]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-s390.texi
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gas / doc / c-s390.texi
CommitLineData
250d07de 1@c Copyright (C) 2009-2021 Free Software Foundation, Inc.
11c19e16
MS
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4@ifset GENERIC
5@page
6@node S/390-Dependent
7@chapter IBM S/390 Dependent Features
8@end ifset
9@ifclear GENERIC
10@node Machine Dependencies
11@chapter IBM S/390 Dependent Features
12@end ifclear
13
14@cindex s390 support
15
16The s390 version of @code{@value{AS}} supports two architectures modes
64025b4e 17and eleven chip levels. The architecture modes are the Enterprise System
11c19e16 18Architecture (ESA) and the newer z/Architecture mode. The chip levels
952c3f51 19are g5 (or arch3), g6, z900 (or arch5), z990 (or arch6), z9-109, z9-ec
64025b4e 20(or arch7), z10 (or arch8), z196 (or arch9), zEC12 (or arch10), z13
46e292ab 21(or arch11), z14 (or arch12), and z15 (or arch13).
11c19e16
MS
22
23@menu
24* s390 Options:: Command-line Options.
25* s390 Characters:: Special Characters.
26* s390 Syntax:: Assembler Instruction syntax.
27* s390 Directives:: Assembler Directives.
28* s390 Floating Point:: Floating Point.
29@end menu
30
31@node s390 Options
32@section Options
33@cindex options for s390
34@cindex s390 options
35
36The following table lists all available s390 specific options:
34bca508 37
11c19e16
MS
38@table @code
39@cindex @samp{-m31} option, s390
40@cindex @samp{-m64} option, s390
41@item -m31 | -m64
42Select 31- or 64-bit ABI implying a word size of 32- or 64-bit.
43
44These options are only available with the ELF object file format, and
45require that the necessary BFD support has been included (on a 31-bit
46platform you must add --enable-64-bit-bfd on the call to the configure
47script to enable 64-bit usage and use s390x as target platform).
48
49@cindex @samp{-mesa} option, s390
50@cindex @samp{-mzarch} option, s390
51@item -mesa | -mzarch
52Select the architecture mode, either the Enterprise System Architecture
53(esa) mode or the z/Architecture mode (zarch).
54
55The 64-bit instructions are only available with the z/Architecture mode.
56The combination of @samp{-m64} and @samp{-mesa} results in a warning
57message.
58
59@cindex @samp{-march=} option, s390
60@item -march=@var{CPU}
61This option specifies the target processor. The following processor names
34bca508 62are recognized:
952c3f51 63@code{g5} (or @code{arch3}),
11c19e16 64@code{g6},
952c3f51
AK
65@code{z900} (or @code{arch5}),
66@code{z990} (or @code{arch6}),
11c19e16 67@code{z9-109},
952c3f51
AK
68@code{z9-ec} (or @code{arch7}),
69@code{z10} (or @code{arch8}),
70@code{z196} (or @code{arch9}),
fc60b8c8
AK
71@code{zEC12} (or @code{arch10}),
72@code{z13} (or @code{arch11}),
73@code{z14} (or @code{arch12}), and
46e292ab 74@code{z15} (or @code{arch13}).
952c3f51
AK
75
76Assembling an instruction that is not supported on the target
77processor results in an error message.
78
79The processor names starting with @code{arch} refer to the edition
80number in the Principle of Operations manual. They can be used as
81alternate processor names and have been added for compatibility with
82the IBM XL compiler.
83
84@code{arch3}, @code{g5} and @code{g6} cannot be used with the
85@samp{-mzarch} option since the z/Architecture mode is not supported
86on these processor levels.
87
88There is no @code{arch4} option supported. @code{arch4} matches
89@code{-march=arch5 -mesa}.
11c19e16
MS
90
91@cindex @samp{-mregnames} option, s390
92@item -mregnames
93Allow symbolic names for registers.
94
95@cindex @samp{-mno-regnames} option, s390
96@item -mno-regnames
97Do not allow symbolic names for registers.
98
99@cindex @samp{-mwarn-areg-zero} option, s390
100@item -mwarn-areg-zero
101Warn whenever the operand for a base or index register has been specified
102but evaluates to zero. This can indicate the misuse of general purpose
103register 0 as an address register.
104
105@end table
106
107@node s390 Characters
108@section Special Characters
109@cindex line comment character, s390
110@cindex s390 line comment character
111
112@samp{#} is the line comment character.
113
7c31ae13
NC
114If a @samp{#} appears as the first character of a line then the whole
115line is treated as a comment, but in this case the line could also be
116a logical line number directive (@pxref{Comments}) or a preprocessor
117control command (@pxref{Preprocessing}).
118
119@cindex line separator, s390
120@cindex statement separator, s390
121@cindex s390 line separator
122The @samp{;} character can be used instead of a newline to separate
123statements.
124
11c19e16
MS
125@node s390 Syntax
126@section Instruction syntax
127@cindex instruction syntax, s390
128@cindex s390 instruction syntax
129
34bca508
L
130The assembler syntax closely follows the syntax outlined in
131Enterprise Systems Architecture/390 Principles of Operation (SA22-7201)
132and the z/Architecture Principles of Operation (SA22-7832).
11c19e16
MS
133
134Each instruction has two major parts, the instruction mnemonic
135and the instruction operands. The instruction format varies.
136
137@menu
138* s390 Register:: Register Naming
139* s390 Mnemonics:: Instruction Mnemonics
140* s390 Operands:: Instruction Operands
141* s390 Formats:: Instruction Formats
142* s390 Aliases:: Instruction Aliases
143* s390 Operand Modifier:: Instruction Operand Modifier
144* s390 Instruction Marker:: Instruction Marker
145* s390 Literal Pool Entries:: Literal Pool Entries
146@end menu
147
148@node s390 Register
149@subsection Register naming
150@cindex register naming, s390
151@cindex s390 register naming
152
153The @code{@value{AS}} recognizes a number of predefined symbols for the
154various processor registers. A register specification in one of the
155instruction formats is an unsigned integer between 0 and 15. The specific
156instruction and the position of the register in the instruction format
157denotes the type of the register. The register symbols are prefixed with
158@samp{%}:
159
160@display
161@multitable {%rN} {the 16 general purpose registers, 0 <= N <= 15}
162@item %rN @tab the 16 general purpose registers, 0 <= N <= 15
163@item %fN @tab the 16 floating point registers, 0 <= N <= 15
164@item %aN @tab the 16 access registers, 0 <= N <= 15
165@item %cN @tab the 16 control registers, 0 <= N <= 15
166@item %lit @tab an alias for the general purpose register %r13
167@item %sp @tab an alias for the general purpose register %r15
168@end multitable
169@end display
170
171@node s390 Mnemonics
172@subsection Instruction Mnemonics
173@cindex instruction mnemonics, s390
174@cindex s390 instruction mnemonics
175
176All instructions documented in the Principles of Operation are supported
177with the mnemonic and order of operands as described.
178The instruction mnemonic identifies the instruction format
179(@ref{s390 Formats}) and the specific operation code for the instruction.
180For example, the @samp{lr} mnemonic denotes the instruction format @samp{RR}
181with the operation code @samp{0x18}.
182
183The definition of the various mnemonics follows a scheme, where the first
184character usually hint at the type of the instruction:
185
186@display
187@multitable {sla, sll} {if r is the last character the instruction operates on registers}
188@item a @tab add instruction, for example @samp{al} for add logical 32-bit
189@item b @tab branch instruction, for example @samp{bc} for branch on condition
190@item c @tab compare or convert instruction, for example @samp{cr} for compare
191register 32-bit
192@item d @tab divide instruction, for example @samp{dlr} devide logical register
19364-bit to 32-bit
194@item i @tab insert instruction, for example @samp{ic} insert character
195@item l @tab load instruction, for example @samp{ltr} load and test register
196@item mv @tab move instruction, for example @samp{mvc} move character
197@item m @tab multiply instruction, for example @samp{mh} multiply halfword
198@item n @tab and instruction, for example @samp{ni} and immediate
199@item o @tab or instruction, for example @samp{oc} or character
200@item sla, sll @tab shift left single instruction
201@item sra, srl @tab shift right single instruction
202@item st @tab store instruction, for example @samp{stm} store multiple
203@item s @tab subtract instruction, for example @samp{slr} subtract
204logical 32-bit
205@item t @tab test or translate instruction, of example @samp{tm} test under mask
206@item x @tab exclusive or instruction, for example @samp{xc} exclusive or
207character
208@end multitable
209@end display
210
211Certain characters at the end of the mnemonic may describe a property
212of the instruction:
213
214@display
215@multitable {c} {if r is the last character the instruction operates on registers}
216@item c @tab the instruction uses a 8-bit character operand
217@item f @tab the instruction extends a 32-bit operand to 64 bit
218@item g @tab the operands are treated as 64-bit values
219@item h @tab the operand uses a 16-bit halfword operand
220@item i @tab the instruction uses an immediate operand
221@item l @tab the instruction uses unsigned, logical operands
222@item m @tab the instruction uses a mask or operates on multiple values
223@item r @tab if r is the last character, the instruction operates on registers
224@item y @tab the instruction uses 20-bit displacements
225@end multitable
226@end display
227
228There are many exceptions to the scheme outlined in the above lists, in
33eaf5de 229particular for the privileged instructions. For non-privileged
11c19e16
MS
230instruction it works quite well, for example the instruction @samp{clgfr}
231c: compare instruction, l: unsigned operands, g: 64-bit operands,
232f: 32- to 64-bit extension, r: register operands. The instruction compares
233an 64-bit value in a register with the zero extended 32-bit value from
234a second register.
235For a complete list of all mnemonics see appendix B in the Principles
236of Operation.
237
238@node s390 Operands
239@subsection Instruction Operands
240@cindex instruction operands, s390
241@cindex s390 instruction operands
242
243Instruction operands can be grouped into three classes, operands located
244in registers, immediate operands, and operands in storage.
245
246A register operand can be located in general, floating-point, access,
247or control register. The register is identified by a four-bit field.
248The field containing the register operand is called the R field.
249
250Immediate operands are contained within the instruction and can have
2518, 16 or 32 bits. The field containing the immediate operand is called
252the I field. Dependent on the instruction the I field is either signed
253or unsigned.
254
255A storage operand consists of an address and a length. The address of a
256storage operands can be specified in any of these ways:
257
258@itemize
259@item The content of a single general R
260@item The sum of the content of a general register called the base
261register B plus the content of a displacement field D
262@item The sum of the contents of two general registers called the
263index register X and the base register B plus the content of a
264displacement field
265@item The sum of the current instruction address and a 32-bit signed
266immediate field multiplied by two.
267@end itemize
268
269The length of a storage operand can be:
270
271@itemize
272@item Implied by the instruction
273@item Specified by a bitmask
274@item Specified by a four-bit or eight-bit length field L
275@item Specified by the content of a general register
276@end itemize
277
278The notation for storage operand addresses formed from multiple fields is
279as follows:
280
281@table @code
282@item Dn(Bn)
283the address for operand number n is formed from the content of general
284register Bn called the base register and the displacement field Dn.
285@item Dn(Xn,Bn)
286the address for operand number n is formed from the content of general
287register Xn called the index register, general register Bn called the
288base register and the displacement field Dn.
289@item Dn(Ln,Bn)
290the address for operand number n is formed from the content of general
33eaf5de 291register Bn called the base register and the displacement field Dn.
11c19e16
MS
292The length of the operand n is specified by the field Ln.
293@end table
294
295The base registers Bn and the index registers Xn of a storage operand can
296be skipped. If Bn and Xn are skipped, a zero will be stored to the operand
297field. The notation changes as follows:
298
299@display
300@multitable @columnfractions 0.30 0.30
301@headitem full notation @tab short notation
302@item Dn(0,Bn) @tab Dn(Bn)
303@item Dn(0,0) @tab Dn
304@item Dn(0) @tab Dn
305@item Dn(Ln,0) @tab Dn(Ln)
306@end multitable
307@end display
308
309
310@node s390 Formats
311@subsection Instruction Formats
312@cindex instruction formats, s390
313@cindex s390 instruction formats
314
315The Principles of Operation manuals lists 26 instruction formats where
316some of the formats have multiple variants. For the @samp{.insn}
34bca508 317pseudo directive the assembler recognizes some of the formats.
11c19e16
MS
318Typically, the most general variant of the instruction format is used
319by the @samp{.insn} directive.
320
321The following table lists the abbreviations used in the table of
322instruction formats:
323
324@display
325@multitable {OpCode / OpCd} {Displacement lower 12 bits for operand x.}
326@item OpCode / OpCd @tab Part of the op code.
327@item Bx @tab Base register number for operand x.
328@item Dx @tab Displacement for operand x.
329@item DLx @tab Displacement lower 12 bits for operand x.
330@item DHx @tab Displacement higher 8-bits for operand x.
331@item Rx @tab Register number for operand x.
332@item Xx @tab Index register number for operand x.
333@item Ix @tab Signed immediate for operand x.
334@item Ux @tab Unsigned immediate for operand x.
335@end multitable
336@end display
337
338An instruction is two, four, or six bytes in length and must be aligned
339on a 2 byte boundary. The first two bits of the instruction specify the
340length of the instruction, 00 indicates a two byte instruction, 01 and 10
341indicates a four byte instruction, and 11 indicates a six byte instruction.
342
343The following table lists the s390 instruction formats that are available
344with the @samp{.insn} pseudo directive:
345
346@table @code
347@item E format
348@verbatim
349+-------------+
350| OpCode |
351+-------------+
3520 15
353@end verbatim
354
355@item RI format: <insn> R1,I2
356@verbatim
357+--------+----+----+------------------+
358| OpCode | R1 |OpCd| I2 |
359+--------+----+----+------------------+
3600 8 12 16 31
361@end verbatim
362
363@item RIE format: <insn> R1,R3,I2
364@verbatim
365+--------+----+----+------------------+--------+--------+
366| OpCode | R1 | R3 | I2 |////////| OpCode |
367+--------+----+----+------------------+--------+--------+
3680 8 12 16 32 40 47
369@end verbatim
370
371@item RIL format: <insn> R1,I2
372@verbatim
373+--------+----+----+------------------------------------+
374| OpCode | R1 |OpCd| I2 |
375+--------+----+----+------------------------------------+
3760 8 12 16 47
377@end verbatim
378
379@item RILU format: <insn> R1,U2
380@verbatim
381+--------+----+----+------------------------------------+
382| OpCode | R1 |OpCd| U2 |
383+--------+----+----+------------------------------------+
3840 8 12 16 47
385@end verbatim
386
387@item RIS format: <insn> R1,I2,M3,D4(B4)
388@verbatim
389+--------+----+----+----+-------------+--------+--------+
390| OpCode | R1 | M3 | B4 | D4 | I2 | Opcode |
391+--------+----+----+----+-------------+--------+--------+
3920 8 12 16 20 32 36 47
393@end verbatim
394
395@item RR format: <insn> R1,R2
396@verbatim
397+--------+----+----+
398| OpCode | R1 | R2 |
399+--------+----+----+
34bca508 4000 8 12 15
11c19e16
MS
401@end verbatim
402
403@item RRE format: <insn> R1,R2
404@verbatim
405+------------------+--------+----+----+
406| OpCode |////////| R1 | R2 |
407+------------------+--------+----+----+
4080 16 24 28 31
409@end verbatim
410
411@item RRF format: <insn> R1,R2,R3,M4
412@verbatim
413+------------------+----+----+----+----+
414| OpCode | R3 | M4 | R1 | R2 |
415+------------------+----+----+----+----+
4160 16 20 24 28 31
417@end verbatim
418
419@item RRS format: <insn> R1,R2,M3,D4(B4)
420@verbatim
421+--------+----+----+----+-------------+----+----+--------+
422| OpCode | R1 | R3 | B4 | D4 | M3 |////| OpCode |
423+--------+----+----+----+-------------+----+----+--------+
4240 8 12 16 20 32 36 40 47
425@end verbatim
426
427@item RS format: <insn> R1,R3,D2(B2)
428@verbatim
429+--------+----+----+----+-------------+
430| OpCode | R1 | R3 | B2 | D2 |
431+--------+----+----+----+-------------+
4320 8 12 16 20 31
433@end verbatim
434
435@item RSE format: <insn> R1,R3,D2(B2)
436@verbatim
437+--------+----+----+----+-------------+--------+--------+
438| OpCode | R1 | R3 | B2 | D2 |////////| OpCode |
439+--------+----+----+----+-------------+--------+--------+
4400 8 12 16 20 32 40 47
441@end verbatim
442
443@item RSI format: <insn> R1,R3,I2
444@verbatim
445+--------+----+----+------------------------------------+
446| OpCode | R1 | R3 | I2 |
447+--------+----+----+------------------------------------+
4480 8 12 16 47
449@end verbatim
450
451@item RSY format: <insn> R1,R3,D2(B2)
452@verbatim
453+--------+----+----+----+-------------+--------+--------+
454| OpCode | R1 | R3 | B2 | DL2 | DH2 | OpCode |
455+--------+----+----+----+-------------+--------+--------+
4560 8 12 16 20 32 40 47
457@end verbatim
458
459@item RX format: <insn> R1,D2(X2,B2)
460@verbatim
461+--------+----+----+----+-------------+
462| OpCode | R1 | X2 | B2 | D2 |
463+--------+----+----+----+-------------+
4640 8 12 16 20 31
465@end verbatim
466
467@item RXE format: <insn> R1,D2(X2,B2)
468@verbatim
469+--------+----+----+----+-------------+--------+--------+
470| OpCode | R1 | X2 | B2 | D2 |////////| OpCode |
471+--------+----+----+----+-------------+--------+--------+
4720 8 12 16 20 32 40 47
473@end verbatim
474
475@item RXF format: <insn> R1,R3,D2(X2,B2)
476@verbatim
477+--------+----+----+----+-------------+----+---+--------+
478| OpCode | R3 | X2 | B2 | D2 | R1 |///| OpCode |
479+--------+----+----+----+-------------+----+---+--------+
4800 8 12 16 20 32 36 40 47
481@end verbatim
482
483@item RXY format: <insn> R1,D2(X2,B2)
484@verbatim
485+--------+----+----+----+-------------+--------+--------+
486| OpCode | R1 | X2 | B2 | DL2 | DH2 | OpCode |
487+--------+----+----+----+-------------+--------+--------+
4880 8 12 16 20 32 36 40 47
489@end verbatim
490
491@item S format: <insn> D2(B2)
492@verbatim
493+------------------+----+-------------+
494| OpCode | B2 | D2 |
495+------------------+----+-------------+
4960 16 20 31
497@end verbatim
498
499@item SI format: <insn> D1(B1),I2
500@verbatim
501+--------+---------+----+-------------+
502| OpCode | I2 | B1 | D1 |
503+--------+---------+----+-------------+
5040 8 16 20 31
505@end verbatim
506
507@item SIY format: <insn> D1(B1),U2
508@verbatim
509+--------+---------+----+-------------+--------+--------+
510| OpCode | I2 | B1 | DL1 | DH1 | OpCode |
511+--------+---------+----+-------------+--------+--------+
5120 8 16 20 32 36 40 47
513@end verbatim
514
515@item SIL format: <insn> D1(B1),I2
516@verbatim
517+------------------+----+-------------+-----------------+
518| OpCode | B1 | D1 | I2 |
519+------------------+----+-------------+-----------------+
5200 16 20 32 47
521@end verbatim
522
523@item SS format: <insn> D1(R1,B1),D2(B3),R3
524@verbatim
525+--------+----+----+----+-------------+----+------------+
526| OpCode | R1 | R3 | B1 | D1 | B2 | D2 |
527+--------+----+----+----+-------------+----+------------+
5280 8 12 16 20 32 36 47
529@end verbatim
530
531@item SSE format: <insn> D1(B1),D2(B2)
532@verbatim
533+------------------+----+-------------+----+------------+
534| OpCode | B1 | D1 | B2 | D2 |
535+------------------+----+-------------+----+------------+
5360 8 12 16 20 32 36 47
537@end verbatim
538
539@item SSF format: <insn> D1(B1),D2(B2),R3
540@verbatim
541+--------+----+----+----+-------------+----+------------+
542| OpCode | R3 |OpCd| B1 | D1 | B2 | D2 |
543+--------+----+----+----+-------------+----+------------+
5440 8 12 16 20 32 36 47
545@end verbatim
546
547@end table
548
549For the complete list of all instruction format variants see the
550Principles of Operation manuals.
551
552@node s390 Aliases
553@subsection Instruction Aliases
554@cindex instruction aliases, s390
555@cindex s390 instruction aliases
556
557A specific bit pattern can have multiple mnemonics, for example
558the bit pattern @samp{0xa7000000} has the mnemonics @samp{tmh} and
559@samp{tmlh}. In addition, there are a number of mnemonics recognized by
560@code{@value{AS}} that are not present in the Principles of Operation.
561These are the short forms of the branch instructions, where the condition
562code mask operand is encoded in the mnemonic. This is relevant for the
563branch instructions, the compare and branch instructions, and the
564compare and trap instructions.
565
566For the branch instructions there are 20 condition code strings that can
567be used as part of the mnemonic in place of a mask operand in the instruction
568format:
569
570@display
571@multitable @columnfractions .30 .30
572@headitem instruction @tab short form
573@item bcr M1,R2 @tab b<m>r R2
574@item bc M1,D2(X2,B2) @tab b<m> D2(X2,B2)
575@item brc M1,I2 @tab j<m> I2
576@item brcl M1,I2 @tab jg<m> I2
577@end multitable
578@end display
579
580In the mnemonic for a branch instruction the condition code string <m>
581can be any of the following:
582
583@display
584@multitable {nle} {jump on not zero / if not zeros}
585@item o @tab jump on overflow / if ones
586@item h @tab jump on A high
587@item p @tab jump on plus
588@item nle @tab jump on not low or equal
589@item l @tab jump on A low
590@item m @tab jump on minus
591@item nhe @tab jump on not high or equal
592@item lh @tab jump on low or high
593@item ne @tab jump on A not equal B
594@item nz @tab jump on not zero / if not zeros
595@item e @tab jump on A equal B
596@item z @tab jump on zero / if zeroes
597@item nlh @tab jump on not low or high
598@item he @tab jump on high or equal
599@item nl @tab jump on A not low
600@item nm @tab jump on not minus / if not mixed
601@item le @tab jump on low or equal
602@item nh @tab jump on A not high
603@item np @tab jump on not plus
604@item no @tab jump on not overflow / if not ones
605@end multitable
606@end display
607
608For the compare and branch, and compare and trap instructions there
609are 12 condition code strings that can be used as part of the mnemonic in
610place of a mask operand in the instruction format:
611
612@display
613@multitable @columnfractions .40 .40
614@headitem instruction @tab short form
615@item crb R1,R2,M3,D4(B4) @tab crb<m> R1,R2,D4(B4)
616@item cgrb R1,R2,M3,D4(B4) @tab cgrb<m> R1,R2,D4(B4)
617@item crj R1,R2,M3,I4 @tab crj<m> R1,R2,I4
618@item cgrj R1,R2,M3,I4 @tab cgrj<m> R1,R2,I4
619@item cib R1,I2,M3,D4(B4) @tab cib<m> R1,I2,D4(B4)
620@item cgib R1,I2,M3,D4(B4) @tab cgib<m> R1,I2,D4(B4)
621@item cij R1,I2,M3,I4 @tab cij<m> R1,I2,I4
622@item cgij R1,I2,M3,I4 @tab cgij<m> R1,I2,I4
623@item crt R1,R2,M3 @tab crt<m> R1,R2
624@item cgrt R1,R2,M3 @tab cgrt<m> R1,R2
625@item cit R1,I2,M3 @tab cit<m> R1,I2
626@item cgit R1,I2,M3 @tab cgit<m> R1,I2
627@item clrb R1,R2,M3,D4(B4) @tab clrb<m> R1,R2,D4(B4)
628@item clgrb R1,R2,M3,D4(B4) @tab clgrb<m> R1,R2,D4(B4)
629@item clrj R1,R2,M3,I4 @tab clrj<m> R1,R2,I4
630@item clgrj R1,R2,M3,I4 @tab clgrj<m> R1,R2,I4
631@item clib R1,I2,M3,D4(B4) @tab clib<m> R1,I2,D4(B4)
632@item clgib R1,I2,M3,D4(B4) @tab clgib<m> R1,I2,D4(B4)
633@item clij R1,I2,M3,I4 @tab clij<m> R1,I2,I4
634@item clgij R1,I2,M3,I4 @tab clgij<m> R1,I2,I4
635@item clrt R1,R2,M3 @tab clrt<m> R1,R2
636@item clgrt R1,R2,M3 @tab clgrt<m> R1,R2
637@item clfit R1,I2,M3 @tab clfit<m> R1,I2
638@item clgit R1,I2,M3 @tab clgit<m> R1,I2
639@end multitable
640@end display
641
642In the mnemonic for a compare and branch and compare and trap instruction
643the condition code string <m> can be any of the following:
644
645@display
646@multitable {nle} {jump on not zero / if not zeros}
647@item h @tab jump on A high
648@item nle @tab jump on not low or equal
649@item l @tab jump on A low
650@item nhe @tab jump on not high or equal
651@item ne @tab jump on A not equal B
652@item lh @tab jump on low or high
653@item e @tab jump on A equal B
654@item nlh @tab jump on not low or high
655@item nl @tab jump on A not low
656@item he @tab jump on high or equal
657@item nh @tab jump on A not high
658@item le @tab jump on low or equal
659@end multitable
660@end display
661
662@node s390 Operand Modifier
663@subsection Instruction Operand Modifier
664@cindex instruction operand modifier, s390
665@cindex s390 instruction operand modifier
666
667If a symbol modifier is attached to a symbol in an expression for an
668instruction operand field, the symbol term is replaced with a reference
669to an object in the global offset table (GOT) or the procedure linkage
670table (PLT). The following expressions are allowed:
671@samp{symbol@@modifier + constant},
672@samp{symbol@@modifier + label + constant}, and
673@samp{symbol@@modifier - label + constant}.
674The term @samp{symbol} is the symbol that will be entered into the GOT or
675PLT, @samp{label} is a local label, and @samp{constant} is an arbitrary
676expression that the assembler can evaluate to a constant value.
677
678The term @samp{(symbol + constant1)@@modifier +/- label + constant2}
679is also accepted but a warning message is printed and the term is
680converted to @samp{symbol@@modifier +/- label + constant1 + constant2}.
681
682@table @code
683@item @@got
684@itemx @@got12
685The @@got modifier can be used for displacement fields, 16-bit immediate
686fields and 32-bit pc-relative immediate fields. The @@got12 modifier is
687synonym to @@got. The symbol is added to the GOT. For displacement
688fields and 16-bit immediate fields the symbol term is replaced with
689the offset from the start of the GOT to the GOT slot for the symbol.
690For a 32-bit pc-relative field the pc-relative offset to the GOT
691slot from the current instruction address is used.
692@item @@gotent
693The @@gotent modifier can be used for 32-bit pc-relative immediate fields.
694The symbol is added to the GOT and the symbol term is replaced with
695the pc-relative offset from the current instruction to the GOT slot for the
696symbol.
697@item @@gotoff
698The @@gotoff modifier can be used for 16-bit immediate fields. The symbol
34bca508 699term is replaced with the offset from the start of the GOT to the
11c19e16
MS
700address of the symbol.
701@item @@gotplt
702The @@gotplt modifier can be used for displacement fields, 16-bit immediate
703fields, and 32-bit pc-relative immediate fields. A procedure linkage
704table entry is generated for the symbol and a jump slot for the symbol
705is added to the GOT. For displacement fields and 16-bit immediate
706fields the symbol term is replaced with the offset from the start of the
707GOT to the jump slot for the symbol. For a 32-bit pc-relative field
708the pc-relative offset to the jump slot from the current instruction
709address is used.
710@item @@plt
711The @@plt modifier can be used for 16-bit and 32-bit pc-relative immediate
712fields. A procedure linkage table entry is generated for the symbol.
713The symbol term is replaced with the relative offset from the current
714instruction to the PLT entry for the symbol.
715@item @@pltoff
716The @@pltoff modifier can be used for 16-bit immediate fields. The symbol
717term is replaced with the offset from the start of the PLT to the address
718of the symbol.
719@item @@gotntpoff
720The @@gotntpoff modifier can be used for displacement fields. The symbol
721is added to the static TLS block and the negated offset to the symbol
722in the static TLS block is added to the GOT. The symbol term is replaced
34bca508 723with the offset to the GOT slot from the start of the GOT.
11c19e16
MS
724@item @@indntpoff
725The @@indntpoff modifier can be used for 32-bit pc-relative immediate
726fields. The symbol is added to the static TLS block and the negated offset
727to the symbol in the static TLS block is added to the GOT. The symbol term
728is replaced with the pc-relative offset to the GOT slot from the current
729instruction address.
730@end table
731
732For more information about the thread local storage modifiers
733@samp{gotntpoff} and @samp{indntpoff} see the ELF extension documentation
734@samp{ELF Handling For Thread-Local Storage}.
735
736@node s390 Instruction Marker
737@subsection Instruction Marker
738@cindex instruction marker, s390
739@cindex s390 instruction marker
740
741The thread local storage instruction markers are used by the linker to
742perform code optimization.
743
744@table @code
745@item :tls_load
746The :tls_load marker is used to flag the load instruction in the initial
747exec TLS model that retrieves the offset from the thread pointer to a
34bca508 748thread local storage variable from the GOT.
11c19e16
MS
749@item :tls_gdcall
750The :tls_gdcall marker is used to flag the branch-and-save instruction to
751the __tls_get_offset function in the global dynamic TLS model.
752@item :tls_ldcall
753The :tls_ldcall marker is used to flag the branch-and-save instruction to
754the __tls_get_offset function in the local dynamic TLS model.
755@end table
756
757For more information about the thread local storage instruction marker
758and the linker optimizations see the ELF extension documentation
759@samp{ELF Handling For Thread-Local Storage}.
760
761@node s390 Literal Pool Entries
762@subsection Literal Pool Entries
763@cindex literal pool entries, s390
764@cindex s390 literal pool entries
765
766A literal pool is a collection of values. To access the values a pointer
767to the literal pool is loaded to a register, the literal pool register.
768Usually, register %r13 is used as the literal pool register
769(@ref{s390 Register}). Literal pool entries are created by adding the
770suffix :lit1, :lit2, :lit4, or :lit8 to the end of an expression for an
771instruction operand. The expression is added to the literal pool and the
772operand is replaced with the offset to the literal in the literal pool.
773
774@table @code
775@item :lit1
776The literal pool entry is created as an 8-bit value. An operand modifier
777must not be used for the original expression.
778@item :lit2
779The literal pool entry is created as a 16 bit value. The operand modifier
780@@got may be used in the original expression. The term @samp{x@@got:lit2}
781will put the got offset for the global symbol x to the literal pool as
78216 bit value.
783@item :lit4
784The literal pool entry is created as a 32-bit value. The operand modifier
785@@got and @@plt may be used in the original expression. The term
786@samp{x@@got:lit4} will put the got offset for the global symbol x to the
787literal pool as a 32-bit value. The term @samp{x@@plt:lit4} will put the
788plt offset for the global symbol x to the literal pool as a 32-bit value.
789@item :lit8
790The literal pool entry is created as a 64-bit value. The operand modifier
791@@got and @@plt may be used in the original expression. The term
792@samp{x@@got:lit8} will put the got offset for the global symbol x to the
793literal pool as a 64-bit value. The term @samp{x@@plt:lit8} will put the
794plt offset for the global symbol x to the literal pool as a 64-bit value.
795@end table
796
797The assembler directive @samp{.ltorg} is used to emit all literal pool
798entries to the current position.
799
800@node s390 Directives
801@section Assembler Directives
802
34bca508 803@code{@value{AS}} for s390 supports all of the standard ELF
11c19e16
MS
804assembler directives as outlined in the main part of this document.
805Some directives have been extended and there are some additional
806directives, which are only available for the s390 @code{@value{AS}}.
807
808@table @code
809@cindex @code{.insn} directive, s390
810@item .insn
811This directive permits the numeric representation of an instructions
812and makes the assembler insert the operands according to one of the
813instructions formats for @samp{.insn} (@ref{s390 Formats}).
814For example, the instruction @samp{l %r1,24(%r15)} could be written as
815@samp{.insn rx,0x58000000,%r1,24(%r15)}.
816@cindex @code{.short} directive, s390
817@cindex @code{.long} directive, s390
818@cindex @code{.quad} directive, s390
819@item .short
820@itemx .long
821@itemx .quad
822This directive places one or more 16-bit (.short), 32-bit (.long), or
82364-bit (.quad) values into the current section. If an ELF or TLS modifier
34bca508 824is used only the following expressions are allowed:
11c19e16
MS
825@samp{symbol@@modifier + constant},
826@samp{symbol@@modifier + label + constant}, and
827@samp{symbol@@modifier - label + constant}.
828The following modifiers are available:
829@table @code
830@item @@got
831@itemx @@got12
832The @@got modifier can be used for .short, .long and .quad. The @@got12
833modifier is synonym to @@got. The symbol is added to the GOT. The symbol
834term is replaced with offset from the start of the GOT to the GOT slot for
835the symbol.
836@item @@gotoff
837The @@gotoff modifier can be used for .short, .long and .quad. The symbol
838term is replaced with the offset from the start of the GOT to the address
839of the symbol.
840@item @@gotplt
841The @@gotplt modifier can be used for .long and .quad. A procedure linkage
842table entry is generated for the symbol and a jump slot for the symbol
843is added to the GOT. The symbol term is replaced with the offset from the
844start of the GOT to the jump slot for the symbol.
845@item @@plt
846The @@plt modifier can be used for .long and .quad. A procedure linkage
847table entry us generated for the symbol. The symbol term is replaced with
848the address of the PLT entry for the symbol.
849@item @@pltoff
850The @@pltoff modifier can be used for .short, .long and .quad. The symbol
851term is replaced with the offset from the start of the PLT to the address
852of the symbol.
853@item @@tlsgd
854@itemx @@tlsldm
855The @@tlsgd and @@tlsldm modifier can be used for .long and .quad. A
856tls_index structure for the symbol is added to the GOT. The symbol term is
857replaced with the offset from the start of the GOT to the tls_index structure.
858@item @@gotntpoff
859@itemx @@indntpoff
860The @@gotntpoff and @@indntpoff modifier can be used for .long and .quad.
861The symbol is added to the static TLS block and the negated offset to the
862symbol in the static TLS block is added to the GOT. For @@gotntpoff the
863symbol term is replaced with the offset from the start of the GOT to the
864GOT slot, for @@indntpoff the symbol term is replaced with the address
865of the GOT slot.
866@item @@dtpoff
867The @@dtpoff modifier can be used for .long and .quad. The symbol term
868is replaced with the offset of the symbol relative to the start of the
869TLS block it is contained in.
870@item @@ntpoff
871The @@ntpoff modifier can be used for .long and .quad. The symbol term
872is replaced with the offset of the symbol relative to the TCB pointer.
873@end table
874
875For more information about the thread local storage modifiers see the
876ELF extension documentation @samp{ELF Handling For Thread-Local Storage}.
877
878@cindex @code{.ltorg} directive, s390
879@item .ltorg
880This directive causes the current contents of the literal pool to be
881dumped to the current location (@ref{s390 Literal Pool Entries}).
902cc293
AK
882
883@cindex @code{.machine} directive, s390
7ecc513a
DV
884@item .machine @var{STRING}[+@var{EXTENSION}]@dots{}
885
886This directive allows changing the machine for which code is
887generated. @code{string} may be any of the @code{-march=}
888selection options, or @code{push}, or @code{pop}. @code{.machine
889push} saves the currently selected cpu, which may be restored with
890@code{.machine pop}. Be aware that the cpu string has to be put
891into double quotes in case it contains characters not appropriate
892for identifiers. So you have to write @code{"z9-109"} instead of
893just @code{z9-109}. Extensions can be specified after the cpu
33eaf5de 894name, separated by plus characters. Valid extensions are:
7ecc513a
DV
895@code{htm},
896@code{nohtm},
897@code{vx},
898@code{novx}.
899They extend the basic instruction set with features from a higher
900cpu level, or remove support for a feature from the given cpu
901level.
902
903Example: @code{z13+nohtm} allows all instructions of the z13 cpu
904except instructions from the HTM facility.
1dd53816
AK
905
906@cindex @code{.machinemode} directive, s390
907@item .machinemode string
908This directive allows to change the architecture mode for which code
909is being generated. @code{string} may be @code{esa}, @code{zarch},
910@code{zarch_nohighgprs}, @code{push}, or @code{pop}.
911@code{.machinemode zarch_nohighgprs} can be used to prevent the
912@code{highgprs} flag from being set in the ELF header of the output
913file. This is useful in situations where the code is gated with a
914runtime check which makes sure that the code is only executed on
915kernels providing the @code{highgprs} feature.
916@code{.machinemode push} saves the currently selected mode, which may
917be restored with @code{.machinemode pop}.
11c19e16
MS
918@end table
919
920@node s390 Floating Point
921@section Floating Point
922@cindex floating point, s390
923@cindex s390 floating point
924
925The assembler recognizes both the @sc{ieee} floating-point instruction and
926the hexadecimal floating-point instructions. The floating-point constructors
927@samp{.float}, @samp{.single}, and @samp{.double} always emit the
928@sc{ieee} format. To assemble hexadecimal floating-point constants the
929@samp{.long} and @samp{.quad} directives must be used.