]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-d30v.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gas / config / tc-d30v.c
CommitLineData
252b5132 1/* tc-d30v.c -- Assembler code for the Mitsubishi D30V
250d07de 2 Copyright (C) 1997-2021 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
4b4da160
NC
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
19 Boston, MA 02110-1301, USA. */
252b5132 20
252b5132 21#include "as.h"
3882b010 22#include "safe-ctype.h"
2fd5405a 23#include "subsegs.h"
252b5132 24#include "opcode/d30v.h"
d4f4f3fb 25#include "dwarf2dbg.h"
252b5132 26
ea1562b3
NC
27const char comment_chars[] = ";";
28const char line_comment_chars[] = "#";
252b5132 29const char line_separator_chars[] = "";
ea1562b3
NC
30const char *md_shortopts = "OnNcC";
31const char EXP_CHARS[] = "eE";
32const char FLT_CHARS[] = "dD";
252b5132 33
ba09cd8d
DN
34#if HAVE_LIMITS_H
35#include <limits.h>
36#endif
37
38#ifndef CHAR_BIT
39#define CHAR_BIT 8
40#endif
41
252b5132
RH
42#define NOP_MULTIPLY 1
43#define NOP_ALL 2
44static int warn_nops = 0;
45static int Optimizing = 0;
46static int warn_register_name_conflicts = 1;
47
48#define FORCE_SHORT 1
49#define FORCE_LONG 2
50
51/* EXEC types. */
52typedef enum _exec_type
53{
ea1562b3
NC
54 EXEC_UNKNOWN, /* No order specified. */
55 EXEC_PARALLEL, /* Done in parallel (FM=00). */
56 EXEC_SEQ, /* Sequential (FM=01). */
57 EXEC_REVSEQ /* Reverse sequential (FM=10). */
252b5132
RH
58} exec_type_enum;
59
2fd5405a 60/* Fixups. */
ea1562b3
NC
61#define MAX_INSN_FIXUPS 5
62
252b5132
RH
63struct d30v_fixup
64{
65 expressionS exp;
66 int operand;
67 int pcrel;
68 int size;
69 bfd_reloc_code_real_type reloc;
70};
71
72typedef struct _fixups
73{
74 int fc;
75 struct d30v_fixup fix[MAX_INSN_FIXUPS];
76 struct _fixups *next;
77} Fixups;
78
79static Fixups FixUps[2];
80static Fixups *fixups;
81
82/* Whether current and previous instruction are word multiply insns. */
83static int cur_mul32_p = 0;
84static int prev_mul32_p = 0;
85
86/* The flag_explicitly_parallel is true iff the instruction being assembled
87 has been explicitly written as a parallel short-instruction pair by the
2fd5405a 88 human programmer. It is used in parallel_ok () to distinguish between
252b5132
RH
89 those dangerous parallelizations attempted by the human, which are to be
90 allowed, and those attempted by the assembler, which are not. It is set
2fd5405a
NC
91 from md_assemble (). */
92static int flag_explicitly_parallel = 0;
252b5132
RH
93static int flag_xp_state = 0;
94
95/* Whether current and previous left sub-instruction disables
96 execution of right sub-instruction. */
97static int cur_left_kills_right_p = 0;
98static int prev_left_kills_right_p = 0;
99
100/* The known current alignment of the current section. */
101static int d30v_current_align;
102static segT d30v_current_align_seg;
103
104/* The last seen label in the current section. This is used to auto-align
2d2255b5 105 labels preceding instructions. */
252b5132
RH
106static symbolS *d30v_last_label;
107
2fd5405a 108/* Two nops. */
252b5132
RH
109#define NOP_LEFT ((long long) NOP << 32)
110#define NOP_RIGHT ((long long) NOP)
111#define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT)
112
2fd5405a
NC
113struct option md_longopts[] =
114{
252b5132
RH
115 {NULL, no_argument, NULL, 0}
116};
252b5132 117
2fd5405a 118size_t md_longopts_size = sizeof (md_longopts);
252b5132 119
252b5132 120/* Opcode hash table. */
629310ab 121static htab_t d30v_hash;
252b5132 122
2fd5405a 123/* Do a binary search of the pre_defined_registers array to see if
33eaf5de 124 NAME is a valid register name. Return the register number from the
2fd5405a 125 array on success, or -1 on failure. */
252b5132
RH
126
127static int
ea1562b3 128reg_name_search (char *name)
252b5132
RH
129{
130 int middle, low, high;
131 int cmp;
132
133 low = 0;
134 high = reg_name_cnt () - 1;
135
136 do
137 {
138 middle = (low + high) / 2;
139 cmp = strcasecmp (name, pre_defined_registers[middle].name);
140 if (cmp < 0)
141 high = middle - 1;
142 else if (cmp > 0)
143 low = middle + 1;
144 else
145 {
146 if (symbol_find (name) != NULL)
147 {
148 if (warn_register_name_conflicts)
149 as_warn (_("Register name %s conflicts with symbol of the same name"),
150 name);
151 }
2fd5405a 152
252b5132
RH
153 return pre_defined_registers[middle].value;
154 }
155 }
156 while (low <= high);
2fd5405a 157
252b5132
RH
158 return -1;
159}
160
2fd5405a
NC
161/* Check the string at input_line_pointer to see if it is a valid
162 register name. */
252b5132
RH
163
164static int
ea1562b3 165register_name (expressionS *expressionP)
252b5132
RH
166{
167 int reg_number;
168 char c, *p = input_line_pointer;
2fd5405a
NC
169
170 while (*p && *p != '\n' && *p != '\r' && *p != ',' && *p != ' ' && *p != ')')
252b5132
RH
171 p++;
172
173 c = *p;
174 if (c)
175 *p++ = 0;
176
2fd5405a 177 /* Look to see if it's in the register table. */
252b5132 178 reg_number = reg_name_search (input_line_pointer);
2fd5405a 179 if (reg_number >= 0)
252b5132
RH
180 {
181 expressionP->X_op = O_register;
2fd5405a
NC
182 /* Temporarily store a pointer to the string here. */
183 expressionP->X_op_symbol = (symbolS *) input_line_pointer;
252b5132
RH
184 expressionP->X_add_number = reg_number;
185 input_line_pointer = p;
186 return 1;
187 }
188 if (c)
2fd5405a 189 *(p - 1) = c;
252b5132
RH
190 return 0;
191}
192
252b5132 193static int
ea1562b3 194check_range (unsigned long num, int bits, int flags)
252b5132
RH
195{
196 long min, max;
252b5132 197
bf80011a
RH
198 /* Don't bother checking 32-bit values. */
199 if (bits == 32)
200 {
2fd5405a 201 if (sizeof (unsigned long) * CHAR_BIT == 32)
cc8a6dd0 202 return 0;
bf80011a
RH
203
204 /* We don't record signed or unsigned for 32-bit quantities.
205 Allow either. */
2fd5405a
NC
206 min = -((unsigned long) 1 << (bits - 1));
207 max = ((unsigned long) 1 << bits) - 1;
30cdfbed 208 return (long) num < min || (long) num > max;
bf80011a 209 }
252b5132
RH
210
211 if (flags & OPERAND_SHIFT)
212 {
2fd5405a 213 /* We know that all shifts are right by three bits. */
30cdfbed 214 num >>= 3;
2fd5405a 215
252b5132 216 if (flags & OPERAND_SIGNED)
30cdfbed
AM
217 {
218 unsigned long sign_bit = ((unsigned long) -1L >> 4) + 1;
219 num = (num ^ sign_bit) - sign_bit;
220 }
252b5132
RH
221 }
222
223 if (flags & OPERAND_SIGNED)
224 {
2fd5405a
NC
225 max = ((unsigned long) 1 << (bits - 1)) - 1;
226 min = - ((unsigned long) 1 << (bits - 1));
30cdfbed 227 return (long) num > max || (long) num < min;
252b5132
RH
228 }
229 else
230 {
2fd5405a 231 max = ((unsigned long) 1 << bits) - 1;
30cdfbed 232 return num > (unsigned long) max;
252b5132 233 }
252b5132
RH
234}
235
252b5132 236void
ea1562b3 237md_show_usage (FILE *stream)
252b5132
RH
238{
239 fprintf (stream, _("\nD30V options:\n\
240-O Make adjacent short instructions parallel if possible.\n\
241-n Warn about all NOPs inserted by the assembler.\n\
33eaf5de
NC
242-N Warn about NOPs inserted after word multiplies.\n\
243-c Warn about symbols whose names match register names.\n\
252b5132
RH
244-C Opposite of -C. -c is the default.\n"));
245}
246
247int
17b9d67d 248md_parse_option (int c, const char *arg ATTRIBUTE_UNUSED)
252b5132
RH
249{
250 switch (c)
251 {
2fd5405a 252 /* Optimize. Will attempt to parallelize operations. */
252b5132
RH
253 case 'O':
254 Optimizing = 1;
255 break;
256
257 /* Warn about all NOPS that the assembler inserts. */
258 case 'n':
259 warn_nops = NOP_ALL;
260 break;
261
262 /* Warn about the NOPS that the assembler inserts because of the
263 multiply hazard. */
264 case 'N':
265 warn_nops = NOP_MULTIPLY;
266 break;
267
268 case 'c':
269 warn_register_name_conflicts = 1;
270 break;
271
272 case 'C':
273 warn_register_name_conflicts = 0;
274 break;
2fd5405a 275
252b5132
RH
276 default:
277 return 0;
278 }
279 return 1;
280}
281
282symbolS *
ea1562b3 283md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
252b5132
RH
284{
285 return 0;
286}
287
6d4af3c2 288const char *
ea1562b3 289md_atof (int type, char *litP, int *sizeP)
252b5132 290{
499ac353 291 return ieee_md_atof (type, litP, sizeP, TRUE);
252b5132
RH
292}
293
294void
ea1562b3
NC
295md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
296 asection *sec ATTRIBUTE_UNUSED,
297 fragS *fragP ATTRIBUTE_UNUSED)
252b5132
RH
298{
299 abort ();
300}
301
302valueT
ea1562b3 303md_section_align (asection *seg, valueT addr)
252b5132 304{
fd361982 305 int align = bfd_section_alignment (seg);
8d3842cd 306 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
307}
308
252b5132 309void
ea1562b3 310md_begin (void)
252b5132 311{
2fd5405a 312 struct d30v_opcode *opcode;
629310ab 313 d30v_hash = str_htab_create ();
252b5132 314
2fd5405a
NC
315 /* Insert opcode names into a hash table. */
316 for (opcode = (struct d30v_opcode *) d30v_opcode_table; opcode->name; opcode++)
fe0e921f 317 str_hash_insert (d30v_hash, opcode->name, opcode, 0);
252b5132
RH
318
319 fixups = &FixUps[0];
320 FixUps[0].next = &FixUps[1];
321 FixUps[1].next = &FixUps[0];
322
323 d30v_current_align_seg = now_seg;
324}
325
2fd5405a
NC
326/* Remove the postincrement or postdecrement operator ( '+' or '-' )
327 from an expression. */
252b5132 328
2fd5405a 329static int
ea1562b3 330postfix (char *p)
252b5132 331{
2fd5405a 332 while (*p != '-' && *p != '+')
252b5132 333 {
2fd5405a 334 if (*p == 0 || *p == '\n' || *p == '\r' || *p == ' ' || *p == ',')
252b5132
RH
335 break;
336 p++;
337 }
338
2fd5405a 339 if (*p == '-')
252b5132
RH
340 {
341 *p = ' ';
2fd5405a 342 return -1;
252b5132 343 }
81d4177b 344
2fd5405a 345 if (*p == '+')
252b5132
RH
346 {
347 *p = ' ';
2fd5405a 348 return 1;
252b5132
RH
349 }
350
2fd5405a 351 return 0;
252b5132
RH
352}
353
2fd5405a 354static bfd_reloc_code_real_type
9c95b521 355get_reloc (const struct d30v_operand *op, int rel_flag)
252b5132
RH
356{
357 switch (op->bits)
358 {
359 case 6:
360 if (op->flags & OPERAND_SHIFT)
361 return BFD_RELOC_D30V_9_PCREL;
362 else
363 return BFD_RELOC_D30V_6;
364 break;
365 case 12:
366 if (!(op->flags & OPERAND_SHIFT))
367 as_warn (_("unexpected 12-bit reloc type"));
368 if (rel_flag == RELOC_PCREL)
369 return BFD_RELOC_D30V_15_PCREL;
370 else
371 return BFD_RELOC_D30V_15;
372 case 18:
373 if (!(op->flags & OPERAND_SHIFT))
374 as_warn (_("unexpected 18-bit reloc type"));
375 if (rel_flag == RELOC_PCREL)
376 return BFD_RELOC_D30V_21_PCREL;
377 else
378 return BFD_RELOC_D30V_21;
379 case 32:
380 if (rel_flag == RELOC_PCREL)
381 return BFD_RELOC_D30V_32_PCREL;
382 else
383 return BFD_RELOC_D30V_32;
384 default:
385 return 0;
386 }
387}
388
2fd5405a 389/* Parse a string of operands and return an array of expressions. */
252b5132
RH
390
391static int
ea1562b3 392get_operands (expressionS exp[], int cmp_hack)
252b5132
RH
393{
394 char *p = input_line_pointer;
395 int numops = 0;
396 int post = 0;
397
398 if (cmp_hack)
399 {
400 exp[numops].X_op = O_absent;
401 exp[numops++].X_add_number = cmp_hack - 1;
402 }
403
2fd5405a 404 while (*p)
252b5132 405 {
2fd5405a 406 while (*p == ' ' || *p == '\t' || *p == ',')
252b5132 407 p++;
81d4177b 408
2fd5405a
NC
409 if (*p == 0 || *p == '\n' || *p == '\r')
410 break;
411
412 if (*p == '@')
252b5132
RH
413 {
414 p++;
415 exp[numops].X_op = O_absent;
2fd5405a 416 if (*p == '(')
252b5132
RH
417 {
418 p++;
419 exp[numops].X_add_number = OPERAND_ATPAR;
420 post = postfix (p);
421 }
2fd5405a 422 else if (*p == '-')
252b5132
RH
423 {
424 p++;
425 exp[numops].X_add_number = OPERAND_ATMINUS;
426 }
427 else
428 {
429 exp[numops].X_add_number = OPERAND_ATSIGN;
430 post = postfix (p);
431 }
432 numops++;
433 continue;
434 }
435
2fd5405a 436 if (*p == ')')
252b5132 437 {
2fd5405a 438 /* Just skip the trailing paren. */
252b5132
RH
439 p++;
440 continue;
441 }
442
443 input_line_pointer = p;
444
2fd5405a 445 /* Check to see if it might be a register name. */
252b5132
RH
446 if (!register_name (&exp[numops]))
447 {
2fd5405a 448 /* Parse as an expression. */
252b5132
RH
449 expression (&exp[numops]);
450 }
451
2fd5405a 452 if (exp[numops].X_op == O_illegal)
252b5132 453 as_bad (_("illegal operand"));
2fd5405a 454 else if (exp[numops].X_op == O_absent)
252b5132
RH
455 as_bad (_("missing operand"));
456
457 numops++;
458 p = input_line_pointer;
459
2fd5405a 460 switch (post)
252b5132 461 {
2fd5405a
NC
462 case -1:
463 /* Postdecrement mode. */
252b5132
RH
464 exp[numops].X_op = O_absent;
465 exp[numops++].X_add_number = OPERAND_MINUS;
466 break;
2fd5405a
NC
467 case 1:
468 /* Postincrement mode. */
252b5132
RH
469 exp[numops].X_op = O_absent;
470 exp[numops++].X_add_number = OPERAND_PLUS;
471 break;
472 }
473 post = 0;
474 }
475
476 exp[numops].X_op = 0;
81d4177b 477
2fd5405a 478 return numops;
252b5132
RH
479}
480
2fd5405a
NC
481/* Generate the instruction.
482 It does everything but write the FM bits. */
252b5132
RH
483
484static long long
ea1562b3 485build_insn (struct d30v_insn *opcode, expressionS *opers)
252b5132 486{
87975d2a 487 int i, bits, shift, flags;
2fd5405a 488 unsigned long number, id = 0;
252b5132
RH
489 long long insn;
490 struct d30v_opcode *op = opcode->op;
491 struct d30v_format *form = opcode->form;
492
2fd5405a
NC
493 insn =
494 opcode->ecc << 28 | op->op1 << 25 | op->op2 << 20 | form->modifier << 18;
252b5132 495
2fd5405a
NC
496 for (i = 0; form->operands[i]; i++)
497 {
252b5132
RH
498 flags = d30v_operand_table[form->operands[i]].flags;
499
2fd5405a
NC
500 /* Must be a register or number. */
501 if (!(flags & OPERAND_REG) && !(flags & OPERAND_NUM)
502 && !(flags & OPERAND_NAME) && !(flags & OPERAND_SPECIAL))
252b5132
RH
503 continue;
504
505 bits = d30v_operand_table[form->operands[i]].bits;
506 if (flags & OPERAND_SHIFT)
507 bits += 3;
508
252b5132
RH
509 shift = 12 - d30v_operand_table[form->operands[i]].position;
510 if (opers[i].X_op != O_symbol)
511 number = opers[i].X_add_number;
512 else
513 number = 0;
514 if (flags & OPERAND_REG)
515 {
2fd5405a 516 /* Check for mvfsys or mvtsys control registers. */
252b5132
RH
517 if (flags & OPERAND_CONTROL && (number & 0x7f) > MAX_CONTROL_REG)
518 {
2fd5405a 519 /* PSWL or PSWH. */
252b5132
RH
520 id = (number & 0x7f) - MAX_CONTROL_REG;
521 number = 0;
522 }
523 else if (number & OPERAND_FLAG)
ea1562b3
NC
524 /* NUMBER is a flag register. */
525 id = 3;
526
252b5132
RH
527 number &= 0x7F;
528 }
529 else if (flags & OPERAND_SPECIAL)
ea1562b3 530 number = id;
252b5132 531
2fd5405a
NC
532 if (opers[i].X_op != O_register && opers[i].X_op != O_constant
533 && !(flags & OPERAND_NAME))
252b5132 534 {
2fd5405a 535 /* Now create a fixup. */
252b5132
RH
536 if (fixups->fc >= MAX_INSN_FIXUPS)
537 as_fatal (_("too many fixups"));
538
2fd5405a 539 fixups->fix[fixups->fc].reloc =
9c95b521 540 get_reloc (d30v_operand_table + form->operands[i], op->reloc_flag);
252b5132
RH
541 fixups->fix[fixups->fc].size = 4;
542 fixups->fix[fixups->fc].exp = opers[i];
543 fixups->fix[fixups->fc].operand = form->operands[i];
544 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_D30V_9_PCREL)
545 fixups->fix[fixups->fc].pcrel = RELOC_PCREL;
546 else
547 fixups->fix[fixups->fc].pcrel = op->reloc_flag;
548 (fixups->fc)++;
549 }
550
2fd5405a 551 /* Truncate to the proper number of bits. */
252b5132 552 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
ebf19f1b 553 as_bad (_("operand out of range: %ld"), number);
252b5132
RH
554 if (bits < 31)
555 number &= 0x7FFFFFFF >> (31 - bits);
556 if (flags & OPERAND_SHIFT)
557 number >>= 3;
558 if (bits == 32)
559 {
2fd5405a 560 /* It's a LONG instruction. */
ea1562b3
NC
561 insn |= ((number & 0xffffffff) >> 26); /* Top 6 bits. */
562 insn <<= 32; /* Shift the first word over. */
563 insn |= ((number & 0x03FC0000) << 2); /* Next 8 bits. */
564 insn |= number & 0x0003FFFF; /* Bottom 18 bits. */
252b5132
RH
565 }
566 else
567 insn |= number << shift;
568 }
81d4177b 569
252b5132
RH
570 return insn;
571}
572
ea1562b3
NC
573static void
574d30v_number_to_chars (char *buf, /* Return 'nbytes' of chars here. */
575 long long value, /* The value of the bits. */
576 int n) /* Number of bytes in the output. */
577{
578 while (n--)
579 {
580 buf[n] = value & 0xff;
581 value >>= 8;
582 }
583}
584
2fd5405a 585/* Write out a long form instruction. */
252b5132 586
252b5132 587static void
ea1562b3
NC
588write_long (struct d30v_insn *opcode ATTRIBUTE_UNUSED,
589 long long insn,
590 Fixups *fx)
252b5132
RH
591{
592 int i, where;
593 char *f = frag_more (8);
594
d4f4f3fb 595 dwarf2_emit_insn (8);
252b5132
RH
596 insn |= FM11;
597 d30v_number_to_chars (f, insn, 8);
598
2fd5405a 599 for (i = 0; i < fx->fc; i++)
252b5132
RH
600 {
601 if (fx->fix[i].reloc)
2fd5405a
NC
602 {
603 where = f - frag_now->fr_literal;
ea1562b3
NC
604 fix_new_exp (frag_now, where, fx->fix[i].size, &(fx->fix[i].exp),
605 fx->fix[i].pcrel, fx->fix[i].reloc);
252b5132
RH
606 }
607 }
81d4177b 608
252b5132
RH
609 fx->fc = 0;
610}
611
252b5132 612/* Write out a short form instruction by itself. */
2fd5405a 613
252b5132 614static void
ea1562b3
NC
615write_1_short (struct d30v_insn *opcode,
616 long long insn,
617 Fixups *fx,
618 int use_sequential)
252b5132
RH
619{
620 char *f = frag_more (8);
621 int i, where;
622
d4f4f3fb 623 dwarf2_emit_insn (8);
252b5132
RH
624 if (warn_nops == NOP_ALL)
625 as_warn (_("%s NOP inserted"), use_sequential ?
626 _("sequential") : _("parallel"));
627
2fd5405a 628 /* The other container needs to be NOP. */
252b5132
RH
629 if (use_sequential)
630 {
631 /* Use a sequential NOP rather than a parallel one,
632 as the current instruction is a FLAG_MUL32 type one
633 and the next instruction is a load. */
2fd5405a 634
252b5132 635 /* According to 4.3.1: for FM=01, sub-instructions performed
2fd5405a 636 only by IU cannot be encoded in L-container. */
252b5132 637 if (opcode->op->unit == IU)
2fd5405a
NC
638 /* Right then left. */
639 insn |= FM10 | NOP_LEFT;
252b5132 640 else
2fd5405a
NC
641 /* Left then right. */
642 insn = FM01 | (insn << 32) | NOP_RIGHT;
252b5132
RH
643 }
644 else
645 {
646 /* According to 4.3.1: for FM=00, sub-instructions performed
2fd5405a 647 only by IU cannot be encoded in L-container. */
252b5132 648 if (opcode->op->unit == IU)
2fd5405a
NC
649 /* Right container. */
650 insn |= FM00 | NOP_LEFT;
252b5132 651 else
2fd5405a
NC
652 /* Left container. */
653 insn = FM00 | (insn << 32) | NOP_RIGHT;
252b5132
RH
654 }
655
656 d30v_number_to_chars (f, insn, 8);
657
2fd5405a 658 for (i = 0; i < fx->fc; i++)
252b5132
RH
659 {
660 if (fx->fix[i].reloc)
2fd5405a
NC
661 {
662 where = f - frag_now->fr_literal;
252b5132 663 fix_new_exp (frag_now,
2fd5405a 664 where,
252b5132
RH
665 fx->fix[i].size,
666 &(fx->fix[i].exp),
667 fx->fix[i].pcrel,
668 fx->fix[i].reloc);
669 }
670 }
81d4177b 671
252b5132
RH
672 fx->fc = 0;
673}
674
2fd5405a
NC
675/* Check 2 instructions and determine if they can be safely
676 executed in parallel. Return 1 if they can be. */
252b5132 677
252b5132 678static int
ea1562b3
NC
679parallel_ok (struct d30v_insn *op1,
680 unsigned long insn1,
681 struct d30v_insn *op2,
682 unsigned long insn2,
683 exec_type_enum exec_type)
252b5132
RH
684{
685 int i, j, shift, regno, bits, ecc;
686 unsigned long flags, mask, flags_set1, flags_set2, flags_used1, flags_used2;
687 unsigned long ins, mod_reg[2][3], used_reg[2][3], flag_reg[2];
688 struct d30v_format *f;
689 struct d30v_opcode *op;
690
2fd5405a 691 /* Section 4.3: Both instructions must not be IU or MU only. */
252b5132
RH
692 if ((op1->op->unit == IU && op2->op->unit == IU)
693 || (op1->op->unit == MU && op2->op->unit == MU))
694 return 0;
695
2fd5405a 696 /* First instruction must not be a jump to safely optimize, unless this
252b5132
RH
697 is an explicit parallel operation. */
698 if (exec_type != EXEC_PARALLEL
699 && (op1->op->flags_used & (FLAG_JMP | FLAG_JSR)))
700 return 0;
701
702 /* If one instruction is /TX or /XT and the other is /FX or /XF respectively,
703 then it is safe to allow the two to be done as parallel ops, since only
704 one will ever be executed at a time. */
705 if ((op1->ecc == ECC_TX && op2->ecc == ECC_FX)
706 || (op1->ecc == ECC_FX && op2->ecc == ECC_TX)
707 || (op1->ecc == ECC_XT && op2->ecc == ECC_XF)
708 || (op1->ecc == ECC_XF && op2->ecc == ECC_XT))
2fd5405a 709 return 1;
252b5132
RH
710
711 /* [0] r0-r31
712 [1] r32-r63
2fd5405a 713 [2] a0, a1, flag registers. */
252b5132
RH
714 for (j = 0; j < 2; j++)
715 {
716 if (j == 0)
717 {
718 f = op1->form;
719 op = op1->op;
720 ecc = op1->ecc;
721 ins = insn1;
722 }
723 else
724 {
725 f = op2->form;
726 op = op2->op;
727 ecc = op2->ecc;
728 ins = insn2;
729 }
81d4177b 730
252b5132
RH
731 flag_reg[j] = 0;
732 mod_reg[j][0] = mod_reg[j][1] = 0;
733 used_reg[j][0] = used_reg[j][1] = 0;
734
735 if (flag_explicitly_parallel)
736 {
737 /* For human specified parallel instructions we have been asked
738 to ignore the possibility that both instructions could modify
739 bits in the PSW, so we initialise the mod & used arrays to 0.
740 We have been asked, however, to refuse to allow parallel
741 instructions which explicitly set the same flag register,
742 eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test
743 for the use of a flag register and set a bit in the mod or used
744 array appropriately. */
252b5132
RH
745 mod_reg[j][2] = 0;
746 used_reg[j][2] = 0;
747 }
748 else
749 {
750 mod_reg[j][2] = (op->flags_set & FLAG_ALL);
751 used_reg[j][2] = (op->flags_used & FLAG_ALL);
752 }
2fd5405a
NC
753
754 /* BSR/JSR always sets R62. */
252b5132 755 if (op->flags_used & FLAG_JSR)
2fd5405a 756 mod_reg[j][1] = (1L << (62 - 32));
252b5132 757
2fd5405a 758 /* Conditional execution affects the flags_used. */
252b5132
RH
759 switch (ecc)
760 {
761 case ECC_TX:
762 case ECC_FX:
763 used_reg[j][2] |= flag_reg[j] = FLAG_0;
764 break;
765
766 case ECC_XT:
767 case ECC_XF:
768 used_reg[j][2] |= flag_reg[j] = FLAG_1;
769 break;
770
771 case ECC_TT:
772 case ECC_TF:
773 used_reg[j][2] |= flag_reg[j] = (FLAG_0 | FLAG_1);
774 break;
775 }
776
777 for (i = 0; f->operands[i]; i++)
778 {
779 flags = d30v_operand_table[f->operands[i]].flags;
780 shift = 12 - d30v_operand_table[f->operands[i]].position;
781 bits = d30v_operand_table[f->operands[i]].bits;
782 if (bits == 32)
783 mask = 0xffffffff;
784 else
785 mask = 0x7FFFFFFF >> (31 - bits);
786
787 if ((flags & OPERAND_PLUS) || (flags & OPERAND_MINUS))
788 {
2fd5405a
NC
789 /* This is a post-increment or post-decrement.
790 The previous register needs to be marked as modified. */
791 shift = 12 - d30v_operand_table[f->operands[i - 1]].position;
252b5132
RH
792 regno = (ins >> shift) & 0x3f;
793 if (regno >= 32)
794 mod_reg[j][1] |= 1L << (regno - 32);
795 else
796 mod_reg[j][0] |= 1L << regno;
797 }
798 else if (flags & OPERAND_REG)
799 {
800 regno = (ins >> shift) & mask;
2fd5405a
NC
801 /* The memory write functions don't have a destination
802 register. */
252b5132
RH
803 if ((flags & OPERAND_DEST) && !(op->flags_set & FLAG_MEM))
804 {
2fd5405a 805 /* MODIFIED registers and flags. */
252b5132
RH
806 if (flags & OPERAND_ACC)
807 {
808 if (regno == 0)
809 mod_reg[j][2] |= FLAG_A0;
810 else if (regno == 1)
811 mod_reg[j][2] |= FLAG_A1;
812 else
813 abort ();
814 }
815 else if (flags & OPERAND_FLAG)
816 mod_reg[j][2] |= 1L << regno;
817 else if (!(flags & OPERAND_CONTROL))
818 {
819 int r, z;
820
2fd5405a
NC
821 /* Need to check if there are two destination
822 registers, for example ld2w. */
252b5132
RH
823 if (flags & OPERAND_2REG)
824 z = 1;
825 else
826 z = 0;
827
828 for (r = regno; r <= regno + z; r++)
2fd5405a 829 {
252b5132
RH
830 if (r >= 32)
831 mod_reg[j][1] |= 1L << (r - 32);
832 else
833 mod_reg[j][0] |= 1L << r;
834 }
835 }
836 }
837 else
838 {
2fd5405a 839 /* USED, but not modified registers and flags. */
252b5132
RH
840 if (flags & OPERAND_ACC)
841 {
842 if (regno == 0)
843 used_reg[j][2] |= FLAG_A0;
844 else if (regno == 1)
845 used_reg[j][2] |= FLAG_A1;
846 else
847 abort ();
848 }
849 else if (flags & OPERAND_FLAG)
850 used_reg[j][2] |= 1L << regno;
851 else if (!(flags & OPERAND_CONTROL))
852 {
853 int r, z;
854
2fd5405a
NC
855 /* Need to check if there are two source
856 registers, for example st2w. */
252b5132
RH
857 if (flags & OPERAND_2REG)
858 z = 1;
859 else
860 z = 0;
861
862 for (r = regno; r <= regno + z; r++)
2fd5405a 863 {
252b5132 864 if (r >= 32)
602e9f0a 865 used_reg[j][1] |= 1UL << (r - 32);
252b5132 866 else
602e9f0a 867 used_reg[j][0] |= 1UL << r;
252b5132
RH
868 }
869 }
870 }
871 }
872 }
873 }
2fd5405a 874
252b5132
RH
875 flags_set1 = op1->op->flags_set;
876 flags_set2 = op2->op->flags_set;
877 flags_used1 = op1->op->flags_used;
878 flags_used2 = op2->op->flags_used;
879
25f2196d
CC
880 /* Check for illegal combinations with ADDppp/SUBppp. */
881 if (((flags_set1 & FLAG_NOT_WITH_ADDSUBppp) != 0
252b5132 882 && (flags_used2 & FLAG_ADDSUBppp) != 0)
25f2196d 883 || ((flags_set2 & FLAG_NOT_WITH_ADDSUBppp) != 0
252b5132
RH
884 && (flags_used1 & FLAG_ADDSUBppp) != 0))
885 return 0;
886
887 /* Load instruction combined with half-word multiply is illegal. */
888 if (((flags_used1 & FLAG_MEM) != 0 && (flags_used2 & FLAG_MUL16))
889 || ((flags_used2 & FLAG_MEM) != 0 && (flags_used1 & FLAG_MUL16)))
890 return 0;
891
892 /* Specifically allow add || add by removing carry, overflow bits dependency.
893 This is safe, even if an addc follows since the IU takes the argument in
894 the right container, and it writes its results last.
895 However, don't paralellize add followed by addc or sub followed by
896 subb. */
252b5132
RH
897 if (mod_reg[0][2] == FLAG_CVVA && mod_reg[1][2] == FLAG_CVVA
898 && (used_reg[0][2] & ~flag_reg[0]) == 0
899 && (used_reg[1][2] & ~flag_reg[1]) == 0
900 && op1->op->unit == EITHER && op2->op->unit == EITHER)
901 {
902 mod_reg[0][2] = mod_reg[1][2] = 0;
903 }
904
905 for (j = 0; j < 3; j++)
906 {
907 /* If the second instruction depends on the first, we obviously
908 cannot parallelize. Note, the mod flag implies use, so
909 check that as well. */
2fd5405a 910 /* If flag_explicitly_parallel is set, then the case of the
252b5132
RH
911 second instruction using a register the first instruction
912 modifies is assumed to be okay; we trust the human. We
913 don't trust the human if both instructions modify the same
914 register but we do trust the human if they modify the same
2fd5405a 915 flags. */
252b5132
RH
916 /* We have now been requested not to trust the human if the
917 instructions modify the same flag registers either. */
918 if (flag_explicitly_parallel)
919 {
920 if ((mod_reg[0][j] & mod_reg[1][j]) != 0)
921 return 0;
922 }
923 else
cc8a6dd0 924 if ((mod_reg[0][j] & (mod_reg[1][j] | used_reg[1][j])) != 0)
252b5132
RH
925 return 0;
926 }
927
928 return 1;
929}
930
ea1562b3
NC
931/* Write out a short form instruction if possible.
932 Return number of instructions not written out. */
252b5132 933
ea1562b3
NC
934static int
935write_2_short (struct d30v_insn *opcode1,
936 long long insn1,
937 struct d30v_insn *opcode2,
938 long long insn2,
939 exec_type_enum exec_type,
940 Fixups *fx)
252b5132 941{
ea1562b3
NC
942 long long insn = NOP2;
943 char *f;
944 int i, j, where;
252b5132 945
ea1562b3
NC
946 if (exec_type == EXEC_SEQ
947 && (opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR))
948 && ((opcode1->op->flags_used & FLAG_DELAY) == 0)
949 && ((opcode1->ecc == ECC_AL) || ! Optimizing))
950 {
951 /* Unconditional, non-delayed branches kill instructions in
952 the right bin. Conditional branches don't always but if
953 we are not optimizing, then we have been asked to produce
954 an error about such constructs. For the purposes of this
955 test, subroutine calls are considered to be branches. */
956 write_1_short (opcode1, insn1, fx->next, FALSE);
957 return 1;
958 }
252b5132 959
ea1562b3
NC
960 /* Note: we do not have to worry about subroutine calls occurring
961 in the right hand container. The return address is always
962 aligned to the next 64 bit boundary, be that 64 or 32 bit away. */
963 switch (exec_type)
252b5132 964 {
ea1562b3
NC
965 case EXEC_UNKNOWN: /* Order not specified. */
966 if (Optimizing
967 && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)
968 && ! ( (opcode1->op->unit == EITHER_BUT_PREFER_MU
969 || opcode1->op->unit == MU)
970 &&
971 ( opcode2->op->unit == EITHER_BUT_PREFER_MU
972 || opcode2->op->unit == MU)))
252b5132 973 {
ea1562b3
NC
974 /* Parallel. */
975 exec_type = EXEC_PARALLEL;
976
977 if (opcode1->op->unit == IU
978 || opcode2->op->unit == MU
979 || opcode2->op->unit == EITHER_BUT_PREFER_MU)
980 insn = FM00 | (insn2 << 32) | insn1;
252b5132
RH
981 else
982 {
ea1562b3
NC
983 insn = FM00 | (insn1 << 32) | insn2;
984 fx = fx->next;
252b5132
RH
985 }
986 }
ea1562b3
NC
987 else if ((opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR)
988 && ((opcode1->op->flags_used & FLAG_DELAY) == 0))
989 || opcode1->op->flags_used & FLAG_RP)
990 {
991 /* We must emit (non-delayed) branch type instructions
992 on their own with nothing in the right container. */
993 /* We must treat repeat instructions likewise, since the
994 following instruction has to be separate from the repeat
995 in order to be repeated. */
996 write_1_short (opcode1, insn1, fx->next, FALSE);
997 return 1;
998 }
999 else if (prev_left_kills_right_p)
1000 {
33eaf5de 1001 /* The left instruction kills the right slot, so we
ea1562b3
NC
1002 must leave it empty. */
1003 write_1_short (opcode1, insn1, fx->next, FALSE);
1004 return 1;
1005 }
1006 else if (opcode1->op->unit == IU)
1007 {
1008 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
1009 {
1010 /* Case 103810 is a request from Mitsubishi that opcodes
1011 with EITHER_BUT_PREFER_MU should not be executed in
1012 reverse sequential order. */
1013 write_1_short (opcode1, insn1, fx->next, FALSE);
1014 return 1;
1015 }
81d4177b 1016
ea1562b3
NC
1017 /* Reverse sequential. */
1018 insn = FM10 | (insn2 << 32) | insn1;
1019 exec_type = EXEC_REVSEQ;
1020 }
1021 else
252b5132 1022 {
ea1562b3
NC
1023 /* Sequential. */
1024 insn = FM01 | (insn1 << 32) | insn2;
1025 fx = fx->next;
1026 exec_type = EXEC_SEQ;
1027 }
1028 break;
2fd5405a 1029
ea1562b3
NC
1030 case EXEC_PARALLEL: /* Parallel. */
1031 flag_explicitly_parallel = flag_xp_state;
1032 if (! parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
1033 as_bad (_("Instructions may not be executed in parallel"));
1034 else if (opcode1->op->unit == IU)
1035 {
1036 if (opcode2->op->unit == IU)
1037 as_bad (_("Two IU instructions may not be executed in parallel"));
1038 as_warn (_("Swapping instruction order"));
1039 insn = FM00 | (insn2 << 32) | insn1;
1040 }
1041 else if (opcode2->op->unit == MU)
1042 {
1043 if (opcode1->op->unit == MU)
1044 as_bad (_("Two MU instructions may not be executed in parallel"));
1045 else if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
1046 as_warn (_("Executing %s in IU may not work"), opcode1->op->name);
1047 as_warn (_("Swapping instruction order"));
1048 insn = FM00 | (insn2 << 32) | insn1;
1049 }
1050 else
1051 {
1052 if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
1053 as_warn (_("Executing %s in IU may not work in parallel execution"),
1054 opcode2->op->name);
2fd5405a 1055
ea1562b3
NC
1056 insn = FM00 | (insn1 << 32) | insn2;
1057 fx = fx->next;
252b5132 1058 }
ea1562b3
NC
1059 flag_explicitly_parallel = 0;
1060 break;
252b5132 1061
ea1562b3
NC
1062 case EXEC_SEQ: /* Sequential. */
1063 if (opcode1->op->unit == IU)
1064 as_bad (_("IU instruction may not be in the left container"));
1065 if (prev_left_kills_right_p)
1066 as_bad (_("special left instruction `%s' kills instruction "
1067 "`%s' in right container"),
1068 opcode1->op->name, opcode2->op->name);
1069 insn = FM01 | (insn1 << 32) | insn2;
1070 fx = fx->next;
1071 break;
252b5132 1072
ea1562b3
NC
1073 case EXEC_REVSEQ: /* Reverse sequential. */
1074 if (opcode2->op->unit == MU)
1075 as_bad (_("MU instruction may not be in the right container"));
1076 if (opcode1->op->unit == EITHER_BUT_PREFER_MU)
1077 as_warn (_("Executing %s in reverse serial with %s may not work"),
1078 opcode1->op->name, opcode2->op->name);
1079 else if (opcode2->op->unit == EITHER_BUT_PREFER_MU)
1080 as_warn (_("Executing %s in IU in reverse serial may not work"),
1081 opcode2->op->name);
1082 insn = FM10 | (insn1 << 32) | insn2;
1083 fx = fx->next;
1084 break;
1085
1086 default:
1087 as_fatal (_("unknown execution type passed to write_2_short()"));
252b5132
RH
1088 }
1089
ea1562b3 1090 f = frag_more (8);
d4f4f3fb 1091 dwarf2_emit_insn (8);
ea1562b3
NC
1092 d30v_number_to_chars (f, insn, 8);
1093
1094 /* If the previous instruction was a 32-bit multiply but it is put into a
1095 parallel container, mark the current instruction as being a 32-bit
1096 multiply. */
1097 if (prev_mul32_p && exec_type == EXEC_PARALLEL)
1098 cur_mul32_p = 1;
1099
1100 for (j = 0; j < 2; j++)
252b5132 1101 {
ea1562b3 1102 for (i = 0; i < fx->fc; i++)
252b5132 1103 {
ea1562b3 1104 if (fx->fix[i].reloc)
252b5132 1105 {
ea1562b3 1106 where = (f - frag_now->fr_literal) + 4 * j;
2fd5405a 1107
ea1562b3
NC
1108 fix_new_exp (frag_now,
1109 where,
1110 fx->fix[i].size,
1111 &(fx->fix[i].exp),
1112 fx->fix[i].pcrel,
1113 fx->fix[i].reloc);
252b5132 1114 }
252b5132 1115 }
ea1562b3
NC
1116
1117 fx->fc = 0;
1118 fx = fx->next;
252b5132 1119 }
2fd5405a 1120
ea1562b3
NC
1121 return 0;
1122}
252b5132 1123
ea1562b3
NC
1124/* Get a pointer to an entry in the format table.
1125 It must look at all formats for an opcode and use the operands
1126 to choose the correct one. Return NULL on error. */
1127
1128static struct d30v_format *
1129find_format (struct d30v_opcode *opcode,
1130 expressionS myops[],
1131 int fsize,
1132 int cmp_hack)
1133{
87975d2a 1134 int match, opcode_index, i = 0, j, k;
ea1562b3
NC
1135 struct d30v_format *fm;
1136
1137 if (opcode == NULL)
1138 return NULL;
1139
1140 /* Get all the operands and save them as expressions. */
87975d2a 1141 get_operands (myops, cmp_hack);
ea1562b3 1142
91d6fa6a 1143 while ((opcode_index = opcode->format[i++]) != 0)
252b5132 1144 {
91d6fa6a 1145 if (fsize == FORCE_SHORT && opcode_index >= LONG)
ea1562b3 1146 continue;
2fd5405a 1147
91d6fa6a 1148 if (fsize == FORCE_LONG && opcode_index < LONG)
ea1562b3
NC
1149 continue;
1150
91d6fa6a
NC
1151 fm = (struct d30v_format *) &d30v_format_table[opcode_index];
1152 k = opcode_index;
1153 while (fm->form == opcode_index)
ea1562b3
NC
1154 {
1155 match = 1;
1156 /* Now check the operands for compatibility. */
1157 for (j = 0; match && fm->operands[j]; j++)
1158 {
1159 int flags = d30v_operand_table[fm->operands[j]].flags;
1160 int bits = d30v_operand_table[fm->operands[j]].bits;
c023823f 1161 operatorT X_op = myops[j].X_op;
ea1562b3
NC
1162 int num = myops[j].X_add_number;
1163
1164 if (flags & OPERAND_SPECIAL)
1165 break;
1166 else if (X_op == O_illegal)
1167 match = 0;
1168 else if (flags & OPERAND_REG)
1169 {
1170 if (X_op != O_register
1171 || ((flags & OPERAND_ACC) && !(num & OPERAND_ACC))
1172 || (!(flags & OPERAND_ACC) && (num & OPERAND_ACC))
1173 || ((flags & OPERAND_FLAG) && !(num & OPERAND_FLAG))
1174 || (!(flags & (OPERAND_FLAG | OPERAND_CONTROL)) && (num & OPERAND_FLAG))
1175 || ((flags & OPERAND_CONTROL)
1176 && !(num & (OPERAND_CONTROL | OPERAND_FLAG))))
1177 match = 0;
1178 }
1179 else if (((flags & OPERAND_MINUS)
1180 && (X_op != O_absent || num != OPERAND_MINUS))
1181 || ((flags & OPERAND_PLUS)
1182 && (X_op != O_absent || num != OPERAND_PLUS))
1183 || ((flags & OPERAND_ATMINUS)
1184 && (X_op != O_absent || num != OPERAND_ATMINUS))
1185 || ((flags & OPERAND_ATPAR)
1186 && (X_op != O_absent || num != OPERAND_ATPAR))
1187 || ((flags & OPERAND_ATSIGN)
1188 && (X_op != O_absent || num != OPERAND_ATSIGN)))
1189 match = 0;
1190 else if (flags & OPERAND_NUM)
1191 {
1192 /* A number can be a constant or symbol expression. */
1193
1194 /* If we have found a register name, but that name
1195 also matches a symbol, then re-parse the name as
1196 an expression. */
1197 if (X_op == O_register
1198 && symbol_find ((char *) myops[j].X_op_symbol))
1199 {
1200 input_line_pointer = (char *) myops[j].X_op_symbol;
1201 expression (&myops[j]);
1202 }
1203
1204 /* Turn an expression into a symbol for later resolution. */
1205 if (X_op != O_absent && X_op != O_constant
1206 && X_op != O_symbol && X_op != O_register
1207 && X_op != O_big)
1208 {
1209 symbolS *sym = make_expr_symbol (&myops[j]);
1210 myops[j].X_op = X_op = O_symbol;
1211 myops[j].X_add_symbol = sym;
1212 myops[j].X_add_number = num = 0;
1213 }
1214
1215 if (fm->form >= LONG)
1216 {
1217 /* If we're testing for a LONG format, either fits. */
1218 if (X_op != O_constant && X_op != O_symbol)
1219 match = 0;
1220 }
1221 else if (fm->form < LONG
1222 && ((fsize == FORCE_SHORT && X_op == O_symbol)
1223 || (fm->form == SHORT_D2 && j == 0)))
1224 match = 1;
1225
1226 /* This is the tricky part. Will the constant or symbol
1227 fit into the space in the current format? */
1228 else if (X_op == O_constant)
1229 {
1230 if (check_range (num, bits, flags))
1231 match = 0;
1232 }
1233 else if (X_op == O_symbol
1234 && S_IS_DEFINED (myops[j].X_add_symbol)
1235 && S_GET_SEGMENT (myops[j].X_add_symbol) == now_seg
1236 && opcode->reloc_flag == RELOC_PCREL)
1237 {
1238 /* If the symbol is defined, see if the value will fit
1239 into the form we're considering. */
1240 fragS *f;
1241 long value;
1242
1243 /* Calculate the current address by running through the
1244 previous frags and adding our current offset. */
127a8db1 1245 value = frag_now_fix_octets ();
ea1562b3
NC
1246 for (f = frchain_now->frch_root; f; f = f->fr_next)
1247 value += f->fr_fix + f->fr_offset;
127a8db1 1248 value = S_GET_VALUE (myops[j].X_add_symbol) - value;
ea1562b3
NC
1249 if (check_range (value, bits, flags))
1250 match = 0;
1251 }
1252 else
1253 match = 0;
1254 }
1255 }
1256 /* We're only done if the operands matched so far AND there
1257 are no more to check. */
1258 if (match && myops[j].X_op == 0)
1259 {
1260 /* Final check - issue a warning if an odd numbered register
1261 is used as the first register in an instruction that reads
1262 or writes 2 registers. */
1263
1264 for (j = 0; fm->operands[j]; j++)
1265 if (myops[j].X_op == O_register
1266 && (myops[j].X_add_number & 1)
1267 && (d30v_operand_table[fm->operands[j]].flags & OPERAND_2REG))
1268 as_warn (_("Odd numbered register used as target of multi-register instruction"));
1269
1270 return fm;
1271 }
1272 fm = (struct d30v_format *) &d30v_format_table[++k];
1273 }
252b5132 1274 }
ea1562b3 1275 return NULL;
252b5132
RH
1276}
1277
2fd5405a
NC
1278/* Assemble a single instruction and return an opcode.
1279 Return -1 (an invalid opcode) on error. */
252b5132
RH
1280
1281#define NAME_BUF_LEN 20
1282
1283static long long
ea1562b3
NC
1284do_assemble (char *str,
1285 struct d30v_insn *opcode,
1286 int shortp,
1287 int is_parallel)
252b5132 1288{
2132e3a3
AM
1289 char *op_start;
1290 char *save;
1291 char *op_end;
2fd5405a
NC
1292 char name[NAME_BUF_LEN];
1293 int cmp_hack;
1294 int nlen = 0;
1295 int fsize = (shortp ? FORCE_SHORT : 0);
1296 expressionS myops[6];
1297 long long insn;
1298
1299 /* Drop leading whitespace. */
1300 while (*str == ' ')
1301 str++;
1302
1303 /* Find the opcode end. */
2132e3a3 1304 for (op_start = op_end = str;
2fd5405a 1305 *op_end
252b5132 1306 && nlen < (NAME_BUF_LEN - 1)
2fd5405a 1307 && *op_end != '/'
2132e3a3 1308 && !is_end_of_line[(unsigned char) *op_end] && *op_end != ' ';
252b5132
RH
1309 op_end++)
1310 {
3882b010 1311 name[nlen] = TOLOWER (op_start[nlen]);
252b5132
RH
1312 nlen++;
1313 }
1314
1315 if (nlen == 0)
1316 return -1;
1317
1318 name[nlen] = 0;
1319
2fd5405a 1320 /* If there is an execution condition code, handle it. */
252b5132
RH
1321 if (*op_end == '/')
1322 {
1323 int i = 0;
2fd5405a 1324 while ((i < ECC_MAX) && strncasecmp (d30v_ecc_names[i], op_end + 1, 2))
252b5132 1325 i++;
2fd5405a 1326
252b5132
RH
1327 if (i == ECC_MAX)
1328 {
1329 char tmp[4];
1330 strncpy (tmp, op_end + 1, 2);
1331 tmp[2] = 0;
2fd5405a 1332 as_bad (_("unknown condition code: %s"), tmp);
252b5132
RH
1333 return -1;
1334 }
252b5132
RH
1335 opcode->ecc = i;
1336 op_end += 3;
1337 }
1338 else
1339 opcode->ecc = ECC_AL;
252b5132 1340
2fd5405a 1341 /* CMP and CMPU change their name based on condition codes. */
252b5132
RH
1342 if (!strncmp (name, "cmp", 3))
1343 {
2fd5405a 1344 int p, i;
91d6fa6a
NC
1345 char **d30v_str = (char **) d30v_cc_names;
1346
252b5132
RH
1347 if (name[3] == 'u')
1348 p = 4;
1349 else
1350 p = 3;
1351
91d6fa6a 1352 for (i = 1; *d30v_str && strncmp (*d30v_str, &name[p], 2); i++, d30v_str++)
252b5132
RH
1353 ;
1354
2fd5405a 1355 /* cmpu only supports some condition codes. */
252b5132
RH
1356 if (p == 4)
1357 {
1358 if (i < 3 || i > 6)
1359 {
2fd5405a
NC
1360 name[p + 2] = 0;
1361 as_bad (_("cmpu doesn't support condition code %s"), &name[p]);
252b5132
RH
1362 }
1363 }
1364
91d6fa6a 1365 if (!*d30v_str)
252b5132 1366 {
2fd5405a
NC
1367 name[p + 2] = 0;
1368 as_bad (_("unknown condition code: %s"), &name[p]);
252b5132 1369 }
2fd5405a 1370
252b5132
RH
1371 cmp_hack = i;
1372 name[p] = 0;
1373 }
1374 else
1375 cmp_hack = 0;
252b5132 1376
2fd5405a
NC
1377 /* Need to look for .s or .l. */
1378 if (name[nlen - 2] == '.')
252b5132 1379 {
2fd5405a 1380 switch (name[nlen - 1])
252b5132
RH
1381 {
1382 case 's':
1383 fsize = FORCE_SHORT;
1384 break;
1385 case 'l':
1386 fsize = FORCE_LONG;
1387 break;
1388 }
2fd5405a 1389 name[nlen - 2] = 0;
252b5132
RH
1390 }
1391
2fd5405a 1392 /* Find the first opcode with the proper name. */
629310ab 1393 opcode->op = (struct d30v_opcode *) str_hash_find (d30v_hash, name);
252b5132
RH
1394 if (opcode->op == NULL)
1395 {
2fd5405a 1396 as_bad (_("unknown opcode: %s"), name);
252b5132
RH
1397 return -1;
1398 }
1399
1400 save = input_line_pointer;
1401 input_line_pointer = op_end;
1402 while (!(opcode->form = find_format (opcode->op, myops, fsize, cmp_hack)))
1403 {
1404 opcode->op++;
1405 if (opcode->op->name == NULL || strcmp (opcode->op->name, name))
1406 {
2fd5405a
NC
1407 as_bad (_("operands for opcode `%s' do not match any valid format"),
1408 name);
252b5132
RH
1409 return -1;
1410 }
1411 }
1412 input_line_pointer = save;
1413
2fd5405a 1414 insn = build_insn (opcode, myops);
252b5132 1415
2d2255b5 1416 /* Propagate multiply status. */
252b5132
RH
1417 if (insn != -1)
1418 {
1419 if (is_parallel && prev_mul32_p)
1420 cur_mul32_p = 1;
1421 else
1422 {
1423 prev_mul32_p = cur_mul32_p;
1424 cur_mul32_p = (opcode->op->flags_used & FLAG_MUL32) != 0;
1425 }
1426 }
1427
2fd5405a 1428 /* Propagate left_kills_right status. */
252b5132
RH
1429 if (insn != -1)
1430 {
1431 prev_left_kills_right_p = cur_left_kills_right_p;
1432
1433 if (opcode->op->flags_set & FLAG_LKR)
1434 {
1435 cur_left_kills_right_p = 1;
2fd5405a 1436
252b5132
RH
1437 if (strcmp (opcode->op->name, "mvtsys") == 0)
1438 {
2fd5405a
NC
1439 /* Left kills right for only mvtsys only for
1440 PSW/PSWH/PSWL/flags target. */
252b5132
RH
1441 if ((myops[0].X_op == O_register) &&
1442 ((myops[0].X_add_number == OPERAND_CONTROL) || /* psw */
1443 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+2) || /* pswh */
1444 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+1) || /* pswl */
1445 (myops[0].X_add_number == OPERAND_FLAG+0) || /* f0 */
1446 (myops[0].X_add_number == OPERAND_FLAG+1) || /* f1 */
1447 (myops[0].X_add_number == OPERAND_FLAG+2) || /* f2 */
1448 (myops[0].X_add_number == OPERAND_FLAG+3) || /* f3 */
1449 (myops[0].X_add_number == OPERAND_FLAG+4) || /* f4 */
1450 (myops[0].X_add_number == OPERAND_FLAG+5) || /* f5 */
1451 (myops[0].X_add_number == OPERAND_FLAG+6) || /* f6 */
1452 (myops[0].X_add_number == OPERAND_FLAG+7))) /* f7 */
1453 {
1454 cur_left_kills_right_p = 1;
1455 }
1456 else
1457 {
2fd5405a
NC
1458 /* Other mvtsys target registers don't kill right
1459 instruction. */
252b5132
RH
1460 cur_left_kills_right_p = 0;
1461 }
1462 } /* mvtsys */
1463 }
1464 else
1465 cur_left_kills_right_p = 0;
1466 }
1467
1468 return insn;
1469}
1470
ea1562b3
NC
1471/* Called internally to handle all alignment needs. This takes care
1472 of eliding calls to frag_align if'n the cached current alignment
1473 says we've already got it, as well as taking care of the auto-aligning
1474 labels wrt code. */
252b5132 1475
ea1562b3
NC
1476static void
1477d30v_align (int n, char *pfill, symbolS *label)
252b5132 1478{
ea1562b3
NC
1479 /* The front end is prone to changing segments out from under us
1480 temporarily when -g is in effect. */
1481 int switched_seg_p = (d30v_current_align_seg != now_seg);
2fd5405a 1482
ea1562b3
NC
1483 /* Do not assume that if 'd30v_current_align >= n' and
1484 '! switched_seg_p' that it is safe to avoid performing
1485 this alignment request. The alignment of the current frag
1486 can be changed under our feet, for example by a .ascii
1487 directive in the source code. cf testsuite/gas/d30v/reloc.s */
1488 d30v_cleanup (FALSE);
252b5132 1489
ea1562b3 1490 if (pfill == NULL)
252b5132 1491 {
ea1562b3 1492 if (n > 2
fd361982 1493 && (bfd_section_flags (now_seg) & SEC_CODE) != 0)
ea1562b3
NC
1494 {
1495 static char const nop[4] = { 0x00, 0xf0, 0x00, 0x00 };
252b5132 1496
ea1562b3
NC
1497 /* First, make sure we're on a four-byte boundary, in case
1498 someone has been putting .byte values the text section. */
1499 if (d30v_current_align < 2 || switched_seg_p)
1500 frag_align (2, 0, 0);
1501 frag_align_pattern (n, nop, sizeof nop, 0);
1502 }
1503 else
1504 frag_align (n, 0, 0);
1505 }
1506 else
1507 frag_align (n, *pfill, 0);
252b5132 1508
ea1562b3
NC
1509 if (!switched_seg_p)
1510 d30v_current_align = n;
2fd5405a 1511
ea1562b3
NC
1512 if (label != NULL)
1513 {
1514 symbolS *sym;
1515 int label_seen = FALSE;
1516 struct frag *old_frag;
1517 valueT old_value;
1518 valueT new_value;
252b5132 1519
9c2799c2 1520 gas_assert (S_GET_SEGMENT (label) == now_seg);
2fd5405a 1521
ea1562b3
NC
1522 old_frag = symbol_get_frag (label);
1523 old_value = S_GET_VALUE (label);
1524 new_value = (valueT) frag_now_fix ();
252b5132 1525
ea1562b3
NC
1526 /* It is possible to have more than one label at a particular
1527 address, especially if debugging is enabled, so we must
1528 take care to adjust all the labels at this address in this
1529 fragment. To save time we search from the end of the symbol
1530 list, backwards, since the symbols we are interested in are
1531 almost certainly the ones that were most recently added.
1532 Also to save time we stop searching once we have seen at least
1533 one matching label, and we encounter a label that is no longer
1534 in the target fragment. Note, this search is guaranteed to
1535 find at least one match when sym == label, so no special case
1536 code is necessary. */
1537 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym))
1538 {
1539 if (symbol_get_frag (sym) == old_frag
1540 && S_GET_VALUE (sym) == old_value)
1541 {
1542 label_seen = TRUE;
1543 symbol_set_frag (sym, frag_now);
1544 S_SET_VALUE (sym, new_value);
1545 }
1546 else if (label_seen && symbol_get_frag (sym) != old_frag)
1547 break;
1548 }
1549 }
2fd5405a 1550
ea1562b3
NC
1551 record_alignment (now_seg, n);
1552}
252b5132 1553
ea1562b3
NC
1554/* This is the main entry point for the machine-dependent assembler.
1555 STR points to a machine-dependent instruction. This function is
1556 supposed to emit the frags/bytes it assembles to. For the D30V, it
1557 mostly handles the special VLIW parsing and packing and leaves the
1558 difficult stuff to do_assemble (). */
1559
1560static long long prev_insn = -1;
1561static struct d30v_insn prev_opcode;
1562static subsegT prev_subseg;
1563static segT prev_seg = 0;
1564
1565void
1566md_assemble (char *str)
1567{
1568 struct d30v_insn opcode;
1569 long long insn;
1570 /* Execution type; parallel, etc. */
1571 exec_type_enum extype = EXEC_UNKNOWN;
1572 /* Saved extype. Used for multiline instructions. */
1573 static exec_type_enum etype = EXEC_UNKNOWN;
1574 char *str2;
1575
1576 if ((prev_insn != -1) && prev_seg
1577 && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
1578 d30v_cleanup (FALSE);
1579
1580 if (d30v_current_align < 3)
1581 d30v_align (3, NULL, d30v_last_label);
1582 else if (d30v_current_align > 3)
1583 d30v_current_align = 3;
1584 d30v_last_label = NULL;
1585
1586 flag_explicitly_parallel = 0;
1587 flag_xp_state = 0;
1588 if (etype == EXEC_UNKNOWN)
1589 {
1590 /* Look for the special multiple instruction separators. */
1591 str2 = strstr (str, "||");
1592 if (str2)
1593 {
1594 extype = EXEC_PARALLEL;
1595 flag_xp_state = 1;
1596 }
1597 else
1598 {
1599 str2 = strstr (str, "->");
1600 if (str2)
1601 extype = EXEC_SEQ;
1602 else
1603 {
1604 str2 = strstr (str, "<-");
1605 if (str2)
1606 extype = EXEC_REVSEQ;
1607 }
1608 }
1609
1610 /* STR2 points to the separator, if one. */
1611 if (str2)
1612 {
1613 *str2 = 0;
1614
1615 /* If two instructions are present and we already have one saved,
1616 then first write it out. */
1617 d30v_cleanup (FALSE);
1618
1619 /* Assemble first instruction and save it. */
1620 prev_insn = do_assemble (str, &prev_opcode, 1, 0);
1621 if (prev_insn == -1)
1622 as_bad (_("Cannot assemble instruction"));
1623 if (prev_opcode.form != NULL && prev_opcode.form->form >= LONG)
1624 as_bad (_("First opcode is long. Unable to mix instructions as specified."));
1625 fixups = fixups->next;
1626 str = str2 + 2;
1627 prev_seg = now_seg;
1628 prev_subseg = now_subseg;
1629 }
1630 }
1631
1632 insn = do_assemble (str, &opcode,
1633 (extype != EXEC_UNKNOWN || etype != EXEC_UNKNOWN),
1634 extype == EXEC_PARALLEL);
1635 if (insn == -1)
1636 {
1637 if (extype != EXEC_UNKNOWN)
1638 etype = extype;
1639 as_bad (_("Cannot assemble instruction"));
1640 return;
1641 }
1642
1643 if (etype != EXEC_UNKNOWN)
1644 {
1645 extype = etype;
1646 etype = EXEC_UNKNOWN;
1647 }
1648
1649 /* Word multiply instructions must not be followed by either a load or a
1650 16-bit multiply instruction in the next cycle. */
1651 if ( (extype != EXEC_REVSEQ)
1652 && prev_mul32_p
1653 && (opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
1654 {
1655 /* However, load and multiply should able to be combined in a parallel
1656 operation, so check for that first. */
1657 if (prev_insn != -1
1658 && (opcode.op->flags_used & FLAG_MEM)
1659 && opcode.form->form < LONG
1660 && (extype == EXEC_PARALLEL || (Optimizing && extype == EXEC_UNKNOWN))
1661 && parallel_ok (&prev_opcode, (long) prev_insn,
1662 &opcode, (long) insn, extype)
1663 && write_2_short (&prev_opcode, (long) prev_insn,
1664 &opcode, (long) insn, extype, fixups) == 0)
1665 {
1666 /* No instructions saved. */
1667 prev_insn = -1;
1668 return;
1669 }
1670 else
1671 {
1672 /* Can't parallelize, flush previous instruction and emit a
1673 word of NOPS, unless the previous instruction is a NOP,
1674 in which case just flush it, as this will generate a word
1675 of NOPs for us. */
1676
1677 if (prev_insn != -1 && (strcmp (prev_opcode.op->name, "nop") == 0))
1678 d30v_cleanup (FALSE);
1679 else
1680 {
1681 char *f;
1682
1683 if (prev_insn != -1)
1684 d30v_cleanup (TRUE);
1685 else
1686 {
1687 f = frag_more (8);
d4f4f3fb 1688 dwarf2_emit_insn (8);
ea1562b3
NC
1689 d30v_number_to_chars (f, NOP2, 8);
1690
1691 if (warn_nops == NOP_ALL || warn_nops == NOP_MULTIPLY)
1692 {
1693 if (opcode.op->flags_used & FLAG_MEM)
1694 as_warn (_("word of NOPs added between word multiply and load"));
1695 else
1696 as_warn (_("word of NOPs added between word multiply and 16-bit multiply"));
252b5132 1697 }
252b5132
RH
1698 }
1699 }
252b5132 1700
ea1562b3
NC
1701 extype = EXEC_UNKNOWN;
1702 }
1703 }
1704 else if ( (extype == EXEC_REVSEQ)
1705 && cur_mul32_p
1706 && (prev_opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16)))
1707 {
1708 /* Can't parallelize, flush current instruction and add a
1709 sequential NOP. */
1710 write_1_short (&opcode, (long) insn, fixups->next->next, TRUE);
1711
1712 /* Make the previous instruction the current one. */
1713 extype = EXEC_UNKNOWN;
1714 insn = prev_insn;
1715 now_seg = prev_seg;
1716 now_subseg = prev_subseg;
1717 prev_insn = -1;
1718 cur_mul32_p = prev_mul32_p;
1719 prev_mul32_p = 0;
1720 memcpy (&opcode, &prev_opcode, sizeof (prev_opcode));
1721 }
1722
1723 /* If this is a long instruction, write it and any previous short
1724 instruction. */
1725 if (opcode.form->form >= LONG)
1726 {
1727 if (extype != EXEC_UNKNOWN)
1728 as_bad (_("Instruction uses long version, so it cannot be mixed as specified"));
1729 d30v_cleanup (FALSE);
1730 write_long (&opcode, insn, fixups);
1731 prev_insn = -1;
1732 }
1733 else if ((prev_insn != -1)
1734 && (write_2_short
1735 (&prev_opcode, (long) prev_insn, &opcode,
1736 (long) insn, extype, fixups) == 0))
1737 {
1738 /* No instructions saved. */
1739 prev_insn = -1;
1740 }
1741 else
1742 {
1743 if (extype != EXEC_UNKNOWN)
1744 as_bad (_("Unable to mix instructions as specified"));
1745
1746 /* Save off last instruction so it may be packed on next pass. */
1747 memcpy (&prev_opcode, &opcode, sizeof (prev_opcode));
1748 prev_insn = insn;
1749 prev_seg = now_seg;
1750 prev_subseg = now_subseg;
1751 fixups = fixups->next;
1752 prev_mul32_p = cur_mul32_p;
1753 }
1754}
1755
1756/* If while processing a fixup, a reloc really needs to be created,
1757 then it is done here. */
1758
1759arelent *
1760tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp)
1761{
1762 arelent *reloc;
325801bd
TS
1763 reloc = XNEW (arelent);
1764 reloc->sym_ptr_ptr = XNEW (asymbol *);
ea1562b3
NC
1765 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
1766 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
1767 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
1768 if (reloc->howto == NULL)
1769 {
1770 as_bad_where (fixp->fx_file, fixp->fx_line,
1771 _("reloc %d not supported by object file format"),
1772 (int) fixp->fx_r_type);
1773 return NULL;
1774 }
1775
1776 reloc->addend = 0;
1777 return reloc;
1778}
1779
1780int
1781md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED,
1782 asection *seg ATTRIBUTE_UNUSED)
1783{
1784 abort ();
1785 return 0;
1786}
1787
1788long
1789md_pcrel_from_section (fixS *fixp, segT sec)
1790{
1791 if (fixp->fx_addsy != (symbolS *) NULL
1792 && (!S_IS_DEFINED (fixp->fx_addsy)
1793 || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
1794 return 0;
1795 return fixp->fx_frag->fr_address + fixp->fx_where;
1796}
1797
1798/* Called after the assembler has finished parsing the input file or
1799 after a label is defined. Because the D30V assembler sometimes
1800 saves short instructions to see if it can package them with the
1801 next instruction, there may be a short instruction that still needs
1802 written. */
1803
1804int
1805d30v_cleanup (int use_sequential)
1806{
1807 segT seg;
1808 subsegT subseg;
1809
1810 if (prev_insn != -1)
1811 {
1812 seg = now_seg;
1813 subseg = now_subseg;
1814 subseg_set (prev_seg, prev_subseg);
1815 write_1_short (&prev_opcode, (long) prev_insn, fixups->next,
1816 use_sequential);
1817 subseg_set (seg, subseg);
1818 prev_insn = -1;
1819 if (use_sequential)
1820 prev_mul32_p = FALSE;
1821 }
1822
1823 return 1;
1824}
1825
1826/* This function is called at the start of every line. It checks to
1827 see if the first character is a '.', which indicates the start of a
1828 pseudo-op. If it is, then write out any unwritten instructions. */
1829
1830void
1831d30v_start_line (void)
1832{
1833 char *c = input_line_pointer;
1834
1835 while (ISSPACE (*c))
1836 c++;
1837
1838 if (*c == '.')
1839 d30v_cleanup (FALSE);
1840}
1841
1842static void
3b4dbbbf 1843check_size (long value, int bits, const char *file, int line)
ea1562b3
NC
1844{
1845 int tmp, max;
1846
1847 if (value < 0)
1848 tmp = ~value;
1849 else
1850 tmp = value;
1851
1852 max = (1 << (bits - 1)) - 1;
2fd5405a 1853
ea1562b3
NC
1854 if (tmp > max)
1855 as_bad_where (file, line, _("value too large to fit in %d bits"), bits);
252b5132
RH
1856}
1857
ea1562b3 1858/* d30v_frob_label() is called when after a label is recognized. */
2fd5405a 1859
ea1562b3
NC
1860void
1861d30v_frob_label (symbolS *lab)
252b5132 1862{
ea1562b3
NC
1863 /* Emit any pending instructions. */
1864 d30v_cleanup (FALSE);
a161fe53 1865
ea1562b3
NC
1866 /* Update the label's address with the current output pointer. */
1867 symbol_set_frag (lab, frag_now);
1868 S_SET_VALUE (lab, (valueT) frag_now_fix ());
252b5132 1869
ea1562b3
NC
1870 /* Record this label for future adjustment after we find out what
1871 kind of data it references, and the required alignment therewith. */
1872 d30v_last_label = lab;
f2e25d93
AM
1873
1874 dwarf2_emit_label (lab);
2fd5405a 1875}
252b5132 1876
ea1562b3
NC
1877/* Hook into cons for capturing alignment changes. */
1878
1879void
1880d30v_cons_align (int size)
252b5132 1881{
ea1562b3
NC
1882 int log_size;
1883
69da848e 1884 /* Don't specially align anything in debug sections. */
c2ce945a
AM
1885 if ((now_seg->flags & SEC_ALLOC) == 0
1886 || strcmp (now_seg->name, ".eh_frame") == 0)
69da848e
AM
1887 return;
1888
ea1562b3
NC
1889 log_size = 0;
1890 while ((size >>= 1) != 0)
1891 ++log_size;
1892
1893 if (d30v_current_align < log_size)
1894 d30v_align (log_size, (char *) NULL, NULL);
1895 else if (d30v_current_align > log_size)
1896 d30v_current_align = log_size;
1897 d30v_last_label = NULL;
252b5132
RH
1898}
1899
94f592af 1900void
55cf6793 1901md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 1902{
2fd5405a 1903 char *where;
252b5132 1904 unsigned long insn, insn2;
a161fe53 1905 long value = *valP;
94f592af
NC
1906
1907 if (fixP->fx_addsy == (symbolS *) NULL)
1908 fixP->fx_done = 1;
1909
a161fe53
AM
1910 /* We don't support subtracting a symbol. */
1911 if (fixP->fx_subsy != (symbolS *) NULL)
1912 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
2fd5405a 1913
252b5132
RH
1914 /* Fetch the instruction, insert the fully resolved operand
1915 value, and stuff the instruction back again. */
94f592af 1916 where = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 1917 insn = bfd_getb32 ((unsigned char *) where);
2fd5405a 1918
94f592af 1919 switch (fixP->fx_r_type)
252b5132 1920 {
7553c869
AM
1921 case BFD_RELOC_8:
1922 *(unsigned char *) where = value;
252b5132 1923 break;
2fd5405a 1924
7553c869
AM
1925 case BFD_RELOC_16:
1926 bfd_putb16 ((bfd_vma) value, (unsigned char *) where);
252b5132 1927 break;
2fd5405a 1928
7553c869
AM
1929 case BFD_RELOC_64:
1930 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
1931 bfd_putb32 (0, ((unsigned char *) where) + 4);
252b5132 1932 break;
2fd5405a 1933
252b5132 1934 case BFD_RELOC_D30V_6:
94f592af 1935 check_size (value, 6, fixP->fx_file, fixP->fx_line);
252b5132
RH
1936 insn |= value & 0x3F;
1937 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1938 break;
1939
1940 case BFD_RELOC_D30V_9_PCREL:
94f592af 1941 if (fixP->fx_where & 0x7)
252b5132 1942 {
94f592af 1943 if (fixP->fx_done)
252b5132
RH
1944 value += 4;
1945 else
94f592af 1946 fixP->fx_r_type = BFD_RELOC_D30V_9_PCREL_R;
252b5132 1947 }
94f592af 1948 check_size (value, 9, fixP->fx_file, fixP->fx_line);
252b5132
RH
1949 insn |= ((value >> 3) & 0x3F) << 12;
1950 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1951 break;
1952
1953 case BFD_RELOC_D30V_15:
94f592af 1954 check_size (value, 15, fixP->fx_file, fixP->fx_line);
252b5132
RH
1955 insn |= (value >> 3) & 0xFFF;
1956 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1957 break;
1958
1959 case BFD_RELOC_D30V_15_PCREL:
94f592af 1960 if (fixP->fx_where & 0x7)
252b5132 1961 {
94f592af 1962 if (fixP->fx_done)
252b5132
RH
1963 value += 4;
1964 else
94f592af 1965 fixP->fx_r_type = BFD_RELOC_D30V_15_PCREL_R;
252b5132 1966 }
94f592af 1967 check_size (value, 15, fixP->fx_file, fixP->fx_line);
252b5132
RH
1968 insn |= (value >> 3) & 0xFFF;
1969 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1970 break;
1971
1972 case BFD_RELOC_D30V_21:
94f592af 1973 check_size (value, 21, fixP->fx_file, fixP->fx_line);
252b5132
RH
1974 insn |= (value >> 3) & 0x3FFFF;
1975 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1976 break;
1977
1978 case BFD_RELOC_D30V_21_PCREL:
94f592af 1979 if (fixP->fx_where & 0x7)
252b5132 1980 {
94f592af 1981 if (fixP->fx_done)
252b5132
RH
1982 value += 4;
1983 else
94f592af 1984 fixP->fx_r_type = BFD_RELOC_D30V_21_PCREL_R;
252b5132 1985 }
94f592af 1986 check_size (value, 21, fixP->fx_file, fixP->fx_line);
252b5132
RH
1987 insn |= (value >> 3) & 0x3FFFF;
1988 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1989 break;
1990
1991 case BFD_RELOC_D30V_32:
1992 insn2 = bfd_getb32 ((unsigned char *) where + 4);
2fd5405a
NC
1993 insn |= (value >> 26) & 0x3F; /* Top 6 bits. */
1994 insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */
1995 insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */
252b5132
RH
1996 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
1997 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
1998 break;
1999
2000 case BFD_RELOC_D30V_32_PCREL:
2001 insn2 = bfd_getb32 ((unsigned char *) where + 4);
81d4177b
KH
2002 insn |= (value >> 26) & 0x3F; /* Top 6 bits. */
2003 insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */
2004 insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */
252b5132
RH
2005 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
2006 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
2007 break;
2008
2009 case BFD_RELOC_32:
2010 bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
2011 break;
2012
2013 default:
2014 as_bad (_("line %d: unknown relocation type: 0x%x"),
94f592af 2015 fixP->fx_line, fixP->fx_r_type);
252b5132 2016 }
252b5132
RH
2017}
2018
252b5132
RH
2019/* Handle the .align pseudo-op. This aligns to a power of two. We
2020 hook here to latch the current alignment. */
2021
2022static void
ea1562b3 2023s_d30v_align (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
2024{
2025 int align;
2026 char fill, *pfill = NULL;
2027 long max_alignment = 15;
2028
2029 align = get_absolute_expression ();
2030 if (align > max_alignment)
2031 {
2032 align = max_alignment;
2033 as_warn (_("Alignment too large: %d assumed"), align);
2034 }
2035 else if (align < 0)
2036 {
2037 as_warn (_("Alignment negative: 0 assumed"));
2038 align = 0;
2039 }
2040
2041 if (*input_line_pointer == ',')
2042 {
2043 input_line_pointer++;
2044 fill = get_absolute_expression ();
2045 pfill = &fill;
2046 }
2047
2048 d30v_last_label = NULL;
2049 d30v_align (align, pfill, NULL);
2050
2051 demand_empty_rest_of_line ();
2052}
2053
2054/* Handle the .text pseudo-op. This is like the usual one, but it
2055 clears the saved last label and resets known alignment. */
2056
2057static void
ea1562b3 2058s_d30v_text (int i)
252b5132
RH
2059
2060{
2061 s_text (i);
2062 d30v_last_label = NULL;
2063 d30v_current_align = 0;
2064 d30v_current_align_seg = now_seg;
2065}
2066
2067/* Handle the .data pseudo-op. This is like the usual one, but it
2068 clears the saved last label and resets known alignment. */
2069
2070static void
ea1562b3 2071s_d30v_data (int i)
252b5132
RH
2072{
2073 s_data (i);
2074 d30v_last_label = NULL;
2075 d30v_current_align = 0;
2076 d30v_current_align_seg = now_seg;
2077}
2078
2079/* Handle the .section pseudo-op. This is like the usual one, but it
2080 clears the saved last label and resets known alignment. */
2081
2082static void
ea1562b3 2083s_d30v_section (int ignore)
252b5132
RH
2084{
2085 obj_elf_section (ignore);
2086 d30v_last_label = NULL;
2087 d30v_current_align = 0;
2088 d30v_current_align_seg = now_seg;
2089}
ea1562b3
NC
2090
2091/* The target specific pseudo-ops which we support. */
2092const pseudo_typeS md_pseudo_table[] =
2093{
2094 { "word", cons, 4 },
2095 { "hword", cons, 2 },
2096 { "align", s_d30v_align, 0 },
2097 { "text", s_d30v_text, 0 },
2098 { "data", s_d30v_data, 0 },
2099 { "section", s_d30v_section, 0 },
2100 { "section.s", s_d30v_section, 0 },
2101 { "sect", s_d30v_section, 0 },
2102 { "sect.s", s_d30v_section, 0 },
2103 { NULL, NULL, 0 }
2104};