]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
250d07de 1@c Copyright (C) 1991-2021 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
646cc3e0 128@code{znver3},
7b458c12
L
129@code{btver1},
130@code{btver2},
9103f4f4
L
131@code{generic32} and
132@code{generic64}.
133
34bca508 134In addition to the basic instruction set, the assembler can be told to
6305a203
L
135accept various extension mnemonics. For example,
136@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
137@var{vmx}. The following extensions are currently supported:
309d3373
JB
138@code{8087},
139@code{287},
140@code{387},
1848e567 141@code{687},
309d3373 142@code{no87},
1848e567
L
143@code{no287},
144@code{no387},
145@code{no687},
d871f3f4
L
146@code{cmov},
147@code{nocmov},
148@code{fxsr},
149@code{nofxsr},
6305a203 150@code{mmx},
309d3373 151@code{nommx},
6305a203
L
152@code{sse},
153@code{sse2},
154@code{sse3},
af5c13b0 155@code{sse4a},
6305a203
L
156@code{ssse3},
157@code{sse4.1},
158@code{sse4.2},
159@code{sse4},
309d3373 160@code{nosse},
1848e567
L
161@code{nosse2},
162@code{nosse3},
af5c13b0 163@code{nosse4a},
1848e567
L
164@code{nossse3},
165@code{nosse4.1},
166@code{nosse4.2},
167@code{nosse4},
c0f3af97 168@code{avx},
6c30d220 169@code{avx2},
1848e567
L
170@code{noavx},
171@code{noavx2},
e2e1fcde
L
172@code{adx},
173@code{rdseed},
174@code{prfchw},
5c111e37 175@code{smap},
7e8b059b 176@code{mpx},
a0046408 177@code{sha},
8bc52696 178@code{rdpid},
6b40c462 179@code{ptwrite},
603555e5 180@code{cet},
48521003 181@code{gfni},
8dcf1fad 182@code{vaes},
ff1982d5 183@code{vpclmulqdq},
1dfc6506
L
184@code{prefetchwt1},
185@code{clflushopt},
186@code{se1},
c5e7287a 187@code{clwb},
c0a30a9f
L
188@code{movdiri},
189@code{movdir64b},
5d79adc4 190@code{enqcmd},
4b27d27c 191@code{serialize},
bb651e8b 192@code{tsxldtrk},
c4694f17
TG
193@code{kl},
194@code{nokl},
195@code{widekl},
196@code{nowidekl},
c1fa250a 197@code{hreset},
43234a1e
L
198@code{avx512f},
199@code{avx512cd},
200@code{avx512er},
201@code{avx512pf},
1dfc6506
L
202@code{avx512vl},
203@code{avx512bw},
204@code{avx512dq},
2cc1b5aa 205@code{avx512ifma},
14f195c9 206@code{avx512vbmi},
920d2ddc 207@code{avx512_4fmaps},
47acf0bd 208@code{avx512_4vnniw},
620214f7 209@code{avx512_vpopcntdq},
53467f57 210@code{avx512_vbmi2},
8cfcb765 211@code{avx512_vnni},
ee6872be 212@code{avx512_bitalg},
708a2fff 213@code{avx512_vp2intersect},
81d54bb7 214@code{tdx},
d6aab7a1 215@code{avx512_bf16},
58bf9b6a 216@code{avx_vnni},
144b71e2
L
217@code{noavx512f},
218@code{noavx512cd},
219@code{noavx512er},
220@code{noavx512pf},
221@code{noavx512vl},
222@code{noavx512bw},
223@code{noavx512dq},
224@code{noavx512ifma},
225@code{noavx512vbmi},
920d2ddc 226@code{noavx512_4fmaps},
47acf0bd 227@code{noavx512_4vnniw},
620214f7 228@code{noavx512_vpopcntdq},
53467f57 229@code{noavx512_vbmi2},
8cfcb765 230@code{noavx512_vnni},
ee6872be 231@code{noavx512_bitalg},
9186c494 232@code{noavx512_vp2intersect},
81d54bb7 233@code{notdx},
d6aab7a1 234@code{noavx512_bf16},
58bf9b6a 235@code{noavx_vnni},
dd455cf5 236@code{noenqcmd},
4b27d27c 237@code{noserialize},
bb651e8b 238@code{notsxldtrk},
260cd341
LC
239@code{amx_int8},
240@code{noamx_int8},
241@code{amx_bf16},
242@code{noamx_bf16},
243@code{amx_tile},
244@code{noamx_tile},
f64c42a9 245@code{nouintr},
c1fa250a 246@code{nohreset},
6305a203 247@code{vmx},
8729a6f6 248@code{vmfunc},
6305a203 249@code{smx},
f03fe4c1 250@code{xsave},
c7b8aa3a 251@code{xsaveopt},
1dfc6506
L
252@code{xsavec},
253@code{xsaves},
c0f3af97 254@code{aes},
594ab6a3 255@code{pclmul},
c7b8aa3a
L
256@code{fsgsbase},
257@code{rdrnd},
258@code{f16c},
6c30d220 259@code{bmi2},
c0f3af97 260@code{fma},
f1f8f695
L
261@code{movbe},
262@code{ept},
6c30d220 263@code{lzcnt},
272a84b1 264@code{popcnt},
42164a71
L
265@code{hle},
266@code{rtm},
6c30d220 267@code{invpcid},
bd5295b2 268@code{clflush},
9916071f 269@code{mwaitx},
029f3522 270@code{clzero},
3233d7d0 271@code{wbnoinvd},
be3a8dca 272@code{pconfig},
de89d0a3 273@code{waitpkg},
f64c42a9 274@code{uintr},
c48935d7 275@code{cldemote},
142861df
JB
276@code{rdpru},
277@code{mcommit},
a847e322 278@code{sev_es},
f88c9eb0 279@code{lwp},
5dd85c99
SP
280@code{fma4},
281@code{xop},
60aa667e 282@code{cx16},
bd5295b2 283@code{syscall},
1b7f3fb0 284@code{rdtscp},
6305a203
L
285@code{3dnow},
286@code{3dnowa},
287@code{sse4a},
288@code{sse5},
646cc3e0
GG
289@code{snp},
290@code{invlpgb},
291@code{tlbsync},
272a84b1 292@code{svme} and
6305a203 293@code{padlock}.
309d3373
JB
294Note that rather than extending a basic instruction set, the extension
295mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
296
297When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
298@code{.arch} directive will take precedent.
299
300@cindex @samp{-mtune=} option, i386
301@cindex @samp{-mtune=} option, x86-64
302@item -mtune=@var{CPU}
303This option specifies a processor to optimize for. When used in
304conjunction with the @option{-march} option, only instructions
305of the processor specified by the @option{-march} option will be
306generated.
307
6305a203
L
308Valid @var{CPU} values are identical to the processor list of
309@option{-march=@var{CPU}}.
9103f4f4 310
c0f3af97
L
311@cindex @samp{-msse2avx} option, i386
312@cindex @samp{-msse2avx} option, x86-64
313@item -msse2avx
314This option specifies that the assembler should encode SSE instructions
315with VEX prefix.
316
daf50ae7
L
317@cindex @samp{-msse-check=} option, i386
318@cindex @samp{-msse-check=} option, x86-64
319@item -msse-check=@var{none}
1f9bb1ca
AS
320@itemx -msse-check=@var{warning}
321@itemx -msse-check=@var{error}
9aff4b7a 322These options control if the assembler should check SSE instructions.
daf50ae7
L
323@option{-msse-check=@var{none}} will make the assembler not to check SSE
324instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 325will make the assembler issue a warning for any SSE instruction.
daf50ae7 326@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 327for any SSE instruction.
daf50ae7 328
539f890d
L
329@cindex @samp{-mavxscalar=} option, i386
330@cindex @samp{-mavxscalar=} option, x86-64
331@item -mavxscalar=@var{128}
1f9bb1ca 332@itemx -mavxscalar=@var{256}
2aab8acd 333These options control how the assembler should encode scalar AVX
539f890d
L
334instructions. @option{-mavxscalar=@var{128}} will encode scalar
335AVX instructions with 128bit vector length, which is the default.
336@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
337with 256bit vector length.
338
4970191f
JB
339WARNING: Don't use this for production code - due to CPU errata the
340resulting code may not work on certain models.
341
03751133
L
342@cindex @samp{-mvexwig=} option, i386
343@cindex @samp{-mvexwig=} option, x86-64
344@item -mvexwig=@var{0}
345@itemx -mvexwig=@var{1}
346These options control how the assembler should encode VEX.W-ignored (WIG)
347VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
348instructions with vex.w = 0, which is the default.
349@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
350vex.w = 1.
351
4970191f
JB
352WARNING: Don't use this for production code - due to CPU errata the
353resulting code may not work on certain models.
354
43234a1e
L
355@cindex @samp{-mevexlig=} option, i386
356@cindex @samp{-mevexlig=} option, x86-64
357@item -mevexlig=@var{128}
358@itemx -mevexlig=@var{256}
359@itemx -mevexlig=@var{512}
360These options control how the assembler should encode length-ignored
361(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
362EVEX instructions with 128bit vector length, which is the default.
363@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
364encode LIG EVEX instructions with 256bit and 512bit vector length,
365respectively.
366
367@cindex @samp{-mevexwig=} option, i386
368@cindex @samp{-mevexwig=} option, x86-64
369@item -mevexwig=@var{0}
370@itemx -mevexwig=@var{1}
371These options control how the assembler should encode w-ignored (WIG)
372EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
373EVEX instructions with evex.w = 0, which is the default.
374@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
375evex.w = 1.
376
1efbbeb4
L
377@cindex @samp{-mmnemonic=} option, i386
378@cindex @samp{-mmnemonic=} option, x86-64
379@item -mmnemonic=@var{att}
1f9bb1ca 380@itemx -mmnemonic=@var{intel}
34bca508 381This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
382The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
383take precedent.
384
385@cindex @samp{-msyntax=} option, i386
386@cindex @samp{-msyntax=} option, x86-64
387@item -msyntax=@var{att}
1f9bb1ca 388@itemx -msyntax=@var{intel}
34bca508 389This option specifies instruction syntax when processing instructions.
1efbbeb4
L
390The @code{.att_syntax} and @code{.intel_syntax} directives will
391take precedent.
392
393@cindex @samp{-mnaked-reg} option, i386
394@cindex @samp{-mnaked-reg} option, x86-64
395@item -mnaked-reg
33eaf5de 396This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 397The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 398
7e8b059b
L
399@cindex @samp{-madd-bnd-prefix} option, i386
400@cindex @samp{-madd-bnd-prefix} option, x86-64
401@item -madd-bnd-prefix
402This option forces the assembler to add BND prefix to all branches, even
403if such prefix was not explicitly specified in the source code.
404
8dcea932
L
405@cindex @samp{-mshared} option, i386
406@cindex @samp{-mshared} option, x86-64
407@item -mno-shared
408On ELF target, the assembler normally optimizes out non-PLT relocations
409against defined non-weak global branch targets with default visibility.
410The @samp{-mshared} option tells the assembler to generate code which
411may go into a shared library where all non-weak global branch targets
412with default visibility can be preempted. The resulting code is
413slightly bigger. This option only affects the handling of branch
414instructions.
415
251dae91 416@cindex @samp{-mbig-obj} option, i386
167ad85b
TG
417@cindex @samp{-mbig-obj} option, x86-64
418@item -mbig-obj
251dae91 419On PE/COFF target this option forces the use of big object file
167ad85b
TG
420format, which allows more than 32768 sections.
421
d022bddd
IT
422@cindex @samp{-momit-lock-prefix=} option, i386
423@cindex @samp{-momit-lock-prefix=} option, x86-64
424@item -momit-lock-prefix=@var{no}
425@itemx -momit-lock-prefix=@var{yes}
426These options control how the assembler should encode lock prefix.
427This option is intended as a workaround for processors, that fail on
428lock prefix. This option can only be safely used with single-core,
429single-thread computers
430@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
431@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
432which is the default.
433
e4e00185
AS
434@cindex @samp{-mfence-as-lock-add=} option, i386
435@cindex @samp{-mfence-as-lock-add=} option, x86-64
436@item -mfence-as-lock-add=@var{no}
437@itemx -mfence-as-lock-add=@var{yes}
438These options control how the assembler should encode lfence, mfence and
439sfence.
440@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
441sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
442@samp{lock addl $0x0, (%esp)} in 32-bit mode.
443@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
444sfence as usual, which is the default.
445
0cb4071e
L
446@cindex @samp{-mrelax-relocations=} option, i386
447@cindex @samp{-mrelax-relocations=} option, x86-64
448@item -mrelax-relocations=@var{no}
449@itemx -mrelax-relocations=@var{yes}
450These options control whether the assembler should generate relax
451relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
452R_X86_64_REX_GOTPCRELX, in 64-bit mode.
453@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
454@option{-mrelax-relocations=@var{no}} will not generate relax
455relocations. The default can be controlled by a configure option
456@option{--enable-x86-relax-relocations}.
457
e379e5f3
L
458@cindex @samp{-malign-branch-boundary=} option, i386
459@cindex @samp{-malign-branch-boundary=} option, x86-64
460@item -malign-branch-boundary=@var{NUM}
461This option controls how the assembler should align branches with segment
462prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
463no less than 16. Branches will be aligned within @var{NUM} byte
464boundary. @option{-malign-branch-boundary=0}, which is the default,
465doesn't align branches.
466
467@cindex @samp{-malign-branch=} option, i386
468@cindex @samp{-malign-branch=} option, x86-64
469@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
470This option specifies types of branches to align. @var{TYPE} is
471combination of @samp{jcc}, which aligns conditional jumps,
472@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
473which aligns unconditional jumps, @samp{call} which aligns calls,
474@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
475jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
476
477@cindex @samp{-malign-branch-prefix-size=} option, i386
478@cindex @samp{-malign-branch-prefix-size=} option, x86-64
479@item -malign-branch-prefix-size=@var{NUM}
480This option specifies the maximum number of prefixes on an instruction
481to align branches. @var{NUM} should be between 0 and 5. The default
482@var{NUM} is 5.
483
76cf450b
L
484@cindex @samp{-mbranches-within-32B-boundaries} option, i386
485@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
486@item -mbranches-within-32B-boundaries
487This option aligns conditional jumps, fused conditional jumps and
488unconditional jumps within 32 byte boundary with up to 5 segment prefixes
489on an instruction. It is equivalent to
490@option{-malign-branch-boundary=32}
491@option{-malign-branch=jcc+fused+jmp}
492@option{-malign-branch-prefix-size=5}.
493The default doesn't align branches.
494
ae531041
L
495@cindex @samp{-mlfence-after-load=} option, i386
496@cindex @samp{-mlfence-after-load=} option, x86-64
497@item -mlfence-after-load=@var{no}
498@itemx -mlfence-after-load=@var{yes}
499These options control whether the assembler should generate lfence
500after load instructions. @option{-mlfence-after-load=@var{yes}} will
501generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
502lfence, which is the default.
503
504@cindex @samp{-mlfence-before-indirect-branch=} option, i386
505@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
506@item -mlfence-before-indirect-branch=@var{none}
507@item -mlfence-before-indirect-branch=@var{all}
508@item -mlfence-before-indirect-branch=@var{register}
509@itemx -mlfence-before-indirect-branch=@var{memory}
510These options control whether the assembler should generate lfence
3071b197 511before indirect near branch instructions.
ae531041 512@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 513before indirect near branch via register and issue a warning before
ae531041 514indirect near branch via memory.
a09f656b 515It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
516there's no explict @option{-mlfence-before-ret=}.
ae531041 517@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 518lfence before indirect near branch via register.
ae531041
L
519@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
520warning before indirect near branch via memory.
521@option{-mlfence-before-indirect-branch=@var{none}} will not generate
522lfence nor issue warning, which is the default. Note that lfence won't
523be generated before indirect near branch via register with
524@option{-mlfence-after-load=@var{yes}} since lfence will be generated
525after loading branch target register.
526
527@cindex @samp{-mlfence-before-ret=} option, i386
528@cindex @samp{-mlfence-before-ret=} option, x86-64
529@item -mlfence-before-ret=@var{none}
a09f656b 530@item -mlfence-before-ret=@var{shl}
ae531041 531@item -mlfence-before-ret=@var{or}
a09f656b 532@item -mlfence-before-ret=@var{yes}
ae531041
L
533@itemx -mlfence-before-ret=@var{not}
534These options control whether the assembler should generate lfence
535before ret. @option{-mlfence-before-ret=@var{or}} will generate
536generate or instruction with lfence.
a09f656b 537@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
538with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
539instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
540generate lfence, which is the default.
ae531041 541
b4a3a7b4
L
542@cindex @samp{-mx86-used-note=} option, i386
543@cindex @samp{-mx86-used-note=} option, x86-64
544@item -mx86-used-note=@var{no}
545@itemx -mx86-used-note=@var{yes}
546These options control whether the assembler should generate
547GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
548GNU property notes. The default can be controlled by the
549@option{--enable-x86-used-note} configure option.
550
d3d3c6db
IT
551@cindex @samp{-mevexrcig=} option, i386
552@cindex @samp{-mevexrcig=} option, x86-64
553@item -mevexrcig=@var{rne}
554@itemx -mevexrcig=@var{rd}
555@itemx -mevexrcig=@var{ru}
556@itemx -mevexrcig=@var{rz}
557These options control how the assembler should encode SAE-only
558EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
559of EVEX instruction with 00, which is the default.
560@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
561and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
562with 01, 10 and 11 RC bits, respectively.
563
5db04b09
L
564@cindex @samp{-mamd64} option, x86-64
565@cindex @samp{-mintel64} option, x86-64
566@item -mamd64
567@itemx -mintel64
568This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
569Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
570only and AMD64 ISAs.
5db04b09 571
b6f8c7c4
L
572@cindex @samp{-O0} option, i386
573@cindex @samp{-O0} option, x86-64
574@cindex @samp{-O} option, i386
575@cindex @samp{-O} option, x86-64
576@cindex @samp{-O1} option, i386
577@cindex @samp{-O1} option, x86-64
578@cindex @samp{-O2} option, i386
579@cindex @samp{-O2} option, x86-64
580@cindex @samp{-Os} option, i386
581@cindex @samp{-Os} option, x86-64
582@item -O0 | -O | -O1 | -O2 | -Os
583Optimize instruction encoding with smaller instruction size. @samp{-O}
584and @samp{-O1} encode 64-bit register load instructions with 64-bit
585immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 586immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
587register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
588register clearing instructions with 128-bit VEX vector register
589clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 590register load/store instructions with VEX vector register load/store
a0a1771e
JB
591instructions, and encode 128-bit/256-bit EVEX packed integer logical
592instructions with 128-bit/256-bit VEX packed integer logical.
593
594@samp{-O2} includes @samp{-O1} optimization plus encodes
595256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
596EVEX vector register clearing instructions. In 64-bit mode VEX encoded
597instructions with commutative source operands will also have their
598source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
599instead of the 3-byte one. Certain forms of AND as well as OR with the
600same (register) operand specified twice will also be changed to TEST.
a0a1771e 601
b6f8c7c4
L
602@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
603and 64-bit register tests with immediate as 8-bit register test with
604immediate. @samp{-O0} turns off this optimization.
605
55b62671 606@end table
731caf76 607@c man end
e413e4e9 608
a6c24e68
NC
609@node i386-Directives
610@section x86 specific Directives
611
612@cindex machine directives, x86
613@cindex x86 machine directives
614@table @code
615
616@cindex @code{lcomm} directive, COFF
617@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
618Reserve @var{length} (an absolute expression) bytes for a local common
619denoted by @var{symbol}. The section and value of @var{symbol} are
620those of the new local common. The addresses are allocated in the bss
704209c0
NC
621section, so that at run-time the bytes start off zeroed. Since
622@var{symbol} is not declared global, it is normally not visible to
623@code{@value{LD}}. The optional third parameter, @var{alignment},
624specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
625
626This directive is only available for COFF based x86 targets.
627
102e9361
NC
628@cindex @code{largecomm} directive, ELF
629@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
630This directive behaves in the same way as the @code{comm} directive
631except that the data is placed into the @var{.lbss} section instead of
632the @var{.bss} section @ref{Comm}.
633
634The directive is intended to be used for data which requires a large
635amount of space, and it is only available for ELF based x86_64
636targets.
637
f2f51cd5
NC
638@cindex @code{value} directive
639@item .value @var{expression} [, @var{expression}]
640This directive behaves in the same way as the @code{.short} directive,
641taking a series of comma separated expressions and storing them as
642two-byte wide values into the current section.
643
a6c24e68 644@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
645
646@end table
647
252b5132 648@node i386-Syntax
7c31ae13
NC
649@section i386 Syntactical Considerations
650@menu
651* i386-Variations:: AT&T Syntax versus Intel Syntax
652* i386-Chars:: Special Characters
653@end menu
654
655@node i386-Variations
656@subsection AT&T Syntax versus Intel Syntax
252b5132 657
e413e4e9
AM
658@cindex i386 intel_syntax pseudo op
659@cindex intel_syntax pseudo op, i386
660@cindex i386 att_syntax pseudo op
661@cindex att_syntax pseudo op, i386
252b5132
RH
662@cindex i386 syntax compatibility
663@cindex syntax compatibility, i386
55b62671
AJ
664@cindex x86-64 intel_syntax pseudo op
665@cindex intel_syntax pseudo op, x86-64
666@cindex x86-64 att_syntax pseudo op
667@cindex att_syntax pseudo op, x86-64
668@cindex x86-64 syntax compatibility
669@cindex syntax compatibility, x86-64
e413e4e9
AM
670
671@code{@value{AS}} now supports assembly using Intel assembler syntax.
672@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
673back to the usual AT&T mode for compatibility with the output of
674@code{@value{GCC}}. Either of these directives may have an optional
675argument, @code{prefix}, or @code{noprefix} specifying whether registers
676require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
677different from Intel syntax. We mention these differences because
678almost all 80386 documents use Intel syntax. Notable differences
679between the two syntaxes are:
680
681@cindex immediate operands, i386
682@cindex i386 immediate operands
683@cindex register operands, i386
684@cindex i386 register operands
685@cindex jump/call operands, i386
686@cindex i386 jump/call operands
687@cindex operand delimiters, i386
55b62671
AJ
688
689@cindex immediate operands, x86-64
690@cindex x86-64 immediate operands
691@cindex register operands, x86-64
692@cindex x86-64 register operands
693@cindex jump/call operands, x86-64
694@cindex x86-64 jump/call operands
695@cindex operand delimiters, x86-64
252b5132
RH
696@itemize @bullet
697@item
698AT&T immediate operands are preceded by @samp{$}; Intel immediate
699operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
700AT&T register operands are preceded by @samp{%}; Intel register operands
701are undelimited. AT&T absolute (as opposed to PC relative) jump/call
702operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
703
704@cindex i386 source, destination operands
705@cindex source, destination operands; i386
55b62671
AJ
706@cindex x86-64 source, destination operands
707@cindex source, destination operands; x86-64
252b5132
RH
708@item
709AT&T and Intel syntax use the opposite order for source and destination
710operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
711@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
712previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
713instructions with 2 immediate operands, such as the @samp{enter}
714instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
715
716@cindex mnemonic suffixes, i386
717@cindex sizes operands, i386
718@cindex i386 size suffixes
55b62671
AJ
719@cindex mnemonic suffixes, x86-64
720@cindex sizes operands, x86-64
721@cindex x86-64 size suffixes
252b5132
RH
722@item
723In AT&T syntax the size of memory operands is determined from the last
724character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 725@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
726(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
727of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
728(256-bit vector) and zmm (512-bit vector) memory references, only when there's
729no other way to disambiguate an instruction. Intel syntax accomplishes this by
730prefixing memory operands (@emph{not} the instruction mnemonics) with
731@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
732@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
733syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
734syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
735@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 736
4b06377f
L
737In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
738instruction with the 64-bit displacement or immediate operand.
739
252b5132
RH
740@cindex return instructions, i386
741@cindex i386 jump, call, return
55b62671
AJ
742@cindex return instructions, x86-64
743@cindex x86-64 jump, call, return
252b5132
RH
744@item
745Immediate form long jumps and calls are
746@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
747Intel syntax is
748@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
749instruction
750is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
751@samp{ret far @var{stack-adjust}}.
752
753@cindex sections, i386
754@cindex i386 sections
55b62671
AJ
755@cindex sections, x86-64
756@cindex x86-64 sections
252b5132
RH
757@item
758The AT&T assembler does not provide support for multiple section
759programs. Unix style systems expect all programs to be single sections.
760@end itemize
761
7c31ae13
NC
762@node i386-Chars
763@subsection Special Characters
764
765@cindex line comment character, i386
766@cindex i386 line comment character
767The presence of a @samp{#} appearing anywhere on a line indicates the
768start of a comment that extends to the end of that line.
769
770If a @samp{#} appears as the first character of a line then the whole
771line is treated as a comment, but in this case the line can also be a
772logical line number directive (@pxref{Comments}) or a preprocessor
773control command (@pxref{Preprocessing}).
774
a05a5b64 775If the @option{--divide} command-line option has not been specified
7c31ae13
NC
776then the @samp{/} character appearing anywhere on a line also
777introduces a line comment.
778
779@cindex line separator, i386
780@cindex statement separator, i386
781@cindex i386 line separator
782The @samp{;} character can be used to separate statements on the same
783line.
784
252b5132 785@node i386-Mnemonics
d3b47e2b
L
786@section i386-Mnemonics
787@subsection Instruction Naming
252b5132
RH
788
789@cindex i386 instruction naming
790@cindex instruction naming, i386
55b62671
AJ
791@cindex x86-64 instruction naming
792@cindex instruction naming, x86-64
793
252b5132 794Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
795specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
796and @samp{q} specify byte, word, long and quadruple word operands. If
797no suffix is specified by an instruction then @code{@value{AS}} tries to
798fill in the missing suffix based on the destination register operand
799(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
800to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
801@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
802assembler which assumes that a missing mnemonic suffix implies long
803operand size. (This incompatibility does not affect compiler output
804since compilers always explicitly specify the mnemonic suffix.)
252b5132 805
c006a730
JB
806When there is no sizing suffix and no (suitable) register operands to
807deduce the size of memory operands, with a few exceptions and where long
808operand size is possible in the first place, operand size will default
809to long in 32- and 64-bit modes. Similarly it will default to short in
81016-bit mode. Noteworthy exceptions are
811
812@itemize @bullet
813@item
814Instructions with an implicit on-stack operand as well as branches,
815which default to quad in 64-bit mode.
816
817@item
818Sign- and zero-extending moves, which default to byte size source
819operands.
820
821@item
822Floating point insns with integer operands, which default to short (for
823perhaps historical reasons).
824
825@item
826CRC32 with a 64-bit destination, which defaults to a quad source
827operand.
828
829@end itemize
830
b6169b20
L
831@cindex encoding options, i386
832@cindex encoding options, x86-64
833
86fa6981
L
834Different encoding options can be specified via pseudo prefixes:
835
836@itemize @bullet
837@item
838@samp{@{disp8@}} -- prefer 8-bit displacement.
839
840@item
41eb8e88
L
841@samp{@{disp32@}} -- prefer 32-bit displacement.
842
843@item
844@samp{@{disp16@}} -- prefer 16-bit displacement.
86fa6981
L
845
846@item
847@samp{@{load@}} -- prefer load-form instruction.
848
849@item
850@samp{@{store@}} -- prefer store-form instruction.
851
852@item
42e04b36 853@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
854
855@item
42e04b36 856@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
857
858@item
859@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
860
861@item
862@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
863instructions (x86-64 only). Note that this differs from the @samp{rex}
864prefix which generates REX prefix unconditionally.
b6f8c7c4
L
865
866@item
867@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 868@end itemize
b6169b20 869
58bf9b6a
L
870Mnemonics of Intel VNNI instructions are encoded with the EVEX prefix
871by default. The pseudo @samp{@{vex@}} prefix can be used to encode
872mnemonics of Intel VNNI instructions with the VEX prefix.
873
252b5132
RH
874@cindex conversion instructions, i386
875@cindex i386 conversion instructions
55b62671
AJ
876@cindex conversion instructions, x86-64
877@cindex x86-64 conversion instructions
252b5132
RH
878The Intel-syntax conversion instructions
879
880@itemize @bullet
881@item
882@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
883
884@item
885@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
886
887@item
888@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
889
890@item
891@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
892
893@item
894@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
895(x86-64 only),
896
897@item
d5f0cf92 898@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 899@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
900@end itemize
901
902@noindent
55b62671
AJ
903are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
904@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
905instructions.
252b5132 906
0e6724de
L
907@cindex extension instructions, i386
908@cindex i386 extension instructions
909@cindex extension instructions, x86-64
910@cindex x86-64 extension instructions
911The Intel-syntax extension instructions
912
913@itemize @bullet
914@item
915@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
916
917@item
918@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
919
920@item
921@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
922(x86-64 only).
923
924@item
925@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
926
927@item
928@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
929(x86-64 only).
930
931@item
932@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
933(x86-64 only).
934
935@item
936@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
937
938@item
939@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
940
941@item
942@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
943(x86-64 only).
944
945@item
946@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
947
948@item
949@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
950(x86-64 only).
951@end itemize
952
953@noindent
954are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
955@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
956@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
957@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
958@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
959
252b5132
RH
960@cindex jump instructions, i386
961@cindex call instructions, i386
55b62671
AJ
962@cindex jump instructions, x86-64
963@cindex call instructions, x86-64
252b5132
RH
964Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
965AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
966convention.
967
d3b47e2b 968@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
969
970@cindex i386 mnemonic compatibility
971@cindex mnemonic compatibility, i386
972
973@code{@value{AS}} supports assembly using Intel mnemonic.
974@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
975@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
976syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
977Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
978@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
979@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
980assembler with different mnemonics from those in Intel IA32 specification.
981@code{@value{GCC}} generates those instructions with AT&T mnemonic.
982
bc31405e
L
983@itemize @bullet
984@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
985register. @samp{movsxd} should be used to encode 16-bit or 32-bit
986destination register with both AT&T and Intel mnemonics.
987@end itemize
988
252b5132
RH
989@node i386-Regs
990@section Register Naming
991
992@cindex i386 registers
993@cindex registers, i386
55b62671
AJ
994@cindex x86-64 registers
995@cindex registers, x86-64
252b5132
RH
996Register operands are always prefixed with @samp{%}. The 80386 registers
997consist of
998
999@itemize @bullet
1000@item
1001the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
1002@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
1003frame pointer), and @samp{%esp} (the stack pointer).
1004
1005@item
1006the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
1007@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
1008
1009@item
1010the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
1011@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
1012are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
1013@samp{%cx}, and @samp{%dx})
1014
1015@item
1016the 6 section registers @samp{%cs} (code section), @samp{%ds}
1017(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
1018and @samp{%gs}.
1019
1020@item
4bde3cdd
UD
1021the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1022@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
1023
1024@item
1025the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1026@samp{%db3}, @samp{%db6}, and @samp{%db7}.
1027
1028@item
1029the 2 test registers @samp{%tr6} and @samp{%tr7}.
1030
1031@item
1032the 8 floating point register stack @samp{%st} or equivalently
1033@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1034@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1035These registers are overloaded by 8 MMX registers @samp{%mm0},
1036@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1037@samp{%mm6} and @samp{%mm7}.
1038
1039@item
4bde3cdd 1040the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1041@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1042@end itemize
1043
1044The AMD x86-64 architecture extends the register set by:
1045
1046@itemize @bullet
1047@item
1048enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1049accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1050@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1051pointer)
1052
1053@item
1054the 8 extended registers @samp{%r8}--@samp{%r15}.
1055
1056@item
4bde3cdd 1057the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1058
1059@item
4bde3cdd 1060the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1061
1062@item
4bde3cdd 1063the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1064
1065@item
1066the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1067
1068@item
1069the 8 debug registers: @samp{%db8}--@samp{%db15}.
1070
1071@item
4bde3cdd
UD
1072the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1073@end itemize
1074
1075With the AVX extensions more registers were made available:
1076
1077@itemize @bullet
1078
1079@item
1080the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1081available in 32-bit mode). The bottom 128 bits are overlaid with the
1082@samp{xmm0}--@samp{xmm15} registers.
1083
1084@end itemize
1085
4bde3cdd
UD
1086The AVX512 extensions added the following registers:
1087
1088@itemize @bullet
1089
1090@item
1091the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1092available in 32-bit mode). The bottom 128 bits are overlaid with the
1093@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1094overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1095
1096@item
1097the 8 mask registers @samp{%k0}--@samp{%k7}.
1098
252b5132
RH
1099@end itemize
1100
1101@node i386-Prefixes
1102@section Instruction Prefixes
1103
1104@cindex i386 instruction prefixes
1105@cindex instruction prefixes, i386
1106@cindex prefixes, i386
1107Instruction prefixes are used to modify the following instruction. They
1108are used to repeat string instructions, to provide section overrides, to
1109perform bus lock operations, and to change operand and address sizes.
1110(Most instructions that normally operate on 32-bit operands will use
111116-bit operands if the instruction has an ``operand size'' prefix.)
1112Instruction prefixes are best written on the same line as the instruction
1113they act upon. For example, the @samp{scas} (scan string) instruction is
1114repeated with:
1115
1116@smallexample
1117 repne scas %es:(%edi),%al
1118@end smallexample
1119
1120You may also place prefixes on the lines immediately preceding the
1121instruction, but this circumvents checks that @code{@value{AS}} does
1122with prefixes, and will not work with all prefixes.
1123
1124Here is a list of instruction prefixes:
1125
1126@cindex section override prefixes, i386
1127@itemize @bullet
1128@item
1129Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1130@samp{fs}, @samp{gs}. These are automatically added by specifying
1131using the @var{section}:@var{memory-operand} form for memory references.
1132
1133@cindex size prefixes, i386
1134@item
1135Operand/Address size prefixes @samp{data16} and @samp{addr16}
1136change 32-bit operands/addresses into 16-bit operands/addresses,
1137while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1138@code{.code16} section) into 32-bit operands/addresses. These prefixes
1139@emph{must} appear on the same line of code as the instruction they
1140modify. For example, in a 16-bit @code{.code16} section, you might
1141write:
1142
1143@smallexample
1144 addr32 jmpl *(%ebx)
1145@end smallexample
1146
1147@cindex bus lock prefixes, i386
1148@cindex inhibiting interrupts, i386
1149@item
1150The bus lock prefix @samp{lock} inhibits interrupts during execution of
1151the instruction it precedes. (This is only valid with certain
1152instructions; see a 80386 manual for details).
1153
1154@cindex coprocessor wait, i386
1155@item
1156The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1157complete the current instruction. This should never be needed for the
115880386/80387 combination.
1159
1160@cindex repeat prefixes, i386
1161@item
1162The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1163to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1164times if the current address size is 16-bits).
55b62671
AJ
1165@cindex REX prefixes, i386
1166@item
1167The @samp{rex} family of prefixes is used by x86-64 to encode
1168extensions to i386 instruction set. The @samp{rex} prefix has four
1169bits --- an operand size overwrite (@code{64}) used to change operand size
1170from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1171register set.
1172
1173You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1174instruction emits @samp{rex} prefix with all the bits set. By omitting
1175the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1176prefixes as well. Normally, there is no need to write the prefixes
1177explicitly, since gas will automatically generate them based on the
1178instruction operands.
252b5132
RH
1179@end itemize
1180
1181@node i386-Memory
1182@section Memory References
1183
1184@cindex i386 memory references
1185@cindex memory references, i386
55b62671
AJ
1186@cindex x86-64 memory references
1187@cindex memory references, x86-64
252b5132
RH
1188An Intel syntax indirect memory reference of the form
1189
1190@smallexample
1191@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1192@end smallexample
1193
1194@noindent
1195is translated into the AT&T syntax
1196
1197@smallexample
1198@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1199@end smallexample
1200
1201@noindent
1202where @var{base} and @var{index} are the optional 32-bit base and
1203index registers, @var{disp} is the optional displacement, and
1204@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1205to calculate the address of the operand. If no @var{scale} is
1206specified, @var{scale} is taken to be 1. @var{section} specifies the
1207optional section register for the memory operand, and may override the
1208default section register (see a 80386 manual for section register
1209defaults). Note that section overrides in AT&T syntax @emph{must}
1210be preceded by a @samp{%}. If you specify a section override which
1211coincides with the default section register, @code{@value{AS}} does @emph{not}
1212output any section register override prefixes to assemble the given
1213instruction. Thus, section overrides can be specified to emphasize which
1214section register is used for a given memory operand.
1215
1216Here are some examples of Intel and AT&T style memory references:
1217
1218@table @asis
1219@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1220@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1221missing, and the default section is used (@samp{%ss} for addressing with
1222@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1223
1224@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1225@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1226@samp{foo}. All other fields are missing. The section register here
1227defaults to @samp{%ds}.
1228
1229@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1230This uses the value pointed to by @samp{foo} as a memory operand.
1231Note that @var{base} and @var{index} are both missing, but there is only
1232@emph{one} @samp{,}. This is a syntactic exception.
1233
1234@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1235This selects the contents of the variable @samp{foo} with section
1236register @var{section} being @samp{%gs}.
1237@end table
1238
1239Absolute (as opposed to PC relative) call and jump operands must be
1240prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1241always chooses PC relative addressing for jump/call labels.
1242
1243Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1244@emph{must} specify its size (byte, word, long, or quadruple) with an
1245instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1246respectively).
1247
1248The x86-64 architecture adds an RIP (instruction pointer relative)
1249addressing. This addressing mode is specified by using @samp{rip} as a
1250base register. Only constant offsets are valid. For example:
1251
1252@table @asis
1253@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1254Points to the address 1234 bytes past the end of the current
1255instruction.
1256
1257@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1258Points to the @code{symbol} in RIP relative way, this is shorter than
1259the default absolute addressing.
1260@end table
1261
1262Other addressing modes remain unchanged in x86-64 architecture, except
1263registers used are 64-bit instead of 32-bit.
252b5132 1264
fddf5b5b 1265@node i386-Jumps
252b5132
RH
1266@section Handling of Jump Instructions
1267
1268@cindex jump optimization, i386
1269@cindex i386 jump optimization
55b62671
AJ
1270@cindex jump optimization, x86-64
1271@cindex x86-64 jump optimization
252b5132
RH
1272Jump instructions are always optimized to use the smallest possible
1273displacements. This is accomplished by using byte (8-bit) displacement
1274jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1275is insufficient a long displacement is used. We do not support
252b5132
RH
1276word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1277instruction with the @samp{data16} instruction prefix), since the 80386
1278insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1279is added. (See also @pxref{i386-Arch})
252b5132
RH
1280
1281Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1282@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1283displacements, so that if you use these instructions (@code{@value{GCC}} does
1284not use them) you may get an error message (and incorrect code). The AT&T
128580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1286to
1287
1288@smallexample
1289 jcxz cx_zero
1290 jmp cx_nonzero
1291cx_zero: jmp foo
1292cx_nonzero:
1293@end smallexample
1294
1295@node i386-Float
1296@section Floating Point
1297
1298@cindex i386 floating point
1299@cindex floating point, i386
55b62671
AJ
1300@cindex x86-64 floating point
1301@cindex floating point, x86-64
252b5132
RH
1302All 80387 floating point types except packed BCD are supported.
1303(BCD support may be added without much difficulty). These data
1304types are 16-, 32-, and 64- bit integers, and single (32-bit),
1305double (64-bit), and extended (80-bit) precision floating point.
1306Each supported type has an instruction mnemonic suffix and a constructor
1307associated with it. Instruction mnemonic suffixes specify the operand's
1308data type. Constructors build these data types into memory.
1309
1310@cindex @code{float} directive, i386
1311@cindex @code{single} directive, i386
1312@cindex @code{double} directive, i386
1313@cindex @code{tfloat} directive, i386
55b62671
AJ
1314@cindex @code{float} directive, x86-64
1315@cindex @code{single} directive, x86-64
1316@cindex @code{double} directive, x86-64
1317@cindex @code{tfloat} directive, x86-64
252b5132
RH
1318@itemize @bullet
1319@item
1320Floating point constructors are @samp{.float} or @samp{.single},
1321@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1322These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1323and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1324only supports this format via the @samp{fldt} (load 80-bit real to stack
1325top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1326
1327@cindex @code{word} directive, i386
1328@cindex @code{long} directive, i386
1329@cindex @code{int} directive, i386
1330@cindex @code{quad} directive, i386
55b62671
AJ
1331@cindex @code{word} directive, x86-64
1332@cindex @code{long} directive, x86-64
1333@cindex @code{int} directive, x86-64
1334@cindex @code{quad} directive, x86-64
252b5132
RH
1335@item
1336Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1337@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
a12f86b9 1338corresponding instruction mnemonic suffixes are @samp{s} (short),
252b5132
RH
1339@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1340the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1341quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1342stack) instructions.
1343@end itemize
1344
1345Register to register operations should not use instruction mnemonic suffixes.
1346@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1347wrote @samp{fst %st, %st(1)}, since all register to register operations
1348use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1349which converts @samp{%st} from 80-bit to 64-bit floating point format,
1350then stores the result in the 4 byte location @samp{mem})
1351
1352@node i386-SIMD
1353@section Intel's MMX and AMD's 3DNow! SIMD Operations
1354
1355@cindex MMX, i386
1356@cindex 3DNow!, i386
1357@cindex SIMD, i386
55b62671
AJ
1358@cindex MMX, x86-64
1359@cindex 3DNow!, x86-64
1360@cindex SIMD, x86-64
252b5132
RH
1361
1362@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1363instructions for integer data), available on Intel's Pentium MMX
1364processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1365Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1366instruction set (SIMD instructions for 32-bit floating point data)
1367available on AMD's K6-2 processor and possibly others in the future.
1368
1369Currently, @code{@value{AS}} does not support Intel's floating point
1370SIMD, Katmai (KNI).
1371
1372The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1373@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
137416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1375floating point values. The MMX registers cannot be used at the same time
1376as the floating point stack.
1377
1378See Intel and AMD documentation, keeping in mind that the operand order in
1379instructions is reversed from the Intel syntax.
1380
f88c9eb0
SP
1381@node i386-LWP
1382@section AMD's Lightweight Profiling Instructions
1383
1384@cindex LWP, i386
1385@cindex LWP, x86-64
1386
1387@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1388instruction set, available on AMD's Family 15h (Orochi) processors.
1389
1390LWP enables applications to collect and manage performance data, and
1391react to performance events. The collection of performance data
1392requires no context switches. LWP runs in the context of a thread and
1393so several counters can be used independently across multiple threads.
1394LWP can be used in both 64-bit and legacy 32-bit modes.
1395
1396For detailed information on the LWP instruction set, see the
1397@cite{AMD Lightweight Profiling Specification} available at
1398@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1399
87973e9f
QN
1400@node i386-BMI
1401@section Bit Manipulation Instructions
1402
1403@cindex BMI, i386
1404@cindex BMI, x86-64
1405
1406@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1407
1408BMI instructions provide several instructions implementing individual
1409bit manipulation operations such as isolation, masking, setting, or
34bca508 1410resetting.
87973e9f
QN
1411
1412@c Need to add a specification citation here when available.
1413
2a2a0f38
QN
1414@node i386-TBM
1415@section AMD's Trailing Bit Manipulation Instructions
1416
1417@cindex TBM, i386
1418@cindex TBM, x86-64
1419
1420@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1421instruction set, available on AMD's BDVER2 processors (Trinity and
1422Viperfish).
1423
1424TBM instructions provide instructions implementing individual bit
1425manipulation operations such as isolating, masking, setting, resetting,
1426complementing, and operations on trailing zeros and ones.
1427
1428@c Need to add a specification citation here when available.
87973e9f 1429
252b5132
RH
1430@node i386-16bit
1431@section Writing 16-bit Code
1432
1433@cindex i386 16-bit code
1434@cindex 16-bit code, i386
1435@cindex real-mode code, i386
eecb386c 1436@cindex @code{code16gcc} directive, i386
252b5132
RH
1437@cindex @code{code16} directive, i386
1438@cindex @code{code32} directive, i386
55b62671
AJ
1439@cindex @code{code64} directive, i386
1440@cindex @code{code64} directive, x86-64
1441While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1442or 64-bit x86-64 code depending on the default configuration,
252b5132 1443it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1444mode code segments. To do this, put a @samp{.code16} or
1445@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1446be run in 16-bit mode. You can switch @code{@value{AS}} to writing
144732-bit code with the @samp{.code32} directive or 64-bit code with the
1448@samp{.code64} directive.
eecb386c
AM
1449
1450@samp{.code16gcc} provides experimental support for generating 16-bit
1451code from gcc, and differs from @samp{.code16} in that @samp{call},
1452@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1453@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1454default to 32-bit size. This is so that the stack pointer is
1455manipulated in the same way over function calls, allowing access to
1456function parameters at the same stack offsets as in 32-bit mode.
1457@samp{.code16gcc} also automatically adds address size prefixes where
1458necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1459
1460The code which @code{@value{AS}} generates in 16-bit mode will not
1461necessarily run on a 16-bit pre-80386 processor. To write code that
1462runs on such a processor, you must refrain from using @emph{any} 32-bit
1463constructs which require @code{@value{AS}} to output address or operand
1464size prefixes.
1465
1466Note that writing 16-bit code instructions by explicitly specifying a
1467prefix or an instruction mnemonic suffix within a 32-bit code section
1468generates different machine instructions than those generated for a
146916-bit code segment. In a 32-bit code section, the following code
1470generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1471value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1472
1473@smallexample
1474 pushw $4
1475@end smallexample
1476
1477The same code in a 16-bit code section would generate the machine
b45619c0 1478opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1479is correct since the processor default operand size is assumed to be 16
1480bits in a 16-bit code section.
1481
e413e4e9
AM
1482@node i386-Arch
1483@section Specifying CPU Architecture
1484
1485@cindex arch directive, i386
1486@cindex i386 arch directive
55b62671
AJ
1487@cindex arch directive, x86-64
1488@cindex x86-64 arch directive
e413e4e9
AM
1489
1490@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1491(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1492directive enables a warning when gas detects an instruction that is not
1493supported on the CPU specified. The choices for @var{cpu_type} are:
1494
1495@multitable @columnfractions .20 .20 .20 .20
1496@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1497@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1498@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1499@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1500@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1501@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1502@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
646cc3e0
GG
1503@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
1504@item @samp{btver1} @tab @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
d871f3f4 1505@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1506@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1507@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1508@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1509@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1510@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1511@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1512@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1513@item @samp{.hle}
e2e1fcde 1514@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1515@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1516@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1517@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1518@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1519@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1520@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1521@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
58bf9b6a 1522@item @samp{.tdx} @tab @samp{.avx_vnni}
d777820b 1523@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1524@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1525@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1526@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
260cd341 1527@item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_tile}
c1fa250a 1528@item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1ceab344 1529@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1530@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1531@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1532@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
646cc3e0
GG
1533@item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1534@item @samp{.tlbsync}
e413e4e9
AM
1535@end multitable
1536
fddf5b5b
AM
1537Apart from the warning, there are only two other effects on
1538@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1539@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1540will automatically use a two byte opcode sequence. The larger three
1541byte opcode sequence is used on the 486 (and when no architecture is
1542specified) because it executes faster on the 486. Note that you can
1543explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1544Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1545@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1546conditional jumps will be promoted when necessary to a two instruction
1547sequence consisting of a conditional jump of the opposite sense around
1548an unconditional jump to the target.
1549
5c6af06e
JB
1550Following the CPU architecture (but not a sub-architecture, which are those
1551starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1552control automatic promotion of conditional jumps. @samp{jumps} is the
1553default, and enables jump promotion; All external jumps will be of the long
1554variety, and file-local jumps will be promoted as necessary.
1555(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1556byte offset jumps, and warns about file-local conditional jumps that
1557@code{@value{AS}} promotes.
fddf5b5b
AM
1558Unconditional jumps are treated as for @samp{jumps}.
1559
1560For example
1561
1562@smallexample
1563 .arch i8086,nojumps
1564@end smallexample
e413e4e9 1565
bc31405e
L
1566@node i386-ISA
1567@section AMD64 ISA vs. Intel64 ISA
1568
1569There are some discrepancies between AMD64 and Intel64 ISAs.
1570
1571@itemize @bullet
1572@item For @samp{movsxd} with 16-bit destination register, AMD64
1573supports 32-bit source operand and Intel64 supports 16-bit source
1574operand.
5990e377
JB
1575
1576@item For far branches (with explicit memory operand), both ISAs support
157732- and 16-bit operand size. Intel64 additionally supports 64-bit
1578operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1579and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1580syntax.
1581
1582@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1583and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1584while Intel64 additionally supports 64-bit operand sise (80-bit memory
1585operands).
1586
bc31405e
L
1587@end itemize
1588
5c9352f3
AM
1589@node i386-Bugs
1590@section AT&T Syntax bugs
1591
1592The UnixWare assembler, and probably other AT&T derived ix86 Unix
1593assemblers, generate floating point instructions with reversed source
1594and destination registers in certain cases. Unfortunately, gcc and
1595possibly many other programs use this reversed syntax, so we're stuck
1596with it.
1597
1598For example
1599
1600@smallexample
1601 fsub %st,%st(3)
1602@end smallexample
1603@noindent
1604results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1605than the expected @samp{%st(3) - %st}. This happens with all the
1606non-commutative arithmetic floating point operations with two register
1607operands where the source register is @samp{%st} and the destination
1608register is @samp{%st(i)}.
1609
252b5132
RH
1610@node i386-Notes
1611@section Notes
1612
1613@cindex i386 @code{mul}, @code{imul} instructions
1614@cindex @code{mul} instruction, i386
1615@cindex @code{imul} instruction, i386
55b62671
AJ
1616@cindex @code{mul} instruction, x86-64
1617@cindex @code{imul} instruction, x86-64
252b5132 1618There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1619instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1620multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1621for @samp{imul}) can be output only in the one operand form. Thus,
1622@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1623the expanding multiply would clobber the @samp{%edx} register, and this
1624would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
162564-bit product in @samp{%edx:%eax}.
1626
1627We have added a two operand form of @samp{imul} when the first operand
1628is an immediate mode expression and the second operand is a register.
1629This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1630example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1631$69, %eax, %eax}.
1632