc:
3899 case OP_RRnpcb:
3900 case OP_RRw:
3901 case OP_RRnpc_I0:
3902 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
3903 inst.error = BAD_PC;
3904 break;
09d92015 3905
c19d1205
ZW
3906 case OP_CPSF:
3907 case OP_ENDI:
3908 case OP_oROR:
3909 case OP_PSR:
3910 case OP_COND:
3911 case OP_REGLST:
3912 case OP_VRSLST:
3913 case OP_VRDLST:
3914 if (val == FAIL)
3915 goto failure;
3916 inst.operands[i].imm = val;
3917 break;
a737bd4d 3918
c19d1205
ZW
3919 default:
3920 break;
3921 }
09d92015 3922
c19d1205
ZW
3923 /* If we get here, this operand was successfully parsed. */
3924 inst.operands[i].present = 1;
3925 continue;
09d92015 3926
c19d1205 3927 bad_args:
09d92015 3928 inst.error = BAD_ARGS;
c19d1205
ZW
3929
3930 failure:
3931 if (!backtrack_pos)
3932 return FAIL;
3933
3934 /* Do not backtrack over a trailing optional argument that
3935 absorbed some text. We will only fail again, with the
3936 'garbage following instruction' error message, which is
3937 probably less helpful than the current one. */
3938 if (backtrack_index == i && backtrack_pos != str
3939 && upat[i+1] == OP_stop)
3940 return FAIL;
3941
3942 /* Try again, skipping the optional argument at backtrack_pos. */
3943 str = backtrack_pos;
3944 inst.error = backtrack_error;
3945 inst.operands[backtrack_index].present = 0;
3946 i = backtrack_index;
3947 backtrack_pos = 0;
09d92015 3948 }
09d92015 3949
c19d1205
ZW
3950 /* Check that we have parsed all the arguments. */
3951 if (*str != '\0' && !inst.error)
3952 inst.error = _("garbage following instruction");
09d92015 3953
c19d1205 3954 return inst.error ? FAIL : SUCCESS;
09d92015
MM
3955}
3956
c19d1205
ZW
3957#undef po_char_or_fail
3958#undef po_reg_or_fail
3959#undef po_reg_or_goto
3960#undef po_imm_or_fail
3961\f
3962/* Shorthand macro for instruction encoding functions issuing errors. */
3963#define constraint(expr, err) do { \
3964 if (expr) \
3965 { \
3966 inst.error = err; \
3967 return; \
3968 } \
3969} while (0)
3970
3971/* Functions for operand encoding. ARM, then Thumb. */
3972
3973#define rotate_left(v, n) (v << n | v >> (32 - n))
3974
3975/* If VAL can be encoded in the immediate field of an ARM instruction,
3976 return the encoded form. Otherwise, return FAIL. */
3977
3978static unsigned int
3979encode_arm_immediate (unsigned int val)
09d92015 3980{
c19d1205
ZW
3981 unsigned int a, i;
3982
3983 for (i = 0; i < 32; i += 2)
3984 if ((a = rotate_left (val, i)) <= 0xff)
3985 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
3986
3987 return FAIL;
09d92015
MM
3988}
3989
c19d1205
ZW
3990/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
3991 return the encoded form. Otherwise, return FAIL. */
3992static unsigned int
3993encode_thumb32_immediate (unsigned int val)
09d92015 3994{
c19d1205 3995 unsigned int a, i;
09d92015 3996
9c3c69f2 3997 if (val <= 0xff)
c19d1205 3998 return val;
a737bd4d 3999
9c3c69f2 4000 for (i = 1; i <= 24; i++)
09d92015 4001 {
9c3c69f2
PB
4002 a = val >> i;
4003 if ((val & ~(0xff << i)) == 0)
4004 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 4005 }
a737bd4d 4006
c19d1205
ZW
4007 a = val & 0xff;
4008 if (val == ((a << 16) | a))
4009 return 0x100 | a;
4010 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
4011 return 0x300 | a;
09d92015 4012
c19d1205
ZW
4013 a = val & 0xff00;
4014 if (val == ((a << 16) | a))
4015 return 0x200 | (a >> 8);
a737bd4d 4016
c19d1205 4017 return FAIL;
09d92015 4018}
c19d1205 4019/* Encode a VFP SP register number into inst.instruction. */
09d92015
MM
4020
4021static void
c19d1205 4022encode_arm_vfp_sp_reg (int reg, enum vfp_sp_reg_pos pos)
09d92015 4023{
c19d1205 4024 switch (pos)
09d92015 4025 {
c19d1205
ZW
4026 case VFP_REG_Sd:
4027 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
4028 break;
4029
4030 case VFP_REG_Sn:
4031 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
4032 break;
4033
4034 case VFP_REG_Sm:
4035 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
4036 break;
4037
4038 default:
4039 abort ();
09d92015 4040 }
09d92015
MM
4041}
4042
c19d1205 4043/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 4044 if any, is handled by md_apply_fix. */
09d92015 4045static void
c19d1205 4046encode_arm_shift (int i)
09d92015 4047{
c19d1205
ZW
4048 if (inst.operands[i].shift_kind == SHIFT_RRX)
4049 inst.instruction |= SHIFT_ROR << 5;
4050 else
09d92015 4051 {
c19d1205
ZW
4052 inst.instruction |= inst.operands[i].shift_kind << 5;
4053 if (inst.operands[i].immisreg)
4054 {
4055 inst.instruction |= SHIFT_BY_REG;
4056 inst.instruction |= inst.operands[i].imm << 8;
4057 }
4058 else
4059 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 4060 }
c19d1205 4061}
09d92015 4062
c19d1205
ZW
4063static void
4064encode_arm_shifter_operand (int i)
4065{
4066 if (inst.operands[i].isreg)
09d92015 4067 {
c19d1205
ZW
4068 inst.instruction |= inst.operands[i].reg;
4069 encode_arm_shift (i);
09d92015 4070 }
c19d1205
ZW
4071 else
4072 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
4073}
4074
c19d1205 4075/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 4076static void
c19d1205 4077encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 4078{
c19d1205
ZW
4079 assert (inst.operands[i].isreg);
4080 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 4081
c19d1205 4082 if (inst.operands[i].preind)
09d92015 4083 {
c19d1205
ZW
4084 if (is_t)
4085 {
4086 inst.error = _("instruction does not accept preindexed addressing");
4087 return;
4088 }
4089 inst.instruction |= PRE_INDEX;
4090 if (inst.operands[i].writeback)
4091 inst.instruction |= WRITE_BACK;
09d92015 4092
c19d1205
ZW
4093 }
4094 else if (inst.operands[i].postind)
4095 {
4096 assert (inst.operands[i].writeback);
4097 if (is_t)
4098 inst.instruction |= WRITE_BACK;
4099 }
4100 else /* unindexed - only for coprocessor */
09d92015 4101 {
c19d1205 4102 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
4103 return;
4104 }
4105
c19d1205
ZW
4106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
4107 && (((inst.instruction & 0x000f0000) >> 16)
4108 == ((inst.instruction & 0x0000f000) >> 12)))
4109 as_warn ((inst.instruction & LOAD_BIT)
4110 ? _("destination register same as write-back base")
4111 : _("source register same as write-back base"));
09d92015
MM
4112}
4113
c19d1205
ZW
4114/* inst.operands[i] was set up by parse_address. Encode it into an
4115 ARM-format mode 2 load or store instruction. If is_t is true,
4116 reject forms that cannot be used with a T instruction (i.e. not
4117 post-indexed). */
a737bd4d 4118static void
c19d1205 4119encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 4120{
c19d1205 4121 encode_arm_addr_mode_common (i, is_t);
a737bd4d 4122
c19d1205 4123 if (inst.operands[i].immisreg)
09d92015 4124 {
c19d1205
ZW
4125 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
4126 inst.instruction |= inst.operands[i].imm;
4127 if (!inst.operands[i].negative)
4128 inst.instruction |= INDEX_UP;
4129 if (inst.operands[i].shifted)
4130 {
4131 if (inst.operands[i].shift_kind == SHIFT_RRX)
4132 inst.instruction |= SHIFT_ROR << 5;
4133 else
4134 {
4135 inst.instruction |= inst.operands[i].shift_kind << 5;
4136 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
4137 }
4138 }
09d92015 4139 }
c19d1205 4140 else /* immediate offset in inst.reloc */
09d92015 4141 {
c19d1205
ZW
4142 if (inst.reloc.type == BFD_RELOC_UNUSED)
4143 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 4144 }
09d92015
MM
4145}
4146
c19d1205
ZW
4147/* inst.operands[i] was set up by parse_address. Encode it into an
4148 ARM-format mode 3 load or store instruction. Reject forms that
4149 cannot be used with such instructions. If is_t is true, reject
4150 forms that cannot be used with a T instruction (i.e. not
4151 post-indexed). */
4152static void
4153encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 4154{
c19d1205 4155 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 4156 {
c19d1205
ZW
4157 inst.error = _("instruction does not accept scaled register index");
4158 return;
09d92015 4159 }
a737bd4d 4160
c19d1205 4161 encode_arm_addr_mode_common (i, is_t);
a737bd4d 4162
c19d1205
ZW
4163 if (inst.operands[i].immisreg)
4164 {
4165 inst.instruction |= inst.operands[i].imm;
4166 if (!inst.operands[i].negative)
4167 inst.instruction |= INDEX_UP;
4168 }
4169 else /* immediate offset in inst.reloc */
4170 {
4171 inst.instruction |= HWOFFSET_IMM;
4172 if (inst.reloc.type == BFD_RELOC_UNUSED)
4173 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 4174 }
a737bd4d
NC
4175}
4176
c19d1205
ZW
4177/* inst.operands[i] was set up by parse_address. Encode it into an
4178 ARM-format instruction. Reject all forms which cannot be encoded
4179 into a coprocessor load/store instruction. If wb_ok is false,
4180 reject use of writeback; if unind_ok is false, reject use of
4181 unindexed addressing. If reloc_override is not 0, use it instead
4182 of BFD_ARM_CP_OFF_IMM. */
09d92015 4183
c19d1205
ZW
4184static int
4185encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 4186{
c19d1205 4187 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 4188
c19d1205 4189 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 4190
c19d1205 4191 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 4192 {
c19d1205
ZW
4193 assert (!inst.operands[i].writeback);
4194 if (!unind_ok)
4195 {
4196 inst.error = _("instruction does not support unindexed addressing");
4197 return FAIL;
4198 }
4199 inst.instruction |= inst.operands[i].imm;
4200 inst.instruction |= INDEX_UP;
4201 return SUCCESS;
09d92015 4202 }
a737bd4d 4203
c19d1205
ZW
4204 if (inst.operands[i].preind)
4205 inst.instruction |= PRE_INDEX;
a737bd4d 4206
c19d1205 4207 if (inst.operands[i].writeback)
09d92015 4208 {
c19d1205
ZW
4209 if (inst.operands[i].reg == REG_PC)
4210 {
4211 inst.error = _("pc may not be used with write-back");
4212 return FAIL;
4213 }
4214 if (!wb_ok)
4215 {
4216 inst.error = _("instruction does not support writeback");
4217 return FAIL;
4218 }
4219 inst.instruction |= WRITE_BACK;
09d92015 4220 }
a737bd4d 4221
c19d1205
ZW
4222 if (reloc_override)
4223 inst.reloc.type = reloc_override;
8f06b2d8
PB
4224 else if (thumb_mode)
4225 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
09d92015 4226 else
c19d1205 4227 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205
ZW
4228 return SUCCESS;
4229}
a737bd4d 4230
c19d1205
ZW
4231/* inst.reloc.exp describes an "=expr" load pseudo-operation.
4232 Determine whether it can be performed with a move instruction; if
4233 it can, convert inst.instruction to that move instruction and
4234 return 1; if it can't, convert inst.instruction to a literal-pool
4235 load and return 0. If this is not a valid thing to do in the
4236 current context, set inst.error and return 1.
a737bd4d 4237
c19d1205
ZW
4238 inst.operands[i] describes the destination register. */
4239
4240static int
4241move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
4242{
4243 if ((inst.instruction & (thumb_p ? THUMB_LOAD_BIT : LOAD_BIT)) == 0)
09d92015 4244 {
c19d1205
ZW
4245 inst.error = _("invalid pseudo operation");
4246 return 1;
09d92015 4247 }
c19d1205 4248 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
4249 {
4250 inst.error = _("constant expression expected");
c19d1205 4251 return 1;
09d92015 4252 }
c19d1205 4253 if (inst.reloc.exp.X_op == O_constant)
09d92015 4254 {
c19d1205
ZW
4255 if (thumb_p)
4256 {
4257 if ((inst.reloc.exp.X_add_number & ~0xFF) == 0)
4258 {
4259 /* This can be done with a mov(1) instruction. */
4260 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
4261 inst.instruction |= inst.reloc.exp.X_add_number;
4262 return 1;
4263 }
4264 }
4265 else
4266 {
4267 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
4268 if (value != FAIL)
4269 {
4270 /* This can be done with a mov instruction. */
4271 inst.instruction &= LITERAL_MASK;
4272 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
4273 inst.instruction |= value & 0xfff;
4274 return 1;
4275 }
09d92015 4276
c19d1205
ZW
4277 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
4278 if (value != FAIL)
4279 {
4280 /* This can be done with a mvn instruction. */
4281 inst.instruction &= LITERAL_MASK;
4282 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
4283 inst.instruction |= value & 0xfff;
4284 return 1;
4285 }
4286 }
09d92015
MM
4287 }
4288
c19d1205
ZW
4289 if (add_to_lit_pool () == FAIL)
4290 {
4291 inst.error = _("literal pool insertion failed");
4292 return 1;
4293 }
4294 inst.operands[1].reg = REG_PC;
4295 inst.operands[1].isreg = 1;
4296 inst.operands[1].preind = 1;
4297 inst.reloc.pc_rel = 1;
4298 inst.reloc.type = (thumb_p
4299 ? BFD_RELOC_ARM_THUMB_OFFSET
4300 : (mode_3
4301 ? BFD_RELOC_ARM_HWLITERAL
4302 : BFD_RELOC_ARM_LITERAL));
4303 return 0;
09d92015
MM
4304}
4305
c19d1205
ZW
4306/* Functions for instruction encoding, sorted by subarchitecture.
4307 First some generics; their names are taken from the conventional
4308 bit positions for register arguments in ARM format instructions. */
09d92015 4309
a737bd4d 4310static void
c19d1205 4311do_noargs (void)
09d92015 4312{
c19d1205 4313}
a737bd4d 4314
c19d1205
ZW
4315static void
4316do_rd (void)
4317{
4318 inst.instruction |= inst.operands[0].reg << 12;
4319}
a737bd4d 4320
c19d1205
ZW
4321static void
4322do_rd_rm (void)
4323{
4324 inst.instruction |= inst.operands[0].reg << 12;
4325 inst.instruction |= inst.operands[1].reg;
4326}
09d92015 4327
c19d1205
ZW
4328static void
4329do_rd_rn (void)
4330{
4331 inst.instruction |= inst.operands[0].reg << 12;
4332 inst.instruction |= inst.operands[1].reg << 16;
4333}
a737bd4d 4334
c19d1205
ZW
4335static void
4336do_rn_rd (void)
4337{
4338 inst.instruction |= inst.operands[0].reg << 16;
4339 inst.instruction |= inst.operands[1].reg << 12;
4340}
09d92015 4341
c19d1205
ZW
4342static void
4343do_rd_rm_rn (void)
4344{
9a64e435
PB
4345 unsigned Rn = inst.operands[2].reg;
4346 /* Enforce resutrictions on SWP instruction. */
4347 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
4348 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
4349 _("Rn must not overlap other operands"));
c19d1205
ZW
4350 inst.instruction |= inst.operands[0].reg << 12;
4351 inst.instruction |= inst.operands[1].reg;
9a64e435 4352 inst.instruction |= Rn << 16;
c19d1205 4353}
09d92015 4354
c19d1205
ZW
4355static void
4356do_rd_rn_rm (void)
4357{
4358 inst.instruction |= inst.operands[0].reg << 12;
4359 inst.instruction |= inst.operands[1].reg << 16;
4360 inst.instruction |= inst.operands[2].reg;
4361}
a737bd4d 4362
c19d1205
ZW
4363static void
4364do_rm_rd_rn (void)
4365{
4366 inst.instruction |= inst.operands[0].reg;
4367 inst.instruction |= inst.operands[1].reg << 12;
4368 inst.instruction |= inst.operands[2].reg << 16;
4369}
09d92015 4370
c19d1205
ZW
4371static void
4372do_imm0 (void)
4373{
4374 inst.instruction |= inst.operands[0].imm;
4375}
09d92015 4376
c19d1205
ZW
4377static void
4378do_rd_cpaddr (void)
4379{
4380 inst.instruction |= inst.operands[0].reg << 12;
4381 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 4382}
a737bd4d 4383
c19d1205
ZW
4384/* ARM instructions, in alphabetical order by function name (except
4385 that wrapper functions appear immediately after the function they
4386 wrap). */
09d92015 4387
c19d1205
ZW
4388/* This is a pseudo-op of the form "adr rd, label" to be converted
4389 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
4390
4391static void
c19d1205 4392do_adr (void)
09d92015 4393{
c19d1205 4394 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 4395
c19d1205
ZW
4396 /* Frag hacking will turn this into a sub instruction if the offset turns
4397 out to be negative. */
4398 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 4399 inst.reloc.pc_rel = 1;
2fc8bdac 4400 inst.reloc.exp.X_add_number -= 8;
c19d1205 4401}
b99bd4ef 4402
c19d1205
ZW
4403/* This is a pseudo-op of the form "adrl rd, label" to be converted
4404 into a relative address of the form:
4405 add rd, pc, #low(label-.-8)"
4406 add rd, rd, #high(label-.-8)" */
b99bd4ef 4407
c19d1205
ZW
4408static void
4409do_adrl (void)
4410{
4411 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 4412
c19d1205
ZW
4413 /* Frag hacking will turn this into a sub instruction if the offset turns
4414 out to be negative. */
4415 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
4416 inst.reloc.pc_rel = 1;
4417 inst.size = INSN_SIZE * 2;
2fc8bdac 4418 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
4419}
4420
b99bd4ef 4421static void
c19d1205 4422do_arit (void)
b99bd4ef 4423{
c19d1205
ZW
4424 if (!inst.operands[1].present)
4425 inst.operands[1].reg = inst.operands[0].reg;
4426 inst.instruction |= inst.operands[0].reg << 12;
4427 inst.instruction |= inst.operands[1].reg << 16;
4428 encode_arm_shifter_operand (2);
4429}
b99bd4ef 4430
c19d1205
ZW
4431static void
4432do_bfc (void)
4433{
4434 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
4435 constraint (msb > 32, _("bit-field extends past end of register"));
4436 /* The instruction encoding stores the LSB and MSB,
4437 not the LSB and width. */
4438 inst.instruction |= inst.operands[0].reg << 12;
4439 inst.instruction |= inst.operands[1].imm << 7;
4440 inst.instruction |= (msb - 1) << 16;
4441}
b99bd4ef 4442
c19d1205
ZW
4443static void
4444do_bfi (void)
4445{
4446 unsigned int msb;
b99bd4ef 4447
c19d1205
ZW
4448 /* #0 in second position is alternative syntax for bfc, which is
4449 the same instruction but with REG_PC in the Rm field. */
4450 if (!inst.operands[1].isreg)
4451 inst.operands[1].reg = REG_PC;
b99bd4ef 4452
c19d1205
ZW
4453 msb = inst.operands[2].imm + inst.operands[3].imm;
4454 constraint (msb > 32, _("bit-field extends past end of register"));
4455 /* The instruction encoding stores the LSB and MSB,
4456 not the LSB and width. */
4457 inst.instruction |= inst.operands[0].reg << 12;
4458 inst.instruction |= inst.operands[1].reg;
4459 inst.instruction |= inst.operands[2].imm << 7;
4460 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
4461}
4462
b99bd4ef 4463static void
c19d1205 4464do_bfx (void)
b99bd4ef 4465{
c19d1205
ZW
4466 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
4467 _("bit-field extends past end of register"));
4468 inst.instruction |= inst.operands[0].reg << 12;
4469 inst.instruction |= inst.operands[1].reg;
4470 inst.instruction |= inst.operands[2].imm << 7;
4471 inst.instruction |= (inst.operands[3].imm - 1) << 16;
4472}
09d92015 4473
c19d1205
ZW
4474/* ARM V5 breakpoint instruction (argument parse)
4475 BKPT <16 bit unsigned immediate>
4476 Instruction is not conditional.
4477 The bit pattern given in insns[] has the COND_ALWAYS condition,
4478 and it is an error if the caller tried to override that. */
b99bd4ef 4479
c19d1205
ZW
4480static void
4481do_bkpt (void)
4482{
4483 /* Top 12 of 16 bits to bits 19:8. */
4484 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 4485
c19d1205
ZW
4486 /* Bottom 4 of 16 bits to bits 3:0. */
4487 inst.instruction |= inst.operands[0].imm & 0xf;
4488}
09d92015 4489
c19d1205
ZW
4490static void
4491encode_branch (int default_reloc)
4492{
4493 if (inst.operands[0].hasreloc)
4494 {
4495 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
4496 _("the only suffix valid here is '(plt)'"));
4497 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 4498 }
b99bd4ef 4499 else
c19d1205
ZW
4500 {
4501 inst.reloc.type = default_reloc;
c19d1205 4502 }
2fc8bdac 4503 inst.reloc.pc_rel = 1;
b99bd4ef
NC
4504}
4505
b99bd4ef 4506static void
c19d1205 4507do_branch (void)
b99bd4ef 4508{
c19d1205
ZW
4509 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
4510}
b99bd4ef 4511
c19d1205
ZW
4512/* ARM V5 branch-link-exchange instruction (argument parse)
4513 BLX <target_addr> ie BLX(1)
4514 BLX{<condition>} <Rm> ie BLX(2)
4515 Unfortunately, there are two different opcodes for this mnemonic.
4516 So, the insns[].value is not used, and the code here zaps values
4517 into inst.instruction.
4518 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 4519
c19d1205
ZW
4520static void
4521do_blx (void)
4522{
4523 if (inst.operands[0].isreg)
b99bd4ef 4524 {
c19d1205
ZW
4525 /* Arg is a register; the opcode provided by insns[] is correct.
4526 It is not illegal to do "blx pc", just useless. */
4527 if (inst.operands[0].reg == REG_PC)
4528 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 4529
c19d1205
ZW
4530 inst.instruction |= inst.operands[0].reg;
4531 }
4532 else
b99bd4ef 4533 {
c19d1205
ZW
4534 /* Arg is an address; this instruction cannot be executed
4535 conditionally, and the opcode must be adjusted. */
4536 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 4537 inst.instruction = 0xfa000000;
c19d1205 4538 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 4539 }
c19d1205
ZW
4540}
4541
4542static void
4543do_bx (void)
4544{
4545 if (inst.operands[0].reg == REG_PC)
4546 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 4547
c19d1205 4548 inst.instruction |= inst.operands[0].reg;
09d92015
MM
4549}
4550
c19d1205
ZW
4551
4552/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
4553
4554static void
c19d1205 4555do_bxj (void)
a737bd4d 4556{
c19d1205
ZW
4557 if (inst.operands[0].reg == REG_PC)
4558 as_tsktsk (_("use of r15 in bxj is not really useful"));
4559
4560 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
4561}
4562
c19d1205
ZW
4563/* Co-processor data operation:
4564 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
4565 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
4566static void
4567do_cdp (void)
4568{
4569 inst.instruction |= inst.operands[0].reg << 8;
4570 inst.instruction |= inst.operands[1].imm << 20;
4571 inst.instruction |= inst.operands[2].reg << 12;
4572 inst.instruction |= inst.operands[3].reg << 16;
4573 inst.instruction |= inst.operands[4].reg;
4574 inst.instruction |= inst.operands[5].imm << 5;
4575}
a737bd4d
NC
4576
4577static void
c19d1205 4578do_cmp (void)
a737bd4d 4579{
c19d1205
ZW
4580 inst.instruction |= inst.operands[0].reg << 16;
4581 encode_arm_shifter_operand (1);
a737bd4d
NC
4582}
4583
c19d1205
ZW
4584/* Transfer between coprocessor and ARM registers.
4585 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
4586 MRC2
4587 MCR{cond}
4588 MCR2
4589
4590 No special properties. */
09d92015
MM
4591
4592static void
c19d1205 4593do_co_reg (void)
09d92015 4594{
c19d1205
ZW
4595 inst.instruction |= inst.operands[0].reg << 8;
4596 inst.instruction |= inst.operands[1].imm << 21;
4597 inst.instruction |= inst.operands[2].reg << 12;
4598 inst.instruction |= inst.operands[3].reg << 16;
4599 inst.instruction |= inst.operands[4].reg;
4600 inst.instruction |= inst.operands[5].imm << 5;
4601}
09d92015 4602
c19d1205
ZW
4603/* Transfer between coprocessor register and pair of ARM registers.
4604 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
4605 MCRR2
4606 MRRC{cond}
4607 MRRC2
b99bd4ef 4608
c19d1205 4609 Two XScale instructions are special cases of these:
09d92015 4610
c19d1205
ZW
4611 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
4612 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 4613
c19d1205 4614 Result unpredicatable if Rd or Rn is R15. */
a737bd4d 4615
c19d1205
ZW
4616static void
4617do_co_reg2c (void)
4618{
4619 inst.instruction |= inst.operands[0].reg << 8;
4620 inst.instruction |= inst.operands[1].imm << 4;
4621 inst.instruction |= inst.operands[2].reg << 12;
4622 inst.instruction |= inst.operands[3].reg << 16;
4623 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
4624}
4625
c19d1205
ZW
4626static void
4627do_cpsi (void)
4628{
4629 inst.instruction |= inst.operands[0].imm << 6;
4630 inst.instruction |= inst.operands[1].imm;
4631}
b99bd4ef
NC
4632
4633static void
c19d1205 4634do_it (void)
b99bd4ef 4635{
c19d1205
ZW
4636 /* There is no IT instruction in ARM mode. We
4637 process it but do not generate code for it. */
4638 inst.size = 0;
09d92015 4639}
b99bd4ef 4640
09d92015 4641static void
c19d1205 4642do_ldmstm (void)
ea6ef066 4643{
c19d1205
ZW
4644 int base_reg = inst.operands[0].reg;
4645 int range = inst.operands[1].imm;
ea6ef066 4646
c19d1205
ZW
4647 inst.instruction |= base_reg << 16;
4648 inst.instruction |= range;
ea6ef066 4649
c19d1205
ZW
4650 if (inst.operands[1].writeback)
4651 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 4652
c19d1205 4653 if (inst.operands[0].writeback)
ea6ef066 4654 {
c19d1205
ZW
4655 inst.instruction |= WRITE_BACK;
4656 /* Check for unpredictable uses of writeback. */
4657 if (inst.instruction & LOAD_BIT)
09d92015 4658 {
c19d1205
ZW
4659 /* Not allowed in LDM type 2. */
4660 if ((inst.instruction & LDM_TYPE_2_OR_3)
4661 && ((range & (1 << REG_PC)) == 0))
4662 as_warn (_("writeback of base register is UNPREDICTABLE"));
4663 /* Only allowed if base reg not in list for other types. */
4664 else if (range & (1 << base_reg))
4665 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
4666 }
4667 else /* STM. */
4668 {
4669 /* Not allowed for type 2. */
4670 if (inst.instruction & LDM_TYPE_2_OR_3)
4671 as_warn (_("writeback of base register is UNPREDICTABLE"));
4672 /* Only allowed if base reg not in list, or first in list. */
4673 else if ((range & (1 << base_reg))
4674 && (range & ((1 << base_reg) - 1)))
4675 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 4676 }
ea6ef066 4677 }
a737bd4d
NC
4678}
4679
c19d1205
ZW
4680/* ARMv5TE load-consecutive (argument parse)
4681 Mode is like LDRH.
4682
4683 LDRccD R, mode
4684 STRccD R, mode. */
4685
a737bd4d 4686static void
c19d1205 4687do_ldrd (void)
a737bd4d 4688{
c19d1205
ZW
4689 constraint (inst.operands[0].reg % 2 != 0,
4690 _("first destination register must be even"));
4691 constraint (inst.operands[1].present
4692 && inst.operands[1].reg != inst.operands[0].reg + 1,
4693 _("can only load two consecutive registers"));
4694 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
4695 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 4696
c19d1205
ZW
4697 if (!inst.operands[1].present)
4698 inst.operands[1].reg = inst.operands[0].reg + 1;
4699
4700 if (inst.instruction & LOAD_BIT)
a737bd4d 4701 {
c19d1205
ZW
4702 /* encode_arm_addr_mode_3 will diagnose overlap between the base
4703 register and the first register written; we have to diagnose
4704 overlap between the base and the second register written here. */
ea6ef066 4705
c19d1205
ZW
4706 if (inst.operands[2].reg == inst.operands[1].reg
4707 && (inst.operands[2].writeback || inst.operands[2].postind))
4708 as_warn (_("base register written back, and overlaps "
4709 "second destination register"));
b05fe5cf 4710
c19d1205
ZW
4711 /* For an index-register load, the index register must not overlap the
4712 destination (even if not write-back). */
4713 else if (inst.operands[2].immisreg
ca3f61f7
NC
4714 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
4715 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 4716 as_warn (_("index register overlaps destination register"));
b05fe5cf 4717 }
c19d1205
ZW
4718
4719 inst.instruction |= inst.operands[0].reg << 12;
4720 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
4721}
4722
4723static void
c19d1205 4724do_ldrex (void)
b05fe5cf 4725{
c19d1205
ZW
4726 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
4727 || inst.operands[1].postind || inst.operands[1].writeback
4728 || inst.operands[1].immisreg || inst.operands[1].shifted
4729 || inst.operands[1].negative,
4730 _("instruction does not accept this addressing mode"));
b05fe5cf 4731
c19d1205 4732 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
b05fe5cf 4733
c19d1205
ZW
4734 constraint (inst.reloc.exp.X_op != O_constant
4735 || inst.reloc.exp.X_add_number != 0,
4736 _("offset must be zero in ARM encoding"));
b05fe5cf 4737
c19d1205
ZW
4738 inst.instruction |= inst.operands[0].reg << 12;
4739 inst.instruction |= inst.operands[1].reg << 16;
4740 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
4741}
4742
4743static void
c19d1205 4744do_ldrexd (void)
b05fe5cf 4745{
c19d1205
ZW
4746 constraint (inst.operands[0].reg % 2 != 0,
4747 _("even register required"));
4748 constraint (inst.operands[1].present
4749 && inst.operands[1].reg != inst.operands[0].reg + 1,
4750 _("can only load two consecutive registers"));
4751 /* If op 1 were present and equal to PC, this function wouldn't
4752 have been called in the first place. */
4753 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 4754
c19d1205
ZW
4755 inst.instruction |= inst.operands[0].reg << 12;
4756 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
4757}
4758
4759static void
c19d1205 4760do_ldst (void)
b05fe5cf 4761{
c19d1205
ZW
4762 inst.instruction |= inst.operands[0].reg << 12;
4763 if (!inst.operands[1].isreg)
4764 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 4765 return;
c19d1205 4766 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
4767}
4768
4769static void
c19d1205 4770do_ldstt (void)
b05fe5cf 4771{
c19d1205
ZW
4772 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
4773 reject [Rn,...]. */
4774 if (inst.operands[1].preind)
b05fe5cf 4775 {
c19d1205
ZW
4776 constraint (inst.reloc.exp.X_op != O_constant ||
4777 inst.reloc.exp.X_add_number != 0,
4778 _("this instruction requires a post-indexed address"));
b05fe5cf 4779
c19d1205
ZW
4780 inst.operands[1].preind = 0;
4781 inst.operands[1].postind = 1;
4782 inst.operands[1].writeback = 1;
b05fe5cf 4783 }
c19d1205
ZW
4784 inst.instruction |= inst.operands[0].reg << 12;
4785 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
4786}
b05fe5cf 4787
c19d1205 4788/* Halfword and signed-byte load/store operations. */
b05fe5cf 4789
c19d1205
ZW
4790static void
4791do_ldstv4 (void)
4792{
4793 inst.instruction |= inst.operands[0].reg << 12;
4794 if (!inst.operands[1].isreg)
4795 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 4796 return;
c19d1205 4797 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
4798}
4799
4800static void
c19d1205 4801do_ldsttv4 (void)
b05fe5cf 4802{
c19d1205
ZW
4803 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
4804 reject [Rn,...]. */
4805 if (inst.operands[1].preind)
b05fe5cf 4806 {
c19d1205
ZW
4807 constraint (inst.reloc.exp.X_op != O_constant ||
4808 inst.reloc.exp.X_add_number != 0,
4809 _("this instruction requires a post-indexed address"));
b05fe5cf 4810
c19d1205
ZW
4811 inst.operands[1].preind = 0;
4812 inst.operands[1].postind = 1;
4813 inst.operands[1].writeback = 1;
b05fe5cf 4814 }
c19d1205
ZW
4815 inst.instruction |= inst.operands[0].reg << 12;
4816 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
4817}
b05fe5cf 4818
c19d1205
ZW
4819/* Co-processor register load/store.
4820 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
4821static void
4822do_lstc (void)
4823{
4824 inst.instruction |= inst.operands[0].reg << 8;
4825 inst.instruction |= inst.operands[1].reg << 12;
4826 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
4827}
4828
b05fe5cf 4829static void
c19d1205 4830do_mlas (void)
b05fe5cf 4831{
c19d1205
ZW
4832 /* This restriction does not apply to mls (nor to mla in v6, but
4833 that's hard to detect at present). */
4834 if (inst.operands[0].reg == inst.operands[1].reg
4835 && !(inst.instruction & 0x00400000))
4836 as_tsktsk (_("rd and rm should be different in mla"));
b05fe5cf 4837
c19d1205
ZW
4838 inst.instruction |= inst.operands[0].reg << 16;
4839 inst.instruction |= inst.operands[1].reg;
4840 inst.instruction |= inst.operands[2].reg << 8;
4841 inst.instruction |= inst.operands[3].reg << 12;
b05fe5cf 4842
c19d1205 4843}
b05fe5cf 4844
c19d1205
ZW
4845static void
4846do_mov (void)
4847{
4848 inst.instruction |= inst.operands[0].reg << 12;
4849 encode_arm_shifter_operand (1);
4850}
b05fe5cf 4851
c19d1205
ZW
4852/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
4853static void
4854do_mov16 (void)
4855{
4856 inst.instruction |= inst.operands[0].reg << 12;
b05fe5cf 4857 /* The value is in two pieces: 0:11, 16:19. */
c19d1205
ZW
4858 inst.instruction |= (inst.operands[1].imm & 0x00000fff);
4859 inst.instruction |= (inst.operands[1].imm & 0x0000f000) << 4;
b05fe5cf 4860}
b99bd4ef
NC
4861
4862static void
c19d1205 4863do_mrs (void)
b99bd4ef 4864{
c19d1205
ZW
4865 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
4866 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
4867 != (PSR_c|PSR_f),
4868 _("'CPSR' or 'SPSR' expected"));
4869 inst.instruction |= inst.operands[0].reg << 12;
4870 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
4871}
b99bd4ef 4872
c19d1205
ZW
4873/* Two possible forms:
4874 "{C|S}PSR_<field>, Rm",
4875 "{C|S}PSR_f, #expression". */
b99bd4ef 4876
c19d1205
ZW
4877static void
4878do_msr (void)
4879{
4880 inst.instruction |= inst.operands[0].imm;
4881 if (inst.operands[1].isreg)
4882 inst.instruction |= inst.operands[1].reg;
4883 else
b99bd4ef 4884 {
c19d1205
ZW
4885 inst.instruction |= INST_IMMEDIATE;
4886 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4887 inst.reloc.pc_rel = 0;
b99bd4ef 4888 }
b99bd4ef
NC
4889}
4890
c19d1205
ZW
4891static void
4892do_mul (void)
a737bd4d 4893{
c19d1205
ZW
4894 if (!inst.operands[2].present)
4895 inst.operands[2].reg = inst.operands[0].reg;
4896 inst.instruction |= inst.operands[0].reg << 16;
4897 inst.instruction |= inst.operands[1].reg;
4898 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 4899
c19d1205
ZW
4900 if (inst.operands[0].reg == inst.operands[1].reg)
4901 as_tsktsk (_("rd and rm should be different in mul"));
a737bd4d
NC
4902}
4903
c19d1205
ZW
4904/* Long Multiply Parser
4905 UMULL RdLo, RdHi, Rm, Rs
4906 SMULL RdLo, RdHi, Rm, Rs
4907 UMLAL RdLo, RdHi, Rm, Rs
4908 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
4909
4910static void
c19d1205 4911do_mull (void)
b99bd4ef 4912{
c19d1205
ZW
4913 inst.instruction |= inst.operands[0].reg << 12;
4914 inst.instruction |= inst.operands[1].reg << 16;
4915 inst.instruction |= inst.operands[2].reg;
4916 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 4917
c19d1205
ZW
4918 /* rdhi, rdlo and rm must all be different. */
4919 if (inst.operands[0].reg == inst.operands[1].reg
4920 || inst.operands[0].reg == inst.operands[2].reg
4921 || inst.operands[1].reg == inst.operands[2].reg)
4922 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
4923}
b99bd4ef 4924
c19d1205
ZW
4925static void
4926do_nop (void)
4927{
4928 if (inst.operands[0].present)
4929 {
4930 /* Architectural NOP hints are CPSR sets with no bits selected. */
4931 inst.instruction &= 0xf0000000;
4932 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
4933 }
b99bd4ef
NC
4934}
4935
c19d1205
ZW
4936/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
4937 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
4938 Condition defaults to COND_ALWAYS.
4939 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
4940
4941static void
c19d1205 4942do_pkhbt (void)
b99bd4ef 4943{
c19d1205
ZW
4944 inst.instruction |= inst.operands[0].reg << 12;
4945 inst.instruction |= inst.operands[1].reg << 16;
4946 inst.instruction |= inst.operands[2].reg;
4947 if (inst.operands[3].present)
4948 encode_arm_shift (3);
4949}
b99bd4ef 4950
c19d1205 4951/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 4952
c19d1205
ZW
4953static void
4954do_pkhtb (void)
4955{
4956 if (!inst.operands[3].present)
b99bd4ef 4957 {
c19d1205
ZW
4958 /* If the shift specifier is omitted, turn the instruction
4959 into pkhbt rd, rm, rn. */
4960 inst.instruction &= 0xfff00010;
4961 inst.instruction |= inst.operands[0].reg << 12;
4962 inst.instruction |= inst.operands[1].reg;
4963 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
4964 }
4965 else
4966 {
c19d1205
ZW
4967 inst.instruction |= inst.operands[0].reg << 12;
4968 inst.instruction |= inst.operands[1].reg << 16;
4969 inst.instruction |= inst.operands[2].reg;
4970 encode_arm_shift (3);
b99bd4ef
NC
4971 }
4972}
4973
c19d1205
ZW
4974/* ARMv5TE: Preload-Cache
4975
4976 PLD <addr_mode>
4977
4978 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
4979
4980static void
c19d1205 4981do_pld (void)
b99bd4ef 4982{
c19d1205
ZW
4983 constraint (!inst.operands[0].isreg,
4984 _("'[' expected after PLD mnemonic"));
4985 constraint (inst.operands[0].postind,
4986 _("post-indexed expression used in preload instruction"));
4987 constraint (inst.operands[0].writeback,
4988 _("writeback used in preload instruction"));
4989 constraint (!inst.operands[0].preind,
4990 _("unindexed addressing used in preload instruction"));
4991 inst.instruction |= inst.operands[0].reg;
4992 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
4993}
b99bd4ef 4994
c19d1205
ZW
4995static void
4996do_push_pop (void)
4997{
4998 inst.operands[1] = inst.operands[0];
4999 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
5000 inst.operands[0].isreg = 1;
5001 inst.operands[0].writeback = 1;
5002 inst.operands[0].reg = REG_SP;
5003 do_ldmstm ();
5004}
b99bd4ef 5005
c19d1205
ZW
5006/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
5007 word at the specified address and the following word
5008 respectively.
5009 Unconditionally executed.
5010 Error if Rn is R15. */
b99bd4ef 5011
c19d1205
ZW
5012static void
5013do_rfe (void)
5014{
5015 inst.instruction |= inst.operands[0].reg << 16;
5016 if (inst.operands[0].writeback)
5017 inst.instruction |= WRITE_BACK;
5018}
b99bd4ef 5019
c19d1205 5020/* ARM V6 ssat (argument parse). */
b99bd4ef 5021
c19d1205
ZW
5022static void
5023do_ssat (void)
5024{
5025 inst.instruction |= inst.operands[0].reg << 12;
5026 inst.instruction |= (inst.operands[1].imm - 1) << 16;
5027 inst.instruction |= inst.operands[2].reg;
b99bd4ef 5028
c19d1205
ZW
5029 if (inst.operands[3].present)
5030 encode_arm_shift (3);
b99bd4ef
NC
5031}
5032
c19d1205 5033/* ARM V6 usat (argument parse). */
b99bd4ef
NC
5034
5035static void
c19d1205 5036do_usat (void)
b99bd4ef 5037{
c19d1205
ZW
5038 inst.instruction |= inst.operands[0].reg << 12;
5039 inst.instruction |= inst.operands[1].imm << 16;
5040 inst.instruction |= inst.operands[2].reg;
b99bd4ef 5041
c19d1205
ZW
5042 if (inst.operands[3].present)
5043 encode_arm_shift (3);
b99bd4ef
NC
5044}
5045
c19d1205 5046/* ARM V6 ssat16 (argument parse). */
09d92015
MM
5047
5048static void
c19d1205 5049do_ssat16 (void)
09d92015 5050{
c19d1205
ZW
5051 inst.instruction |= inst.operands[0].reg << 12;
5052 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
5053 inst.instruction |= inst.operands[2].reg;
09d92015
MM
5054}
5055
c19d1205
ZW
5056static void
5057do_usat16 (void)
a737bd4d 5058{
c19d1205
ZW
5059 inst.instruction |= inst.operands[0].reg << 12;
5060 inst.instruction |= inst.operands[1].imm << 16;
5061 inst.instruction |= inst.operands[2].reg;
5062}
a737bd4d 5063
c19d1205
ZW
5064/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
5065 preserving the other bits.
a737bd4d 5066
c19d1205
ZW
5067 setend <endian_specifier>, where <endian_specifier> is either
5068 BE or LE. */
a737bd4d 5069
c19d1205
ZW
5070static void
5071do_setend (void)
5072{
5073 if (inst.operands[0].imm)
5074 inst.instruction |= 0x200;
a737bd4d
NC
5075}
5076
5077static void
c19d1205 5078do_shift (void)
a737bd4d 5079{
c19d1205
ZW
5080 unsigned int Rm = (inst.operands[1].present
5081 ? inst.operands[1].reg
5082 : inst.operands[0].reg);
a737bd4d 5083
c19d1205
ZW
5084 inst.instruction |= inst.operands[0].reg << 12;
5085 inst.instruction |= Rm;
5086 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 5087 {
c19d1205
ZW
5088 constraint (inst.operands[0].reg != Rm,
5089 _("source1 and dest must be same register"));
5090 inst.instruction |= inst.operands[2].reg << 8;
5091 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
5092 }
5093 else
c19d1205 5094 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
5095}
5096
09d92015 5097static void
3eb17e6b 5098do_smc (void)
09d92015 5099{
3eb17e6b 5100 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 5101 inst.reloc.pc_rel = 0;
09d92015
MM
5102}
5103
09d92015 5104static void
c19d1205 5105do_swi (void)
09d92015 5106{
c19d1205
ZW
5107 inst.reloc.type = BFD_RELOC_ARM_SWI;
5108 inst.reloc.pc_rel = 0;
09d92015
MM
5109}
5110
c19d1205
ZW
5111/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
5112 SMLAxy{cond} Rd,Rm,Rs,Rn
5113 SMLAWy{cond} Rd,Rm,Rs,Rn
5114 Error if any register is R15. */
e16bb312 5115
c19d1205
ZW
5116static void
5117do_smla (void)
e16bb312 5118{
c19d1205
ZW
5119 inst.instruction |= inst.operands[0].reg << 16;
5120 inst.instruction |= inst.operands[1].reg;
5121 inst.instruction |= inst.operands[2].reg << 8;
5122 inst.instruction |= inst.operands[3].reg << 12;
5123}
a737bd4d 5124
c19d1205
ZW
5125/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
5126 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
5127 Error if any register is R15.
5128 Warning if Rdlo == Rdhi. */
a737bd4d 5129
c19d1205
ZW
5130static void
5131do_smlal (void)
5132{
5133 inst.instruction |= inst.operands[0].reg << 12;
5134 inst.instruction |= inst.operands[1].reg << 16;
5135 inst.instruction |= inst.operands[2].reg;
5136 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 5137
c19d1205
ZW
5138 if (inst.operands[0].reg == inst.operands[1].reg)
5139 as_tsktsk (_("rdhi and rdlo must be different"));
5140}
a737bd4d 5141
c19d1205
ZW
5142/* ARM V5E (El Segundo) signed-multiply (argument parse)
5143 SMULxy{cond} Rd,Rm,Rs
5144 Error if any register is R15. */
a737bd4d 5145
c19d1205
ZW
5146static void
5147do_smul (void)
5148{
5149 inst.instruction |= inst.operands[0].reg << 16;
5150 inst.instruction |= inst.operands[1].reg;
5151 inst.instruction |= inst.operands[2].reg << 8;
5152}
a737bd4d 5153
c19d1205 5154/* ARM V6 srs (argument parse). */
a737bd4d 5155
c19d1205
ZW
5156static void
5157do_srs (void)
5158{
5159 inst.instruction |= inst.operands[0].imm;
5160 if (inst.operands[0].writeback)
5161 inst.instruction |= WRITE_BACK;
5162}
a737bd4d 5163
c19d1205 5164/* ARM V6 strex (argument parse). */
a737bd4d 5165
c19d1205
ZW
5166static void
5167do_strex (void)
5168{
5169 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
5170 || inst.operands[2].postind || inst.operands[2].writeback
5171 || inst.operands[2].immisreg || inst.operands[2].shifted
5172 || inst.operands[2].negative,
5173 _("instruction does not accept this addressing mode"));
e16bb312 5174
c19d1205 5175 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
a737bd4d 5176
c19d1205
ZW
5177 constraint (inst.operands[0].reg == inst.operands[1].reg
5178 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 5179
c19d1205
ZW
5180 constraint (inst.reloc.exp.X_op != O_constant
5181 || inst.reloc.exp.X_add_number != 0,
5182 _("offset must be zero in ARM encoding"));
a737bd4d 5183
c19d1205
ZW
5184 inst.instruction |= inst.operands[0].reg << 12;
5185 inst.instruction |= inst.operands[1].reg;
5186 inst.instruction |= inst.operands[2].reg << 16;
5187 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
5188}
5189
5190static void
c19d1205 5191do_strexd (void)
e16bb312 5192{
c19d1205
ZW
5193 constraint (inst.operands[1].reg % 2 != 0,
5194 _("even register required"));
5195 constraint (inst.operands[2].present
5196 && inst.operands[2].reg != inst.operands[1].reg + 1,
5197 _("can only store two consecutive registers"));
5198 /* If op 2 were present and equal to PC, this function wouldn't
5199 have been called in the first place. */
5200 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 5201
c19d1205
ZW
5202 constraint (inst.operands[0].reg == inst.operands[1].reg
5203 || inst.operands[0].reg == inst.operands[1].reg + 1
5204 || inst.operands[0].reg == inst.operands[3].reg,
5205 BAD_OVERLAP);
e16bb312 5206
c19d1205
ZW
5207 inst.instruction |= inst.operands[0].reg << 12;
5208 inst.instruction |= inst.operands[1].reg;
5209 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
5210}
5211
c19d1205
ZW
5212/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
5213 extends it to 32-bits, and adds the result to a value in another
5214 register. You can specify a rotation by 0, 8, 16, or 24 bits
5215 before extracting the 16-bit value.
5216 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
5217 Condition defaults to COND_ALWAYS.
5218 Error if any register uses R15. */
5219
e16bb312 5220static void
c19d1205 5221do_sxtah (void)
e16bb312 5222{
c19d1205
ZW
5223 inst.instruction |= inst.operands[0].reg << 12;
5224 inst.instruction |= inst.operands[1].reg << 16;
5225 inst.instruction |= inst.operands[2].reg;
5226 inst.instruction |= inst.operands[3].imm << 10;
5227}
e16bb312 5228
c19d1205 5229/* ARM V6 SXTH.
e16bb312 5230
c19d1205
ZW
5231 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
5232 Condition defaults to COND_ALWAYS.
5233 Error if any register uses R15. */
e16bb312
NC
5234
5235static void
c19d1205 5236do_sxth (void)
e16bb312 5237{
c19d1205
ZW
5238 inst.instruction |= inst.operands[0].reg << 12;
5239 inst.instruction |= inst.operands[1].reg;
5240 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 5241}
c19d1205
ZW
5242\f
5243/* VFP instructions. In a logical order: SP variant first, monad
5244 before dyad, arithmetic then move then load/store. */
e16bb312
NC
5245
5246static void
c19d1205 5247do_vfp_sp_monadic (void)
e16bb312 5248{
c19d1205
ZW
5249 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5250 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
5251}
5252
5253static void
c19d1205 5254do_vfp_sp_dyadic (void)
e16bb312 5255{
c19d1205
ZW
5256 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5257 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
5258 encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
5259}
5260
5261static void
c19d1205 5262do_vfp_sp_compare_z (void)
e16bb312 5263{
c19d1205 5264 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
5265}
5266
5267static void
c19d1205 5268do_vfp_dp_sp_cvt (void)
e16bb312 5269{
c19d1205
ZW
5270 inst.instruction |= inst.operands[0].reg << 12;
5271 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
5272}
5273
5274static void
c19d1205 5275do_vfp_sp_dp_cvt (void)
e16bb312 5276{
c19d1205
ZW
5277 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5278 inst.instruction |= inst.operands[1].reg;
e16bb312
NC
5279}
5280
5281static void
c19d1205 5282do_vfp_reg_from_sp (void)
e16bb312 5283{
c19d1205
ZW
5284 inst.instruction |= inst.operands[0].reg << 12;
5285 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
5286}
5287
5288static void
c19d1205 5289do_vfp_reg2_from_sp2 (void)
e16bb312 5290{
c19d1205
ZW
5291 constraint (inst.operands[2].imm != 2,
5292 _("only two consecutive VFP SP registers allowed here"));
5293 inst.instruction |= inst.operands[0].reg << 12;
5294 inst.instruction |= inst.operands[1].reg << 16;
5295 encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
5296}
5297
5298static void
c19d1205 5299do_vfp_sp_from_reg (void)
e16bb312 5300{
c19d1205
ZW
5301 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sn);
5302 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
5303}
5304
5305static void
c19d1205 5306do_vfp_sp2_from_reg2 (void)
e16bb312 5307{
c19d1205
ZW
5308 constraint (inst.operands[0].imm != 2,
5309 _("only two consecutive VFP SP registers allowed here"));
5310 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sm);
5311 inst.instruction |= inst.operands[1].reg << 12;
5312 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
5313}
5314
5315static void
c19d1205 5316do_vfp_sp_ldst (void)
e16bb312 5317{
c19d1205
ZW
5318 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5319 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
5320}
5321
5322static void
c19d1205 5323do_vfp_dp_ldst (void)
e16bb312 5324{
c19d1205
ZW
5325 inst.instruction |= inst.operands[0].reg << 12;
5326 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
5327}
5328
c19d1205 5329
e16bb312 5330static void
c19d1205 5331vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 5332{
c19d1205
ZW
5333 if (inst.operands[0].writeback)
5334 inst.instruction |= WRITE_BACK;
5335 else
5336 constraint (ldstm_type != VFP_LDSTMIA,
5337 _("this addressing mode requires base-register writeback"));
5338 inst.instruction |= inst.operands[0].reg << 16;
5339 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sd);
5340 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
5341}
5342
5343static void
c19d1205 5344vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 5345{
c19d1205 5346 int count;
e16bb312 5347
c19d1205
ZW
5348 if (inst.operands[0].writeback)
5349 inst.instruction |= WRITE_BACK;
5350 else
5351 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
5352 _("this addressing mode requires base-register writeback"));
e16bb312 5353
c19d1205
ZW
5354 inst.instruction |= inst.operands[0].reg << 16;
5355 inst.instruction |= inst.operands[1].reg << 12;
e16bb312 5356
c19d1205
ZW
5357 count = inst.operands[1].imm << 1;
5358 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
5359 count += 1;
e16bb312 5360
c19d1205 5361 inst.instruction |= count;
e16bb312
NC
5362}
5363
5364static void
c19d1205 5365do_vfp_sp_ldstmia (void)
e16bb312 5366{
c19d1205 5367 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
5368}
5369
5370static void
c19d1205 5371do_vfp_sp_ldstmdb (void)
e16bb312 5372{
c19d1205 5373 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
5374}
5375
5376static void
c19d1205 5377do_vfp_dp_ldstmia (void)
e16bb312 5378{
c19d1205 5379 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
5380}
5381
5382static void
c19d1205 5383do_vfp_dp_ldstmdb (void)
e16bb312 5384{
c19d1205 5385 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
5386}
5387
5388static void
c19d1205 5389do_vfp_xp_ldstmia (void)
e16bb312 5390{
c19d1205
ZW
5391 vfp_dp_ldstm (VFP_LDSTMIAX);
5392}
e16bb312 5393
c19d1205
ZW
5394static void
5395do_vfp_xp_ldstmdb (void)
5396{
5397 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 5398}
c19d1205
ZW
5399\f
5400/* FPA instructions. Also in a logical order. */
e16bb312 5401
c19d1205
ZW
5402static void
5403do_fpa_cmp (void)
5404{
5405 inst.instruction |= inst.operands[0].reg << 16;
5406 inst.instruction |= inst.operands[1].reg;
5407}
b99bd4ef
NC
5408
5409static void
c19d1205 5410do_fpa_ldmstm (void)
b99bd4ef 5411{
c19d1205
ZW
5412 inst.instruction |= inst.operands[0].reg << 12;
5413 switch (inst.operands[1].imm)
5414 {
5415 case 1: inst.instruction |= CP_T_X; break;
5416 case 2: inst.instruction |= CP_T_Y; break;
5417 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
5418 case 4: break;
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (inst.instruction & (PRE_INDEX | INDEX_UP))
5423 {
5424 /* The instruction specified "ea" or "fd", so we can only accept
5425 [Rn]{!}. The instruction does not really support stacking or
5426 unstacking, so we have to emulate these by setting appropriate
5427 bits and offsets. */
5428 constraint (inst.reloc.exp.X_op != O_constant
5429 || inst.reloc.exp.X_add_number != 0,
5430 _("this instruction does not support indexing"));
b99bd4ef 5431
c19d1205
ZW
5432 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
5433 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 5434
c19d1205
ZW
5435 if (!(inst.instruction & INDEX_UP))
5436 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 5437
c19d1205
ZW
5438 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
5439 {
5440 inst.operands[2].preind = 0;
5441 inst.operands[2].postind = 1;
5442 }
5443 }
b99bd4ef 5444
c19d1205 5445 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 5446}
c19d1205
ZW
5447\f
5448/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 5449
c19d1205
ZW
5450static void
5451do_iwmmxt_tandorc (void)
5452{
5453 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
5454}
b99bd4ef 5455
c19d1205
ZW
5456static void
5457do_iwmmxt_textrc (void)
5458{
5459 inst.instruction |= inst.operands[0].reg << 12;
5460 inst.instruction |= inst.operands[1].imm;
5461}
b99bd4ef
NC
5462
5463static void
c19d1205 5464do_iwmmxt_textrm (void)
b99bd4ef 5465{
c19d1205
ZW
5466 inst.instruction |= inst.operands[0].reg << 12;
5467 inst.instruction |= inst.operands[1].reg << 16;
5468 inst.instruction |= inst.operands[2].imm;
5469}
b99bd4ef 5470
c19d1205
ZW
5471static void
5472do_iwmmxt_tinsr (void)
5473{
5474 inst.instruction |= inst.operands[0].reg << 16;
5475 inst.instruction |= inst.operands[1].reg << 12;
5476 inst.instruction |= inst.operands[2].imm;
5477}
b99bd4ef 5478
c19d1205
ZW
5479static void
5480do_iwmmxt_tmia (void)
5481{
5482 inst.instruction |= inst.operands[0].reg << 5;
5483 inst.instruction |= inst.operands[1].reg;
5484 inst.instruction |= inst.operands[2].reg << 12;
5485}
b99bd4ef 5486
c19d1205
ZW
5487static void
5488do_iwmmxt_waligni (void)
5489{
5490 inst.instruction |= inst.operands[0].reg << 12;
5491 inst.instruction |= inst.operands[1].reg << 16;
5492 inst.instruction |= inst.operands[2].reg;
5493 inst.instruction |= inst.operands[3].imm << 20;
5494}
b99bd4ef 5495
c19d1205
ZW
5496static void
5497do_iwmmxt_wmov (void)
5498{
5499 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
5500 inst.instruction |= inst.operands[0].reg << 12;
5501 inst.instruction |= inst.operands[1].reg << 16;
5502 inst.instruction |= inst.operands[1].reg;
5503}
b99bd4ef 5504
c19d1205
ZW
5505static void
5506do_iwmmxt_wldstbh (void)
5507{
8f06b2d8 5508 int reloc;
c19d1205
ZW
5509 inst.instruction |= inst.operands[0].reg << 12;
5510 inst.reloc.exp.X_add_number *= 4;
8f06b2d8
PB
5511 if (thumb_mode)
5512 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
5513 else
5514 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
5515 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
5516}
5517
c19d1205
ZW
5518static void
5519do_iwmmxt_wldstw (void)
5520{
5521 /* RIWR_RIWC clears .isreg for a control register. */
5522 if (!inst.operands[0].isreg)
5523 {
5524 constraint (inst.cond != COND_ALWAYS, BAD_COND);
5525 inst.instruction |= 0xf0000000;
5526 }
b99bd4ef 5527
c19d1205
ZW
5528 inst.instruction |= inst.operands[0].reg << 12;
5529 encode_arm_cp_address (1, TRUE, TRUE, 0);
5530}
b99bd4ef
NC
5531
5532static void
c19d1205 5533do_iwmmxt_wldstd (void)
b99bd4ef 5534{
c19d1205 5535 inst.instruction |= inst.operands[0].reg << 12;
f2184508 5536 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 5537}
b99bd4ef 5538
c19d1205
ZW
5539static void
5540do_iwmmxt_wshufh (void)
5541{
5542 inst.instruction |= inst.operands[0].reg << 12;
5543 inst.instruction |= inst.operands[1].reg << 16;
5544 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
5545 inst.instruction |= (inst.operands[2].imm & 0x0f);
5546}
b99bd4ef 5547
c19d1205
ZW
5548static void
5549do_iwmmxt_wzero (void)
5550{
5551 /* WZERO reg is an alias for WANDN reg, reg, reg. */
5552 inst.instruction |= inst.operands[0].reg;
5553 inst.instruction |= inst.operands[0].reg << 12;
5554 inst.instruction |= inst.operands[0].reg << 16;
5555}
5556\f
5557/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
5558 operations first, then control, shift, and load/store. */
b99bd4ef 5559
c19d1205 5560/* Insns like "foo X,Y,Z". */
b99bd4ef 5561
c19d1205
ZW
5562static void
5563do_mav_triple (void)
5564{
5565 inst.instruction |= inst.operands[0].reg << 16;
5566 inst.instruction |= inst.operands[1].reg;
5567 inst.instruction |= inst.operands[2].reg << 12;
5568}
b99bd4ef 5569
c19d1205
ZW
5570/* Insns like "foo W,X,Y,Z".
5571 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 5572
c19d1205
ZW
5573static void
5574do_mav_quad (void)
5575{
5576 inst.instruction |= inst.operands[0].reg << 5;
5577 inst.instruction |= inst.operands[1].reg << 12;
5578 inst.instruction |= inst.operands[2].reg << 16;
5579 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
5580}
5581
c19d1205
ZW
5582/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
5583static void
5584do_mav_dspsc (void)
a737bd4d 5585{
c19d1205
ZW
5586 inst.instruction |= inst.operands[1].reg << 12;
5587}
a737bd4d 5588
c19d1205
ZW
5589/* Maverick shift immediate instructions.
5590 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
5591 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 5592
c19d1205
ZW
5593static void
5594do_mav_shift (void)
5595{
5596 int imm = inst.operands[2].imm;
a737bd4d 5597
c19d1205
ZW
5598 inst.instruction |= inst.operands[0].reg << 12;
5599 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 5600
c19d1205
ZW
5601 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
5602 Bits 5-7 of the insn should have bits 4-6 of the immediate.
5603 Bit 4 should be 0. */
5604 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 5605
c19d1205
ZW
5606 inst.instruction |= imm;
5607}
5608\f
5609/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 5610
c19d1205
ZW
5611/* Xscale multiply-accumulate (argument parse)
5612 MIAcc acc0,Rm,Rs
5613 MIAPHcc acc0,Rm,Rs
5614 MIAxycc acc0,Rm,Rs. */
a737bd4d 5615
c19d1205
ZW
5616static void
5617do_xsc_mia (void)
5618{
5619 inst.instruction |= inst.operands[1].reg;
5620 inst.instruction |= inst.operands[2].reg << 12;
5621}
a737bd4d 5622
c19d1205 5623/* Xscale move-accumulator-register (argument parse)
a737bd4d 5624
c19d1205 5625 MARcc acc0,RdLo,RdHi. */
b99bd4ef 5626
c19d1205
ZW
5627static void
5628do_xsc_mar (void)
5629{
5630 inst.instruction |= inst.operands[1].reg << 12;
5631 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
5632}
5633
c19d1205 5634/* Xscale move-register-accumulator (argument parse)
b99bd4ef 5635
c19d1205 5636 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
5637
5638static void
c19d1205 5639do_xsc_mra (void)
b99bd4ef 5640{
c19d1205
ZW
5641 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
5642 inst.instruction |= inst.operands[0].reg << 12;
5643 inst.instruction |= inst.operands[1].reg << 16;
5644}
5645\f
5646/* Encoding functions relevant only to Thumb. */
b99bd4ef 5647
c19d1205
ZW
5648/* inst.operands[i] is a shifted-register operand; encode
5649 it into inst.instruction in the format used by Thumb32. */
5650
5651static void
5652encode_thumb32_shifted_operand (int i)
5653{
5654 unsigned int value = inst.reloc.exp.X_add_number;
5655 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 5656
9c3c69f2
PB
5657 constraint (inst.operands[i].immisreg,
5658 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
5659 inst.instruction |= inst.operands[i].reg;
5660 if (shift == SHIFT_RRX)
5661 inst.instruction |= SHIFT_ROR << 4;
5662 else
b99bd4ef 5663 {
c19d1205
ZW
5664 constraint (inst.reloc.exp.X_op != O_constant,
5665 _("expression too complex"));
5666
5667 constraint (value > 32
5668 || (value == 32 && (shift == SHIFT_LSL
5669 || shift == SHIFT_ROR)),
5670 _("shift expression is too large"));
5671
5672 if (value == 0)
5673 shift = SHIFT_LSL;
5674 else if (value == 32)
5675 value = 0;
5676
5677 inst.instruction |= shift << 4;
5678 inst.instruction |= (value & 0x1c) << 10;
5679 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 5680 }
c19d1205 5681}
b99bd4ef 5682
b99bd4ef 5683
c19d1205
ZW
5684/* inst.operands[i] was set up by parse_address. Encode it into a
5685 Thumb32 format load or store instruction. Reject forms that cannot
5686 be used with such instructions. If is_t is true, reject forms that
5687 cannot be used with a T instruction; if is_d is true, reject forms
5688 that cannot be used with a D instruction. */
b99bd4ef 5689
c19d1205
ZW
5690static void
5691encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
5692{
5693 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
5694
5695 constraint (!inst.operands[i].isreg,
5696 _("Thumb does not support the ldr =N pseudo-operation"));
b99bd4ef 5697
c19d1205
ZW
5698 inst.instruction |= inst.operands[i].reg << 16;
5699 if (inst.operands[i].immisreg)
b99bd4ef 5700 {
c19d1205
ZW
5701 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
5702 constraint (is_t || is_d, _("cannot use register index with this instruction"));
5703 constraint (inst.operands[i].negative,
5704 _("Thumb does not support negative register indexing"));
5705 constraint (inst.operands[i].postind,
5706 _("Thumb does not support register post-indexing"));
5707 constraint (inst.operands[i].writeback,
5708 _("Thumb does not support register indexing with writeback"));
5709 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
5710 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 5711
c19d1205
ZW
5712 inst.instruction |= inst.operands[1].imm;
5713 if (inst.operands[i].shifted)
b99bd4ef 5714 {
c19d1205
ZW
5715 constraint (inst.reloc.exp.X_op != O_constant,
5716 _("expression too complex"));
9c3c69f2
PB
5717 constraint (inst.reloc.exp.X_add_number < 0
5718 || inst.reloc.exp.X_add_number > 3,
c19d1205 5719 _("shift out of range"));
9c3c69f2 5720 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
5721 }
5722 inst.reloc.type = BFD_RELOC_UNUSED;
5723 }
5724 else if (inst.operands[i].preind)
5725 {
5726 constraint (is_pc && inst.operands[i].writeback,
5727 _("cannot use writeback with PC-relative addressing"));
5728 constraint (is_t && inst.operands[1].writeback,
5729 _("cannot use writeback with this instruction"));
5730
5731 if (is_d)
5732 {
5733 inst.instruction |= 0x01000000;
5734 if (inst.operands[i].writeback)
5735 inst.instruction |= 0x00200000;
b99bd4ef 5736 }
c19d1205 5737 else
b99bd4ef 5738 {
c19d1205
ZW
5739 inst.instruction |= 0x00000c00;
5740 if (inst.operands[i].writeback)
5741 inst.instruction |= 0x00000100;
b99bd4ef 5742 }
c19d1205 5743 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 5744 }
c19d1205 5745 else if (inst.operands[i].postind)
b99bd4ef 5746 {
c19d1205
ZW
5747 assert (inst.operands[i].writeback);
5748 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
5749 constraint (is_t, _("cannot use post-indexing with this instruction"));
5750
5751 if (is_d)
5752 inst.instruction |= 0x00200000;
5753 else
5754 inst.instruction |= 0x00000900;
5755 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
5756 }
5757 else /* unindexed - only for coprocessor */
5758 inst.error = _("instruction does not accept unindexed addressing");
5759}
5760
5761/* Table of Thumb instructions which exist in both 16- and 32-bit
5762 encodings (the latter only in post-V6T2 cores). The index is the
5763 value used in the insns table below. When there is more than one
5764 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
5765 holds variant (1).
5766 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
5767#define T16_32_TAB \
5768 X(adc, 4140, eb400000), \
5769 X(adcs, 4140, eb500000), \
5770 X(add, 1c00, eb000000), \
5771 X(adds, 1c00, eb100000), \
0110f2b8
PB
5772 X(addi, 0000, f1000000), \
5773 X(addis, 0000, f1100000), \
5774 X(add_pc,000f, f20f0000), \
5775 X(add_sp,000d, f10d0000), \
e9f89963 5776 X(adr, 000f, f20f0000), \
c19d1205
ZW
5777 X(and, 4000, ea000000), \
5778 X(ands, 4000, ea100000), \
5779 X(asr, 1000, fa40f000), \
5780 X(asrs, 1000, fa50f000), \
0110f2b8
PB
5781 X(b, e000, f000b000), \
5782 X(bcond, d000, f0008000), \
c19d1205
ZW
5783 X(bic, 4380, ea200000), \
5784 X(bics, 4380, ea300000), \
5785 X(cmn, 42c0, eb100f00), \
5786 X(cmp, 2800, ebb00f00), \
5787 X(cpsie, b660, f3af8400), \
5788 X(cpsid, b670, f3af8600), \
5789 X(cpy, 4600, ea4f0000), \
0110f2b8 5790 X(dec_sp,80dd, f1bd0d00), \
c19d1205
ZW
5791 X(eor, 4040, ea800000), \
5792 X(eors, 4040, ea900000), \
0110f2b8 5793 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
5794 X(ldmia, c800, e8900000), \
5795 X(ldr, 6800, f8500000), \
5796 X(ldrb, 7800, f8100000), \
5797 X(ldrh, 8800, f8300000), \
5798 X(ldrsb, 5600, f9100000), \
5799 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
5800 X(ldr_pc,4800, f85f0000), \
5801 X(ldr_pc2,4800, f85f0000), \
5802 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
5803 X(lsl, 0000, fa00f000), \
5804 X(lsls, 0000, fa10f000), \
5805 X(lsr, 0800, fa20f000), \
5806 X(lsrs, 0800, fa30f000), \
5807 X(mov, 2000, ea4f0000), \
5808 X(movs, 2000, ea5f0000), \
5809 X(mul, 4340, fb00f000), \
5810 X(muls, 4340, ffffffff), /* no 32b muls */ \
5811 X(mvn, 43c0, ea6f0000), \
5812 X(mvns, 43c0, ea7f0000), \
5813 X(neg, 4240, f1c00000), /* rsb #0 */ \
5814 X(negs, 4240, f1d00000), /* rsbs #0 */ \
5815 X(orr, 4300, ea400000), \
5816 X(orrs, 4300, ea500000), \
e9f89963
PB
5817 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
5818 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
5819 X(rev, ba00, fa90f080), \
5820 X(rev16, ba40, fa90f090), \
5821 X(revsh, bac0, fa90f0b0), \
5822 X(ror, 41c0, fa60f000), \
5823 X(rors, 41c0, fa70f000), \
5824 X(sbc, 4180, eb600000), \
5825 X(sbcs, 4180, eb700000), \
5826 X(stmia, c000, e8800000), \
5827 X(str, 6000, f8400000), \
5828 X(strb, 7000, f8000000), \
5829 X(strh, 8000, f8200000), \
0110f2b8 5830 X(str_sp,9000, f84d0000), \
c19d1205
ZW
5831 X(sub, 1e00, eba00000), \
5832 X(subs, 1e00, ebb00000), \
0110f2b8
PB
5833 X(subi, 8000, f1a00000), \
5834 X(subis, 8000, f1b00000), \
c19d1205
ZW
5835 X(sxtb, b240, fa4ff080), \
5836 X(sxth, b200, fa0ff080), \
5837 X(tst, 4200, ea100f00), \
5838 X(uxtb, b2c0, fa5ff080), \
5839 X(uxth, b280, fa1ff080), \
5840 X(nop, bf00, f3af8000), \
5841 X(yield, bf10, f3af8001), \
5842 X(wfe, bf20, f3af8002), \
5843 X(wfi, bf30, f3af8003), \
5844 X(sev, bf40, f3af9004), /* typo, 8004? */
5845
5846/* To catch errors in encoding functions, the codes are all offset by
5847 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
5848 as 16-bit instructions. */
5849#define X(a,b,c) T_MNEM_##a
5850enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
5851#undef X
5852
5853#define X(a,b,c) 0x##b
5854static const unsigned short thumb_op16[] = { T16_32_TAB };
5855#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
5856#undef X
5857
5858#define X(a,b,c) 0x##c
5859static const unsigned int thumb_op32[] = { T16_32_TAB };
5860#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
5861#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
5862#undef X
5863#undef T16_32_TAB
5864
5865/* Thumb instruction encoders, in alphabetical order. */
5866
92e90b6e
PB
5867/* ADDW or SUBW. */
5868static void
5869do_t_add_sub_w (void)
5870{
5871 int Rd, Rn;
5872
5873 Rd = inst.operands[0].reg;
5874 Rn = inst.operands[1].reg;
5875
5876 constraint (Rd == 15, _("PC not allowed as destination"));
5877 inst.instruction |= (Rn << 16) | (Rd << 8);
5878 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
5879}
5880
c19d1205
ZW
5881/* Parse an add or subtract instruction. We get here with inst.instruction
5882 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
5883
5884static void
5885do_t_add_sub (void)
5886{
5887 int Rd, Rs, Rn;
5888
5889 Rd = inst.operands[0].reg;
5890 Rs = (inst.operands[1].present
5891 ? inst.operands[1].reg /* Rd, Rs, foo */
5892 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
5893
5894 if (unified_syntax)
5895 {
0110f2b8
PB
5896 bfd_boolean flags;
5897 bfd_boolean narrow;
5898 int opcode;
5899
5900 flags = (inst.instruction == T_MNEM_adds
5901 || inst.instruction == T_MNEM_subs);
5902 if (flags)
5903 narrow = (current_it_mask == 0);
5904 else
5905 narrow = (current_it_mask != 0);
c19d1205 5906 if (!inst.operands[2].isreg)
b99bd4ef 5907 {
0110f2b8
PB
5908 opcode = 0;
5909 if (inst.size_req != 4)
5910 {
5911 int add;
5912
5913 add = (inst.instruction == T_MNEM_add
5914 || inst.instruction == T_MNEM_adds);
5915 /* Attempt to use a narrow opcode, with relaxation if
5916 appropriate. */
5917 if (Rd == REG_SP && Rs == REG_SP && !flags)
5918 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
5919 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
5920 opcode = T_MNEM_add_sp;
5921 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
5922 opcode = T_MNEM_add_pc;
5923 else if (Rd <= 7 && Rs <= 7 && narrow)
5924 {
5925 if (flags)
5926 opcode = add ? T_MNEM_addis : T_MNEM_subis;
5927 else
5928 opcode = add ? T_MNEM_addi : T_MNEM_subi;
5929 }
5930 if (opcode)
5931 {
5932 inst.instruction = THUMB_OP16(opcode);
5933 inst.instruction |= (Rd << 4) | Rs;
5934 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
5935 if (inst.size_req != 2)
5936 inst.relax = opcode;
5937 }
5938 else
5939 constraint (inst.size_req == 2, BAD_HIREG);
5940 }
5941 if (inst.size_req == 4
5942 || (inst.size_req != 2 && !opcode))
5943 {
5944 /* ??? Convert large immediates to addw/subw. */
5945 inst.instruction = THUMB_OP32 (inst.instruction);
5946 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
5947 inst.instruction |= inst.operands[0].reg << 8;
5948 inst.instruction |= inst.operands[1].reg << 16;
5949 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
5950 }
b99bd4ef 5951 }
c19d1205
ZW
5952 else
5953 {
5954 Rn = inst.operands[2].reg;
5955 /* See if we can do this with a 16-bit instruction. */
5956 if (!inst.operands[2].shifted && inst.size_req != 4)
5957 {
e27ec89e
PB
5958 if (Rd > 7 || Rs > 7 || Rn > 7)
5959 narrow = FALSE;
5960
5961 if (narrow)
c19d1205 5962 {
e27ec89e
PB
5963 inst.instruction = ((inst.instruction == T_MNEM_adds
5964 || inst.instruction == T_MNEM_add)
c19d1205
ZW
5965 ? T_OPCODE_ADD_R3
5966 : T_OPCODE_SUB_R3);
5967 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
5968 return;
5969 }
b99bd4ef 5970
c19d1205
ZW
5971 if (inst.instruction == T_MNEM_add)
5972 {
5973 if (Rd == Rs)
5974 {
5975 inst.instruction = T_OPCODE_ADD_HI;
5976 inst.instruction |= (Rd & 8) << 4;
5977 inst.instruction |= (Rd & 7);
5978 inst.instruction |= Rn << 3;
5979 return;
5980 }
5981 /* ... because addition is commutative! */
5982 else if (Rd == Rn)
5983 {
5984 inst.instruction = T_OPCODE_ADD_HI;
5985 inst.instruction |= (Rd & 8) << 4;
5986 inst.instruction |= (Rd & 7);
5987 inst.instruction |= Rs << 3;
5988 return;
5989 }
5990 }
5991 }
5992 /* If we get here, it can't be done in 16 bits. */
5993 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
5994 _("shift must be constant"));
5995 inst.instruction = THUMB_OP32 (inst.instruction);
5996 inst.instruction |= Rd << 8;
5997 inst.instruction |= Rs << 16;
5998 encode_thumb32_shifted_operand (2);
5999 }
6000 }
6001 else
6002 {
6003 constraint (inst.instruction == T_MNEM_adds
6004 || inst.instruction == T_MNEM_subs,
6005 BAD_THUMB32);
b99bd4ef 6006
c19d1205 6007 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 6008 {
c19d1205
ZW
6009 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
6010 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
6011 BAD_HIREG);
6012
6013 inst.instruction = (inst.instruction == T_MNEM_add
6014 ? 0x0000 : 0x8000);
6015 inst.instruction |= (Rd << 4) | Rs;
6016 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
6017 return;
6018 }
6019
c19d1205
ZW
6020 Rn = inst.operands[2].reg;
6021 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 6022
c19d1205
ZW
6023 /* We now have Rd, Rs, and Rn set to registers. */
6024 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 6025 {
c19d1205
ZW
6026 /* Can't do this for SUB. */
6027 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
6028 inst.instruction = T_OPCODE_ADD_HI;
6029 inst.instruction |= (Rd & 8) << 4;
6030 inst.instruction |= (Rd & 7);
6031 if (Rs == Rd)
6032 inst.instruction |= Rn << 3;
6033 else if (Rn == Rd)
6034 inst.instruction |= Rs << 3;
6035 else
6036 constraint (1, _("dest must overlap one source register"));
6037 }
6038 else
6039 {
6040 inst.instruction = (inst.instruction == T_MNEM_add
6041 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
6042 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 6043 }
b99bd4ef 6044 }
b99bd4ef
NC
6045}
6046
c19d1205
ZW
6047static void
6048do_t_adr (void)
6049{
0110f2b8
PB
6050 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
6051 {
6052 /* Defer to section relaxation. */
6053 inst.relax = inst.instruction;
6054 inst.instruction = THUMB_OP16 (inst.instruction);
6055 inst.instruction |= inst.operands[0].reg << 4;
6056 }
6057 else if (unified_syntax && inst.size_req != 2)
e9f89963 6058 {
0110f2b8 6059 /* Generate a 32-bit opcode. */
e9f89963
PB
6060 inst.instruction = THUMB_OP32 (inst.instruction);
6061 inst.instruction |= inst.operands[0].reg << 8;
6062 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
6063 inst.reloc.pc_rel = 1;
6064 }
6065 else
6066 {
0110f2b8 6067 /* Generate a 16-bit opcode. */
e9f89963
PB
6068 inst.instruction = THUMB_OP16 (inst.instruction);
6069 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
6070 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
6071 inst.reloc.pc_rel = 1;
b99bd4ef 6072
e9f89963
PB
6073 inst.instruction |= inst.operands[0].reg << 4;
6074 }
c19d1205 6075}
b99bd4ef 6076
c19d1205
ZW
6077/* Arithmetic instructions for which there is just one 16-bit
6078 instruction encoding, and it allows only two low registers.
6079 For maximal compatibility with ARM syntax, we allow three register
6080 operands even when Thumb-32 instructions are not available, as long
6081 as the first two are identical. For instance, both "sbc r0,r1" and
6082 "sbc r0,r0,r1" are allowed. */
b99bd4ef 6083static void
c19d1205 6084do_t_arit3 (void)
b99bd4ef 6085{
c19d1205 6086 int Rd, Rs, Rn;
b99bd4ef 6087
c19d1205
ZW
6088 Rd = inst.operands[0].reg;
6089 Rs = (inst.operands[1].present
6090 ? inst.operands[1].reg /* Rd, Rs, foo */
6091 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
6092 Rn = inst.operands[2].reg;
b99bd4ef 6093
c19d1205 6094 if (unified_syntax)
b99bd4ef 6095 {
c19d1205
ZW
6096 if (!inst.operands[2].isreg)
6097 {
6098 /* For an immediate, we always generate a 32-bit opcode;
6099 section relaxation will shrink it later if possible. */
6100 inst.instruction = THUMB_OP32 (inst.instruction);
6101 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6102 inst.instruction |= Rd << 8;
6103 inst.instruction |= Rs << 16;
6104 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6105 }
6106 else
6107 {
e27ec89e
PB
6108 bfd_boolean narrow;
6109
c19d1205 6110 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
6111 if (THUMB_SETS_FLAGS (inst.instruction))
6112 narrow = current_it_mask == 0;
6113 else
6114 narrow = current_it_mask != 0;
6115
6116 if (Rd > 7 || Rn > 7 || Rs > 7)
6117 narrow = FALSE;
6118 if (inst.operands[2].shifted)
6119 narrow = FALSE;
6120 if (inst.size_req == 4)
6121 narrow = FALSE;
6122
6123 if (narrow
c19d1205
ZW
6124 && Rd == Rs)
6125 {
6126 inst.instruction = THUMB_OP16 (inst.instruction);
6127 inst.instruction |= Rd;
6128 inst.instruction |= Rn << 3;
6129 return;
6130 }
b99bd4ef 6131
c19d1205
ZW
6132 /* If we get here, it can't be done in 16 bits. */
6133 constraint (inst.operands[2].shifted
6134 && inst.operands[2].immisreg,
6135 _("shift must be constant"));
6136 inst.instruction = THUMB_OP32 (inst.instruction);
6137 inst.instruction |= Rd << 8;
6138 inst.instruction |= Rs << 16;
6139 encode_thumb32_shifted_operand (2);
6140 }
a737bd4d 6141 }
c19d1205 6142 else
b99bd4ef 6143 {
c19d1205
ZW
6144 /* On its face this is a lie - the instruction does set the
6145 flags. However, the only supported mnemonic in this mode
6146 says it doesn't. */
6147 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 6148
c19d1205
ZW
6149 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
6150 _("unshifted register required"));
6151 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
6152 constraint (Rd != Rs,
6153 _("dest and source1 must be the same register"));
a737bd4d 6154
c19d1205
ZW
6155 inst.instruction = THUMB_OP16 (inst.instruction);
6156 inst.instruction |= Rd;
6157 inst.instruction |= Rn << 3;
b99bd4ef 6158 }
a737bd4d 6159}
b99bd4ef 6160
c19d1205
ZW
6161/* Similarly, but for instructions where the arithmetic operation is
6162 commutative, so we can allow either of them to be different from
6163 the destination operand in a 16-bit instruction. For instance, all
6164 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
6165 accepted. */
6166static void
6167do_t_arit3c (void)
a737bd4d 6168{
c19d1205 6169 int Rd, Rs, Rn;
b99bd4ef 6170
c19d1205
ZW
6171 Rd = inst.operands[0].reg;
6172 Rs = (inst.operands[1].present
6173 ? inst.operands[1].reg /* Rd, Rs, foo */
6174 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
6175 Rn = inst.operands[2].reg;
a737bd4d 6176
c19d1205 6177 if (unified_syntax)
a737bd4d 6178 {
c19d1205 6179 if (!inst.operands[2].isreg)
b99bd4ef 6180 {
c19d1205
ZW
6181 /* For an immediate, we always generate a 32-bit opcode;
6182 section relaxation will shrink it later if possible. */
6183 inst.instruction = THUMB_OP32 (inst.instruction);
6184 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6185 inst.instruction |= Rd << 8;
6186 inst.instruction |= Rs << 16;
6187 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 6188 }
c19d1205 6189 else
a737bd4d 6190 {
e27ec89e
PB
6191 bfd_boolean narrow;
6192
c19d1205 6193 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
6194 if (THUMB_SETS_FLAGS (inst.instruction))
6195 narrow = current_it_mask == 0;
6196 else
6197 narrow = current_it_mask != 0;
6198
6199 if (Rd > 7 || Rn > 7 || Rs > 7)
6200 narrow = FALSE;
6201 if (inst.operands[2].shifted)
6202 narrow = FALSE;
6203 if (inst.size_req == 4)
6204 narrow = FALSE;
6205
6206 if (narrow)
a737bd4d 6207 {
c19d1205 6208 if (Rd == Rs)
a737bd4d 6209 {
c19d1205
ZW
6210 inst.instruction = THUMB_OP16 (inst.instruction);
6211 inst.instruction |= Rd;
6212 inst.instruction |= Rn << 3;
6213 return;
a737bd4d 6214 }
c19d1205 6215 if (Rd == Rn)
a737bd4d 6216 {
c19d1205
ZW
6217 inst.instruction = THUMB_OP16 (inst.instruction);
6218 inst.instruction |= Rd;
6219 inst.instruction |= Rs << 3;
6220 return;
a737bd4d
NC
6221 }
6222 }
c19d1205
ZW
6223
6224 /* If we get here, it can't be done in 16 bits. */
6225 constraint (inst.operands[2].shifted
6226 && inst.operands[2].immisreg,
6227 _("shift must be constant"));
6228 inst.instruction = THUMB_OP32 (inst.instruction);
6229 inst.instruction |= Rd << 8;
6230 inst.instruction |= Rs << 16;
6231 encode_thumb32_shifted_operand (2);
a737bd4d 6232 }
b99bd4ef 6233 }
c19d1205
ZW
6234 else
6235 {
6236 /* On its face this is a lie - the instruction does set the
6237 flags. However, the only supported mnemonic in this mode
6238 says it doesn't. */
6239 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 6240
c19d1205
ZW
6241 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
6242 _("unshifted register required"));
6243 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
6244
6245 inst.instruction = THUMB_OP16 (inst.instruction);
6246 inst.instruction |= Rd;
6247
6248 if (Rd == Rs)
6249 inst.instruction |= Rn << 3;
6250 else if (Rd == Rn)
6251 inst.instruction |= Rs << 3;
6252 else
6253 constraint (1, _("dest must overlap one source register"));
6254 }
a737bd4d
NC
6255}
6256
c19d1205
ZW
6257static void
6258do_t_bfc (void)
a737bd4d 6259{
c19d1205
ZW
6260 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6261 constraint (msb > 32, _("bit-field extends past end of register"));
6262 /* The instruction encoding stores the LSB and MSB,
6263 not the LSB and width. */
6264 inst.instruction |= inst.operands[0].reg << 8;
6265 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
6266 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
6267 inst.instruction |= msb - 1;
b99bd4ef
NC
6268}
6269
c19d1205
ZW
6270static void
6271do_t_bfi (void)
b99bd4ef 6272{
c19d1205 6273 unsigned int msb;
b99bd4ef 6274
c19d1205
ZW
6275 /* #0 in second position is alternative syntax for bfc, which is
6276 the same instruction but with REG_PC in the Rm field. */
6277 if (!inst.operands[1].isreg)
6278 inst.operands[1].reg = REG_PC;
b99bd4ef 6279
c19d1205
ZW
6280 msb = inst.operands[2].imm + inst.operands[3].imm;
6281 constraint (msb > 32, _("bit-field extends past end of register"));
6282 /* The instruction encoding stores the LSB and MSB,
6283 not the LSB and width. */
6284 inst.instruction |= inst.operands[0].reg << 8;
6285 inst.instruction |= inst.operands[1].reg << 16;
6286 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
6287 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
6288 inst.instruction |= msb - 1;
b99bd4ef
NC
6289}
6290
c19d1205
ZW
6291static void
6292do_t_bfx (void)
b99bd4ef 6293{
c19d1205
ZW
6294 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6295 _("bit-field extends past end of register"));
6296 inst.instruction |= inst.operands[0].reg << 8;
6297 inst.instruction |= inst.operands[1].reg << 16;
6298 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
6299 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
6300 inst.instruction |= inst.operands[3].imm - 1;
6301}
b99bd4ef 6302
c19d1205
ZW
6303/* ARM V5 Thumb BLX (argument parse)
6304 BLX <target_addr> which is BLX(1)
6305 BLX <Rm> which is BLX(2)
6306 Unfortunately, there are two different opcodes for this mnemonic.
6307 So, the insns[].value is not used, and the code here zaps values
6308 into inst.instruction.
b99bd4ef 6309
c19d1205
ZW
6310 ??? How to take advantage of the additional two bits of displacement
6311 available in Thumb32 mode? Need new relocation? */
b99bd4ef 6312
c19d1205
ZW
6313static void
6314do_t_blx (void)
6315{
6316 if (inst.operands[0].isreg)
6317 /* We have a register, so this is BLX(2). */
6318 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
6319 else
6320 {
c19d1205 6321 /* No register. This must be BLX(1). */
2fc8bdac 6322 inst.instruction = 0xf000e800;
c19d1205
ZW
6323 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
6324 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6325 }
6326}
6327
c19d1205
ZW
6328static void
6329do_t_branch (void)
b99bd4ef 6330{
0110f2b8
PB
6331 int opcode;
6332 if (inst.cond != COND_ALWAYS)
6333 opcode = T_MNEM_bcond;
6334 else
6335 opcode = inst.instruction;
6336
6337 if (unified_syntax && inst.size_req == 4)
c19d1205 6338 {
0110f2b8 6339 inst.instruction = THUMB_OP32(opcode);
c19d1205 6340 if (inst.cond == COND_ALWAYS)
0110f2b8 6341 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
6342 else
6343 {
6344 assert (inst.cond != 0xF);
0110f2b8 6345 inst.instruction |= inst.cond << 22;
c19d1205
ZW
6346 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
6347 }
6348 }
b99bd4ef
NC
6349 else
6350 {
0110f2b8 6351 inst.instruction = THUMB_OP16(opcode);
c19d1205
ZW
6352 if (inst.cond == COND_ALWAYS)
6353 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
6354 else
b99bd4ef 6355 {
0110f2b8 6356 inst.instruction |= inst.cond << 8;
c19d1205 6357 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 6358 }
0110f2b8
PB
6359 /* Allow section relaxation. */
6360 if (unified_syntax && inst.size_req != 2)
6361 inst.relax = opcode;
b99bd4ef 6362 }
c19d1205
ZW
6363
6364 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6365}
6366
6367static void
c19d1205 6368do_t_bkpt (void)
b99bd4ef 6369{
c19d1205 6370 if (inst.operands[0].present)
b99bd4ef 6371 {
c19d1205
ZW
6372 constraint (inst.operands[0].imm > 255,
6373 _("immediate value out of range"));
6374 inst.instruction |= inst.operands[0].imm;
b99bd4ef 6375 }
b99bd4ef
NC
6376}
6377
6378static void
c19d1205 6379do_t_branch23 (void)
b99bd4ef 6380{
c19d1205 6381 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
6382 inst.reloc.pc_rel = 1;
6383
c19d1205
ZW
6384 /* If the destination of the branch is a defined symbol which does not have
6385 the THUMB_FUNC attribute, then we must be calling a function which has
6386 the (interfacearm) attribute. We look for the Thumb entry point to that
6387 function and change the branch to refer to that function instead. */
6388 if ( inst.reloc.exp.X_op == O_symbol
6389 && inst.reloc.exp.X_add_symbol != NULL
6390 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
6391 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
6392 inst.reloc.exp.X_add_symbol =
6393 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
6394}
6395
6396static void
c19d1205 6397do_t_bx (void)
90e4755a 6398{
c19d1205
ZW
6399 inst.instruction |= inst.operands[0].reg << 3;
6400 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
6401 should cause the alignment to be checked once it is known. This is
6402 because BX PC only works if the instruction is word aligned. */
6403}
90e4755a 6404
c19d1205
ZW
6405static void
6406do_t_bxj (void)
6407{
6408 if (inst.operands[0].reg == REG_PC)
6409 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 6410
c19d1205 6411 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
6412}
6413
6414static void
c19d1205 6415do_t_clz (void)
90e4755a 6416{
c19d1205
ZW
6417 inst.instruction |= inst.operands[0].reg << 8;
6418 inst.instruction |= inst.operands[1].reg << 16;
6419 inst.instruction |= inst.operands[1].reg;
6420}
90e4755a 6421
c19d1205
ZW
6422static void
6423do_t_cpsi (void)
6424{
6425 if (unified_syntax
6426 && (inst.operands[1].present || inst.size_req == 4))
90e4755a 6427 {
c19d1205
ZW
6428 unsigned int imod = (inst.instruction & 0x0030) >> 4;
6429 inst.instruction = 0xf3af8000;
6430 inst.instruction |= imod << 9;
6431 inst.instruction |= inst.operands[0].imm << 5;
6432 if (inst.operands[1].present)
6433 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 6434 }
c19d1205 6435 else
90e4755a 6436 {
c19d1205
ZW
6437 constraint (inst.operands[1].present,
6438 _("Thumb does not support the 2-argument "
6439 "form of this instruction"));
6440 inst.instruction |= inst.operands[0].imm;
90e4755a 6441 }
90e4755a
RE
6442}
6443
c19d1205
ZW
6444/* THUMB CPY instruction (argument parse). */
6445
90e4755a 6446static void
c19d1205 6447do_t_cpy (void)
90e4755a 6448{
c19d1205 6449 if (inst.size_req == 4)
90e4755a 6450 {
c19d1205
ZW
6451 inst.instruction = THUMB_OP32 (T_MNEM_mov);
6452 inst.instruction |= inst.operands[0].reg << 8;
6453 inst.instruction |= inst.operands[1].reg;
90e4755a 6454 }
c19d1205 6455 else
90e4755a 6456 {
c19d1205
ZW
6457 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6458 inst.instruction |= (inst.operands[0].reg & 0x7);
6459 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 6460 }
90e4755a
RE
6461}
6462
90e4755a 6463static void
c19d1205 6464do_t_czb (void)
90e4755a 6465{
c19d1205
ZW
6466 constraint (inst.operands[0].reg > 7, BAD_HIREG);
6467 inst.instruction |= inst.operands[0].reg;
6468 inst.reloc.pc_rel = 1;
6469 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
6470}
90e4755a 6471
c19d1205
ZW
6472static void
6473do_t_hint (void)
6474{
6475 if (unified_syntax && inst.size_req == 4)
6476 inst.instruction = THUMB_OP32 (inst.instruction);
6477 else
6478 inst.instruction = THUMB_OP16 (inst.instruction);
6479}
90e4755a 6480
c19d1205
ZW
6481static void
6482do_t_it (void)
6483{
6484 unsigned int cond = inst.operands[0].imm;
e27ec89e
PB
6485
6486 current_it_mask = (inst.instruction & 0xf) | 0x10;
6487 current_cc = cond;
6488
6489 /* If the condition is a negative condition, invert the mask. */
c19d1205 6490 if ((cond & 0x1) == 0x0)
90e4755a 6491 {
c19d1205 6492 unsigned int mask = inst.instruction & 0x000f;
90e4755a 6493
c19d1205
ZW
6494 if ((mask & 0x7) == 0)
6495 /* no conversion needed */;
6496 else if ((mask & 0x3) == 0)
e27ec89e
PB
6497 mask ^= 0x8;
6498 else if ((mask & 0x1) == 0)
6499 mask ^= 0xC;
c19d1205 6500 else
e27ec89e 6501 mask ^= 0xE;
90e4755a 6502
e27ec89e
PB
6503 inst.instruction &= 0xfff0;
6504 inst.instruction |= mask;
c19d1205 6505 }
90e4755a 6506
c19d1205
ZW
6507 inst.instruction |= cond << 4;
6508}
90e4755a 6509
c19d1205
ZW
6510static void
6511do_t_ldmstm (void)
6512{
6513 /* This really doesn't seem worth it. */
6514 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
6515 _("expression too complex"));
6516 constraint (inst.operands[1].writeback,
6517 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 6518
c19d1205
ZW
6519 if (unified_syntax)
6520 {
6521 /* See if we can use a 16-bit instruction. */
6522 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
6523 && inst.size_req != 4
6524 && inst.operands[0].reg <= 7
6525 && !(inst.operands[1].imm & ~0xff)
6526 && (inst.instruction == T_MNEM_stmia
6527 ? inst.operands[0].writeback
6528 : (inst.operands[0].writeback
6529 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
90e4755a 6530 {
c19d1205
ZW
6531 if (inst.instruction == T_MNEM_stmia
6532 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
6533 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
6534 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6535 inst.operands[0].reg);
90e4755a 6536
c19d1205
ZW
6537 inst.instruction = THUMB_OP16 (inst.instruction);
6538 inst.instruction |= inst.operands[0].reg << 8;
6539 inst.instruction |= inst.operands[1].imm;
6540 }
6541 else
6542 {
6543 if (inst.operands[1].imm & (1 << 13))
6544 as_warn (_("SP should not be in register list"));
6545 if (inst.instruction == T_MNEM_stmia)
90e4755a 6546 {
c19d1205
ZW
6547 if (inst.operands[1].imm & (1 << 15))
6548 as_warn (_("PC should not be in register list"));
6549 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
6550 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6551 inst.operands[0].reg);
90e4755a
RE
6552 }
6553 else
6554 {
c19d1205
ZW
6555 if (inst.operands[1].imm & (1 << 14)
6556 && inst.operands[1].imm & (1 << 15))
6557 as_warn (_("LR and PC should not both be in register list"));
6558 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
6559 && inst.operands[0].writeback)
6560 as_warn (_("base register should not be in register list "
6561 "when written back"));
90e4755a 6562 }
c19d1205
ZW
6563 if (inst.instruction < 0xffff)
6564 inst.instruction = THUMB_OP32 (inst.instruction);
6565 inst.instruction |= inst.operands[0].reg << 16;
6566 inst.instruction |= inst.operands[1].imm;
6567 if (inst.operands[0].writeback)
6568 inst.instruction |= WRITE_BACK;
90e4755a
RE
6569 }
6570 }
c19d1205 6571 else
90e4755a 6572 {
c19d1205
ZW
6573 constraint (inst.operands[0].reg > 7
6574 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
6575 if (inst.instruction == T_MNEM_stmia)
f03698e6 6576 {
c19d1205
ZW
6577 if (!inst.operands[0].writeback)
6578 as_warn (_("this instruction will write back the base register"));
6579 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
6580 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
6581 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6582 inst.operands[0].reg);
f03698e6 6583 }
c19d1205 6584 else
90e4755a 6585 {
c19d1205
ZW
6586 if (!inst.operands[0].writeback
6587 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
6588 as_warn (_("this instruction will write back the base register"));
6589 else if (inst.operands[0].writeback
6590 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
6591 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
6592 }
6593
c19d1205
ZW
6594 inst.instruction = THUMB_OP16 (inst.instruction);
6595 inst.instruction |= inst.operands[0].reg << 8;
6596 inst.instruction |= inst.operands[1].imm;
6597 }
6598}
e28cd48c 6599
c19d1205
ZW
6600static void
6601do_t_ldrex (void)
6602{
6603 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6604 || inst.operands[1].postind || inst.operands[1].writeback
6605 || inst.operands[1].immisreg || inst.operands[1].shifted
6606 || inst.operands[1].negative,
6607 _("instruction does not accept this addressing mode"));
e28cd48c 6608
c19d1205
ZW
6609 inst.instruction |= inst.operands[0].reg << 12;
6610 inst.instruction |= inst.operands[1].reg << 16;
6611 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
6612}
e28cd48c 6613
c19d1205
ZW
6614static void
6615do_t_ldrexd (void)
6616{
6617 if (!inst.operands[1].present)
1cac9012 6618 {
c19d1205
ZW
6619 constraint (inst.operands[0].reg == REG_LR,
6620 _("r14 not allowed as first register "
6621 "when second register is omitted"));
6622 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 6623 }
c19d1205
ZW
6624 constraint (inst.operands[0].reg == inst.operands[1].reg,
6625 BAD_OVERLAP);
b99bd4ef 6626
c19d1205
ZW
6627 inst.instruction |= inst.operands[0].reg << 12;
6628 inst.instruction |= inst.operands[1].reg << 8;
6629 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
6630}
6631
6632static void
c19d1205 6633do_t_ldst (void)
b99bd4ef 6634{
0110f2b8
PB
6635 unsigned long opcode;
6636 int Rn;
6637
6638 opcode = inst.instruction;
c19d1205 6639 if (unified_syntax)
b99bd4ef 6640 {
0110f2b8
PB
6641 if (inst.operands[1].isreg
6642 && !inst.operands[1].writeback
c19d1205
ZW
6643 && !inst.operands[1].shifted && !inst.operands[1].postind
6644 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
6645 && opcode <= 0xffff
6646 && inst.size_req != 4)
c19d1205 6647 {
0110f2b8
PB
6648 /* Insn may have a 16-bit form. */
6649 Rn = inst.operands[1].reg;
6650 if (inst.operands[1].immisreg)
6651 {
6652 inst.instruction = THUMB_OP16 (opcode);
6653 /* [Rn, Ri] */
6654 if (Rn <= 7 && inst.operands[1].imm <= 7)
6655 goto op16;
6656 }
6657 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
6658 && opcode != T_MNEM_ldrsb)
6659 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
6660 || (Rn == REG_SP && opcode == T_MNEM_str))
6661 {
6662 /* [Rn, #const] */
6663 if (Rn > 7)
6664 {
6665 if (Rn == REG_PC)
6666 {
6667 if (inst.reloc.pc_rel)
6668 opcode = T_MNEM_ldr_pc2;
6669 else
6670 opcode = T_MNEM_ldr_pc;
6671 }
6672 else
6673 {
6674 if (opcode == T_MNEM_ldr)
6675 opcode = T_MNEM_ldr_sp;
6676 else
6677 opcode = T_MNEM_str_sp;
6678 }
6679 inst.instruction = inst.operands[0].reg << 8;
6680 }
6681 else
6682 {
6683 inst.instruction = inst.operands[0].reg;
6684 inst.instruction |= inst.operands[1].reg << 3;
6685 }
6686 inst.instruction |= THUMB_OP16 (opcode);
6687 if (inst.size_req == 2)
6688 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
6689 else
6690 inst.relax = opcode;
6691 return;
6692 }
c19d1205 6693 }
0110f2b8
PB
6694 /* Definitely a 32-bit variant. */
6695 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
6696 inst.instruction |= inst.operands[0].reg << 12;
6697 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
6698 return;
6699 }
6700
c19d1205
ZW
6701 constraint (inst.operands[0].reg > 7, BAD_HIREG);
6702
6703 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 6704 {
c19d1205
ZW
6705 /* Only [Rn,Rm] is acceptable. */
6706 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
6707 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
6708 || inst.operands[1].postind || inst.operands[1].shifted
6709 || inst.operands[1].negative,
6710 _("Thumb does not support this addressing mode"));
6711 inst.instruction = THUMB_OP16 (inst.instruction);
6712 goto op16;
b99bd4ef 6713 }
c19d1205
ZW
6714
6715 inst.instruction = THUMB_OP16 (inst.instruction);
6716 if (!inst.operands[1].isreg)
6717 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
6718 return;
b99bd4ef 6719
c19d1205
ZW
6720 constraint (!inst.operands[1].preind
6721 || inst.operands[1].shifted
6722 || inst.operands[1].writeback,
6723 _("Thumb does not support this addressing mode"));
6724 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 6725 {
c19d1205
ZW
6726 constraint (inst.instruction & 0x0600,
6727 _("byte or halfword not valid for base register"));
6728 constraint (inst.operands[1].reg == REG_PC
6729 && !(inst.instruction & THUMB_LOAD_BIT),
6730 _("r15 based store not allowed"));
6731 constraint (inst.operands[1].immisreg,
6732 _("invalid base register for register offset"));
b99bd4ef 6733
c19d1205
ZW
6734 if (inst.operands[1].reg == REG_PC)
6735 inst.instruction = T_OPCODE_LDR_PC;
6736 else if (inst.instruction & THUMB_LOAD_BIT)
6737 inst.instruction = T_OPCODE_LDR_SP;
6738 else
6739 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 6740
c19d1205
ZW
6741 inst.instruction |= inst.operands[0].reg << 8;
6742 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
6743 return;
6744 }
90e4755a 6745
c19d1205
ZW
6746 constraint (inst.operands[1].reg > 7, BAD_HIREG);
6747 if (!inst.operands[1].immisreg)
6748 {
6749 /* Immediate offset. */
6750 inst.instruction |= inst.operands[0].reg;
6751 inst.instruction |= inst.operands[1].reg << 3;
6752 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
6753 return;
6754 }
90e4755a 6755
c19d1205
ZW
6756 /* Register offset. */
6757 constraint (inst.operands[1].imm > 7, BAD_HIREG);
6758 constraint (inst.operands[1].negative,
6759 _("Thumb does not support this addressing mode"));
90e4755a 6760
c19d1205
ZW
6761 op16:
6762 switch (inst.instruction)
6763 {
6764 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
6765 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
6766 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
6767 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
6768 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
6769 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
6770 case 0x5600 /* ldrsb */:
6771 case 0x5e00 /* ldrsh */: break;
6772 default: abort ();
6773 }
90e4755a 6774
c19d1205
ZW
6775 inst.instruction |= inst.operands[0].reg;
6776 inst.instruction |= inst.operands[1].reg << 3;
6777 inst.instruction |= inst.operands[1].imm << 6;
6778}
90e4755a 6779
c19d1205
ZW
6780static void
6781do_t_ldstd (void)
6782{
6783 if (!inst.operands[1].present)
b99bd4ef 6784 {
c19d1205
ZW
6785 inst.operands[1].reg = inst.operands[0].reg + 1;
6786 constraint (inst.operands[0].reg == REG_LR,
6787 _("r14 not allowed here"));
b99bd4ef 6788 }
c19d1205
ZW
6789 inst.instruction |= inst.operands[0].reg << 12;
6790 inst.instruction |= inst.operands[1].reg << 8;
6791 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
6792
b99bd4ef
NC
6793}
6794
c19d1205
ZW
6795static void
6796do_t_ldstt (void)
6797{
6798 inst.instruction |= inst.operands[0].reg << 12;
6799 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
6800}
a737bd4d 6801
b99bd4ef 6802static void
c19d1205 6803do_t_mla (void)
b99bd4ef 6804{
c19d1205
ZW
6805 inst.instruction |= inst.operands[0].reg << 8;
6806 inst.instruction |= inst.operands[1].reg << 16;
6807 inst.instruction |= inst.operands[2].reg;
6808 inst.instruction |= inst.operands[3].reg << 12;
6809}
b99bd4ef 6810
c19d1205
ZW
6811static void
6812do_t_mlal (void)
6813{
6814 inst.instruction |= inst.operands[0].reg << 12;
6815 inst.instruction |= inst.operands[1].reg << 8;
6816 inst.instruction |= inst.operands[2].reg << 16;
6817 inst.instruction |= inst.operands[3].reg;
6818}
b99bd4ef 6819
c19d1205
ZW
6820static void
6821do_t_mov_cmp (void)
6822{
6823 if (unified_syntax)
b99bd4ef 6824 {
c19d1205
ZW
6825 int r0off = (inst.instruction == T_MNEM_mov
6826 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 6827 unsigned long opcode;
3d388997
PB
6828 bfd_boolean narrow;
6829 bfd_boolean low_regs;
6830
6831 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 6832 opcode = inst.instruction;
3d388997 6833 if (current_it_mask)
0110f2b8 6834 narrow = opcode != T_MNEM_movs;
3d388997 6835 else
0110f2b8 6836 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
6837 if (inst.size_req == 4
6838 || inst.operands[1].shifted)
6839 narrow = FALSE;
6840
c19d1205
ZW
6841 if (!inst.operands[1].isreg)
6842 {
0110f2b8
PB
6843 /* Immediate operand. */
6844 if (current_it_mask == 0 && opcode == T_MNEM_mov)
6845 narrow = 0;
6846 if (low_regs && narrow)
6847 {
6848 inst.instruction = THUMB_OP16 (opcode);
6849 inst.instruction |= inst.operands[0].reg << 8;
6850 if (inst.size_req == 2)
6851 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
6852 else
6853 inst.relax = opcode;
6854 }
6855 else
6856 {
6857 inst.instruction = THUMB_OP32 (inst.instruction);
6858 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6859 inst.instruction |= inst.operands[0].reg << r0off;
6860 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6861 }
c19d1205 6862 }
3d388997 6863 else if (!narrow)
c19d1205
ZW
6864 {
6865 inst.instruction = THUMB_OP32 (inst.instruction);
6866 inst.instruction |= inst.operands[0].reg << r0off;
6867 encode_thumb32_shifted_operand (1);
6868 }
6869 else
6870 switch (inst.instruction)
6871 {
6872 case T_MNEM_mov:
6873 inst.instruction = T_OPCODE_MOV_HR;
6874 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6875 inst.instruction |= (inst.operands[0].reg & 0x7);
6876 inst.instruction |= inst.operands[1].reg << 3;
6877 break;
b99bd4ef 6878
c19d1205
ZW
6879 case T_MNEM_movs:
6880 /* We know we have low registers at this point.
6881 Generate ADD Rd, Rs, #0. */
6882 inst.instruction = T_OPCODE_ADD_I3;
6883 inst.instruction |= inst.operands[0].reg;
6884 inst.instruction |= inst.operands[1].reg << 3;
6885 break;
6886
6887 case T_MNEM_cmp:
3d388997 6888 if (low_regs)
c19d1205
ZW
6889 {
6890 inst.instruction = T_OPCODE_CMP_LR;
6891 inst.instruction |= inst.operands[0].reg;
6892 inst.instruction |= inst.operands[1].reg << 3;
6893 }
6894 else
6895 {
6896 inst.instruction = T_OPCODE_CMP_HR;
6897 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6898 inst.instruction |= (inst.operands[0].reg & 0x7);
6899 inst.instruction |= inst.operands[1].reg << 3;
6900 }
6901 break;
6902 }
b99bd4ef
NC
6903 return;
6904 }
6905
c19d1205
ZW
6906 inst.instruction = THUMB_OP16 (inst.instruction);
6907 if (inst.operands[1].isreg)
b99bd4ef 6908 {
c19d1205 6909 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 6910 {
c19d1205
ZW
6911 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
6912 since a MOV instruction produces unpredictable results. */
6913 if (inst.instruction == T_OPCODE_MOV_I8)
6914 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 6915 else
c19d1205 6916 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 6917
c19d1205
ZW
6918 inst.instruction |= inst.operands[0].reg;
6919 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
6920 }
6921 else
6922 {
c19d1205
ZW
6923 if (inst.instruction == T_OPCODE_MOV_I8)
6924 inst.instruction = T_OPCODE_MOV_HR;
6925 else
6926 inst.instruction = T_OPCODE_CMP_HR;
6927 do_t_cpy ();
b99bd4ef
NC
6928 }
6929 }
c19d1205 6930 else
b99bd4ef 6931 {
c19d1205
ZW
6932 constraint (inst.operands[0].reg > 7,
6933 _("only lo regs allowed with immediate"));
6934 inst.instruction |= inst.operands[0].reg << 8;
6935 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
6936 }
6937}
b99bd4ef 6938
c19d1205
ZW
6939static void
6940do_t_mov16 (void)
6941{
6942 inst.instruction |= inst.operands[0].reg << 8;
6943 inst.instruction |= (inst.operands[1].imm & 0xf000) << 4;
6944 inst.instruction |= (inst.operands[1].imm & 0x0800) << 15;
6945 inst.instruction |= (inst.operands[1].imm & 0x0700) << 4;
6946 inst.instruction |= (inst.operands[1].imm & 0x00ff);
6947}
b99bd4ef 6948
c19d1205
ZW
6949static void
6950do_t_mvn_tst (void)
6951{
6952 if (unified_syntax)
6953 {
6954 int r0off = (inst.instruction == T_MNEM_mvn
6955 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
6956 bfd_boolean narrow;
6957
6958 if (inst.size_req == 4
6959 || inst.instruction > 0xffff
6960 || inst.operands[1].shifted
6961 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
6962 narrow = FALSE;
6963 else if (inst.instruction == T_MNEM_cmn)
6964 narrow = TRUE;
6965 else if (THUMB_SETS_FLAGS (inst.instruction))
6966 narrow = (current_it_mask == 0);
6967 else
6968 narrow = (current_it_mask != 0);
6969
c19d1205 6970 if (!inst.operands[1].isreg)
b99bd4ef 6971 {
c19d1205
ZW
6972 /* For an immediate, we always generate a 32-bit opcode;
6973 section relaxation will shrink it later if possible. */
6974 if (inst.instruction < 0xffff)
6975 inst.instruction = THUMB_OP32 (inst.instruction);
6976 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6977 inst.instruction |= inst.operands[0].reg << r0off;
6978 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 6979 }
c19d1205 6980 else
b99bd4ef 6981 {
c19d1205 6982 /* See if we can do this with a 16-bit instruction. */
3d388997 6983 if (narrow)
b99bd4ef 6984 {
c19d1205
ZW
6985 inst.instruction = THUMB_OP16 (inst.instruction);
6986 inst.instruction |= inst.operands[0].reg;
6987 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 6988 }
c19d1205 6989 else
b99bd4ef 6990 {
c19d1205
ZW
6991 constraint (inst.operands[1].shifted
6992 && inst.operands[1].immisreg,
6993 _("shift must be constant"));
6994 if (inst.instruction < 0xffff)
6995 inst.instruction = THUMB_OP32 (inst.instruction);
6996 inst.instruction |= inst.operands[0].reg << r0off;
6997 encode_thumb32_shifted_operand (1);
b99bd4ef 6998 }
b99bd4ef
NC
6999 }
7000 }
7001 else
7002 {
c19d1205
ZW
7003 constraint (inst.instruction > 0xffff
7004 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
7005 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
7006 _("unshifted register required"));
7007 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
7008 BAD_HIREG);
b99bd4ef 7009
c19d1205
ZW
7010 inst.instruction = THUMB_OP16 (inst.instruction);
7011 inst.instruction |= inst.operands[0].reg;
7012 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 7013 }
b99bd4ef
NC
7014}
7015
b05fe5cf 7016static void
c19d1205 7017do_t_mrs (void)
b05fe5cf 7018{
c19d1205
ZW
7019 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7020 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7021 != (PSR_c|PSR_f),
7022 _("'CPSR' or 'SPSR' expected"));
7023 inst.instruction |= inst.operands[0].reg << 8;
7024 inst.instruction |= (inst.operands[1].imm & SPSR_BIT) >> 2;
7025}
b05fe5cf 7026
c19d1205
ZW
7027static void
7028do_t_msr (void)
7029{
7030 constraint (!inst.operands[1].isreg,
7031 _("Thumb encoding does not support an immediate here"));
7032 inst.instruction |= (inst.operands[0].imm & SPSR_BIT) >> 2;
7033 inst.instruction |= (inst.operands[0].imm & ~SPSR_BIT) >> 8;
7034 inst.instruction |= inst.operands[1].reg << 16;
7035}
b05fe5cf 7036
c19d1205
ZW
7037static void
7038do_t_mul (void)
7039{
7040 if (!inst.operands[2].present)
7041 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 7042
c19d1205
ZW
7043 /* There is no 32-bit MULS and no 16-bit MUL. */
7044 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 7045 {
c19d1205
ZW
7046 inst.instruction = THUMB_OP32 (inst.instruction);
7047 inst.instruction |= inst.operands[0].reg << 8;
7048 inst.instruction |= inst.operands[1].reg << 16;
7049 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 7050 }
c19d1205 7051 else
b05fe5cf 7052 {
c19d1205
ZW
7053 constraint (!unified_syntax
7054 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
7055 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
7056 BAD_HIREG);
b05fe5cf 7057
c19d1205
ZW
7058 inst.instruction = THUMB_OP16 (inst.instruction);
7059 inst.instruction |= inst.operands[0].reg;
b05fe5cf 7060
c19d1205
ZW
7061 if (inst.operands[0].reg == inst.operands[1].reg)
7062 inst.instruction |= inst.operands[2].reg << 3;
7063 else if (inst.operands[0].reg == inst.operands[2].reg)
7064 inst.instruction |= inst.operands[1].reg << 3;
7065 else
7066 constraint (1, _("dest must overlap one source register"));
7067 }
7068}
b05fe5cf 7069
c19d1205
ZW
7070static void
7071do_t_mull (void)
7072{
7073 inst.instruction |= inst.operands[0].reg << 12;
7074 inst.instruction |= inst.operands[1].reg << 8;
7075 inst.instruction |= inst.operands[2].reg << 16;
7076 inst.instruction |= inst.operands[3].reg;
b05fe5cf 7077
c19d1205
ZW
7078 if (inst.operands[0].reg == inst.operands[1].reg)
7079 as_tsktsk (_("rdhi and rdlo must be different"));
7080}
b05fe5cf 7081
c19d1205
ZW
7082static void
7083do_t_nop (void)
7084{
7085 if (unified_syntax)
7086 {
7087 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 7088 {
c19d1205
ZW
7089 inst.instruction = THUMB_OP32 (inst.instruction);
7090 inst.instruction |= inst.operands[0].imm;
7091 }
7092 else
7093 {
7094 inst.instruction = THUMB_OP16 (inst.instruction);
7095 inst.instruction |= inst.operands[0].imm << 4;
7096 }
7097 }
7098 else
7099 {
7100 constraint (inst.operands[0].present,
7101 _("Thumb does not support NOP with hints"));
7102 inst.instruction = 0x46c0;
7103 }
7104}
b05fe5cf 7105
c19d1205
ZW
7106static void
7107do_t_neg (void)
7108{
7109 if (unified_syntax)
7110 {
3d388997
PB
7111 bfd_boolean narrow;
7112
7113 if (THUMB_SETS_FLAGS (inst.instruction))
7114 narrow = (current_it_mask == 0);
7115 else
7116 narrow = (current_it_mask != 0);
7117 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
7118 narrow = FALSE;
7119 if (inst.size_req == 4)
7120 narrow = FALSE;
7121
7122 if (!narrow)
c19d1205
ZW
7123 {
7124 inst.instruction = THUMB_OP32 (inst.instruction);
7125 inst.instruction |= inst.operands[0].reg << 8;
7126 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
7127 }
7128 else
7129 {
c19d1205
ZW
7130 inst.instruction = THUMB_OP16 (inst.instruction);
7131 inst.instruction |= inst.operands[0].reg;
7132 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
7133 }
7134 }
7135 else
7136 {
c19d1205
ZW
7137 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
7138 BAD_HIREG);
7139 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
7140
7141 inst.instruction = THUMB_OP16 (inst.instruction);
7142 inst.instruction |= inst.operands[0].reg;
7143 inst.instruction |= inst.operands[1].reg << 3;
7144 }
7145}
7146
7147static void
7148do_t_pkhbt (void)
7149{
7150 inst.instruction |= inst.operands[0].reg << 8;
7151 inst.instruction |= inst.operands[1].reg << 16;
7152 inst.instruction |= inst.operands[2].reg;
7153 if (inst.operands[3].present)
7154 {
7155 unsigned int val = inst.reloc.exp.X_add_number;
7156 constraint (inst.reloc.exp.X_op != O_constant,
7157 _("expression too complex"));
7158 inst.instruction |= (val & 0x1c) << 10;
7159 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 7160 }
c19d1205 7161}
b05fe5cf 7162
c19d1205
ZW
7163static void
7164do_t_pkhtb (void)
7165{
7166 if (!inst.operands[3].present)
7167 inst.instruction &= ~0x00000020;
7168 do_t_pkhbt ();
b05fe5cf
ZW
7169}
7170
c19d1205
ZW
7171static void
7172do_t_pld (void)
7173{
7174 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
7175}
b05fe5cf 7176
c19d1205
ZW
7177static void
7178do_t_push_pop (void)
b99bd4ef 7179{
e9f89963
PB
7180 unsigned mask;
7181
c19d1205
ZW
7182 constraint (inst.operands[0].writeback,
7183 _("push/pop do not support {reglist}^"));
7184 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
7185 _("expression too complex"));
b99bd4ef 7186
e9f89963
PB
7187 mask = inst.operands[0].imm;
7188 if ((mask & ~0xff) == 0)
c19d1205
ZW
7189 inst.instruction = THUMB_OP16 (inst.instruction);
7190 else if ((inst.instruction == T_MNEM_push
e9f89963 7191 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 7192 || (inst.instruction == T_MNEM_pop
e9f89963 7193 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 7194 {
c19d1205
ZW
7195 inst.instruction = THUMB_OP16 (inst.instruction);
7196 inst.instruction |= THUMB_PP_PC_LR;
e9f89963 7197 mask &= 0xff;
c19d1205
ZW
7198 }
7199 else if (unified_syntax)
7200 {
e9f89963
PB
7201 if (mask & (1 << 13))
7202 inst.error = _("SP not allowed in register list");
c19d1205 7203 if (inst.instruction == T_MNEM_push)
b99bd4ef 7204 {
e9f89963
PB
7205 if (mask & (1 << 15))
7206 inst.error = _("PC not allowed in register list");
c19d1205
ZW
7207 }
7208 else
7209 {
e9f89963
PB
7210 if (mask & (1 << 14)
7211 && mask & (1 << 15))
7212 inst.error = _("LR and PC should not both be in register list");
c19d1205 7213 }
e9f89963
PB
7214 if ((mask & (mask - 1)) == 0)
7215 {
7216 /* Single register push/pop implemented as str/ldr. */
7217 if (inst.instruction == T_MNEM_push)
7218 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
7219 else
7220 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
7221 mask = ffs(mask) - 1;
7222 mask <<= 12;
7223 }
7224 else
7225 inst.instruction = THUMB_OP32 (inst.instruction);
c19d1205
ZW
7226 }
7227 else
7228 {
7229 inst.error = _("invalid register list to push/pop instruction");
7230 return;
7231 }
b99bd4ef 7232
e9f89963 7233 inst.instruction |= mask;
c19d1205 7234}
b99bd4ef 7235
c19d1205
ZW
7236static void
7237do_t_rbit (void)
7238{
7239 inst.instruction |= inst.operands[0].reg << 8;
7240 inst.instruction |= inst.operands[1].reg << 16;
7241}
b99bd4ef 7242
c19d1205
ZW
7243static void
7244do_t_rev (void)
7245{
7246 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
7247 && inst.size_req != 4)
7248 {
7249 inst.instruction = THUMB_OP16 (inst.instruction);
7250 inst.instruction |= inst.operands[0].reg;
7251 inst.instruction |= inst.operands[1].reg << 3;
7252 }
7253 else if (unified_syntax)
7254 {
7255 inst.instruction = THUMB_OP32 (inst.instruction);
7256 inst.instruction |= inst.operands[0].reg << 8;
7257 inst.instruction |= inst.operands[1].reg << 16;
7258 inst.instruction |= inst.operands[1].reg;
7259 }
7260 else
7261 inst.error = BAD_HIREG;
7262}
b99bd4ef 7263
c19d1205
ZW
7264static void
7265do_t_rsb (void)
7266{
7267 int Rd, Rs;
b99bd4ef 7268
c19d1205
ZW
7269 Rd = inst.operands[0].reg;
7270 Rs = (inst.operands[1].present
7271 ? inst.operands[1].reg /* Rd, Rs, foo */
7272 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 7273
c19d1205
ZW
7274 inst.instruction |= Rd << 8;
7275 inst.instruction |= Rs << 16;
7276 if (!inst.operands[2].isreg)
7277 {
7278 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
7279 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
7280 }
7281 else
7282 encode_thumb32_shifted_operand (2);
7283}
b99bd4ef 7284
c19d1205
ZW
7285static void
7286do_t_setend (void)
7287{
7288 if (inst.operands[0].imm)
7289 inst.instruction |= 0x8;
7290}
b99bd4ef 7291
c19d1205
ZW
7292static void
7293do_t_shift (void)
7294{
7295 if (!inst.operands[1].present)
7296 inst.operands[1].reg = inst.operands[0].reg;
7297
7298 if (unified_syntax)
7299 {
3d388997
PB
7300 bfd_boolean narrow;
7301 int shift_kind;
7302
7303 switch (inst.instruction)
7304 {
7305 case T_MNEM_asr:
7306 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
7307 case T_MNEM_lsl:
7308 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
7309 case T_MNEM_lsr:
7310 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
7311 case T_MNEM_ror:
7312 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
7313 default: abort ();
7314 }
7315
7316 if (THUMB_SETS_FLAGS (inst.instruction))
7317 narrow = (current_it_mask == 0);
7318 else
7319 narrow = (current_it_mask != 0);
7320 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
7321 narrow = FALSE;
7322 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
7323 narrow = FALSE;
7324 if (inst.operands[2].isreg
7325 && (inst.operands[1].reg != inst.operands[0].reg
7326 || inst.operands[2].reg > 7))
7327 narrow = FALSE;
7328 if (inst.size_req == 4)
7329 narrow = FALSE;
7330
7331 if (!narrow)
c19d1205
ZW
7332 {
7333 if (inst.operands[2].isreg)
b99bd4ef 7334 {
c19d1205
ZW
7335 inst.instruction = THUMB_OP32 (inst.instruction);
7336 inst.instruction |= inst.operands[0].reg << 8;
7337 inst.instruction |= inst.operands[1].reg << 16;
7338 inst.instruction |= inst.operands[2].reg;
7339 }
7340 else
7341 {
7342 inst.operands[1].shifted = 1;
3d388997 7343 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
7344 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
7345 ? T_MNEM_movs : T_MNEM_mov);
7346 inst.instruction |= inst.operands[0].reg << 8;
7347 encode_thumb32_shifted_operand (1);
7348 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
7349 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
7350 }
7351 }
7352 else
7353 {
c19d1205 7354 if (inst.operands[2].isreg)
b99bd4ef 7355 {
3d388997 7356 switch (shift_kind)
b99bd4ef 7357 {
3d388997
PB
7358 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
7359 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
7360 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
7361 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 7362 default: abort ();
b99bd4ef 7363 }
c19d1205
ZW
7364
7365 inst.instruction |= inst.operands[0].reg;
7366 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
7367 }
7368 else
7369 {
3d388997 7370 switch (shift_kind)
b99bd4ef 7371 {
3d388997
PB
7372 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
7373 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
7374 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 7375 default: abort ();
b99bd4ef 7376 }
c19d1205
ZW
7377 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
7378 inst.instruction |= inst.operands[0].reg;
7379 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
7380 }
7381 }
c19d1205
ZW
7382 }
7383 else
7384 {
7385 constraint (inst.operands[0].reg > 7
7386 || inst.operands[1].reg > 7, BAD_HIREG);
7387 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 7388
c19d1205
ZW
7389 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
7390 {
7391 constraint (inst.operands[2].reg > 7, BAD_HIREG);
7392 constraint (inst.operands[0].reg != inst.operands[1].reg,
7393 _("source1 and dest must be same register"));
b99bd4ef 7394
c19d1205
ZW
7395 switch (inst.instruction)
7396 {
7397 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
7398 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
7399 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
7400 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
7401 default: abort ();
7402 }
7403
7404 inst.instruction |= inst.operands[0].reg;
7405 inst.instruction |= inst.operands[2].reg << 3;
7406 }
7407 else
b99bd4ef 7408 {
c19d1205
ZW
7409 switch (inst.instruction)
7410 {
7411 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
7412 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
7413 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
7414 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
7415 default: abort ();
7416 }
7417 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
7418 inst.instruction |= inst.operands[0].reg;
7419 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
7420 }
7421 }
b99bd4ef
NC
7422}
7423
7424static void
c19d1205 7425do_t_simd (void)
b99bd4ef 7426{
c19d1205
ZW
7427 inst.instruction |= inst.operands[0].reg << 8;
7428 inst.instruction |= inst.operands[1].reg << 16;
7429 inst.instruction |= inst.operands[2].reg;
7430}
b99bd4ef 7431
c19d1205 7432static void
3eb17e6b 7433do_t_smc (void)
c19d1205
ZW
7434{
7435 unsigned int value = inst.reloc.exp.X_add_number;
7436 constraint (inst.reloc.exp.X_op != O_constant,
7437 _("expression too complex"));
7438 inst.reloc.type = BFD_RELOC_UNUSED;
7439 inst.instruction |= (value & 0xf000) >> 12;
7440 inst.instruction |= (value & 0x0ff0);
7441 inst.instruction |= (value & 0x000f) << 16;
7442}
b99bd4ef 7443
c19d1205
ZW
7444static void
7445do_t_ssat (void)
7446{
7447 inst.instruction |= inst.operands[0].reg << 8;
7448 inst.instruction |= inst.operands[1].imm - 1;
7449 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 7450
c19d1205 7451 if (inst.operands[3].present)
b99bd4ef 7452 {
c19d1205
ZW
7453 constraint (inst.reloc.exp.X_op != O_constant,
7454 _("expression too complex"));
b99bd4ef 7455
c19d1205 7456 if (inst.reloc.exp.X_add_number != 0)
6189168b 7457 {
c19d1205
ZW
7458 if (inst.operands[3].shift_kind == SHIFT_ASR)
7459 inst.instruction |= 0x00200000; /* sh bit */
7460 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
7461 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 7462 }
c19d1205 7463 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 7464 }
b99bd4ef
NC
7465}
7466
0dd132b6 7467static void
c19d1205 7468do_t_ssat16 (void)
0dd132b6 7469{
c19d1205
ZW
7470 inst.instruction |= inst.operands[0].reg << 8;
7471 inst.instruction |= inst.operands[1].imm - 1;
7472 inst.instruction |= inst.operands[2].reg << 16;
7473}
0dd132b6 7474
c19d1205
ZW
7475static void
7476do_t_strex (void)
7477{
7478 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7479 || inst.operands[2].postind || inst.operands[2].writeback
7480 || inst.operands[2].immisreg || inst.operands[2].shifted
7481 || inst.operands[2].negative,
7482 _("instruction does not accept this addressing mode"));
0dd132b6 7483
c19d1205
ZW
7484 inst.instruction |= inst.operands[0].reg << 8;
7485 inst.instruction |= inst.operands[1].reg << 12;
7486 inst.instruction |= inst.operands[2].reg << 16;
7487 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
7488}
7489
b99bd4ef 7490static void
c19d1205 7491do_t_strexd (void)
b99bd4ef 7492{
c19d1205
ZW
7493 if (!inst.operands[2].present)
7494 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 7495
c19d1205
ZW
7496 constraint (inst.operands[0].reg == inst.operands[1].reg
7497 || inst.operands[0].reg == inst.operands[2].reg
7498 || inst.operands[0].reg == inst.operands[3].reg
7499 || inst.operands[1].reg == inst.operands[2].reg,
7500 BAD_OVERLAP);
b99bd4ef 7501
c19d1205
ZW
7502 inst.instruction |= inst.operands[0].reg;
7503 inst.instruction |= inst.operands[1].reg << 12;
7504 inst.instruction |= inst.operands[2].reg << 8;
7505 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
7506}
7507
7508static void
c19d1205 7509do_t_sxtah (void)
b99bd4ef 7510{
c19d1205
ZW
7511 inst.instruction |= inst.operands[0].reg << 8;
7512 inst.instruction |= inst.operands[1].reg << 16;
7513 inst.instruction |= inst.operands[2].reg;
7514 inst.instruction |= inst.operands[3].imm << 4;
7515}
b99bd4ef 7516
c19d1205
ZW
7517static void
7518do_t_sxth (void)
7519{
7520 if (inst.instruction <= 0xffff && inst.size_req != 4
7521 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
7522 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 7523 {
c19d1205
ZW
7524 inst.instruction = THUMB_OP16 (inst.instruction);
7525 inst.instruction |= inst.operands[0].reg;
7526 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 7527 }
c19d1205 7528 else if (unified_syntax)
b99bd4ef 7529 {
c19d1205
ZW
7530 if (inst.instruction <= 0xffff)
7531 inst.instruction = THUMB_OP32 (inst.instruction);
7532 inst.instruction |= inst.operands[0].reg << 8;
7533 inst.instruction |= inst.operands[1].reg;
7534 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 7535 }
c19d1205 7536 else
b99bd4ef 7537 {
c19d1205
ZW
7538 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
7539 _("Thumb encoding does not support rotation"));
7540 constraint (1, BAD_HIREG);
b99bd4ef 7541 }
c19d1205 7542}
b99bd4ef 7543
c19d1205
ZW
7544static void
7545do_t_swi (void)
7546{
7547 inst.reloc.type = BFD_RELOC_ARM_SWI;
7548}
b99bd4ef 7549
92e90b6e
PB
7550static void
7551do_t_tb (void)
7552{
7553 int half;
7554
7555 half = (inst.instruction & 0x10) != 0;
7556 constraint (inst.operands[0].imm == 15,
7557 _("PC is not a valid index register"));
7558 constraint (!half && inst.operands[0].shifted,
7559 _("instruction does not allow shifted index"));
7560 constraint (half && !inst.operands[0].shifted,
7561 _("instruction requires shifted index"));
7562 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
7563}
7564
c19d1205
ZW
7565static void
7566do_t_usat (void)
7567{
7568 inst.instruction |= inst.operands[0].reg << 8;
7569 inst.instruction |= inst.operands[1].imm;
7570 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 7571
c19d1205 7572 if (inst.operands[3].present)
b99bd4ef 7573 {
c19d1205
ZW
7574 constraint (inst.reloc.exp.X_op != O_constant,
7575 _("expression too complex"));
7576 if (inst.reloc.exp.X_add_number != 0)
7577 {
7578 if (inst.operands[3].shift_kind == SHIFT_ASR)
7579 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 7580
c19d1205
ZW
7581 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
7582 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
7583 }
7584 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 7585 }
b99bd4ef
NC
7586}
7587
7588static void
c19d1205 7589do_t_usat16 (void)
b99bd4ef 7590{
c19d1205
ZW
7591 inst.instruction |= inst.operands[0].reg << 8;
7592 inst.instruction |= inst.operands[1].imm;
7593 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 7594}
c19d1205
ZW
7595\f
7596/* Overall per-instruction processing. */
7597
7598/* We need to be able to fix up arbitrary expressions in some statements.
7599 This is so that we can handle symbols that are an arbitrary distance from
7600 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
7601 which returns part of an address in a form which will be valid for
7602 a data instruction. We do this by pushing the expression into a symbol
7603 in the expr_section, and creating a fix for that. */
b99bd4ef
NC
7604
7605static void
c19d1205
ZW
7606fix_new_arm (fragS * frag,
7607 int where,
7608 short int size,
7609 expressionS * exp,
7610 int pc_rel,
7611 int reloc)
b99bd4ef 7612{
c19d1205 7613 fixS * new_fix;
b99bd4ef 7614
c19d1205 7615 switch (exp->X_op)
b99bd4ef 7616 {
c19d1205
ZW
7617 case O_constant:
7618 case O_symbol:
7619 case O_add:
7620 case O_subtract:
7621 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
7622 break;
b99bd4ef 7623
c19d1205
ZW
7624 default:
7625 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
7626 pc_rel, reloc);
7627 break;
b99bd4ef
NC
7628 }
7629
c19d1205
ZW
7630 /* Mark whether the fix is to a THUMB instruction, or an ARM
7631 instruction. */
adbaf948 7632 new_fix->tc_fix_data = thumb_mode;
b99bd4ef
NC
7633}
7634
0110f2b8
PB
7635/* Create a frg for an instruction requiring relaxation. */
7636static void
7637output_relax_insn (void)
7638{
7639 char * to;
7640 symbolS *sym;
7641 int offset;
7642
7643 switch (inst.reloc.exp.X_op)
7644 {
7645 case O_symbol:
7646 sym = inst.reloc.exp.X_add_symbol;
7647 offset = inst.reloc.exp.X_add_number;
7648 break;
7649 case O_constant:
7650 sym = NULL;
7651 offset = inst.reloc.exp.X_add_number;
7652 break;
7653 default:
7654 sym = make_expr_symbol (&inst.reloc.exp);
7655 offset = 0;
7656 break;
7657 }
7658 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
7659 inst.relax, sym, offset, NULL/*offset, opcode*/);
7660 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
7661
7662#ifdef OBJ_ELF
7663 dwarf2_emit_insn (INSN_SIZE);
7664#endif
7665}
7666
7667/* Write a 32-bit thumb instruction to buf. */
7668static void
7669put_thumb32_insn (char * buf, unsigned long insn)
7670{
7671 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
7672 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
7673}
7674
b99bd4ef 7675static void
c19d1205 7676output_inst (const char * str)
b99bd4ef 7677{
c19d1205 7678 char * to = NULL;
b99bd4ef 7679
c19d1205 7680 if (inst.error)
b99bd4ef 7681 {
c19d1205 7682 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
7683 return;
7684 }
0110f2b8
PB
7685 if (inst.relax) {
7686 output_relax_insn();
7687 return;
7688 }
c19d1205
ZW
7689 if (inst.size == 0)
7690 return;
b99bd4ef 7691
c19d1205
ZW
7692 to = frag_more (inst.size);
7693
7694 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 7695 {
c19d1205 7696 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 7697 put_thumb32_insn (to, inst.instruction);
b99bd4ef 7698 }
c19d1205 7699 else if (inst.size > INSN_SIZE)
b99bd4ef 7700 {
c19d1205
ZW
7701 assert (inst.size == (2 * INSN_SIZE));
7702 md_number_to_chars (to, inst.instruction, INSN_SIZE);
7703 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 7704 }
c19d1205
ZW
7705 else
7706 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 7707
c19d1205
ZW
7708 if (inst.reloc.type != BFD_RELOC_UNUSED)
7709 fix_new_arm (frag_now, to - frag_now->fr_literal,
7710 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
7711 inst.reloc.type);
b99bd4ef 7712
c19d1205
ZW
7713#ifdef OBJ_ELF
7714 dwarf2_emit_insn (inst.size);
7715#endif
7716}
b99bd4ef 7717
c19d1205
ZW
7718/* Tag values used in struct asm_opcode's tag field. */
7719enum opcode_tag
7720{
7721 OT_unconditional, /* Instruction cannot be conditionalized.
7722 The ARM condition field is still 0xE. */
7723 OT_unconditionalF, /* Instruction cannot be conditionalized
7724 and carries 0xF in its ARM condition field. */
7725 OT_csuffix, /* Instruction takes a conditional suffix. */
7726 OT_cinfix3, /* Instruction takes a conditional infix,
7727 beginning at character index 3. (In
7728 unified mode, it becomes a suffix.) */
7729 OT_csuf_or_in3, /* Instruction takes either a conditional
7730 suffix or an infix at character index 3.
7731 (In unified mode, a suffix only. */
7732 OT_odd_infix_unc, /* This is the unconditional variant of an
7733 instruction that takes a conditional infix
7734 at an unusual position. In unified mode,
7735 this variant will accept a suffix. */
7736 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
7737 are the conditional variants of instructions that
7738 take conditional infixes in unusual positions.
7739 The infix appears at character index
7740 (tag - OT_odd_infix_0). These are not accepted
7741 in unified mode. */
7742};
b99bd4ef 7743
c19d1205
ZW
7744/* Subroutine of md_assemble, responsible for looking up the primary
7745 opcode from the mnemonic the user wrote. STR points to the
7746 beginning of the mnemonic.
7747
7748 This is not simply a hash table lookup, because of conditional
7749 variants. Most instructions have conditional variants, which are
7750 expressed with a _conditional affix_ to the mnemonic. If we were
7751 to encode each conditional variant as a literal string in the opcode
7752 table, it would have approximately 20,000 entries.
7753
7754 Most mnemonics take this affix as a suffix, and in unified syntax,
7755 'most' is upgraded to 'all'. However, in the divided syntax, some
7756 instructions take the affix as an infix, notably the s-variants of
7757 the arithmetic instructions. Of those instructions, all but six
7758 have the infix appear after the third character of the mnemonic.
7759
7760 Accordingly, the algorithm for looking up primary opcodes given
7761 an identifier is:
7762
7763 1. Look up the identifier in the opcode table.
7764 If we find a match, go to step U.
7765
7766 2. Look up the last two characters of the identifier in the
7767 conditions table. If we find a match, look up the first N-2
7768 characters of the identifier in the opcode table. If we
7769 find a match, go to step CE.
7770
7771 3. Look up the fourth and fifth characters of the identifier in
7772 the conditions table. If we find a match, extract those
7773 characters from the identifier, and look up the remaining
7774 characters in the opcode table. If we find a match, go
7775 to step CM.
7776
7777 4. Fail.
7778
7779 U. Examine the tag field of the opcode structure, in case this is
7780 one of the six instructions with its conditional infix in an
7781 unusual place. If it is, the tag tells us where to find the
7782 infix; look it up in the conditions table and set inst.cond
7783 accordingly. Otherwise, this is an unconditional instruction.
7784 Again set inst.cond accordingly. Return the opcode structure.
7785
7786 CE. Examine the tag field to make sure this is an instruction that
7787 should receive a conditional suffix. If it is not, fail.
7788 Otherwise, set inst.cond from the suffix we already looked up,
7789 and return the opcode structure.
7790
7791 CM. Examine the tag field to make sure this is an instruction that
7792 should receive a conditional infix after the third character.
7793 If it is not, fail. Otherwise, undo the edits to the current
7794 line of input and proceed as for case CE. */
7795
7796static const struct asm_opcode *
7797opcode_lookup (char **str)
7798{
7799 char *end, *base;
7800 char *affix;
7801 const struct asm_opcode *opcode;
7802 const struct asm_cond *cond;
7803
7804 /* Scan up to the end of the mnemonic, which must end in white space,
7805 '.' (in unified mode only), or end of string. */
7806 for (base = end = *str; *end != '\0'; end++)
7807 if (*end == ' ' || (unified_syntax && *end == '.'))
7808 break;
b99bd4ef 7809
c19d1205
ZW
7810 if (end == base)
7811 return 0;
b99bd4ef 7812
c19d1205
ZW
7813 /* Handle a possible width suffix. */
7814 if (end[0] == '.')
b99bd4ef 7815 {
c19d1205
ZW
7816 if (end[1] == 'w' && (end[2] == ' ' || end[2] == '\0'))
7817 inst.size_req = 4;
7818 else if (end[1] == 'n' && (end[2] == ' ' || end[2] == '\0'))
7819 inst.size_req = 2;
7820 else
7821 return 0;
b99bd4ef 7822
c19d1205 7823 *str = end + 2;
b99bd4ef 7824 }
c19d1205
ZW
7825 else
7826 *str = end;
b99bd4ef 7827
c19d1205
ZW
7828 /* Look for unaffixed or special-case affixed mnemonic. */
7829 opcode = hash_find_n (arm_ops_hsh, base, end - base);
7830 if (opcode)
b99bd4ef 7831 {
c19d1205
ZW
7832 /* step U */
7833 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 7834 {
c19d1205
ZW
7835 inst.cond = COND_ALWAYS;
7836 return opcode;
b99bd4ef 7837 }
b99bd4ef 7838
c19d1205
ZW
7839 if (unified_syntax)
7840 as_warn (_("conditional infixes are deprecated in unified syntax"));
7841 affix = base + (opcode->tag - OT_odd_infix_0);
7842 cond = hash_find_n (arm_cond_hsh, affix, 2);
7843 assert (cond);
b99bd4ef 7844
c19d1205
ZW
7845 inst.cond = cond->value;
7846 return opcode;
7847 }
b99bd4ef 7848
c19d1205
ZW
7849 /* Cannot have a conditional suffix on a mnemonic of less than two
7850 characters. */
7851 if (end - base < 3)
7852 return 0;
b99bd4ef 7853
c19d1205
ZW
7854 /* Look for suffixed mnemonic. */
7855 affix = end - 2;
7856 cond = hash_find_n (arm_cond_hsh, affix, 2);
7857 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
7858 if (opcode && cond)
7859 {
7860 /* step CE */
7861 switch (opcode->tag)
7862 {
7863 case OT_cinfix3:
7864 case OT_odd_infix_unc:
c4188bc9
PB
7865 /* Some mnemonics are ambiguous between infix and suffix
7866 conditions. Disambiguate based on assembly syntax. */
c19d1205 7867 if (!unified_syntax)
c4188bc9 7868 break;
c19d1205
ZW
7869 /* else fall through */
7870
7871 case OT_csuffix:
7872 case OT_csuf_or_in3:
7873 inst.cond = cond->value;
7874 return opcode;
7875
7876 case OT_unconditional:
7877 case OT_unconditionalF:
7878 /* delayed diagnostic */
7879 inst.error = BAD_COND;
7880 inst.cond = COND_ALWAYS;
7881 return opcode;
b99bd4ef 7882
c19d1205
ZW
7883 default:
7884 return 0;
7885 }
7886 }
b99bd4ef 7887
c19d1205
ZW
7888 /* Cannot have a usual-position infix on a mnemonic of less than
7889 six characters (five would be a suffix). */
7890 if (end - base < 6)
7891 return 0;
b99bd4ef 7892
c19d1205
ZW
7893 /* Look for infixed mnemonic in the usual position. */
7894 affix = base + 3;
7895 cond = hash_find_n (arm_cond_hsh, affix, 2);
7896 if (cond)
b99bd4ef 7897 {
c19d1205
ZW
7898 char save[2];
7899 memcpy (save, affix, 2);
7900 memmove (affix, affix + 2, (end - affix) - 2);
7901 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
7902 memmove (affix + 2, affix, (end - affix) - 2);
7903 memcpy (affix, save, 2);
b99bd4ef 7904 }
c19d1205 7905 if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_csuf_or_in3))
b99bd4ef 7906 {
c19d1205
ZW
7907 /* step CM */
7908 if (unified_syntax)
7909 as_warn (_("conditional infixes are deprecated in unified syntax"));
7910
7911 inst.cond = cond->value;
7912 return opcode;
b99bd4ef
NC
7913 }
7914
c19d1205 7915 return 0;
b99bd4ef
NC
7916}
7917
c19d1205
ZW
7918void
7919md_assemble (char *str)
b99bd4ef 7920{
c19d1205
ZW
7921 char *p = str;
7922 const struct asm_opcode * opcode;
b99bd4ef 7923
c19d1205
ZW
7924 /* Align the previous label if needed. */
7925 if (last_label_seen != NULL)
b99bd4ef 7926 {
c19d1205
ZW
7927 symbol_set_frag (last_label_seen, frag_now);
7928 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
7929 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
7930 }
7931
c19d1205
ZW
7932 memset (&inst, '\0', sizeof (inst));
7933 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 7934
c19d1205
ZW
7935 opcode = opcode_lookup (&p);
7936 if (!opcode)
b99bd4ef 7937 {
c19d1205
ZW
7938 /* It wasn't an instruction, but it might be a register alias of
7939 the form alias .req reg. */
7940 if (!create_register_alias (str, p))
7941 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 7942
b99bd4ef
NC
7943 return;
7944 }
7945
c19d1205 7946 if (thumb_mode)
b99bd4ef 7947 {
8f06b2d8
PB
7948 unsigned long variant;
7949
7950 variant = cpu_variant;
7951 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
7952 if ((variant & ARM_EXT_V6T2) == 0)
7953 variant &= ARM_ANY;
c19d1205 7954 /* Check that this instruction is supported for this CPU. */
8f06b2d8 7955 if (thumb_mode == 1 && (opcode->tvariant & variant) == 0)
b99bd4ef 7956 {
c19d1205 7957 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
7958 return;
7959 }
c19d1205
ZW
7960 if (inst.cond != COND_ALWAYS && !unified_syntax
7961 && opcode->tencode != do_t_branch)
b99bd4ef 7962 {
c19d1205 7963 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
7964 return;
7965 }
7966
e27ec89e
PB
7967 /* Check conditional suffixes. */
7968 if (current_it_mask)
7969 {
7970 int cond;
7971 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
7972 if (cond != inst.cond)
7973 {
7974 as_bad (_("incorrect condition in IT block"));
7975 return;
7976 }
7977 current_it_mask <<= 1;
7978 current_it_mask &= 0x1f;
7979 }
7980 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
7981 {
7982 as_bad (_("thumb conditional instrunction not in IT block"));
7983 return;
7984 }
7985
c19d1205
ZW
7986 mapping_state (MAP_THUMB);
7987 inst.instruction = opcode->tvalue;
7988
7989 if (!parse_operands (p, opcode->operands))
7990 opcode->tencode ();
7991
e27ec89e
PB
7992 /* Clear current_it_mask at the end of an IT block. */
7993 if (current_it_mask == 0x10)
7994 current_it_mask = 0;
7995
0110f2b8 7996 if (!(inst.error || inst.relax))
b99bd4ef 7997 {
c19d1205
ZW
7998 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
7999 inst.size = (inst.instruction > 0xffff ? 4 : 2);
8000 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 8001 {
c19d1205 8002 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
8003 return;
8004 }
8005 }
c19d1205
ZW
8006 }
8007 else
8008 {
8009 /* Check that this instruction is supported for this CPU. */
8010 if ((opcode->avariant & cpu_variant) == 0)
b99bd4ef 8011 {
c19d1205
ZW
8012 as_bad (_("selected processor does not support `%s'"), str);
8013 return;
b99bd4ef 8014 }
c19d1205 8015 if (inst.size_req)
b99bd4ef 8016 {
c19d1205
ZW
8017 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
8018 return;
b99bd4ef
NC
8019 }
8020
c19d1205
ZW
8021 mapping_state (MAP_ARM);
8022 inst.instruction = opcode->avalue;
8023 if (opcode->tag == OT_unconditionalF)
8024 inst.instruction |= 0xF << 28;
8025 else
8026 inst.instruction |= inst.cond << 28;
8027 inst.size = INSN_SIZE;
8028 if (!parse_operands (p, opcode->operands))
8029 opcode->aencode ();
b99bd4ef 8030 }
c19d1205
ZW
8031 output_inst (str);
8032}
b99bd4ef 8033
c19d1205
ZW
8034/* Various frobbings of labels and their addresses. */
8035
8036void
8037arm_start_line_hook (void)
8038{
8039 last_label_seen = NULL;
b99bd4ef
NC
8040}
8041
c19d1205
ZW
8042void
8043arm_frob_label (symbolS * sym)
b99bd4ef 8044{
c19d1205 8045 last_label_seen = sym;
b99bd4ef 8046
c19d1205 8047 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 8048
c19d1205
ZW
8049#if defined OBJ_COFF || defined OBJ_ELF
8050 ARM_SET_INTERWORK (sym, support_interwork);
8051#endif
b99bd4ef 8052
c19d1205
ZW
8053 /* Note - do not allow local symbols (.Lxxx) to be labeled
8054 as Thumb functions. This is because these labels, whilst
8055 they exist inside Thumb code, are not the entry points for
8056 possible ARM->Thumb calls. Also, these labels can be used
8057 as part of a computed goto or switch statement. eg gcc
8058 can generate code that looks like this:
b99bd4ef 8059
c19d1205
ZW
8060 ldr r2, [pc, .Laaa]
8061 lsl r3, r3, #2
8062 ldr r2, [r3, r2]
8063 mov pc, r2
b99bd4ef 8064
c19d1205
ZW
8065 .Lbbb: .word .Lxxx
8066 .Lccc: .word .Lyyy
8067 ..etc...
8068 .Laaa: .word Lbbb
b99bd4ef 8069
c19d1205
ZW
8070 The first instruction loads the address of the jump table.
8071 The second instruction converts a table index into a byte offset.
8072 The third instruction gets the jump address out of the table.
8073 The fourth instruction performs the jump.
b99bd4ef 8074
c19d1205
ZW
8075 If the address stored at .Laaa is that of a symbol which has the
8076 Thumb_Func bit set, then the linker will arrange for this address
8077 to have the bottom bit set, which in turn would mean that the
8078 address computation performed by the third instruction would end
8079 up with the bottom bit set. Since the ARM is capable of unaligned
8080 word loads, the instruction would then load the incorrect address
8081 out of the jump table, and chaos would ensue. */
8082 if (label_is_thumb_function_name
8083 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
8084 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 8085 {
c19d1205
ZW
8086 /* When the address of a Thumb function is taken the bottom
8087 bit of that address should be set. This will allow
8088 interworking between Arm and Thumb functions to work
8089 correctly. */
b99bd4ef 8090
c19d1205 8091 THUMB_SET_FUNC (sym, 1);
b99bd4ef 8092
c19d1205 8093 label_is_thumb_function_name = FALSE;
b99bd4ef 8094 }
07a53e5c
RH
8095
8096#ifdef OBJ_ELF
8097 dwarf2_emit_label (sym);
8098#endif
b99bd4ef
NC
8099}
8100
c19d1205
ZW
8101int
8102arm_data_in_code (void)
b99bd4ef 8103{
c19d1205 8104 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 8105 {
c19d1205
ZW
8106 *input_line_pointer = '/';
8107 input_line_pointer += 5;
8108 *input_line_pointer = 0;
8109 return 1;
b99bd4ef
NC
8110 }
8111
c19d1205 8112 return 0;
b99bd4ef
NC
8113}
8114
c19d1205
ZW
8115char *
8116arm_canonicalize_symbol_name (char * name)
b99bd4ef 8117{
c19d1205 8118 int len;
b99bd4ef 8119
c19d1205
ZW
8120 if (thumb_mode && (len = strlen (name)) > 5
8121 && streq (name + len - 5, "/data"))
8122 *(name + len - 5) = 0;
b99bd4ef 8123
c19d1205 8124 return name;
b99bd4ef 8125}
c19d1205
ZW
8126\f
8127/* Table of all register names defined by default. The user can
8128 define additional names with .req. Note that all register names
8129 should appear in both upper and lowercase variants. Some registers
8130 also have mixed-case names. */
b99bd4ef 8131
c19d1205
ZW
8132#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
8133#define REGNUM(p,n,t) REGDEF(p##n, n, t)
8134#define REGSET(p,t) \
8135 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
8136 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
8137 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
8138 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
7ed4c4c5 8139
c19d1205 8140static const struct reg_entry reg_names[] =
7ed4c4c5 8141{
c19d1205
ZW
8142 /* ARM integer registers. */
8143 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 8144
c19d1205
ZW
8145 /* ATPCS synonyms. */
8146 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
8147 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
8148 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 8149
c19d1205
ZW
8150 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
8151 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
8152 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 8153
c19d1205
ZW
8154 /* Well-known aliases. */
8155 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
8156 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
8157
8158 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
8159 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
8160
8161 /* Coprocessor numbers. */
8162 REGSET(p, CP), REGSET(P, CP),
8163
8164 /* Coprocessor register numbers. The "cr" variants are for backward
8165 compatibility. */
8166 REGSET(c, CN), REGSET(C, CN),
8167 REGSET(cr, CN), REGSET(CR, CN),
8168
8169 /* FPA registers. */
8170 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
8171 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
8172
8173 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
8174 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
8175
8176 /* VFP SP registers. */
8177 REGSET(s,VFS),
8178 REGNUM(s,16,VFS), REGNUM(s,17,VFS), REGNUM(s,18,VFS), REGNUM(s,19,VFS),
8179 REGNUM(s,20,VFS), REGNUM(s,21,VFS), REGNUM(s,22,VFS), REGNUM(s,23,VFS),
8180 REGNUM(s,24,VFS), REGNUM(s,25,VFS), REGNUM(s,26,VFS), REGNUM(s,27,VFS),
8181 REGNUM(s,28,VFS), REGNUM(s,29,VFS), REGNUM(s,30,VFS), REGNUM(s,31,VFS),
8182
8183 REGSET(S,VFS),
8184 REGNUM(S,16,VFS), REGNUM(S,17,VFS), REGNUM(S,18,VFS), REGNUM(S,19,VFS),
8185 REGNUM(S,20,VFS), REGNUM(S,21,VFS), REGNUM(S,22,VFS), REGNUM(S,23,VFS),
8186 REGNUM(S,24,VFS), REGNUM(S,25,VFS), REGNUM(S,26,VFS), REGNUM(S,27,VFS),
8187 REGNUM(S,28,VFS), REGNUM(S,29,VFS), REGNUM(S,30,VFS), REGNUM(S,31,VFS),
8188
8189 /* VFP DP Registers. */
8190 REGSET(d,VFD), REGSET(D,VFS),
8191
8192 /* VFP control registers. */
8193 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
8194 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
8195
8196 /* Maverick DSP coprocessor registers. */
8197 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
8198 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
8199
8200 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
8201 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
8202 REGDEF(dspsc,0,DSPSC),
8203
8204 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
8205 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
8206 REGDEF(DSPSC,0,DSPSC),
8207
8208 /* iWMMXt data registers - p0, c0-15. */
8209 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
8210
8211 /* iWMMXt control registers - p1, c0-3. */
8212 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
8213 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
8214 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
8215 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
8216
8217 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
8218 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
8219 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
8220 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
8221 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
8222
8223 /* XScale accumulator registers. */
8224 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
8225};
8226#undef REGDEF
8227#undef REGNUM
8228#undef REGSET
7ed4c4c5 8229
c19d1205
ZW
8230/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
8231 within psr_required_here. */
8232static const struct asm_psr psrs[] =
8233{
8234 /* Backward compatibility notation. Note that "all" is no longer
8235 truly all possible PSR bits. */
8236 {"all", PSR_c | PSR_f},
8237 {"flg", PSR_f},
8238 {"ctl", PSR_c},
8239
8240 /* Individual flags. */
8241 {"f", PSR_f},
8242 {"c", PSR_c},
8243 {"x", PSR_x},
8244 {"s", PSR_s},
8245 /* Combinations of flags. */
8246 {"fs", PSR_f | PSR_s},
8247 {"fx", PSR_f | PSR_x},
8248 {"fc", PSR_f | PSR_c},
8249 {"sf", PSR_s | PSR_f},
8250 {"sx", PSR_s | PSR_x},
8251 {"sc", PSR_s | PSR_c},
8252 {"xf", PSR_x | PSR_f},
8253 {"xs", PSR_x | PSR_s},
8254 {"xc", PSR_x | PSR_c},
8255 {"cf", PSR_c | PSR_f},
8256 {"cs", PSR_c | PSR_s},
8257 {"cx", PSR_c | PSR_x},
8258 {"fsx", PSR_f | PSR_s | PSR_x},
8259 {"fsc", PSR_f | PSR_s | PSR_c},
8260 {"fxs", PSR_f | PSR_x | PSR_s},
8261 {"fxc", PSR_f | PSR_x | PSR_c},
8262 {"fcs", PSR_f | PSR_c | PSR_s},
8263 {"fcx", PSR_f | PSR_c | PSR_x},
8264 {"sfx", PSR_s | PSR_f | PSR_x},
8265 {"sfc", PSR_s | PSR_f | PSR_c},
8266 {"sxf", PSR_s | PSR_x | PSR_f},
8267 {"sxc", PSR_s | PSR_x | PSR_c},
8268 {"scf", PSR_s | PSR_c | PSR_f},
8269 {"scx", PSR_s | PSR_c | PSR_x},
8270 {"xfs", PSR_x | PSR_f | PSR_s},
8271 {"xfc", PSR_x | PSR_f | PSR_c},
8272 {"xsf", PSR_x | PSR_s | PSR_f},
8273 {"xsc", PSR_x | PSR_s | PSR_c},
8274 {"xcf", PSR_x | PSR_c | PSR_f},
8275 {"xcs", PSR_x | PSR_c | PSR_s},
8276 {"cfs", PSR_c | PSR_f | PSR_s},
8277 {"cfx", PSR_c | PSR_f | PSR_x},
8278 {"csf", PSR_c | PSR_s | PSR_f},
8279 {"csx", PSR_c | PSR_s | PSR_x},
8280 {"cxf", PSR_c | PSR_x | PSR_f},
8281 {"cxs", PSR_c | PSR_x | PSR_s},
8282 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
8283 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
8284 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
8285 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
8286 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
8287 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
8288 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
8289 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
8290 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
8291 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
8292 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
8293 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
8294 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
8295 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
8296 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
8297 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
8298 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
8299 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
8300 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
8301 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
8302 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
8303 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
8304 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
8305 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
8306};
8307
8308/* Table of all shift-in-operand names. */
8309static const struct asm_shift_name shift_names [] =
b99bd4ef 8310{
c19d1205
ZW
8311 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
8312 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
8313 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
8314 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
8315 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
8316 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
8317};
b99bd4ef 8318
c19d1205
ZW
8319/* Table of all explicit relocation names. */
8320#ifdef OBJ_ELF
8321static struct reloc_entry reloc_names[] =
8322{
8323 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
8324 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
8325 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
8326 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
8327 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
8328 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
8329 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
8330 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
8331 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
8332 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
8333 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
8334};
8335#endif
b99bd4ef 8336
c19d1205
ZW
8337/* Table of all conditional affixes. 0xF is not defined as a condition code. */
8338static const struct asm_cond conds[] =
8339{
8340 {"eq", 0x0},
8341 {"ne", 0x1},
8342 {"cs", 0x2}, {"hs", 0x2},
8343 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
8344 {"mi", 0x4},
8345 {"pl", 0x5},
8346 {"vs", 0x6},
8347 {"vc", 0x7},
8348 {"hi", 0x8},
8349 {"ls", 0x9},
8350 {"ge", 0xa},
8351 {"lt", 0xb},
8352 {"gt", 0xc},
8353 {"le", 0xd},
8354 {"al", 0xe}
8355};
bfae80f2 8356
c19d1205
ZW
8357/* Table of ARM-format instructions. */
8358
8359/* Macros for gluing together operand strings. N.B. In all cases
8360 other than OPS0, the trailing OP_stop comes from default
8361 zero-initialization of the unspecified elements of the array. */
8362#define OPS0() { OP_stop, }
8363#define OPS1(a) { OP_##a, }
8364#define OPS2(a,b) { OP_##a,OP_##b, }
8365#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
8366#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
8367#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
8368#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
8369
8370/* These macros abstract out the exact format of the mnemonic table and
8371 save some repeated characters. */
8372
8373/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
8374#define TxCE(mnem, op, top, nops, ops, ae, te) \
8375 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 8376 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
8377
8378/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
8379 a T_MNEM_xyz enumerator. */
8380#define TCE(mnem, aop, top, nops, ops, ae, te) \
8381 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
8382#define tCE(mnem, aop, top, nops, ops, ae, te) \
8383 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
8384
8385/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
8386 infix after the third character. */
8387#define TxC3(mnem, op, top, nops, ops, ae, te) \
8388 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 8389 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
8390#define TC3(mnem, aop, top, nops, ops, ae, te) \
8391 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
8392#define tC3(mnem, aop, top, nops, ops, ae, te) \
8393 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
8394
8395/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
8396 appear in the condition table. */
8397#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
8398 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 8399 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
8400
8401#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
8402 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
8403 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
8404 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
8405 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
8406 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
8407 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
8408 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
8409 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
8410 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
8411 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
8412 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
8413 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
8414 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
8415 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
8416 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
8417 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
8418 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
8419 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
8420 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
8421
8422#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
8423 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
8424#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
8425 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
8426
8427/* Mnemonic that cannot be conditionalized. The ARM condition-code
8428 field is still 0xE. */
8429#define TUE(mnem, op, top, nops, ops, ae, te) \
8430 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 8431 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
8432
8433/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
8434 condition code field. */
8435#define TUF(mnem, op, top, nops, ops, ae, te) \
8436 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 8437 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
8438
8439/* ARM-only variants of all the above. */
6a86118a
NC
8440#define CE(mnem, op, nops, ops, ae) \
8441 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8442
8443#define C3(mnem, op, nops, ops, ae) \
8444 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8445
8f06b2d8
PB
8446/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
8447#define cCE(mnem, op, nops, ops, ae) \
8448 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8449
8450#define cC3(mnem, op, nops, ops, ae) \
8451 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8452
6a86118a
NC
8453#define xCM_(m1, m2, m3, op, nops, ops, ae) \
8454 { #m1 #m2 #m3, OPS##nops ops, \
8455 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
8456 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8457
8458#define CM(m1, m2, op, nops, ops, ae) \
8459 xCM_(m1, , m2, op, nops, ops, ae), \
8460 xCM_(m1, eq, m2, op, nops, ops, ae), \
8461 xCM_(m1, ne, m2, op, nops, ops, ae), \
8462 xCM_(m1, cs, m2, op, nops, ops, ae), \
8463 xCM_(m1, hs, m2, op, nops, ops, ae), \
8464 xCM_(m1, cc, m2, op, nops, ops, ae), \
8465 xCM_(m1, ul, m2, op, nops, ops, ae), \
8466 xCM_(m1, lo, m2, op, nops, ops, ae), \
8467 xCM_(m1, mi, m2, op, nops, ops, ae), \
8468 xCM_(m1, pl, m2, op, nops, ops, ae), \
8469 xCM_(m1, vs, m2, op, nops, ops, ae), \
8470 xCM_(m1, vc, m2, op, nops, ops, ae), \
8471 xCM_(m1, hi, m2, op, nops, ops, ae), \
8472 xCM_(m1, ls, m2, op, nops, ops, ae), \
8473 xCM_(m1, ge, m2, op, nops, ops, ae), \
8474 xCM_(m1, lt, m2, op, nops, ops, ae), \
8475 xCM_(m1, gt, m2, op, nops, ops, ae), \
8476 xCM_(m1, le, m2, op, nops, ops, ae), \
8477 xCM_(m1, al, m2, op, nops, ops, ae)
8478
8479#define UE(mnem, op, nops, ops, ae) \
8480 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
8481
8482#define UF(mnem, op, nops, ops, ae) \
8483 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
8484
c19d1205
ZW
8485#define do_0 0
8486
8487/* Thumb-only, unconditional. */
8488#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
8489
8490/* ARM-only, takes either a suffix or a position-3 infix
8491 (for an FPA corner case). */
8492#define C3E(mnem, op, nops, ops, ae) \
8493 { #mnem, OPS##nops ops, OT_csuf_or_in3, 0x##op, 0, ARM_VARIANT, 0, do_##ae, 0 }
bfae80f2 8494
c19d1205 8495static const struct asm_opcode insns[] =
bfae80f2 8496{
c19d1205
ZW
8497#define ARM_VARIANT ARM_EXT_V1 /* Core ARM Instructions. */
8498#define THUMB_VARIANT ARM_EXT_V4T
8499 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
8500 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
8501 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
8502 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
8503 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
8504 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
8505 tCE(add, 0800000, add, 3, (RR, oRR, SH), arit, t_add_sub),
8506 tC3(adds, 0900000, adds, 3, (RR, oRR, SH), arit, t_add_sub),
8507 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
8508 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
8509 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
8510 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
8511 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
8512 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
8513 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
8514 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
8515
8516 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
8517 for setting PSR flag bits. They are obsolete in V6 and do not
8518 have Thumb equivalents. */
8519 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
8520 tC3(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
8521 C3(tstp, 110f000, 2, (RR, SH), cmp),
8522 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
8523 tC3(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
8524 C3(cmpp, 150f000, 2, (RR, SH), cmp),
8525 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
8526 tC3(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
8527 C3(cmnp, 170f000, 2, (RR, SH), cmp),
8528
8529 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
8530 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
8531 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
8532 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
8533
8534 tCE(ldr, 4100000, ldr, 2, (RR, ADDR), ldst, t_ldst),
8535 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDR), ldst, t_ldst),
8536 tCE(str, 4000000, str, 2, (RR, ADDR), ldst, t_ldst),
8537 tC3(strb, 4400000, strb, 2, (RR, ADDR), ldst, t_ldst),
8538
8539 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8540 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8541 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8542 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8543
8544 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 8545 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
2fc8bdac 8546 TCE(bl, b000000, f000f800, 1, (EXPr), branch, t_branch23),
bfae80f2 8547
c19d1205 8548 /* Pseudo ops. */
e9f89963 8549 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
8550 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
8551 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
8552
8553 /* Thumb-compatibility pseudo ops. */
8554 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
8555 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
8556 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
8557 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
8558 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 8559 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
8560 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
8561 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
8562 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
8563 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
8564 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
8565 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
8566
8567#undef THUMB_VARIANT
8568#define THUMB_VARIANT ARM_EXT_V6
2fc8bdac 8569 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
8570
8571 /* V1 instructions with no Thumb analogue prior to V6T2. */
8572#undef THUMB_VARIANT
8573#define THUMB_VARIANT ARM_EXT_V6T2
8574 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
8575 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
8576 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
8577 TC3(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
8578 C3(teqp, 130f000, 2, (RR, SH), cmp),
8579
8580 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
8581 TC3(ldrbt, 4700000, f8300e00, 2, (RR, ADDR), ldstt, t_ldstt),
8582 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
8583 TC3(strbt, 4600000, f8200e00, 2, (RR, ADDR), ldstt, t_ldstt),
8584
9c3c69f2
PB
8585 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8586 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 8587
9c3c69f2
PB
8588 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
8589 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
8590
8591 /* V1 instructions with no Thumb analogue at all. */
8592 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
8593 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
8594
8595 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
8596 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
8597 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
8598 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
8599 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
8600 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
8601 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
8602 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
8603
8604#undef ARM_VARIANT
8605#define ARM_VARIANT ARM_EXT_V2 /* ARM 2 - multiplies. */
8606#undef THUMB_VARIANT
8607#define THUMB_VARIANT ARM_EXT_V4T
8608 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
8609 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
8610
8611#undef THUMB_VARIANT
8612#define THUMB_VARIANT ARM_EXT_V6T2
8613 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
8614 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
8615
8616 /* Generic coprocessor instructions. */
8617 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
8618 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDR), lstc, lstc),
8619 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDR), lstc, lstc),
8620 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDR), lstc, lstc),
8621 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDR), lstc, lstc),
8622 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8623 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8624
8625#undef ARM_VARIANT
8626#define ARM_VARIANT ARM_EXT_V2S /* ARM 3 - swp instructions. */
8627 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
8628 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
8629
8630#undef ARM_VARIANT
8631#define ARM_VARIANT ARM_EXT_V3 /* ARM 6 Status register instructions. */
8632 TCE(mrs, 10f0000, f3ef8000, 2, (RR, PSR), mrs, t_mrs),
8633 TCE(msr, 120f000, f3808000, 2, (PSR, RR_EXi), msr, t_msr),
8634
8635#undef ARM_VARIANT
8636#define ARM_VARIANT ARM_EXT_V3M /* ARM 7M long multiplies. */
8637 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8638 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8639 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8640 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8641 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8642 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8643 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
8644 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
8645
8646#undef ARM_VARIANT
8647#define ARM_VARIANT ARM_EXT_V4 /* ARM Architecture 4. */
8648#undef THUMB_VARIANT
8649#define THUMB_VARIANT ARM_EXT_V4T
8650 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDR), ldstv4, t_ldst),
8651 tC3(strh, 00000b0, strh, 2, (RR, ADDR), ldstv4, t_ldst),
8652 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
8653 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
8654 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
8655 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
8656
8657#undef ARM_VARIANT
8658#define ARM_VARIANT ARM_EXT_V4T|ARM_EXT_V5
8659 /* ARM Architecture 4T. */
8660 /* Note: bx (and blx) are required on V5, even if the processor does
8661 not support Thumb. */
8662 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
8663
8664#undef ARM_VARIANT
8665#define ARM_VARIANT ARM_EXT_V5 /* ARM Architecture 5T. */
8666#undef THUMB_VARIANT
8667#define THUMB_VARIANT ARM_EXT_V5T
8668 /* Note: blx has 2 variants; the .value coded here is for
8669 BLX(2). Only this variant has conditional execution. */
8670 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
8671 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
8672
8673#undef THUMB_VARIANT
8674#define THUMB_VARIANT ARM_EXT_V6T2
8675 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
8676 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDR), lstc, lstc),
8677 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDR), lstc, lstc),
8678 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDR), lstc, lstc),
8679 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDR), lstc, lstc),
8680 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
8681 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8682 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
8683
8684#undef ARM_VARIANT
8685#define ARM_VARIANT ARM_EXT_V5ExP /* ARM Architecture 5TExP. */
8686 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8687 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8688 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8689 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8690
8691 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8692 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
8693
8694 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8695 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8696 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8697 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
8698
8699 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8700 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8701 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8702 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8703
8704 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8705 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8706
8707 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8708 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8709 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8710 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
8711
8712#undef ARM_VARIANT
8713#define ARM_VARIANT ARM_EXT_V5E /* ARM Architecture 5TE. */
8714 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
8715 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
8716 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
8717
8718 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8719 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8720
8721#undef ARM_VARIANT
8722#define ARM_VARIANT ARM_EXT_V5J /* ARM Architecture 5TEJ. */
8723 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
8724
8725#undef ARM_VARIANT
8726#define ARM_VARIANT ARM_EXT_V6 /* ARM V6. */
8727#undef THUMB_VARIANT
8728#define THUMB_VARIANT ARM_EXT_V6
8729 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
8730 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
8731 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8732 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8733 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
8734 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8735 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8736 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8737 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8738 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
8739
8740#undef THUMB_VARIANT
8741#define THUMB_VARIANT ARM_EXT_V6T2
8742 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, imm0),
8743 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
8744 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8745 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
8746 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
8747 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
8748 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8749 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8750 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8751 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8752 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8753 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8754 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8755 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8756 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8757 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8758 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8759 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8760 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8761 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8762 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8763 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8764 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8765 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8766 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8767 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8768 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8769 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8770 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8771 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8772 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8773 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8774 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8775 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8776 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8777 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8778 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8779 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8780 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8781 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8782 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8783 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8784 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
8785 UF(rfeib, 9900a00, 1, (RRw), rfe),
8786 UF(rfeda, 8100a00, 1, (RRw), rfe),
8787 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
8788 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
8789 UF(rfefa, 9900a00, 1, (RRw), rfe),
8790 UF(rfeea, 8100a00, 1, (RRw), rfe),
8791 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
8792 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8793 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8794 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8795 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8796 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8797 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8798 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
8799 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
8800 TCE(sel, 68000b0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
8801 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8802 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8803 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8804 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8805 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8806 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8807 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8808 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
8809 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8810 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8811 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8812 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8813 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8814 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8815 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8816 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8817 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8818 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8819 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
8820 UF(srsib, 9cd0500, 1, (I31w), srs),
8821 UF(srsda, 84d0500, 1, (I31w), srs),
8822 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
8823 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
8824 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
8825 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
8826 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
8827 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
8828 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
8829 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
8830 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
8831
8832#undef ARM_VARIANT
8833#define ARM_VARIANT ARM_EXT_V6K
8834#undef THUMB_VARIANT
8835#define THUMB_VARIANT ARM_EXT_V6K
8836 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
8837 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
8838 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
8839 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
8840
8841#undef THUMB_VARIANT
8842#define THUMB_VARIANT ARM_EXT_V6T2
8843 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
8844 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
8845 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
8846 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
8847 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
8848 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
8849 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
8850
8851#undef ARM_VARIANT
8852#define ARM_VARIANT ARM_EXT_V6Z
3eb17e6b 8853 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
8854
8855#undef ARM_VARIANT
8856#define ARM_VARIANT ARM_EXT_V6T2
8857 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
8858 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
8859 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
8860 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
8861
8862 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
8863 TCE(movw, 3000000, f2400000, 2, (RRnpc, Iffff), mov16, t_mov16),
8864 TCE(movt, 3400000, f2c00000, 2, (RRnpc, Iffff), mov16, t_mov16),
8865 TCE(rbit, 3ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
8866
8867 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8868 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8869 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8870 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
8871
8872 UT(cbnz, b900, 2, (RR, EXP), t_czb),
8873 UT(cbz, b100, 2, (RR, EXP), t_czb),
8874 /* ARM does not really have an IT instruction. */
8875 TUE(it, 0, bf08, 1, (COND), it, t_it),
8876 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
8877 TUE(ite, 0, bf04, 1, (COND), it, t_it),
8878 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
8879 TUE(itet, 0, bf06, 1, (COND), it, t_it),
8880 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
8881 TUE(itee, 0, bf02, 1, (COND), it, t_it),
8882 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
8883 TUE(itett, 0, bf07, 1, (COND), it, t_it),
8884 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
8885 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
8886 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
8887 TUE(itete, 0, bf05, 1, (COND), it, t_it),
8888 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
8889 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
8890
92e90b6e
PB
8891 /* Thumb2 only instructions. */
8892#undef ARM_VARIANT
8893#define ARM_VARIANT 0
8894
8895 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
8896 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
8897 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
8898 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
8899
c19d1205
ZW
8900#undef ARM_VARIANT
8901#define ARM_VARIANT FPU_FPA_EXT_V1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
8902 cCE(wfs, e200110, 1, (RR), rd),
8903 cCE(rfs, e300110, 1, (RR), rd),
8904 cCE(wfc, e400110, 1, (RR), rd),
8905 cCE(rfc, e500110, 1, (RR), rd),
8906
8907 cC3(ldfs, c100100, 2, (RF, ADDR), rd_cpaddr),
8908 cC3(ldfd, c108100, 2, (RF, ADDR), rd_cpaddr),
8909 cC3(ldfe, c500100, 2, (RF, ADDR), rd_cpaddr),
8910 cC3(ldfp, c508100, 2, (RF, ADDR), rd_cpaddr),
8911
8912 cC3(stfs, c000100, 2, (RF, ADDR), rd_cpaddr),
8913 cC3(stfd, c008100, 2, (RF, ADDR), rd_cpaddr),
8914 cC3(stfe, c400100, 2, (RF, ADDR), rd_cpaddr),
8915 cC3(stfp, c408100, 2, (RF, ADDR), rd_cpaddr),
8916
8917 cC3(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
8918 cC3(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
8919 cC3(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
8920 cC3(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
8921 cC3(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
8922 cC3(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
8923 cC3(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
8924 cC3(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
8925 cC3(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
8926 cC3(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
8927 cC3(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
8928 cC3(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
8929
8930 cC3(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
8931 cC3(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
8932 cC3(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
8933 cC3(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
8934 cC3(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
8935 cC3(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
8936 cC3(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
8937 cC3(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
8938 cC3(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
8939 cC3(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
8940 cC3(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
8941 cC3(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
8942
8943 cC3(abss, e208100, 2, (RF, RF_IF), rd_rm),
8944 cC3(abssp, e208120, 2, (RF, RF_IF), rd_rm),
8945 cC3(abssm, e208140, 2, (RF, RF_IF), rd_rm),
8946 cC3(abssz, e208160, 2, (RF, RF_IF), rd_rm),
8947 cC3(absd, e208180, 2, (RF, RF_IF), rd_rm),
8948 cC3(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
8949 cC3(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
8950 cC3(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
8951 cC3(abse, e288100, 2, (RF, RF_IF), rd_rm),
8952 cC3(absep, e288120, 2, (RF, RF_IF), rd_rm),
8953 cC3(absem, e288140, 2, (RF, RF_IF), rd_rm),
8954 cC3(absez, e288160, 2, (RF, RF_IF), rd_rm),
8955
8956 cC3(rnds, e308100, 2, (RF, RF_IF), rd_rm),
8957 cC3(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
8958 cC3(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
8959 cC3(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
8960 cC3(rndd, e308180, 2, (RF, RF_IF), rd_rm),
8961 cC3(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
8962 cC3(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
8963 cC3(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
8964 cC3(rnde, e388100, 2, (RF, RF_IF), rd_rm),
8965 cC3(rndep, e388120, 2, (RF, RF_IF), rd_rm),
8966 cC3(rndem, e388140, 2, (RF, RF_IF), rd_rm),
8967 cC3(rndez, e388160, 2, (RF, RF_IF), rd_rm),
8968
8969 cC3(sqts, e408100, 2, (RF, RF_IF), rd_rm),
8970 cC3(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
8971 cC3(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
8972 cC3(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
8973 cC3(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
8974 cC3(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
8975 cC3(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
8976 cC3(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
8977 cC3(sqte, e488100, 2, (RF, RF_IF), rd_rm),
8978 cC3(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
8979 cC3(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
8980 cC3(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
8981
8982 cC3(logs, e508100, 2, (RF, RF_IF), rd_rm),
8983 cC3(logsp, e508120, 2, (RF, RF_IF), rd_rm),
8984 cC3(logsm, e508140, 2, (RF, RF_IF), rd_rm),
8985 cC3(logsz, e508160, 2, (RF, RF_IF), rd_rm),
8986 cC3(logd, e508180, 2, (RF, RF_IF), rd_rm),
8987 cC3(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
8988 cC3(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
8989 cC3(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
8990 cC3(loge, e588100, 2, (RF, RF_IF), rd_rm),
8991 cC3(logep, e588120, 2, (RF, RF_IF), rd_rm),
8992 cC3(logem, e588140, 2, (RF, RF_IF), rd_rm),
8993 cC3(logez, e588160, 2, (RF, RF_IF), rd_rm),
8994
8995 cC3(lgns, e608100, 2, (RF, RF_IF), rd_rm),
8996 cC3(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
8997 cC3(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
8998 cC3(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
8999 cC3(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
9000 cC3(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
9001 cC3(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
9002 cC3(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
9003 cC3(lgne, e688100, 2, (RF, RF_IF), rd_rm),
9004 cC3(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
9005 cC3(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
9006 cC3(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
9007
9008 cC3(exps, e708100, 2, (RF, RF_IF), rd_rm),
9009 cC3(expsp, e708120, 2, (RF, RF_IF), rd_rm),
9010 cC3(expsm, e708140, 2, (RF, RF_IF), rd_rm),
9011 cC3(expsz, e708160, 2, (RF, RF_IF), rd_rm),
9012 cC3(expd, e708180, 2, (RF, RF_IF), rd_rm),
9013 cC3(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
9014 cC3(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
9015 cC3(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
9016 cC3(expe, e788100, 2, (RF, RF_IF), rd_rm),
9017 cC3(expep, e788120, 2, (RF, RF_IF), rd_rm),
9018 cC3(expem, e788140, 2, (RF, RF_IF), rd_rm),
9019 cC3(expdz, e788160, 2, (RF, RF_IF), rd_rm),
9020
9021 cC3(sins, e808100, 2, (RF, RF_IF), rd_rm),
9022 cC3(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
9023 cC3(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
9024 cC3(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
9025 cC3(sind, e808180, 2, (RF, RF_IF), rd_rm),
9026 cC3(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
9027 cC3(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
9028 cC3(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
9029 cC3(sine, e888100, 2, (RF, RF_IF), rd_rm),
9030 cC3(sinep, e888120, 2, (RF, RF_IF), rd_rm),
9031 cC3(sinem, e888140, 2, (RF, RF_IF), rd_rm),
9032 cC3(sinez, e888160, 2, (RF, RF_IF), rd_rm),
9033
9034 cC3(coss, e908100, 2, (RF, RF_IF), rd_rm),
9035 cC3(cossp, e908120, 2, (RF, RF_IF), rd_rm),
9036 cC3(cossm, e908140, 2, (RF, RF_IF), rd_rm),
9037 cC3(cossz, e908160, 2, (RF, RF_IF), rd_rm),
9038 cC3(cosd, e908180, 2, (RF, RF_IF), rd_rm),
9039 cC3(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
9040 cC3(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
9041 cC3(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
9042 cC3(cose, e988100, 2, (RF, RF_IF), rd_rm),
9043 cC3(cosep, e988120, 2, (RF, RF_IF), rd_rm),
9044 cC3(cosem, e988140, 2, (RF, RF_IF), rd_rm),
9045 cC3(cosez, e988160, 2, (RF, RF_IF), rd_rm),
9046
9047 cC3(tans, ea08100, 2, (RF, RF_IF), rd_rm),
9048 cC3(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
9049 cC3(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
9050 cC3(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
9051 cC3(tand, ea08180, 2, (RF, RF_IF), rd_rm),
9052 cC3(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
9053 cC3(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
9054 cC3(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
9055 cC3(tane, ea88100, 2, (RF, RF_IF), rd_rm),
9056 cC3(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
9057 cC3(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
9058 cC3(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
9059
9060 cC3(asns, eb08100, 2, (RF, RF_IF), rd_rm),
9061 cC3(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
9062 cC3(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
9063 cC3(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
9064 cC3(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
9065 cC3(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
9066 cC3(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
9067 cC3(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
9068 cC3(asne, eb88100, 2, (RF, RF_IF), rd_rm),
9069 cC3(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
9070 cC3(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
9071 cC3(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
9072
9073 cC3(acss, ec08100, 2, (RF, RF_IF), rd_rm),
9074 cC3(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
9075 cC3(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
9076 cC3(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
9077 cC3(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
9078 cC3(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
9079 cC3(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
9080 cC3(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
9081 cC3(acse, ec88100, 2, (RF, RF_IF), rd_rm),
9082 cC3(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
9083 cC3(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
9084 cC3(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
9085
9086 cC3(atns, ed08100, 2, (RF, RF_IF), rd_rm),
9087 cC3(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
9088 cC3(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
9089 cC3(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
9090 cC3(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
9091 cC3(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
9092 cC3(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
9093 cC3(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
9094 cC3(atne, ed88100, 2, (RF, RF_IF), rd_rm),
9095 cC3(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
9096 cC3(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
9097 cC3(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
9098
9099 cC3(urds, ee08100, 2, (RF, RF_IF), rd_rm),
9100 cC3(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
9101 cC3(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
9102 cC3(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
9103 cC3(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
9104 cC3(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
9105 cC3(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
9106 cC3(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
9107 cC3(urde, ee88100, 2, (RF, RF_IF), rd_rm),
9108 cC3(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
9109 cC3(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
9110 cC3(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
9111
9112 cC3(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
9113 cC3(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
9114 cC3(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
9115 cC3(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
9116 cC3(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
9117 cC3(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
9118 cC3(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
9119 cC3(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
9120 cC3(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
9121 cC3(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
9122 cC3(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
9123 cC3(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
9124
9125 cC3(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
9126 cC3(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
9127 cC3(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
9128 cC3(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
9129 cC3(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
9130 cC3(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9131 cC3(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9132 cC3(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9133 cC3(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
9134 cC3(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
9135 cC3(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
9136 cC3(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
9137
9138 cC3(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
9139 cC3(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
9140 cC3(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
9141 cC3(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
9142 cC3(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
9143 cC3(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9144 cC3(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9145 cC3(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9146 cC3(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
9147 cC3(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
9148 cC3(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
9149 cC3(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
9150
9151 cC3(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
9152 cC3(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
9153 cC3(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
9154 cC3(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
9155 cC3(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
9156 cC3(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9157 cC3(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9158 cC3(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9159 cC3(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
9160 cC3(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
9161 cC3(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
9162 cC3(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
9163
9164 cC3(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
9165 cC3(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
9166 cC3(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
9167 cC3(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
9168 cC3(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
9169 cC3(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9170 cC3(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9171 cC3(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9172 cC3(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
9173 cC3(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
9174 cC3(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
9175 cC3(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
9176
9177 cC3(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
9178 cC3(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
9179 cC3(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
9180 cC3(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
9181 cC3(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
9182 cC3(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9183 cC3(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9184 cC3(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9185 cC3(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
9186 cC3(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
9187 cC3(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
9188 cC3(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
9189
9190 cC3(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
9191 cC3(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
9192 cC3(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
9193 cC3(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
9194 cC3(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
9195 cC3(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9196 cC3(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9197 cC3(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9198 cC3(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
9199 cC3(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
9200 cC3(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
9201 cC3(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
9202
9203 cC3(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
9204 cC3(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
9205 cC3(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
9206 cC3(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
9207 cC3(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
9208 cC3(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9209 cC3(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9210 cC3(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9211 cC3(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
9212 cC3(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
9213 cC3(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
9214 cC3(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
9215
9216 cC3(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
9217 cC3(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
9218 cC3(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
9219 cC3(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
9220 cC3(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
9221 cC3(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9222 cC3(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9223 cC3(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9224 cC3(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
9225 cC3(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
9226 cC3(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
9227 cC3(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
9228
9229 cC3(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
9230 cC3(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
9231 cC3(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
9232 cC3(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
9233 cC3(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
9234 cC3(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9235 cC3(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9236 cC3(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9237 cC3(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
9238 cC3(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
9239 cC3(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
9240 cC3(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
9241
9242 cC3(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
9243 cC3(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
9244 cC3(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
9245 cC3(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
9246 cC3(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
9247 cC3(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9248 cC3(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9249 cC3(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9250 cC3(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
9251 cC3(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
9252 cC3(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
9253 cC3(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
9254
9255 cC3(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9256 cC3(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9257 cC3(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9258 cC3(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9259 cC3(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9260 cC3(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9261 cC3(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9262 cC3(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9263 cC3(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9264 cC3(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9265 cC3(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9266 cC3(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9267
9268 cC3(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9269 cC3(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9270 cC3(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9271 cC3(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9272 cC3(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9273 cC3(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9274 cC3(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9275 cC3(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9276 cC3(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9277 cC3(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9278 cC3(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9279 cC3(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9280
9281 cC3(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9282 cC3(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9283 cC3(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9284 cC3(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9285 cC3(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9286 cC3(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9287 cC3(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9288 cC3(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9289 cC3(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9290 cC3(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9291 cC3(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9292 cC3(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9293
9294 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 9295 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 9296 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
9297 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
9298
8f06b2d8
PB
9299 cC3(flts, e000110, 2, (RF, RR), rn_rd),
9300 cC3(fltsp, e000130, 2, (RF, RR), rn_rd),
9301 cC3(fltsm, e000150, 2, (RF, RR), rn_rd),
9302 cC3(fltsz, e000170, 2, (RF, RR), rn_rd),
9303 cC3(fltd, e000190, 2, (RF, RR), rn_rd),
9304 cC3(fltdp, e0001b0, 2, (RF, RR), rn_rd),
9305 cC3(fltdm, e0001d0, 2, (RF, RR), rn_rd),
9306 cC3(fltdz, e0001f0, 2, (RF, RR), rn_rd),
9307 cC3(flte, e080110, 2, (RF, RR), rn_rd),
9308 cC3(fltep, e080130, 2, (RF, RR), rn_rd),
9309 cC3(fltem, e080150, 2, (RF, RR), rn_rd),
9310 cC3(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 9311
c19d1205
ZW
9312 /* The implementation of the FIX instruction is broken on some
9313 assemblers, in that it accepts a precision specifier as well as a
9314 rounding specifier, despite the fact that this is meaningless.
9315 To be more compatible, we accept it as well, though of course it
9316 does not set any bits. */
8f06b2d8
PB
9317 cCE(fix, e100110, 2, (RR, RF), rd_rm),
9318 cC3(fixp, e100130, 2, (RR, RF), rd_rm),
9319 cC3(fixm, e100150, 2, (RR, RF), rd_rm),
9320 cC3(fixz, e100170, 2, (RR, RF), rd_rm),
9321 cC3(fixsp, e100130, 2, (RR, RF), rd_rm),
9322 cC3(fixsm, e100150, 2, (RR, RF), rd_rm),
9323 cC3(fixsz, e100170, 2, (RR, RF), rd_rm),
9324 cC3(fixdp, e100130, 2, (RR, RF), rd_rm),
9325 cC3(fixdm, e100150, 2, (RR, RF), rd_rm),
9326 cC3(fixdz, e100170, 2, (RR, RF), rd_rm),
9327 cC3(fixep, e100130, 2, (RR, RF), rd_rm),
9328 cC3(fixem, e100150, 2, (RR, RF), rd_rm),
9329 cC3(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 9330
c19d1205
ZW
9331 /* Instructions that were new with the real FPA, call them V2. */
9332#undef ARM_VARIANT
9333#define ARM_VARIANT FPU_FPA_EXT_V2
8f06b2d8
PB
9334 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9335 cC3(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9336 cC3(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9337 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9338 cC3(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9339 cC3(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
9340
9341#undef ARM_VARIANT
9342#define ARM_VARIANT FPU_VFP_EXT_V1xD /* VFP V1xD (single precision). */
9343 /* Moves and type conversions. */
8f06b2d8
PB
9344 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
9345 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
9346 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
9347 cCE(fmstat, ef1fa10, 0, (), noargs),
9348 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
9349 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
9350 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
9351 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
9352 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
9353 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
9354 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
9355 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
9356
9357 /* Memory operations. */
8f06b2d8
PB
9358 cCE(flds, d100a00, 2, (RVS, ADDR), vfp_sp_ldst),
9359 cCE(fsts, d000a00, 2, (RVS, ADDR), vfp_sp_ldst),
9360 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9361 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9362 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9363 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9364 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9365 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9366 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9367 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9368 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9369 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9370 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9371 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9372 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9373 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9374 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9375 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 9376
c19d1205 9377 /* Monadic operations. */
8f06b2d8
PB
9378 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
9379 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
9380 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
9381
9382 /* Dyadic operations. */
8f06b2d8
PB
9383 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9384 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9385 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9386 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9387 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9388 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9389 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9390 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9391 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 9392
c19d1205 9393 /* Comparisons. */
8f06b2d8
PB
9394 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
9395 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
9396 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
9397 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 9398
c19d1205
ZW
9399#undef ARM_VARIANT
9400#define ARM_VARIANT FPU_VFP_EXT_V1 /* VFP V1 (Double precision). */
9401 /* Moves and type conversions. */
8f06b2d8
PB
9402 cCE(fcpyd, eb00b40, 2, (RVD, RVD), rd_rm),
9403 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
9404 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
9405 cCE(fmdhr, e200b10, 2, (RVD, RR), rn_rd),
9406 cCE(fmdlr, e000b10, 2, (RVD, RR), rn_rd),
9407 cCE(fmrdh, e300b10, 2, (RR, RVD), rd_rn),
9408 cCE(fmrdl, e100b10, 2, (RR, RVD), rd_rn),
9409 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
9410 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
9411 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
9412 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
9413 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
9414 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
9415
9416 /* Memory operations. */
8f06b2d8
PB
9417 cCE(fldd, d100b00, 2, (RVD, ADDR), vfp_dp_ldst),
9418 cCE(fstd, d000b00, 2, (RVD, ADDR), vfp_dp_ldst),
9419 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9420 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9421 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9422 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9423 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9424 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9425 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9426 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 9427
c19d1205 9428 /* Monadic operations. */
8f06b2d8
PB
9429 cCE(fabsd, eb00bc0, 2, (RVD, RVD), rd_rm),
9430 cCE(fnegd, eb10b40, 2, (RVD, RVD), rd_rm),
9431 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), rd_rm),
c19d1205
ZW
9432
9433 /* Dyadic operations. */
8f06b2d8
PB
9434 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9435 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9436 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9437 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9438 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9439 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9440 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9441 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9442 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), rd_rn_rm),
b99bd4ef 9443
c19d1205 9444 /* Comparisons. */
8f06b2d8
PB
9445 cCE(fcmpd, eb40b40, 2, (RVD, RVD), rd_rm),
9446 cCE(fcmpzd, eb50b40, 1, (RVD), rd),
9447 cCE(fcmped, eb40bc0, 2, (RVD, RVD), rd_rm),
9448 cCE(fcmpezd, eb50bc0, 1, (RVD), rd),
c19d1205
ZW
9449
9450#undef ARM_VARIANT
9451#define ARM_VARIANT FPU_VFP_EXT_V2
8f06b2d8
PB
9452 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
9453 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
9454 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), rm_rd_rn),
9455 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), rd_rn_rm),
c19d1205
ZW
9456
9457#undef ARM_VARIANT
9458#define ARM_VARIANT ARM_CEXT_XSCALE /* Intel XScale extensions. */
8f06b2d8
PB
9459 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9460 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9461 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9462 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9463 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9464 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9465 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
9466 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
9467
9468#undef ARM_VARIANT
9469#define ARM_VARIANT ARM_CEXT_IWMMXT /* Intel Wireless MMX technology. */
8f06b2d8
PB
9470 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
9471 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
9472 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
9473 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
9474 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
9475 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
9476 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
9477 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
9478 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
9479 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9480 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9481 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9482 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9483 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9484 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9485 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9486 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9487 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9488 cCE(tmcr, e000110, 2, (RIWC, RR), rn_rd),
9489 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
9490 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9491 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9492 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9493 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9494 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9495 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9496 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
9497 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
9498 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
9499 cCE(tmrc, e100110, 2, (RR, RIWC), rd_rn),
9500 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
9501 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
9502 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
9503 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
9504 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
9505 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
9506 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
9507 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9508 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9509 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9510 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9511 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9512 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9513 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9514 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9515 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9516 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
9517 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9518 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9519 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9520 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9521 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9522 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9523 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9524 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9525 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9526 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9527 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9528 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9529 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9530 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9531 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9532 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9533 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9534 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9535 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9536 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9537 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9538 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
9539 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
9540 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9541 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9542 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9543 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9544 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9545 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9546 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9547 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9548 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9549 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9550 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9551 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9552 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9553 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9554 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9555 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9556 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9557 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9558 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
9559 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9560 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9561 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9562 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9563 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9564 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9565 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9566 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9567 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9568 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9569 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9570 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9571 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9572 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9573 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9574 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9575 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9576 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9577 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9578 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9579 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9580 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
9581 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9582 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9583 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9584 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9585 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9586 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9587 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9588 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9589 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9590 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9591 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9592 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9593 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9594 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9595 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9596 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9597 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9598 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
9599 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9600 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
9601 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
9602 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
9603 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9604 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9605 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9606 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9607 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9608 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9609 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9610 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9611 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9612 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
9613 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
9614 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
9615 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
9616 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
9617 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
9618 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9619 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9620 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9621 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
9622 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
9623 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
9624 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
9625 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
9626 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
9627 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9628 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9629 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9630 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
9631 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205
ZW
9632
9633#undef ARM_VARIANT
9634#define ARM_VARIANT ARM_CEXT_MAVERICK /* Cirrus Maverick instructions. */
8f06b2d8
PB
9635 cCE(cfldrs, c100400, 2, (RMF, ADDR), rd_cpaddr),
9636 cCE(cfldrd, c500400, 2, (RMD, ADDR), rd_cpaddr),
9637 cCE(cfldr32, c100500, 2, (RMFX, ADDR), rd_cpaddr),
9638 cCE(cfldr64, c500500, 2, (RMDX, ADDR), rd_cpaddr),
9639 cCE(cfstrs, c000400, 2, (RMF, ADDR), rd_cpaddr),
9640 cCE(cfstrd, c400400, 2, (RMD, ADDR), rd_cpaddr),
9641 cCE(cfstr32, c000500, 2, (RMFX, ADDR), rd_cpaddr),
9642 cCE(cfstr64, c400500, 2, (RMDX, ADDR), rd_cpaddr),
9643 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
9644 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
9645 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
9646 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
9647 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
9648 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
9649 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
9650 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
9651 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
9652 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
9653 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
9654 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
9655 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
9656 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
9657 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
9658 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
9659 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
9660 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
9661 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
9662 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
9663 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
9664 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
9665 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
9666 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
9667 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
9668 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
9669 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
9670 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
9671 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
9672 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
9673 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
9674 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
9675 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
9676 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
9677 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
9678 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
9679 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
9680 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
9681 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
9682 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
9683 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
9684 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
9685 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
9686 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
9687 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
9688 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
9689 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
9690 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
9691 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
9692 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
9693 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
9694 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
9695 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
9696 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
9697 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
9698 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
9699 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9700 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9701 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9702 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9703 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9704 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
9705 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9706 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
9707 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
9708 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
9709 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
9710 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
9711};
9712#undef ARM_VARIANT
9713#undef THUMB_VARIANT
9714#undef TCE
9715#undef TCM
9716#undef TUE
9717#undef TUF
9718#undef TCC
8f06b2d8
PB
9719#undef cCE
9720#undef cC3
c19d1205
ZW
9721#undef CE
9722#undef CM
9723#undef UE
9724#undef UF
9725#undef UT
9726#undef OPS0
9727#undef OPS1
9728#undef OPS2
9729#undef OPS3
9730#undef OPS4
9731#undef OPS5
9732#undef OPS6
9733#undef do_0
9734\f
9735/* MD interface: bits in the object file. */
bfae80f2 9736
c19d1205
ZW
9737/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
9738 for use in the a.out file, and stores them in the array pointed to by buf.
9739 This knows about the endian-ness of the target machine and does
9740 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
9741 2 (short) and 4 (long) Floating numbers are put out as a series of
9742 LITTLENUMS (shorts, here at least). */
b99bd4ef 9743
c19d1205
ZW
9744void
9745md_number_to_chars (char * buf, valueT val, int n)
9746{
9747 if (target_big_endian)
9748 number_to_chars_bigendian (buf, val, n);
9749 else
9750 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
9751}
9752
c19d1205
ZW
9753static valueT
9754md_chars_to_number (char * buf, int n)
bfae80f2 9755{
c19d1205
ZW
9756 valueT result = 0;
9757 unsigned char * where = (unsigned char *) buf;
bfae80f2 9758
c19d1205 9759 if (target_big_endian)
b99bd4ef 9760 {
c19d1205
ZW
9761 while (n--)
9762 {
9763 result <<= 8;
9764 result |= (*where++ & 255);
9765 }
b99bd4ef 9766 }
c19d1205 9767 else
b99bd4ef 9768 {
c19d1205
ZW
9769 while (n--)
9770 {
9771 result <<= 8;
9772 result |= (where[n] & 255);
9773 }
bfae80f2 9774 }
b99bd4ef 9775
c19d1205 9776 return result;
bfae80f2 9777}
b99bd4ef 9778
c19d1205 9779/* MD interface: Sections. */
b99bd4ef 9780
0110f2b8
PB
9781/* Estimate the size of a frag before relaxing. Assume everything fits in
9782 2 bytes. */
9783
c19d1205 9784int
0110f2b8 9785md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
9786 segT segtype ATTRIBUTE_UNUSED)
9787{
0110f2b8
PB
9788 fragp->fr_var = 2;
9789 return 2;
9790}
9791
9792/* Convert a machine dependent frag. */
9793
9794void
9795md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
9796{
9797 unsigned long insn;
9798 unsigned long old_op;
9799 char *buf;
9800 expressionS exp;
9801 fixS *fixp;
9802 int reloc_type;
9803 int pc_rel;
9804 int opcode;
9805
9806 buf = fragp->fr_literal + fragp->fr_fix;
9807
9808 old_op = bfd_get_16(abfd, buf);
9809 if (fragp->fr_symbol) {
9810 exp.X_op = O_symbol;
9811 exp.X_add_symbol = fragp->fr_symbol;
9812 } else {
9813 exp.X_op = O_constant;
9814 }
9815 exp.X_add_number = fragp->fr_offset;
9816 opcode = fragp->fr_subtype;
9817 switch (opcode)
9818 {
9819 case T_MNEM_ldr_pc:
9820 case T_MNEM_ldr_pc2:
9821 case T_MNEM_ldr_sp:
9822 case T_MNEM_str_sp:
9823 case T_MNEM_ldr:
9824 case T_MNEM_ldrb:
9825 case T_MNEM_ldrh:
9826 case T_MNEM_str:
9827 case T_MNEM_strb:
9828 case T_MNEM_strh:
9829 if (fragp->fr_var == 4)
9830 {
9831 insn = THUMB_OP32(opcode);
9832 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
9833 {
9834 insn |= (old_op & 0x700) << 4;
9835 }
9836 else
9837 {
9838 insn |= (old_op & 7) << 12;
9839 insn |= (old_op & 0x38) << 13;
9840 }
9841 insn |= 0x00000c00;
9842 put_thumb32_insn (buf, insn);
9843 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9844 }
9845 else
9846 {
9847 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
9848 }
9849 pc_rel = (opcode == T_MNEM_ldr_pc2);
9850 break;
9851 case T_MNEM_adr:
9852 if (fragp->fr_var == 4)
9853 {
9854 insn = THUMB_OP32 (opcode);
9855 insn |= (old_op & 0xf0) << 4;
9856 put_thumb32_insn (buf, insn);
9857 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
9858 }
9859 else
9860 {
9861 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
9862 exp.X_add_number -= 4;
9863 }
9864 pc_rel = 1;
9865 break;
9866 case T_MNEM_mov:
9867 case T_MNEM_movs:
9868 case T_MNEM_cmp:
9869 case T_MNEM_cmn:
9870 if (fragp->fr_var == 4)
9871 {
9872 int r0off = (opcode == T_MNEM_mov
9873 || opcode == T_MNEM_movs) ? 0 : 8;
9874 insn = THUMB_OP32 (opcode);
9875 insn = (insn & 0xe1ffffff) | 0x10000000;
9876 insn |= (old_op & 0x700) << r0off;
9877 put_thumb32_insn (buf, insn);
9878 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
9879 }
9880 else
9881 {
9882 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
9883 }
9884 pc_rel = 0;
9885 break;
9886 case T_MNEM_b:
9887 if (fragp->fr_var == 4)
9888 {
9889 insn = THUMB_OP32(opcode);
9890 put_thumb32_insn (buf, insn);
9891 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9892 }
9893 else
9894 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9895 pc_rel = 1;
9896 break;
9897 case T_MNEM_bcond:
9898 if (fragp->fr_var == 4)
9899 {
9900 insn = THUMB_OP32(opcode);
9901 insn |= (old_op & 0xf00) << 14;
9902 put_thumb32_insn (buf, insn);
9903 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9904 }
9905 else
9906 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9907 pc_rel = 1;
9908 break;
9909 case T_MNEM_add_sp:
9910 case T_MNEM_add_pc:
9911 case T_MNEM_inc_sp:
9912 case T_MNEM_dec_sp:
9913 if (fragp->fr_var == 4)
9914 {
9915 /* ??? Choose between add and addw. */
9916 insn = THUMB_OP32 (opcode);
9917 insn |= (old_op & 0xf0) << 4;
9918 put_thumb32_insn (buf, insn);
9919 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
9920 }
9921 else
9922 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
9923 pc_rel = 0;
9924 break;
9925
9926 case T_MNEM_addi:
9927 case T_MNEM_addis:
9928 case T_MNEM_subi:
9929 case T_MNEM_subis:
9930 if (fragp->fr_var == 4)
9931 {
9932 insn = THUMB_OP32 (opcode);
9933 insn |= (old_op & 0xf0) << 4;
9934 insn |= (old_op & 0xf) << 16;
9935 put_thumb32_insn (buf, insn);
9936 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
9937 }
9938 else
9939 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
9940 pc_rel = 0;
9941 break;
9942 default:
9943 abort();
9944 }
9945 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
9946 reloc_type);
9947 fixp->fx_file = fragp->fr_file;
9948 fixp->fx_line = fragp->fr_line;
9949 fragp->fr_fix += fragp->fr_var;
9950}
9951
9952/* Return the size of a relaxable immediate operand instruction.
9953 SHIFT and SIZE specify the form of the allowable immediate. */
9954static int
9955relax_immediate (fragS *fragp, int size, int shift)
9956{
9957 offsetT offset;
9958 offsetT mask;
9959 offsetT low;
9960
9961 /* ??? Should be able to do better than this. */
9962 if (fragp->fr_symbol)
9963 return 4;
9964
9965 low = (1 << shift) - 1;
9966 mask = (1 << (shift + size)) - (1 << shift);
9967 offset = fragp->fr_offset;
9968 /* Force misaligned offsets to 32-bit variant. */
9969 if (offset & low)
9970 return -4;
9971 if (offset & ~mask)
9972 return 4;
9973 return 2;
9974}
9975
9976/* Return the size of a relaxable adr pseudo-instruction or PC-relative
9977 load. */
9978static int
9979relax_adr (fragS *fragp, asection *sec)
9980{
9981 addressT addr;
9982 offsetT val;
9983
9984 /* Assume worst case for symbols not known to be in the same section. */
9985 if (!S_IS_DEFINED(fragp->fr_symbol)
9986 || sec != S_GET_SEGMENT (fragp->fr_symbol))
9987 return 4;
9988
9989 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
9990 addr = fragp->fr_address + fragp->fr_fix;
9991 addr = (addr + 4) & ~3;
9992 /* Fix the insn as the 4-byte version if the target address is not
9993 sufficiently aligned. This is prevents an infinite loop when two
9994 instructions have contradictory range/alignment requirements. */
9995 if (val & 3)
9996 return -4;
9997 val -= addr;
9998 if (val < 0 || val > 1020)
9999 return 4;
10000 return 2;
10001}
10002
10003/* Return the size of a relaxable add/sub immediate instruction. */
10004static int
10005relax_addsub (fragS *fragp, asection *sec)
10006{
10007 char *buf;
10008 int op;
10009
10010 buf = fragp->fr_literal + fragp->fr_fix;
10011 op = bfd_get_16(sec->owner, buf);
10012 if ((op & 0xf) == ((op >> 4) & 0xf))
10013 return relax_immediate (fragp, 8, 0);
10014 else
10015 return relax_immediate (fragp, 3, 0);
10016}
10017
10018
10019/* Return the size of a relaxable branch instruction. BITS is the
10020 size of the offset field in the narrow instruction. */
10021
10022static int
10023relax_branch (fragS *fragp, asection *sec, int bits)
10024{
10025 addressT addr;
10026 offsetT val;
10027 offsetT limit;
10028
10029 /* Assume worst case for symbols not known to be in the same section. */
10030 if (!S_IS_DEFINED(fragp->fr_symbol)
10031 || sec != S_GET_SEGMENT (fragp->fr_symbol))
10032 return 4;
10033
10034 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
10035 addr = fragp->fr_address + fragp->fr_fix + 4;
10036 val -= addr;
10037
10038 /* Offset is a signed value *2 */
10039 limit = 1 << bits;
10040 if (val >= limit || val < -limit)
10041 return 4;
10042 return 2;
10043}
10044
10045
10046/* Relax a machine dependent frag. This returns the amount by which
10047 the current size of the frag should change. */
10048
10049int
10050arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
10051{
10052 int oldsize;
10053 int newsize;
10054
10055 oldsize = fragp->fr_var;
10056 switch (fragp->fr_subtype)
10057 {
10058 case T_MNEM_ldr_pc2:
10059 newsize = relax_adr(fragp, sec);
10060 break;
10061 case T_MNEM_ldr_pc:
10062 case T_MNEM_ldr_sp:
10063 case T_MNEM_str_sp:
10064 newsize = relax_immediate(fragp, 8, 2);
10065 break;
10066 case T_MNEM_ldr:
10067 case T_MNEM_str:
10068 newsize = relax_immediate(fragp, 5, 2);
10069 break;
10070 case T_MNEM_ldrh:
10071 case T_MNEM_strh:
10072 newsize = relax_immediate(fragp, 5, 1);
10073 break;
10074 case T_MNEM_ldrb:
10075 case T_MNEM_strb:
10076 newsize = relax_immediate(fragp, 5, 0);
10077 break;
10078 case T_MNEM_adr:
10079 newsize = relax_adr(fragp, sec);
10080 break;
10081 case T_MNEM_mov:
10082 case T_MNEM_movs:
10083 case T_MNEM_cmp:
10084 case T_MNEM_cmn:
10085 newsize = relax_immediate(fragp, 8, 0);
10086 break;
10087 case T_MNEM_b:
10088 newsize = relax_branch(fragp, sec, 11);
10089 break;
10090 case T_MNEM_bcond:
10091 newsize = relax_branch(fragp, sec, 8);
10092 break;
10093 case T_MNEM_add_sp:
10094 case T_MNEM_add_pc:
10095 newsize = relax_immediate (fragp, 8, 2);
10096 break;
10097 case T_MNEM_inc_sp:
10098 case T_MNEM_dec_sp:
10099 newsize = relax_immediate (fragp, 7, 2);
10100 break;
10101 case T_MNEM_addi:
10102 case T_MNEM_addis:
10103 case T_MNEM_subi:
10104 case T_MNEM_subis:
10105 newsize = relax_addsub (fragp, sec);
10106 break;
10107 default:
10108 abort();
10109 }
10110 if (newsize < 0)
10111 {
10112 fragp->fr_var = -newsize;
10113 md_convert_frag (sec->owner, sec, fragp);
10114 frag_wane(fragp);
10115 return -(newsize + oldsize);
10116 }
10117 fragp->fr_var = newsize;
10118 return newsize - oldsize;
c19d1205 10119}
b99bd4ef 10120
c19d1205 10121/* Round up a section size to the appropriate boundary. */
b99bd4ef 10122
c19d1205
ZW
10123valueT
10124md_section_align (segT segment ATTRIBUTE_UNUSED,
10125 valueT size)
10126{
10127#ifdef OBJ_ELF
10128 return size;
10129#else
10130 /* Round all sects to multiple of 4. */
10131 return (size + 3) & ~3;
10132#endif
bfae80f2 10133}
b99bd4ef 10134
c19d1205
ZW
10135/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
10136 of an rs_align_code fragment. */
10137
10138void
10139arm_handle_align (fragS * fragP)
bfae80f2 10140{
c19d1205
ZW
10141 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
10142 static char const thumb_noop[2] = { 0xc0, 0x46 };
10143 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
10144 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
10145
10146 int bytes, fix, noop_size;
10147 char * p;
10148 const char * noop;
bfae80f2 10149
c19d1205 10150 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
10151 return;
10152
c19d1205
ZW
10153 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
10154 p = fragP->fr_literal + fragP->fr_fix;
10155 fix = 0;
bfae80f2 10156
c19d1205
ZW
10157 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
10158 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 10159
c19d1205 10160 if (fragP->tc_frag_data)
a737bd4d 10161 {
c19d1205
ZW
10162 if (target_big_endian)
10163 noop = thumb_bigend_noop;
10164 else
10165 noop = thumb_noop;
10166 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
10167 }
10168 else
10169 {
c19d1205
ZW
10170 if (target_big_endian)
10171 noop = arm_bigend_noop;
10172 else
10173 noop = arm_noop;
10174 noop_size = sizeof (arm_noop);
7ed4c4c5 10175 }
a737bd4d 10176
c19d1205 10177 if (bytes & (noop_size - 1))
7ed4c4c5 10178 {
c19d1205
ZW
10179 fix = bytes & (noop_size - 1);
10180 memset (p, 0, fix);
10181 p += fix;
10182 bytes -= fix;
a737bd4d 10183 }
a737bd4d 10184
c19d1205 10185 while (bytes >= noop_size)
a737bd4d 10186 {
c19d1205
ZW
10187 memcpy (p, noop, noop_size);
10188 p += noop_size;
10189 bytes -= noop_size;
10190 fix += noop_size;
a737bd4d
NC
10191 }
10192
c19d1205
ZW
10193 fragP->fr_fix += fix;
10194 fragP->fr_var = noop_size;
a737bd4d
NC
10195}
10196
c19d1205
ZW
10197/* Called from md_do_align. Used to create an alignment
10198 frag in a code section. */
10199
10200void
10201arm_frag_align_code (int n, int max)
bfae80f2 10202{
c19d1205 10203 char * p;
7ed4c4c5 10204
c19d1205
ZW
10205 /* We assume that there will never be a requirement
10206 to support alignments greater than 32 bytes. */
10207 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
10208 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 10209
c19d1205
ZW
10210 p = frag_var (rs_align_code,
10211 MAX_MEM_FOR_RS_ALIGN_CODE,
10212 1,
10213 (relax_substateT) max,
10214 (symbolS *) NULL,
10215 (offsetT) n,
10216 (char *) NULL);
10217 *p = 0;
10218}
bfae80f2 10219
c19d1205 10220/* Perform target specific initialisation of a frag. */
bfae80f2 10221
c19d1205
ZW
10222void
10223arm_init_frag (fragS * fragP)
10224{
10225 /* Record whether this frag is in an ARM or a THUMB area. */
10226 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
10227}
10228
c19d1205
ZW
10229#ifdef OBJ_ELF
10230/* When we change sections we need to issue a new mapping symbol. */
10231
10232void
10233arm_elf_change_section (void)
bfae80f2 10234{
c19d1205
ZW
10235 flagword flags;
10236 segment_info_type *seginfo;
bfae80f2 10237
c19d1205
ZW
10238 /* Link an unlinked unwind index table section to the .text section. */
10239 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
10240 && elf_linked_to_section (now_seg) == NULL)
10241 elf_linked_to_section (now_seg) = text_section;
10242
10243 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
10244 return;
10245
c19d1205
ZW
10246 flags = bfd_get_section_flags (stdoutput, now_seg);
10247
10248 /* We can ignore sections that only contain debug info. */
10249 if ((flags & SEC_ALLOC) == 0)
10250 return;
bfae80f2 10251
c19d1205
ZW
10252 seginfo = seg_info (now_seg);
10253 mapstate = seginfo->tc_segment_info_data.mapstate;
10254 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
10255}
10256
c19d1205
ZW
10257int
10258arm_elf_section_type (const char * str, size_t len)
e45d0630 10259{
c19d1205
ZW
10260 if (len == 5 && strncmp (str, "exidx", 5) == 0)
10261 return SHT_ARM_EXIDX;
e45d0630 10262
c19d1205
ZW
10263 return -1;
10264}
10265\f
10266/* Code to deal with unwinding tables. */
e45d0630 10267
c19d1205 10268static void add_unwind_adjustsp (offsetT);
e45d0630 10269
c19d1205 10270/* Cenerate and deferred unwind frame offset. */
e45d0630 10271
bfae80f2 10272static void
c19d1205 10273flush_pending_unwind (void)
bfae80f2 10274{
c19d1205 10275 offsetT offset;
bfae80f2 10276
c19d1205
ZW
10277 offset = unwind.pending_offset;
10278 unwind.pending_offset = 0;
10279 if (offset != 0)
10280 add_unwind_adjustsp (offset);
bfae80f2
RE
10281}
10282
c19d1205
ZW
10283/* Add an opcode to this list for this function. Two-byte opcodes should
10284 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
10285 order. */
10286
bfae80f2 10287static void
c19d1205 10288add_unwind_opcode (valueT op, int length)
bfae80f2 10289{
c19d1205
ZW
10290 /* Add any deferred stack adjustment. */
10291 if (unwind.pending_offset)
10292 flush_pending_unwind ();
bfae80f2 10293
c19d1205 10294 unwind.sp_restored = 0;
bfae80f2 10295
c19d1205 10296 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 10297 {
c19d1205
ZW
10298 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
10299 if (unwind.opcodes)
10300 unwind.opcodes = xrealloc (unwind.opcodes,
10301 unwind.opcode_alloc);
10302 else
10303 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 10304 }
c19d1205 10305 while (length > 0)
bfae80f2 10306 {
c19d1205
ZW
10307 length--;
10308 unwind.opcodes[unwind.opcode_count] = op & 0xff;
10309 op >>= 8;
10310 unwind.opcode_count++;
bfae80f2 10311 }
bfae80f2
RE
10312}
10313
c19d1205
ZW
10314/* Add unwind opcodes to adjust the stack pointer. */
10315
bfae80f2 10316static void
c19d1205 10317add_unwind_adjustsp (offsetT offset)
bfae80f2 10318{
c19d1205 10319 valueT op;
bfae80f2 10320
c19d1205 10321 if (offset > 0x200)
bfae80f2 10322 {
c19d1205
ZW
10323 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
10324 char bytes[5];
10325 int n;
10326 valueT o;
bfae80f2 10327
c19d1205
ZW
10328 /* Long form: 0xb2, uleb128. */
10329 /* This might not fit in a word so add the individual bytes,
10330 remembering the list is built in reverse order. */
10331 o = (valueT) ((offset - 0x204) >> 2);
10332 if (o == 0)
10333 add_unwind_opcode (0, 1);
bfae80f2 10334
c19d1205
ZW
10335 /* Calculate the uleb128 encoding of the offset. */
10336 n = 0;
10337 while (o)
10338 {
10339 bytes[n] = o & 0x7f;
10340 o >>= 7;
10341 if (o)
10342 bytes[n] |= 0x80;
10343 n++;
10344 }
10345 /* Add the insn. */
10346 for (; n; n--)
10347 add_unwind_opcode (bytes[n - 1], 1);
10348 add_unwind_opcode (0xb2, 1);
10349 }
10350 else if (offset > 0x100)
bfae80f2 10351 {
c19d1205
ZW
10352 /* Two short opcodes. */
10353 add_unwind_opcode (0x3f, 1);
10354 op = (offset - 0x104) >> 2;
10355 add_unwind_opcode (op, 1);
bfae80f2 10356 }
c19d1205
ZW
10357 else if (offset > 0)
10358 {
10359 /* Short opcode. */
10360 op = (offset - 4) >> 2;
10361 add_unwind_opcode (op, 1);
10362 }
10363 else if (offset < 0)
bfae80f2 10364 {
c19d1205
ZW
10365 offset = -offset;
10366 while (offset > 0x100)
bfae80f2 10367 {
c19d1205
ZW
10368 add_unwind_opcode (0x7f, 1);
10369 offset -= 0x100;
bfae80f2 10370 }
c19d1205
ZW
10371 op = ((offset - 4) >> 2) | 0x40;
10372 add_unwind_opcode (op, 1);
bfae80f2 10373 }
bfae80f2
RE
10374}
10375
c19d1205
ZW
10376/* Finish the list of unwind opcodes for this function. */
10377static void
10378finish_unwind_opcodes (void)
bfae80f2 10379{
c19d1205 10380 valueT op;
bfae80f2 10381
c19d1205 10382 if (unwind.fp_used)
bfae80f2 10383 {
c19d1205
ZW
10384 /* Adjust sp as neccessary. */
10385 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
10386 flush_pending_unwind ();
bfae80f2 10387
c19d1205
ZW
10388 /* After restoring sp from the frame pointer. */
10389 op = 0x90 | unwind.fp_reg;
10390 add_unwind_opcode (op, 1);
10391 }
10392 else
10393 flush_pending_unwind ();
bfae80f2
RE
10394}
10395
bfae80f2 10396
c19d1205
ZW
10397/* Start an exception table entry. If idx is nonzero this is an index table
10398 entry. */
bfae80f2
RE
10399
10400static void
c19d1205 10401start_unwind_section (const segT text_seg, int idx)
bfae80f2 10402{
c19d1205
ZW
10403 const char * text_name;
10404 const char * prefix;
10405 const char * prefix_once;
10406 const char * group_name;
10407 size_t prefix_len;
10408 size_t text_len;
10409 char * sec_name;
10410 size_t sec_name_len;
10411 int type;
10412 int flags;
10413 int linkonce;
bfae80f2 10414
c19d1205 10415 if (idx)
bfae80f2 10416 {
c19d1205
ZW
10417 prefix = ELF_STRING_ARM_unwind;
10418 prefix_once = ELF_STRING_ARM_unwind_once;
10419 type = SHT_ARM_EXIDX;
bfae80f2 10420 }
c19d1205 10421 else
bfae80f2 10422 {
c19d1205
ZW
10423 prefix = ELF_STRING_ARM_unwind_info;
10424 prefix_once = ELF_STRING_ARM_unwind_info_once;
10425 type = SHT_PROGBITS;
bfae80f2
RE
10426 }
10427
c19d1205
ZW
10428 text_name = segment_name (text_seg);
10429 if (streq (text_name, ".text"))
10430 text_name = "";
10431
10432 if (strncmp (text_name, ".gnu.linkonce.t.",
10433 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 10434 {
c19d1205
ZW
10435 prefix = prefix_once;
10436 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
10437 }
10438
c19d1205
ZW
10439 prefix_len = strlen (prefix);
10440 text_len = strlen (text_name);
10441 sec_name_len = prefix_len + text_len;
10442 sec_name = xmalloc (sec_name_len + 1);
10443 memcpy (sec_name, prefix, prefix_len);
10444 memcpy (sec_name + prefix_len, text_name, text_len);
10445 sec_name[prefix_len + text_len] = '\0';
bfae80f2 10446
c19d1205
ZW
10447 flags = SHF_ALLOC;
10448 linkonce = 0;
10449 group_name = 0;
bfae80f2 10450
c19d1205
ZW
10451 /* Handle COMDAT group. */
10452 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 10453 {
c19d1205
ZW
10454 group_name = elf_group_name (text_seg);
10455 if (group_name == NULL)
10456 {
10457 as_bad ("Group section `%s' has no group signature",
10458 segment_name (text_seg));
10459 ignore_rest_of_line ();
10460 return;
10461 }
10462 flags |= SHF_GROUP;
10463 linkonce = 1;
bfae80f2
RE
10464 }
10465
c19d1205 10466 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 10467
c19d1205
ZW
10468 /* Set the setion link for index tables. */
10469 if (idx)
10470 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
10471}
10472
bfae80f2 10473
c19d1205
ZW
10474/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
10475 personality routine data. Returns zero, or the index table value for
10476 and inline entry. */
10477
10478static valueT
10479create_unwind_entry (int have_data)
bfae80f2 10480{
c19d1205
ZW
10481 int size;
10482 addressT where;
10483 char *ptr;
10484 /* The current word of data. */
10485 valueT data;
10486 /* The number of bytes left in this word. */
10487 int n;
bfae80f2 10488
c19d1205 10489 finish_unwind_opcodes ();
bfae80f2 10490
c19d1205
ZW
10491 /* Remember the current text section. */
10492 unwind.saved_seg = now_seg;
10493 unwind.saved_subseg = now_subseg;
bfae80f2 10494
c19d1205 10495 start_unwind_section (now_seg, 0);
bfae80f2 10496
c19d1205 10497 if (unwind.personality_routine == NULL)
bfae80f2 10498 {
c19d1205
ZW
10499 if (unwind.personality_index == -2)
10500 {
10501 if (have_data)
10502 as_bad (_("handerdata in cantunwind frame"));
10503 return 1; /* EXIDX_CANTUNWIND. */
10504 }
bfae80f2 10505
c19d1205
ZW
10506 /* Use a default personality routine if none is specified. */
10507 if (unwind.personality_index == -1)
10508 {
10509 if (unwind.opcode_count > 3)
10510 unwind.personality_index = 1;
10511 else
10512 unwind.personality_index = 0;
10513 }
bfae80f2 10514
c19d1205
ZW
10515 /* Space for the personality routine entry. */
10516 if (unwind.personality_index == 0)
10517 {
10518 if (unwind.opcode_count > 3)
10519 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 10520
c19d1205
ZW
10521 if (!have_data)
10522 {
10523 /* All the data is inline in the index table. */
10524 data = 0x80;
10525 n = 3;
10526 while (unwind.opcode_count > 0)
10527 {
10528 unwind.opcode_count--;
10529 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
10530 n--;
10531 }
bfae80f2 10532
c19d1205
ZW
10533 /* Pad with "finish" opcodes. */
10534 while (n--)
10535 data = (data << 8) | 0xb0;
bfae80f2 10536
c19d1205
ZW
10537 return data;
10538 }
10539 size = 0;
10540 }
10541 else
10542 /* We get two opcodes "free" in the first word. */
10543 size = unwind.opcode_count - 2;
10544 }
10545 else
10546 /* An extra byte is required for the opcode count. */
10547 size = unwind.opcode_count + 1;
bfae80f2 10548
c19d1205
ZW
10549 size = (size + 3) >> 2;
10550 if (size > 0xff)
10551 as_bad (_("too many unwind opcodes"));
bfae80f2 10552
c19d1205
ZW
10553 frag_align (2, 0, 0);
10554 record_alignment (now_seg, 2);
10555 unwind.table_entry = expr_build_dot ();
10556
10557 /* Allocate the table entry. */
10558 ptr = frag_more ((size << 2) + 4);
10559 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 10560
c19d1205 10561 switch (unwind.personality_index)
bfae80f2 10562 {
c19d1205
ZW
10563 case -1:
10564 /* ??? Should this be a PLT generating relocation? */
10565 /* Custom personality routine. */
10566 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
10567 BFD_RELOC_ARM_PREL31);
bfae80f2 10568
c19d1205
ZW
10569 where += 4;
10570 ptr += 4;
bfae80f2 10571
c19d1205
ZW
10572 /* Set the first byte to the number of additional words. */
10573 data = size - 1;
10574 n = 3;
10575 break;
bfae80f2 10576
c19d1205
ZW
10577 /* ABI defined personality routines. */
10578 case 0:
10579 /* Three opcodes bytes are packed into the first word. */
10580 data = 0x80;
10581 n = 3;
10582 break;
bfae80f2 10583
c19d1205
ZW
10584 case 1:
10585 case 2:
10586 /* The size and first two opcode bytes go in the first word. */
10587 data = ((0x80 + unwind.personality_index) << 8) | size;
10588 n = 2;
10589 break;
bfae80f2 10590
c19d1205
ZW
10591 default:
10592 /* Should never happen. */
10593 abort ();
10594 }
bfae80f2 10595
c19d1205
ZW
10596 /* Pack the opcodes into words (MSB first), reversing the list at the same
10597 time. */
10598 while (unwind.opcode_count > 0)
10599 {
10600 if (n == 0)
10601 {
10602 md_number_to_chars (ptr, data, 4);
10603 ptr += 4;
10604 n = 4;
10605 data = 0;
10606 }
10607 unwind.opcode_count--;
10608 n--;
10609 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
10610 }
10611
10612 /* Finish off the last word. */
10613 if (n < 4)
10614 {
10615 /* Pad with "finish" opcodes. */
10616 while (n--)
10617 data = (data << 8) | 0xb0;
10618
10619 md_number_to_chars (ptr, data, 4);
10620 }
10621
10622 if (!have_data)
10623 {
10624 /* Add an empty descriptor if there is no user-specified data. */
10625 ptr = frag_more (4);
10626 md_number_to_chars (ptr, 0, 4);
10627 }
10628
10629 return 0;
bfae80f2
RE
10630}
10631
c19d1205
ZW
10632/* Convert REGNAME to a DWARF-2 register number. */
10633
10634int
10635tc_arm_regname_to_dw2regnum (const char *regname)
bfae80f2 10636{
c19d1205
ZW
10637 int reg = arm_reg_parse ((char **) &regname, REG_TYPE_RN);
10638
10639 if (reg == FAIL)
10640 return -1;
10641
10642 return reg;
bfae80f2
RE
10643}
10644
c19d1205
ZW
10645/* Initialize the DWARF-2 unwind information for this procedure. */
10646
10647void
10648tc_arm_frame_initial_instructions (void)
bfae80f2 10649{
c19d1205 10650 cfi_add_CFA_def_cfa (REG_SP, 0);
bfae80f2 10651}
c19d1205 10652#endif /* OBJ_ELF */
bfae80f2 10653
bfae80f2 10654
c19d1205 10655/* MD interface: Symbol and relocation handling. */
bfae80f2 10656
2fc8bdac
ZW
10657/* Return the address within the segment that a PC-relative fixup is
10658 relative to. For ARM, PC-relative fixups applied to instructions
10659 are generally relative to the location of the fixup plus 8 bytes.
10660 Thumb branches are offset by 4, and Thumb loads relative to PC
10661 require special handling. */
bfae80f2 10662
c19d1205 10663long
2fc8bdac 10664md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 10665{
2fc8bdac
ZW
10666 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
10667
10668 /* If this is pc-relative and we are going to emit a relocation
10669 then we just want to put out any pipeline compensation that the linker
10670 will need. Otherwise we want to use the calculated base. */
10671 if (fixP->fx_pcrel
10672 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
10673 || arm_force_relocation (fixP)))
10674 base = 0;
bfae80f2 10675
c19d1205 10676 switch (fixP->fx_r_type)
bfae80f2 10677 {
2fc8bdac
ZW
10678 /* PC relative addressing on the Thumb is slightly odd as the
10679 bottom two bits of the PC are forced to zero for the
10680 calculation. This happens *after* application of the
10681 pipeline offset. However, Thumb adrl already adjusts for
10682 this, so we need not do it again. */
c19d1205 10683 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 10684 return base & ~3;
c19d1205
ZW
10685
10686 case BFD_RELOC_ARM_THUMB_OFFSET:
10687 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 10688 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 10689 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 10690 return (base + 4) & ~3;
c19d1205 10691
2fc8bdac
ZW
10692 /* Thumb branches are simply offset by +4. */
10693 case BFD_RELOC_THUMB_PCREL_BRANCH7:
10694 case BFD_RELOC_THUMB_PCREL_BRANCH9:
10695 case BFD_RELOC_THUMB_PCREL_BRANCH12:
10696 case BFD_RELOC_THUMB_PCREL_BRANCH20:
10697 case BFD_RELOC_THUMB_PCREL_BRANCH23:
10698 case BFD_RELOC_THUMB_PCREL_BRANCH25:
10699 case BFD_RELOC_THUMB_PCREL_BLX:
10700 return base + 4;
bfae80f2 10701
2fc8bdac
ZW
10702 /* ARM mode branches are offset by +8. However, the Windows CE
10703 loader expects the relocation not to take this into account. */
10704 case BFD_RELOC_ARM_PCREL_BRANCH:
10705 case BFD_RELOC_ARM_PCREL_BLX:
10706 case BFD_RELOC_ARM_PLT32:
c19d1205 10707#ifdef TE_WINCE
2fc8bdac 10708 return base;
c19d1205 10709#else
2fc8bdac 10710 return base + 8;
c19d1205 10711#endif
2fc8bdac
ZW
10712
10713 /* ARM mode loads relative to PC are also offset by +8. Unlike
10714 branches, the Windows CE loader *does* expect the relocation
10715 to take this into account. */
10716 case BFD_RELOC_ARM_OFFSET_IMM:
10717 case BFD_RELOC_ARM_OFFSET_IMM8:
10718 case BFD_RELOC_ARM_HWLITERAL:
10719 case BFD_RELOC_ARM_LITERAL:
10720 case BFD_RELOC_ARM_CP_OFF_IMM:
10721 return base + 8;
10722
10723
10724 /* Other PC-relative relocations are un-offset. */
10725 default:
10726 return base;
10727 }
bfae80f2
RE
10728}
10729
c19d1205
ZW
10730/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
10731 Otherwise we have no need to default values of symbols. */
10732
10733symbolS *
10734md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 10735{
c19d1205
ZW
10736#ifdef OBJ_ELF
10737 if (name[0] == '_' && name[1] == 'G'
10738 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
10739 {
10740 if (!GOT_symbol)
10741 {
10742 if (symbol_find (name))
10743 as_bad ("GOT already in the symbol table");
bfae80f2 10744
c19d1205
ZW
10745 GOT_symbol = symbol_new (name, undefined_section,
10746 (valueT) 0, & zero_address_frag);
10747 }
bfae80f2 10748
c19d1205 10749 return GOT_symbol;
bfae80f2 10750 }
c19d1205 10751#endif
bfae80f2 10752
c19d1205 10753 return 0;
bfae80f2
RE
10754}
10755
55cf6793 10756/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
10757 computed as two separate immediate values, added together. We
10758 already know that this value cannot be computed by just one ARM
10759 instruction. */
10760
10761static unsigned int
10762validate_immediate_twopart (unsigned int val,
10763 unsigned int * highpart)
bfae80f2 10764{
c19d1205
ZW
10765 unsigned int a;
10766 unsigned int i;
bfae80f2 10767
c19d1205
ZW
10768 for (i = 0; i < 32; i += 2)
10769 if (((a = rotate_left (val, i)) & 0xff) != 0)
10770 {
10771 if (a & 0xff00)
10772 {
10773 if (a & ~ 0xffff)
10774 continue;
10775 * highpart = (a >> 8) | ((i + 24) << 7);
10776 }
10777 else if (a & 0xff0000)
10778 {
10779 if (a & 0xff000000)
10780 continue;
10781 * highpart = (a >> 16) | ((i + 16) << 7);
10782 }
10783 else
10784 {
10785 assert (a & 0xff000000);
10786 * highpart = (a >> 24) | ((i + 8) << 7);
10787 }
bfae80f2 10788
c19d1205
ZW
10789 return (a & 0xff) | (i << 7);
10790 }
bfae80f2 10791
c19d1205 10792 return FAIL;
bfae80f2
RE
10793}
10794
c19d1205
ZW
10795static int
10796validate_offset_imm (unsigned int val, int hwse)
10797{
10798 if ((hwse && val > 255) || val > 4095)
10799 return FAIL;
10800 return val;
10801}
bfae80f2 10802
55cf6793 10803/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
10804 negative immediate constant by altering the instruction. A bit of
10805 a hack really.
10806 MOV <-> MVN
10807 AND <-> BIC
10808 ADC <-> SBC
10809 by inverting the second operand, and
10810 ADD <-> SUB
10811 CMP <-> CMN
10812 by negating the second operand. */
bfae80f2 10813
c19d1205
ZW
10814static int
10815negate_data_op (unsigned long * instruction,
10816 unsigned long value)
bfae80f2 10817{
c19d1205
ZW
10818 int op, new_inst;
10819 unsigned long negated, inverted;
bfae80f2 10820
c19d1205
ZW
10821 negated = encode_arm_immediate (-value);
10822 inverted = encode_arm_immediate (~value);
bfae80f2 10823
c19d1205
ZW
10824 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
10825 switch (op)
bfae80f2 10826 {
c19d1205
ZW
10827 /* First negates. */
10828 case OPCODE_SUB: /* ADD <-> SUB */
10829 new_inst = OPCODE_ADD;
10830 value = negated;
10831 break;
bfae80f2 10832
c19d1205
ZW
10833 case OPCODE_ADD:
10834 new_inst = OPCODE_SUB;
10835 value = negated;
10836 break;
bfae80f2 10837
c19d1205
ZW
10838 case OPCODE_CMP: /* CMP <-> CMN */
10839 new_inst = OPCODE_CMN;
10840 value = negated;
10841 break;
bfae80f2 10842
c19d1205
ZW
10843 case OPCODE_CMN:
10844 new_inst = OPCODE_CMP;
10845 value = negated;
10846 break;
bfae80f2 10847
c19d1205
ZW
10848 /* Now Inverted ops. */
10849 case OPCODE_MOV: /* MOV <-> MVN */
10850 new_inst = OPCODE_MVN;
10851 value = inverted;
10852 break;
bfae80f2 10853
c19d1205
ZW
10854 case OPCODE_MVN:
10855 new_inst = OPCODE_MOV;
10856 value = inverted;
10857 break;
bfae80f2 10858
c19d1205
ZW
10859 case OPCODE_AND: /* AND <-> BIC */
10860 new_inst = OPCODE_BIC;
10861 value = inverted;
10862 break;
bfae80f2 10863
c19d1205
ZW
10864 case OPCODE_BIC:
10865 new_inst = OPCODE_AND;
10866 value = inverted;
10867 break;
bfae80f2 10868
c19d1205
ZW
10869 case OPCODE_ADC: /* ADC <-> SBC */
10870 new_inst = OPCODE_SBC;
10871 value = inverted;
10872 break;
bfae80f2 10873
c19d1205
ZW
10874 case OPCODE_SBC:
10875 new_inst = OPCODE_ADC;
10876 value = inverted;
10877 break;
bfae80f2 10878
c19d1205
ZW
10879 /* We cannot do anything. */
10880 default:
10881 return FAIL;
b99bd4ef
NC
10882 }
10883
c19d1205
ZW
10884 if (value == (unsigned) FAIL)
10885 return FAIL;
10886
10887 *instruction &= OPCODE_MASK;
10888 *instruction |= new_inst << DATA_OP_SHIFT;
10889 return value;
b99bd4ef
NC
10890}
10891
8f06b2d8
PB
10892/* Read a 32-bit thumb instruction from buf. */
10893static unsigned long
10894get_thumb32_insn (char * buf)
10895{
10896 unsigned long insn;
10897 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
10898 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
10899
10900 return insn;
10901}
10902
c19d1205 10903void
55cf6793 10904md_apply_fix (fixS * fixP,
c19d1205
ZW
10905 valueT * valP,
10906 segT seg)
10907{
10908 offsetT value = * valP;
10909 offsetT newval;
10910 unsigned int newimm;
10911 unsigned long temp;
10912 int sign;
10913 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 10914
c19d1205 10915 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 10916
c19d1205
ZW
10917 /* Note whether this will delete the relocation. */
10918 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
10919 fixP->fx_done = 1;
b99bd4ef 10920
adbaf948
ZW
10921 /* On a 64-bit host, silently truncate 'value' to 32 bits for
10922 consistency with the behavior on 32-bit hosts. Remember value
10923 for emit_reloc. */
10924 value &= 0xffffffff;
10925 value ^= 0x80000000;
10926 value -= 0x80000000;
10927
10928 *valP = value;
c19d1205 10929 fixP->fx_addnumber = value;
b99bd4ef 10930
adbaf948
ZW
10931 /* Same treatment for fixP->fx_offset. */
10932 fixP->fx_offset &= 0xffffffff;
10933 fixP->fx_offset ^= 0x80000000;
10934 fixP->fx_offset -= 0x80000000;
10935
c19d1205 10936 switch (fixP->fx_r_type)
b99bd4ef 10937 {
c19d1205
ZW
10938 case BFD_RELOC_NONE:
10939 /* This will need to go in the object file. */
10940 fixP->fx_done = 0;
10941 break;
b99bd4ef 10942
c19d1205
ZW
10943 case BFD_RELOC_ARM_IMMEDIATE:
10944 /* We claim that this fixup has been processed here,
10945 even if in fact we generate an error because we do
10946 not have a reloc for it, so tc_gen_reloc will reject it. */
10947 fixP->fx_done = 1;
b99bd4ef 10948
c19d1205
ZW
10949 if (fixP->fx_addsy
10950 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 10951 {
c19d1205
ZW
10952 as_bad_where (fixP->fx_file, fixP->fx_line,
10953 _("undefined symbol %s used as an immediate value"),
10954 S_GET_NAME (fixP->fx_addsy));
10955 break;
b99bd4ef
NC
10956 }
10957
c19d1205
ZW
10958 newimm = encode_arm_immediate (value);
10959 temp = md_chars_to_number (buf, INSN_SIZE);
10960
10961 /* If the instruction will fail, see if we can fix things up by
10962 changing the opcode. */
10963 if (newimm == (unsigned int) FAIL
10964 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 10965 {
c19d1205
ZW
10966 as_bad_where (fixP->fx_file, fixP->fx_line,
10967 _("invalid constant (%lx) after fixup"),
10968 (unsigned long) value);
10969 break;
b99bd4ef 10970 }
b99bd4ef 10971
c19d1205
ZW
10972 newimm |= (temp & 0xfffff000);
10973 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
10974 break;
b99bd4ef 10975
c19d1205
ZW
10976 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
10977 {
10978 unsigned int highpart = 0;
10979 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 10980
c19d1205
ZW
10981 newimm = encode_arm_immediate (value);
10982 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 10983
c19d1205
ZW
10984 /* If the instruction will fail, see if we can fix things up by
10985 changing the opcode. */
10986 if (newimm == (unsigned int) FAIL
10987 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
10988 {
10989 /* No ? OK - try using two ADD instructions to generate
10990 the value. */
10991 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 10992
c19d1205
ZW
10993 /* Yes - then make sure that the second instruction is
10994 also an add. */
10995 if (newimm != (unsigned int) FAIL)
10996 newinsn = temp;
10997 /* Still No ? Try using a negated value. */
10998 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
10999 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
11000 /* Otherwise - give up. */
11001 else
11002 {
11003 as_bad_where (fixP->fx_file, fixP->fx_line,
11004 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
11005 (long) value);
11006 break;
11007 }
b99bd4ef 11008
c19d1205
ZW
11009 /* Replace the first operand in the 2nd instruction (which
11010 is the PC) with the destination register. We have
11011 already added in the PC in the first instruction and we
11012 do not want to do it again. */
11013 newinsn &= ~ 0xf0000;
11014 newinsn |= ((newinsn & 0x0f000) << 4);
11015 }
b99bd4ef 11016
c19d1205
ZW
11017 newimm |= (temp & 0xfffff000);
11018 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 11019
c19d1205
ZW
11020 highpart |= (newinsn & 0xfffff000);
11021 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
11022 }
11023 break;
b99bd4ef 11024
c19d1205
ZW
11025 case BFD_RELOC_ARM_OFFSET_IMM:
11026 case BFD_RELOC_ARM_LITERAL:
11027 sign = value >= 0;
b99bd4ef 11028
c19d1205
ZW
11029 if (value < 0)
11030 value = - value;
b99bd4ef 11031
c19d1205 11032 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 11033 {
c19d1205
ZW
11034 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
11035 as_bad_where (fixP->fx_file, fixP->fx_line,
11036 _("invalid literal constant: pool needs to be closer"));
11037 else
11038 as_bad_where (fixP->fx_file, fixP->fx_line,
11039 _("bad immediate value for offset (%ld)"),
11040 (long) value);
11041 break;
f03698e6
RE
11042 }
11043
c19d1205
ZW
11044 newval = md_chars_to_number (buf, INSN_SIZE);
11045 newval &= 0xff7ff000;
11046 newval |= value | (sign ? INDEX_UP : 0);
11047 md_number_to_chars (buf, newval, INSN_SIZE);
11048 break;
b99bd4ef 11049
c19d1205
ZW
11050 case BFD_RELOC_ARM_OFFSET_IMM8:
11051 case BFD_RELOC_ARM_HWLITERAL:
11052 sign = value >= 0;
b99bd4ef 11053
c19d1205
ZW
11054 if (value < 0)
11055 value = - value;
b99bd4ef 11056
c19d1205 11057 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 11058 {
c19d1205
ZW
11059 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
11060 as_bad_where (fixP->fx_file, fixP->fx_line,
11061 _("invalid literal constant: pool needs to be closer"));
11062 else
11063 as_bad (_("bad immediate value for half-word offset (%ld)"),
11064 (long) value);
11065 break;
b99bd4ef
NC
11066 }
11067
c19d1205
ZW
11068 newval = md_chars_to_number (buf, INSN_SIZE);
11069 newval &= 0xff7ff0f0;
11070 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
11071 md_number_to_chars (buf, newval, INSN_SIZE);
11072 break;
b99bd4ef 11073
c19d1205
ZW
11074 case BFD_RELOC_ARM_T32_OFFSET_U8:
11075 if (value < 0 || value > 1020 || value % 4 != 0)
11076 as_bad_where (fixP->fx_file, fixP->fx_line,
11077 _("bad immediate value for offset (%ld)"), (long) value);
11078 value /= 4;
b99bd4ef 11079
c19d1205 11080 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
11081 newval |= value;
11082 md_number_to_chars (buf+2, newval, THUMB_SIZE);
11083 break;
b99bd4ef 11084
c19d1205
ZW
11085 case BFD_RELOC_ARM_T32_OFFSET_IMM:
11086 /* This is a complicated relocation used for all varieties of Thumb32
11087 load/store instruction with immediate offset:
11088
11089 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
11090 *4, optional writeback(W)
11091 (doubleword load/store)
11092
11093 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
11094 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
11095 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
11096 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
11097 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
11098
11099 Uppercase letters indicate bits that are already encoded at
11100 this point. Lowercase letters are our problem. For the
11101 second block of instructions, the secondary opcode nybble
11102 (bits 8..11) is present, and bit 23 is zero, even if this is
11103 a PC-relative operation. */
11104 newval = md_chars_to_number (buf, THUMB_SIZE);
11105 newval <<= 16;
11106 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 11107
c19d1205 11108 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 11109 {
c19d1205
ZW
11110 /* Doubleword load/store: 8-bit offset, scaled by 4. */
11111 if (value >= 0)
11112 newval |= (1 << 23);
11113 else
11114 value = -value;
11115 if (value % 4 != 0)
11116 {
11117 as_bad_where (fixP->fx_file, fixP->fx_line,
11118 _("offset not a multiple of 4"));
11119 break;
11120 }
11121 value /= 4;
11122 if (value >= 0xff)
11123 {
11124 as_bad_where (fixP->fx_file, fixP->fx_line,
11125 _("offset out of range"));
11126 break;
11127 }
11128 newval &= ~0xff;
b99bd4ef 11129 }
c19d1205 11130 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 11131 {
c19d1205
ZW
11132 /* PC-relative, 12-bit offset. */
11133 if (value >= 0)
11134 newval |= (1 << 23);
11135 else
11136 value = -value;
11137 if (value >= 0xfff)
11138 {
11139 as_bad_where (fixP->fx_file, fixP->fx_line,
11140 _("offset out of range"));
11141 break;
11142 }
11143 newval &= ~0xfff;
b99bd4ef 11144 }
c19d1205 11145 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 11146 {
c19d1205
ZW
11147 /* Writeback: 8-bit, +/- offset. */
11148 if (value >= 0)
11149 newval |= (1 << 9);
11150 else
11151 value = -value;
11152 if (value >= 0xff)
11153 {
11154 as_bad_where (fixP->fx_file, fixP->fx_line,
11155 _("offset out of range"));
11156 break;
11157 }
11158 newval &= ~0xff;
b99bd4ef 11159 }
c19d1205 11160 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 11161 {
c19d1205
ZW
11162 /* T-instruction: positive 8-bit offset. */
11163 if (value < 0 || value >= 0xff)
b99bd4ef 11164 {
c19d1205
ZW
11165 as_bad_where (fixP->fx_file, fixP->fx_line,
11166 _("offset out of range"));
11167 break;
b99bd4ef 11168 }
c19d1205
ZW
11169 newval &= ~0xff;
11170 newval |= value;
b99bd4ef
NC
11171 }
11172 else
b99bd4ef 11173 {
c19d1205
ZW
11174 /* Positive 12-bit or negative 8-bit offset. */
11175 int limit;
11176 if (value >= 0)
b99bd4ef 11177 {
c19d1205
ZW
11178 newval |= (1 << 23);
11179 limit = 0xfff;
11180 }
11181 else
11182 {
11183 value = -value;
11184 limit = 0xff;
11185 }
11186 if (value > limit)
11187 {
11188 as_bad_where (fixP->fx_file, fixP->fx_line,
11189 _("offset out of range"));
11190 break;
b99bd4ef 11191 }
c19d1205 11192 newval &= ~limit;
b99bd4ef 11193 }
b99bd4ef 11194
c19d1205
ZW
11195 newval |= value;
11196 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
11197 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
11198 break;
404ff6b5 11199
c19d1205
ZW
11200 case BFD_RELOC_ARM_SHIFT_IMM:
11201 newval = md_chars_to_number (buf, INSN_SIZE);
11202 if (((unsigned long) value) > 32
11203 || (value == 32
11204 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
11205 {
11206 as_bad_where (fixP->fx_file, fixP->fx_line,
11207 _("shift expression is too large"));
11208 break;
11209 }
404ff6b5 11210
c19d1205
ZW
11211 if (value == 0)
11212 /* Shifts of zero must be done as lsl. */
11213 newval &= ~0x60;
11214 else if (value == 32)
11215 value = 0;
11216 newval &= 0xfffff07f;
11217 newval |= (value & 0x1f) << 7;
11218 md_number_to_chars (buf, newval, INSN_SIZE);
11219 break;
404ff6b5 11220
c19d1205 11221 case BFD_RELOC_ARM_T32_IMMEDIATE:
92e90b6e 11222 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 11223 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
11224 /* We claim that this fixup has been processed here,
11225 even if in fact we generate an error because we do
11226 not have a reloc for it, so tc_gen_reloc will reject it. */
11227 fixP->fx_done = 1;
404ff6b5 11228
c19d1205
ZW
11229 if (fixP->fx_addsy
11230 && ! S_IS_DEFINED (fixP->fx_addsy))
11231 {
11232 as_bad_where (fixP->fx_file, fixP->fx_line,
11233 _("undefined symbol %s used as an immediate value"),
11234 S_GET_NAME (fixP->fx_addsy));
11235 break;
11236 }
404ff6b5 11237
c19d1205
ZW
11238 newval = md_chars_to_number (buf, THUMB_SIZE);
11239 newval <<= 16;
11240 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 11241
e9f89963
PB
11242 /* FUTURE: Implement analogue of negate_data_op for T32. */
11243 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE)
11244 newimm = encode_thumb32_immediate (value);
11245 else
92e90b6e 11246 {
e9f89963
PB
11247 /* 12 bit immediate for addw/subw. */
11248 if (value < 0)
11249 {
11250 value = -value;
11251 newval ^= 0x00a00000;
11252 }
92e90b6e
PB
11253 if (value > 0xfff)
11254 newimm = (unsigned int) FAIL;
11255 else
11256 newimm = value;
11257 }
cc8a6dd0 11258
c19d1205 11259 if (newimm == (unsigned int)FAIL)
3631a3c8 11260 {
c19d1205
ZW
11261 as_bad_where (fixP->fx_file, fixP->fx_line,
11262 _("invalid constant (%lx) after fixup"),
11263 (unsigned long) value);
11264 break;
3631a3c8
NC
11265 }
11266
c19d1205
ZW
11267 newval |= (newimm & 0x800) << 15;
11268 newval |= (newimm & 0x700) << 4;
11269 newval |= (newimm & 0x0ff);
cc8a6dd0 11270
c19d1205
ZW
11271 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
11272 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
11273 break;
a737bd4d 11274
3eb17e6b 11275 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
11276 if (((unsigned long) value) > 0xffff)
11277 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 11278 _("invalid smc expression"));
2fc8bdac 11279 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
11280 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
11281 md_number_to_chars (buf, newval, INSN_SIZE);
11282 break;
a737bd4d 11283
c19d1205 11284 case BFD_RELOC_ARM_SWI:
adbaf948 11285 if (fixP->tc_fix_data != 0)
c19d1205
ZW
11286 {
11287 if (((unsigned long) value) > 0xff)
11288 as_bad_where (fixP->fx_file, fixP->fx_line,
11289 _("invalid swi expression"));
2fc8bdac 11290 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
11291 newval |= value;
11292 md_number_to_chars (buf, newval, THUMB_SIZE);
11293 }
11294 else
11295 {
11296 if (((unsigned long) value) > 0x00ffffff)
11297 as_bad_where (fixP->fx_file, fixP->fx_line,
11298 _("invalid swi expression"));
2fc8bdac 11299 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
11300 newval |= value;
11301 md_number_to_chars (buf, newval, INSN_SIZE);
11302 }
11303 break;
a737bd4d 11304
c19d1205
ZW
11305 case BFD_RELOC_ARM_MULTI:
11306 if (((unsigned long) value) > 0xffff)
11307 as_bad_where (fixP->fx_file, fixP->fx_line,
11308 _("invalid expression in load/store multiple"));
11309 newval = value | md_chars_to_number (buf, INSN_SIZE);
11310 md_number_to_chars (buf, newval, INSN_SIZE);
11311 break;
a737bd4d 11312
c19d1205 11313 case BFD_RELOC_ARM_PCREL_BRANCH:
c19d1205 11314#ifdef OBJ_ELF
2fc8bdac 11315 case BFD_RELOC_ARM_PLT32:
c19d1205 11316#endif
a737bd4d 11317
c19d1205 11318 /* We are going to store value (shifted right by two) in the
2fc8bdac
ZW
11319 instruction, in a 24 bit, signed field. Bits 0 and 1 must be
11320 clear, and bits 26 through 32 either all clear or all set. */
11321 if (value & 0x00000003)
c19d1205 11322 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
11323 _("misaligned branch destination"));
11324 if ((value & (offsetT)0xfe000000) != (offsetT)0
11325 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
11326 as_bad_where (fixP->fx_file, fixP->fx_line,
11327 _("branch out of range"));
a737bd4d 11328
2fc8bdac 11329 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 11330 {
2fc8bdac
ZW
11331 newval = md_chars_to_number (buf, INSN_SIZE);
11332 newval |= (value >> 2) & 0x00ffffff;
11333 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 11334 }
c19d1205 11335 break;
a737bd4d 11336
c19d1205 11337 case BFD_RELOC_ARM_PCREL_BLX:
2fc8bdac
ZW
11338 /* BLX allows bit 1 to be set in the branch destination, since
11339 it targets a Thumb instruction which is only required to be
11340 aligned modulo 2. Other constraints are as for B/BL. */
11341 if (value & 0x00000001)
11342 as_bad_where (fixP->fx_file, fixP->fx_line,
11343 _("misaligned BLX destination"));
11344 if ((value & (offsetT)0xfe000000) != (offsetT)0
11345 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
11346 as_bad_where (fixP->fx_file, fixP->fx_line,
11347 _("branch out of range"));
a737bd4d 11348
2fc8bdac
ZW
11349 if (fixP->fx_done || !seg->use_rela_p)
11350 {
11351 offsetT hbit;
11352 hbit = (value >> 1) & 1;
11353 value = (value >> 2) & 0x00ffffff;
a737bd4d 11354
2fc8bdac
ZW
11355 newval = md_chars_to_number (buf, INSN_SIZE);
11356 newval |= value | hbit << 24;
11357 md_number_to_chars (buf, newval, INSN_SIZE);
11358 }
c19d1205 11359 break;
a737bd4d 11360
c19d1205 11361 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
2fc8bdac
ZW
11362 /* CZB can only branch forward. */
11363 if (value & ~0x7e)
11364 as_bad_where (fixP->fx_file, fixP->fx_line,
11365 _("branch out of range"));
a737bd4d 11366
2fc8bdac
ZW
11367 if (fixP->fx_done || !seg->use_rela_p)
11368 {
11369 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205 11370 newval |= ((value & 0x2e) << 2) | ((value & 0x40) << 3);
2fc8bdac
ZW
11371 md_number_to_chars (buf, newval, THUMB_SIZE);
11372 }
c19d1205 11373 break;
a737bd4d 11374
c19d1205 11375 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
11376 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
11377 as_bad_where (fixP->fx_file, fixP->fx_line,
11378 _("branch out of range"));
a737bd4d 11379
2fc8bdac
ZW
11380 if (fixP->fx_done || !seg->use_rela_p)
11381 {
11382 newval = md_chars_to_number (buf, THUMB_SIZE);
11383 newval |= (value & 0x1ff) >> 1;
11384 md_number_to_chars (buf, newval, THUMB_SIZE);
11385 }
c19d1205 11386 break;
a737bd4d 11387
c19d1205 11388 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
11389 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
11390 as_bad_where (fixP->fx_file, fixP->fx_line,
11391 _("branch out of range"));
a737bd4d 11392
2fc8bdac
ZW
11393 if (fixP->fx_done || !seg->use_rela_p)
11394 {
11395 newval = md_chars_to_number (buf, THUMB_SIZE);
11396 newval |= (value & 0xfff) >> 1;
11397 md_number_to_chars (buf, newval, THUMB_SIZE);
11398 }
c19d1205 11399 break;
a737bd4d 11400
c19d1205 11401 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
11402 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
11403 as_bad_where (fixP->fx_file, fixP->fx_line,
11404 _("conditional branch out of range"));
404ff6b5 11405
2fc8bdac
ZW
11406 if (fixP->fx_done || !seg->use_rela_p)
11407 {
11408 offsetT newval2;
11409 addressT S, J1, J2, lo, hi;
404ff6b5 11410
2fc8bdac
ZW
11411 S = (value & 0x00100000) >> 20;
11412 J2 = (value & 0x00080000) >> 19;
11413 J1 = (value & 0x00040000) >> 18;
11414 hi = (value & 0x0003f000) >> 12;
11415 lo = (value & 0x00000ffe) >> 1;
6c43fab6 11416
2fc8bdac
ZW
11417 newval = md_chars_to_number (buf, THUMB_SIZE);
11418 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
11419 newval |= (S << 10) | hi;
11420 newval2 |= (J1 << 13) | (J2 << 11) | lo;
11421 md_number_to_chars (buf, newval, THUMB_SIZE);
11422 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
11423 }
c19d1205 11424 break;
6c43fab6 11425
c19d1205
ZW
11426 case BFD_RELOC_THUMB_PCREL_BLX:
11427 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
11428 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
11429 as_bad_where (fixP->fx_file, fixP->fx_line,
11430 _("branch out of range"));
404ff6b5 11431
2fc8bdac
ZW
11432 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
11433 /* For a BLX instruction, make sure that the relocation is rounded up
11434 to a word boundary. This follows the semantics of the instruction
11435 which specifies that bit 1 of the target address will come from bit
11436 1 of the base address. */
11437 value = (value + 1) & ~ 1;
404ff6b5 11438
2fc8bdac 11439 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 11440 {
2fc8bdac
ZW
11441 offsetT newval2;
11442
11443 newval = md_chars_to_number (buf, THUMB_SIZE);
11444 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
11445 newval |= (value & 0x7fffff) >> 12;
11446 newval2 |= (value & 0xfff) >> 1;
11447 md_number_to_chars (buf, newval, THUMB_SIZE);
11448 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 11449 }
c19d1205 11450 break;
404ff6b5 11451
c19d1205 11452 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
11453 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
11454 as_bad_where (fixP->fx_file, fixP->fx_line,
11455 _("branch out of range"));
6c43fab6 11456
2fc8bdac
ZW
11457 if (fixP->fx_done || !seg->use_rela_p)
11458 {
11459 offsetT newval2;
11460 addressT S, I1, I2, lo, hi;
6c43fab6 11461
2fc8bdac
ZW
11462 S = (value & 0x01000000) >> 24;
11463 I1 = (value & 0x00800000) >> 23;
11464 I2 = (value & 0x00400000) >> 22;
11465 hi = (value & 0x003ff000) >> 12;
11466 lo = (value & 0x00000ffe) >> 1;
6c43fab6 11467
2fc8bdac
ZW
11468 I1 = !(I1 ^ S);
11469 I2 = !(I2 ^ S);
a737bd4d 11470
2fc8bdac
ZW
11471 newval = md_chars_to_number (buf, THUMB_SIZE);
11472 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
11473 newval |= (S << 10) | hi;
11474 newval2 |= (I1 << 13) | (I2 << 11) | lo;
11475 md_number_to_chars (buf, newval, THUMB_SIZE);
11476 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
11477 }
11478 break;
a737bd4d 11479
2fc8bdac
ZW
11480 case BFD_RELOC_8:
11481 if (fixP->fx_done || !seg->use_rela_p)
11482 md_number_to_chars (buf, value, 1);
c19d1205 11483 break;
a737bd4d 11484
c19d1205 11485 case BFD_RELOC_16:
2fc8bdac 11486 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 11487 md_number_to_chars (buf, value, 2);
c19d1205 11488 break;
a737bd4d 11489
c19d1205
ZW
11490#ifdef OBJ_ELF
11491 case BFD_RELOC_ARM_TLS_GD32:
11492 case BFD_RELOC_ARM_TLS_LE32:
11493 case BFD_RELOC_ARM_TLS_IE32:
11494 case BFD_RELOC_ARM_TLS_LDM32:
11495 case BFD_RELOC_ARM_TLS_LDO32:
11496 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11497 /* fall through */
6c43fab6 11498
c19d1205
ZW
11499 case BFD_RELOC_ARM_GOT32:
11500 case BFD_RELOC_ARM_GOTOFF:
11501 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
11502 if (fixP->fx_done || !seg->use_rela_p)
11503 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
11504 break;
11505#endif
6c43fab6 11506
c19d1205
ZW
11507 case BFD_RELOC_RVA:
11508 case BFD_RELOC_32:
11509 case BFD_RELOC_ARM_TARGET1:
11510 case BFD_RELOC_ARM_ROSEGREL32:
11511 case BFD_RELOC_ARM_SBREL32:
11512 case BFD_RELOC_32_PCREL:
2fc8bdac 11513 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 11514 md_number_to_chars (buf, value, 4);
c19d1205 11515 break;
6c43fab6 11516
c19d1205
ZW
11517#ifdef OBJ_ELF
11518 case BFD_RELOC_ARM_PREL31:
2fc8bdac 11519 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
11520 {
11521 newval = md_chars_to_number (buf, 4) & 0x80000000;
11522 if ((value ^ (value >> 1)) & 0x40000000)
11523 {
11524 as_bad_where (fixP->fx_file, fixP->fx_line,
11525 _("rel31 relocation overflow"));
11526 }
11527 newval |= value & 0x7fffffff;
11528 md_number_to_chars (buf, newval, 4);
11529 }
11530 break;
c19d1205 11531#endif
a737bd4d 11532
c19d1205 11533 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 11534 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
11535 if (value < -1023 || value > 1023 || (value & 3))
11536 as_bad_where (fixP->fx_file, fixP->fx_line,
11537 _("co-processor offset out of range"));
11538 cp_off_common:
11539 sign = value >= 0;
11540 if (value < 0)
11541 value = -value;
8f06b2d8
PB
11542 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
11543 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
11544 newval = md_chars_to_number (buf, INSN_SIZE);
11545 else
11546 newval = get_thumb32_insn (buf);
11547 newval &= 0xff7fff00;
c19d1205
ZW
11548 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
11549 if (value == 0)
11550 newval &= ~WRITE_BACK;
8f06b2d8
PB
11551 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
11552 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
11553 md_number_to_chars (buf, newval, INSN_SIZE);
11554 else
11555 put_thumb32_insn (buf, newval);
c19d1205 11556 break;
a737bd4d 11557
c19d1205 11558 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 11559 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
11560 if (value < -255 || value > 255)
11561 as_bad_where (fixP->fx_file, fixP->fx_line,
11562 _("co-processor offset out of range"));
11563 goto cp_off_common;
6c43fab6 11564
c19d1205
ZW
11565 case BFD_RELOC_ARM_THUMB_OFFSET:
11566 newval = md_chars_to_number (buf, THUMB_SIZE);
11567 /* Exactly what ranges, and where the offset is inserted depends
11568 on the type of instruction, we can establish this from the
11569 top 4 bits. */
11570 switch (newval >> 12)
11571 {
11572 case 4: /* PC load. */
11573 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
11574 forced to zero for these loads; md_pcrel_from has already
11575 compensated for this. */
11576 if (value & 3)
11577 as_bad_where (fixP->fx_file, fixP->fx_line,
11578 _("invalid offset, target not word aligned (0x%08lX)"),
11579 (((unsigned int) fixP->fx_frag->fr_address
11580 + (unsigned int) fixP->fx_where) & ~3) + value);
a737bd4d 11581
c19d1205
ZW
11582 if (value & ~0x3fc)
11583 as_bad_where (fixP->fx_file, fixP->fx_line,
11584 _("invalid offset, value too big (0x%08lX)"),
11585 (long) value);
a737bd4d 11586
c19d1205
ZW
11587 newval |= value >> 2;
11588 break;
a737bd4d 11589
c19d1205
ZW
11590 case 9: /* SP load/store. */
11591 if (value & ~0x3fc)
11592 as_bad_where (fixP->fx_file, fixP->fx_line,
11593 _("invalid offset, value too big (0x%08lX)"),
11594 (long) value);
11595 newval |= value >> 2;
11596 break;
6c43fab6 11597
c19d1205
ZW
11598 case 6: /* Word load/store. */
11599 if (value & ~0x7c)
11600 as_bad_where (fixP->fx_file, fixP->fx_line,
11601 _("invalid offset, value too big (0x%08lX)"),
11602 (long) value);
11603 newval |= value << 4; /* 6 - 2. */
11604 break;
a737bd4d 11605
c19d1205
ZW
11606 case 7: /* Byte load/store. */
11607 if (value & ~0x1f)
11608 as_bad_where (fixP->fx_file, fixP->fx_line,
11609 _("invalid offset, value too big (0x%08lX)"),
11610 (long) value);
11611 newval |= value << 6;
11612 break;
a737bd4d 11613
c19d1205
ZW
11614 case 8: /* Halfword load/store. */
11615 if (value & ~0x3e)
11616 as_bad_where (fixP->fx_file, fixP->fx_line,
11617 _("invalid offset, value too big (0x%08lX)"),
11618 (long) value);
11619 newval |= value << 5; /* 6 - 1. */
11620 break;
a737bd4d 11621
c19d1205
ZW
11622 default:
11623 as_bad_where (fixP->fx_file, fixP->fx_line,
11624 "Unable to process relocation for thumb opcode: %lx",
11625 (unsigned long) newval);
11626 break;
11627 }
11628 md_number_to_chars (buf, newval, THUMB_SIZE);
11629 break;
a737bd4d 11630
c19d1205
ZW
11631 case BFD_RELOC_ARM_THUMB_ADD:
11632 /* This is a complicated relocation, since we use it for all of
11633 the following immediate relocations:
a737bd4d 11634
c19d1205
ZW
11635 3bit ADD/SUB
11636 8bit ADD/SUB
11637 9bit ADD/SUB SP word-aligned
11638 10bit ADD PC/SP word-aligned
a737bd4d 11639
c19d1205
ZW
11640 The type of instruction being processed is encoded in the
11641 instruction field:
a737bd4d 11642
c19d1205
ZW
11643 0x8000 SUB
11644 0x00F0 Rd
11645 0x000F Rs
11646 */
11647 newval = md_chars_to_number (buf, THUMB_SIZE);
11648 {
11649 int rd = (newval >> 4) & 0xf;
11650 int rs = newval & 0xf;
11651 int subtract = !!(newval & 0x8000);
a737bd4d 11652
c19d1205
ZW
11653 /* Check for HI regs, only very restricted cases allowed:
11654 Adjusting SP, and using PC or SP to get an address. */
11655 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
11656 || (rs > 7 && rs != REG_SP && rs != REG_PC))
11657 as_bad_where (fixP->fx_file, fixP->fx_line,
11658 _("invalid Hi register with immediate"));
a737bd4d 11659
c19d1205
ZW
11660 /* If value is negative, choose the opposite instruction. */
11661 if (value < 0)
11662 {
11663 value = -value;
11664 subtract = !subtract;
11665 if (value < 0)
11666 as_bad_where (fixP->fx_file, fixP->fx_line,
11667 _("immediate value out of range"));
11668 }
a737bd4d 11669
c19d1205
ZW
11670 if (rd == REG_SP)
11671 {
11672 if (value & ~0x1fc)
11673 as_bad_where (fixP->fx_file, fixP->fx_line,
11674 _("invalid immediate for stack address calculation"));
11675 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
11676 newval |= value >> 2;
11677 }
11678 else if (rs == REG_PC || rs == REG_SP)
11679 {
11680 if (subtract || value & ~0x3fc)
11681 as_bad_where (fixP->fx_file, fixP->fx_line,
11682 _("invalid immediate for address calculation (value = 0x%08lX)"),
11683 (unsigned long) value);
11684 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
11685 newval |= rd << 8;
11686 newval |= value >> 2;
11687 }
11688 else if (rs == rd)
11689 {
11690 if (value & ~0xff)
11691 as_bad_where (fixP->fx_file, fixP->fx_line,
11692 _("immediate value out of range"));
11693 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
11694 newval |= (rd << 8) | value;
11695 }
11696 else
11697 {
11698 if (value & ~0x7)
11699 as_bad_where (fixP->fx_file, fixP->fx_line,
11700 _("immediate value out of range"));
11701 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
11702 newval |= rd | (rs << 3) | (value << 6);
11703 }
11704 }
11705 md_number_to_chars (buf, newval, THUMB_SIZE);
11706 break;
a737bd4d 11707
c19d1205
ZW
11708 case BFD_RELOC_ARM_THUMB_IMM:
11709 newval = md_chars_to_number (buf, THUMB_SIZE);
11710 if (value < 0 || value > 255)
11711 as_bad_where (fixP->fx_file, fixP->fx_line,
11712 _("invalid immediate: %ld is too large"),
11713 (long) value);
11714 newval |= value;
11715 md_number_to_chars (buf, newval, THUMB_SIZE);
11716 break;
a737bd4d 11717
c19d1205
ZW
11718 case BFD_RELOC_ARM_THUMB_SHIFT:
11719 /* 5bit shift value (0..32). LSL cannot take 32. */
11720 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
11721 temp = newval & 0xf800;
11722 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
11723 as_bad_where (fixP->fx_file, fixP->fx_line,
11724 _("invalid shift value: %ld"), (long) value);
11725 /* Shifts of zero must be encoded as LSL. */
11726 if (value == 0)
11727 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
11728 /* Shifts of 32 are encoded as zero. */
11729 else if (value == 32)
11730 value = 0;
11731 newval |= value << 6;
11732 md_number_to_chars (buf, newval, THUMB_SIZE);
11733 break;
a737bd4d 11734
c19d1205
ZW
11735 case BFD_RELOC_VTABLE_INHERIT:
11736 case BFD_RELOC_VTABLE_ENTRY:
11737 fixP->fx_done = 0;
11738 return;
6c43fab6 11739
c19d1205
ZW
11740 case BFD_RELOC_UNUSED:
11741 default:
11742 as_bad_where (fixP->fx_file, fixP->fx_line,
11743 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
11744 }
6c43fab6
RE
11745}
11746
c19d1205
ZW
11747/* Translate internal representation of relocation info to BFD target
11748 format. */
a737bd4d 11749
c19d1205
ZW
11750arelent *
11751tc_gen_reloc (asection * section ATTRIBUTE_UNUSED,
11752 fixS * fixp)
a737bd4d 11753{
c19d1205
ZW
11754 arelent * reloc;
11755 bfd_reloc_code_real_type code;
a737bd4d 11756
c19d1205 11757 reloc = xmalloc (sizeof (arelent));
a737bd4d 11758
c19d1205
ZW
11759 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
11760 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11761 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 11762
2fc8bdac
ZW
11763 if (fixp->fx_pcrel)
11764 fixp->fx_offset = reloc->address;
c19d1205 11765 reloc->addend = fixp->fx_offset;
a737bd4d 11766
c19d1205 11767 switch (fixp->fx_r_type)
a737bd4d 11768 {
c19d1205
ZW
11769 case BFD_RELOC_8:
11770 if (fixp->fx_pcrel)
11771 {
11772 code = BFD_RELOC_8_PCREL;
11773 break;
11774 }
a737bd4d 11775
c19d1205
ZW
11776 case BFD_RELOC_16:
11777 if (fixp->fx_pcrel)
11778 {
11779 code = BFD_RELOC_16_PCREL;
11780 break;
11781 }
6c43fab6 11782
c19d1205
ZW
11783 case BFD_RELOC_32:
11784 if (fixp->fx_pcrel)
11785 {
11786 code = BFD_RELOC_32_PCREL;
11787 break;
11788 }
a737bd4d 11789
c19d1205
ZW
11790 case BFD_RELOC_NONE:
11791 case BFD_RELOC_ARM_PCREL_BRANCH:
11792 case BFD_RELOC_ARM_PCREL_BLX:
11793 case BFD_RELOC_RVA:
11794 case BFD_RELOC_THUMB_PCREL_BRANCH7:
11795 case BFD_RELOC_THUMB_PCREL_BRANCH9:
11796 case BFD_RELOC_THUMB_PCREL_BRANCH12:
11797 case BFD_RELOC_THUMB_PCREL_BRANCH20:
11798 case BFD_RELOC_THUMB_PCREL_BRANCH23:
11799 case BFD_RELOC_THUMB_PCREL_BRANCH25:
11800 case BFD_RELOC_THUMB_PCREL_BLX:
11801 case BFD_RELOC_VTABLE_ENTRY:
11802 case BFD_RELOC_VTABLE_INHERIT:
11803 code = fixp->fx_r_type;
11804 break;
a737bd4d 11805
c19d1205
ZW
11806 case BFD_RELOC_ARM_LITERAL:
11807 case BFD_RELOC_ARM_HWLITERAL:
11808 /* If this is called then the a literal has
11809 been referenced across a section boundary. */
11810 as_bad_where (fixp->fx_file, fixp->fx_line,
11811 _("literal referenced across section boundary"));
11812 return NULL;
a737bd4d 11813
c19d1205
ZW
11814#ifdef OBJ_ELF
11815 case BFD_RELOC_ARM_GOT32:
11816 case BFD_RELOC_ARM_GOTOFF:
11817 case BFD_RELOC_ARM_PLT32:
11818 case BFD_RELOC_ARM_TARGET1:
11819 case BFD_RELOC_ARM_ROSEGREL32:
11820 case BFD_RELOC_ARM_SBREL32:
11821 case BFD_RELOC_ARM_PREL31:
11822 case BFD_RELOC_ARM_TARGET2:
11823 case BFD_RELOC_ARM_TLS_LE32:
11824 case BFD_RELOC_ARM_TLS_LDO32:
11825 code = fixp->fx_r_type;
11826 break;
a737bd4d 11827
c19d1205
ZW
11828 case BFD_RELOC_ARM_TLS_GD32:
11829 case BFD_RELOC_ARM_TLS_IE32:
11830 case BFD_RELOC_ARM_TLS_LDM32:
11831 /* BFD will include the symbol's address in the addend.
11832 But we don't want that, so subtract it out again here. */
11833 if (!S_IS_COMMON (fixp->fx_addsy))
11834 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
11835 code = fixp->fx_r_type;
11836 break;
11837#endif
a737bd4d 11838
c19d1205
ZW
11839 case BFD_RELOC_ARM_IMMEDIATE:
11840 as_bad_where (fixp->fx_file, fixp->fx_line,
11841 _("internal relocation (type: IMMEDIATE) not fixed up"));
11842 return NULL;
a737bd4d 11843
c19d1205
ZW
11844 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
11845 as_bad_where (fixp->fx_file, fixp->fx_line,
11846 _("ADRL used for a symbol not defined in the same file"));
11847 return NULL;
a737bd4d 11848
c19d1205
ZW
11849 case BFD_RELOC_ARM_OFFSET_IMM:
11850 if (fixp->fx_addsy != NULL
11851 && !S_IS_DEFINED (fixp->fx_addsy)
11852 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 11853 {
c19d1205
ZW
11854 as_bad_where (fixp->fx_file, fixp->fx_line,
11855 _("undefined local label `%s'"),
11856 S_GET_NAME (fixp->fx_addsy));
11857 return NULL;
a737bd4d
NC
11858 }
11859
c19d1205
ZW
11860 as_bad_where (fixp->fx_file, fixp->fx_line,
11861 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
11862 return NULL;
a737bd4d 11863
c19d1205
ZW
11864 default:
11865 {
11866 char * type;
6c43fab6 11867
c19d1205
ZW
11868 switch (fixp->fx_r_type)
11869 {
11870 case BFD_RELOC_NONE: type = "NONE"; break;
11871 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
11872 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 11873 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
11874 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
11875 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
11876 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 11877 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
11878 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
11879 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
11880 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
11881 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
11882 default: type = _("<unknown>"); break;
11883 }
11884 as_bad_where (fixp->fx_file, fixp->fx_line,
11885 _("cannot represent %s relocation in this object file format"),
11886 type);
11887 return NULL;
11888 }
a737bd4d 11889 }
6c43fab6 11890
c19d1205
ZW
11891#ifdef OBJ_ELF
11892 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
11893 && GOT_symbol
11894 && fixp->fx_addsy == GOT_symbol)
11895 {
11896 code = BFD_RELOC_ARM_GOTPC;
11897 reloc->addend = fixp->fx_offset = reloc->address;
11898 }
11899#endif
6c43fab6 11900
c19d1205 11901 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 11902
c19d1205
ZW
11903 if (reloc->howto == NULL)
11904 {
11905 as_bad_where (fixp->fx_file, fixp->fx_line,
11906 _("cannot represent %s relocation in this object file format"),
11907 bfd_get_reloc_code_name (code));
11908 return NULL;
11909 }
6c43fab6 11910
c19d1205
ZW
11911 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
11912 vtable entry to be used in the relocation's section offset. */
11913 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11914 reloc->address = fixp->fx_offset;
6c43fab6 11915
c19d1205 11916 return reloc;
6c43fab6
RE
11917}
11918
c19d1205 11919/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 11920
c19d1205
ZW
11921void
11922cons_fix_new_arm (fragS * frag,
11923 int where,
11924 int size,
11925 expressionS * exp)
6c43fab6 11926{
c19d1205
ZW
11927 bfd_reloc_code_real_type type;
11928 int pcrel = 0;
6c43fab6 11929
c19d1205
ZW
11930 /* Pick a reloc.
11931 FIXME: @@ Should look at CPU word size. */
11932 switch (size)
11933 {
11934 case 1:
11935 type = BFD_RELOC_8;
11936 break;
11937 case 2:
11938 type = BFD_RELOC_16;
11939 break;
11940 case 4:
11941 default:
11942 type = BFD_RELOC_32;
11943 break;
11944 case 8:
11945 type = BFD_RELOC_64;
11946 break;
11947 }
6c43fab6 11948
c19d1205
ZW
11949 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
11950}
6c43fab6 11951
c19d1205
ZW
11952#if defined OBJ_COFF || defined OBJ_ELF
11953void
11954arm_validate_fix (fixS * fixP)
6c43fab6 11955{
c19d1205
ZW
11956 /* If the destination of the branch is a defined symbol which does not have
11957 the THUMB_FUNC attribute, then we must be calling a function which has
11958 the (interfacearm) attribute. We look for the Thumb entry point to that
11959 function and change the branch to refer to that function instead. */
11960 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
11961 && fixP->fx_addsy != NULL
11962 && S_IS_DEFINED (fixP->fx_addsy)
11963 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 11964 {
c19d1205 11965 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 11966 }
c19d1205
ZW
11967}
11968#endif
6c43fab6 11969
c19d1205
ZW
11970int
11971arm_force_relocation (struct fix * fixp)
11972{
11973#if defined (OBJ_COFF) && defined (TE_PE)
11974 if (fixp->fx_r_type == BFD_RELOC_RVA)
11975 return 1;
11976#endif
6c43fab6 11977
c19d1205
ZW
11978 /* Resolve these relocations even if the symbol is extern or weak. */
11979 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
11980 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8
PB
11981 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
11982 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
11983 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
11984 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 11985 return 0;
a737bd4d 11986
c19d1205 11987 return generic_force_reloc (fixp);
404ff6b5
AH
11988}
11989
c19d1205
ZW
11990#ifdef OBJ_COFF
11991/* This is a little hack to help the gas/arm/adrl.s test. It prevents
11992 local labels from being added to the output symbol table when they
11993 are used with the ADRL pseudo op. The ADRL relocation should always
11994 be resolved before the binbary is emitted, so it is safe to say that
11995 it is adjustable. */
404ff6b5 11996
c19d1205
ZW
11997bfd_boolean
11998arm_fix_adjustable (fixS * fixP)
404ff6b5 11999{
c19d1205
ZW
12000 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
12001 return 1;
12002 return 0;
404ff6b5 12003}
c19d1205 12004#endif
404ff6b5 12005
c19d1205
ZW
12006#ifdef OBJ_ELF
12007/* Relocations against Thumb function names must be left unadjusted,
12008 so that the linker can use this information to correctly set the
12009 bottom bit of their addresses. The MIPS version of this function
12010 also prevents relocations that are mips-16 specific, but I do not
12011 know why it does this.
404ff6b5 12012
c19d1205
ZW
12013 FIXME:
12014 There is one other problem that ought to be addressed here, but
12015 which currently is not: Taking the address of a label (rather
12016 than a function) and then later jumping to that address. Such
12017 addresses also ought to have their bottom bit set (assuming that
12018 they reside in Thumb code), but at the moment they will not. */
404ff6b5 12019
c19d1205
ZW
12020bfd_boolean
12021arm_fix_adjustable (fixS * fixP)
404ff6b5 12022{
c19d1205
ZW
12023 if (fixP->fx_addsy == NULL)
12024 return 1;
404ff6b5 12025
c19d1205
ZW
12026 if (THUMB_IS_FUNC (fixP->fx_addsy)
12027 && fixP->fx_subsy == NULL)
12028 return 0;
a737bd4d 12029
c19d1205
ZW
12030 /* We need the symbol name for the VTABLE entries. */
12031 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12032 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12033 return 0;
404ff6b5 12034
c19d1205
ZW
12035 /* Don't allow symbols to be discarded on GOT related relocs. */
12036 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
12037 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
12038 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
12039 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
12040 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
12041 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
12042 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
12043 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
12044 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
12045 return 0;
a737bd4d 12046
c19d1205 12047 return 1;
a737bd4d 12048}
404ff6b5 12049
c19d1205
ZW
12050const char *
12051elf32_arm_target_format (void)
404ff6b5 12052{
c19d1205
ZW
12053#ifdef TE_SYMBIAN
12054 return (target_big_endian
12055 ? "elf32-bigarm-symbian"
12056 : "elf32-littlearm-symbian");
12057#elif defined (TE_VXWORKS)
12058 return (target_big_endian
12059 ? "elf32-bigarm-vxworks"
12060 : "elf32-littlearm-vxworks");
12061#else
12062 if (target_big_endian)
12063 return "elf32-bigarm";
12064 else
12065 return "elf32-littlearm";
12066#endif
404ff6b5
AH
12067}
12068
c19d1205
ZW
12069void
12070armelf_frob_symbol (symbolS * symp,
12071 int * puntp)
404ff6b5 12072{
c19d1205
ZW
12073 elf_frob_symbol (symp, puntp);
12074}
12075#endif
404ff6b5 12076
c19d1205 12077/* MD interface: Finalization. */
a737bd4d 12078
c19d1205
ZW
12079/* A good place to do this, although this was probably not intended
12080 for this kind of use. We need to dump the literal pool before
12081 references are made to a null symbol pointer. */
a737bd4d 12082
c19d1205
ZW
12083void
12084arm_cleanup (void)
12085{
12086 literal_pool * pool;
a737bd4d 12087
c19d1205
ZW
12088 for (pool = list_of_pools; pool; pool = pool->next)
12089 {
12090 /* Put it at the end of the relevent section. */
12091 subseg_set (pool->section, pool->sub_section);
12092#ifdef OBJ_ELF
12093 arm_elf_change_section ();
12094#endif
12095 s_ltorg (0);
12096 }
404ff6b5
AH
12097}
12098
c19d1205
ZW
12099/* Adjust the symbol table. This marks Thumb symbols as distinct from
12100 ARM ones. */
404ff6b5 12101
c19d1205
ZW
12102void
12103arm_adjust_symtab (void)
404ff6b5 12104{
c19d1205
ZW
12105#ifdef OBJ_COFF
12106 symbolS * sym;
404ff6b5 12107
c19d1205
ZW
12108 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
12109 {
12110 if (ARM_IS_THUMB (sym))
12111 {
12112 if (THUMB_IS_FUNC (sym))
12113 {
12114 /* Mark the symbol as a Thumb function. */
12115 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
12116 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
12117 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 12118
c19d1205
ZW
12119 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
12120 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
12121 else
12122 as_bad (_("%s: unexpected function type: %d"),
12123 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
12124 }
12125 else switch (S_GET_STORAGE_CLASS (sym))
12126 {
12127 case C_EXT:
12128 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
12129 break;
12130 case C_STAT:
12131 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
12132 break;
12133 case C_LABEL:
12134 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
12135 break;
12136 default:
12137 /* Do nothing. */
12138 break;
12139 }
12140 }
a737bd4d 12141
c19d1205
ZW
12142 if (ARM_IS_INTERWORK (sym))
12143 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 12144 }
c19d1205
ZW
12145#endif
12146#ifdef OBJ_ELF
12147 symbolS * sym;
12148 char bind;
404ff6b5 12149
c19d1205 12150 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 12151 {
c19d1205
ZW
12152 if (ARM_IS_THUMB (sym))
12153 {
12154 elf_symbol_type * elf_sym;
404ff6b5 12155
c19d1205
ZW
12156 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
12157 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 12158
c19d1205
ZW
12159 if (! bfd_is_arm_mapping_symbol_name (elf_sym->symbol.name))
12160 {
12161 /* If it's a .thumb_func, declare it as so,
12162 otherwise tag label as .code 16. */
12163 if (THUMB_IS_FUNC (sym))
12164 elf_sym->internal_elf_sym.st_info =
12165 ELF_ST_INFO (bind, STT_ARM_TFUNC);
12166 else
12167 elf_sym->internal_elf_sym.st_info =
12168 ELF_ST_INFO (bind, STT_ARM_16BIT);
12169 }
12170 }
12171 }
12172#endif
404ff6b5
AH
12173}
12174
c19d1205 12175/* MD interface: Initialization. */
404ff6b5 12176
a737bd4d 12177static void
c19d1205 12178set_constant_flonums (void)
a737bd4d 12179{
c19d1205 12180 int i;
404ff6b5 12181
c19d1205
ZW
12182 for (i = 0; i < NUM_FLOAT_VALS; i++)
12183 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
12184 abort ();
a737bd4d 12185}
404ff6b5 12186
c19d1205
ZW
12187void
12188md_begin (void)
a737bd4d 12189{
c19d1205
ZW
12190 unsigned mach;
12191 unsigned int i;
404ff6b5 12192
c19d1205
ZW
12193 if ( (arm_ops_hsh = hash_new ()) == NULL
12194 || (arm_cond_hsh = hash_new ()) == NULL
12195 || (arm_shift_hsh = hash_new ()) == NULL
12196 || (arm_psr_hsh = hash_new ()) == NULL
12197 || (arm_reg_hsh = hash_new ()) == NULL
12198 || (arm_reloc_hsh = hash_new ()) == NULL)
12199 as_fatal (_("virtual memory exhausted"));
12200
12201 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
12202 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
12203 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
12204 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
12205 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
12206 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
12207 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
12208 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
12209 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
12210 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
12211#ifdef OBJ_ELF
12212 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
12213 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
12214#endif
12215
12216 set_constant_flonums ();
404ff6b5 12217
c19d1205
ZW
12218 /* Set the cpu variant based on the command-line options. We prefer
12219 -mcpu= over -march= if both are set (as for GCC); and we prefer
12220 -mfpu= over any other way of setting the floating point unit.
12221 Use of legacy options with new options are faulted. */
12222 if (legacy_cpu != -1)
404ff6b5 12223 {
c19d1205
ZW
12224 if (mcpu_cpu_opt != -1 || march_cpu_opt != -1)
12225 as_bad (_("use of old and new-style options to set CPU type"));
12226
12227 mcpu_cpu_opt = legacy_cpu;
404ff6b5 12228 }
c19d1205
ZW
12229 else if (mcpu_cpu_opt == -1)
12230 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 12231
c19d1205
ZW
12232 if (legacy_fpu != -1)
12233 {
12234 if (mfpu_opt != -1)
12235 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
12236
12237 mfpu_opt = legacy_fpu;
12238 }
12239 else if (mfpu_opt == -1)
12240 {
c19d1205 12241#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
12242 /* Some environments specify a default FPU. If they don't, infer it
12243 from the processor. */
03b1477f
RE
12244 if (mcpu_fpu_opt != -1)
12245 mfpu_opt = mcpu_fpu_opt;
12246 else
12247 mfpu_opt = march_fpu_opt;
39c2da32
RE
12248#else
12249 mfpu_opt = FPU_DEFAULT;
12250#endif
03b1477f
RE
12251 }
12252
12253 if (mfpu_opt == -1)
12254 {
12255 if (mcpu_cpu_opt == -1)
12256 mfpu_opt = FPU_DEFAULT;
12257 else if (mcpu_cpu_opt & ARM_EXT_V5)
12258 mfpu_opt = FPU_ARCH_VFP_V2;
12259 else
12260 mfpu_opt = FPU_ARCH_FPA;
12261 }
12262
12263 if (mcpu_cpu_opt == -1)
12264 mcpu_cpu_opt = CPU_DEFAULT;
12265
12266 cpu_variant = mcpu_cpu_opt | mfpu_opt;
12267
f17c130b 12268#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 12269 {
7cc69913
NC
12270 unsigned int flags = 0;
12271
12272#if defined OBJ_ELF
12273 flags = meabi_flags;
d507cf36
PB
12274
12275 switch (meabi_flags)
33a392fb 12276 {
d507cf36 12277 case EF_ARM_EABI_UNKNOWN:
7cc69913 12278#endif
d507cf36
PB
12279 /* Set the flags in the private structure. */
12280 if (uses_apcs_26) flags |= F_APCS26;
12281 if (support_interwork) flags |= F_INTERWORK;
12282 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 12283 if (pic_code) flags |= F_PIC;
d507cf36
PB
12284 if ((cpu_variant & FPU_ANY) == FPU_NONE
12285 || (cpu_variant & FPU_ANY) == FPU_ARCH_VFP) /* VFP layout only. */
7cc69913
NC
12286 flags |= F_SOFT_FLOAT;
12287
d507cf36
PB
12288 switch (mfloat_abi_opt)
12289 {
12290 case ARM_FLOAT_ABI_SOFT:
12291 case ARM_FLOAT_ABI_SOFTFP:
12292 flags |= F_SOFT_FLOAT;
12293 break;
33a392fb 12294
d507cf36
PB
12295 case ARM_FLOAT_ABI_HARD:
12296 if (flags & F_SOFT_FLOAT)
12297 as_bad (_("hard-float conflicts with specified fpu"));
12298 break;
12299 }
03b1477f 12300
c19d1205 12301 /* Using VFP conventions (even if soft-float). */
7cc69913
NC
12302 if (cpu_variant & FPU_VFP_EXT_NONE)
12303 flags |= F_VFP_FLOAT;
f17c130b 12304
fde78edd 12305#if defined OBJ_ELF
d507cf36
PB
12306 if (cpu_variant & FPU_ARCH_MAVERICK)
12307 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
12308 break;
12309
8cb51566 12310 case EF_ARM_EABI_VER4:
c19d1205 12311 /* No additional flags to set. */
d507cf36
PB
12312 break;
12313
12314 default:
12315 abort ();
12316 }
7cc69913 12317#endif
b99bd4ef
NC
12318 bfd_set_private_flags (stdoutput, flags);
12319
12320 /* We have run out flags in the COFF header to encode the
12321 status of ATPCS support, so instead we create a dummy,
c19d1205 12322 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
12323 if (atpcs)
12324 {
12325 asection * sec;
12326
12327 sec = bfd_make_section (stdoutput, ".arm.atpcs");
12328
12329 if (sec != NULL)
12330 {
12331 bfd_set_section_flags
12332 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
12333 bfd_set_section_size (stdoutput, sec, 0);
12334 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
12335 }
12336 }
7cc69913 12337 }
f17c130b 12338#endif
b99bd4ef
NC
12339
12340 /* Record the CPU type as well. */
12341 switch (cpu_variant & ARM_CPU_MASK)
12342 {
12343 case ARM_2:
12344 mach = bfd_mach_arm_2;
12345 break;
12346
c19d1205 12347 case ARM_3: /* Also ARM_250. */
b99bd4ef
NC
12348 mach = bfd_mach_arm_2a;
12349 break;
12350
c19d1205 12351 case ARM_6: /* Also ARM_7. */
b89dddec
RE
12352 mach = bfd_mach_arm_3;
12353 break;
12354
b99bd4ef 12355 default:
5a6c6817 12356 mach = bfd_mach_arm_unknown;
b99bd4ef 12357 break;
b99bd4ef
NC
12358 }
12359
12360 /* Catch special cases. */
e16bb312
NC
12361 if (cpu_variant & ARM_CEXT_IWMMXT)
12362 mach = bfd_mach_arm_iWMMXt;
12363 else if (cpu_variant & ARM_CEXT_XSCALE)
b99bd4ef 12364 mach = bfd_mach_arm_XScale;
fde78edd
NC
12365 else if (cpu_variant & ARM_CEXT_MAVERICK)
12366 mach = bfd_mach_arm_ep9312;
b99bd4ef
NC
12367 else if (cpu_variant & ARM_EXT_V5E)
12368 mach = bfd_mach_arm_5TE;
12369 else if (cpu_variant & ARM_EXT_V5)
12370 {
b89dddec 12371 if (cpu_variant & ARM_EXT_V4T)
b99bd4ef
NC
12372 mach = bfd_mach_arm_5T;
12373 else
12374 mach = bfd_mach_arm_5;
12375 }
b89dddec 12376 else if (cpu_variant & ARM_EXT_V4)
b99bd4ef 12377 {
b89dddec 12378 if (cpu_variant & ARM_EXT_V4T)
b99bd4ef
NC
12379 mach = bfd_mach_arm_4T;
12380 else
12381 mach = bfd_mach_arm_4;
12382 }
b89dddec 12383 else if (cpu_variant & ARM_EXT_V3M)
b99bd4ef
NC
12384 mach = bfd_mach_arm_3M;
12385
12386 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
12387}
12388
c19d1205 12389/* Command line processing. */
b99bd4ef 12390
c19d1205
ZW
12391/* md_parse_option
12392 Invocation line includes a switch not recognized by the base assembler.
12393 See if it's a processor-specific option.
b99bd4ef 12394
c19d1205
ZW
12395 This routine is somewhat complicated by the need for backwards
12396 compatibility (since older releases of gcc can't be changed).
12397 The new options try to make the interface as compatible as
12398 possible with GCC.
b99bd4ef 12399
c19d1205 12400 New options (supported) are:
b99bd4ef 12401
c19d1205
ZW
12402 -mcpu=<cpu name> Assemble for selected processor
12403 -march=<architecture name> Assemble for selected architecture
12404 -mfpu=<fpu architecture> Assemble for selected FPU.
12405 -EB/-mbig-endian Big-endian
12406 -EL/-mlittle-endian Little-endian
12407 -k Generate PIC code
12408 -mthumb Start in Thumb mode
12409 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 12410
c19d1205 12411 For now we will also provide support for:
b99bd4ef 12412
c19d1205
ZW
12413 -mapcs-32 32-bit Program counter
12414 -mapcs-26 26-bit Program counter
12415 -macps-float Floats passed in FP registers
12416 -mapcs-reentrant Reentrant code
12417 -matpcs
12418 (sometime these will probably be replaced with -mapcs=<list of options>
12419 and -matpcs=<list of options>)
b99bd4ef 12420
c19d1205
ZW
12421 The remaining options are only supported for back-wards compatibility.
12422 Cpu variants, the arm part is optional:
12423 -m[arm]1 Currently not supported.
12424 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
12425 -m[arm]3 Arm 3 processor
12426 -m[arm]6[xx], Arm 6 processors
12427 -m[arm]7[xx][t][[d]m] Arm 7 processors
12428 -m[arm]8[10] Arm 8 processors
12429 -m[arm]9[20][tdmi] Arm 9 processors
12430 -mstrongarm[110[0]] StrongARM processors
12431 -mxscale XScale processors
12432 -m[arm]v[2345[t[e]]] Arm architectures
12433 -mall All (except the ARM1)
12434 FP variants:
12435 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
12436 -mfpe-old (No float load/store multiples)
12437 -mvfpxd VFP Single precision
12438 -mvfp All VFP
12439 -mno-fpu Disable all floating point instructions
b99bd4ef 12440
c19d1205
ZW
12441 The following CPU names are recognized:
12442 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
12443 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
12444 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
12445 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
12446 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
12447 arm10t arm10e, arm1020t, arm1020e, arm10200e,
12448 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 12449
c19d1205 12450 */
b99bd4ef 12451
c19d1205 12452const char * md_shortopts = "m:k";
b99bd4ef 12453
c19d1205
ZW
12454#ifdef ARM_BI_ENDIAN
12455#define OPTION_EB (OPTION_MD_BASE + 0)
12456#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 12457#else
c19d1205
ZW
12458#if TARGET_BYTES_BIG_ENDIAN
12459#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 12460#else
c19d1205
ZW
12461#define OPTION_EL (OPTION_MD_BASE + 1)
12462#endif
b99bd4ef 12463#endif
b99bd4ef 12464
c19d1205 12465struct option md_longopts[] =
b99bd4ef 12466{
c19d1205
ZW
12467#ifdef OPTION_EB
12468 {"EB", no_argument, NULL, OPTION_EB},
12469#endif
12470#ifdef OPTION_EL
12471 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 12472#endif
c19d1205
ZW
12473 {NULL, no_argument, NULL, 0}
12474};
b99bd4ef 12475
c19d1205 12476size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 12477
c19d1205 12478struct arm_option_table
b99bd4ef 12479{
c19d1205
ZW
12480 char *option; /* Option name to match. */
12481 char *help; /* Help information. */
12482 int *var; /* Variable to change. */
12483 int value; /* What to change it to. */
12484 char *deprecated; /* If non-null, print this message. */
12485};
b99bd4ef 12486
c19d1205
ZW
12487struct arm_option_table arm_opts[] =
12488{
12489 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
12490 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
12491 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
12492 &support_interwork, 1, NULL},
12493 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
12494 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
12495 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
12496 1, NULL},
12497 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
12498 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
12499 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
12500 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
12501 NULL},
b99bd4ef 12502
c19d1205
ZW
12503 /* These are recognized by the assembler, but have no affect on code. */
12504 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
12505 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
b99bd4ef 12506
c19d1205
ZW
12507 /* DON'T add any new processors to this list -- we want the whole list
12508 to go away... Add them to the processors table instead. */
12509 {"marm1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
12510 {"m1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
12511 {"marm2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
12512 {"m2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
12513 {"marm250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
12514 {"m250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
12515 {"marm3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
12516 {"m3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
12517 {"marm6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
12518 {"m6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
12519 {"marm600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
12520 {"m600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
12521 {"marm610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
12522 {"m610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
12523 {"marm620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
12524 {"m620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
12525 {"marm7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
12526 {"m7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
12527 {"marm70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
12528 {"m70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
12529 {"marm700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
12530 {"m700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
12531 {"marm700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
12532 {"m700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
12533 {"marm710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
12534 {"m710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
12535 {"marm710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
12536 {"m710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
12537 {"marm720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
12538 {"m720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
12539 {"marm7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
12540 {"m7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
12541 {"marm7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
12542 {"m7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
12543 {"marm7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
12544 {"m7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
12545 {"marm7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
12546 {"m7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
12547 {"marm7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
12548 {"m7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
12549 {"marm7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
12550 {"m7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
12551 {"marm7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
12552 {"m7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
12553 {"marm7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
12554 {"m7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
12555 {"marm7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
12556 {"m7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
12557 {"marm7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
12558 {"m7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
12559 {"marm710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
12560 {"m710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
12561 {"marm720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
12562 {"m720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
12563 {"marm740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
12564 {"m740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
12565 {"marm8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
12566 {"m8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
12567 {"marm810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
12568 {"m810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
12569 {"marm9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
12570 {"m9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
12571 {"marm9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
12572 {"m9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
12573 {"marm920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
12574 {"m920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
12575 {"marm940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
12576 {"m940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
12577 {"mstrongarm", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
12578 {"mstrongarm110", NULL, &legacy_cpu, ARM_ARCH_V4,
12579 N_("use -mcpu=strongarm110")},
12580 {"mstrongarm1100", NULL, &legacy_cpu, ARM_ARCH_V4,
12581 N_("use -mcpu=strongarm1100")},
12582 {"mstrongarm1110", NULL, &legacy_cpu, ARM_ARCH_V4,
12583 N_("use -mcpu=strongarm1110")},
12584 {"mxscale", NULL, &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
12585 {"miwmmxt", NULL, &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
12586 {"mall", NULL, &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 12587
c19d1205
ZW
12588 /* Architecture variants -- don't add any more to this list either. */
12589 {"mv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
12590 {"marmv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
12591 {"mv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
12592 {"marmv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
12593 {"mv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
12594 {"marmv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
12595 {"mv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
12596 {"marmv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
12597 {"mv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
12598 {"marmv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
12599 {"mv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
12600 {"marmv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
12601 {"mv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
12602 {"marmv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
12603 {"mv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
12604 {"marmv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
12605 {"mv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
12606 {"marmv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 12607
c19d1205
ZW
12608 /* Floating point variants -- don't add any more to this list either. */
12609 {"mfpe-old", NULL, &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
12610 {"mfpa10", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
12611 {"mfpa11", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
12612 {"mno-fpu", NULL, &legacy_fpu, 0,
12613 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 12614
c19d1205
ZW
12615 {NULL, NULL, NULL, 0, NULL}
12616};
7ed4c4c5 12617
c19d1205 12618struct arm_cpu_option_table
7ed4c4c5 12619{
c19d1205
ZW
12620 char *name;
12621 int value;
12622 /* For some CPUs we assume an FPU unless the user explicitly sets
12623 -mfpu=... */
12624 int default_fpu;
12625};
7ed4c4c5 12626
c19d1205
ZW
12627/* This list should, at a minimum, contain all the cpu names
12628 recognized by GCC. */
12629static struct arm_cpu_option_table arm_cpus[] =
12630{
12631 {"all", ARM_ANY, FPU_ARCH_FPA},
12632 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA},
12633 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA},
12634 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA},
12635 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA},
12636 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA},
12637 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA},
12638 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA},
12639 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA},
12640 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA},
12641 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA},
12642 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA},
12643 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA},
12644 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA},
12645 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA},
12646 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA},
12647 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA},
12648 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA},
12649 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA},
12650 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA},
12651 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12652 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA},
12653 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12654 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12655 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA},
12656 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA},
12657 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA},
12658 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA},
12659 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12660 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA},
12661 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA},
12662 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA},
12663 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA},
12664 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA},
12665 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA},
12666 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA},
12667 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA},
12668 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA},
12669 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA},
12670 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA},
12671 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12672 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12673 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12674 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA},
12675 /* For V5 or later processors we default to using VFP; but the user
12676 should really set the FPU type explicitly. */
12677 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12678 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12679 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12680 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12681 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12682 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12683 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
db8ac8f9 12684 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
c19d1205
ZW
12685 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
12686 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
db8ac8f9
PB
12687 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12688 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
c19d1205 12689 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
db8ac8f9 12690 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
c19d1205
ZW
12691 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12692 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
12693 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
12694 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
db8ac8f9 12695 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
c19d1205
ZW
12696 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12697 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
12698 {"arm1136js", ARM_ARCH_V6, FPU_NONE},
12699 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE},
12700 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2},
12701 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2},
12702 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2},
12703 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE},
db8ac8f9
PB
12704 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE},
12705 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2},
c19d1205
ZW
12706 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE},
12707 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2},
12708 /* ??? XSCALE is really an architecture. */
12709 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2},
12710 /* ??? iwmmxt is not a processor. */
12711 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2},
12712 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2},
12713 /* Maverick */
12714 {"ep9312", ARM_ARCH_V4T | ARM_CEXT_MAVERICK, FPU_ARCH_MAVERICK},
12715 {NULL, 0, 0}
12716};
7ed4c4c5 12717
c19d1205 12718struct arm_arch_option_table
7ed4c4c5 12719{
c19d1205
ZW
12720 char *name;
12721 int value;
12722 int default_fpu;
12723};
7ed4c4c5 12724
c19d1205
ZW
12725/* This list should, at a minimum, contain all the architecture names
12726 recognized by GCC. */
12727static struct arm_arch_option_table arm_archs[] =
12728{
12729 {"all", ARM_ANY, FPU_ARCH_FPA},
12730 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
12731 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
12732 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
12733 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
12734 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
12735 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
12736 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
12737 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
12738 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
12739 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
12740 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
12741 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
12742 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
12743 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
12744 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
12745 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
12746 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
12747 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
12748 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
12749 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
12750 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
12751 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
12752 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
12753 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
12754 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
12755 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
12756 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
12757 {NULL, 0, 0}
12758};
7ed4c4c5 12759
c19d1205
ZW
12760/* ISA extensions in the co-processor space. */
12761struct arm_option_value_table
12762{
12763 char *name;
12764 int value;
12765};
7ed4c4c5 12766
c19d1205
ZW
12767static struct arm_option_value_table arm_extensions[] =
12768{
12769 {"maverick", ARM_CEXT_MAVERICK},
12770 {"xscale", ARM_CEXT_XSCALE},
12771 {"iwmmxt", ARM_CEXT_IWMMXT},
12772 {NULL, 0}
12773};
7ed4c4c5 12774
c19d1205
ZW
12775/* This list should, at a minimum, contain all the fpu names
12776 recognized by GCC. */
12777static struct arm_option_value_table arm_fpus[] =
12778{
12779 {"softfpa", FPU_NONE},
12780 {"fpe", FPU_ARCH_FPE},
12781 {"fpe2", FPU_ARCH_FPE},
12782 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
12783 {"fpa", FPU_ARCH_FPA},
12784 {"fpa10", FPU_ARCH_FPA},
12785 {"fpa11", FPU_ARCH_FPA},
12786 {"arm7500fe", FPU_ARCH_FPA},
12787 {"softvfp", FPU_ARCH_VFP},
12788 {"softvfp+vfp", FPU_ARCH_VFP_V2},
12789 {"vfp", FPU_ARCH_VFP_V2},
12790 {"vfp9", FPU_ARCH_VFP_V2},
12791 {"vfp10", FPU_ARCH_VFP_V2},
12792 {"vfp10-r0", FPU_ARCH_VFP_V1},
12793 {"vfpxd", FPU_ARCH_VFP_V1xD},
12794 {"arm1020t", FPU_ARCH_VFP_V1},
12795 {"arm1020e", FPU_ARCH_VFP_V2},
12796 {"arm1136jfs", FPU_ARCH_VFP_V2},
12797 {"arm1136jf-s", FPU_ARCH_VFP_V2},
12798 {"maverick", FPU_ARCH_MAVERICK},
12799 {NULL, 0}
12800};
7ed4c4c5 12801
c19d1205
ZW
12802static struct arm_option_value_table arm_float_abis[] =
12803{
12804 {"hard", ARM_FLOAT_ABI_HARD},
12805 {"softfp", ARM_FLOAT_ABI_SOFTFP},
12806 {"soft", ARM_FLOAT_ABI_SOFT},
12807 {NULL, 0}
12808};
7ed4c4c5 12809
c19d1205
ZW
12810#ifdef OBJ_ELF
12811/* We only know how to output GNU and ver 4 (AAELF) formats. */
12812static struct arm_option_value_table arm_eabis[] =
12813{
12814 {"gnu", EF_ARM_EABI_UNKNOWN},
12815 {"4", EF_ARM_EABI_VER4},
12816 {NULL, 0}
12817};
12818#endif
7ed4c4c5 12819
c19d1205
ZW
12820struct arm_long_option_table
12821{
12822 char * option; /* Substring to match. */
12823 char * help; /* Help information. */
12824 int (* func) (char * subopt); /* Function to decode sub-option. */
12825 char * deprecated; /* If non-null, print this message. */
12826};
7ed4c4c5
NC
12827
12828static int
c19d1205 12829arm_parse_extension (char * str, int * opt_p)
7ed4c4c5 12830{
c19d1205 12831 while (str != NULL && *str != 0)
7ed4c4c5 12832 {
c19d1205
ZW
12833 struct arm_option_value_table * opt;
12834 char * ext;
12835 int optlen;
7ed4c4c5 12836
c19d1205
ZW
12837 if (*str != '+')
12838 {
12839 as_bad (_("invalid architectural extension"));
12840 return 0;
12841 }
7ed4c4c5 12842
c19d1205
ZW
12843 str++;
12844 ext = strchr (str, '+');
7ed4c4c5 12845
c19d1205
ZW
12846 if (ext != NULL)
12847 optlen = ext - str;
12848 else
12849 optlen = strlen (str);
7ed4c4c5 12850
c19d1205
ZW
12851 if (optlen == 0)
12852 {
12853 as_bad (_("missing architectural extension"));
12854 return 0;
12855 }
7ed4c4c5 12856
c19d1205
ZW
12857 for (opt = arm_extensions; opt->name != NULL; opt++)
12858 if (strncmp (opt->name, str, optlen) == 0)
12859 {
12860 *opt_p |= opt->value;
12861 break;
12862 }
7ed4c4c5 12863
c19d1205
ZW
12864 if (opt->name == NULL)
12865 {
12866 as_bad (_("unknown architectural extnsion `%s'"), str);
12867 return 0;
12868 }
7ed4c4c5 12869
c19d1205
ZW
12870 str = ext;
12871 };
7ed4c4c5 12872
c19d1205
ZW
12873 return 1;
12874}
7ed4c4c5 12875
c19d1205
ZW
12876static int
12877arm_parse_cpu (char * str)
7ed4c4c5 12878{
c19d1205
ZW
12879 struct arm_cpu_option_table * opt;
12880 char * ext = strchr (str, '+');
12881 int optlen;
7ed4c4c5 12882
c19d1205
ZW
12883 if (ext != NULL)
12884 optlen = ext - str;
7ed4c4c5 12885 else
c19d1205 12886 optlen = strlen (str);
7ed4c4c5 12887
c19d1205 12888 if (optlen == 0)
7ed4c4c5 12889 {
c19d1205
ZW
12890 as_bad (_("missing cpu name `%s'"), str);
12891 return 0;
7ed4c4c5
NC
12892 }
12893
c19d1205
ZW
12894 for (opt = arm_cpus; opt->name != NULL; opt++)
12895 if (strncmp (opt->name, str, optlen) == 0)
12896 {
12897 mcpu_cpu_opt = opt->value;
12898 mcpu_fpu_opt = opt->default_fpu;
7ed4c4c5 12899
c19d1205
ZW
12900 if (ext != NULL)
12901 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 12902
c19d1205
ZW
12903 return 1;
12904 }
7ed4c4c5 12905
c19d1205
ZW
12906 as_bad (_("unknown cpu `%s'"), str);
12907 return 0;
7ed4c4c5
NC
12908}
12909
c19d1205
ZW
12910static int
12911arm_parse_arch (char * str)
7ed4c4c5 12912{
c19d1205
ZW
12913 struct arm_arch_option_table *opt;
12914 char *ext = strchr (str, '+');
12915 int optlen;
7ed4c4c5 12916
c19d1205
ZW
12917 if (ext != NULL)
12918 optlen = ext - str;
7ed4c4c5 12919 else
c19d1205 12920 optlen = strlen (str);
7ed4c4c5 12921
c19d1205 12922 if (optlen == 0)
7ed4c4c5 12923 {
c19d1205
ZW
12924 as_bad (_("missing architecture name `%s'"), str);
12925 return 0;
7ed4c4c5
NC
12926 }
12927
7ed4c4c5 12928
c19d1205
ZW
12929 for (opt = arm_archs; opt->name != NULL; opt++)
12930 if (streq (opt->name, str))
12931 {
12932 march_cpu_opt = opt->value;
12933 march_fpu_opt = opt->default_fpu;
7ed4c4c5 12934
c19d1205
ZW
12935 if (ext != NULL)
12936 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 12937
c19d1205
ZW
12938 return 1;
12939 }
12940
12941 as_bad (_("unknown architecture `%s'\n"), str);
12942 return 0;
7ed4c4c5 12943}
eb043451 12944
c19d1205
ZW
12945static int
12946arm_parse_fpu (char * str)
12947{
12948 struct arm_option_value_table * opt;
b99bd4ef 12949
c19d1205
ZW
12950 for (opt = arm_fpus; opt->name != NULL; opt++)
12951 if (streq (opt->name, str))
12952 {
12953 mfpu_opt = opt->value;
12954 return 1;
12955 }
b99bd4ef 12956
c19d1205
ZW
12957 as_bad (_("unknown floating point format `%s'\n"), str);
12958 return 0;
12959}
12960
12961static int
12962arm_parse_float_abi (char * str)
b99bd4ef 12963{
c19d1205 12964 struct arm_option_value_table * opt;
b99bd4ef 12965
c19d1205
ZW
12966 for (opt = arm_float_abis; opt->name != NULL; opt++)
12967 if (streq (opt->name, str))
12968 {
12969 mfloat_abi_opt = opt->value;
12970 return 1;
12971 }
cc8a6dd0 12972
c19d1205
ZW
12973 as_bad (_("unknown floating point abi `%s'\n"), str);
12974 return 0;
12975}
b99bd4ef 12976
c19d1205
ZW
12977#ifdef OBJ_ELF
12978static int
12979arm_parse_eabi (char * str)
12980{
12981 struct arm_option_value_table *opt;
cc8a6dd0 12982
c19d1205
ZW
12983 for (opt = arm_eabis; opt->name != NULL; opt++)
12984 if (streq (opt->name, str))
12985 {
12986 meabi_flags = opt->value;
12987 return 1;
12988 }
12989 as_bad (_("unknown EABI `%s'\n"), str);
12990 return 0;
12991}
12992#endif
cc8a6dd0 12993
c19d1205
ZW
12994struct arm_long_option_table arm_long_opts[] =
12995{
12996 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
12997 arm_parse_cpu, NULL},
12998 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
12999 arm_parse_arch, NULL},
13000 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
13001 arm_parse_fpu, NULL},
13002 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
13003 arm_parse_float_abi, NULL},
13004#ifdef OBJ_ELF
13005 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
13006 arm_parse_eabi, NULL},
13007#endif
13008 {NULL, NULL, 0, NULL}
13009};
cc8a6dd0 13010
c19d1205
ZW
13011int
13012md_parse_option (int c, char * arg)
13013{
13014 struct arm_option_table *opt;
13015 struct arm_long_option_table *lopt;
b99bd4ef 13016
c19d1205 13017 switch (c)
b99bd4ef 13018 {
c19d1205
ZW
13019#ifdef OPTION_EB
13020 case OPTION_EB:
13021 target_big_endian = 1;
13022 break;
13023#endif
cc8a6dd0 13024
c19d1205
ZW
13025#ifdef OPTION_EL
13026 case OPTION_EL:
13027 target_big_endian = 0;
13028 break;
13029#endif
b99bd4ef 13030
c19d1205
ZW
13031 case 'a':
13032 /* Listing option. Just ignore these, we don't support additional
13033 ones. */
13034 return 0;
b99bd4ef 13035
c19d1205
ZW
13036 default:
13037 for (opt = arm_opts; opt->option != NULL; opt++)
13038 {
13039 if (c == opt->option[0]
13040 && ((arg == NULL && opt->option[1] == 0)
13041 || streq (arg, opt->option + 1)))
13042 {
13043#if WARN_DEPRECATED
13044 /* If the option is deprecated, tell the user. */
13045 if (opt->deprecated != NULL)
13046 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
13047 arg ? arg : "", _(opt->deprecated));
13048#endif
b99bd4ef 13049
c19d1205
ZW
13050 if (opt->var != NULL)
13051 *opt->var = opt->value;
cc8a6dd0 13052
c19d1205
ZW
13053 return 1;
13054 }
13055 }
b99bd4ef 13056
c19d1205
ZW
13057 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
13058 {
13059 /* These options are expected to have an argument. */
13060 if (c == lopt->option[0]
13061 && arg != NULL
13062 && strncmp (arg, lopt->option + 1,
13063 strlen (lopt->option + 1)) == 0)
13064 {
13065#if WARN_DEPRECATED
13066 /* If the option is deprecated, tell the user. */
13067 if (lopt->deprecated != NULL)
13068 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
13069 _(lopt->deprecated));
13070#endif
b99bd4ef 13071
c19d1205
ZW
13072 /* Call the sup-option parser. */
13073 return lopt->func (arg + strlen (lopt->option) - 1);
13074 }
13075 }
a737bd4d 13076
c19d1205
ZW
13077 return 0;
13078 }
a394c00f 13079
c19d1205
ZW
13080 return 1;
13081}
a394c00f 13082
c19d1205
ZW
13083void
13084md_show_usage (FILE * fp)
a394c00f 13085{
c19d1205
ZW
13086 struct arm_option_table *opt;
13087 struct arm_long_option_table *lopt;
a394c00f 13088
c19d1205 13089 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 13090
c19d1205
ZW
13091 for (opt = arm_opts; opt->option != NULL; opt++)
13092 if (opt->help != NULL)
13093 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 13094
c19d1205
ZW
13095 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
13096 if (lopt->help != NULL)
13097 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 13098
c19d1205
ZW
13099#ifdef OPTION_EB
13100 fprintf (fp, _("\
13101 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
13102#endif
13103
c19d1205
ZW
13104#ifdef OPTION_EL
13105 fprintf (fp, _("\
13106 -EL assemble code for a little-endian cpu\n"));
a737bd4d 13107#endif
c19d1205 13108}