]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Ada exception catchpoint support cleanup.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
28010a5d 65#include "exceptions.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
76a01679 112 struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 118 struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 128 struct symbol *, struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
4c4b4cd2
PH
272\f
273
76a01679 274
4c4b4cd2 275/* Maximum-sized dynamic type. */
14f9c5c9
AS
276static unsigned int varsize_limit;
277
4c4b4cd2
PH
278/* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280static char *ada_completer_word_break_characters =
281#ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283#else
14f9c5c9 284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 285#endif
14f9c5c9 286
4c4b4cd2 287/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 288static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 289 = "__gnat_ada_main_program_name";
14f9c5c9 290
4c4b4cd2
PH
291/* Limit on the number of warnings to raise per expression evaluation. */
292static int warning_limit = 2;
293
294/* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296static int warnings_issued = 0;
297
298static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300};
301
302static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304};
305
306/* Space for allocating results of ada_lookup_symbol_list. */
307static struct obstack symbol_list_obstack;
308
e802dbe0
JB
309 /* Inferior-specific data. */
310
311/* Per-inferior data for this module. */
312
313struct ada_inferior_data
314{
315 /* The ada__tags__type_specific_data type, which is used when decoding
316 tagged types. With older versions of GNAT, this type was directly
317 accessible through a component ("tsd") in the object tag. But this
318 is no longer the case, so we cache it for each inferior. */
319 struct type *tsd_type;
320};
321
322/* Our key to this module's inferior data. */
323static const struct inferior_data *ada_inferior_data;
324
325/* A cleanup routine for our inferior data. */
326static void
327ada_inferior_data_cleanup (struct inferior *inf, void *arg)
328{
329 struct ada_inferior_data *data;
330
331 data = inferior_data (inf, ada_inferior_data);
332 if (data != NULL)
333 xfree (data);
334}
335
336/* Return our inferior data for the given inferior (INF).
337
338 This function always returns a valid pointer to an allocated
339 ada_inferior_data structure. If INF's inferior data has not
340 been previously set, this functions creates a new one with all
341 fields set to zero, sets INF's inferior to it, and then returns
342 a pointer to that newly allocated ada_inferior_data. */
343
344static struct ada_inferior_data *
345get_ada_inferior_data (struct inferior *inf)
346{
347 struct ada_inferior_data *data;
348
349 data = inferior_data (inf, ada_inferior_data);
350 if (data == NULL)
351 {
352 data = XZALLOC (struct ada_inferior_data);
353 set_inferior_data (inf, ada_inferior_data, data);
354 }
355
356 return data;
357}
358
359/* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362static void
363ada_inferior_exit (struct inferior *inf)
364{
365 ada_inferior_data_cleanup (inf, NULL);
366 set_inferior_data (inf, ada_inferior_data, NULL);
367}
368
4c4b4cd2
PH
369 /* Utilities */
370
720d1a40 371/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 372 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
373
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
382
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
386
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
393
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
397
398static struct type *
399ada_typedef_target_type (struct type *type)
400{
401 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
402 type = TYPE_TARGET_TYPE (type);
403 return type;
404}
405
41d27058
JB
406/* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
409
410static const char *
411ada_unqualified_name (const char *decoded_name)
412{
413 const char *result = strrchr (decoded_name, '.');
414
415 if (result != NULL)
416 result++; /* Skip the dot... */
417 else
418 result = decoded_name;
419
420 return result;
421}
422
423/* Return a string starting with '<', followed by STR, and '>'.
424 The result is good until the next call. */
425
426static char *
427add_angle_brackets (const char *str)
428{
429 static char *result = NULL;
430
431 xfree (result);
88c15c34 432 result = xstrprintf ("<%s>", str);
41d27058
JB
433 return result;
434}
96d887e8 435
4c4b4cd2
PH
436static char *
437ada_get_gdb_completer_word_break_characters (void)
438{
439 return ada_completer_word_break_characters;
440}
441
e79af960
JB
442/* Print an array element index using the Ada syntax. */
443
444static void
445ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 446 const struct value_print_options *options)
e79af960 447{
79a45b7d 448 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
449 fprintf_filtered (stream, " => ");
450}
451
f27cf670 452/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 453 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 454 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 455
f27cf670
AS
456void *
457grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 458{
d2e4a39e
AS
459 if (*size < min_size)
460 {
461 *size *= 2;
462 if (*size < min_size)
4c4b4cd2 463 *size = min_size;
f27cf670 464 vect = xrealloc (vect, *size * element_size);
d2e4a39e 465 }
f27cf670 466 return vect;
14f9c5c9
AS
467}
468
469/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 470 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
471
472static int
ebf56fd3 473field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
474{
475 int len = strlen (target);
5b4ee69b 476
d2e4a39e 477 return
4c4b4cd2
PH
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
480 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
481 && strcmp (field_name + strlen (field_name) - 6,
482 "___XVN") != 0)));
14f9c5c9
AS
483}
484
485
872c8b51
JB
486/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
493
494int
495ada_get_field_index (const struct type *type, const char *field_name,
496 int maybe_missing)
497{
498 int fieldno;
872c8b51
JB
499 struct type *struct_type = check_typedef ((struct type *) type);
500
501 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
502 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
503 return fieldno;
504
505 if (!maybe_missing)
323e0a4a 506 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 507 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
508
509 return -1;
510}
511
512/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
513
514int
d2e4a39e 515ada_name_prefix_len (const char *name)
14f9c5c9
AS
516{
517 if (name == NULL)
518 return 0;
d2e4a39e 519 else
14f9c5c9 520 {
d2e4a39e 521 const char *p = strstr (name, "___");
5b4ee69b 522
14f9c5c9 523 if (p == NULL)
4c4b4cd2 524 return strlen (name);
14f9c5c9 525 else
4c4b4cd2 526 return p - name;
14f9c5c9
AS
527 }
528}
529
4c4b4cd2
PH
530/* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
532
14f9c5c9 533static int
d2e4a39e 534is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
535{
536 int len1, len2;
5b4ee69b 537
14f9c5c9
AS
538 if (str == NULL)
539 return 0;
540 len1 = strlen (str);
541 len2 = strlen (suffix);
4c4b4cd2 542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
543}
544
4c4b4cd2
PH
545/* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
14f9c5c9 547
d2e4a39e 548static struct value *
4c4b4cd2 549coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 550{
61ee279c 551 type = ada_check_typedef (type);
df407dfe 552 if (value_type (val) == type)
4c4b4cd2 553 return val;
d2e4a39e 554 else
14f9c5c9 555 {
4c4b4cd2
PH
556 struct value *result;
557
558 /* Make sure that the object size is not unreasonable before
559 trying to allocate some memory for it. */
714e53ab 560 check_size (type);
4c4b4cd2 561
41e8491f
JK
562 if (value_lazy (val)
563 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
564 result = allocate_value_lazy (type);
565 else
566 {
567 result = allocate_value (type);
568 memcpy (value_contents_raw (result), value_contents (val),
569 TYPE_LENGTH (type));
570 }
74bcbdf3 571 set_value_component_location (result, val);
9bbda503
AC
572 set_value_bitsize (result, value_bitsize (val));
573 set_value_bitpos (result, value_bitpos (val));
42ae5230 574 set_value_address (result, value_address (val));
14f9c5c9
AS
575 return result;
576 }
577}
578
fc1a4b47
AC
579static const gdb_byte *
580cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
581{
582 if (valaddr == NULL)
583 return NULL;
584 else
585 return valaddr + offset;
586}
587
588static CORE_ADDR
ebf56fd3 589cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
590{
591 if (address == 0)
592 return 0;
d2e4a39e 593 else
14f9c5c9
AS
594 return address + offset;
595}
596
4c4b4cd2
PH
597/* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
600 expression. */
a2249542 601
77109804
AC
602/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
a0b31db1 604static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 605
14f9c5c9 606static void
a2249542 607lim_warning (const char *format, ...)
14f9c5c9 608{
a2249542 609 va_list args;
a2249542 610
5b4ee69b 611 va_start (args, format);
4c4b4cd2
PH
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
a2249542
MK
614 vwarning (format, args);
615
616 va_end (args);
4c4b4cd2
PH
617}
618
714e53ab
PH
619/* Issue an error if the size of an object of type T is unreasonable,
620 i.e. if it would be a bad idea to allocate a value of this type in
621 GDB. */
622
623static void
624check_size (const struct type *type)
625{
626 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 627 error (_("object size is larger than varsize-limit"));
714e53ab
PH
628}
629
0963b4bd 630/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 631static LONGEST
c3e5cd34 632max_of_size (int size)
4c4b4cd2 633{
76a01679 634 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 635
76a01679 636 return top_bit | (top_bit - 1);
4c4b4cd2
PH
637}
638
0963b4bd 639/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 640static LONGEST
c3e5cd34 641min_of_size (int size)
4c4b4cd2 642{
c3e5cd34 643 return -max_of_size (size) - 1;
4c4b4cd2
PH
644}
645
0963b4bd 646/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 647static ULONGEST
c3e5cd34 648umax_of_size (int size)
4c4b4cd2 649{
76a01679 650 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 651
76a01679 652 return top_bit | (top_bit - 1);
4c4b4cd2
PH
653}
654
0963b4bd 655/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
656static LONGEST
657max_of_type (struct type *t)
4c4b4cd2 658{
c3e5cd34
PH
659 if (TYPE_UNSIGNED (t))
660 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
661 else
662 return max_of_size (TYPE_LENGTH (t));
663}
664
0963b4bd 665/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
666static LONGEST
667min_of_type (struct type *t)
668{
669 if (TYPE_UNSIGNED (t))
670 return 0;
671 else
672 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
673}
674
675/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
676LONGEST
677ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 678{
76a01679 679 switch (TYPE_CODE (type))
4c4b4cd2
PH
680 {
681 case TYPE_CODE_RANGE:
690cc4eb 682 return TYPE_HIGH_BOUND (type);
4c4b4cd2 683 case TYPE_CODE_ENUM:
690cc4eb
PH
684 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
685 case TYPE_CODE_BOOL:
686 return 1;
687 case TYPE_CODE_CHAR:
76a01679 688 case TYPE_CODE_INT:
690cc4eb 689 return max_of_type (type);
4c4b4cd2 690 default:
43bbcdc2 691 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
692 }
693}
694
695/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
696LONGEST
697ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 698{
76a01679 699 switch (TYPE_CODE (type))
4c4b4cd2
PH
700 {
701 case TYPE_CODE_RANGE:
690cc4eb 702 return TYPE_LOW_BOUND (type);
4c4b4cd2 703 case TYPE_CODE_ENUM:
690cc4eb
PH
704 return TYPE_FIELD_BITPOS (type, 0);
705 case TYPE_CODE_BOOL:
706 return 0;
707 case TYPE_CODE_CHAR:
76a01679 708 case TYPE_CODE_INT:
690cc4eb 709 return min_of_type (type);
4c4b4cd2 710 default:
43bbcdc2 711 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
712 }
713}
714
715/* The identity on non-range types. For range types, the underlying
76a01679 716 non-range scalar type. */
4c4b4cd2
PH
717
718static struct type *
18af8284 719get_base_type (struct type *type)
4c4b4cd2
PH
720{
721 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
722 {
76a01679
JB
723 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
724 return type;
4c4b4cd2
PH
725 type = TYPE_TARGET_TYPE (type);
726 }
727 return type;
14f9c5c9 728}
4c4b4cd2 729\f
76a01679 730
4c4b4cd2 731 /* Language Selection */
14f9c5c9
AS
732
733/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 734 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 735
14f9c5c9 736enum language
ccefe4c4 737ada_update_initial_language (enum language lang)
14f9c5c9 738{
d2e4a39e 739 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
740 (struct objfile *) NULL) != NULL)
741 return language_ada;
14f9c5c9
AS
742
743 return lang;
744}
96d887e8
PH
745
746/* If the main procedure is written in Ada, then return its name.
747 The result is good until the next call. Return NULL if the main
748 procedure doesn't appear to be in Ada. */
749
750char *
751ada_main_name (void)
752{
753 struct minimal_symbol *msym;
f9bc20b9 754 static char *main_program_name = NULL;
6c038f32 755
96d887e8
PH
756 /* For Ada, the name of the main procedure is stored in a specific
757 string constant, generated by the binder. Look for that symbol,
758 extract its address, and then read that string. If we didn't find
759 that string, then most probably the main procedure is not written
760 in Ada. */
761 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
762
763 if (msym != NULL)
764 {
f9bc20b9
JB
765 CORE_ADDR main_program_name_addr;
766 int err_code;
767
96d887e8
PH
768 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
769 if (main_program_name_addr == 0)
323e0a4a 770 error (_("Invalid address for Ada main program name."));
96d887e8 771
f9bc20b9
JB
772 xfree (main_program_name);
773 target_read_string (main_program_name_addr, &main_program_name,
774 1024, &err_code);
775
776 if (err_code != 0)
777 return NULL;
96d887e8
PH
778 return main_program_name;
779 }
780
781 /* The main procedure doesn't seem to be in Ada. */
782 return NULL;
783}
14f9c5c9 784\f
4c4b4cd2 785 /* Symbols */
d2e4a39e 786
4c4b4cd2
PH
787/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
788 of NULLs. */
14f9c5c9 789
d2e4a39e
AS
790const struct ada_opname_map ada_opname_table[] = {
791 {"Oadd", "\"+\"", BINOP_ADD},
792 {"Osubtract", "\"-\"", BINOP_SUB},
793 {"Omultiply", "\"*\"", BINOP_MUL},
794 {"Odivide", "\"/\"", BINOP_DIV},
795 {"Omod", "\"mod\"", BINOP_MOD},
796 {"Orem", "\"rem\"", BINOP_REM},
797 {"Oexpon", "\"**\"", BINOP_EXP},
798 {"Olt", "\"<\"", BINOP_LESS},
799 {"Ole", "\"<=\"", BINOP_LEQ},
800 {"Ogt", "\">\"", BINOP_GTR},
801 {"Oge", "\">=\"", BINOP_GEQ},
802 {"Oeq", "\"=\"", BINOP_EQUAL},
803 {"One", "\"/=\"", BINOP_NOTEQUAL},
804 {"Oand", "\"and\"", BINOP_BITWISE_AND},
805 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
806 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
807 {"Oconcat", "\"&\"", BINOP_CONCAT},
808 {"Oabs", "\"abs\"", UNOP_ABS},
809 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
810 {"Oadd", "\"+\"", UNOP_PLUS},
811 {"Osubtract", "\"-\"", UNOP_NEG},
812 {NULL, NULL}
14f9c5c9
AS
813};
814
4c4b4cd2
PH
815/* The "encoded" form of DECODED, according to GNAT conventions.
816 The result is valid until the next call to ada_encode. */
817
14f9c5c9 818char *
4c4b4cd2 819ada_encode (const char *decoded)
14f9c5c9 820{
4c4b4cd2
PH
821 static char *encoding_buffer = NULL;
822 static size_t encoding_buffer_size = 0;
d2e4a39e 823 const char *p;
14f9c5c9 824 int k;
d2e4a39e 825
4c4b4cd2 826 if (decoded == NULL)
14f9c5c9
AS
827 return NULL;
828
4c4b4cd2
PH
829 GROW_VECT (encoding_buffer, encoding_buffer_size,
830 2 * strlen (decoded) + 10);
14f9c5c9
AS
831
832 k = 0;
4c4b4cd2 833 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 834 {
cdc7bb92 835 if (*p == '.')
4c4b4cd2
PH
836 {
837 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
838 k += 2;
839 }
14f9c5c9 840 else if (*p == '"')
4c4b4cd2
PH
841 {
842 const struct ada_opname_map *mapping;
843
844 for (mapping = ada_opname_table;
1265e4aa
JB
845 mapping->encoded != NULL
846 && strncmp (mapping->decoded, p,
847 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
848 ;
849 if (mapping->encoded == NULL)
323e0a4a 850 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
851 strcpy (encoding_buffer + k, mapping->encoded);
852 k += strlen (mapping->encoded);
853 break;
854 }
d2e4a39e 855 else
4c4b4cd2
PH
856 {
857 encoding_buffer[k] = *p;
858 k += 1;
859 }
14f9c5c9
AS
860 }
861
4c4b4cd2
PH
862 encoding_buffer[k] = '\0';
863 return encoding_buffer;
14f9c5c9
AS
864}
865
866/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
867 quotes, unfolded, but with the quotes stripped away. Result good
868 to next call. */
869
d2e4a39e
AS
870char *
871ada_fold_name (const char *name)
14f9c5c9 872{
d2e4a39e 873 static char *fold_buffer = NULL;
14f9c5c9
AS
874 static size_t fold_buffer_size = 0;
875
876 int len = strlen (name);
d2e4a39e 877 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
878
879 if (name[0] == '\'')
880 {
d2e4a39e
AS
881 strncpy (fold_buffer, name + 1, len - 2);
882 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
883 }
884 else
885 {
886 int i;
5b4ee69b 887
14f9c5c9 888 for (i = 0; i <= len; i += 1)
4c4b4cd2 889 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
890 }
891
892 return fold_buffer;
893}
894
529cad9c
PH
895/* Return nonzero if C is either a digit or a lowercase alphabet character. */
896
897static int
898is_lower_alphanum (const char c)
899{
900 return (isdigit (c) || (isalpha (c) && islower (c)));
901}
902
c90092fe
JB
903/* ENCODED is the linkage name of a symbol and LEN contains its length.
904 This function saves in LEN the length of that same symbol name but
905 without either of these suffixes:
29480c32
JB
906 . .{DIGIT}+
907 . ${DIGIT}+
908 . ___{DIGIT}+
909 . __{DIGIT}+.
c90092fe 910
29480c32
JB
911 These are suffixes introduced by the compiler for entities such as
912 nested subprogram for instance, in order to avoid name clashes.
913 They do not serve any purpose for the debugger. */
914
915static void
916ada_remove_trailing_digits (const char *encoded, int *len)
917{
918 if (*len > 1 && isdigit (encoded[*len - 1]))
919 {
920 int i = *len - 2;
5b4ee69b 921
29480c32
JB
922 while (i > 0 && isdigit (encoded[i]))
923 i--;
924 if (i >= 0 && encoded[i] == '.')
925 *len = i;
926 else if (i >= 0 && encoded[i] == '$')
927 *len = i;
928 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
929 *len = i - 2;
930 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
931 *len = i - 1;
932 }
933}
934
935/* Remove the suffix introduced by the compiler for protected object
936 subprograms. */
937
938static void
939ada_remove_po_subprogram_suffix (const char *encoded, int *len)
940{
941 /* Remove trailing N. */
942
943 /* Protected entry subprograms are broken into two
944 separate subprograms: The first one is unprotected, and has
945 a 'N' suffix; the second is the protected version, and has
0963b4bd 946 the 'P' suffix. The second calls the first one after handling
29480c32
JB
947 the protection. Since the P subprograms are internally generated,
948 we leave these names undecoded, giving the user a clue that this
949 entity is internal. */
950
951 if (*len > 1
952 && encoded[*len - 1] == 'N'
953 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
954 *len = *len - 1;
955}
956
69fadcdf
JB
957/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
958
959static void
960ada_remove_Xbn_suffix (const char *encoded, int *len)
961{
962 int i = *len - 1;
963
964 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
965 i--;
966
967 if (encoded[i] != 'X')
968 return;
969
970 if (i == 0)
971 return;
972
973 if (isalnum (encoded[i-1]))
974 *len = i;
975}
976
29480c32
JB
977/* If ENCODED follows the GNAT entity encoding conventions, then return
978 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
979 replaced by ENCODED.
14f9c5c9 980
4c4b4cd2 981 The resulting string is valid until the next call of ada_decode.
29480c32 982 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
983 is returned. */
984
985const char *
986ada_decode (const char *encoded)
14f9c5c9
AS
987{
988 int i, j;
989 int len0;
d2e4a39e 990 const char *p;
4c4b4cd2 991 char *decoded;
14f9c5c9 992 int at_start_name;
4c4b4cd2
PH
993 static char *decoding_buffer = NULL;
994 static size_t decoding_buffer_size = 0;
d2e4a39e 995
29480c32
JB
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
4c4b4cd2
PH
999 if (strncmp (encoded, "_ada_", 5) == 0)
1000 encoded += 5;
14f9c5c9 1001
29480c32
JB
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
4c4b4cd2 1005 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1006 goto Suppress;
1007
4c4b4cd2 1008 len0 = strlen (encoded);
4c4b4cd2 1009
29480c32
JB
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1012
4c4b4cd2
PH
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1019 {
1020 if (p[3] == 'X')
4c4b4cd2 1021 len0 = p - encoded;
14f9c5c9 1022 else
4c4b4cd2 1023 goto Suppress;
14f9c5c9 1024 }
4c4b4cd2 1025
29480c32
JB
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1029
4c4b4cd2 1030 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1031 len0 -= 3;
76a01679 1032
a10967fa
JB
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1035 bodies. */
1036
1037 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1038 len0 -= 2;
1039
29480c32
JB
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1042
4c4b4cd2 1043 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1044 len0 -= 1;
1045
4c4b4cd2 1046 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1047
4c4b4cd2
PH
1048 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1049 decoded = decoding_buffer;
14f9c5c9 1050
29480c32
JB
1051 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1052
4c4b4cd2 1053 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1054 {
4c4b4cd2
PH
1055 i = len0 - 2;
1056 while ((i >= 0 && isdigit (encoded[i]))
1057 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1058 i -= 1;
1059 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1060 len0 = i - 1;
1061 else if (encoded[i] == '$')
1062 len0 = i;
d2e4a39e 1063 }
14f9c5c9 1064
29480c32
JB
1065 /* The first few characters that are not alphabetic are not part
1066 of any encoding we use, so we can copy them over verbatim. */
1067
4c4b4cd2
PH
1068 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1069 decoded[j] = encoded[i];
14f9c5c9
AS
1070
1071 at_start_name = 1;
1072 while (i < len0)
1073 {
29480c32 1074 /* Is this a symbol function? */
4c4b4cd2
PH
1075 if (at_start_name && encoded[i] == 'O')
1076 {
1077 int k;
5b4ee69b 1078
4c4b4cd2
PH
1079 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1080 {
1081 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1082 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1083 op_len - 1) == 0)
1084 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1085 {
1086 strcpy (decoded + j, ada_opname_table[k].decoded);
1087 at_start_name = 0;
1088 i += op_len;
1089 j += strlen (ada_opname_table[k].decoded);
1090 break;
1091 }
1092 }
1093 if (ada_opname_table[k].encoded != NULL)
1094 continue;
1095 }
14f9c5c9
AS
1096 at_start_name = 0;
1097
529cad9c
PH
1098 /* Replace "TK__" with "__", which will eventually be translated
1099 into "." (just below). */
1100
4c4b4cd2
PH
1101 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1102 i += 2;
529cad9c 1103
29480c32
JB
1104 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1105 be translated into "." (just below). These are internal names
1106 generated for anonymous blocks inside which our symbol is nested. */
1107
1108 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1109 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1110 && isdigit (encoded [i+4]))
1111 {
1112 int k = i + 5;
1113
1114 while (k < len0 && isdigit (encoded[k]))
1115 k++; /* Skip any extra digit. */
1116
1117 /* Double-check that the "__B_{DIGITS}+" sequence we found
1118 is indeed followed by "__". */
1119 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1120 i = k;
1121 }
1122
529cad9c
PH
1123 /* Remove _E{DIGITS}+[sb] */
1124
1125 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1126 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1127 one implements the actual entry code, and has a suffix following
1128 the convention above; the second one implements the barrier and
1129 uses the same convention as above, except that the 'E' is replaced
1130 by a 'B'.
1131
1132 Just as above, we do not decode the name of barrier functions
1133 to give the user a clue that the code he is debugging has been
1134 internally generated. */
1135
1136 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1137 && isdigit (encoded[i+2]))
1138 {
1139 int k = i + 3;
1140
1141 while (k < len0 && isdigit (encoded[k]))
1142 k++;
1143
1144 if (k < len0
1145 && (encoded[k] == 'b' || encoded[k] == 's'))
1146 {
1147 k++;
1148 /* Just as an extra precaution, make sure that if this
1149 suffix is followed by anything else, it is a '_'.
1150 Otherwise, we matched this sequence by accident. */
1151 if (k == len0
1152 || (k < len0 && encoded[k] == '_'))
1153 i = k;
1154 }
1155 }
1156
1157 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1158 the GNAT front-end in protected object subprograms. */
1159
1160 if (i < len0 + 3
1161 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1162 {
1163 /* Backtrack a bit up until we reach either the begining of
1164 the encoded name, or "__". Make sure that we only find
1165 digits or lowercase characters. */
1166 const char *ptr = encoded + i - 1;
1167
1168 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1169 ptr--;
1170 if (ptr < encoded
1171 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1172 i++;
1173 }
1174
4c4b4cd2
PH
1175 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1176 {
29480c32
JB
1177 /* This is a X[bn]* sequence not separated from the previous
1178 part of the name with a non-alpha-numeric character (in other
1179 words, immediately following an alpha-numeric character), then
1180 verify that it is placed at the end of the encoded name. If
1181 not, then the encoding is not valid and we should abort the
1182 decoding. Otherwise, just skip it, it is used in body-nested
1183 package names. */
4c4b4cd2
PH
1184 do
1185 i += 1;
1186 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1187 if (i < len0)
1188 goto Suppress;
1189 }
cdc7bb92 1190 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1191 {
29480c32 1192 /* Replace '__' by '.'. */
4c4b4cd2
PH
1193 decoded[j] = '.';
1194 at_start_name = 1;
1195 i += 2;
1196 j += 1;
1197 }
14f9c5c9 1198 else
4c4b4cd2 1199 {
29480c32
JB
1200 /* It's a character part of the decoded name, so just copy it
1201 over. */
4c4b4cd2
PH
1202 decoded[j] = encoded[i];
1203 i += 1;
1204 j += 1;
1205 }
14f9c5c9 1206 }
4c4b4cd2 1207 decoded[j] = '\000';
14f9c5c9 1208
29480c32
JB
1209 /* Decoded names should never contain any uppercase character.
1210 Double-check this, and abort the decoding if we find one. */
1211
4c4b4cd2
PH
1212 for (i = 0; decoded[i] != '\0'; i += 1)
1213 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1214 goto Suppress;
1215
4c4b4cd2
PH
1216 if (strcmp (decoded, encoded) == 0)
1217 return encoded;
1218 else
1219 return decoded;
14f9c5c9
AS
1220
1221Suppress:
4c4b4cd2
PH
1222 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1223 decoded = decoding_buffer;
1224 if (encoded[0] == '<')
1225 strcpy (decoded, encoded);
14f9c5c9 1226 else
88c15c34 1227 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1228 return decoded;
1229
1230}
1231
1232/* Table for keeping permanent unique copies of decoded names. Once
1233 allocated, names in this table are never released. While this is a
1234 storage leak, it should not be significant unless there are massive
1235 changes in the set of decoded names in successive versions of a
1236 symbol table loaded during a single session. */
1237static struct htab *decoded_names_store;
1238
1239/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1240 in the language-specific part of GSYMBOL, if it has not been
1241 previously computed. Tries to save the decoded name in the same
1242 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1243 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1244 GSYMBOL).
4c4b4cd2
PH
1245 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1246 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1247 when a decoded name is cached in it. */
4c4b4cd2 1248
76a01679
JB
1249char *
1250ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1251{
76a01679 1252 char **resultp =
afa16725 1253 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1254
4c4b4cd2
PH
1255 if (*resultp == NULL)
1256 {
1257 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1258
714835d5 1259 if (gsymbol->obj_section != NULL)
76a01679 1260 {
714835d5 1261 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1262
714835d5
UW
1263 *resultp = obsavestring (decoded, strlen (decoded),
1264 &objf->objfile_obstack);
76a01679 1265 }
4c4b4cd2 1266 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1267 case, we put the result on the heap. Since we only decode
1268 when needed, we hope this usually does not cause a
1269 significant memory leak (FIXME). */
4c4b4cd2 1270 if (*resultp == NULL)
76a01679
JB
1271 {
1272 char **slot = (char **) htab_find_slot (decoded_names_store,
1273 decoded, INSERT);
5b4ee69b 1274
76a01679
JB
1275 if (*slot == NULL)
1276 *slot = xstrdup (decoded);
1277 *resultp = *slot;
1278 }
4c4b4cd2 1279 }
14f9c5c9 1280
4c4b4cd2
PH
1281 return *resultp;
1282}
76a01679 1283
2c0b251b 1284static char *
76a01679 1285ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1286{
1287 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1288}
1289
1290/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1291 suffixes that encode debugging information or leading _ada_ on
1292 SYM_NAME (see is_name_suffix commentary for the debugging
1293 information that is ignored). If WILD, then NAME need only match a
1294 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1295 either argument is NULL. */
14f9c5c9 1296
2c0b251b 1297static int
40658b94 1298match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1299{
1300 if (sym_name == NULL || name == NULL)
1301 return 0;
1302 else if (wild)
73589123 1303 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1304 else
1305 {
1306 int len_name = strlen (name);
5b4ee69b 1307
4c4b4cd2
PH
1308 return (strncmp (sym_name, name, len_name) == 0
1309 && is_name_suffix (sym_name + len_name))
1310 || (strncmp (sym_name, "_ada_", 5) == 0
1311 && strncmp (sym_name + 5, name, len_name) == 0
1312 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1313 }
14f9c5c9 1314}
14f9c5c9 1315\f
d2e4a39e 1316
4c4b4cd2 1317 /* Arrays */
14f9c5c9 1318
28c85d6c
JB
1319/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1320 generated by the GNAT compiler to describe the index type used
1321 for each dimension of an array, check whether it follows the latest
1322 known encoding. If not, fix it up to conform to the latest encoding.
1323 Otherwise, do nothing. This function also does nothing if
1324 INDEX_DESC_TYPE is NULL.
1325
1326 The GNAT encoding used to describle the array index type evolved a bit.
1327 Initially, the information would be provided through the name of each
1328 field of the structure type only, while the type of these fields was
1329 described as unspecified and irrelevant. The debugger was then expected
1330 to perform a global type lookup using the name of that field in order
1331 to get access to the full index type description. Because these global
1332 lookups can be very expensive, the encoding was later enhanced to make
1333 the global lookup unnecessary by defining the field type as being
1334 the full index type description.
1335
1336 The purpose of this routine is to allow us to support older versions
1337 of the compiler by detecting the use of the older encoding, and by
1338 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1339 we essentially replace each field's meaningless type by the associated
1340 index subtype). */
1341
1342void
1343ada_fixup_array_indexes_type (struct type *index_desc_type)
1344{
1345 int i;
1346
1347 if (index_desc_type == NULL)
1348 return;
1349 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1350
1351 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1352 to check one field only, no need to check them all). If not, return
1353 now.
1354
1355 If our INDEX_DESC_TYPE was generated using the older encoding,
1356 the field type should be a meaningless integer type whose name
1357 is not equal to the field name. */
1358 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1359 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1360 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1361 return;
1362
1363 /* Fixup each field of INDEX_DESC_TYPE. */
1364 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1365 {
1366 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1367 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1368
1369 if (raw_type)
1370 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1371 }
1372}
1373
4c4b4cd2 1374/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1375
d2e4a39e
AS
1376static char *bound_name[] = {
1377 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1378 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1379};
1380
1381/* Maximum number of array dimensions we are prepared to handle. */
1382
4c4b4cd2 1383#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1384
14f9c5c9 1385
4c4b4cd2
PH
1386/* The desc_* routines return primitive portions of array descriptors
1387 (fat pointers). */
14f9c5c9
AS
1388
1389/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1390 level of indirection, if needed. */
1391
d2e4a39e
AS
1392static struct type *
1393desc_base_type (struct type *type)
14f9c5c9
AS
1394{
1395 if (type == NULL)
1396 return NULL;
61ee279c 1397 type = ada_check_typedef (type);
720d1a40
JB
1398 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1399 type = ada_typedef_target_type (type);
1400
1265e4aa
JB
1401 if (type != NULL
1402 && (TYPE_CODE (type) == TYPE_CODE_PTR
1403 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1404 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1405 else
1406 return type;
1407}
1408
4c4b4cd2
PH
1409/* True iff TYPE indicates a "thin" array pointer type. */
1410
14f9c5c9 1411static int
d2e4a39e 1412is_thin_pntr (struct type *type)
14f9c5c9 1413{
d2e4a39e 1414 return
14f9c5c9
AS
1415 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1416 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1417}
1418
4c4b4cd2
PH
1419/* The descriptor type for thin pointer type TYPE. */
1420
d2e4a39e
AS
1421static struct type *
1422thin_descriptor_type (struct type *type)
14f9c5c9 1423{
d2e4a39e 1424 struct type *base_type = desc_base_type (type);
5b4ee69b 1425
14f9c5c9
AS
1426 if (base_type == NULL)
1427 return NULL;
1428 if (is_suffix (ada_type_name (base_type), "___XVE"))
1429 return base_type;
d2e4a39e 1430 else
14f9c5c9 1431 {
d2e4a39e 1432 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1433
14f9c5c9 1434 if (alt_type == NULL)
4c4b4cd2 1435 return base_type;
14f9c5c9 1436 else
4c4b4cd2 1437 return alt_type;
14f9c5c9
AS
1438 }
1439}
1440
4c4b4cd2
PH
1441/* A pointer to the array data for thin-pointer value VAL. */
1442
d2e4a39e
AS
1443static struct value *
1444thin_data_pntr (struct value *val)
14f9c5c9 1445{
828292f2 1446 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1447 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1448
556bdfd4
UW
1449 data_type = lookup_pointer_type (data_type);
1450
14f9c5c9 1451 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1452 return value_cast (data_type, value_copy (val));
d2e4a39e 1453 else
42ae5230 1454 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1455}
1456
4c4b4cd2
PH
1457/* True iff TYPE indicates a "thick" array pointer type. */
1458
14f9c5c9 1459static int
d2e4a39e 1460is_thick_pntr (struct type *type)
14f9c5c9
AS
1461{
1462 type = desc_base_type (type);
1463 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1464 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1465}
1466
4c4b4cd2
PH
1467/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1468 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1469
d2e4a39e
AS
1470static struct type *
1471desc_bounds_type (struct type *type)
14f9c5c9 1472{
d2e4a39e 1473 struct type *r;
14f9c5c9
AS
1474
1475 type = desc_base_type (type);
1476
1477 if (type == NULL)
1478 return NULL;
1479 else if (is_thin_pntr (type))
1480 {
1481 type = thin_descriptor_type (type);
1482 if (type == NULL)
4c4b4cd2 1483 return NULL;
14f9c5c9
AS
1484 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1485 if (r != NULL)
61ee279c 1486 return ada_check_typedef (r);
14f9c5c9
AS
1487 }
1488 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1489 {
1490 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1491 if (r != NULL)
61ee279c 1492 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1493 }
1494 return NULL;
1495}
1496
1497/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1498 one, a pointer to its bounds data. Otherwise NULL. */
1499
d2e4a39e
AS
1500static struct value *
1501desc_bounds (struct value *arr)
14f9c5c9 1502{
df407dfe 1503 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1504
d2e4a39e 1505 if (is_thin_pntr (type))
14f9c5c9 1506 {
d2e4a39e 1507 struct type *bounds_type =
4c4b4cd2 1508 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1509 LONGEST addr;
1510
4cdfadb1 1511 if (bounds_type == NULL)
323e0a4a 1512 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1513
1514 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1515 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1516 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1517 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1518 addr = value_as_long (arr);
d2e4a39e 1519 else
42ae5230 1520 addr = value_address (arr);
14f9c5c9 1521
d2e4a39e 1522 return
4c4b4cd2
PH
1523 value_from_longest (lookup_pointer_type (bounds_type),
1524 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1525 }
1526
1527 else if (is_thick_pntr (type))
05e522ef
JB
1528 {
1529 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1530 _("Bad GNAT array descriptor"));
1531 struct type *p_bounds_type = value_type (p_bounds);
1532
1533 if (p_bounds_type
1534 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1535 {
1536 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1537
1538 if (TYPE_STUB (target_type))
1539 p_bounds = value_cast (lookup_pointer_type
1540 (ada_check_typedef (target_type)),
1541 p_bounds);
1542 }
1543 else
1544 error (_("Bad GNAT array descriptor"));
1545
1546 return p_bounds;
1547 }
14f9c5c9
AS
1548 else
1549 return NULL;
1550}
1551
4c4b4cd2
PH
1552/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1553 position of the field containing the address of the bounds data. */
1554
14f9c5c9 1555static int
d2e4a39e 1556fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1557{
1558 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1559}
1560
1561/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1562 size of the field containing the address of the bounds data. */
1563
14f9c5c9 1564static int
d2e4a39e 1565fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1566{
1567 type = desc_base_type (type);
1568
d2e4a39e 1569 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1570 return TYPE_FIELD_BITSIZE (type, 1);
1571 else
61ee279c 1572 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1573}
1574
4c4b4cd2 1575/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1576 pointer to one, the type of its array data (a array-with-no-bounds type);
1577 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1578 data. */
4c4b4cd2 1579
d2e4a39e 1580static struct type *
556bdfd4 1581desc_data_target_type (struct type *type)
14f9c5c9
AS
1582{
1583 type = desc_base_type (type);
1584
4c4b4cd2 1585 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1586 if (is_thin_pntr (type))
556bdfd4 1587 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1588 else if (is_thick_pntr (type))
556bdfd4
UW
1589 {
1590 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1591
1592 if (data_type
1593 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1594 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1595 }
1596
1597 return NULL;
14f9c5c9
AS
1598}
1599
1600/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1601 its array data. */
4c4b4cd2 1602
d2e4a39e
AS
1603static struct value *
1604desc_data (struct value *arr)
14f9c5c9 1605{
df407dfe 1606 struct type *type = value_type (arr);
5b4ee69b 1607
14f9c5c9
AS
1608 if (is_thin_pntr (type))
1609 return thin_data_pntr (arr);
1610 else if (is_thick_pntr (type))
d2e4a39e 1611 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1612 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1613 else
1614 return NULL;
1615}
1616
1617
1618/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1619 position of the field containing the address of the data. */
1620
14f9c5c9 1621static int
d2e4a39e 1622fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1623{
1624 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1625}
1626
1627/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1628 size of the field containing the address of the data. */
1629
14f9c5c9 1630static int
d2e4a39e 1631fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1632{
1633 type = desc_base_type (type);
1634
1635 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1636 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1637 else
14f9c5c9
AS
1638 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1639}
1640
4c4b4cd2 1641/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1642 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1643 bound, if WHICH is 1. The first bound is I=1. */
1644
d2e4a39e
AS
1645static struct value *
1646desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1647{
d2e4a39e 1648 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1649 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1650}
1651
1652/* If BOUNDS is an array-bounds structure type, return the bit position
1653 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1654 bound, if WHICH is 1. The first bound is I=1. */
1655
14f9c5c9 1656static int
d2e4a39e 1657desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1658{
d2e4a39e 1659 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1660}
1661
1662/* If BOUNDS is an array-bounds structure type, return the bit field size
1663 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1664 bound, if WHICH is 1. The first bound is I=1. */
1665
76a01679 1666static int
d2e4a39e 1667desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1668{
1669 type = desc_base_type (type);
1670
d2e4a39e
AS
1671 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1672 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1673 else
1674 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1675}
1676
1677/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1678 Ith bound (numbering from 1). Otherwise, NULL. */
1679
d2e4a39e
AS
1680static struct type *
1681desc_index_type (struct type *type, int i)
14f9c5c9
AS
1682{
1683 type = desc_base_type (type);
1684
1685 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1686 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1687 else
14f9c5c9
AS
1688 return NULL;
1689}
1690
4c4b4cd2
PH
1691/* The number of index positions in the array-bounds type TYPE.
1692 Return 0 if TYPE is NULL. */
1693
14f9c5c9 1694static int
d2e4a39e 1695desc_arity (struct type *type)
14f9c5c9
AS
1696{
1697 type = desc_base_type (type);
1698
1699 if (type != NULL)
1700 return TYPE_NFIELDS (type) / 2;
1701 return 0;
1702}
1703
4c4b4cd2
PH
1704/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1705 an array descriptor type (representing an unconstrained array
1706 type). */
1707
76a01679
JB
1708static int
1709ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1710{
1711 if (type == NULL)
1712 return 0;
61ee279c 1713 type = ada_check_typedef (type);
4c4b4cd2 1714 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1715 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1716}
1717
52ce6436 1718/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1719 * to one. */
52ce6436 1720
2c0b251b 1721static int
52ce6436
PH
1722ada_is_array_type (struct type *type)
1723{
1724 while (type != NULL
1725 && (TYPE_CODE (type) == TYPE_CODE_PTR
1726 || TYPE_CODE (type) == TYPE_CODE_REF))
1727 type = TYPE_TARGET_TYPE (type);
1728 return ada_is_direct_array_type (type);
1729}
1730
4c4b4cd2 1731/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1732
14f9c5c9 1733int
4c4b4cd2 1734ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1735{
1736 if (type == NULL)
1737 return 0;
61ee279c 1738 type = ada_check_typedef (type);
14f9c5c9 1739 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1740 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1741 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1742 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1743}
1744
4c4b4cd2
PH
1745/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1746
14f9c5c9 1747int
4c4b4cd2 1748ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1749{
556bdfd4 1750 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1751
1752 if (type == NULL)
1753 return 0;
61ee279c 1754 type = ada_check_typedef (type);
556bdfd4
UW
1755 return (data_type != NULL
1756 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1757 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1758}
1759
1760/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1761 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1762 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1763 is still needed. */
1764
14f9c5c9 1765int
ebf56fd3 1766ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1767{
d2e4a39e 1768 return
14f9c5c9
AS
1769 type != NULL
1770 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1771 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1772 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1773 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1774}
1775
1776
4c4b4cd2 1777/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1778 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1779 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1780 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1781 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1782 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1783 a descriptor. */
d2e4a39e
AS
1784struct type *
1785ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1786{
ad82864c
JB
1787 if (ada_is_constrained_packed_array_type (value_type (arr)))
1788 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1789
df407dfe
AC
1790 if (!ada_is_array_descriptor_type (value_type (arr)))
1791 return value_type (arr);
d2e4a39e
AS
1792
1793 if (!bounds)
ad82864c
JB
1794 {
1795 struct type *array_type =
1796 ada_check_typedef (desc_data_target_type (value_type (arr)));
1797
1798 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1799 TYPE_FIELD_BITSIZE (array_type, 0) =
1800 decode_packed_array_bitsize (value_type (arr));
1801
1802 return array_type;
1803 }
14f9c5c9
AS
1804 else
1805 {
d2e4a39e 1806 struct type *elt_type;
14f9c5c9 1807 int arity;
d2e4a39e 1808 struct value *descriptor;
14f9c5c9 1809
df407dfe
AC
1810 elt_type = ada_array_element_type (value_type (arr), -1);
1811 arity = ada_array_arity (value_type (arr));
14f9c5c9 1812
d2e4a39e 1813 if (elt_type == NULL || arity == 0)
df407dfe 1814 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1815
1816 descriptor = desc_bounds (arr);
d2e4a39e 1817 if (value_as_long (descriptor) == 0)
4c4b4cd2 1818 return NULL;
d2e4a39e 1819 while (arity > 0)
4c4b4cd2 1820 {
e9bb382b
UW
1821 struct type *range_type = alloc_type_copy (value_type (arr));
1822 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1823 struct value *low = desc_one_bound (descriptor, arity, 0);
1824 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1825
5b4ee69b 1826 arity -= 1;
df407dfe 1827 create_range_type (range_type, value_type (low),
529cad9c
PH
1828 longest_to_int (value_as_long (low)),
1829 longest_to_int (value_as_long (high)));
4c4b4cd2 1830 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1831
1832 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1833 {
1834 /* We need to store the element packed bitsize, as well as
1835 recompute the array size, because it was previously
1836 computed based on the unpacked element size. */
1837 LONGEST lo = value_as_long (low);
1838 LONGEST hi = value_as_long (high);
1839
1840 TYPE_FIELD_BITSIZE (elt_type, 0) =
1841 decode_packed_array_bitsize (value_type (arr));
1842 /* If the array has no element, then the size is already
1843 zero, and does not need to be recomputed. */
1844 if (lo < hi)
1845 {
1846 int array_bitsize =
1847 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1848
1849 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1850 }
1851 }
4c4b4cd2 1852 }
14f9c5c9
AS
1853
1854 return lookup_pointer_type (elt_type);
1855 }
1856}
1857
1858/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1859 Otherwise, returns either a standard GDB array with bounds set
1860 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1861 GDB array. Returns NULL if ARR is a null fat pointer. */
1862
d2e4a39e
AS
1863struct value *
1864ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1865{
df407dfe 1866 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1867 {
d2e4a39e 1868 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1869
14f9c5c9 1870 if (arrType == NULL)
4c4b4cd2 1871 return NULL;
14f9c5c9
AS
1872 return value_cast (arrType, value_copy (desc_data (arr)));
1873 }
ad82864c
JB
1874 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1875 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1876 else
1877 return arr;
1878}
1879
1880/* If ARR does not represent an array, returns ARR unchanged.
1881 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1882 be ARR itself if it already is in the proper form). */
1883
720d1a40 1884struct value *
d2e4a39e 1885ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1886{
df407dfe 1887 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1888 {
d2e4a39e 1889 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1890
14f9c5c9 1891 if (arrVal == NULL)
323e0a4a 1892 error (_("Bounds unavailable for null array pointer."));
529cad9c 1893 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1894 return value_ind (arrVal);
1895 }
ad82864c
JB
1896 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1897 return decode_constrained_packed_array (arr);
d2e4a39e 1898 else
14f9c5c9
AS
1899 return arr;
1900}
1901
1902/* If TYPE represents a GNAT array type, return it translated to an
1903 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1904 packing). For other types, is the identity. */
1905
d2e4a39e
AS
1906struct type *
1907ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1908{
ad82864c
JB
1909 if (ada_is_constrained_packed_array_type (type))
1910 return decode_constrained_packed_array_type (type);
17280b9f
UW
1911
1912 if (ada_is_array_descriptor_type (type))
556bdfd4 1913 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1914
1915 return type;
14f9c5c9
AS
1916}
1917
4c4b4cd2
PH
1918/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1919
ad82864c
JB
1920static int
1921ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1922{
1923 if (type == NULL)
1924 return 0;
4c4b4cd2 1925 type = desc_base_type (type);
61ee279c 1926 type = ada_check_typedef (type);
d2e4a39e 1927 return
14f9c5c9
AS
1928 ada_type_name (type) != NULL
1929 && strstr (ada_type_name (type), "___XP") != NULL;
1930}
1931
ad82864c
JB
1932/* Non-zero iff TYPE represents a standard GNAT constrained
1933 packed-array type. */
1934
1935int
1936ada_is_constrained_packed_array_type (struct type *type)
1937{
1938 return ada_is_packed_array_type (type)
1939 && !ada_is_array_descriptor_type (type);
1940}
1941
1942/* Non-zero iff TYPE represents an array descriptor for a
1943 unconstrained packed-array type. */
1944
1945static int
1946ada_is_unconstrained_packed_array_type (struct type *type)
1947{
1948 return ada_is_packed_array_type (type)
1949 && ada_is_array_descriptor_type (type);
1950}
1951
1952/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1953 return the size of its elements in bits. */
1954
1955static long
1956decode_packed_array_bitsize (struct type *type)
1957{
720d1a40 1958 char *raw_name;
ad82864c
JB
1959 char *tail;
1960 long bits;
1961
720d1a40
JB
1962 /* Access to arrays implemented as fat pointers are encoded as a typedef
1963 of the fat pointer type. We need the name of the fat pointer type
1964 to do the decoding, so strip the typedef layer. */
1965 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1966 type = ada_typedef_target_type (type);
1967
1968 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1969 if (!raw_name)
1970 raw_name = ada_type_name (desc_base_type (type));
1971
1972 if (!raw_name)
1973 return 0;
1974
1975 tail = strstr (raw_name, "___XP");
720d1a40 1976 gdb_assert (tail != NULL);
ad82864c
JB
1977
1978 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1979 {
1980 lim_warning
1981 (_("could not understand bit size information on packed array"));
1982 return 0;
1983 }
1984
1985 return bits;
1986}
1987
14f9c5c9
AS
1988/* Given that TYPE is a standard GDB array type with all bounds filled
1989 in, and that the element size of its ultimate scalar constituents
1990 (that is, either its elements, or, if it is an array of arrays, its
1991 elements' elements, etc.) is *ELT_BITS, return an identical type,
1992 but with the bit sizes of its elements (and those of any
1993 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1994 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1995 in bits. */
1996
d2e4a39e 1997static struct type *
ad82864c 1998constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1999{
d2e4a39e
AS
2000 struct type *new_elt_type;
2001 struct type *new_type;
14f9c5c9
AS
2002 LONGEST low_bound, high_bound;
2003
61ee279c 2004 type = ada_check_typedef (type);
14f9c5c9
AS
2005 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2006 return type;
2007
e9bb382b 2008 new_type = alloc_type_copy (type);
ad82864c
JB
2009 new_elt_type =
2010 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2011 elt_bits);
262452ec 2012 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
2013 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2014 TYPE_NAME (new_type) = ada_type_name (type);
2015
262452ec 2016 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 2017 &low_bound, &high_bound) < 0)
14f9c5c9
AS
2018 low_bound = high_bound = 0;
2019 if (high_bound < low_bound)
2020 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2021 else
14f9c5c9
AS
2022 {
2023 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2024 TYPE_LENGTH (new_type) =
4c4b4cd2 2025 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2026 }
2027
876cecd0 2028 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2029 return new_type;
2030}
2031
ad82864c
JB
2032/* The array type encoded by TYPE, where
2033 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2034
d2e4a39e 2035static struct type *
ad82864c 2036decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2037{
727e3d2e
JB
2038 char *raw_name = ada_type_name (ada_check_typedef (type));
2039 char *name;
2040 char *tail;
d2e4a39e 2041 struct type *shadow_type;
14f9c5c9 2042 long bits;
14f9c5c9 2043
727e3d2e
JB
2044 if (!raw_name)
2045 raw_name = ada_type_name (desc_base_type (type));
2046
2047 if (!raw_name)
2048 return NULL;
2049
2050 name = (char *) alloca (strlen (raw_name) + 1);
2051 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2052 type = desc_base_type (type);
2053
14f9c5c9
AS
2054 memcpy (name, raw_name, tail - raw_name);
2055 name[tail - raw_name] = '\000';
2056
b4ba55a1
JB
2057 shadow_type = ada_find_parallel_type_with_name (type, name);
2058
2059 if (shadow_type == NULL)
14f9c5c9 2060 {
323e0a4a 2061 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2062 return NULL;
2063 }
cb249c71 2064 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2065
2066 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2067 {
0963b4bd
MS
2068 lim_warning (_("could not understand bounds "
2069 "information on packed array"));
14f9c5c9
AS
2070 return NULL;
2071 }
d2e4a39e 2072
ad82864c
JB
2073 bits = decode_packed_array_bitsize (type);
2074 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2075}
2076
ad82864c
JB
2077/* Given that ARR is a struct value *indicating a GNAT constrained packed
2078 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2079 standard GDB array type except that the BITSIZEs of the array
2080 target types are set to the number of bits in each element, and the
4c4b4cd2 2081 type length is set appropriately. */
14f9c5c9 2082
d2e4a39e 2083static struct value *
ad82864c 2084decode_constrained_packed_array (struct value *arr)
14f9c5c9 2085{
4c4b4cd2 2086 struct type *type;
14f9c5c9 2087
4c4b4cd2 2088 arr = ada_coerce_ref (arr);
284614f0
JB
2089
2090 /* If our value is a pointer, then dererence it. Make sure that
2091 this operation does not cause the target type to be fixed, as
2092 this would indirectly cause this array to be decoded. The rest
2093 of the routine assumes that the array hasn't been decoded yet,
2094 so we use the basic "value_ind" routine to perform the dereferencing,
2095 as opposed to using "ada_value_ind". */
828292f2 2096 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2097 arr = value_ind (arr);
4c4b4cd2 2098
ad82864c 2099 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2100 if (type == NULL)
2101 {
323e0a4a 2102 error (_("can't unpack array"));
14f9c5c9
AS
2103 return NULL;
2104 }
61ee279c 2105
50810684 2106 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2107 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2108 {
2109 /* This is a (right-justified) modular type representing a packed
2110 array with no wrapper. In order to interpret the value through
2111 the (left-justified) packed array type we just built, we must
2112 first left-justify it. */
2113 int bit_size, bit_pos;
2114 ULONGEST mod;
2115
df407dfe 2116 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2117 bit_size = 0;
2118 while (mod > 0)
2119 {
2120 bit_size += 1;
2121 mod >>= 1;
2122 }
df407dfe 2123 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2124 arr = ada_value_primitive_packed_val (arr, NULL,
2125 bit_pos / HOST_CHAR_BIT,
2126 bit_pos % HOST_CHAR_BIT,
2127 bit_size,
2128 type);
2129 }
2130
4c4b4cd2 2131 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2132}
2133
2134
2135/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2136 given in IND. ARR must be a simple array. */
14f9c5c9 2137
d2e4a39e
AS
2138static struct value *
2139value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2140{
2141 int i;
2142 int bits, elt_off, bit_off;
2143 long elt_total_bit_offset;
d2e4a39e
AS
2144 struct type *elt_type;
2145 struct value *v;
14f9c5c9
AS
2146
2147 bits = 0;
2148 elt_total_bit_offset = 0;
df407dfe 2149 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2150 for (i = 0; i < arity; i += 1)
14f9c5c9 2151 {
d2e4a39e 2152 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2153 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2154 error
0963b4bd
MS
2155 (_("attempt to do packed indexing of "
2156 "something other than a packed array"));
14f9c5c9 2157 else
4c4b4cd2
PH
2158 {
2159 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2160 LONGEST lowerbound, upperbound;
2161 LONGEST idx;
2162
2163 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2164 {
323e0a4a 2165 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2166 lowerbound = upperbound = 0;
2167 }
2168
3cb382c9 2169 idx = pos_atr (ind[i]);
4c4b4cd2 2170 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2171 lim_warning (_("packed array index %ld out of bounds"),
2172 (long) idx);
4c4b4cd2
PH
2173 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2174 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2175 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2176 }
14f9c5c9
AS
2177 }
2178 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2179 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2180
2181 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2182 bits, elt_type);
14f9c5c9
AS
2183 return v;
2184}
2185
4c4b4cd2 2186/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2187
2188static int
d2e4a39e 2189has_negatives (struct type *type)
14f9c5c9 2190{
d2e4a39e
AS
2191 switch (TYPE_CODE (type))
2192 {
2193 default:
2194 return 0;
2195 case TYPE_CODE_INT:
2196 return !TYPE_UNSIGNED (type);
2197 case TYPE_CODE_RANGE:
2198 return TYPE_LOW_BOUND (type) < 0;
2199 }
14f9c5c9 2200}
d2e4a39e 2201
14f9c5c9
AS
2202
2203/* Create a new value of type TYPE from the contents of OBJ starting
2204 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2205 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2206 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2207 VALADDR is ignored unless OBJ is NULL, in which case,
2208 VALADDR+OFFSET must address the start of storage containing the
2209 packed value. The value returned in this case is never an lval.
2210 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2211
d2e4a39e 2212struct value *
fc1a4b47 2213ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2214 long offset, int bit_offset, int bit_size,
4c4b4cd2 2215 struct type *type)
14f9c5c9 2216{
d2e4a39e 2217 struct value *v;
4c4b4cd2
PH
2218 int src, /* Index into the source area */
2219 targ, /* Index into the target area */
2220 srcBitsLeft, /* Number of source bits left to move */
2221 nsrc, ntarg, /* Number of source and target bytes */
2222 unusedLS, /* Number of bits in next significant
2223 byte of source that are unused */
2224 accumSize; /* Number of meaningful bits in accum */
2225 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2226 unsigned char *unpacked;
4c4b4cd2 2227 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2228 unsigned char sign;
2229 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2230 /* Transmit bytes from least to most significant; delta is the direction
2231 the indices move. */
50810684 2232 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2233
61ee279c 2234 type = ada_check_typedef (type);
14f9c5c9
AS
2235
2236 if (obj == NULL)
2237 {
2238 v = allocate_value (type);
d2e4a39e 2239 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2240 }
9214ee5f 2241 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2242 {
2243 v = value_at (type,
42ae5230 2244 value_address (obj) + offset);
d2e4a39e 2245 bytes = (unsigned char *) alloca (len);
42ae5230 2246 read_memory (value_address (v), bytes, len);
14f9c5c9 2247 }
d2e4a39e 2248 else
14f9c5c9
AS
2249 {
2250 v = allocate_value (type);
0fd88904 2251 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2252 }
d2e4a39e
AS
2253
2254 if (obj != NULL)
14f9c5c9 2255 {
42ae5230 2256 CORE_ADDR new_addr;
5b4ee69b 2257
74bcbdf3 2258 set_value_component_location (v, obj);
42ae5230 2259 new_addr = value_address (obj) + offset;
9bbda503
AC
2260 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2261 set_value_bitsize (v, bit_size);
df407dfe 2262 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2263 {
42ae5230 2264 ++new_addr;
9bbda503 2265 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2266 }
42ae5230 2267 set_value_address (v, new_addr);
14f9c5c9
AS
2268 }
2269 else
9bbda503 2270 set_value_bitsize (v, bit_size);
0fd88904 2271 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2272
2273 srcBitsLeft = bit_size;
2274 nsrc = len;
2275 ntarg = TYPE_LENGTH (type);
2276 sign = 0;
2277 if (bit_size == 0)
2278 {
2279 memset (unpacked, 0, TYPE_LENGTH (type));
2280 return v;
2281 }
50810684 2282 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2283 {
d2e4a39e 2284 src = len - 1;
1265e4aa
JB
2285 if (has_negatives (type)
2286 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2287 sign = ~0;
d2e4a39e
AS
2288
2289 unusedLS =
4c4b4cd2
PH
2290 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2291 % HOST_CHAR_BIT;
14f9c5c9
AS
2292
2293 switch (TYPE_CODE (type))
4c4b4cd2
PH
2294 {
2295 case TYPE_CODE_ARRAY:
2296 case TYPE_CODE_UNION:
2297 case TYPE_CODE_STRUCT:
2298 /* Non-scalar values must be aligned at a byte boundary... */
2299 accumSize =
2300 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2301 /* ... And are placed at the beginning (most-significant) bytes
2302 of the target. */
529cad9c 2303 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2304 ntarg = targ + 1;
4c4b4cd2
PH
2305 break;
2306 default:
2307 accumSize = 0;
2308 targ = TYPE_LENGTH (type) - 1;
2309 break;
2310 }
14f9c5c9 2311 }
d2e4a39e 2312 else
14f9c5c9
AS
2313 {
2314 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2315
2316 src = targ = 0;
2317 unusedLS = bit_offset;
2318 accumSize = 0;
2319
d2e4a39e 2320 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2321 sign = ~0;
14f9c5c9 2322 }
d2e4a39e 2323
14f9c5c9
AS
2324 accum = 0;
2325 while (nsrc > 0)
2326 {
2327 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2328 part of the value. */
d2e4a39e 2329 unsigned int unusedMSMask =
4c4b4cd2
PH
2330 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2331 1;
2332 /* Sign-extend bits for this byte. */
14f9c5c9 2333 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2334
d2e4a39e 2335 accum |=
4c4b4cd2 2336 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2337 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2338 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2339 {
2340 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2341 accumSize -= HOST_CHAR_BIT;
2342 accum >>= HOST_CHAR_BIT;
2343 ntarg -= 1;
2344 targ += delta;
2345 }
14f9c5c9
AS
2346 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2347 unusedLS = 0;
2348 nsrc -= 1;
2349 src += delta;
2350 }
2351 while (ntarg > 0)
2352 {
2353 accum |= sign << accumSize;
2354 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2355 accumSize -= HOST_CHAR_BIT;
2356 accum >>= HOST_CHAR_BIT;
2357 ntarg -= 1;
2358 targ += delta;
2359 }
2360
2361 return v;
2362}
d2e4a39e 2363
14f9c5c9
AS
2364/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2365 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2366 not overlap. */
14f9c5c9 2367static void
fc1a4b47 2368move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2369 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2370{
2371 unsigned int accum, mask;
2372 int accum_bits, chunk_size;
2373
2374 target += targ_offset / HOST_CHAR_BIT;
2375 targ_offset %= HOST_CHAR_BIT;
2376 source += src_offset / HOST_CHAR_BIT;
2377 src_offset %= HOST_CHAR_BIT;
50810684 2378 if (bits_big_endian_p)
14f9c5c9
AS
2379 {
2380 accum = (unsigned char) *source;
2381 source += 1;
2382 accum_bits = HOST_CHAR_BIT - src_offset;
2383
d2e4a39e 2384 while (n > 0)
4c4b4cd2
PH
2385 {
2386 int unused_right;
5b4ee69b 2387
4c4b4cd2
PH
2388 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2389 accum_bits += HOST_CHAR_BIT;
2390 source += 1;
2391 chunk_size = HOST_CHAR_BIT - targ_offset;
2392 if (chunk_size > n)
2393 chunk_size = n;
2394 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2395 mask = ((1 << chunk_size) - 1) << unused_right;
2396 *target =
2397 (*target & ~mask)
2398 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2399 n -= chunk_size;
2400 accum_bits -= chunk_size;
2401 target += 1;
2402 targ_offset = 0;
2403 }
14f9c5c9
AS
2404 }
2405 else
2406 {
2407 accum = (unsigned char) *source >> src_offset;
2408 source += 1;
2409 accum_bits = HOST_CHAR_BIT - src_offset;
2410
d2e4a39e 2411 while (n > 0)
4c4b4cd2
PH
2412 {
2413 accum = accum + ((unsigned char) *source << accum_bits);
2414 accum_bits += HOST_CHAR_BIT;
2415 source += 1;
2416 chunk_size = HOST_CHAR_BIT - targ_offset;
2417 if (chunk_size > n)
2418 chunk_size = n;
2419 mask = ((1 << chunk_size) - 1) << targ_offset;
2420 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2421 n -= chunk_size;
2422 accum_bits -= chunk_size;
2423 accum >>= chunk_size;
2424 target += 1;
2425 targ_offset = 0;
2426 }
14f9c5c9
AS
2427 }
2428}
2429
14f9c5c9
AS
2430/* Store the contents of FROMVAL into the location of TOVAL.
2431 Return a new value with the location of TOVAL and contents of
2432 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2433 floating-point or non-scalar types. */
14f9c5c9 2434
d2e4a39e
AS
2435static struct value *
2436ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2437{
df407dfe
AC
2438 struct type *type = value_type (toval);
2439 int bits = value_bitsize (toval);
14f9c5c9 2440
52ce6436
PH
2441 toval = ada_coerce_ref (toval);
2442 fromval = ada_coerce_ref (fromval);
2443
2444 if (ada_is_direct_array_type (value_type (toval)))
2445 toval = ada_coerce_to_simple_array (toval);
2446 if (ada_is_direct_array_type (value_type (fromval)))
2447 fromval = ada_coerce_to_simple_array (fromval);
2448
88e3b34b 2449 if (!deprecated_value_modifiable (toval))
323e0a4a 2450 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2451
d2e4a39e 2452 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2453 && bits > 0
d2e4a39e 2454 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2455 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2456 {
df407dfe
AC
2457 int len = (value_bitpos (toval)
2458 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2459 int from_size;
d2e4a39e
AS
2460 char *buffer = (char *) alloca (len);
2461 struct value *val;
42ae5230 2462 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2463
2464 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2465 fromval = value_cast (type, fromval);
14f9c5c9 2466
52ce6436 2467 read_memory (to_addr, buffer, len);
aced2898
PH
2468 from_size = value_bitsize (fromval);
2469 if (from_size == 0)
2470 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2471 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2472 move_bits (buffer, value_bitpos (toval),
50810684 2473 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2474 else
50810684
UW
2475 move_bits (buffer, value_bitpos (toval),
2476 value_contents (fromval), 0, bits, 0);
52ce6436 2477 write_memory (to_addr, buffer, len);
8cebebb9
PP
2478 observer_notify_memory_changed (to_addr, len, buffer);
2479
14f9c5c9 2480 val = value_copy (toval);
0fd88904 2481 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2482 TYPE_LENGTH (type));
04624583 2483 deprecated_set_value_type (val, type);
d2e4a39e 2484
14f9c5c9
AS
2485 return val;
2486 }
2487
2488 return value_assign (toval, fromval);
2489}
2490
2491
52ce6436
PH
2492/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2493 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2494 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2495 * COMPONENT, and not the inferior's memory. The current contents
2496 * of COMPONENT are ignored. */
2497static void
2498value_assign_to_component (struct value *container, struct value *component,
2499 struct value *val)
2500{
2501 LONGEST offset_in_container =
42ae5230 2502 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2503 int bit_offset_in_container =
2504 value_bitpos (component) - value_bitpos (container);
2505 int bits;
2506
2507 val = value_cast (value_type (component), val);
2508
2509 if (value_bitsize (component) == 0)
2510 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2511 else
2512 bits = value_bitsize (component);
2513
50810684 2514 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2515 move_bits (value_contents_writeable (container) + offset_in_container,
2516 value_bitpos (container) + bit_offset_in_container,
2517 value_contents (val),
2518 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2519 bits, 1);
52ce6436
PH
2520 else
2521 move_bits (value_contents_writeable (container) + offset_in_container,
2522 value_bitpos (container) + bit_offset_in_container,
50810684 2523 value_contents (val), 0, bits, 0);
52ce6436
PH
2524}
2525
4c4b4cd2
PH
2526/* The value of the element of array ARR at the ARITY indices given in IND.
2527 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2528 thereto. */
2529
d2e4a39e
AS
2530struct value *
2531ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2532{
2533 int k;
d2e4a39e
AS
2534 struct value *elt;
2535 struct type *elt_type;
14f9c5c9
AS
2536
2537 elt = ada_coerce_to_simple_array (arr);
2538
df407dfe 2539 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2540 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2541 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2542 return value_subscript_packed (elt, arity, ind);
2543
2544 for (k = 0; k < arity; k += 1)
2545 {
2546 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2547 error (_("too many subscripts (%d expected)"), k);
2497b498 2548 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2549 }
2550 return elt;
2551}
2552
2553/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2554 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2555 IND. Does not read the entire array into memory. */
14f9c5c9 2556
2c0b251b 2557static struct value *
d2e4a39e 2558ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2559 struct value **ind)
14f9c5c9
AS
2560{
2561 int k;
2562
2563 for (k = 0; k < arity; k += 1)
2564 {
2565 LONGEST lwb, upb;
14f9c5c9
AS
2566
2567 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2568 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2569 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2570 value_copy (arr));
14f9c5c9 2571 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2572 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2573 type = TYPE_TARGET_TYPE (type);
2574 }
2575
2576 return value_ind (arr);
2577}
2578
0b5d8877 2579/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2580 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2581 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2582 per Ada rules. */
0b5d8877 2583static struct value *
f5938064
JG
2584ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2585 int low, int high)
0b5d8877 2586{
b0dd7688 2587 struct type *type0 = ada_check_typedef (type);
6c038f32 2588 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2589 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2590 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2591 struct type *index_type =
b0dd7688 2592 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2593 low, high);
6c038f32 2594 struct type *slice_type =
b0dd7688 2595 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2596
f5938064 2597 return value_at_lazy (slice_type, base);
0b5d8877
PH
2598}
2599
2600
2601static struct value *
2602ada_value_slice (struct value *array, int low, int high)
2603{
b0dd7688 2604 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2605 struct type *index_type =
0b5d8877 2606 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2607 struct type *slice_type =
0b5d8877 2608 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2609
6c038f32 2610 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2611}
2612
14f9c5c9
AS
2613/* If type is a record type in the form of a standard GNAT array
2614 descriptor, returns the number of dimensions for type. If arr is a
2615 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2616 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2617
2618int
d2e4a39e 2619ada_array_arity (struct type *type)
14f9c5c9
AS
2620{
2621 int arity;
2622
2623 if (type == NULL)
2624 return 0;
2625
2626 type = desc_base_type (type);
2627
2628 arity = 0;
d2e4a39e 2629 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2630 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2631 else
2632 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2633 {
4c4b4cd2 2634 arity += 1;
61ee279c 2635 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2636 }
d2e4a39e 2637
14f9c5c9
AS
2638 return arity;
2639}
2640
2641/* If TYPE is a record type in the form of a standard GNAT array
2642 descriptor or a simple array type, returns the element type for
2643 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2644 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2645
d2e4a39e
AS
2646struct type *
2647ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2648{
2649 type = desc_base_type (type);
2650
d2e4a39e 2651 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2652 {
2653 int k;
d2e4a39e 2654 struct type *p_array_type;
14f9c5c9 2655
556bdfd4 2656 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2657
2658 k = ada_array_arity (type);
2659 if (k == 0)
4c4b4cd2 2660 return NULL;
d2e4a39e 2661
4c4b4cd2 2662 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2663 if (nindices >= 0 && k > nindices)
4c4b4cd2 2664 k = nindices;
d2e4a39e 2665 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2666 {
61ee279c 2667 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2668 k -= 1;
2669 }
14f9c5c9
AS
2670 return p_array_type;
2671 }
2672 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2673 {
2674 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2675 {
2676 type = TYPE_TARGET_TYPE (type);
2677 nindices -= 1;
2678 }
14f9c5c9
AS
2679 return type;
2680 }
2681
2682 return NULL;
2683}
2684
4c4b4cd2 2685/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2686 Does not examine memory. Throws an error if N is invalid or TYPE
2687 is not an array type. NAME is the name of the Ada attribute being
2688 evaluated ('range, 'first, 'last, or 'length); it is used in building
2689 the error message. */
14f9c5c9 2690
1eea4ebd
UW
2691static struct type *
2692ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2693{
4c4b4cd2
PH
2694 struct type *result_type;
2695
14f9c5c9
AS
2696 type = desc_base_type (type);
2697
1eea4ebd
UW
2698 if (n < 0 || n > ada_array_arity (type))
2699 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2700
4c4b4cd2 2701 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2702 {
2703 int i;
2704
2705 for (i = 1; i < n; i += 1)
4c4b4cd2 2706 type = TYPE_TARGET_TYPE (type);
262452ec 2707 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2708 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2709 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2710 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2711 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2712 result_type = NULL;
14f9c5c9 2713 }
d2e4a39e 2714 else
1eea4ebd
UW
2715 {
2716 result_type = desc_index_type (desc_bounds_type (type), n);
2717 if (result_type == NULL)
2718 error (_("attempt to take bound of something that is not an array"));
2719 }
2720
2721 return result_type;
14f9c5c9
AS
2722}
2723
2724/* Given that arr is an array type, returns the lower bound of the
2725 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2726 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2727 array-descriptor type. It works for other arrays with bounds supplied
2728 by run-time quantities other than discriminants. */
14f9c5c9 2729
abb68b3e 2730static LONGEST
1eea4ebd 2731ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2732{
1ce677a4 2733 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2734 int i;
262452ec
JK
2735
2736 gdb_assert (which == 0 || which == 1);
14f9c5c9 2737
ad82864c
JB
2738 if (ada_is_constrained_packed_array_type (arr_type))
2739 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2740
4c4b4cd2 2741 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2742 return (LONGEST) - which;
14f9c5c9
AS
2743
2744 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2745 type = TYPE_TARGET_TYPE (arr_type);
2746 else
2747 type = arr_type;
2748
1ce677a4
UW
2749 elt_type = type;
2750 for (i = n; i > 1; i--)
2751 elt_type = TYPE_TARGET_TYPE (type);
2752
14f9c5c9 2753 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2754 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2755 if (index_type_desc != NULL)
28c85d6c
JB
2756 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2757 NULL);
262452ec 2758 else
1ce677a4 2759 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2760
43bbcdc2
PH
2761 return
2762 (LONGEST) (which == 0
2763 ? ada_discrete_type_low_bound (index_type)
2764 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2765}
2766
2767/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2768 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2769 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2770 supplied by run-time quantities other than discriminants. */
14f9c5c9 2771
1eea4ebd 2772static LONGEST
4dc81987 2773ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2774{
df407dfe 2775 struct type *arr_type = value_type (arr);
14f9c5c9 2776
ad82864c
JB
2777 if (ada_is_constrained_packed_array_type (arr_type))
2778 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2779 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2780 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2781 else
1eea4ebd 2782 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2783}
2784
2785/* Given that arr is an array value, returns the length of the
2786 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2787 supplied by run-time quantities other than discriminants.
2788 Does not work for arrays indexed by enumeration types with representation
2789 clauses at the moment. */
14f9c5c9 2790
1eea4ebd 2791static LONGEST
d2e4a39e 2792ada_array_length (struct value *arr, int n)
14f9c5c9 2793{
df407dfe 2794 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2795
ad82864c
JB
2796 if (ada_is_constrained_packed_array_type (arr_type))
2797 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2798
4c4b4cd2 2799 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2800 return (ada_array_bound_from_type (arr_type, n, 1)
2801 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2802 else
1eea4ebd
UW
2803 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2804 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2805}
2806
2807/* An empty array whose type is that of ARR_TYPE (an array type),
2808 with bounds LOW to LOW-1. */
2809
2810static struct value *
2811empty_array (struct type *arr_type, int low)
2812{
b0dd7688 2813 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2814 struct type *index_type =
b0dd7688 2815 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2816 low, low - 1);
b0dd7688 2817 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2818
0b5d8877 2819 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2820}
14f9c5c9 2821\f
d2e4a39e 2822
4c4b4cd2 2823 /* Name resolution */
14f9c5c9 2824
4c4b4cd2
PH
2825/* The "decoded" name for the user-definable Ada operator corresponding
2826 to OP. */
14f9c5c9 2827
d2e4a39e 2828static const char *
4c4b4cd2 2829ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2830{
2831 int i;
2832
4c4b4cd2 2833 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2834 {
2835 if (ada_opname_table[i].op == op)
4c4b4cd2 2836 return ada_opname_table[i].decoded;
14f9c5c9 2837 }
323e0a4a 2838 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2839}
2840
2841
4c4b4cd2
PH
2842/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2843 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2844 undefined namespace) and converts operators that are
2845 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2846 non-null, it provides a preferred result type [at the moment, only
2847 type void has any effect---causing procedures to be preferred over
2848 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2849 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2850
4c4b4cd2
PH
2851static void
2852resolve (struct expression **expp, int void_context_p)
14f9c5c9 2853{
30b15541
UW
2854 struct type *context_type = NULL;
2855 int pc = 0;
2856
2857 if (void_context_p)
2858 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2859
2860 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2861}
2862
4c4b4cd2
PH
2863/* Resolve the operator of the subexpression beginning at
2864 position *POS of *EXPP. "Resolving" consists of replacing
2865 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2866 with their resolutions, replacing built-in operators with
2867 function calls to user-defined operators, where appropriate, and,
2868 when DEPROCEDURE_P is non-zero, converting function-valued variables
2869 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2870 are as in ada_resolve, above. */
14f9c5c9 2871
d2e4a39e 2872static struct value *
4c4b4cd2 2873resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2874 struct type *context_type)
14f9c5c9
AS
2875{
2876 int pc = *pos;
2877 int i;
4c4b4cd2 2878 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2879 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2880 struct value **argvec; /* Vector of operand types (alloca'ed). */
2881 int nargs; /* Number of operands. */
52ce6436 2882 int oplen;
14f9c5c9
AS
2883
2884 argvec = NULL;
2885 nargs = 0;
2886 exp = *expp;
2887
52ce6436
PH
2888 /* Pass one: resolve operands, saving their types and updating *pos,
2889 if needed. */
14f9c5c9
AS
2890 switch (op)
2891 {
4c4b4cd2
PH
2892 case OP_FUNCALL:
2893 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2894 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2895 *pos += 7;
4c4b4cd2
PH
2896 else
2897 {
2898 *pos += 3;
2899 resolve_subexp (expp, pos, 0, NULL);
2900 }
2901 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2902 break;
2903
14f9c5c9 2904 case UNOP_ADDR:
4c4b4cd2
PH
2905 *pos += 1;
2906 resolve_subexp (expp, pos, 0, NULL);
2907 break;
2908
52ce6436
PH
2909 case UNOP_QUAL:
2910 *pos += 3;
17466c1a 2911 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2912 break;
2913
52ce6436 2914 case OP_ATR_MODULUS:
4c4b4cd2
PH
2915 case OP_ATR_SIZE:
2916 case OP_ATR_TAG:
4c4b4cd2
PH
2917 case OP_ATR_FIRST:
2918 case OP_ATR_LAST:
2919 case OP_ATR_LENGTH:
2920 case OP_ATR_POS:
2921 case OP_ATR_VAL:
4c4b4cd2
PH
2922 case OP_ATR_MIN:
2923 case OP_ATR_MAX:
52ce6436
PH
2924 case TERNOP_IN_RANGE:
2925 case BINOP_IN_BOUNDS:
2926 case UNOP_IN_RANGE:
2927 case OP_AGGREGATE:
2928 case OP_OTHERS:
2929 case OP_CHOICES:
2930 case OP_POSITIONAL:
2931 case OP_DISCRETE_RANGE:
2932 case OP_NAME:
2933 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2934 *pos += oplen;
14f9c5c9
AS
2935 break;
2936
2937 case BINOP_ASSIGN:
2938 {
4c4b4cd2
PH
2939 struct value *arg1;
2940
2941 *pos += 1;
2942 arg1 = resolve_subexp (expp, pos, 0, NULL);
2943 if (arg1 == NULL)
2944 resolve_subexp (expp, pos, 1, NULL);
2945 else
df407dfe 2946 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2947 break;
14f9c5c9
AS
2948 }
2949
4c4b4cd2 2950 case UNOP_CAST:
4c4b4cd2
PH
2951 *pos += 3;
2952 nargs = 1;
2953 break;
14f9c5c9 2954
4c4b4cd2
PH
2955 case BINOP_ADD:
2956 case BINOP_SUB:
2957 case BINOP_MUL:
2958 case BINOP_DIV:
2959 case BINOP_REM:
2960 case BINOP_MOD:
2961 case BINOP_EXP:
2962 case BINOP_CONCAT:
2963 case BINOP_LOGICAL_AND:
2964 case BINOP_LOGICAL_OR:
2965 case BINOP_BITWISE_AND:
2966 case BINOP_BITWISE_IOR:
2967 case BINOP_BITWISE_XOR:
14f9c5c9 2968
4c4b4cd2
PH
2969 case BINOP_EQUAL:
2970 case BINOP_NOTEQUAL:
2971 case BINOP_LESS:
2972 case BINOP_GTR:
2973 case BINOP_LEQ:
2974 case BINOP_GEQ:
14f9c5c9 2975
4c4b4cd2
PH
2976 case BINOP_REPEAT:
2977 case BINOP_SUBSCRIPT:
2978 case BINOP_COMMA:
40c8aaa9
JB
2979 *pos += 1;
2980 nargs = 2;
2981 break;
14f9c5c9 2982
4c4b4cd2
PH
2983 case UNOP_NEG:
2984 case UNOP_PLUS:
2985 case UNOP_LOGICAL_NOT:
2986 case UNOP_ABS:
2987 case UNOP_IND:
2988 *pos += 1;
2989 nargs = 1;
2990 break;
14f9c5c9 2991
4c4b4cd2
PH
2992 case OP_LONG:
2993 case OP_DOUBLE:
2994 case OP_VAR_VALUE:
2995 *pos += 4;
2996 break;
14f9c5c9 2997
4c4b4cd2
PH
2998 case OP_TYPE:
2999 case OP_BOOL:
3000 case OP_LAST:
4c4b4cd2
PH
3001 case OP_INTERNALVAR:
3002 *pos += 3;
3003 break;
14f9c5c9 3004
4c4b4cd2
PH
3005 case UNOP_MEMVAL:
3006 *pos += 3;
3007 nargs = 1;
3008 break;
3009
67f3407f
DJ
3010 case OP_REGISTER:
3011 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3012 break;
3013
4c4b4cd2
PH
3014 case STRUCTOP_STRUCT:
3015 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3016 nargs = 1;
3017 break;
3018
4c4b4cd2 3019 case TERNOP_SLICE:
4c4b4cd2
PH
3020 *pos += 1;
3021 nargs = 3;
3022 break;
3023
52ce6436 3024 case OP_STRING:
14f9c5c9 3025 break;
4c4b4cd2
PH
3026
3027 default:
323e0a4a 3028 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3029 }
3030
76a01679 3031 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3032 for (i = 0; i < nargs; i += 1)
3033 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3034 argvec[i] = NULL;
3035 exp = *expp;
3036
3037 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3038 switch (op)
3039 {
3040 default:
3041 break;
3042
14f9c5c9 3043 case OP_VAR_VALUE:
4c4b4cd2 3044 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3045 {
3046 struct ada_symbol_info *candidates;
3047 int n_candidates;
3048
3049 n_candidates =
3050 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3051 (exp->elts[pc + 2].symbol),
3052 exp->elts[pc + 1].block, VAR_DOMAIN,
3053 &candidates);
3054
3055 if (n_candidates > 1)
3056 {
3057 /* Types tend to get re-introduced locally, so if there
3058 are any local symbols that are not types, first filter
3059 out all types. */
3060 int j;
3061 for (j = 0; j < n_candidates; j += 1)
3062 switch (SYMBOL_CLASS (candidates[j].sym))
3063 {
3064 case LOC_REGISTER:
3065 case LOC_ARG:
3066 case LOC_REF_ARG:
76a01679
JB
3067 case LOC_REGPARM_ADDR:
3068 case LOC_LOCAL:
76a01679 3069 case LOC_COMPUTED:
76a01679
JB
3070 goto FoundNonType;
3071 default:
3072 break;
3073 }
3074 FoundNonType:
3075 if (j < n_candidates)
3076 {
3077 j = 0;
3078 while (j < n_candidates)
3079 {
3080 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3081 {
3082 candidates[j] = candidates[n_candidates - 1];
3083 n_candidates -= 1;
3084 }
3085 else
3086 j += 1;
3087 }
3088 }
3089 }
3090
3091 if (n_candidates == 0)
323e0a4a 3092 error (_("No definition found for %s"),
76a01679
JB
3093 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3094 else if (n_candidates == 1)
3095 i = 0;
3096 else if (deprocedure_p
3097 && !is_nonfunction (candidates, n_candidates))
3098 {
06d5cf63
JB
3099 i = ada_resolve_function
3100 (candidates, n_candidates, NULL, 0,
3101 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3102 context_type);
76a01679 3103 if (i < 0)
323e0a4a 3104 error (_("Could not find a match for %s"),
76a01679
JB
3105 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106 }
3107 else
3108 {
323e0a4a 3109 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3110 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3111 user_select_syms (candidates, n_candidates, 1);
3112 i = 0;
3113 }
3114
3115 exp->elts[pc + 1].block = candidates[i].block;
3116 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3117 if (innermost_block == NULL
3118 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3119 innermost_block = candidates[i].block;
3120 }
3121
3122 if (deprocedure_p
3123 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3124 == TYPE_CODE_FUNC))
3125 {
3126 replace_operator_with_call (expp, pc, 0, 0,
3127 exp->elts[pc + 2].symbol,
3128 exp->elts[pc + 1].block);
3129 exp = *expp;
3130 }
14f9c5c9
AS
3131 break;
3132
3133 case OP_FUNCALL:
3134 {
4c4b4cd2 3135 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3136 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3137 {
3138 struct ada_symbol_info *candidates;
3139 int n_candidates;
3140
3141 n_candidates =
76a01679
JB
3142 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3143 (exp->elts[pc + 5].symbol),
3144 exp->elts[pc + 4].block, VAR_DOMAIN,
3145 &candidates);
4c4b4cd2
PH
3146 if (n_candidates == 1)
3147 i = 0;
3148 else
3149 {
06d5cf63
JB
3150 i = ada_resolve_function
3151 (candidates, n_candidates,
3152 argvec, nargs,
3153 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3154 context_type);
4c4b4cd2 3155 if (i < 0)
323e0a4a 3156 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3157 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3158 }
3159
3160 exp->elts[pc + 4].block = candidates[i].block;
3161 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3162 if (innermost_block == NULL
3163 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3164 innermost_block = candidates[i].block;
3165 }
14f9c5c9
AS
3166 }
3167 break;
3168 case BINOP_ADD:
3169 case BINOP_SUB:
3170 case BINOP_MUL:
3171 case BINOP_DIV:
3172 case BINOP_REM:
3173 case BINOP_MOD:
3174 case BINOP_CONCAT:
3175 case BINOP_BITWISE_AND:
3176 case BINOP_BITWISE_IOR:
3177 case BINOP_BITWISE_XOR:
3178 case BINOP_EQUAL:
3179 case BINOP_NOTEQUAL:
3180 case BINOP_LESS:
3181 case BINOP_GTR:
3182 case BINOP_LEQ:
3183 case BINOP_GEQ:
3184 case BINOP_EXP:
3185 case UNOP_NEG:
3186 case UNOP_PLUS:
3187 case UNOP_LOGICAL_NOT:
3188 case UNOP_ABS:
3189 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3190 {
3191 struct ada_symbol_info *candidates;
3192 int n_candidates;
3193
3194 n_candidates =
3195 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3196 (struct block *) NULL, VAR_DOMAIN,
3197 &candidates);
3198 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3199 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3200 if (i < 0)
3201 break;
3202
76a01679
JB
3203 replace_operator_with_call (expp, pc, nargs, 1,
3204 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3205 exp = *expp;
3206 }
14f9c5c9 3207 break;
4c4b4cd2
PH
3208
3209 case OP_TYPE:
b3dbf008 3210 case OP_REGISTER:
4c4b4cd2 3211 return NULL;
14f9c5c9
AS
3212 }
3213
3214 *pos = pc;
3215 return evaluate_subexp_type (exp, pos);
3216}
3217
3218/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3219 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3220 a non-pointer. */
14f9c5c9 3221/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3222 liberal. */
14f9c5c9
AS
3223
3224static int
4dc81987 3225ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3226{
61ee279c
PH
3227 ftype = ada_check_typedef (ftype);
3228 atype = ada_check_typedef (atype);
14f9c5c9
AS
3229
3230 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3231 ftype = TYPE_TARGET_TYPE (ftype);
3232 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3233 atype = TYPE_TARGET_TYPE (atype);
3234
d2e4a39e 3235 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3236 {
3237 default:
5b3d5b7d 3238 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3239 case TYPE_CODE_PTR:
3240 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3241 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3242 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3243 else
1265e4aa
JB
3244 return (may_deref
3245 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3246 case TYPE_CODE_INT:
3247 case TYPE_CODE_ENUM:
3248 case TYPE_CODE_RANGE:
3249 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3250 {
3251 case TYPE_CODE_INT:
3252 case TYPE_CODE_ENUM:
3253 case TYPE_CODE_RANGE:
3254 return 1;
3255 default:
3256 return 0;
3257 }
14f9c5c9
AS
3258
3259 case TYPE_CODE_ARRAY:
d2e4a39e 3260 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3261 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3262
3263 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3264 if (ada_is_array_descriptor_type (ftype))
3265 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3266 || ada_is_array_descriptor_type (atype));
14f9c5c9 3267 else
4c4b4cd2
PH
3268 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3269 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3270
3271 case TYPE_CODE_UNION:
3272 case TYPE_CODE_FLT:
3273 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3274 }
3275}
3276
3277/* Return non-zero if the formals of FUNC "sufficiently match" the
3278 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3279 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3280 argument function. */
14f9c5c9
AS
3281
3282static int
d2e4a39e 3283ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3284{
3285 int i;
d2e4a39e 3286 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3287
1265e4aa
JB
3288 if (SYMBOL_CLASS (func) == LOC_CONST
3289 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3290 return (n_actuals == 0);
3291 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3292 return 0;
3293
3294 if (TYPE_NFIELDS (func_type) != n_actuals)
3295 return 0;
3296
3297 for (i = 0; i < n_actuals; i += 1)
3298 {
4c4b4cd2 3299 if (actuals[i] == NULL)
76a01679
JB
3300 return 0;
3301 else
3302 {
5b4ee69b
MS
3303 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3304 i));
df407dfe 3305 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3306
76a01679
JB
3307 if (!ada_type_match (ftype, atype, 1))
3308 return 0;
3309 }
14f9c5c9
AS
3310 }
3311 return 1;
3312}
3313
3314/* False iff function type FUNC_TYPE definitely does not produce a value
3315 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3316 FUNC_TYPE is not a valid function type with a non-null return type
3317 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3318
3319static int
d2e4a39e 3320return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3321{
d2e4a39e 3322 struct type *return_type;
14f9c5c9
AS
3323
3324 if (func_type == NULL)
3325 return 1;
3326
4c4b4cd2 3327 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3328 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3329 else
18af8284 3330 return_type = get_base_type (func_type);
14f9c5c9
AS
3331 if (return_type == NULL)
3332 return 1;
3333
18af8284 3334 context_type = get_base_type (context_type);
14f9c5c9
AS
3335
3336 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3337 return context_type == NULL || return_type == context_type;
3338 else if (context_type == NULL)
3339 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3340 else
3341 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3342}
3343
3344
4c4b4cd2 3345/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3346 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3347 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3348 that returns that type, then eliminate matches that don't. If
3349 CONTEXT_TYPE is void and there is at least one match that does not
3350 return void, eliminate all matches that do.
3351
14f9c5c9
AS
3352 Asks the user if there is more than one match remaining. Returns -1
3353 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3354 solely for messages. May re-arrange and modify SYMS in
3355 the process; the index returned is for the modified vector. */
14f9c5c9 3356
4c4b4cd2
PH
3357static int
3358ada_resolve_function (struct ada_symbol_info syms[],
3359 int nsyms, struct value **args, int nargs,
3360 const char *name, struct type *context_type)
14f9c5c9 3361{
30b15541 3362 int fallback;
14f9c5c9 3363 int k;
4c4b4cd2 3364 int m; /* Number of hits */
14f9c5c9 3365
d2e4a39e 3366 m = 0;
30b15541
UW
3367 /* In the first pass of the loop, we only accept functions matching
3368 context_type. If none are found, we add a second pass of the loop
3369 where every function is accepted. */
3370 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3371 {
3372 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3373 {
61ee279c 3374 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3375
3376 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3377 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3378 {
3379 syms[m] = syms[k];
3380 m += 1;
3381 }
3382 }
14f9c5c9
AS
3383 }
3384
3385 if (m == 0)
3386 return -1;
3387 else if (m > 1)
3388 {
323e0a4a 3389 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3390 user_select_syms (syms, m, 1);
14f9c5c9
AS
3391 return 0;
3392 }
3393 return 0;
3394}
3395
4c4b4cd2
PH
3396/* Returns true (non-zero) iff decoded name N0 should appear before N1
3397 in a listing of choices during disambiguation (see sort_choices, below).
3398 The idea is that overloadings of a subprogram name from the
3399 same package should sort in their source order. We settle for ordering
3400 such symbols by their trailing number (__N or $N). */
3401
14f9c5c9 3402static int
4c4b4cd2 3403encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3404{
3405 if (N1 == NULL)
3406 return 0;
3407 else if (N0 == NULL)
3408 return 1;
3409 else
3410 {
3411 int k0, k1;
5b4ee69b 3412
d2e4a39e 3413 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3414 ;
d2e4a39e 3415 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3416 ;
d2e4a39e 3417 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3418 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3419 {
3420 int n0, n1;
5b4ee69b 3421
4c4b4cd2
PH
3422 n0 = k0;
3423 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3424 n0 -= 1;
3425 n1 = k1;
3426 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3427 n1 -= 1;
3428 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3429 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3430 }
14f9c5c9
AS
3431 return (strcmp (N0, N1) < 0);
3432 }
3433}
d2e4a39e 3434
4c4b4cd2
PH
3435/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3436 encoded names. */
3437
d2e4a39e 3438static void
4c4b4cd2 3439sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3440{
4c4b4cd2 3441 int i;
5b4ee69b 3442
d2e4a39e 3443 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3444 {
4c4b4cd2 3445 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3446 int j;
3447
d2e4a39e 3448 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3449 {
3450 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3451 SYMBOL_LINKAGE_NAME (sym.sym)))
3452 break;
3453 syms[j + 1] = syms[j];
3454 }
d2e4a39e 3455 syms[j + 1] = sym;
14f9c5c9
AS
3456 }
3457}
3458
4c4b4cd2
PH
3459/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3460 by asking the user (if necessary), returning the number selected,
3461 and setting the first elements of SYMS items. Error if no symbols
3462 selected. */
14f9c5c9
AS
3463
3464/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3465 to be re-integrated one of these days. */
14f9c5c9
AS
3466
3467int
4c4b4cd2 3468user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3469{
3470 int i;
d2e4a39e 3471 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3472 int n_chosen;
3473 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3474 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3475
3476 if (max_results < 1)
323e0a4a 3477 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3478 if (nsyms <= 1)
3479 return nsyms;
3480
717d2f5a
JB
3481 if (select_mode == multiple_symbols_cancel)
3482 error (_("\
3483canceled because the command is ambiguous\n\
3484See set/show multiple-symbol."));
3485
3486 /* If select_mode is "all", then return all possible symbols.
3487 Only do that if more than one symbol can be selected, of course.
3488 Otherwise, display the menu as usual. */
3489 if (select_mode == multiple_symbols_all && max_results > 1)
3490 return nsyms;
3491
323e0a4a 3492 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3493 if (max_results > 1)
323e0a4a 3494 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3495
4c4b4cd2 3496 sort_choices (syms, nsyms);
14f9c5c9
AS
3497
3498 for (i = 0; i < nsyms; i += 1)
3499 {
4c4b4cd2
PH
3500 if (syms[i].sym == NULL)
3501 continue;
3502
3503 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3504 {
76a01679
JB
3505 struct symtab_and_line sal =
3506 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3507
323e0a4a
AC
3508 if (sal.symtab == NULL)
3509 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3510 i + first_choice,
3511 SYMBOL_PRINT_NAME (syms[i].sym),
3512 sal.line);
3513 else
3514 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3515 SYMBOL_PRINT_NAME (syms[i].sym),
3516 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3517 continue;
3518 }
d2e4a39e 3519 else
4c4b4cd2
PH
3520 {
3521 int is_enumeral =
3522 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3523 && SYMBOL_TYPE (syms[i].sym) != NULL
3524 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3525 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3526
3527 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3528 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3529 i + first_choice,
3530 SYMBOL_PRINT_NAME (syms[i].sym),
3531 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3532 else if (is_enumeral
3533 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3534 {
a3f17187 3535 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3536 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3537 gdb_stdout, -1, 0);
323e0a4a 3538 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3539 SYMBOL_PRINT_NAME (syms[i].sym));
3540 }
3541 else if (symtab != NULL)
3542 printf_unfiltered (is_enumeral
323e0a4a
AC
3543 ? _("[%d] %s in %s (enumeral)\n")
3544 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3545 i + first_choice,
3546 SYMBOL_PRINT_NAME (syms[i].sym),
3547 symtab->filename);
3548 else
3549 printf_unfiltered (is_enumeral
323e0a4a
AC
3550 ? _("[%d] %s (enumeral)\n")
3551 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3552 i + first_choice,
3553 SYMBOL_PRINT_NAME (syms[i].sym));
3554 }
14f9c5c9 3555 }
d2e4a39e 3556
14f9c5c9 3557 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3558 "overload-choice");
14f9c5c9
AS
3559
3560 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3561 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3562
3563 return n_chosen;
3564}
3565
3566/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3567 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3568 order in CHOICES[0 .. N-1], and return N.
3569
3570 The user types choices as a sequence of numbers on one line
3571 separated by blanks, encoding them as follows:
3572
4c4b4cd2 3573 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3574 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3575 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3576
4c4b4cd2 3577 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3578
3579 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3580 prompts (for use with the -f switch). */
14f9c5c9
AS
3581
3582int
d2e4a39e 3583get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3584 int is_all_choice, char *annotation_suffix)
14f9c5c9 3585{
d2e4a39e 3586 char *args;
0bcd0149 3587 char *prompt;
14f9c5c9
AS
3588 int n_chosen;
3589 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3590
14f9c5c9
AS
3591 prompt = getenv ("PS2");
3592 if (prompt == NULL)
0bcd0149 3593 prompt = "> ";
14f9c5c9 3594
0bcd0149 3595 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3596
14f9c5c9 3597 if (args == NULL)
323e0a4a 3598 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3599
3600 n_chosen = 0;
76a01679 3601
4c4b4cd2
PH
3602 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3603 order, as given in args. Choices are validated. */
14f9c5c9
AS
3604 while (1)
3605 {
d2e4a39e 3606 char *args2;
14f9c5c9
AS
3607 int choice, j;
3608
3609 while (isspace (*args))
4c4b4cd2 3610 args += 1;
14f9c5c9 3611 if (*args == '\0' && n_chosen == 0)
323e0a4a 3612 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3613 else if (*args == '\0')
4c4b4cd2 3614 break;
14f9c5c9
AS
3615
3616 choice = strtol (args, &args2, 10);
d2e4a39e 3617 if (args == args2 || choice < 0
4c4b4cd2 3618 || choice > n_choices + first_choice - 1)
323e0a4a 3619 error (_("Argument must be choice number"));
14f9c5c9
AS
3620 args = args2;
3621
d2e4a39e 3622 if (choice == 0)
323e0a4a 3623 error (_("cancelled"));
14f9c5c9
AS
3624
3625 if (choice < first_choice)
4c4b4cd2
PH
3626 {
3627 n_chosen = n_choices;
3628 for (j = 0; j < n_choices; j += 1)
3629 choices[j] = j;
3630 break;
3631 }
14f9c5c9
AS
3632 choice -= first_choice;
3633
d2e4a39e 3634 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3635 {
3636 }
14f9c5c9
AS
3637
3638 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3639 {
3640 int k;
5b4ee69b 3641
4c4b4cd2
PH
3642 for (k = n_chosen - 1; k > j; k -= 1)
3643 choices[k + 1] = choices[k];
3644 choices[j + 1] = choice;
3645 n_chosen += 1;
3646 }
14f9c5c9
AS
3647 }
3648
3649 if (n_chosen > max_results)
323e0a4a 3650 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3651
14f9c5c9
AS
3652 return n_chosen;
3653}
3654
4c4b4cd2
PH
3655/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3656 on the function identified by SYM and BLOCK, and taking NARGS
3657 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3658
3659static void
d2e4a39e 3660replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3661 int oplen, struct symbol *sym,
3662 struct block *block)
14f9c5c9
AS
3663{
3664 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3665 symbol, -oplen for operator being replaced). */
d2e4a39e 3666 struct expression *newexp = (struct expression *)
8c1a34e7 3667 xzalloc (sizeof (struct expression)
4c4b4cd2 3668 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3669 struct expression *exp = *expp;
14f9c5c9
AS
3670
3671 newexp->nelts = exp->nelts + 7 - oplen;
3672 newexp->language_defn = exp->language_defn;
3489610d 3673 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3674 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3675 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3676 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3677
3678 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3679 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3680
3681 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3682 newexp->elts[pc + 4].block = block;
3683 newexp->elts[pc + 5].symbol = sym;
3684
3685 *expp = newexp;
aacb1f0a 3686 xfree (exp);
d2e4a39e 3687}
14f9c5c9
AS
3688
3689/* Type-class predicates */
3690
4c4b4cd2
PH
3691/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3692 or FLOAT). */
14f9c5c9
AS
3693
3694static int
d2e4a39e 3695numeric_type_p (struct type *type)
14f9c5c9
AS
3696{
3697 if (type == NULL)
3698 return 0;
d2e4a39e
AS
3699 else
3700 {
3701 switch (TYPE_CODE (type))
4c4b4cd2
PH
3702 {
3703 case TYPE_CODE_INT:
3704 case TYPE_CODE_FLT:
3705 return 1;
3706 case TYPE_CODE_RANGE:
3707 return (type == TYPE_TARGET_TYPE (type)
3708 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3709 default:
3710 return 0;
3711 }
d2e4a39e 3712 }
14f9c5c9
AS
3713}
3714
4c4b4cd2 3715/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3716
3717static int
d2e4a39e 3718integer_type_p (struct type *type)
14f9c5c9
AS
3719{
3720 if (type == NULL)
3721 return 0;
d2e4a39e
AS
3722 else
3723 {
3724 switch (TYPE_CODE (type))
4c4b4cd2
PH
3725 {
3726 case TYPE_CODE_INT:
3727 return 1;
3728 case TYPE_CODE_RANGE:
3729 return (type == TYPE_TARGET_TYPE (type)
3730 || integer_type_p (TYPE_TARGET_TYPE (type)));
3731 default:
3732 return 0;
3733 }
d2e4a39e 3734 }
14f9c5c9
AS
3735}
3736
4c4b4cd2 3737/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3738
3739static int
d2e4a39e 3740scalar_type_p (struct type *type)
14f9c5c9
AS
3741{
3742 if (type == NULL)
3743 return 0;
d2e4a39e
AS
3744 else
3745 {
3746 switch (TYPE_CODE (type))
4c4b4cd2
PH
3747 {
3748 case TYPE_CODE_INT:
3749 case TYPE_CODE_RANGE:
3750 case TYPE_CODE_ENUM:
3751 case TYPE_CODE_FLT:
3752 return 1;
3753 default:
3754 return 0;
3755 }
d2e4a39e 3756 }
14f9c5c9
AS
3757}
3758
4c4b4cd2 3759/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3760
3761static int
d2e4a39e 3762discrete_type_p (struct type *type)
14f9c5c9
AS
3763{
3764 if (type == NULL)
3765 return 0;
d2e4a39e
AS
3766 else
3767 {
3768 switch (TYPE_CODE (type))
4c4b4cd2
PH
3769 {
3770 case TYPE_CODE_INT:
3771 case TYPE_CODE_RANGE:
3772 case TYPE_CODE_ENUM:
872f0337 3773 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3774 return 1;
3775 default:
3776 return 0;
3777 }
d2e4a39e 3778 }
14f9c5c9
AS
3779}
3780
4c4b4cd2
PH
3781/* Returns non-zero if OP with operands in the vector ARGS could be
3782 a user-defined function. Errs on the side of pre-defined operators
3783 (i.e., result 0). */
14f9c5c9
AS
3784
3785static int
d2e4a39e 3786possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3787{
76a01679 3788 struct type *type0 =
df407dfe 3789 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3790 struct type *type1 =
df407dfe 3791 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3792
4c4b4cd2
PH
3793 if (type0 == NULL)
3794 return 0;
3795
14f9c5c9
AS
3796 switch (op)
3797 {
3798 default:
3799 return 0;
3800
3801 case BINOP_ADD:
3802 case BINOP_SUB:
3803 case BINOP_MUL:
3804 case BINOP_DIV:
d2e4a39e 3805 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3806
3807 case BINOP_REM:
3808 case BINOP_MOD:
3809 case BINOP_BITWISE_AND:
3810 case BINOP_BITWISE_IOR:
3811 case BINOP_BITWISE_XOR:
d2e4a39e 3812 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3813
3814 case BINOP_EQUAL:
3815 case BINOP_NOTEQUAL:
3816 case BINOP_LESS:
3817 case BINOP_GTR:
3818 case BINOP_LEQ:
3819 case BINOP_GEQ:
d2e4a39e 3820 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3821
3822 case BINOP_CONCAT:
ee90b9ab 3823 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3824
3825 case BINOP_EXP:
d2e4a39e 3826 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3827
3828 case UNOP_NEG:
3829 case UNOP_PLUS:
3830 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3831 case UNOP_ABS:
3832 return (!numeric_type_p (type0));
14f9c5c9
AS
3833
3834 }
3835}
3836\f
4c4b4cd2 3837 /* Renaming */
14f9c5c9 3838
aeb5907d
JB
3839/* NOTES:
3840
3841 1. In the following, we assume that a renaming type's name may
3842 have an ___XD suffix. It would be nice if this went away at some
3843 point.
3844 2. We handle both the (old) purely type-based representation of
3845 renamings and the (new) variable-based encoding. At some point,
3846 it is devoutly to be hoped that the former goes away
3847 (FIXME: hilfinger-2007-07-09).
3848 3. Subprogram renamings are not implemented, although the XRS
3849 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3850
3851/* If SYM encodes a renaming,
3852
3853 <renaming> renames <renamed entity>,
3854
3855 sets *LEN to the length of the renamed entity's name,
3856 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3857 the string describing the subcomponent selected from the renamed
0963b4bd 3858 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3859 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3860 are undefined). Otherwise, returns a value indicating the category
3861 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3862 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3863 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3864 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3865 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3866 may be NULL, in which case they are not assigned.
3867
3868 [Currently, however, GCC does not generate subprogram renamings.] */
3869
3870enum ada_renaming_category
3871ada_parse_renaming (struct symbol *sym,
3872 const char **renamed_entity, int *len,
3873 const char **renaming_expr)
3874{
3875 enum ada_renaming_category kind;
3876 const char *info;
3877 const char *suffix;
3878
3879 if (sym == NULL)
3880 return ADA_NOT_RENAMING;
3881 switch (SYMBOL_CLASS (sym))
14f9c5c9 3882 {
aeb5907d
JB
3883 default:
3884 return ADA_NOT_RENAMING;
3885 case LOC_TYPEDEF:
3886 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3887 renamed_entity, len, renaming_expr);
3888 case LOC_LOCAL:
3889 case LOC_STATIC:
3890 case LOC_COMPUTED:
3891 case LOC_OPTIMIZED_OUT:
3892 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3893 if (info == NULL)
3894 return ADA_NOT_RENAMING;
3895 switch (info[5])
3896 {
3897 case '_':
3898 kind = ADA_OBJECT_RENAMING;
3899 info += 6;
3900 break;
3901 case 'E':
3902 kind = ADA_EXCEPTION_RENAMING;
3903 info += 7;
3904 break;
3905 case 'P':
3906 kind = ADA_PACKAGE_RENAMING;
3907 info += 7;
3908 break;
3909 case 'S':
3910 kind = ADA_SUBPROGRAM_RENAMING;
3911 info += 7;
3912 break;
3913 default:
3914 return ADA_NOT_RENAMING;
3915 }
14f9c5c9 3916 }
4c4b4cd2 3917
aeb5907d
JB
3918 if (renamed_entity != NULL)
3919 *renamed_entity = info;
3920 suffix = strstr (info, "___XE");
3921 if (suffix == NULL || suffix == info)
3922 return ADA_NOT_RENAMING;
3923 if (len != NULL)
3924 *len = strlen (info) - strlen (suffix);
3925 suffix += 5;
3926 if (renaming_expr != NULL)
3927 *renaming_expr = suffix;
3928 return kind;
3929}
3930
3931/* Assuming TYPE encodes a renaming according to the old encoding in
3932 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3933 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3934 ADA_NOT_RENAMING otherwise. */
3935static enum ada_renaming_category
3936parse_old_style_renaming (struct type *type,
3937 const char **renamed_entity, int *len,
3938 const char **renaming_expr)
3939{
3940 enum ada_renaming_category kind;
3941 const char *name;
3942 const char *info;
3943 const char *suffix;
14f9c5c9 3944
aeb5907d
JB
3945 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3946 || TYPE_NFIELDS (type) != 1)
3947 return ADA_NOT_RENAMING;
14f9c5c9 3948
aeb5907d
JB
3949 name = type_name_no_tag (type);
3950 if (name == NULL)
3951 return ADA_NOT_RENAMING;
3952
3953 name = strstr (name, "___XR");
3954 if (name == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (name[5])
3957 {
3958 case '\0':
3959 case '_':
3960 kind = ADA_OBJECT_RENAMING;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 break;
3971 default:
3972 return ADA_NOT_RENAMING;
3973 }
14f9c5c9 3974
aeb5907d
JB
3975 info = TYPE_FIELD_NAME (type, 0);
3976 if (info == NULL)
3977 return ADA_NOT_RENAMING;
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (renaming_expr != NULL)
3982 *renaming_expr = suffix + 5;
3983 if (suffix == NULL || suffix == info)
3984 return ADA_NOT_RENAMING;
3985 if (len != NULL)
3986 *len = suffix - info;
3987 return kind;
3988}
52ce6436 3989
14f9c5c9 3990\f
d2e4a39e 3991
4c4b4cd2 3992 /* Evaluation: Function Calls */
14f9c5c9 3993
4c4b4cd2 3994/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
3995 lvalues, and otherwise has the side-effect of allocating memory
3996 in the inferior where a copy of the value contents is copied. */
14f9c5c9 3997
d2e4a39e 3998static struct value *
40bc484c 3999ensure_lval (struct value *val)
14f9c5c9 4000{
40bc484c
JB
4001 if (VALUE_LVAL (val) == not_lval
4002 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4003 {
df407dfe 4004 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4005 const CORE_ADDR addr =
4006 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4007
40bc484c 4008 set_value_address (val, addr);
a84a8a0d 4009 VALUE_LVAL (val) = lval_memory;
40bc484c 4010 write_memory (addr, value_contents (val), len);
c3e5cd34 4011 }
14f9c5c9
AS
4012
4013 return val;
4014}
4015
4016/* Return the value ACTUAL, converted to be an appropriate value for a
4017 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4018 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4019 values not residing in memory, updating it as needed. */
14f9c5c9 4020
a93c0eb6 4021struct value *
40bc484c 4022ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4023{
df407dfe 4024 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4025 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4026 struct type *formal_target =
4027 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4028 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4029 struct type *actual_target =
4030 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4031 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4032
4c4b4cd2 4033 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4034 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4035 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4036 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4037 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4038 {
a84a8a0d 4039 struct value *result;
5b4ee69b 4040
14f9c5c9 4041 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4042 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4043 result = desc_data (actual);
14f9c5c9 4044 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4045 {
4046 if (VALUE_LVAL (actual) != lval_memory)
4047 {
4048 struct value *val;
5b4ee69b 4049
df407dfe 4050 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4051 val = allocate_value (actual_type);
990a07ab 4052 memcpy ((char *) value_contents_raw (val),
0fd88904 4053 (char *) value_contents (actual),
4c4b4cd2 4054 TYPE_LENGTH (actual_type));
40bc484c 4055 actual = ensure_lval (val);
4c4b4cd2 4056 }
a84a8a0d 4057 result = value_addr (actual);
4c4b4cd2 4058 }
a84a8a0d
JB
4059 else
4060 return actual;
4061 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4062 }
4063 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4064 return ada_value_ind (actual);
4065
4066 return actual;
4067}
4068
438c98a1
JB
4069/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4070 type TYPE. This is usually an inefficient no-op except on some targets
4071 (such as AVR) where the representation of a pointer and an address
4072 differs. */
4073
4074static CORE_ADDR
4075value_pointer (struct value *value, struct type *type)
4076{
4077 struct gdbarch *gdbarch = get_type_arch (type);
4078 unsigned len = TYPE_LENGTH (type);
4079 gdb_byte *buf = alloca (len);
4080 CORE_ADDR addr;
4081
4082 addr = value_address (value);
4083 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4084 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4085 return addr;
4086}
4087
14f9c5c9 4088
4c4b4cd2
PH
4089/* Push a descriptor of type TYPE for array value ARR on the stack at
4090 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4091 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4092 to-descriptor type rather than a descriptor type), a struct value *
4093 representing a pointer to this descriptor. */
14f9c5c9 4094
d2e4a39e 4095static struct value *
40bc484c 4096make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4097{
d2e4a39e
AS
4098 struct type *bounds_type = desc_bounds_type (type);
4099 struct type *desc_type = desc_base_type (type);
4100 struct value *descriptor = allocate_value (desc_type);
4101 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4102 int i;
d2e4a39e 4103
0963b4bd
MS
4104 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4105 i > 0; i -= 1)
14f9c5c9 4106 {
19f220c3
JK
4107 modify_field (value_type (bounds), value_contents_writeable (bounds),
4108 ada_array_bound (arr, i, 0),
4109 desc_bound_bitpos (bounds_type, i, 0),
4110 desc_bound_bitsize (bounds_type, i, 0));
4111 modify_field (value_type (bounds), value_contents_writeable (bounds),
4112 ada_array_bound (arr, i, 1),
4113 desc_bound_bitpos (bounds_type, i, 1),
4114 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4115 }
d2e4a39e 4116
40bc484c 4117 bounds = ensure_lval (bounds);
d2e4a39e 4118
19f220c3
JK
4119 modify_field (value_type (descriptor),
4120 value_contents_writeable (descriptor),
4121 value_pointer (ensure_lval (arr),
4122 TYPE_FIELD_TYPE (desc_type, 0)),
4123 fat_pntr_data_bitpos (desc_type),
4124 fat_pntr_data_bitsize (desc_type));
4125
4126 modify_field (value_type (descriptor),
4127 value_contents_writeable (descriptor),
4128 value_pointer (bounds,
4129 TYPE_FIELD_TYPE (desc_type, 1)),
4130 fat_pntr_bounds_bitpos (desc_type),
4131 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4132
40bc484c 4133 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4134
4135 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4136 return value_addr (descriptor);
4137 else
4138 return descriptor;
4139}
14f9c5c9 4140\f
963a6417 4141/* Dummy definitions for an experimental caching module that is not
0963b4bd 4142 * used in the public sources. */
96d887e8 4143
96d887e8
PH
4144static int
4145lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4146 struct symbol **sym, struct block **block)
96d887e8
PH
4147{
4148 return 0;
4149}
4150
4151static void
4152cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4153 struct block *block)
96d887e8
PH
4154{
4155}
4c4b4cd2
PH
4156\f
4157 /* Symbol Lookup */
4158
4159/* Return the result of a standard (literal, C-like) lookup of NAME in
4160 given DOMAIN, visible from lexical block BLOCK. */
4161
4162static struct symbol *
4163standard_lookup (const char *name, const struct block *block,
4164 domain_enum domain)
4165{
4166 struct symbol *sym;
4c4b4cd2 4167
2570f2b7 4168 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4169 return sym;
2570f2b7
UW
4170 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4171 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4172 return sym;
4173}
4174
4175
4176/* Non-zero iff there is at least one non-function/non-enumeral symbol
4177 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4178 since they contend in overloading in the same way. */
4179static int
4180is_nonfunction (struct ada_symbol_info syms[], int n)
4181{
4182 int i;
4183
4184 for (i = 0; i < n; i += 1)
4185 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4186 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4187 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4188 return 1;
4189
4190 return 0;
4191}
4192
4193/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4194 struct types. Otherwise, they may not. */
14f9c5c9
AS
4195
4196static int
d2e4a39e 4197equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4198{
d2e4a39e 4199 if (type0 == type1)
14f9c5c9 4200 return 1;
d2e4a39e 4201 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4202 || TYPE_CODE (type0) != TYPE_CODE (type1))
4203 return 0;
d2e4a39e 4204 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4205 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4206 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4207 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4208 return 1;
d2e4a39e 4209
14f9c5c9
AS
4210 return 0;
4211}
4212
4213/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4214 no more defined than that of SYM1. */
14f9c5c9
AS
4215
4216static int
d2e4a39e 4217lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4218{
4219 if (sym0 == sym1)
4220 return 1;
176620f1 4221 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4222 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4223 return 0;
4224
d2e4a39e 4225 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4226 {
4227 case LOC_UNDEF:
4228 return 1;
4229 case LOC_TYPEDEF:
4230 {
4c4b4cd2
PH
4231 struct type *type0 = SYMBOL_TYPE (sym0);
4232 struct type *type1 = SYMBOL_TYPE (sym1);
4233 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4234 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4235 int len0 = strlen (name0);
5b4ee69b 4236
4c4b4cd2
PH
4237 return
4238 TYPE_CODE (type0) == TYPE_CODE (type1)
4239 && (equiv_types (type0, type1)
4240 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4241 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4242 }
4243 case LOC_CONST:
4244 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4245 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4246 default:
4247 return 0;
14f9c5c9
AS
4248 }
4249}
4250
4c4b4cd2
PH
4251/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4252 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4253
4254static void
76a01679
JB
4255add_defn_to_vec (struct obstack *obstackp,
4256 struct symbol *sym,
2570f2b7 4257 struct block *block)
14f9c5c9
AS
4258{
4259 int i;
4c4b4cd2 4260 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4261
529cad9c
PH
4262 /* Do not try to complete stub types, as the debugger is probably
4263 already scanning all symbols matching a certain name at the
4264 time when this function is called. Trying to replace the stub
4265 type by its associated full type will cause us to restart a scan
4266 which may lead to an infinite recursion. Instead, the client
4267 collecting the matching symbols will end up collecting several
4268 matches, with at least one of them complete. It can then filter
4269 out the stub ones if needed. */
4270
4c4b4cd2
PH
4271 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4272 {
4273 if (lesseq_defined_than (sym, prevDefns[i].sym))
4274 return;
4275 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4276 {
4277 prevDefns[i].sym = sym;
4278 prevDefns[i].block = block;
4c4b4cd2 4279 return;
76a01679 4280 }
4c4b4cd2
PH
4281 }
4282
4283 {
4284 struct ada_symbol_info info;
4285
4286 info.sym = sym;
4287 info.block = block;
4c4b4cd2
PH
4288 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4289 }
4290}
4291
4292/* Number of ada_symbol_info structures currently collected in
4293 current vector in *OBSTACKP. */
4294
76a01679
JB
4295static int
4296num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4297{
4298 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4299}
4300
4301/* Vector of ada_symbol_info structures currently collected in current
4302 vector in *OBSTACKP. If FINISH, close off the vector and return
4303 its final address. */
4304
76a01679 4305static struct ada_symbol_info *
4c4b4cd2
PH
4306defns_collected (struct obstack *obstackp, int finish)
4307{
4308 if (finish)
4309 return obstack_finish (obstackp);
4310 else
4311 return (struct ada_symbol_info *) obstack_base (obstackp);
4312}
4313
96d887e8
PH
4314/* Return a minimal symbol matching NAME according to Ada decoding
4315 rules. Returns NULL if there is no such minimal symbol. Names
4316 prefixed with "standard__" are handled specially: "standard__" is
4317 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4318
96d887e8
PH
4319struct minimal_symbol *
4320ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4321{
4c4b4cd2 4322 struct objfile *objfile;
96d887e8
PH
4323 struct minimal_symbol *msymbol;
4324 int wild_match;
4c4b4cd2 4325
96d887e8 4326 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4327 {
96d887e8 4328 name += sizeof ("standard__") - 1;
4c4b4cd2 4329 wild_match = 0;
4c4b4cd2
PH
4330 }
4331 else
96d887e8 4332 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4333
96d887e8
PH
4334 ALL_MSYMBOLS (objfile, msymbol)
4335 {
40658b94 4336 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4337 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4338 return msymbol;
4339 }
4c4b4cd2 4340
96d887e8
PH
4341 return NULL;
4342}
4c4b4cd2 4343
96d887e8
PH
4344/* For all subprograms that statically enclose the subprogram of the
4345 selected frame, add symbols matching identifier NAME in DOMAIN
4346 and their blocks to the list of data in OBSTACKP, as for
4347 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4348 wildcard prefix. */
4c4b4cd2 4349
96d887e8
PH
4350static void
4351add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4352 const char *name, domain_enum namespace,
96d887e8
PH
4353 int wild_match)
4354{
96d887e8 4355}
14f9c5c9 4356
96d887e8
PH
4357/* True if TYPE is definitely an artificial type supplied to a symbol
4358 for which no debugging information was given in the symbol file. */
14f9c5c9 4359
96d887e8
PH
4360static int
4361is_nondebugging_type (struct type *type)
4362{
4363 char *name = ada_type_name (type);
5b4ee69b 4364
96d887e8
PH
4365 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4366}
4c4b4cd2 4367
8f17729f
JB
4368/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4369 that are deemed "identical" for practical purposes.
4370
4371 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4372 types and that their number of enumerals is identical (in other
4373 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4374
4375static int
4376ada_identical_enum_types_p (struct type *type1, struct type *type2)
4377{
4378 int i;
4379
4380 /* The heuristic we use here is fairly conservative. We consider
4381 that 2 enumerate types are identical if they have the same
4382 number of enumerals and that all enumerals have the same
4383 underlying value and name. */
4384
4385 /* All enums in the type should have an identical underlying value. */
4386 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4387 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4388 return 0;
4389
4390 /* All enumerals should also have the same name (modulo any numerical
4391 suffix). */
4392 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4393 {
4394 char *name_1 = TYPE_FIELD_NAME (type1, i);
4395 char *name_2 = TYPE_FIELD_NAME (type2, i);
4396 int len_1 = strlen (name_1);
4397 int len_2 = strlen (name_2);
4398
4399 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4400 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4401 if (len_1 != len_2
4402 || strncmp (TYPE_FIELD_NAME (type1, i),
4403 TYPE_FIELD_NAME (type2, i),
4404 len_1) != 0)
4405 return 0;
4406 }
4407
4408 return 1;
4409}
4410
4411/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4412 that are deemed "identical" for practical purposes. Sometimes,
4413 enumerals are not strictly identical, but their types are so similar
4414 that they can be considered identical.
4415
4416 For instance, consider the following code:
4417
4418 type Color is (Black, Red, Green, Blue, White);
4419 type RGB_Color is new Color range Red .. Blue;
4420
4421 Type RGB_Color is a subrange of an implicit type which is a copy
4422 of type Color. If we call that implicit type RGB_ColorB ("B" is
4423 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4424 As a result, when an expression references any of the enumeral
4425 by name (Eg. "print green"), the expression is technically
4426 ambiguous and the user should be asked to disambiguate. But
4427 doing so would only hinder the user, since it wouldn't matter
4428 what choice he makes, the outcome would always be the same.
4429 So, for practical purposes, we consider them as the same. */
4430
4431static int
4432symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4433{
4434 int i;
4435
4436 /* Before performing a thorough comparison check of each type,
4437 we perform a series of inexpensive checks. We expect that these
4438 checks will quickly fail in the vast majority of cases, and thus
4439 help prevent the unnecessary use of a more expensive comparison.
4440 Said comparison also expects us to make some of these checks
4441 (see ada_identical_enum_types_p). */
4442
4443 /* Quick check: All symbols should have an enum type. */
4444 for (i = 0; i < nsyms; i++)
4445 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4446 return 0;
4447
4448 /* Quick check: They should all have the same value. */
4449 for (i = 1; i < nsyms; i++)
4450 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4451 return 0;
4452
4453 /* Quick check: They should all have the same number of enumerals. */
4454 for (i = 1; i < nsyms; i++)
4455 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4456 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4457 return 0;
4458
4459 /* All the sanity checks passed, so we might have a set of
4460 identical enumeration types. Perform a more complete
4461 comparison of the type of each symbol. */
4462 for (i = 1; i < nsyms; i++)
4463 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4464 SYMBOL_TYPE (syms[0].sym)))
4465 return 0;
4466
4467 return 1;
4468}
4469
96d887e8
PH
4470/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4471 duplicate other symbols in the list (The only case I know of where
4472 this happens is when object files containing stabs-in-ecoff are
4473 linked with files containing ordinary ecoff debugging symbols (or no
4474 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4475 Returns the number of items in the modified list. */
4c4b4cd2 4476
96d887e8
PH
4477static int
4478remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4479{
4480 int i, j;
4c4b4cd2 4481
8f17729f
JB
4482 /* We should never be called with less than 2 symbols, as there
4483 cannot be any extra symbol in that case. But it's easy to
4484 handle, since we have nothing to do in that case. */
4485 if (nsyms < 2)
4486 return nsyms;
4487
96d887e8
PH
4488 i = 0;
4489 while (i < nsyms)
4490 {
a35ddb44 4491 int remove_p = 0;
339c13b6
JB
4492
4493 /* If two symbols have the same name and one of them is a stub type,
4494 the get rid of the stub. */
4495
4496 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4497 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4498 {
4499 for (j = 0; j < nsyms; j++)
4500 {
4501 if (j != i
4502 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4503 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4504 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4505 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4506 remove_p = 1;
339c13b6
JB
4507 }
4508 }
4509
4510 /* Two symbols with the same name, same class and same address
4511 should be identical. */
4512
4513 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4514 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4515 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4516 {
4517 for (j = 0; j < nsyms; j += 1)
4518 {
4519 if (i != j
4520 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4521 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4522 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4523 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4524 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4525 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4526 remove_p = 1;
4c4b4cd2 4527 }
4c4b4cd2 4528 }
339c13b6 4529
a35ddb44 4530 if (remove_p)
339c13b6
JB
4531 {
4532 for (j = i + 1; j < nsyms; j += 1)
4533 syms[j - 1] = syms[j];
4534 nsyms -= 1;
4535 }
4536
96d887e8 4537 i += 1;
14f9c5c9 4538 }
8f17729f
JB
4539
4540 /* If all the remaining symbols are identical enumerals, then
4541 just keep the first one and discard the rest.
4542
4543 Unlike what we did previously, we do not discard any entry
4544 unless they are ALL identical. This is because the symbol
4545 comparison is not a strict comparison, but rather a practical
4546 comparison. If all symbols are considered identical, then
4547 we can just go ahead and use the first one and discard the rest.
4548 But if we cannot reduce the list to a single element, we have
4549 to ask the user to disambiguate anyways. And if we have to
4550 present a multiple-choice menu, it's less confusing if the list
4551 isn't missing some choices that were identical and yet distinct. */
4552 if (symbols_are_identical_enums (syms, nsyms))
4553 nsyms = 1;
4554
96d887e8 4555 return nsyms;
14f9c5c9
AS
4556}
4557
96d887e8
PH
4558/* Given a type that corresponds to a renaming entity, use the type name
4559 to extract the scope (package name or function name, fully qualified,
4560 and following the GNAT encoding convention) where this renaming has been
4561 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4562
96d887e8
PH
4563static char *
4564xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4565{
96d887e8 4566 /* The renaming types adhere to the following convention:
0963b4bd 4567 <scope>__<rename>___<XR extension>.
96d887e8
PH
4568 So, to extract the scope, we search for the "___XR" extension,
4569 and then backtrack until we find the first "__". */
76a01679 4570
96d887e8
PH
4571 const char *name = type_name_no_tag (renaming_type);
4572 char *suffix = strstr (name, "___XR");
4573 char *last;
4574 int scope_len;
4575 char *scope;
14f9c5c9 4576
96d887e8
PH
4577 /* Now, backtrack a bit until we find the first "__". Start looking
4578 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4579
96d887e8
PH
4580 for (last = suffix - 3; last > name; last--)
4581 if (last[0] == '_' && last[1] == '_')
4582 break;
76a01679 4583
96d887e8 4584 /* Make a copy of scope and return it. */
14f9c5c9 4585
96d887e8
PH
4586 scope_len = last - name;
4587 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4588
96d887e8
PH
4589 strncpy (scope, name, scope_len);
4590 scope[scope_len] = '\0';
4c4b4cd2 4591
96d887e8 4592 return scope;
4c4b4cd2
PH
4593}
4594
96d887e8 4595/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4596
96d887e8
PH
4597static int
4598is_package_name (const char *name)
4c4b4cd2 4599{
96d887e8
PH
4600 /* Here, We take advantage of the fact that no symbols are generated
4601 for packages, while symbols are generated for each function.
4602 So the condition for NAME represent a package becomes equivalent
4603 to NAME not existing in our list of symbols. There is only one
4604 small complication with library-level functions (see below). */
4c4b4cd2 4605
96d887e8 4606 char *fun_name;
76a01679 4607
96d887e8
PH
4608 /* If it is a function that has not been defined at library level,
4609 then we should be able to look it up in the symbols. */
4610 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4611 return 0;
14f9c5c9 4612
96d887e8
PH
4613 /* Library-level function names start with "_ada_". See if function
4614 "_ada_" followed by NAME can be found. */
14f9c5c9 4615
96d887e8 4616 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4617 functions names cannot contain "__" in them. */
96d887e8
PH
4618 if (strstr (name, "__") != NULL)
4619 return 0;
4c4b4cd2 4620
b435e160 4621 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4622
96d887e8
PH
4623 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4624}
14f9c5c9 4625
96d887e8 4626/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4627 not visible from FUNCTION_NAME. */
14f9c5c9 4628
96d887e8 4629static int
aeb5907d 4630old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4631{
aeb5907d
JB
4632 char *scope;
4633
4634 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4635 return 0;
4636
4637 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4638
96d887e8 4639 make_cleanup (xfree, scope);
14f9c5c9 4640
96d887e8
PH
4641 /* If the rename has been defined in a package, then it is visible. */
4642 if (is_package_name (scope))
aeb5907d 4643 return 0;
14f9c5c9 4644
96d887e8
PH
4645 /* Check that the rename is in the current function scope by checking
4646 that its name starts with SCOPE. */
76a01679 4647
96d887e8
PH
4648 /* If the function name starts with "_ada_", it means that it is
4649 a library-level function. Strip this prefix before doing the
4650 comparison, as the encoding for the renaming does not contain
4651 this prefix. */
4652 if (strncmp (function_name, "_ada_", 5) == 0)
4653 function_name += 5;
f26caa11 4654
aeb5907d 4655 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4656}
4657
aeb5907d
JB
4658/* Remove entries from SYMS that corresponds to a renaming entity that
4659 is not visible from the function associated with CURRENT_BLOCK or
4660 that is superfluous due to the presence of more specific renaming
4661 information. Places surviving symbols in the initial entries of
4662 SYMS and returns the number of surviving symbols.
96d887e8
PH
4663
4664 Rationale:
aeb5907d
JB
4665 First, in cases where an object renaming is implemented as a
4666 reference variable, GNAT may produce both the actual reference
4667 variable and the renaming encoding. In this case, we discard the
4668 latter.
4669
4670 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4671 entity. Unfortunately, STABS currently does not support the definition
4672 of types that are local to a given lexical block, so all renamings types
4673 are emitted at library level. As a consequence, if an application
4674 contains two renaming entities using the same name, and a user tries to
4675 print the value of one of these entities, the result of the ada symbol
4676 lookup will also contain the wrong renaming type.
f26caa11 4677
96d887e8
PH
4678 This function partially covers for this limitation by attempting to
4679 remove from the SYMS list renaming symbols that should be visible
4680 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4681 method with the current information available. The implementation
4682 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4683
4684 - When the user tries to print a rename in a function while there
4685 is another rename entity defined in a package: Normally, the
4686 rename in the function has precedence over the rename in the
4687 package, so the latter should be removed from the list. This is
4688 currently not the case.
4689
4690 - This function will incorrectly remove valid renames if
4691 the CURRENT_BLOCK corresponds to a function which symbol name
4692 has been changed by an "Export" pragma. As a consequence,
4693 the user will be unable to print such rename entities. */
4c4b4cd2 4694
14f9c5c9 4695static int
aeb5907d
JB
4696remove_irrelevant_renamings (struct ada_symbol_info *syms,
4697 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4698{
4699 struct symbol *current_function;
4700 char *current_function_name;
4701 int i;
aeb5907d
JB
4702 int is_new_style_renaming;
4703
4704 /* If there is both a renaming foo___XR... encoded as a variable and
4705 a simple variable foo in the same block, discard the latter.
0963b4bd 4706 First, zero out such symbols, then compress. */
aeb5907d
JB
4707 is_new_style_renaming = 0;
4708 for (i = 0; i < nsyms; i += 1)
4709 {
4710 struct symbol *sym = syms[i].sym;
4711 struct block *block = syms[i].block;
4712 const char *name;
4713 const char *suffix;
4714
4715 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4716 continue;
4717 name = SYMBOL_LINKAGE_NAME (sym);
4718 suffix = strstr (name, "___XR");
4719
4720 if (suffix != NULL)
4721 {
4722 int name_len = suffix - name;
4723 int j;
5b4ee69b 4724
aeb5907d
JB
4725 is_new_style_renaming = 1;
4726 for (j = 0; j < nsyms; j += 1)
4727 if (i != j && syms[j].sym != NULL
4728 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4729 name_len) == 0
4730 && block == syms[j].block)
4731 syms[j].sym = NULL;
4732 }
4733 }
4734 if (is_new_style_renaming)
4735 {
4736 int j, k;
4737
4738 for (j = k = 0; j < nsyms; j += 1)
4739 if (syms[j].sym != NULL)
4740 {
4741 syms[k] = syms[j];
4742 k += 1;
4743 }
4744 return k;
4745 }
4c4b4cd2
PH
4746
4747 /* Extract the function name associated to CURRENT_BLOCK.
4748 Abort if unable to do so. */
76a01679 4749
4c4b4cd2
PH
4750 if (current_block == NULL)
4751 return nsyms;
76a01679 4752
7f0df278 4753 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4754 if (current_function == NULL)
4755 return nsyms;
4756
4757 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4758 if (current_function_name == NULL)
4759 return nsyms;
4760
4761 /* Check each of the symbols, and remove it from the list if it is
4762 a type corresponding to a renaming that is out of the scope of
4763 the current block. */
4764
4765 i = 0;
4766 while (i < nsyms)
4767 {
aeb5907d
JB
4768 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4769 == ADA_OBJECT_RENAMING
4770 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4771 {
4772 int j;
5b4ee69b 4773
aeb5907d 4774 for (j = i + 1; j < nsyms; j += 1)
76a01679 4775 syms[j - 1] = syms[j];
4c4b4cd2
PH
4776 nsyms -= 1;
4777 }
4778 else
4779 i += 1;
4780 }
4781
4782 return nsyms;
4783}
4784
339c13b6
JB
4785/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4786 whose name and domain match NAME and DOMAIN respectively.
4787 If no match was found, then extend the search to "enclosing"
4788 routines (in other words, if we're inside a nested function,
4789 search the symbols defined inside the enclosing functions).
4790
4791 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4792
4793static void
4794ada_add_local_symbols (struct obstack *obstackp, const char *name,
4795 struct block *block, domain_enum domain,
4796 int wild_match)
4797{
4798 int block_depth = 0;
4799
4800 while (block != NULL)
4801 {
4802 block_depth += 1;
4803 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4804
4805 /* If we found a non-function match, assume that's the one. */
4806 if (is_nonfunction (defns_collected (obstackp, 0),
4807 num_defns_collected (obstackp)))
4808 return;
4809
4810 block = BLOCK_SUPERBLOCK (block);
4811 }
4812
4813 /* If no luck so far, try to find NAME as a local symbol in some lexically
4814 enclosing subprogram. */
4815 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4816 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4817}
4818
ccefe4c4 4819/* An object of this type is used as the user_data argument when
40658b94 4820 calling the map_matching_symbols method. */
ccefe4c4 4821
40658b94 4822struct match_data
ccefe4c4 4823{
40658b94 4824 struct objfile *objfile;
ccefe4c4 4825 struct obstack *obstackp;
40658b94
PH
4826 struct symbol *arg_sym;
4827 int found_sym;
ccefe4c4
TT
4828};
4829
40658b94
PH
4830/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4831 to a list of symbols. DATA0 is a pointer to a struct match_data *
4832 containing the obstack that collects the symbol list, the file that SYM
4833 must come from, a flag indicating whether a non-argument symbol has
4834 been found in the current block, and the last argument symbol
4835 passed in SYM within the current block (if any). When SYM is null,
4836 marking the end of a block, the argument symbol is added if no
4837 other has been found. */
ccefe4c4 4838
40658b94
PH
4839static int
4840aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4841{
40658b94
PH
4842 struct match_data *data = (struct match_data *) data0;
4843
4844 if (sym == NULL)
4845 {
4846 if (!data->found_sym && data->arg_sym != NULL)
4847 add_defn_to_vec (data->obstackp,
4848 fixup_symbol_section (data->arg_sym, data->objfile),
4849 block);
4850 data->found_sym = 0;
4851 data->arg_sym = NULL;
4852 }
4853 else
4854 {
4855 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4856 return 0;
4857 else if (SYMBOL_IS_ARGUMENT (sym))
4858 data->arg_sym = sym;
4859 else
4860 {
4861 data->found_sym = 1;
4862 add_defn_to_vec (data->obstackp,
4863 fixup_symbol_section (sym, data->objfile),
4864 block);
4865 }
4866 }
4867 return 0;
4868}
4869
4870/* Compare STRING1 to STRING2, with results as for strcmp.
4871 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4872 implies compare_names (STRING1, STRING2) (they may differ as to
4873 what symbols compare equal). */
5b4ee69b 4874
40658b94
PH
4875static int
4876compare_names (const char *string1, const char *string2)
4877{
4878 while (*string1 != '\0' && *string2 != '\0')
4879 {
4880 if (isspace (*string1) || isspace (*string2))
4881 return strcmp_iw_ordered (string1, string2);
4882 if (*string1 != *string2)
4883 break;
4884 string1 += 1;
4885 string2 += 1;
4886 }
4887 switch (*string1)
4888 {
4889 case '(':
4890 return strcmp_iw_ordered (string1, string2);
4891 case '_':
4892 if (*string2 == '\0')
4893 {
052874e8 4894 if (is_name_suffix (string1))
40658b94
PH
4895 return 0;
4896 else
1a1d5513 4897 return 1;
40658b94 4898 }
dbb8534f 4899 /* FALLTHROUGH */
40658b94
PH
4900 default:
4901 if (*string2 == '(')
4902 return strcmp_iw_ordered (string1, string2);
4903 else
4904 return *string1 - *string2;
4905 }
ccefe4c4
TT
4906}
4907
339c13b6
JB
4908/* Add to OBSTACKP all non-local symbols whose name and domain match
4909 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4910 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4911
4912static void
40658b94
PH
4913add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4914 domain_enum domain, int global,
4915 int is_wild_match)
339c13b6
JB
4916{
4917 struct objfile *objfile;
40658b94 4918 struct match_data data;
339c13b6 4919
ccefe4c4 4920 data.obstackp = obstackp;
40658b94 4921 data.arg_sym = NULL;
339c13b6 4922
ccefe4c4 4923 ALL_OBJFILES (objfile)
40658b94
PH
4924 {
4925 data.objfile = objfile;
4926
4927 if (is_wild_match)
4928 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4929 aux_add_nonlocal_symbols, &data,
4930 wild_match, NULL);
4931 else
4932 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4933 aux_add_nonlocal_symbols, &data,
4934 full_match, compare_names);
4935 }
4936
4937 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4938 {
4939 ALL_OBJFILES (objfile)
4940 {
4941 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4942 strcpy (name1, "_ada_");
4943 strcpy (name1 + sizeof ("_ada_") - 1, name);
4944 data.objfile = objfile;
0963b4bd
MS
4945 objfile->sf->qf->map_matching_symbols (name1, domain,
4946 objfile, global,
4947 aux_add_nonlocal_symbols,
4948 &data,
40658b94
PH
4949 full_match, compare_names);
4950 }
4951 }
339c13b6
JB
4952}
4953
4c4b4cd2
PH
4954/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4955 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4956 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4957 indicating the symbols found and the blocks and symbol tables (if
4958 any) in which they were found. This vector are transient---good only to
4959 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4960 symbol match within the nest of blocks whose innermost member is BLOCK0,
4961 is the one match returned (no other matches in that or
4962 enclosing blocks is returned). If there are any matches in or
4963 surrounding BLOCK0, then these alone are returned. Otherwise, the
4964 search extends to global and file-scope (static) symbol tables.
4965 Names prefixed with "standard__" are handled specially: "standard__"
4966 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4967
4968int
4c4b4cd2 4969ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4970 domain_enum namespace,
4971 struct ada_symbol_info **results)
14f9c5c9
AS
4972{
4973 struct symbol *sym;
14f9c5c9 4974 struct block *block;
4c4b4cd2 4975 const char *name;
4c4b4cd2 4976 int wild_match;
14f9c5c9 4977 int cacheIfUnique;
4c4b4cd2 4978 int ndefns;
14f9c5c9 4979
4c4b4cd2
PH
4980 obstack_free (&symbol_list_obstack, NULL);
4981 obstack_init (&symbol_list_obstack);
14f9c5c9 4982
14f9c5c9
AS
4983 cacheIfUnique = 0;
4984
4985 /* Search specified block and its superiors. */
4986
4c4b4cd2
PH
4987 wild_match = (strstr (name0, "__") == NULL);
4988 name = name0;
76a01679
JB
4989 block = (struct block *) block0; /* FIXME: No cast ought to be
4990 needed, but adding const will
4991 have a cascade effect. */
339c13b6
JB
4992
4993 /* Special case: If the user specifies a symbol name inside package
4994 Standard, do a non-wild matching of the symbol name without
4995 the "standard__" prefix. This was primarily introduced in order
4996 to allow the user to specifically access the standard exceptions
4997 using, for instance, Standard.Constraint_Error when Constraint_Error
4998 is ambiguous (due to the user defining its own Constraint_Error
4999 entity inside its program). */
4c4b4cd2
PH
5000 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5001 {
5002 wild_match = 0;
5003 block = NULL;
5004 name = name0 + sizeof ("standard__") - 1;
5005 }
5006
339c13b6 5007 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5008
339c13b6
JB
5009 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5010 wild_match);
4c4b4cd2 5011 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 5012 goto done;
d2e4a39e 5013
339c13b6
JB
5014 /* No non-global symbols found. Check our cache to see if we have
5015 already performed this search before. If we have, then return
5016 the same result. */
5017
14f9c5c9 5018 cacheIfUnique = 1;
2570f2b7 5019 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5020 {
5021 if (sym != NULL)
2570f2b7 5022 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5023 goto done;
5024 }
14f9c5c9 5025
339c13b6
JB
5026 /* Search symbols from all global blocks. */
5027
40658b94
PH
5028 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5029 wild_match);
d2e4a39e 5030
4c4b4cd2 5031 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5032 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5033
4c4b4cd2 5034 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
5035 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5036 wild_match);
14f9c5c9 5037
4c4b4cd2
PH
5038done:
5039 ndefns = num_defns_collected (&symbol_list_obstack);
5040 *results = defns_collected (&symbol_list_obstack, 1);
5041
5042 ndefns = remove_extra_symbols (*results, ndefns);
5043
d2e4a39e 5044 if (ndefns == 0)
2570f2b7 5045 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5046
4c4b4cd2 5047 if (ndefns == 1 && cacheIfUnique)
2570f2b7 5048 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5049
aeb5907d 5050 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5051
14f9c5c9
AS
5052 return ndefns;
5053}
5054
f8eba3c6
TT
5055/* If NAME is the name of an entity, return a string that should
5056 be used to look that entity up in Ada units. This string should
5057 be deallocated after use using xfree.
5058
5059 NAME can have any form that the "break" or "print" commands might
5060 recognize. In other words, it does not have to be the "natural"
5061 name, or the "encoded" name. */
5062
5063char *
5064ada_name_for_lookup (const char *name)
5065{
5066 char *canon;
5067 int nlen = strlen (name);
5068
5069 if (name[0] == '<' && name[nlen - 1] == '>')
5070 {
5071 canon = xmalloc (nlen - 1);
5072 memcpy (canon, name + 1, nlen - 2);
5073 canon[nlen - 2] = '\0';
5074 }
5075 else
5076 canon = xstrdup (ada_encode (ada_fold_name (name)));
5077 return canon;
5078}
5079
5080/* Implementation of the la_iterate_over_symbols method. */
5081
5082static void
5083ada_iterate_over_symbols (const struct block *block,
5084 const char *name, domain_enum domain,
5085 int (*callback) (struct symbol *, void *),
5086 void *data)
5087{
5088 int ndefs, i;
5089 struct ada_symbol_info *results;
5090
5091 ndefs = ada_lookup_symbol_list (name, block, domain, &results);
5092 for (i = 0; i < ndefs; ++i)
5093 {
5094 if (! (*callback) (results[i].sym, data))
5095 break;
5096 }
5097}
5098
d2e4a39e 5099struct symbol *
aeb5907d 5100ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 5101 domain_enum namespace, struct block **block_found)
14f9c5c9 5102{
4c4b4cd2 5103 struct ada_symbol_info *candidates;
14f9c5c9
AS
5104 int n_candidates;
5105
aeb5907d 5106 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
5107
5108 if (n_candidates == 0)
5109 return NULL;
4c4b4cd2 5110
aeb5907d
JB
5111 if (block_found != NULL)
5112 *block_found = candidates[0].block;
4c4b4cd2 5113
21b556f4 5114 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
5115}
5116
5117/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5118 scope and in global scopes, or NULL if none. NAME is folded and
5119 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5120 choosing the first symbol if there are multiple choices.
aeb5907d
JB
5121 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5122 table in which the symbol was found (in both cases, these
5123 assignments occur only if the pointers are non-null). */
5124struct symbol *
5125ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5126 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
5127{
5128 if (is_a_field_of_this != NULL)
5129 *is_a_field_of_this = 0;
5130
5131 return
5132 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 5133 block0, namespace, NULL);
4c4b4cd2 5134}
14f9c5c9 5135
4c4b4cd2
PH
5136static struct symbol *
5137ada_lookup_symbol_nonlocal (const char *name,
76a01679 5138 const struct block *block,
21b556f4 5139 const domain_enum domain)
4c4b4cd2 5140{
94af9270 5141 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5142}
5143
5144
4c4b4cd2
PH
5145/* True iff STR is a possible encoded suffix of a normal Ada name
5146 that is to be ignored for matching purposes. Suffixes of parallel
5147 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5148 are given by any of the regular expressions:
4c4b4cd2 5149
babe1480
JB
5150 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5151 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5152 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5153 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5154
5155 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5156 match is performed. This sequence is used to differentiate homonyms,
5157 is an optional part of a valid name suffix. */
4c4b4cd2 5158
14f9c5c9 5159static int
d2e4a39e 5160is_name_suffix (const char *str)
14f9c5c9
AS
5161{
5162 int k;
4c4b4cd2
PH
5163 const char *matching;
5164 const int len = strlen (str);
5165
babe1480
JB
5166 /* Skip optional leading __[0-9]+. */
5167
4c4b4cd2
PH
5168 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5169 {
babe1480
JB
5170 str += 3;
5171 while (isdigit (str[0]))
5172 str += 1;
4c4b4cd2 5173 }
babe1480
JB
5174
5175 /* [.$][0-9]+ */
4c4b4cd2 5176
babe1480 5177 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5178 {
babe1480 5179 matching = str + 1;
4c4b4cd2
PH
5180 while (isdigit (matching[0]))
5181 matching += 1;
5182 if (matching[0] == '\0')
5183 return 1;
5184 }
5185
5186 /* ___[0-9]+ */
babe1480 5187
4c4b4cd2
PH
5188 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5189 {
5190 matching = str + 3;
5191 while (isdigit (matching[0]))
5192 matching += 1;
5193 if (matching[0] == '\0')
5194 return 1;
5195 }
5196
529cad9c
PH
5197#if 0
5198 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5199 with a N at the end. Unfortunately, the compiler uses the same
5200 convention for other internal types it creates. So treating
529cad9c 5201 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5202 some regressions. For instance, consider the case of an enumerated
5203 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5204 name ends with N.
5205 Having a single character like this as a suffix carrying some
0963b4bd 5206 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5207 to be something like "_N" instead. In the meantime, do not do
5208 the following check. */
5209 /* Protected Object Subprograms */
5210 if (len == 1 && str [0] == 'N')
5211 return 1;
5212#endif
5213
5214 /* _E[0-9]+[bs]$ */
5215 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5216 {
5217 matching = str + 3;
5218 while (isdigit (matching[0]))
5219 matching += 1;
5220 if ((matching[0] == 'b' || matching[0] == 's')
5221 && matching [1] == '\0')
5222 return 1;
5223 }
5224
4c4b4cd2
PH
5225 /* ??? We should not modify STR directly, as we are doing below. This
5226 is fine in this case, but may become problematic later if we find
5227 that this alternative did not work, and want to try matching
5228 another one from the begining of STR. Since we modified it, we
5229 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5230 if (str[0] == 'X')
5231 {
5232 str += 1;
d2e4a39e 5233 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5234 {
5235 if (str[0] != 'n' && str[0] != 'b')
5236 return 0;
5237 str += 1;
5238 }
14f9c5c9 5239 }
babe1480 5240
14f9c5c9
AS
5241 if (str[0] == '\000')
5242 return 1;
babe1480 5243
d2e4a39e 5244 if (str[0] == '_')
14f9c5c9
AS
5245 {
5246 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5247 return 0;
d2e4a39e 5248 if (str[2] == '_')
4c4b4cd2 5249 {
61ee279c
PH
5250 if (strcmp (str + 3, "JM") == 0)
5251 return 1;
5252 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5253 the LJM suffix in favor of the JM one. But we will
5254 still accept LJM as a valid suffix for a reasonable
5255 amount of time, just to allow ourselves to debug programs
5256 compiled using an older version of GNAT. */
4c4b4cd2
PH
5257 if (strcmp (str + 3, "LJM") == 0)
5258 return 1;
5259 if (str[3] != 'X')
5260 return 0;
1265e4aa
JB
5261 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5262 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5263 return 1;
5264 if (str[4] == 'R' && str[5] != 'T')
5265 return 1;
5266 return 0;
5267 }
5268 if (!isdigit (str[2]))
5269 return 0;
5270 for (k = 3; str[k] != '\0'; k += 1)
5271 if (!isdigit (str[k]) && str[k] != '_')
5272 return 0;
14f9c5c9
AS
5273 return 1;
5274 }
4c4b4cd2 5275 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5276 {
4c4b4cd2
PH
5277 for (k = 2; str[k] != '\0'; k += 1)
5278 if (!isdigit (str[k]) && str[k] != '_')
5279 return 0;
14f9c5c9
AS
5280 return 1;
5281 }
5282 return 0;
5283}
d2e4a39e 5284
aeb5907d
JB
5285/* Return non-zero if the string starting at NAME and ending before
5286 NAME_END contains no capital letters. */
529cad9c
PH
5287
5288static int
5289is_valid_name_for_wild_match (const char *name0)
5290{
5291 const char *decoded_name = ada_decode (name0);
5292 int i;
5293
5823c3ef
JB
5294 /* If the decoded name starts with an angle bracket, it means that
5295 NAME0 does not follow the GNAT encoding format. It should then
5296 not be allowed as a possible wild match. */
5297 if (decoded_name[0] == '<')
5298 return 0;
5299
529cad9c
PH
5300 for (i=0; decoded_name[i] != '\0'; i++)
5301 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5302 return 0;
5303
5304 return 1;
5305}
5306
73589123
PH
5307/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5308 that could start a simple name. Assumes that *NAMEP points into
5309 the string beginning at NAME0. */
4c4b4cd2 5310
14f9c5c9 5311static int
73589123 5312advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5313{
73589123 5314 const char *name = *namep;
5b4ee69b 5315
5823c3ef 5316 while (1)
14f9c5c9 5317 {
aa27d0b3 5318 int t0, t1;
73589123
PH
5319
5320 t0 = *name;
5321 if (t0 == '_')
5322 {
5323 t1 = name[1];
5324 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5325 {
5326 name += 1;
5327 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5328 break;
5329 else
5330 name += 1;
5331 }
aa27d0b3
JB
5332 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5333 || name[2] == target0))
73589123
PH
5334 {
5335 name += 2;
5336 break;
5337 }
5338 else
5339 return 0;
5340 }
5341 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5342 name += 1;
5343 else
5823c3ef 5344 return 0;
73589123
PH
5345 }
5346
5347 *namep = name;
5348 return 1;
5349}
5350
5351/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5352 informational suffixes of NAME (i.e., for which is_name_suffix is
5353 true). Assumes that PATN is a lower-cased Ada simple name. */
5354
5355static int
5356wild_match (const char *name, const char *patn)
5357{
5358 const char *p, *n;
5359 const char *name0 = name;
5360
5361 while (1)
5362 {
5363 const char *match = name;
5364
5365 if (*name == *patn)
5366 {
5367 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5368 if (*p != *name)
5369 break;
5370 if (*p == '\0' && is_name_suffix (name))
5371 return match != name0 && !is_valid_name_for_wild_match (name0);
5372
5373 if (name[-1] == '_')
5374 name -= 1;
5375 }
5376 if (!advance_wild_match (&name, name0, *patn))
5377 return 1;
96d887e8 5378 }
96d887e8
PH
5379}
5380
40658b94
PH
5381/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5382 informational suffix. */
5383
c4d840bd
PH
5384static int
5385full_match (const char *sym_name, const char *search_name)
5386{
40658b94 5387 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5388}
5389
5390
96d887e8
PH
5391/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5392 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5393 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5394 OBJFILE is the section containing BLOCK.
5395 SYMTAB is recorded with each symbol added. */
5396
5397static void
5398ada_add_block_symbols (struct obstack *obstackp,
76a01679 5399 struct block *block, const char *name,
96d887e8 5400 domain_enum domain, struct objfile *objfile,
2570f2b7 5401 int wild)
96d887e8
PH
5402{
5403 struct dict_iterator iter;
5404 int name_len = strlen (name);
5405 /* A matching argument symbol, if any. */
5406 struct symbol *arg_sym;
5407 /* Set true when we find a matching non-argument symbol. */
5408 int found_sym;
5409 struct symbol *sym;
5410
5411 arg_sym = NULL;
5412 found_sym = 0;
5413 if (wild)
5414 {
c4d840bd
PH
5415 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5416 wild_match, &iter);
5417 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5418 {
5eeb2539
AR
5419 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5420 SYMBOL_DOMAIN (sym), domain)
73589123 5421 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5422 {
2a2d4dc3
AS
5423 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5424 continue;
5425 else if (SYMBOL_IS_ARGUMENT (sym))
5426 arg_sym = sym;
5427 else
5428 {
76a01679
JB
5429 found_sym = 1;
5430 add_defn_to_vec (obstackp,
5431 fixup_symbol_section (sym, objfile),
2570f2b7 5432 block);
76a01679
JB
5433 }
5434 }
5435 }
96d887e8
PH
5436 }
5437 else
5438 {
c4d840bd 5439 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5440 full_match, &iter);
c4d840bd 5441 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5442 {
5eeb2539
AR
5443 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5444 SYMBOL_DOMAIN (sym), domain))
76a01679 5445 {
c4d840bd
PH
5446 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5447 {
5448 if (SYMBOL_IS_ARGUMENT (sym))
5449 arg_sym = sym;
5450 else
2a2d4dc3 5451 {
c4d840bd
PH
5452 found_sym = 1;
5453 add_defn_to_vec (obstackp,
5454 fixup_symbol_section (sym, objfile),
5455 block);
2a2d4dc3 5456 }
c4d840bd 5457 }
76a01679
JB
5458 }
5459 }
96d887e8
PH
5460 }
5461
5462 if (!found_sym && arg_sym != NULL)
5463 {
76a01679
JB
5464 add_defn_to_vec (obstackp,
5465 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5466 block);
96d887e8
PH
5467 }
5468
5469 if (!wild)
5470 {
5471 arg_sym = NULL;
5472 found_sym = 0;
5473
5474 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5475 {
5eeb2539
AR
5476 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5477 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5478 {
5479 int cmp;
5480
5481 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5482 if (cmp == 0)
5483 {
5484 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5485 if (cmp == 0)
5486 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5487 name_len);
5488 }
5489
5490 if (cmp == 0
5491 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5492 {
2a2d4dc3
AS
5493 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5494 {
5495 if (SYMBOL_IS_ARGUMENT (sym))
5496 arg_sym = sym;
5497 else
5498 {
5499 found_sym = 1;
5500 add_defn_to_vec (obstackp,
5501 fixup_symbol_section (sym, objfile),
5502 block);
5503 }
5504 }
76a01679
JB
5505 }
5506 }
76a01679 5507 }
96d887e8
PH
5508
5509 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5510 They aren't parameters, right? */
5511 if (!found_sym && arg_sym != NULL)
5512 {
5513 add_defn_to_vec (obstackp,
76a01679 5514 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5515 block);
96d887e8
PH
5516 }
5517 }
5518}
5519\f
41d27058
JB
5520
5521 /* Symbol Completion */
5522
5523/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5524 name in a form that's appropriate for the completion. The result
5525 does not need to be deallocated, but is only good until the next call.
5526
5527 TEXT_LEN is equal to the length of TEXT.
5528 Perform a wild match if WILD_MATCH is set.
5529 ENCODED should be set if TEXT represents the start of a symbol name
5530 in its encoded form. */
5531
5532static const char *
5533symbol_completion_match (const char *sym_name,
5534 const char *text, int text_len,
5535 int wild_match, int encoded)
5536{
41d27058
JB
5537 const int verbatim_match = (text[0] == '<');
5538 int match = 0;
5539
5540 if (verbatim_match)
5541 {
5542 /* Strip the leading angle bracket. */
5543 text = text + 1;
5544 text_len--;
5545 }
5546
5547 /* First, test against the fully qualified name of the symbol. */
5548
5549 if (strncmp (sym_name, text, text_len) == 0)
5550 match = 1;
5551
5552 if (match && !encoded)
5553 {
5554 /* One needed check before declaring a positive match is to verify
5555 that iff we are doing a verbatim match, the decoded version
5556 of the symbol name starts with '<'. Otherwise, this symbol name
5557 is not a suitable completion. */
5558 const char *sym_name_copy = sym_name;
5559 int has_angle_bracket;
5560
5561 sym_name = ada_decode (sym_name);
5562 has_angle_bracket = (sym_name[0] == '<');
5563 match = (has_angle_bracket == verbatim_match);
5564 sym_name = sym_name_copy;
5565 }
5566
5567 if (match && !verbatim_match)
5568 {
5569 /* When doing non-verbatim match, another check that needs to
5570 be done is to verify that the potentially matching symbol name
5571 does not include capital letters, because the ada-mode would
5572 not be able to understand these symbol names without the
5573 angle bracket notation. */
5574 const char *tmp;
5575
5576 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5577 if (*tmp != '\0')
5578 match = 0;
5579 }
5580
5581 /* Second: Try wild matching... */
5582
5583 if (!match && wild_match)
5584 {
5585 /* Since we are doing wild matching, this means that TEXT
5586 may represent an unqualified symbol name. We therefore must
5587 also compare TEXT against the unqualified name of the symbol. */
5588 sym_name = ada_unqualified_name (ada_decode (sym_name));
5589
5590 if (strncmp (sym_name, text, text_len) == 0)
5591 match = 1;
5592 }
5593
5594 /* Finally: If we found a mach, prepare the result to return. */
5595
5596 if (!match)
5597 return NULL;
5598
5599 if (verbatim_match)
5600 sym_name = add_angle_brackets (sym_name);
5601
5602 if (!encoded)
5603 sym_name = ada_decode (sym_name);
5604
5605 return sym_name;
5606}
5607
2ba95b9b
JB
5608DEF_VEC_P (char_ptr);
5609
41d27058
JB
5610/* A companion function to ada_make_symbol_completion_list().
5611 Check if SYM_NAME represents a symbol which name would be suitable
5612 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5613 it is appended at the end of the given string vector SV.
5614
5615 ORIG_TEXT is the string original string from the user command
5616 that needs to be completed. WORD is the entire command on which
5617 completion should be performed. These two parameters are used to
5618 determine which part of the symbol name should be added to the
5619 completion vector.
5620 if WILD_MATCH is set, then wild matching is performed.
5621 ENCODED should be set if TEXT represents a symbol name in its
5622 encoded formed (in which case the completion should also be
5623 encoded). */
5624
5625static void
d6565258 5626symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5627 const char *sym_name,
5628 const char *text, int text_len,
5629 const char *orig_text, const char *word,
5630 int wild_match, int encoded)
5631{
5632 const char *match = symbol_completion_match (sym_name, text, text_len,
5633 wild_match, encoded);
5634 char *completion;
5635
5636 if (match == NULL)
5637 return;
5638
5639 /* We found a match, so add the appropriate completion to the given
5640 string vector. */
5641
5642 if (word == orig_text)
5643 {
5644 completion = xmalloc (strlen (match) + 5);
5645 strcpy (completion, match);
5646 }
5647 else if (word > orig_text)
5648 {
5649 /* Return some portion of sym_name. */
5650 completion = xmalloc (strlen (match) + 5);
5651 strcpy (completion, match + (word - orig_text));
5652 }
5653 else
5654 {
5655 /* Return some of ORIG_TEXT plus sym_name. */
5656 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5657 strncpy (completion, word, orig_text - word);
5658 completion[orig_text - word] = '\0';
5659 strcat (completion, match);
5660 }
5661
d6565258 5662 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5663}
5664
ccefe4c4 5665/* An object of this type is passed as the user_data argument to the
7b08b9eb 5666 expand_partial_symbol_names method. */
ccefe4c4
TT
5667struct add_partial_datum
5668{
5669 VEC(char_ptr) **completions;
5670 char *text;
5671 int text_len;
5672 char *text0;
5673 char *word;
5674 int wild_match;
5675 int encoded;
5676};
5677
7b08b9eb
JK
5678/* A callback for expand_partial_symbol_names. */
5679static int
f8eba3c6
TT
5680ada_expand_partial_symbol_name (const struct language_defn *language,
5681 const char *name, void *user_data)
ccefe4c4
TT
5682{
5683 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5684
5685 return symbol_completion_match (name, data->text, data->text_len,
5686 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5687}
5688
41d27058
JB
5689/* Return a list of possible symbol names completing TEXT0. The list
5690 is NULL terminated. WORD is the entire command on which completion
5691 is made. */
5692
5693static char **
5694ada_make_symbol_completion_list (char *text0, char *word)
5695{
5696 char *text;
5697 int text_len;
5698 int wild_match;
5699 int encoded;
2ba95b9b 5700 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5701 struct symbol *sym;
5702 struct symtab *s;
41d27058
JB
5703 struct minimal_symbol *msymbol;
5704 struct objfile *objfile;
5705 struct block *b, *surrounding_static_block = 0;
5706 int i;
5707 struct dict_iterator iter;
5708
5709 if (text0[0] == '<')
5710 {
5711 text = xstrdup (text0);
5712 make_cleanup (xfree, text);
5713 text_len = strlen (text);
5714 wild_match = 0;
5715 encoded = 1;
5716 }
5717 else
5718 {
5719 text = xstrdup (ada_encode (text0));
5720 make_cleanup (xfree, text);
5721 text_len = strlen (text);
5722 for (i = 0; i < text_len; i++)
5723 text[i] = tolower (text[i]);
5724
5725 encoded = (strstr (text0, "__") != NULL);
5726 /* If the name contains a ".", then the user is entering a fully
5727 qualified entity name, and the match must not be done in wild
5728 mode. Similarly, if the user wants to complete what looks like
5729 an encoded name, the match must not be done in wild mode. */
5730 wild_match = (strchr (text0, '.') == NULL && !encoded);
5731 }
5732
5733 /* First, look at the partial symtab symbols. */
41d27058 5734 {
ccefe4c4
TT
5735 struct add_partial_datum data;
5736
5737 data.completions = &completions;
5738 data.text = text;
5739 data.text_len = text_len;
5740 data.text0 = text0;
5741 data.word = word;
5742 data.wild_match = wild_match;
5743 data.encoded = encoded;
7b08b9eb 5744 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5745 }
5746
5747 /* At this point scan through the misc symbol vectors and add each
5748 symbol you find to the list. Eventually we want to ignore
5749 anything that isn't a text symbol (everything else will be
5750 handled by the psymtab code above). */
5751
5752 ALL_MSYMBOLS (objfile, msymbol)
5753 {
5754 QUIT;
d6565258 5755 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5756 text, text_len, text0, word, wild_match, encoded);
5757 }
5758
5759 /* Search upwards from currently selected frame (so that we can
5760 complete on local vars. */
5761
5762 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5763 {
5764 if (!BLOCK_SUPERBLOCK (b))
5765 surrounding_static_block = b; /* For elmin of dups */
5766
5767 ALL_BLOCK_SYMBOLS (b, iter, sym)
5768 {
d6565258 5769 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5770 text, text_len, text0, word,
5771 wild_match, encoded);
5772 }
5773 }
5774
5775 /* Go through the symtabs and check the externs and statics for
5776 symbols which match. */
5777
5778 ALL_SYMTABS (objfile, s)
5779 {
5780 QUIT;
5781 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5782 ALL_BLOCK_SYMBOLS (b, iter, sym)
5783 {
d6565258 5784 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5785 text, text_len, text0, word,
5786 wild_match, encoded);
5787 }
5788 }
5789
5790 ALL_SYMTABS (objfile, s)
5791 {
5792 QUIT;
5793 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5794 /* Don't do this block twice. */
5795 if (b == surrounding_static_block)
5796 continue;
5797 ALL_BLOCK_SYMBOLS (b, iter, sym)
5798 {
d6565258 5799 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5800 text, text_len, text0, word,
5801 wild_match, encoded);
5802 }
5803 }
5804
5805 /* Append the closing NULL entry. */
2ba95b9b 5806 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5807
2ba95b9b
JB
5808 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5809 return the copy. It's unfortunate that we have to make a copy
5810 of an array that we're about to destroy, but there is nothing much
5811 we can do about it. Fortunately, it's typically not a very large
5812 array. */
5813 {
5814 const size_t completions_size =
5815 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5816 char **result = xmalloc (completions_size);
2ba95b9b
JB
5817
5818 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5819
5820 VEC_free (char_ptr, completions);
5821 return result;
5822 }
41d27058
JB
5823}
5824
963a6417 5825 /* Field Access */
96d887e8 5826
73fb9985
JB
5827/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5828 for tagged types. */
5829
5830static int
5831ada_is_dispatch_table_ptr_type (struct type *type)
5832{
5833 char *name;
5834
5835 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5836 return 0;
5837
5838 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5839 if (name == NULL)
5840 return 0;
5841
5842 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5843}
5844
963a6417
PH
5845/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5846 to be invisible to users. */
96d887e8 5847
963a6417
PH
5848int
5849ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5850{
963a6417
PH
5851 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5852 return 1;
73fb9985
JB
5853
5854 /* Check the name of that field. */
5855 {
5856 const char *name = TYPE_FIELD_NAME (type, field_num);
5857
5858 /* Anonymous field names should not be printed.
5859 brobecker/2007-02-20: I don't think this can actually happen
5860 but we don't want to print the value of annonymous fields anyway. */
5861 if (name == NULL)
5862 return 1;
5863
5864 /* A field named "_parent" is internally generated by GNAT for
5865 tagged types, and should not be printed either. */
5866 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5867 return 1;
5868 }
5869
5870 /* If this is the dispatch table of a tagged type, then ignore. */
5871 if (ada_is_tagged_type (type, 1)
5872 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5873 return 1;
5874
5875 /* Not a special field, so it should not be ignored. */
5876 return 0;
963a6417 5877}
96d887e8 5878
963a6417 5879/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5880 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5881
963a6417
PH
5882int
5883ada_is_tagged_type (struct type *type, int refok)
5884{
5885 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5886}
96d887e8 5887
963a6417 5888/* True iff TYPE represents the type of X'Tag */
96d887e8 5889
963a6417
PH
5890int
5891ada_is_tag_type (struct type *type)
5892{
5893 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5894 return 0;
5895 else
96d887e8 5896 {
963a6417 5897 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5898
963a6417
PH
5899 return (name != NULL
5900 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5901 }
96d887e8
PH
5902}
5903
963a6417 5904/* The type of the tag on VAL. */
76a01679 5905
963a6417
PH
5906struct type *
5907ada_tag_type (struct value *val)
96d887e8 5908{
df407dfe 5909 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5910}
96d887e8 5911
963a6417 5912/* The value of the tag on VAL. */
96d887e8 5913
963a6417
PH
5914struct value *
5915ada_value_tag (struct value *val)
5916{
03ee6b2e 5917 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5918}
5919
963a6417
PH
5920/* The value of the tag on the object of type TYPE whose contents are
5921 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5922 ADDRESS. */
96d887e8 5923
963a6417 5924static struct value *
10a2c479 5925value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5926 const gdb_byte *valaddr,
963a6417 5927 CORE_ADDR address)
96d887e8 5928{
b5385fc0 5929 int tag_byte_offset;
963a6417 5930 struct type *tag_type;
5b4ee69b 5931
963a6417 5932 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5933 NULL, NULL, NULL))
96d887e8 5934 {
fc1a4b47 5935 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5936 ? NULL
5937 : valaddr + tag_byte_offset);
963a6417 5938 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5939
963a6417 5940 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5941 }
963a6417
PH
5942 return NULL;
5943}
96d887e8 5944
963a6417
PH
5945static struct type *
5946type_from_tag (struct value *tag)
5947{
5948 const char *type_name = ada_tag_name (tag);
5b4ee69b 5949
963a6417
PH
5950 if (type_name != NULL)
5951 return ada_find_any_type (ada_encode (type_name));
5952 return NULL;
5953}
96d887e8 5954
963a6417
PH
5955struct tag_args
5956{
5957 struct value *tag;
5958 char *name;
5959};
4c4b4cd2 5960
529cad9c
PH
5961
5962static int ada_tag_name_1 (void *);
5963static int ada_tag_name_2 (struct tag_args *);
5964
4c4b4cd2 5965/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5966 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5967 The value stored in ARGS->name is valid until the next call to
5968 ada_tag_name_1. */
5969
5970static int
5971ada_tag_name_1 (void *args0)
5972{
5973 struct tag_args *args = (struct tag_args *) args0;
5974 static char name[1024];
76a01679 5975 char *p;
4c4b4cd2 5976 struct value *val;
5b4ee69b 5977
4c4b4cd2 5978 args->name = NULL;
03ee6b2e 5979 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5980 if (val == NULL)
5981 return ada_tag_name_2 (args);
03ee6b2e 5982 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5983 if (val == NULL)
5984 return 0;
5985 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5986 for (p = name; *p != '\0'; p += 1)
5987 if (isalpha (*p))
5988 *p = tolower (*p);
5989 args->name = name;
5990 return 0;
5991}
5992
e802dbe0
JB
5993/* Return the "ada__tags__type_specific_data" type. */
5994
5995static struct type *
5996ada_get_tsd_type (struct inferior *inf)
5997{
5998 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5999
6000 if (data->tsd_type == 0)
6001 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6002 return data->tsd_type;
6003}
6004
529cad9c
PH
6005/* Utility function for ada_tag_name_1 that tries the second
6006 representation for the dispatch table (in which there is no
6007 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 6008 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
6009
6010static int
6011ada_tag_name_2 (struct tag_args *args)
6012{
6013 struct type *info_type;
6014 static char name[1024];
6015 char *p;
6016 struct value *val, *valp;
6017
6018 args->name = NULL;
e802dbe0 6019 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
6020 if (info_type == NULL)
6021 return 0;
6022 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6023 valp = value_cast (info_type, args->tag);
6024 if (valp == NULL)
6025 return 0;
2497b498 6026 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
6027 if (val == NULL)
6028 return 0;
03ee6b2e 6029 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
6030 if (val == NULL)
6031 return 0;
6032 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6033 for (p = name; *p != '\0'; p += 1)
6034 if (isalpha (*p))
6035 *p = tolower (*p);
6036 args->name = name;
6037 return 0;
6038}
6039
6040/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 6041 a C string. */
4c4b4cd2
PH
6042
6043const char *
6044ada_tag_name (struct value *tag)
6045{
6046 struct tag_args args;
5b4ee69b 6047
df407dfe 6048 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6049 return NULL;
76a01679 6050 args.tag = tag;
4c4b4cd2
PH
6051 args.name = NULL;
6052 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6053 return args.name;
6054}
6055
6056/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6057
d2e4a39e 6058struct type *
ebf56fd3 6059ada_parent_type (struct type *type)
14f9c5c9
AS
6060{
6061 int i;
6062
61ee279c 6063 type = ada_check_typedef (type);
14f9c5c9
AS
6064
6065 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6066 return NULL;
6067
6068 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6069 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6070 {
6071 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6072
6073 /* If the _parent field is a pointer, then dereference it. */
6074 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6075 parent_type = TYPE_TARGET_TYPE (parent_type);
6076 /* If there is a parallel XVS type, get the actual base type. */
6077 parent_type = ada_get_base_type (parent_type);
6078
6079 return ada_check_typedef (parent_type);
6080 }
14f9c5c9
AS
6081
6082 return NULL;
6083}
6084
4c4b4cd2
PH
6085/* True iff field number FIELD_NUM of structure type TYPE contains the
6086 parent-type (inherited) fields of a derived type. Assumes TYPE is
6087 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6088
6089int
ebf56fd3 6090ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6091{
61ee279c 6092 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6093
4c4b4cd2
PH
6094 return (name != NULL
6095 && (strncmp (name, "PARENT", 6) == 0
6096 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6097}
6098
4c4b4cd2 6099/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6100 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6101 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6102 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6103 structures. */
14f9c5c9
AS
6104
6105int
ebf56fd3 6106ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6107{
d2e4a39e 6108 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6109
d2e4a39e 6110 return (name != NULL
4c4b4cd2
PH
6111 && (strncmp (name, "PARENT", 6) == 0
6112 || strcmp (name, "REP") == 0
6113 || strncmp (name, "_parent", 7) == 0
6114 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6115}
6116
4c4b4cd2
PH
6117/* True iff field number FIELD_NUM of structure or union type TYPE
6118 is a variant wrapper. Assumes TYPE is a structure type with at least
6119 FIELD_NUM+1 fields. */
14f9c5c9
AS
6120
6121int
ebf56fd3 6122ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6123{
d2e4a39e 6124 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6125
14f9c5c9 6126 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6127 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6128 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6129 == TYPE_CODE_UNION)));
14f9c5c9
AS
6130}
6131
6132/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6133 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6134 returns the type of the controlling discriminant for the variant.
6135 May return NULL if the type could not be found. */
14f9c5c9 6136
d2e4a39e 6137struct type *
ebf56fd3 6138ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6139{
d2e4a39e 6140 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6141
7c964f07 6142 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6143}
6144
4c4b4cd2 6145/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6146 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6147 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6148
6149int
ebf56fd3 6150ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6151{
d2e4a39e 6152 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6153
14f9c5c9
AS
6154 return (name != NULL && name[0] == 'O');
6155}
6156
6157/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6158 returns the name of the discriminant controlling the variant.
6159 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6160
d2e4a39e 6161char *
ebf56fd3 6162ada_variant_discrim_name (struct type *type0)
14f9c5c9 6163{
d2e4a39e 6164 static char *result = NULL;
14f9c5c9 6165 static size_t result_len = 0;
d2e4a39e
AS
6166 struct type *type;
6167 const char *name;
6168 const char *discrim_end;
6169 const char *discrim_start;
14f9c5c9
AS
6170
6171 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6172 type = TYPE_TARGET_TYPE (type0);
6173 else
6174 type = type0;
6175
6176 name = ada_type_name (type);
6177
6178 if (name == NULL || name[0] == '\000')
6179 return "";
6180
6181 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6182 discrim_end -= 1)
6183 {
4c4b4cd2
PH
6184 if (strncmp (discrim_end, "___XVN", 6) == 0)
6185 break;
14f9c5c9
AS
6186 }
6187 if (discrim_end == name)
6188 return "";
6189
d2e4a39e 6190 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6191 discrim_start -= 1)
6192 {
d2e4a39e 6193 if (discrim_start == name + 1)
4c4b4cd2 6194 return "";
76a01679 6195 if ((discrim_start > name + 3
4c4b4cd2
PH
6196 && strncmp (discrim_start - 3, "___", 3) == 0)
6197 || discrim_start[-1] == '.')
6198 break;
14f9c5c9
AS
6199 }
6200
6201 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6202 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6203 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6204 return result;
6205}
6206
4c4b4cd2
PH
6207/* Scan STR for a subtype-encoded number, beginning at position K.
6208 Put the position of the character just past the number scanned in
6209 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6210 Return 1 if there was a valid number at the given position, and 0
6211 otherwise. A "subtype-encoded" number consists of the absolute value
6212 in decimal, followed by the letter 'm' to indicate a negative number.
6213 Assumes 0m does not occur. */
14f9c5c9
AS
6214
6215int
d2e4a39e 6216ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6217{
6218 ULONGEST RU;
6219
d2e4a39e 6220 if (!isdigit (str[k]))
14f9c5c9
AS
6221 return 0;
6222
4c4b4cd2 6223 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6224 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6225 LONGEST. */
14f9c5c9
AS
6226 RU = 0;
6227 while (isdigit (str[k]))
6228 {
d2e4a39e 6229 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6230 k += 1;
6231 }
6232
d2e4a39e 6233 if (str[k] == 'm')
14f9c5c9
AS
6234 {
6235 if (R != NULL)
4c4b4cd2 6236 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6237 k += 1;
6238 }
6239 else if (R != NULL)
6240 *R = (LONGEST) RU;
6241
4c4b4cd2 6242 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6243 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6244 number representable as a LONGEST (although either would probably work
6245 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6246 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6247
6248 if (new_k != NULL)
6249 *new_k = k;
6250 return 1;
6251}
6252
4c4b4cd2
PH
6253/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6254 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6255 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6256
d2e4a39e 6257int
ebf56fd3 6258ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6259{
d2e4a39e 6260 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6261 int p;
6262
6263 p = 0;
6264 while (1)
6265 {
d2e4a39e 6266 switch (name[p])
4c4b4cd2
PH
6267 {
6268 case '\0':
6269 return 0;
6270 case 'S':
6271 {
6272 LONGEST W;
5b4ee69b 6273
4c4b4cd2
PH
6274 if (!ada_scan_number (name, p + 1, &W, &p))
6275 return 0;
6276 if (val == W)
6277 return 1;
6278 break;
6279 }
6280 case 'R':
6281 {
6282 LONGEST L, U;
5b4ee69b 6283
4c4b4cd2
PH
6284 if (!ada_scan_number (name, p + 1, &L, &p)
6285 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6286 return 0;
6287 if (val >= L && val <= U)
6288 return 1;
6289 break;
6290 }
6291 case 'O':
6292 return 1;
6293 default:
6294 return 0;
6295 }
6296 }
6297}
6298
0963b4bd 6299/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6300
6301/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6302 ARG_TYPE, extract and return the value of one of its (non-static)
6303 fields. FIELDNO says which field. Differs from value_primitive_field
6304 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6305
4c4b4cd2 6306static struct value *
d2e4a39e 6307ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6308 struct type *arg_type)
14f9c5c9 6309{
14f9c5c9
AS
6310 struct type *type;
6311
61ee279c 6312 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6313 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6314
4c4b4cd2 6315 /* Handle packed fields. */
14f9c5c9
AS
6316
6317 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6318 {
6319 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6320 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6321
0fd88904 6322 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6323 offset + bit_pos / 8,
6324 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6325 }
6326 else
6327 return value_primitive_field (arg1, offset, fieldno, arg_type);
6328}
6329
52ce6436
PH
6330/* Find field with name NAME in object of type TYPE. If found,
6331 set the following for each argument that is non-null:
6332 - *FIELD_TYPE_P to the field's type;
6333 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6334 an object of that type;
6335 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6336 - *BIT_SIZE_P to its size in bits if the field is packed, and
6337 0 otherwise;
6338 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6339 fields up to but not including the desired field, or by the total
6340 number of fields if not found. A NULL value of NAME never
6341 matches; the function just counts visible fields in this case.
6342
0963b4bd 6343 Returns 1 if found, 0 otherwise. */
52ce6436 6344
4c4b4cd2 6345static int
76a01679
JB
6346find_struct_field (char *name, struct type *type, int offset,
6347 struct type **field_type_p,
52ce6436
PH
6348 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6349 int *index_p)
4c4b4cd2
PH
6350{
6351 int i;
6352
61ee279c 6353 type = ada_check_typedef (type);
76a01679 6354
52ce6436
PH
6355 if (field_type_p != NULL)
6356 *field_type_p = NULL;
6357 if (byte_offset_p != NULL)
d5d6fca5 6358 *byte_offset_p = 0;
52ce6436
PH
6359 if (bit_offset_p != NULL)
6360 *bit_offset_p = 0;
6361 if (bit_size_p != NULL)
6362 *bit_size_p = 0;
6363
6364 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6365 {
6366 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6367 int fld_offset = offset + bit_pos / 8;
6368 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6369
4c4b4cd2
PH
6370 if (t_field_name == NULL)
6371 continue;
6372
52ce6436 6373 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6374 {
6375 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6376
52ce6436
PH
6377 if (field_type_p != NULL)
6378 *field_type_p = TYPE_FIELD_TYPE (type, i);
6379 if (byte_offset_p != NULL)
6380 *byte_offset_p = fld_offset;
6381 if (bit_offset_p != NULL)
6382 *bit_offset_p = bit_pos % 8;
6383 if (bit_size_p != NULL)
6384 *bit_size_p = bit_size;
76a01679
JB
6385 return 1;
6386 }
4c4b4cd2
PH
6387 else if (ada_is_wrapper_field (type, i))
6388 {
52ce6436
PH
6389 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6390 field_type_p, byte_offset_p, bit_offset_p,
6391 bit_size_p, index_p))
76a01679
JB
6392 return 1;
6393 }
4c4b4cd2
PH
6394 else if (ada_is_variant_part (type, i))
6395 {
52ce6436
PH
6396 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6397 fixed type?? */
4c4b4cd2 6398 int j;
52ce6436
PH
6399 struct type *field_type
6400 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6401
52ce6436 6402 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6403 {
76a01679
JB
6404 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6405 fld_offset
6406 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6407 field_type_p, byte_offset_p,
52ce6436 6408 bit_offset_p, bit_size_p, index_p))
76a01679 6409 return 1;
4c4b4cd2
PH
6410 }
6411 }
52ce6436
PH
6412 else if (index_p != NULL)
6413 *index_p += 1;
4c4b4cd2
PH
6414 }
6415 return 0;
6416}
6417
0963b4bd 6418/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6419
52ce6436
PH
6420static int
6421num_visible_fields (struct type *type)
6422{
6423 int n;
5b4ee69b 6424
52ce6436
PH
6425 n = 0;
6426 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6427 return n;
6428}
14f9c5c9 6429
4c4b4cd2 6430/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6431 and search in it assuming it has (class) type TYPE.
6432 If found, return value, else return NULL.
6433
4c4b4cd2 6434 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6435
4c4b4cd2 6436static struct value *
d2e4a39e 6437ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6438 struct type *type)
14f9c5c9
AS
6439{
6440 int i;
14f9c5c9 6441
5b4ee69b 6442 type = ada_check_typedef (type);
52ce6436 6443 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6444 {
6445 char *t_field_name = TYPE_FIELD_NAME (type, i);
6446
6447 if (t_field_name == NULL)
4c4b4cd2 6448 continue;
14f9c5c9
AS
6449
6450 else if (field_name_match (t_field_name, name))
4c4b4cd2 6451 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6452
6453 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6454 {
0963b4bd 6455 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6456 ada_search_struct_field (name, arg,
6457 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6458 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6459
4c4b4cd2
PH
6460 if (v != NULL)
6461 return v;
6462 }
14f9c5c9
AS
6463
6464 else if (ada_is_variant_part (type, i))
4c4b4cd2 6465 {
0963b4bd 6466 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6467 int j;
5b4ee69b
MS
6468 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6469 i));
4c4b4cd2
PH
6470 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6471
52ce6436 6472 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6473 {
0963b4bd
MS
6474 struct value *v = ada_search_struct_field /* Force line
6475 break. */
06d5cf63
JB
6476 (name, arg,
6477 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6478 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6479
4c4b4cd2
PH
6480 if (v != NULL)
6481 return v;
6482 }
6483 }
14f9c5c9
AS
6484 }
6485 return NULL;
6486}
d2e4a39e 6487
52ce6436
PH
6488static struct value *ada_index_struct_field_1 (int *, struct value *,
6489 int, struct type *);
6490
6491
6492/* Return field #INDEX in ARG, where the index is that returned by
6493 * find_struct_field through its INDEX_P argument. Adjust the address
6494 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6495 * If found, return value, else return NULL. */
52ce6436
PH
6496
6497static struct value *
6498ada_index_struct_field (int index, struct value *arg, int offset,
6499 struct type *type)
6500{
6501 return ada_index_struct_field_1 (&index, arg, offset, type);
6502}
6503
6504
6505/* Auxiliary function for ada_index_struct_field. Like
6506 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6507 * *INDEX_P. */
52ce6436
PH
6508
6509static struct value *
6510ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6511 struct type *type)
6512{
6513 int i;
6514 type = ada_check_typedef (type);
6515
6516 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6517 {
6518 if (TYPE_FIELD_NAME (type, i) == NULL)
6519 continue;
6520 else if (ada_is_wrapper_field (type, i))
6521 {
0963b4bd 6522 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6523 ada_index_struct_field_1 (index_p, arg,
6524 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6525 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6526
52ce6436
PH
6527 if (v != NULL)
6528 return v;
6529 }
6530
6531 else if (ada_is_variant_part (type, i))
6532 {
6533 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6534 find_struct_field. */
52ce6436
PH
6535 error (_("Cannot assign this kind of variant record"));
6536 }
6537 else if (*index_p == 0)
6538 return ada_value_primitive_field (arg, offset, i, type);
6539 else
6540 *index_p -= 1;
6541 }
6542 return NULL;
6543}
6544
4c4b4cd2
PH
6545/* Given ARG, a value of type (pointer or reference to a)*
6546 structure/union, extract the component named NAME from the ultimate
6547 target structure/union and return it as a value with its
f5938064 6548 appropriate type.
14f9c5c9 6549
4c4b4cd2
PH
6550 The routine searches for NAME among all members of the structure itself
6551 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6552 (e.g., '_parent').
6553
03ee6b2e
PH
6554 If NO_ERR, then simply return NULL in case of error, rather than
6555 calling error. */
14f9c5c9 6556
d2e4a39e 6557struct value *
03ee6b2e 6558ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6559{
4c4b4cd2 6560 struct type *t, *t1;
d2e4a39e 6561 struct value *v;
14f9c5c9 6562
4c4b4cd2 6563 v = NULL;
df407dfe 6564 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6565 if (TYPE_CODE (t) == TYPE_CODE_REF)
6566 {
6567 t1 = TYPE_TARGET_TYPE (t);
6568 if (t1 == NULL)
03ee6b2e 6569 goto BadValue;
61ee279c 6570 t1 = ada_check_typedef (t1);
4c4b4cd2 6571 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6572 {
994b9211 6573 arg = coerce_ref (arg);
76a01679
JB
6574 t = t1;
6575 }
4c4b4cd2 6576 }
14f9c5c9 6577
4c4b4cd2
PH
6578 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6579 {
6580 t1 = TYPE_TARGET_TYPE (t);
6581 if (t1 == NULL)
03ee6b2e 6582 goto BadValue;
61ee279c 6583 t1 = ada_check_typedef (t1);
4c4b4cd2 6584 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6585 {
6586 arg = value_ind (arg);
6587 t = t1;
6588 }
4c4b4cd2 6589 else
76a01679 6590 break;
4c4b4cd2 6591 }
14f9c5c9 6592
4c4b4cd2 6593 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6594 goto BadValue;
14f9c5c9 6595
4c4b4cd2
PH
6596 if (t1 == t)
6597 v = ada_search_struct_field (name, arg, 0, t);
6598 else
6599 {
6600 int bit_offset, bit_size, byte_offset;
6601 struct type *field_type;
6602 CORE_ADDR address;
6603
76a01679
JB
6604 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6605 address = value_as_address (arg);
4c4b4cd2 6606 else
0fd88904 6607 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6608
1ed6ede0 6609 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6610 if (find_struct_field (name, t1, 0,
6611 &field_type, &byte_offset, &bit_offset,
52ce6436 6612 &bit_size, NULL))
76a01679
JB
6613 {
6614 if (bit_size != 0)
6615 {
714e53ab
PH
6616 if (TYPE_CODE (t) == TYPE_CODE_REF)
6617 arg = ada_coerce_ref (arg);
6618 else
6619 arg = ada_value_ind (arg);
76a01679
JB
6620 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6621 bit_offset, bit_size,
6622 field_type);
6623 }
6624 else
f5938064 6625 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6626 }
6627 }
6628
03ee6b2e
PH
6629 if (v != NULL || no_err)
6630 return v;
6631 else
323e0a4a 6632 error (_("There is no member named %s."), name);
14f9c5c9 6633
03ee6b2e
PH
6634 BadValue:
6635 if (no_err)
6636 return NULL;
6637 else
0963b4bd
MS
6638 error (_("Attempt to extract a component of "
6639 "a value that is not a record."));
14f9c5c9
AS
6640}
6641
6642/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6643 If DISPP is non-null, add its byte displacement from the beginning of a
6644 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6645 work for packed fields).
6646
6647 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6648 followed by "___".
14f9c5c9 6649
0963b4bd 6650 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6651 be a (pointer or reference)+ to a struct or union, and the
6652 ultimate target type will be searched.
14f9c5c9
AS
6653
6654 Looks recursively into variant clauses and parent types.
6655
4c4b4cd2
PH
6656 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6657 TYPE is not a type of the right kind. */
14f9c5c9 6658
4c4b4cd2 6659static struct type *
76a01679
JB
6660ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6661 int noerr, int *dispp)
14f9c5c9
AS
6662{
6663 int i;
6664
6665 if (name == NULL)
6666 goto BadName;
6667
76a01679 6668 if (refok && type != NULL)
4c4b4cd2
PH
6669 while (1)
6670 {
61ee279c 6671 type = ada_check_typedef (type);
76a01679
JB
6672 if (TYPE_CODE (type) != TYPE_CODE_PTR
6673 && TYPE_CODE (type) != TYPE_CODE_REF)
6674 break;
6675 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6676 }
14f9c5c9 6677
76a01679 6678 if (type == NULL
1265e4aa
JB
6679 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6680 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6681 {
4c4b4cd2 6682 if (noerr)
76a01679 6683 return NULL;
4c4b4cd2 6684 else
76a01679
JB
6685 {
6686 target_terminal_ours ();
6687 gdb_flush (gdb_stdout);
323e0a4a
AC
6688 if (type == NULL)
6689 error (_("Type (null) is not a structure or union type"));
6690 else
6691 {
6692 /* XXX: type_sprint */
6693 fprintf_unfiltered (gdb_stderr, _("Type "));
6694 type_print (type, "", gdb_stderr, -1);
6695 error (_(" is not a structure or union type"));
6696 }
76a01679 6697 }
14f9c5c9
AS
6698 }
6699
6700 type = to_static_fixed_type (type);
6701
6702 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6703 {
6704 char *t_field_name = TYPE_FIELD_NAME (type, i);
6705 struct type *t;
6706 int disp;
d2e4a39e 6707
14f9c5c9 6708 if (t_field_name == NULL)
4c4b4cd2 6709 continue;
14f9c5c9
AS
6710
6711 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6712 {
6713 if (dispp != NULL)
6714 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6715 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6716 }
14f9c5c9
AS
6717
6718 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6719 {
6720 disp = 0;
6721 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6722 0, 1, &disp);
6723 if (t != NULL)
6724 {
6725 if (dispp != NULL)
6726 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6727 return t;
6728 }
6729 }
14f9c5c9
AS
6730
6731 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6732 {
6733 int j;
5b4ee69b
MS
6734 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6735 i));
4c4b4cd2
PH
6736
6737 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6738 {
b1f33ddd
JB
6739 /* FIXME pnh 2008/01/26: We check for a field that is
6740 NOT wrapped in a struct, since the compiler sometimes
6741 generates these for unchecked variant types. Revisit
0963b4bd 6742 if the compiler changes this practice. */
b1f33ddd 6743 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6744 disp = 0;
b1f33ddd
JB
6745 if (v_field_name != NULL
6746 && field_name_match (v_field_name, name))
6747 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6748 else
0963b4bd
MS
6749 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6750 j),
b1f33ddd
JB
6751 name, 0, 1, &disp);
6752
4c4b4cd2
PH
6753 if (t != NULL)
6754 {
6755 if (dispp != NULL)
6756 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6757 return t;
6758 }
6759 }
6760 }
14f9c5c9
AS
6761
6762 }
6763
6764BadName:
d2e4a39e 6765 if (!noerr)
14f9c5c9
AS
6766 {
6767 target_terminal_ours ();
6768 gdb_flush (gdb_stdout);
323e0a4a
AC
6769 if (name == NULL)
6770 {
6771 /* XXX: type_sprint */
6772 fprintf_unfiltered (gdb_stderr, _("Type "));
6773 type_print (type, "", gdb_stderr, -1);
6774 error (_(" has no component named <null>"));
6775 }
6776 else
6777 {
6778 /* XXX: type_sprint */
6779 fprintf_unfiltered (gdb_stderr, _("Type "));
6780 type_print (type, "", gdb_stderr, -1);
6781 error (_(" has no component named %s"), name);
6782 }
14f9c5c9
AS
6783 }
6784
6785 return NULL;
6786}
6787
b1f33ddd
JB
6788/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6789 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6790 represents an unchecked union (that is, the variant part of a
0963b4bd 6791 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6792
6793static int
6794is_unchecked_variant (struct type *var_type, struct type *outer_type)
6795{
6796 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6797
b1f33ddd
JB
6798 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6799 == NULL);
6800}
6801
6802
14f9c5c9
AS
6803/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6804 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6805 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6806 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6807
d2e4a39e 6808int
ebf56fd3 6809ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6810 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6811{
6812 int others_clause;
6813 int i;
d2e4a39e 6814 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6815 struct value *outer;
6816 struct value *discrim;
14f9c5c9
AS
6817 LONGEST discrim_val;
6818
0c281816
JB
6819 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6820 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6821 if (discrim == NULL)
14f9c5c9 6822 return -1;
0c281816 6823 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6824
6825 others_clause = -1;
6826 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6827 {
6828 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6829 others_clause = i;
14f9c5c9 6830 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6831 return i;
14f9c5c9
AS
6832 }
6833
6834 return others_clause;
6835}
d2e4a39e 6836\f
14f9c5c9
AS
6837
6838
4c4b4cd2 6839 /* Dynamic-Sized Records */
14f9c5c9
AS
6840
6841/* Strategy: The type ostensibly attached to a value with dynamic size
6842 (i.e., a size that is not statically recorded in the debugging
6843 data) does not accurately reflect the size or layout of the value.
6844 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6845 conventional types that are constructed on the fly. */
14f9c5c9
AS
6846
6847/* There is a subtle and tricky problem here. In general, we cannot
6848 determine the size of dynamic records without its data. However,
6849 the 'struct value' data structure, which GDB uses to represent
6850 quantities in the inferior process (the target), requires the size
6851 of the type at the time of its allocation in order to reserve space
6852 for GDB's internal copy of the data. That's why the
6853 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6854 rather than struct value*s.
14f9c5c9
AS
6855
6856 However, GDB's internal history variables ($1, $2, etc.) are
6857 struct value*s containing internal copies of the data that are not, in
6858 general, the same as the data at their corresponding addresses in
6859 the target. Fortunately, the types we give to these values are all
6860 conventional, fixed-size types (as per the strategy described
6861 above), so that we don't usually have to perform the
6862 'to_fixed_xxx_type' conversions to look at their values.
6863 Unfortunately, there is one exception: if one of the internal
6864 history variables is an array whose elements are unconstrained
6865 records, then we will need to create distinct fixed types for each
6866 element selected. */
6867
6868/* The upshot of all of this is that many routines take a (type, host
6869 address, target address) triple as arguments to represent a value.
6870 The host address, if non-null, is supposed to contain an internal
6871 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6872 target at the target address. */
14f9c5c9
AS
6873
6874/* Assuming that VAL0 represents a pointer value, the result of
6875 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6876 dynamic-sized types. */
14f9c5c9 6877
d2e4a39e
AS
6878struct value *
6879ada_value_ind (struct value *val0)
14f9c5c9 6880{
d2e4a39e 6881 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6882
4c4b4cd2 6883 return ada_to_fixed_value (val);
14f9c5c9
AS
6884}
6885
6886/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6887 qualifiers on VAL0. */
6888
d2e4a39e
AS
6889static struct value *
6890ada_coerce_ref (struct value *val0)
6891{
df407dfe 6892 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6893 {
6894 struct value *val = val0;
5b4ee69b 6895
994b9211 6896 val = coerce_ref (val);
d2e4a39e 6897 val = unwrap_value (val);
4c4b4cd2 6898 return ada_to_fixed_value (val);
d2e4a39e
AS
6899 }
6900 else
14f9c5c9
AS
6901 return val0;
6902}
6903
6904/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6905 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6906
6907static unsigned int
ebf56fd3 6908align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6909{
6910 return (off + alignment - 1) & ~(alignment - 1);
6911}
6912
4c4b4cd2 6913/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6914
6915static unsigned int
ebf56fd3 6916field_alignment (struct type *type, int f)
14f9c5c9 6917{
d2e4a39e 6918 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6919 int len;
14f9c5c9
AS
6920 int align_offset;
6921
64a1bf19
JB
6922 /* The field name should never be null, unless the debugging information
6923 is somehow malformed. In this case, we assume the field does not
6924 require any alignment. */
6925 if (name == NULL)
6926 return 1;
6927
6928 len = strlen (name);
6929
4c4b4cd2
PH
6930 if (!isdigit (name[len - 1]))
6931 return 1;
14f9c5c9 6932
d2e4a39e 6933 if (isdigit (name[len - 2]))
14f9c5c9
AS
6934 align_offset = len - 2;
6935 else
6936 align_offset = len - 1;
6937
4c4b4cd2 6938 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6939 return TARGET_CHAR_BIT;
6940
4c4b4cd2
PH
6941 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6942}
6943
6944/* Find a symbol named NAME. Ignores ambiguity. */
6945
6946struct symbol *
6947ada_find_any_symbol (const char *name)
6948{
6949 struct symbol *sym;
6950
6951 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6952 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6953 return sym;
6954
6955 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6956 return sym;
14f9c5c9
AS
6957}
6958
dddfab26
UW
6959/* Find a type named NAME. Ignores ambiguity. This routine will look
6960 solely for types defined by debug info, it will not search the GDB
6961 primitive types. */
4c4b4cd2 6962
d2e4a39e 6963struct type *
ebf56fd3 6964ada_find_any_type (const char *name)
14f9c5c9 6965{
4c4b4cd2 6966 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6967
14f9c5c9 6968 if (sym != NULL)
dddfab26 6969 return SYMBOL_TYPE (sym);
14f9c5c9 6970
dddfab26 6971 return NULL;
14f9c5c9
AS
6972}
6973
aeb5907d
JB
6974/* Given NAME and an associated BLOCK, search all symbols for
6975 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6976 associated to NAME. Return this symbol if found, return
6977 NULL otherwise. */
6978
6979struct symbol *
6980ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6981{
6982 struct symbol *sym;
6983
6984 sym = find_old_style_renaming_symbol (name, block);
6985
6986 if (sym != NULL)
6987 return sym;
6988
0963b4bd 6989 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
6990 sym = ada_find_any_symbol (name);
6991 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6992 return sym;
6993 else
6994 return NULL;
6995}
6996
6997static struct symbol *
6998find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6999{
7f0df278 7000 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7001 char *rename;
7002
7003 if (function_sym != NULL)
7004 {
7005 /* If the symbol is defined inside a function, NAME is not fully
7006 qualified. This means we need to prepend the function name
7007 as well as adding the ``___XR'' suffix to build the name of
7008 the associated renaming symbol. */
7009 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7010 /* Function names sometimes contain suffixes used
7011 for instance to qualify nested subprograms. When building
7012 the XR type name, we need to make sure that this suffix is
7013 not included. So do not include any suffix in the function
7014 name length below. */
69fadcdf 7015 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7016 const int rename_len = function_name_len + 2 /* "__" */
7017 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7018
529cad9c 7019 /* Strip the suffix if necessary. */
69fadcdf
JB
7020 ada_remove_trailing_digits (function_name, &function_name_len);
7021 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7022 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7023
4c4b4cd2
PH
7024 /* Library-level functions are a special case, as GNAT adds
7025 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7026 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7027 have this prefix, so we need to skip this prefix if present. */
7028 if (function_name_len > 5 /* "_ada_" */
7029 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7030 {
7031 function_name += 5;
7032 function_name_len -= 5;
7033 }
4c4b4cd2
PH
7034
7035 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7036 strncpy (rename, function_name, function_name_len);
7037 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7038 "__%s___XR", name);
4c4b4cd2
PH
7039 }
7040 else
7041 {
7042 const int rename_len = strlen (name) + 6;
5b4ee69b 7043
4c4b4cd2 7044 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7045 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7046 }
7047
7048 return ada_find_any_symbol (rename);
7049}
7050
14f9c5c9 7051/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7052 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7053 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7054 otherwise return 0. */
7055
14f9c5c9 7056int
d2e4a39e 7057ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7058{
7059 if (type1 == NULL)
7060 return 1;
7061 else if (type0 == NULL)
7062 return 0;
7063 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7064 return 1;
7065 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7066 return 0;
4c4b4cd2
PH
7067 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7068 return 1;
ad82864c 7069 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7070 return 1;
4c4b4cd2
PH
7071 else if (ada_is_array_descriptor_type (type0)
7072 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7073 return 1;
aeb5907d
JB
7074 else
7075 {
7076 const char *type0_name = type_name_no_tag (type0);
7077 const char *type1_name = type_name_no_tag (type1);
7078
7079 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7080 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7081 return 1;
7082 }
14f9c5c9
AS
7083 return 0;
7084}
7085
7086/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7087 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7088
d2e4a39e
AS
7089char *
7090ada_type_name (struct type *type)
14f9c5c9 7091{
d2e4a39e 7092 if (type == NULL)
14f9c5c9
AS
7093 return NULL;
7094 else if (TYPE_NAME (type) != NULL)
7095 return TYPE_NAME (type);
7096 else
7097 return TYPE_TAG_NAME (type);
7098}
7099
b4ba55a1
JB
7100/* Search the list of "descriptive" types associated to TYPE for a type
7101 whose name is NAME. */
7102
7103static struct type *
7104find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7105{
7106 struct type *result;
7107
7108 /* If there no descriptive-type info, then there is no parallel type
7109 to be found. */
7110 if (!HAVE_GNAT_AUX_INFO (type))
7111 return NULL;
7112
7113 result = TYPE_DESCRIPTIVE_TYPE (type);
7114 while (result != NULL)
7115 {
7116 char *result_name = ada_type_name (result);
7117
7118 if (result_name == NULL)
7119 {
7120 warning (_("unexpected null name on descriptive type"));
7121 return NULL;
7122 }
7123
7124 /* If the names match, stop. */
7125 if (strcmp (result_name, name) == 0)
7126 break;
7127
7128 /* Otherwise, look at the next item on the list, if any. */
7129 if (HAVE_GNAT_AUX_INFO (result))
7130 result = TYPE_DESCRIPTIVE_TYPE (result);
7131 else
7132 result = NULL;
7133 }
7134
7135 /* If we didn't find a match, see whether this is a packed array. With
7136 older compilers, the descriptive type information is either absent or
7137 irrelevant when it comes to packed arrays so the above lookup fails.
7138 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7139 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7140 return ada_find_any_type (name);
7141
7142 return result;
7143}
7144
7145/* Find a parallel type to TYPE with the specified NAME, using the
7146 descriptive type taken from the debugging information, if available,
7147 and otherwise using the (slower) name-based method. */
7148
7149static struct type *
7150ada_find_parallel_type_with_name (struct type *type, const char *name)
7151{
7152 struct type *result = NULL;
7153
7154 if (HAVE_GNAT_AUX_INFO (type))
7155 result = find_parallel_type_by_descriptive_type (type, name);
7156 else
7157 result = ada_find_any_type (name);
7158
7159 return result;
7160}
7161
7162/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7163 SUFFIX to the name of TYPE. */
14f9c5c9 7164
d2e4a39e 7165struct type *
ebf56fd3 7166ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7167{
b4ba55a1 7168 char *name, *typename = ada_type_name (type);
14f9c5c9 7169 int len;
d2e4a39e 7170
14f9c5c9
AS
7171 if (typename == NULL)
7172 return NULL;
7173
7174 len = strlen (typename);
7175
b4ba55a1 7176 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7177
7178 strcpy (name, typename);
7179 strcpy (name + len, suffix);
7180
b4ba55a1 7181 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7182}
7183
14f9c5c9 7184/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7185 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7186
d2e4a39e
AS
7187static struct type *
7188dynamic_template_type (struct type *type)
14f9c5c9 7189{
61ee279c 7190 type = ada_check_typedef (type);
14f9c5c9
AS
7191
7192 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7193 || ada_type_name (type) == NULL)
14f9c5c9 7194 return NULL;
d2e4a39e 7195 else
14f9c5c9
AS
7196 {
7197 int len = strlen (ada_type_name (type));
5b4ee69b 7198
4c4b4cd2
PH
7199 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7200 return type;
14f9c5c9 7201 else
4c4b4cd2 7202 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7203 }
7204}
7205
7206/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7207 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7208
d2e4a39e
AS
7209static int
7210is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7211{
7212 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7213
d2e4a39e 7214 return name != NULL
14f9c5c9
AS
7215 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7216 && strstr (name, "___XVL") != NULL;
7217}
7218
4c4b4cd2
PH
7219/* The index of the variant field of TYPE, or -1 if TYPE does not
7220 represent a variant record type. */
14f9c5c9 7221
d2e4a39e 7222static int
4c4b4cd2 7223variant_field_index (struct type *type)
14f9c5c9
AS
7224{
7225 int f;
7226
4c4b4cd2
PH
7227 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7228 return -1;
7229
7230 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7231 {
7232 if (ada_is_variant_part (type, f))
7233 return f;
7234 }
7235 return -1;
14f9c5c9
AS
7236}
7237
4c4b4cd2
PH
7238/* A record type with no fields. */
7239
d2e4a39e 7240static struct type *
e9bb382b 7241empty_record (struct type *template)
14f9c5c9 7242{
e9bb382b 7243 struct type *type = alloc_type_copy (template);
5b4ee69b 7244
14f9c5c9
AS
7245 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7246 TYPE_NFIELDS (type) = 0;
7247 TYPE_FIELDS (type) = NULL;
b1f33ddd 7248 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7249 TYPE_NAME (type) = "<empty>";
7250 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7251 TYPE_LENGTH (type) = 0;
7252 return type;
7253}
7254
7255/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7256 the value of type TYPE at VALADDR or ADDRESS (see comments at
7257 the beginning of this section) VAL according to GNAT conventions.
7258 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7259 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7260 an outer-level type (i.e., as opposed to a branch of a variant.) A
7261 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7262 of the variant.
14f9c5c9 7263
4c4b4cd2
PH
7264 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7265 length are not statically known are discarded. As a consequence,
7266 VALADDR, ADDRESS and DVAL0 are ignored.
7267
7268 NOTE: Limitations: For now, we assume that dynamic fields and
7269 variants occupy whole numbers of bytes. However, they need not be
7270 byte-aligned. */
7271
7272struct type *
10a2c479 7273ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7274 const gdb_byte *valaddr,
4c4b4cd2
PH
7275 CORE_ADDR address, struct value *dval0,
7276 int keep_dynamic_fields)
14f9c5c9 7277{
d2e4a39e
AS
7278 struct value *mark = value_mark ();
7279 struct value *dval;
7280 struct type *rtype;
14f9c5c9 7281 int nfields, bit_len;
4c4b4cd2 7282 int variant_field;
14f9c5c9 7283 long off;
d94e4f4f 7284 int fld_bit_len;
14f9c5c9
AS
7285 int f;
7286
4c4b4cd2
PH
7287 /* Compute the number of fields in this record type that are going
7288 to be processed: unless keep_dynamic_fields, this includes only
7289 fields whose position and length are static will be processed. */
7290 if (keep_dynamic_fields)
7291 nfields = TYPE_NFIELDS (type);
7292 else
7293 {
7294 nfields = 0;
76a01679 7295 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7296 && !ada_is_variant_part (type, nfields)
7297 && !is_dynamic_field (type, nfields))
7298 nfields++;
7299 }
7300
e9bb382b 7301 rtype = alloc_type_copy (type);
14f9c5c9
AS
7302 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7303 INIT_CPLUS_SPECIFIC (rtype);
7304 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7305 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7306 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7307 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7308 TYPE_NAME (rtype) = ada_type_name (type);
7309 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7310 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7311
d2e4a39e
AS
7312 off = 0;
7313 bit_len = 0;
4c4b4cd2
PH
7314 variant_field = -1;
7315
14f9c5c9
AS
7316 for (f = 0; f < nfields; f += 1)
7317 {
6c038f32
PH
7318 off = align_value (off, field_alignment (type, f))
7319 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7320 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7321 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7322
d2e4a39e 7323 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7324 {
7325 variant_field = f;
d94e4f4f 7326 fld_bit_len = 0;
4c4b4cd2 7327 }
14f9c5c9 7328 else if (is_dynamic_field (type, f))
4c4b4cd2 7329 {
284614f0
JB
7330 const gdb_byte *field_valaddr = valaddr;
7331 CORE_ADDR field_address = address;
7332 struct type *field_type =
7333 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7334
4c4b4cd2 7335 if (dval0 == NULL)
b5304971
JG
7336 {
7337 /* rtype's length is computed based on the run-time
7338 value of discriminants. If the discriminants are not
7339 initialized, the type size may be completely bogus and
0963b4bd 7340 GDB may fail to allocate a value for it. So check the
b5304971
JG
7341 size first before creating the value. */
7342 check_size (rtype);
7343 dval = value_from_contents_and_address (rtype, valaddr, address);
7344 }
4c4b4cd2
PH
7345 else
7346 dval = dval0;
7347
284614f0
JB
7348 /* If the type referenced by this field is an aligner type, we need
7349 to unwrap that aligner type, because its size might not be set.
7350 Keeping the aligner type would cause us to compute the wrong
7351 size for this field, impacting the offset of the all the fields
7352 that follow this one. */
7353 if (ada_is_aligner_type (field_type))
7354 {
7355 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7356
7357 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7358 field_address = cond_offset_target (field_address, field_offset);
7359 field_type = ada_aligned_type (field_type);
7360 }
7361
7362 field_valaddr = cond_offset_host (field_valaddr,
7363 off / TARGET_CHAR_BIT);
7364 field_address = cond_offset_target (field_address,
7365 off / TARGET_CHAR_BIT);
7366
7367 /* Get the fixed type of the field. Note that, in this case,
7368 we do not want to get the real type out of the tag: if
7369 the current field is the parent part of a tagged record,
7370 we will get the tag of the object. Clearly wrong: the real
7371 type of the parent is not the real type of the child. We
7372 would end up in an infinite loop. */
7373 field_type = ada_get_base_type (field_type);
7374 field_type = ada_to_fixed_type (field_type, field_valaddr,
7375 field_address, dval, 0);
27f2a97b
JB
7376 /* If the field size is already larger than the maximum
7377 object size, then the record itself will necessarily
7378 be larger than the maximum object size. We need to make
7379 this check now, because the size might be so ridiculously
7380 large (due to an uninitialized variable in the inferior)
7381 that it would cause an overflow when adding it to the
7382 record size. */
7383 check_size (field_type);
284614f0
JB
7384
7385 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7386 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7387 /* The multiplication can potentially overflow. But because
7388 the field length has been size-checked just above, and
7389 assuming that the maximum size is a reasonable value,
7390 an overflow should not happen in practice. So rather than
7391 adding overflow recovery code to this already complex code,
7392 we just assume that it's not going to happen. */
d94e4f4f 7393 fld_bit_len =
4c4b4cd2
PH
7394 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7395 }
14f9c5c9 7396 else
4c4b4cd2 7397 {
9f0dec2d
JB
7398 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7399
720d1a40
JB
7400 /* If our field is a typedef type (most likely a typedef of
7401 a fat pointer, encoding an array access), then we need to
7402 look at its target type to determine its characteristics.
7403 In particular, we would miscompute the field size if we took
7404 the size of the typedef (zero), instead of the size of
7405 the target type. */
7406 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7407 field_type = ada_typedef_target_type (field_type);
7408
9f0dec2d 7409 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7410 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7411 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7412 fld_bit_len =
4c4b4cd2
PH
7413 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7414 else
d94e4f4f 7415 fld_bit_len =
9f0dec2d 7416 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7417 }
14f9c5c9 7418 if (off + fld_bit_len > bit_len)
4c4b4cd2 7419 bit_len = off + fld_bit_len;
d94e4f4f 7420 off += fld_bit_len;
4c4b4cd2
PH
7421 TYPE_LENGTH (rtype) =
7422 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7423 }
4c4b4cd2
PH
7424
7425 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7426 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7427 the record. This can happen in the presence of representation
7428 clauses. */
7429 if (variant_field >= 0)
7430 {
7431 struct type *branch_type;
7432
7433 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7434
7435 if (dval0 == NULL)
7436 dval = value_from_contents_and_address (rtype, valaddr, address);
7437 else
7438 dval = dval0;
7439
7440 branch_type =
7441 to_fixed_variant_branch_type
7442 (TYPE_FIELD_TYPE (type, variant_field),
7443 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7444 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7445 if (branch_type == NULL)
7446 {
7447 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7448 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7449 TYPE_NFIELDS (rtype) -= 1;
7450 }
7451 else
7452 {
7453 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7454 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7455 fld_bit_len =
7456 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7457 TARGET_CHAR_BIT;
7458 if (off + fld_bit_len > bit_len)
7459 bit_len = off + fld_bit_len;
7460 TYPE_LENGTH (rtype) =
7461 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7462 }
7463 }
7464
714e53ab
PH
7465 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7466 should contain the alignment of that record, which should be a strictly
7467 positive value. If null or negative, then something is wrong, most
7468 probably in the debug info. In that case, we don't round up the size
0963b4bd 7469 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7470 the current RTYPE length might be good enough for our purposes. */
7471 if (TYPE_LENGTH (type) <= 0)
7472 {
323e0a4a
AC
7473 if (TYPE_NAME (rtype))
7474 warning (_("Invalid type size for `%s' detected: %d."),
7475 TYPE_NAME (rtype), TYPE_LENGTH (type));
7476 else
7477 warning (_("Invalid type size for <unnamed> detected: %d."),
7478 TYPE_LENGTH (type));
714e53ab
PH
7479 }
7480 else
7481 {
7482 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7483 TYPE_LENGTH (type));
7484 }
14f9c5c9
AS
7485
7486 value_free_to_mark (mark);
d2e4a39e 7487 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7488 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7489 return rtype;
7490}
7491
4c4b4cd2
PH
7492/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7493 of 1. */
14f9c5c9 7494
d2e4a39e 7495static struct type *
fc1a4b47 7496template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7497 CORE_ADDR address, struct value *dval0)
7498{
7499 return ada_template_to_fixed_record_type_1 (type, valaddr,
7500 address, dval0, 1);
7501}
7502
7503/* An ordinary record type in which ___XVL-convention fields and
7504 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7505 static approximations, containing all possible fields. Uses
7506 no runtime values. Useless for use in values, but that's OK,
7507 since the results are used only for type determinations. Works on both
7508 structs and unions. Representation note: to save space, we memorize
7509 the result of this function in the TYPE_TARGET_TYPE of the
7510 template type. */
7511
7512static struct type *
7513template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7514{
7515 struct type *type;
7516 int nfields;
7517 int f;
7518
4c4b4cd2
PH
7519 if (TYPE_TARGET_TYPE (type0) != NULL)
7520 return TYPE_TARGET_TYPE (type0);
7521
7522 nfields = TYPE_NFIELDS (type0);
7523 type = type0;
14f9c5c9
AS
7524
7525 for (f = 0; f < nfields; f += 1)
7526 {
61ee279c 7527 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7528 struct type *new_type;
14f9c5c9 7529
4c4b4cd2
PH
7530 if (is_dynamic_field (type0, f))
7531 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7532 else
f192137b 7533 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7534 if (type == type0 && new_type != field_type)
7535 {
e9bb382b 7536 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7537 TYPE_CODE (type) = TYPE_CODE (type0);
7538 INIT_CPLUS_SPECIFIC (type);
7539 TYPE_NFIELDS (type) = nfields;
7540 TYPE_FIELDS (type) = (struct field *)
7541 TYPE_ALLOC (type, nfields * sizeof (struct field));
7542 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7543 sizeof (struct field) * nfields);
7544 TYPE_NAME (type) = ada_type_name (type0);
7545 TYPE_TAG_NAME (type) = NULL;
876cecd0 7546 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7547 TYPE_LENGTH (type) = 0;
7548 }
7549 TYPE_FIELD_TYPE (type, f) = new_type;
7550 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7551 }
14f9c5c9
AS
7552 return type;
7553}
7554
4c4b4cd2 7555/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7556 whose address in memory is ADDRESS, returns a revision of TYPE,
7557 which should be a non-dynamic-sized record, in which the variant
7558 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7559 for discriminant values in DVAL0, which can be NULL if the record
7560 contains the necessary discriminant values. */
7561
d2e4a39e 7562static struct type *
fc1a4b47 7563to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7564 CORE_ADDR address, struct value *dval0)
14f9c5c9 7565{
d2e4a39e 7566 struct value *mark = value_mark ();
4c4b4cd2 7567 struct value *dval;
d2e4a39e 7568 struct type *rtype;
14f9c5c9
AS
7569 struct type *branch_type;
7570 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7571 int variant_field = variant_field_index (type);
14f9c5c9 7572
4c4b4cd2 7573 if (variant_field == -1)
14f9c5c9
AS
7574 return type;
7575
4c4b4cd2
PH
7576 if (dval0 == NULL)
7577 dval = value_from_contents_and_address (type, valaddr, address);
7578 else
7579 dval = dval0;
7580
e9bb382b 7581 rtype = alloc_type_copy (type);
14f9c5c9 7582 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7583 INIT_CPLUS_SPECIFIC (rtype);
7584 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7585 TYPE_FIELDS (rtype) =
7586 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7587 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7588 sizeof (struct field) * nfields);
14f9c5c9
AS
7589 TYPE_NAME (rtype) = ada_type_name (type);
7590 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7591 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7592 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7593
4c4b4cd2
PH
7594 branch_type = to_fixed_variant_branch_type
7595 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7596 cond_offset_host (valaddr,
4c4b4cd2
PH
7597 TYPE_FIELD_BITPOS (type, variant_field)
7598 / TARGET_CHAR_BIT),
d2e4a39e 7599 cond_offset_target (address,
4c4b4cd2
PH
7600 TYPE_FIELD_BITPOS (type, variant_field)
7601 / TARGET_CHAR_BIT), dval);
d2e4a39e 7602 if (branch_type == NULL)
14f9c5c9 7603 {
4c4b4cd2 7604 int f;
5b4ee69b 7605
4c4b4cd2
PH
7606 for (f = variant_field + 1; f < nfields; f += 1)
7607 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7608 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7609 }
7610 else
7611 {
4c4b4cd2
PH
7612 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7613 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7614 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7615 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7616 }
4c4b4cd2 7617 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7618
4c4b4cd2 7619 value_free_to_mark (mark);
14f9c5c9
AS
7620 return rtype;
7621}
7622
7623/* An ordinary record type (with fixed-length fields) that describes
7624 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7625 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7626 should be in DVAL, a record value; it may be NULL if the object
7627 at ADDR itself contains any necessary discriminant values.
7628 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7629 values from the record are needed. Except in the case that DVAL,
7630 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7631 unchecked) is replaced by a particular branch of the variant.
7632
7633 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7634 is questionable and may be removed. It can arise during the
7635 processing of an unconstrained-array-of-record type where all the
7636 variant branches have exactly the same size. This is because in
7637 such cases, the compiler does not bother to use the XVS convention
7638 when encoding the record. I am currently dubious of this
7639 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7640
d2e4a39e 7641static struct type *
fc1a4b47 7642to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7643 CORE_ADDR address, struct value *dval)
14f9c5c9 7644{
d2e4a39e 7645 struct type *templ_type;
14f9c5c9 7646
876cecd0 7647 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7648 return type0;
7649
d2e4a39e 7650 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7651
7652 if (templ_type != NULL)
7653 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7654 else if (variant_field_index (type0) >= 0)
7655 {
7656 if (dval == NULL && valaddr == NULL && address == 0)
7657 return type0;
7658 return to_record_with_fixed_variant_part (type0, valaddr, address,
7659 dval);
7660 }
14f9c5c9
AS
7661 else
7662 {
876cecd0 7663 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7664 return type0;
7665 }
7666
7667}
7668
7669/* An ordinary record type (with fixed-length fields) that describes
7670 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7671 union type. Any necessary discriminants' values should be in DVAL,
7672 a record value. That is, this routine selects the appropriate
7673 branch of the union at ADDR according to the discriminant value
b1f33ddd 7674 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7675 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7676
d2e4a39e 7677static struct type *
fc1a4b47 7678to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7679 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7680{
7681 int which;
d2e4a39e
AS
7682 struct type *templ_type;
7683 struct type *var_type;
14f9c5c9
AS
7684
7685 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7686 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7687 else
14f9c5c9
AS
7688 var_type = var_type0;
7689
7690 templ_type = ada_find_parallel_type (var_type, "___XVU");
7691
7692 if (templ_type != NULL)
7693 var_type = templ_type;
7694
b1f33ddd
JB
7695 if (is_unchecked_variant (var_type, value_type (dval)))
7696 return var_type0;
d2e4a39e
AS
7697 which =
7698 ada_which_variant_applies (var_type,
0fd88904 7699 value_type (dval), value_contents (dval));
14f9c5c9
AS
7700
7701 if (which < 0)
e9bb382b 7702 return empty_record (var_type);
14f9c5c9 7703 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7704 return to_fixed_record_type
d2e4a39e
AS
7705 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7706 valaddr, address, dval);
4c4b4cd2 7707 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7708 return
7709 to_fixed_record_type
7710 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7711 else
7712 return TYPE_FIELD_TYPE (var_type, which);
7713}
7714
7715/* Assuming that TYPE0 is an array type describing the type of a value
7716 at ADDR, and that DVAL describes a record containing any
7717 discriminants used in TYPE0, returns a type for the value that
7718 contains no dynamic components (that is, no components whose sizes
7719 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7720 true, gives an error message if the resulting type's size is over
4c4b4cd2 7721 varsize_limit. */
14f9c5c9 7722
d2e4a39e
AS
7723static struct type *
7724to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7725 int ignore_too_big)
14f9c5c9 7726{
d2e4a39e
AS
7727 struct type *index_type_desc;
7728 struct type *result;
ad82864c 7729 int constrained_packed_array_p;
14f9c5c9 7730
b0dd7688 7731 type0 = ada_check_typedef (type0);
284614f0 7732 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7733 return type0;
14f9c5c9 7734
ad82864c
JB
7735 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7736 if (constrained_packed_array_p)
7737 type0 = decode_constrained_packed_array_type (type0);
284614f0 7738
14f9c5c9 7739 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7740 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7741 if (index_type_desc == NULL)
7742 {
61ee279c 7743 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7744
14f9c5c9 7745 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7746 depend on the contents of the array in properly constructed
7747 debugging data. */
529cad9c
PH
7748 /* Create a fixed version of the array element type.
7749 We're not providing the address of an element here,
e1d5a0d2 7750 and thus the actual object value cannot be inspected to do
529cad9c
PH
7751 the conversion. This should not be a problem, since arrays of
7752 unconstrained objects are not allowed. In particular, all
7753 the elements of an array of a tagged type should all be of
7754 the same type specified in the debugging info. No need to
7755 consult the object tag. */
1ed6ede0 7756 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7757
284614f0
JB
7758 /* Make sure we always create a new array type when dealing with
7759 packed array types, since we're going to fix-up the array
7760 type length and element bitsize a little further down. */
ad82864c 7761 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7762 result = type0;
14f9c5c9 7763 else
e9bb382b 7764 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7765 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7766 }
7767 else
7768 {
7769 int i;
7770 struct type *elt_type0;
7771
7772 elt_type0 = type0;
7773 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7774 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7775
7776 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7777 depend on the contents of the array in properly constructed
7778 debugging data. */
529cad9c
PH
7779 /* Create a fixed version of the array element type.
7780 We're not providing the address of an element here,
e1d5a0d2 7781 and thus the actual object value cannot be inspected to do
529cad9c
PH
7782 the conversion. This should not be a problem, since arrays of
7783 unconstrained objects are not allowed. In particular, all
7784 the elements of an array of a tagged type should all be of
7785 the same type specified in the debugging info. No need to
7786 consult the object tag. */
1ed6ede0
JB
7787 result =
7788 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7789
7790 elt_type0 = type0;
14f9c5c9 7791 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7792 {
7793 struct type *range_type =
28c85d6c 7794 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7795
e9bb382b 7796 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7797 result, range_type);
1ce677a4 7798 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7799 }
d2e4a39e 7800 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7801 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7802 }
7803
ad82864c 7804 if (constrained_packed_array_p)
284614f0
JB
7805 {
7806 /* So far, the resulting type has been created as if the original
7807 type was a regular (non-packed) array type. As a result, the
7808 bitsize of the array elements needs to be set again, and the array
7809 length needs to be recomputed based on that bitsize. */
7810 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7811 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7812
7813 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7814 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7815 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7816 TYPE_LENGTH (result)++;
7817 }
7818
876cecd0 7819 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7820 return result;
d2e4a39e 7821}
14f9c5c9
AS
7822
7823
7824/* A standard type (containing no dynamically sized components)
7825 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7826 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7827 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7828 ADDRESS or in VALADDR contains these discriminants.
7829
1ed6ede0
JB
7830 If CHECK_TAG is not null, in the case of tagged types, this function
7831 attempts to locate the object's tag and use it to compute the actual
7832 type. However, when ADDRESS is null, we cannot use it to determine the
7833 location of the tag, and therefore compute the tagged type's actual type.
7834 So we return the tagged type without consulting the tag. */
529cad9c 7835
f192137b
JB
7836static struct type *
7837ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7838 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7839{
61ee279c 7840 type = ada_check_typedef (type);
d2e4a39e
AS
7841 switch (TYPE_CODE (type))
7842 {
7843 default:
14f9c5c9 7844 return type;
d2e4a39e 7845 case TYPE_CODE_STRUCT:
4c4b4cd2 7846 {
76a01679 7847 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7848 struct type *fixed_record_type =
7849 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7850
529cad9c
PH
7851 /* If STATIC_TYPE is a tagged type and we know the object's address,
7852 then we can determine its tag, and compute the object's actual
0963b4bd 7853 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7854 type (the parent part of the record may have dynamic fields
7855 and the way the location of _tag is expressed may depend on
7856 them). */
529cad9c 7857
1ed6ede0 7858 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7859 {
7860 struct type *real_type =
1ed6ede0
JB
7861 type_from_tag (value_tag_from_contents_and_address
7862 (fixed_record_type,
7863 valaddr,
7864 address));
5b4ee69b 7865
76a01679 7866 if (real_type != NULL)
1ed6ede0 7867 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7868 }
4af88198
JB
7869
7870 /* Check to see if there is a parallel ___XVZ variable.
7871 If there is, then it provides the actual size of our type. */
7872 else if (ada_type_name (fixed_record_type) != NULL)
7873 {
7874 char *name = ada_type_name (fixed_record_type);
7875 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7876 int xvz_found = 0;
7877 LONGEST size;
7878
88c15c34 7879 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7880 size = get_int_var_value (xvz_name, &xvz_found);
7881 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7882 {
7883 fixed_record_type = copy_type (fixed_record_type);
7884 TYPE_LENGTH (fixed_record_type) = size;
7885
7886 /* The FIXED_RECORD_TYPE may have be a stub. We have
7887 observed this when the debugging info is STABS, and
7888 apparently it is something that is hard to fix.
7889
7890 In practice, we don't need the actual type definition
7891 at all, because the presence of the XVZ variable allows us
7892 to assume that there must be a XVS type as well, which we
7893 should be able to use later, when we need the actual type
7894 definition.
7895
7896 In the meantime, pretend that the "fixed" type we are
7897 returning is NOT a stub, because this can cause trouble
7898 when using this type to create new types targeting it.
7899 Indeed, the associated creation routines often check
7900 whether the target type is a stub and will try to replace
0963b4bd 7901 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7902 might cause the new type to have the wrong size too.
7903 Consider the case of an array, for instance, where the size
7904 of the array is computed from the number of elements in
7905 our array multiplied by the size of its element. */
7906 TYPE_STUB (fixed_record_type) = 0;
7907 }
7908 }
1ed6ede0 7909 return fixed_record_type;
4c4b4cd2 7910 }
d2e4a39e 7911 case TYPE_CODE_ARRAY:
4c4b4cd2 7912 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7913 case TYPE_CODE_UNION:
7914 if (dval == NULL)
4c4b4cd2 7915 return type;
d2e4a39e 7916 else
4c4b4cd2 7917 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7918 }
14f9c5c9
AS
7919}
7920
f192137b
JB
7921/* The same as ada_to_fixed_type_1, except that it preserves the type
7922 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7923
7924 The typedef layer needs be preserved in order to differentiate between
7925 arrays and array pointers when both types are implemented using the same
7926 fat pointer. In the array pointer case, the pointer is encoded as
7927 a typedef of the pointer type. For instance, considering:
7928
7929 type String_Access is access String;
7930 S1 : String_Access := null;
7931
7932 To the debugger, S1 is defined as a typedef of type String. But
7933 to the user, it is a pointer. So if the user tries to print S1,
7934 we should not dereference the array, but print the array address
7935 instead.
7936
7937 If we didn't preserve the typedef layer, we would lose the fact that
7938 the type is to be presented as a pointer (needs de-reference before
7939 being printed). And we would also use the source-level type name. */
f192137b
JB
7940
7941struct type *
7942ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7943 CORE_ADDR address, struct value *dval, int check_tag)
7944
7945{
7946 struct type *fixed_type =
7947 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7948
96dbd2c1
JB
7949 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7950 then preserve the typedef layer.
7951
7952 Implementation note: We can only check the main-type portion of
7953 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7954 from TYPE now returns a type that has the same instance flags
7955 as TYPE. For instance, if TYPE is a "typedef const", and its
7956 target type is a "struct", then the typedef elimination will return
7957 a "const" version of the target type. See check_typedef for more
7958 details about how the typedef layer elimination is done.
7959
7960 brobecker/2010-11-19: It seems to me that the only case where it is
7961 useful to preserve the typedef layer is when dealing with fat pointers.
7962 Perhaps, we could add a check for that and preserve the typedef layer
7963 only in that situation. But this seems unecessary so far, probably
7964 because we call check_typedef/ada_check_typedef pretty much everywhere.
7965 */
f192137b 7966 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7967 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7968 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7969 return type;
7970
7971 return fixed_type;
7972}
7973
14f9c5c9 7974/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7975 TYPE0, but based on no runtime data. */
14f9c5c9 7976
d2e4a39e
AS
7977static struct type *
7978to_static_fixed_type (struct type *type0)
14f9c5c9 7979{
d2e4a39e 7980 struct type *type;
14f9c5c9
AS
7981
7982 if (type0 == NULL)
7983 return NULL;
7984
876cecd0 7985 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7986 return type0;
7987
61ee279c 7988 type0 = ada_check_typedef (type0);
d2e4a39e 7989
14f9c5c9
AS
7990 switch (TYPE_CODE (type0))
7991 {
7992 default:
7993 return type0;
7994 case TYPE_CODE_STRUCT:
7995 type = dynamic_template_type (type0);
d2e4a39e 7996 if (type != NULL)
4c4b4cd2
PH
7997 return template_to_static_fixed_type (type);
7998 else
7999 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8000 case TYPE_CODE_UNION:
8001 type = ada_find_parallel_type (type0, "___XVU");
8002 if (type != NULL)
4c4b4cd2
PH
8003 return template_to_static_fixed_type (type);
8004 else
8005 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8006 }
8007}
8008
4c4b4cd2
PH
8009/* A static approximation of TYPE with all type wrappers removed. */
8010
d2e4a39e
AS
8011static struct type *
8012static_unwrap_type (struct type *type)
14f9c5c9
AS
8013{
8014 if (ada_is_aligner_type (type))
8015 {
61ee279c 8016 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8017 if (ada_type_name (type1) == NULL)
4c4b4cd2 8018 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8019
8020 return static_unwrap_type (type1);
8021 }
d2e4a39e 8022 else
14f9c5c9 8023 {
d2e4a39e 8024 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8025
d2e4a39e 8026 if (raw_real_type == type)
4c4b4cd2 8027 return type;
14f9c5c9 8028 else
4c4b4cd2 8029 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8030 }
8031}
8032
8033/* In some cases, incomplete and private types require
4c4b4cd2 8034 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8035 type Foo;
8036 type FooP is access Foo;
8037 V: FooP;
8038 type Foo is array ...;
4c4b4cd2 8039 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8040 cross-references to such types, we instead substitute for FooP a
8041 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8042 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8043
8044/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8045 exists, otherwise TYPE. */
8046
d2e4a39e 8047struct type *
61ee279c 8048ada_check_typedef (struct type *type)
14f9c5c9 8049{
727e3d2e
JB
8050 if (type == NULL)
8051 return NULL;
8052
720d1a40
JB
8053 /* If our type is a typedef type of a fat pointer, then we're done.
8054 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8055 what allows us to distinguish between fat pointers that represent
8056 array types, and fat pointers that represent array access types
8057 (in both cases, the compiler implements them as fat pointers). */
8058 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8059 && is_thick_pntr (ada_typedef_target_type (type)))
8060 return type;
8061
14f9c5c9
AS
8062 CHECK_TYPEDEF (type);
8063 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8064 || !TYPE_STUB (type)
14f9c5c9
AS
8065 || TYPE_TAG_NAME (type) == NULL)
8066 return type;
d2e4a39e 8067 else
14f9c5c9 8068 {
d2e4a39e
AS
8069 char *name = TYPE_TAG_NAME (type);
8070 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8071
05e522ef
JB
8072 if (type1 == NULL)
8073 return type;
8074
8075 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8076 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8077 types, only for the typedef-to-array types). If that's the case,
8078 strip the typedef layer. */
8079 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8080 type1 = ada_check_typedef (type1);
8081
8082 return type1;
14f9c5c9
AS
8083 }
8084}
8085
8086/* A value representing the data at VALADDR/ADDRESS as described by
8087 type TYPE0, but with a standard (static-sized) type that correctly
8088 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8089 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8090 creation of struct values]. */
14f9c5c9 8091
4c4b4cd2
PH
8092static struct value *
8093ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8094 struct value *val0)
14f9c5c9 8095{
1ed6ede0 8096 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8097
14f9c5c9
AS
8098 if (type == type0 && val0 != NULL)
8099 return val0;
d2e4a39e 8100 else
4c4b4cd2
PH
8101 return value_from_contents_and_address (type, 0, address);
8102}
8103
8104/* A value representing VAL, but with a standard (static-sized) type
8105 that correctly describes it. Does not necessarily create a new
8106 value. */
8107
0c3acc09 8108struct value *
4c4b4cd2
PH
8109ada_to_fixed_value (struct value *val)
8110{
df407dfe 8111 return ada_to_fixed_value_create (value_type (val),
42ae5230 8112 value_address (val),
4c4b4cd2 8113 val);
14f9c5c9 8114}
d2e4a39e 8115\f
14f9c5c9 8116
14f9c5c9
AS
8117/* Attributes */
8118
4c4b4cd2
PH
8119/* Table mapping attribute numbers to names.
8120 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8121
d2e4a39e 8122static const char *attribute_names[] = {
14f9c5c9
AS
8123 "<?>",
8124
d2e4a39e 8125 "first",
14f9c5c9
AS
8126 "last",
8127 "length",
8128 "image",
14f9c5c9
AS
8129 "max",
8130 "min",
4c4b4cd2
PH
8131 "modulus",
8132 "pos",
8133 "size",
8134 "tag",
14f9c5c9 8135 "val",
14f9c5c9
AS
8136 0
8137};
8138
d2e4a39e 8139const char *
4c4b4cd2 8140ada_attribute_name (enum exp_opcode n)
14f9c5c9 8141{
4c4b4cd2
PH
8142 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8143 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8144 else
8145 return attribute_names[0];
8146}
8147
4c4b4cd2 8148/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8149
4c4b4cd2
PH
8150static LONGEST
8151pos_atr (struct value *arg)
14f9c5c9 8152{
24209737
PH
8153 struct value *val = coerce_ref (arg);
8154 struct type *type = value_type (val);
14f9c5c9 8155
d2e4a39e 8156 if (!discrete_type_p (type))
323e0a4a 8157 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8158
8159 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8160 {
8161 int i;
24209737 8162 LONGEST v = value_as_long (val);
14f9c5c9 8163
d2e4a39e 8164 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
8165 {
8166 if (v == TYPE_FIELD_BITPOS (type, i))
8167 return i;
8168 }
323e0a4a 8169 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8170 }
8171 else
24209737 8172 return value_as_long (val);
4c4b4cd2
PH
8173}
8174
8175static struct value *
3cb382c9 8176value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8177{
3cb382c9 8178 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8179}
8180
4c4b4cd2 8181/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8182
d2e4a39e
AS
8183static struct value *
8184value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8185{
d2e4a39e 8186 if (!discrete_type_p (type))
323e0a4a 8187 error (_("'VAL only defined on discrete types"));
df407dfe 8188 if (!integer_type_p (value_type (arg)))
323e0a4a 8189 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8190
8191 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8192 {
8193 long pos = value_as_long (arg);
5b4ee69b 8194
14f9c5c9 8195 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8196 error (_("argument to 'VAL out of range"));
d2e4a39e 8197 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8198 }
8199 else
8200 return value_from_longest (type, value_as_long (arg));
8201}
14f9c5c9 8202\f
d2e4a39e 8203
4c4b4cd2 8204 /* Evaluation */
14f9c5c9 8205
4c4b4cd2
PH
8206/* True if TYPE appears to be an Ada character type.
8207 [At the moment, this is true only for Character and Wide_Character;
8208 It is a heuristic test that could stand improvement]. */
14f9c5c9 8209
d2e4a39e
AS
8210int
8211ada_is_character_type (struct type *type)
14f9c5c9 8212{
7b9f71f2
JB
8213 const char *name;
8214
8215 /* If the type code says it's a character, then assume it really is,
8216 and don't check any further. */
8217 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8218 return 1;
8219
8220 /* Otherwise, assume it's a character type iff it is a discrete type
8221 with a known character type name. */
8222 name = ada_type_name (type);
8223 return (name != NULL
8224 && (TYPE_CODE (type) == TYPE_CODE_INT
8225 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8226 && (strcmp (name, "character") == 0
8227 || strcmp (name, "wide_character") == 0
5a517ebd 8228 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8229 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8230}
8231
4c4b4cd2 8232/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8233
8234int
ebf56fd3 8235ada_is_string_type (struct type *type)
14f9c5c9 8236{
61ee279c 8237 type = ada_check_typedef (type);
d2e4a39e 8238 if (type != NULL
14f9c5c9 8239 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8240 && (ada_is_simple_array_type (type)
8241 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8242 && ada_array_arity (type) == 1)
8243 {
8244 struct type *elttype = ada_array_element_type (type, 1);
8245
8246 return ada_is_character_type (elttype);
8247 }
d2e4a39e 8248 else
14f9c5c9
AS
8249 return 0;
8250}
8251
5bf03f13
JB
8252/* The compiler sometimes provides a parallel XVS type for a given
8253 PAD type. Normally, it is safe to follow the PAD type directly,
8254 but older versions of the compiler have a bug that causes the offset
8255 of its "F" field to be wrong. Following that field in that case
8256 would lead to incorrect results, but this can be worked around
8257 by ignoring the PAD type and using the associated XVS type instead.
8258
8259 Set to True if the debugger should trust the contents of PAD types.
8260 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8261static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8262
8263/* True if TYPE is a struct type introduced by the compiler to force the
8264 alignment of a value. Such types have a single field with a
4c4b4cd2 8265 distinctive name. */
14f9c5c9
AS
8266
8267int
ebf56fd3 8268ada_is_aligner_type (struct type *type)
14f9c5c9 8269{
61ee279c 8270 type = ada_check_typedef (type);
714e53ab 8271
5bf03f13 8272 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8273 return 0;
8274
14f9c5c9 8275 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8276 && TYPE_NFIELDS (type) == 1
8277 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8278}
8279
8280/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8281 the parallel type. */
14f9c5c9 8282
d2e4a39e
AS
8283struct type *
8284ada_get_base_type (struct type *raw_type)
14f9c5c9 8285{
d2e4a39e
AS
8286 struct type *real_type_namer;
8287 struct type *raw_real_type;
14f9c5c9
AS
8288
8289 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8290 return raw_type;
8291
284614f0
JB
8292 if (ada_is_aligner_type (raw_type))
8293 /* The encoding specifies that we should always use the aligner type.
8294 So, even if this aligner type has an associated XVS type, we should
8295 simply ignore it.
8296
8297 According to the compiler gurus, an XVS type parallel to an aligner
8298 type may exist because of a stabs limitation. In stabs, aligner
8299 types are empty because the field has a variable-sized type, and
8300 thus cannot actually be used as an aligner type. As a result,
8301 we need the associated parallel XVS type to decode the type.
8302 Since the policy in the compiler is to not change the internal
8303 representation based on the debugging info format, we sometimes
8304 end up having a redundant XVS type parallel to the aligner type. */
8305 return raw_type;
8306
14f9c5c9 8307 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8308 if (real_type_namer == NULL
14f9c5c9
AS
8309 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8310 || TYPE_NFIELDS (real_type_namer) != 1)
8311 return raw_type;
8312
f80d3ff2
JB
8313 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8314 {
8315 /* This is an older encoding form where the base type needs to be
8316 looked up by name. We prefer the newer enconding because it is
8317 more efficient. */
8318 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8319 if (raw_real_type == NULL)
8320 return raw_type;
8321 else
8322 return raw_real_type;
8323 }
8324
8325 /* The field in our XVS type is a reference to the base type. */
8326 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8327}
14f9c5c9 8328
4c4b4cd2 8329/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8330
d2e4a39e
AS
8331struct type *
8332ada_aligned_type (struct type *type)
14f9c5c9
AS
8333{
8334 if (ada_is_aligner_type (type))
8335 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8336 else
8337 return ada_get_base_type (type);
8338}
8339
8340
8341/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8342 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8343
fc1a4b47
AC
8344const gdb_byte *
8345ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8346{
d2e4a39e 8347 if (ada_is_aligner_type (type))
14f9c5c9 8348 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8349 valaddr +
8350 TYPE_FIELD_BITPOS (type,
8351 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8352 else
8353 return valaddr;
8354}
8355
4c4b4cd2
PH
8356
8357
14f9c5c9 8358/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8359 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8360const char *
8361ada_enum_name (const char *name)
14f9c5c9 8362{
4c4b4cd2
PH
8363 static char *result;
8364 static size_t result_len = 0;
d2e4a39e 8365 char *tmp;
14f9c5c9 8366
4c4b4cd2
PH
8367 /* First, unqualify the enumeration name:
8368 1. Search for the last '.' character. If we find one, then skip
177b42fe 8369 all the preceding characters, the unqualified name starts
76a01679 8370 right after that dot.
4c4b4cd2 8371 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8372 translates dots into "__". Search forward for double underscores,
8373 but stop searching when we hit an overloading suffix, which is
8374 of the form "__" followed by digits. */
4c4b4cd2 8375
c3e5cd34
PH
8376 tmp = strrchr (name, '.');
8377 if (tmp != NULL)
4c4b4cd2
PH
8378 name = tmp + 1;
8379 else
14f9c5c9 8380 {
4c4b4cd2
PH
8381 while ((tmp = strstr (name, "__")) != NULL)
8382 {
8383 if (isdigit (tmp[2]))
8384 break;
8385 else
8386 name = tmp + 2;
8387 }
14f9c5c9
AS
8388 }
8389
8390 if (name[0] == 'Q')
8391 {
14f9c5c9 8392 int v;
5b4ee69b 8393
14f9c5c9 8394 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8395 {
8396 if (sscanf (name + 2, "%x", &v) != 1)
8397 return name;
8398 }
14f9c5c9 8399 else
4c4b4cd2 8400 return name;
14f9c5c9 8401
4c4b4cd2 8402 GROW_VECT (result, result_len, 16);
14f9c5c9 8403 if (isascii (v) && isprint (v))
88c15c34 8404 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8405 else if (name[1] == 'U')
88c15c34 8406 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8407 else
88c15c34 8408 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8409
8410 return result;
8411 }
d2e4a39e 8412 else
4c4b4cd2 8413 {
c3e5cd34
PH
8414 tmp = strstr (name, "__");
8415 if (tmp == NULL)
8416 tmp = strstr (name, "$");
8417 if (tmp != NULL)
4c4b4cd2
PH
8418 {
8419 GROW_VECT (result, result_len, tmp - name + 1);
8420 strncpy (result, name, tmp - name);
8421 result[tmp - name] = '\0';
8422 return result;
8423 }
8424
8425 return name;
8426 }
14f9c5c9
AS
8427}
8428
14f9c5c9
AS
8429/* Evaluate the subexpression of EXP starting at *POS as for
8430 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8431 expression. */
14f9c5c9 8432
d2e4a39e
AS
8433static struct value *
8434evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8435{
4b27a620 8436 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8437}
8438
8439/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8440 value it wraps. */
14f9c5c9 8441
d2e4a39e
AS
8442static struct value *
8443unwrap_value (struct value *val)
14f9c5c9 8444{
df407dfe 8445 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8446
14f9c5c9
AS
8447 if (ada_is_aligner_type (type))
8448 {
de4d072f 8449 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8450 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8451
14f9c5c9 8452 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8453 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8454
8455 return unwrap_value (v);
8456 }
d2e4a39e 8457 else
14f9c5c9 8458 {
d2e4a39e 8459 struct type *raw_real_type =
61ee279c 8460 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8461
5bf03f13
JB
8462 /* If there is no parallel XVS or XVE type, then the value is
8463 already unwrapped. Return it without further modification. */
8464 if ((type == raw_real_type)
8465 && ada_find_parallel_type (type, "___XVE") == NULL)
8466 return val;
14f9c5c9 8467
d2e4a39e 8468 return
4c4b4cd2
PH
8469 coerce_unspec_val_to_type
8470 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8471 value_address (val),
1ed6ede0 8472 NULL, 1));
14f9c5c9
AS
8473 }
8474}
d2e4a39e
AS
8475
8476static struct value *
8477cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8478{
8479 LONGEST val;
8480
df407dfe 8481 if (type == value_type (arg))
14f9c5c9 8482 return arg;
df407dfe 8483 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8484 val = ada_float_to_fixed (type,
df407dfe 8485 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8486 value_as_long (arg)));
d2e4a39e 8487 else
14f9c5c9 8488 {
a53b7a21 8489 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8490
14f9c5c9
AS
8491 val = ada_float_to_fixed (type, argd);
8492 }
8493
8494 return value_from_longest (type, val);
8495}
8496
d2e4a39e 8497static struct value *
a53b7a21 8498cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8499{
df407dfe 8500 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8501 value_as_long (arg));
5b4ee69b 8502
a53b7a21 8503 return value_from_double (type, val);
14f9c5c9
AS
8504}
8505
4c4b4cd2
PH
8506/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8507 return the converted value. */
8508
d2e4a39e
AS
8509static struct value *
8510coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8511{
df407dfe 8512 struct type *type2 = value_type (val);
5b4ee69b 8513
14f9c5c9
AS
8514 if (type == type2)
8515 return val;
8516
61ee279c
PH
8517 type2 = ada_check_typedef (type2);
8518 type = ada_check_typedef (type);
14f9c5c9 8519
d2e4a39e
AS
8520 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8521 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8522 {
8523 val = ada_value_ind (val);
df407dfe 8524 type2 = value_type (val);
14f9c5c9
AS
8525 }
8526
d2e4a39e 8527 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8528 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8529 {
8530 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8531 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8532 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8533 error (_("Incompatible types in assignment"));
04624583 8534 deprecated_set_value_type (val, type);
14f9c5c9 8535 }
d2e4a39e 8536 return val;
14f9c5c9
AS
8537}
8538
4c4b4cd2
PH
8539static struct value *
8540ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8541{
8542 struct value *val;
8543 struct type *type1, *type2;
8544 LONGEST v, v1, v2;
8545
994b9211
AC
8546 arg1 = coerce_ref (arg1);
8547 arg2 = coerce_ref (arg2);
18af8284
JB
8548 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8549 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8550
76a01679
JB
8551 if (TYPE_CODE (type1) != TYPE_CODE_INT
8552 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8553 return value_binop (arg1, arg2, op);
8554
76a01679 8555 switch (op)
4c4b4cd2
PH
8556 {
8557 case BINOP_MOD:
8558 case BINOP_DIV:
8559 case BINOP_REM:
8560 break;
8561 default:
8562 return value_binop (arg1, arg2, op);
8563 }
8564
8565 v2 = value_as_long (arg2);
8566 if (v2 == 0)
323e0a4a 8567 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8568
8569 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8570 return value_binop (arg1, arg2, op);
8571
8572 v1 = value_as_long (arg1);
8573 switch (op)
8574 {
8575 case BINOP_DIV:
8576 v = v1 / v2;
76a01679
JB
8577 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8578 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8579 break;
8580 case BINOP_REM:
8581 v = v1 % v2;
76a01679
JB
8582 if (v * v1 < 0)
8583 v -= v2;
4c4b4cd2
PH
8584 break;
8585 default:
8586 /* Should not reach this point. */
8587 v = 0;
8588 }
8589
8590 val = allocate_value (type1);
990a07ab 8591 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8592 TYPE_LENGTH (value_type (val)),
8593 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8594 return val;
8595}
8596
8597static int
8598ada_value_equal (struct value *arg1, struct value *arg2)
8599{
df407dfe
AC
8600 if (ada_is_direct_array_type (value_type (arg1))
8601 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8602 {
f58b38bf
JB
8603 /* Automatically dereference any array reference before
8604 we attempt to perform the comparison. */
8605 arg1 = ada_coerce_ref (arg1);
8606 arg2 = ada_coerce_ref (arg2);
8607
4c4b4cd2
PH
8608 arg1 = ada_coerce_to_simple_array (arg1);
8609 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8610 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8611 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8612 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8613 /* FIXME: The following works only for types whose
76a01679
JB
8614 representations use all bits (no padding or undefined bits)
8615 and do not have user-defined equality. */
8616 return
df407dfe 8617 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8618 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8619 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8620 }
8621 return value_equal (arg1, arg2);
8622}
8623
52ce6436
PH
8624/* Total number of component associations in the aggregate starting at
8625 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8626 OP_AGGREGATE. */
52ce6436
PH
8627
8628static int
8629num_component_specs (struct expression *exp, int pc)
8630{
8631 int n, m, i;
5b4ee69b 8632
52ce6436
PH
8633 m = exp->elts[pc + 1].longconst;
8634 pc += 3;
8635 n = 0;
8636 for (i = 0; i < m; i += 1)
8637 {
8638 switch (exp->elts[pc].opcode)
8639 {
8640 default:
8641 n += 1;
8642 break;
8643 case OP_CHOICES:
8644 n += exp->elts[pc + 1].longconst;
8645 break;
8646 }
8647 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8648 }
8649 return n;
8650}
8651
8652/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8653 component of LHS (a simple array or a record), updating *POS past
8654 the expression, assuming that LHS is contained in CONTAINER. Does
8655 not modify the inferior's memory, nor does it modify LHS (unless
8656 LHS == CONTAINER). */
8657
8658static void
8659assign_component (struct value *container, struct value *lhs, LONGEST index,
8660 struct expression *exp, int *pos)
8661{
8662 struct value *mark = value_mark ();
8663 struct value *elt;
5b4ee69b 8664
52ce6436
PH
8665 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8666 {
22601c15
UW
8667 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8668 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8669
52ce6436
PH
8670 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8671 }
8672 else
8673 {
8674 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8675 elt = ada_to_fixed_value (unwrap_value (elt));
8676 }
8677
8678 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8679 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8680 else
8681 value_assign_to_component (container, elt,
8682 ada_evaluate_subexp (NULL, exp, pos,
8683 EVAL_NORMAL));
8684
8685 value_free_to_mark (mark);
8686}
8687
8688/* Assuming that LHS represents an lvalue having a record or array
8689 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8690 of that aggregate's value to LHS, advancing *POS past the
8691 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8692 lvalue containing LHS (possibly LHS itself). Does not modify
8693 the inferior's memory, nor does it modify the contents of
0963b4bd 8694 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8695
8696static struct value *
8697assign_aggregate (struct value *container,
8698 struct value *lhs, struct expression *exp,
8699 int *pos, enum noside noside)
8700{
8701 struct type *lhs_type;
8702 int n = exp->elts[*pos+1].longconst;
8703 LONGEST low_index, high_index;
8704 int num_specs;
8705 LONGEST *indices;
8706 int max_indices, num_indices;
8707 int is_array_aggregate;
8708 int i;
52ce6436
PH
8709
8710 *pos += 3;
8711 if (noside != EVAL_NORMAL)
8712 {
52ce6436
PH
8713 for (i = 0; i < n; i += 1)
8714 ada_evaluate_subexp (NULL, exp, pos, noside);
8715 return container;
8716 }
8717
8718 container = ada_coerce_ref (container);
8719 if (ada_is_direct_array_type (value_type (container)))
8720 container = ada_coerce_to_simple_array (container);
8721 lhs = ada_coerce_ref (lhs);
8722 if (!deprecated_value_modifiable (lhs))
8723 error (_("Left operand of assignment is not a modifiable lvalue."));
8724
8725 lhs_type = value_type (lhs);
8726 if (ada_is_direct_array_type (lhs_type))
8727 {
8728 lhs = ada_coerce_to_simple_array (lhs);
8729 lhs_type = value_type (lhs);
8730 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8731 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8732 is_array_aggregate = 1;
8733 }
8734 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8735 {
8736 low_index = 0;
8737 high_index = num_visible_fields (lhs_type) - 1;
8738 is_array_aggregate = 0;
8739 }
8740 else
8741 error (_("Left-hand side must be array or record."));
8742
8743 num_specs = num_component_specs (exp, *pos - 3);
8744 max_indices = 4 * num_specs + 4;
8745 indices = alloca (max_indices * sizeof (indices[0]));
8746 indices[0] = indices[1] = low_index - 1;
8747 indices[2] = indices[3] = high_index + 1;
8748 num_indices = 4;
8749
8750 for (i = 0; i < n; i += 1)
8751 {
8752 switch (exp->elts[*pos].opcode)
8753 {
1fbf5ada
JB
8754 case OP_CHOICES:
8755 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8756 &num_indices, max_indices,
8757 low_index, high_index);
8758 break;
8759 case OP_POSITIONAL:
8760 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8761 &num_indices, max_indices,
8762 low_index, high_index);
1fbf5ada
JB
8763 break;
8764 case OP_OTHERS:
8765 if (i != n-1)
8766 error (_("Misplaced 'others' clause"));
8767 aggregate_assign_others (container, lhs, exp, pos, indices,
8768 num_indices, low_index, high_index);
8769 break;
8770 default:
8771 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8772 }
8773 }
8774
8775 return container;
8776}
8777
8778/* Assign into the component of LHS indexed by the OP_POSITIONAL
8779 construct at *POS, updating *POS past the construct, given that
8780 the positions are relative to lower bound LOW, where HIGH is the
8781 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8782 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8783 assign_aggregate. */
52ce6436
PH
8784static void
8785aggregate_assign_positional (struct value *container,
8786 struct value *lhs, struct expression *exp,
8787 int *pos, LONGEST *indices, int *num_indices,
8788 int max_indices, LONGEST low, LONGEST high)
8789{
8790 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8791
8792 if (ind - 1 == high)
e1d5a0d2 8793 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8794 if (ind <= high)
8795 {
8796 add_component_interval (ind, ind, indices, num_indices, max_indices);
8797 *pos += 3;
8798 assign_component (container, lhs, ind, exp, pos);
8799 }
8800 else
8801 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8802}
8803
8804/* Assign into the components of LHS indexed by the OP_CHOICES
8805 construct at *POS, updating *POS past the construct, given that
8806 the allowable indices are LOW..HIGH. Record the indices assigned
8807 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8808 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8809static void
8810aggregate_assign_from_choices (struct value *container,
8811 struct value *lhs, struct expression *exp,
8812 int *pos, LONGEST *indices, int *num_indices,
8813 int max_indices, LONGEST low, LONGEST high)
8814{
8815 int j;
8816 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8817 int choice_pos, expr_pc;
8818 int is_array = ada_is_direct_array_type (value_type (lhs));
8819
8820 choice_pos = *pos += 3;
8821
8822 for (j = 0; j < n_choices; j += 1)
8823 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8824 expr_pc = *pos;
8825 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8826
8827 for (j = 0; j < n_choices; j += 1)
8828 {
8829 LONGEST lower, upper;
8830 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8831
52ce6436
PH
8832 if (op == OP_DISCRETE_RANGE)
8833 {
8834 choice_pos += 1;
8835 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8836 EVAL_NORMAL));
8837 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8838 EVAL_NORMAL));
8839 }
8840 else if (is_array)
8841 {
8842 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8843 EVAL_NORMAL));
8844 upper = lower;
8845 }
8846 else
8847 {
8848 int ind;
8849 char *name;
5b4ee69b 8850
52ce6436
PH
8851 switch (op)
8852 {
8853 case OP_NAME:
8854 name = &exp->elts[choice_pos + 2].string;
8855 break;
8856 case OP_VAR_VALUE:
8857 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8858 break;
8859 default:
8860 error (_("Invalid record component association."));
8861 }
8862 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8863 ind = 0;
8864 if (! find_struct_field (name, value_type (lhs), 0,
8865 NULL, NULL, NULL, NULL, &ind))
8866 error (_("Unknown component name: %s."), name);
8867 lower = upper = ind;
8868 }
8869
8870 if (lower <= upper && (lower < low || upper > high))
8871 error (_("Index in component association out of bounds."));
8872
8873 add_component_interval (lower, upper, indices, num_indices,
8874 max_indices);
8875 while (lower <= upper)
8876 {
8877 int pos1;
5b4ee69b 8878
52ce6436
PH
8879 pos1 = expr_pc;
8880 assign_component (container, lhs, lower, exp, &pos1);
8881 lower += 1;
8882 }
8883 }
8884}
8885
8886/* Assign the value of the expression in the OP_OTHERS construct in
8887 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8888 have not been previously assigned. The index intervals already assigned
8889 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8890 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8891static void
8892aggregate_assign_others (struct value *container,
8893 struct value *lhs, struct expression *exp,
8894 int *pos, LONGEST *indices, int num_indices,
8895 LONGEST low, LONGEST high)
8896{
8897 int i;
5ce64950 8898 int expr_pc = *pos + 1;
52ce6436
PH
8899
8900 for (i = 0; i < num_indices - 2; i += 2)
8901 {
8902 LONGEST ind;
5b4ee69b 8903
52ce6436
PH
8904 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8905 {
5ce64950 8906 int localpos;
5b4ee69b 8907
5ce64950
MS
8908 localpos = expr_pc;
8909 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8910 }
8911 }
8912 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8913}
8914
8915/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8916 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8917 modifying *SIZE as needed. It is an error if *SIZE exceeds
8918 MAX_SIZE. The resulting intervals do not overlap. */
8919static void
8920add_component_interval (LONGEST low, LONGEST high,
8921 LONGEST* indices, int *size, int max_size)
8922{
8923 int i, j;
5b4ee69b 8924
52ce6436
PH
8925 for (i = 0; i < *size; i += 2) {
8926 if (high >= indices[i] && low <= indices[i + 1])
8927 {
8928 int kh;
5b4ee69b 8929
52ce6436
PH
8930 for (kh = i + 2; kh < *size; kh += 2)
8931 if (high < indices[kh])
8932 break;
8933 if (low < indices[i])
8934 indices[i] = low;
8935 indices[i + 1] = indices[kh - 1];
8936 if (high > indices[i + 1])
8937 indices[i + 1] = high;
8938 memcpy (indices + i + 2, indices + kh, *size - kh);
8939 *size -= kh - i - 2;
8940 return;
8941 }
8942 else if (high < indices[i])
8943 break;
8944 }
8945
8946 if (*size == max_size)
8947 error (_("Internal error: miscounted aggregate components."));
8948 *size += 2;
8949 for (j = *size-1; j >= i+2; j -= 1)
8950 indices[j] = indices[j - 2];
8951 indices[i] = low;
8952 indices[i + 1] = high;
8953}
8954
6e48bd2c
JB
8955/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8956 is different. */
8957
8958static struct value *
8959ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8960{
8961 if (type == ada_check_typedef (value_type (arg2)))
8962 return arg2;
8963
8964 if (ada_is_fixed_point_type (type))
8965 return (cast_to_fixed (type, arg2));
8966
8967 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8968 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8969
8970 return value_cast (type, arg2);
8971}
8972
284614f0
JB
8973/* Evaluating Ada expressions, and printing their result.
8974 ------------------------------------------------------
8975
21649b50
JB
8976 1. Introduction:
8977 ----------------
8978
284614f0
JB
8979 We usually evaluate an Ada expression in order to print its value.
8980 We also evaluate an expression in order to print its type, which
8981 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8982 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8983 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8984 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8985 similar.
8986
8987 Evaluating expressions is a little more complicated for Ada entities
8988 than it is for entities in languages such as C. The main reason for
8989 this is that Ada provides types whose definition might be dynamic.
8990 One example of such types is variant records. Or another example
8991 would be an array whose bounds can only be known at run time.
8992
8993 The following description is a general guide as to what should be
8994 done (and what should NOT be done) in order to evaluate an expression
8995 involving such types, and when. This does not cover how the semantic
8996 information is encoded by GNAT as this is covered separatly. For the
8997 document used as the reference for the GNAT encoding, see exp_dbug.ads
8998 in the GNAT sources.
8999
9000 Ideally, we should embed each part of this description next to its
9001 associated code. Unfortunately, the amount of code is so vast right
9002 now that it's hard to see whether the code handling a particular
9003 situation might be duplicated or not. One day, when the code is
9004 cleaned up, this guide might become redundant with the comments
9005 inserted in the code, and we might want to remove it.
9006
21649b50
JB
9007 2. ``Fixing'' an Entity, the Simple Case:
9008 -----------------------------------------
9009
284614f0
JB
9010 When evaluating Ada expressions, the tricky issue is that they may
9011 reference entities whose type contents and size are not statically
9012 known. Consider for instance a variant record:
9013
9014 type Rec (Empty : Boolean := True) is record
9015 case Empty is
9016 when True => null;
9017 when False => Value : Integer;
9018 end case;
9019 end record;
9020 Yes : Rec := (Empty => False, Value => 1);
9021 No : Rec := (empty => True);
9022
9023 The size and contents of that record depends on the value of the
9024 descriminant (Rec.Empty). At this point, neither the debugging
9025 information nor the associated type structure in GDB are able to
9026 express such dynamic types. So what the debugger does is to create
9027 "fixed" versions of the type that applies to the specific object.
9028 We also informally refer to this opperation as "fixing" an object,
9029 which means creating its associated fixed type.
9030
9031 Example: when printing the value of variable "Yes" above, its fixed
9032 type would look like this:
9033
9034 type Rec is record
9035 Empty : Boolean;
9036 Value : Integer;
9037 end record;
9038
9039 On the other hand, if we printed the value of "No", its fixed type
9040 would become:
9041
9042 type Rec is record
9043 Empty : Boolean;
9044 end record;
9045
9046 Things become a little more complicated when trying to fix an entity
9047 with a dynamic type that directly contains another dynamic type,
9048 such as an array of variant records, for instance. There are
9049 two possible cases: Arrays, and records.
9050
21649b50
JB
9051 3. ``Fixing'' Arrays:
9052 ---------------------
9053
9054 The type structure in GDB describes an array in terms of its bounds,
9055 and the type of its elements. By design, all elements in the array
9056 have the same type and we cannot represent an array of variant elements
9057 using the current type structure in GDB. When fixing an array,
9058 we cannot fix the array element, as we would potentially need one
9059 fixed type per element of the array. As a result, the best we can do
9060 when fixing an array is to produce an array whose bounds and size
9061 are correct (allowing us to read it from memory), but without having
9062 touched its element type. Fixing each element will be done later,
9063 when (if) necessary.
9064
9065 Arrays are a little simpler to handle than records, because the same
9066 amount of memory is allocated for each element of the array, even if
1b536f04 9067 the amount of space actually used by each element differs from element
21649b50 9068 to element. Consider for instance the following array of type Rec:
284614f0
JB
9069
9070 type Rec_Array is array (1 .. 2) of Rec;
9071
1b536f04
JB
9072 The actual amount of memory occupied by each element might be different
9073 from element to element, depending on the value of their discriminant.
21649b50 9074 But the amount of space reserved for each element in the array remains
1b536f04 9075 fixed regardless. So we simply need to compute that size using
21649b50
JB
9076 the debugging information available, from which we can then determine
9077 the array size (we multiply the number of elements of the array by
9078 the size of each element).
9079
9080 The simplest case is when we have an array of a constrained element
9081 type. For instance, consider the following type declarations:
9082
9083 type Bounded_String (Max_Size : Integer) is
9084 Length : Integer;
9085 Buffer : String (1 .. Max_Size);
9086 end record;
9087 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9088
9089 In this case, the compiler describes the array as an array of
9090 variable-size elements (identified by its XVS suffix) for which
9091 the size can be read in the parallel XVZ variable.
9092
9093 In the case of an array of an unconstrained element type, the compiler
9094 wraps the array element inside a private PAD type. This type should not
9095 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9096 that we also use the adjective "aligner" in our code to designate
9097 these wrapper types.
9098
1b536f04 9099 In some cases, the size allocated for each element is statically
21649b50
JB
9100 known. In that case, the PAD type already has the correct size,
9101 and the array element should remain unfixed.
9102
9103 But there are cases when this size is not statically known.
9104 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9105
9106 type Dynamic is array (1 .. Five) of Integer;
9107 type Wrapper (Has_Length : Boolean := False) is record
9108 Data : Dynamic;
9109 case Has_Length is
9110 when True => Length : Integer;
9111 when False => null;
9112 end case;
9113 end record;
9114 type Wrapper_Array is array (1 .. 2) of Wrapper;
9115
9116 Hello : Wrapper_Array := (others => (Has_Length => True,
9117 Data => (others => 17),
9118 Length => 1));
9119
9120
9121 The debugging info would describe variable Hello as being an
9122 array of a PAD type. The size of that PAD type is not statically
9123 known, but can be determined using a parallel XVZ variable.
9124 In that case, a copy of the PAD type with the correct size should
9125 be used for the fixed array.
9126
21649b50
JB
9127 3. ``Fixing'' record type objects:
9128 ----------------------------------
9129
9130 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9131 record types. In this case, in order to compute the associated
9132 fixed type, we need to determine the size and offset of each of
9133 its components. This, in turn, requires us to compute the fixed
9134 type of each of these components.
9135
9136 Consider for instance the example:
9137
9138 type Bounded_String (Max_Size : Natural) is record
9139 Str : String (1 .. Max_Size);
9140 Length : Natural;
9141 end record;
9142 My_String : Bounded_String (Max_Size => 10);
9143
9144 In that case, the position of field "Length" depends on the size
9145 of field Str, which itself depends on the value of the Max_Size
21649b50 9146 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9147 we need to fix the type of field Str. Therefore, fixing a variant
9148 record requires us to fix each of its components.
9149
9150 However, if a component does not have a dynamic size, the component
9151 should not be fixed. In particular, fields that use a PAD type
9152 should not fixed. Here is an example where this might happen
9153 (assuming type Rec above):
9154
9155 type Container (Big : Boolean) is record
9156 First : Rec;
9157 After : Integer;
9158 case Big is
9159 when True => Another : Integer;
9160 when False => null;
9161 end case;
9162 end record;
9163 My_Container : Container := (Big => False,
9164 First => (Empty => True),
9165 After => 42);
9166
9167 In that example, the compiler creates a PAD type for component First,
9168 whose size is constant, and then positions the component After just
9169 right after it. The offset of component After is therefore constant
9170 in this case.
9171
9172 The debugger computes the position of each field based on an algorithm
9173 that uses, among other things, the actual position and size of the field
21649b50
JB
9174 preceding it. Let's now imagine that the user is trying to print
9175 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9176 end up computing the offset of field After based on the size of the
9177 fixed version of field First. And since in our example First has
9178 only one actual field, the size of the fixed type is actually smaller
9179 than the amount of space allocated to that field, and thus we would
9180 compute the wrong offset of field After.
9181
21649b50
JB
9182 To make things more complicated, we need to watch out for dynamic
9183 components of variant records (identified by the ___XVL suffix in
9184 the component name). Even if the target type is a PAD type, the size
9185 of that type might not be statically known. So the PAD type needs
9186 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9187 we might end up with the wrong size for our component. This can be
9188 observed with the following type declarations:
284614f0
JB
9189
9190 type Octal is new Integer range 0 .. 7;
9191 type Octal_Array is array (Positive range <>) of Octal;
9192 pragma Pack (Octal_Array);
9193
9194 type Octal_Buffer (Size : Positive) is record
9195 Buffer : Octal_Array (1 .. Size);
9196 Length : Integer;
9197 end record;
9198
9199 In that case, Buffer is a PAD type whose size is unset and needs
9200 to be computed by fixing the unwrapped type.
9201
21649b50
JB
9202 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9203 ----------------------------------------------------------
9204
9205 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9206 thus far, be actually fixed?
9207
9208 The answer is: Only when referencing that element. For instance
9209 when selecting one component of a record, this specific component
9210 should be fixed at that point in time. Or when printing the value
9211 of a record, each component should be fixed before its value gets
9212 printed. Similarly for arrays, the element of the array should be
9213 fixed when printing each element of the array, or when extracting
9214 one element out of that array. On the other hand, fixing should
9215 not be performed on the elements when taking a slice of an array!
9216
9217 Note that one of the side-effects of miscomputing the offset and
9218 size of each field is that we end up also miscomputing the size
9219 of the containing type. This can have adverse results when computing
9220 the value of an entity. GDB fetches the value of an entity based
9221 on the size of its type, and thus a wrong size causes GDB to fetch
9222 the wrong amount of memory. In the case where the computed size is
9223 too small, GDB fetches too little data to print the value of our
9224 entiry. Results in this case as unpredicatble, as we usually read
9225 past the buffer containing the data =:-o. */
9226
9227/* Implement the evaluate_exp routine in the exp_descriptor structure
9228 for the Ada language. */
9229
52ce6436 9230static struct value *
ebf56fd3 9231ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9232 int *pos, enum noside noside)
14f9c5c9
AS
9233{
9234 enum exp_opcode op;
b5385fc0 9235 int tem;
14f9c5c9
AS
9236 int pc;
9237 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9238 struct type *type;
52ce6436 9239 int nargs, oplen;
d2e4a39e 9240 struct value **argvec;
14f9c5c9 9241
d2e4a39e
AS
9242 pc = *pos;
9243 *pos += 1;
14f9c5c9
AS
9244 op = exp->elts[pc].opcode;
9245
d2e4a39e 9246 switch (op)
14f9c5c9
AS
9247 {
9248 default:
9249 *pos -= 1;
6e48bd2c
JB
9250 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9251 arg1 = unwrap_value (arg1);
9252
9253 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9254 then we need to perform the conversion manually, because
9255 evaluate_subexp_standard doesn't do it. This conversion is
9256 necessary in Ada because the different kinds of float/fixed
9257 types in Ada have different representations.
9258
9259 Similarly, we need to perform the conversion from OP_LONG
9260 ourselves. */
9261 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9262 arg1 = ada_value_cast (expect_type, arg1, noside);
9263
9264 return arg1;
4c4b4cd2
PH
9265
9266 case OP_STRING:
9267 {
76a01679 9268 struct value *result;
5b4ee69b 9269
76a01679
JB
9270 *pos -= 1;
9271 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9272 /* The result type will have code OP_STRING, bashed there from
9273 OP_ARRAY. Bash it back. */
df407dfe
AC
9274 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9275 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9276 return result;
4c4b4cd2 9277 }
14f9c5c9
AS
9278
9279 case UNOP_CAST:
9280 (*pos) += 2;
9281 type = exp->elts[pc + 1].type;
9282 arg1 = evaluate_subexp (type, exp, pos, noside);
9283 if (noside == EVAL_SKIP)
4c4b4cd2 9284 goto nosideret;
6e48bd2c 9285 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9286 return arg1;
9287
4c4b4cd2
PH
9288 case UNOP_QUAL:
9289 (*pos) += 2;
9290 type = exp->elts[pc + 1].type;
9291 return ada_evaluate_subexp (type, exp, pos, noside);
9292
14f9c5c9
AS
9293 case BINOP_ASSIGN:
9294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9295 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9296 {
9297 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9298 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9299 return arg1;
9300 return ada_value_assign (arg1, arg1);
9301 }
003f3813
JB
9302 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9303 except if the lhs of our assignment is a convenience variable.
9304 In the case of assigning to a convenience variable, the lhs
9305 should be exactly the result of the evaluation of the rhs. */
9306 type = value_type (arg1);
9307 if (VALUE_LVAL (arg1) == lval_internalvar)
9308 type = NULL;
9309 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9310 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9311 return arg1;
df407dfe
AC
9312 if (ada_is_fixed_point_type (value_type (arg1)))
9313 arg2 = cast_to_fixed (value_type (arg1), arg2);
9314 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9315 error
323e0a4a 9316 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9317 else
df407dfe 9318 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9319 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9320
9321 case BINOP_ADD:
9322 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9323 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9324 if (noside == EVAL_SKIP)
4c4b4cd2 9325 goto nosideret;
2ac8a782
JB
9326 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9327 return (value_from_longest
9328 (value_type (arg1),
9329 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9330 if ((ada_is_fixed_point_type (value_type (arg1))
9331 || ada_is_fixed_point_type (value_type (arg2)))
9332 && value_type (arg1) != value_type (arg2))
323e0a4a 9333 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9334 /* Do the addition, and cast the result to the type of the first
9335 argument. We cannot cast the result to a reference type, so if
9336 ARG1 is a reference type, find its underlying type. */
9337 type = value_type (arg1);
9338 while (TYPE_CODE (type) == TYPE_CODE_REF)
9339 type = TYPE_TARGET_TYPE (type);
f44316fa 9340 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9341 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9342
9343 case BINOP_SUB:
9344 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9345 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9346 if (noside == EVAL_SKIP)
4c4b4cd2 9347 goto nosideret;
2ac8a782
JB
9348 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9349 return (value_from_longest
9350 (value_type (arg1),
9351 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9352 if ((ada_is_fixed_point_type (value_type (arg1))
9353 || ada_is_fixed_point_type (value_type (arg2)))
9354 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9355 error (_("Operands of fixed-point subtraction "
9356 "must have the same type"));
b7789565
JB
9357 /* Do the substraction, and cast the result to the type of the first
9358 argument. We cannot cast the result to a reference type, so if
9359 ARG1 is a reference type, find its underlying type. */
9360 type = value_type (arg1);
9361 while (TYPE_CODE (type) == TYPE_CODE_REF)
9362 type = TYPE_TARGET_TYPE (type);
f44316fa 9363 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9364 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9365
9366 case BINOP_MUL:
9367 case BINOP_DIV:
e1578042
JB
9368 case BINOP_REM:
9369 case BINOP_MOD:
14f9c5c9
AS
9370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9371 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9372 if (noside == EVAL_SKIP)
4c4b4cd2 9373 goto nosideret;
e1578042 9374 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9375 {
9376 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9377 return value_zero (value_type (arg1), not_lval);
9378 }
14f9c5c9 9379 else
4c4b4cd2 9380 {
a53b7a21 9381 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9382 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9383 arg1 = cast_from_fixed (type, arg1);
df407dfe 9384 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9385 arg2 = cast_from_fixed (type, arg2);
f44316fa 9386 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9387 return ada_value_binop (arg1, arg2, op);
9388 }
9389
4c4b4cd2
PH
9390 case BINOP_EQUAL:
9391 case BINOP_NOTEQUAL:
14f9c5c9 9392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9393 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9394 if (noside == EVAL_SKIP)
76a01679 9395 goto nosideret;
4c4b4cd2 9396 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9397 tem = 0;
4c4b4cd2 9398 else
f44316fa
UW
9399 {
9400 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9401 tem = ada_value_equal (arg1, arg2);
9402 }
4c4b4cd2 9403 if (op == BINOP_NOTEQUAL)
76a01679 9404 tem = !tem;
fbb06eb1
UW
9405 type = language_bool_type (exp->language_defn, exp->gdbarch);
9406 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9407
9408 case UNOP_NEG:
9409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9410 if (noside == EVAL_SKIP)
9411 goto nosideret;
df407dfe
AC
9412 else if (ada_is_fixed_point_type (value_type (arg1)))
9413 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9414 else
f44316fa
UW
9415 {
9416 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9417 return value_neg (arg1);
9418 }
4c4b4cd2 9419
2330c6c6
JB
9420 case BINOP_LOGICAL_AND:
9421 case BINOP_LOGICAL_OR:
9422 case UNOP_LOGICAL_NOT:
000d5124
JB
9423 {
9424 struct value *val;
9425
9426 *pos -= 1;
9427 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9428 type = language_bool_type (exp->language_defn, exp->gdbarch);
9429 return value_cast (type, val);
000d5124 9430 }
2330c6c6
JB
9431
9432 case BINOP_BITWISE_AND:
9433 case BINOP_BITWISE_IOR:
9434 case BINOP_BITWISE_XOR:
000d5124
JB
9435 {
9436 struct value *val;
9437
9438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9439 *pos = pc;
9440 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9441
9442 return value_cast (value_type (arg1), val);
9443 }
2330c6c6 9444
14f9c5c9
AS
9445 case OP_VAR_VALUE:
9446 *pos -= 1;
6799def4 9447
14f9c5c9 9448 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9449 {
9450 *pos += 4;
9451 goto nosideret;
9452 }
9453 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9454 /* Only encountered when an unresolved symbol occurs in a
9455 context other than a function call, in which case, it is
52ce6436 9456 invalid. */
323e0a4a 9457 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9458 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9459 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9460 {
0c1f74cf 9461 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9462 /* Check to see if this is a tagged type. We also need to handle
9463 the case where the type is a reference to a tagged type, but
9464 we have to be careful to exclude pointers to tagged types.
9465 The latter should be shown as usual (as a pointer), whereas
9466 a reference should mostly be transparent to the user. */
9467 if (ada_is_tagged_type (type, 0)
9468 || (TYPE_CODE(type) == TYPE_CODE_REF
9469 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9470 {
9471 /* Tagged types are a little special in the fact that the real
9472 type is dynamic and can only be determined by inspecting the
9473 object's tag. This means that we need to get the object's
9474 value first (EVAL_NORMAL) and then extract the actual object
9475 type from its tag.
9476
9477 Note that we cannot skip the final step where we extract
9478 the object type from its tag, because the EVAL_NORMAL phase
9479 results in dynamic components being resolved into fixed ones.
9480 This can cause problems when trying to print the type
9481 description of tagged types whose parent has a dynamic size:
9482 We use the type name of the "_parent" component in order
9483 to print the name of the ancestor type in the type description.
9484 If that component had a dynamic size, the resolution into
9485 a fixed type would result in the loss of that type name,
9486 thus preventing us from printing the name of the ancestor
9487 type in the type description. */
b79819ba
JB
9488 struct type *actual_type;
9489
0c1f74cf 9490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9491 actual_type = type_from_tag (ada_value_tag (arg1));
9492 if (actual_type == NULL)
9493 /* If, for some reason, we were unable to determine
9494 the actual type from the tag, then use the static
9495 approximation that we just computed as a fallback.
9496 This can happen if the debugging information is
9497 incomplete, for instance. */
9498 actual_type = type;
9499
9500 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9501 }
9502
4c4b4cd2
PH
9503 *pos += 4;
9504 return value_zero
9505 (to_static_fixed_type
9506 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9507 not_lval);
9508 }
d2e4a39e 9509 else
4c4b4cd2 9510 {
284614f0
JB
9511 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9512 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9513 return ada_to_fixed_value (arg1);
9514 }
9515
9516 case OP_FUNCALL:
9517 (*pos) += 2;
9518
9519 /* Allocate arg vector, including space for the function to be
9520 called in argvec[0] and a terminating NULL. */
9521 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9522 argvec =
9523 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9524
9525 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9527 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9528 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9529 else
9530 {
9531 for (tem = 0; tem <= nargs; tem += 1)
9532 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9533 argvec[tem] = 0;
9534
9535 if (noside == EVAL_SKIP)
9536 goto nosideret;
9537 }
9538
ad82864c
JB
9539 if (ada_is_constrained_packed_array_type
9540 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9541 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9542 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9543 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9544 /* This is a packed array that has already been fixed, and
9545 therefore already coerced to a simple array. Nothing further
9546 to do. */
9547 ;
df407dfe
AC
9548 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9549 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9550 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9551 argvec[0] = value_addr (argvec[0]);
9552
df407dfe 9553 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9554
9555 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9556 them. So, if this is an array typedef (encoding use for array
9557 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9559 type = ada_typedef_target_type (type);
9560
4c4b4cd2
PH
9561 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9562 {
61ee279c 9563 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9564 {
9565 case TYPE_CODE_FUNC:
61ee279c 9566 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9567 break;
9568 case TYPE_CODE_ARRAY:
9569 break;
9570 case TYPE_CODE_STRUCT:
9571 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9572 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9573 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9574 break;
9575 default:
323e0a4a 9576 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9577 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9578 break;
9579 }
9580 }
9581
9582 switch (TYPE_CODE (type))
9583 {
9584 case TYPE_CODE_FUNC:
9585 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9586 return allocate_value (TYPE_TARGET_TYPE (type));
9587 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9588 case TYPE_CODE_STRUCT:
9589 {
9590 int arity;
9591
4c4b4cd2
PH
9592 arity = ada_array_arity (type);
9593 type = ada_array_element_type (type, nargs);
9594 if (type == NULL)
323e0a4a 9595 error (_("cannot subscript or call a record"));
4c4b4cd2 9596 if (arity != nargs)
323e0a4a 9597 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9598 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9599 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9600 return
9601 unwrap_value (ada_value_subscript
9602 (argvec[0], nargs, argvec + 1));
9603 }
9604 case TYPE_CODE_ARRAY:
9605 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9606 {
9607 type = ada_array_element_type (type, nargs);
9608 if (type == NULL)
323e0a4a 9609 error (_("element type of array unknown"));
4c4b4cd2 9610 else
0a07e705 9611 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9612 }
9613 return
9614 unwrap_value (ada_value_subscript
9615 (ada_coerce_to_simple_array (argvec[0]),
9616 nargs, argvec + 1));
9617 case TYPE_CODE_PTR: /* Pointer to array */
9618 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9619 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9620 {
9621 type = ada_array_element_type (type, nargs);
9622 if (type == NULL)
323e0a4a 9623 error (_("element type of array unknown"));
4c4b4cd2 9624 else
0a07e705 9625 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9626 }
9627 return
9628 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9629 nargs, argvec + 1));
9630
9631 default:
e1d5a0d2
PH
9632 error (_("Attempt to index or call something other than an "
9633 "array or function"));
4c4b4cd2
PH
9634 }
9635
9636 case TERNOP_SLICE:
9637 {
9638 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9639 struct value *low_bound_val =
9640 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9641 struct value *high_bound_val =
9642 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9643 LONGEST low_bound;
9644 LONGEST high_bound;
5b4ee69b 9645
994b9211
AC
9646 low_bound_val = coerce_ref (low_bound_val);
9647 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9648 low_bound = pos_atr (low_bound_val);
9649 high_bound = pos_atr (high_bound_val);
963a6417 9650
4c4b4cd2
PH
9651 if (noside == EVAL_SKIP)
9652 goto nosideret;
9653
4c4b4cd2
PH
9654 /* If this is a reference to an aligner type, then remove all
9655 the aligners. */
df407dfe
AC
9656 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9657 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9658 TYPE_TARGET_TYPE (value_type (array)) =
9659 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9660
ad82864c 9661 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9662 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9663
9664 /* If this is a reference to an array or an array lvalue,
9665 convert to a pointer. */
df407dfe
AC
9666 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9667 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9668 && VALUE_LVAL (array) == lval_memory))
9669 array = value_addr (array);
9670
1265e4aa 9671 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9672 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9673 (value_type (array))))
0b5d8877 9674 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9675
9676 array = ada_coerce_to_simple_array_ptr (array);
9677
714e53ab
PH
9678 /* If we have more than one level of pointer indirection,
9679 dereference the value until we get only one level. */
df407dfe
AC
9680 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9681 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9682 == TYPE_CODE_PTR))
9683 array = value_ind (array);
9684
9685 /* Make sure we really do have an array type before going further,
9686 to avoid a SEGV when trying to get the index type or the target
9687 type later down the road if the debug info generated by
9688 the compiler is incorrect or incomplete. */
df407dfe 9689 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9690 error (_("cannot take slice of non-array"));
714e53ab 9691
828292f2
JB
9692 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9693 == TYPE_CODE_PTR)
4c4b4cd2 9694 {
828292f2
JB
9695 struct type *type0 = ada_check_typedef (value_type (array));
9696
0b5d8877 9697 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9698 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9699 else
9700 {
9701 struct type *arr_type0 =
828292f2 9702 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9703
f5938064
JG
9704 return ada_value_slice_from_ptr (array, arr_type0,
9705 longest_to_int (low_bound),
9706 longest_to_int (high_bound));
4c4b4cd2
PH
9707 }
9708 }
9709 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9710 return array;
9711 else if (high_bound < low_bound)
df407dfe 9712 return empty_array (value_type (array), low_bound);
4c4b4cd2 9713 else
529cad9c
PH
9714 return ada_value_slice (array, longest_to_int (low_bound),
9715 longest_to_int (high_bound));
4c4b4cd2 9716 }
14f9c5c9 9717
4c4b4cd2
PH
9718 case UNOP_IN_RANGE:
9719 (*pos) += 2;
9720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9721 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9722
14f9c5c9 9723 if (noside == EVAL_SKIP)
4c4b4cd2 9724 goto nosideret;
14f9c5c9 9725
4c4b4cd2
PH
9726 switch (TYPE_CODE (type))
9727 {
9728 default:
e1d5a0d2
PH
9729 lim_warning (_("Membership test incompletely implemented; "
9730 "always returns true"));
fbb06eb1
UW
9731 type = language_bool_type (exp->language_defn, exp->gdbarch);
9732 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9733
9734 case TYPE_CODE_RANGE:
030b4912
UW
9735 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9736 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9737 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9738 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9739 type = language_bool_type (exp->language_defn, exp->gdbarch);
9740 return
9741 value_from_longest (type,
4c4b4cd2
PH
9742 (value_less (arg1, arg3)
9743 || value_equal (arg1, arg3))
9744 && (value_less (arg2, arg1)
9745 || value_equal (arg2, arg1)));
9746 }
9747
9748 case BINOP_IN_BOUNDS:
14f9c5c9 9749 (*pos) += 2;
4c4b4cd2
PH
9750 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9751 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9752
4c4b4cd2
PH
9753 if (noside == EVAL_SKIP)
9754 goto nosideret;
14f9c5c9 9755
4c4b4cd2 9756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9757 {
9758 type = language_bool_type (exp->language_defn, exp->gdbarch);
9759 return value_zero (type, not_lval);
9760 }
14f9c5c9 9761
4c4b4cd2 9762 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9763
1eea4ebd
UW
9764 type = ada_index_type (value_type (arg2), tem, "range");
9765 if (!type)
9766 type = value_type (arg1);
14f9c5c9 9767
1eea4ebd
UW
9768 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9769 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9770
f44316fa
UW
9771 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9772 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9773 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9774 return
fbb06eb1 9775 value_from_longest (type,
4c4b4cd2
PH
9776 (value_less (arg1, arg3)
9777 || value_equal (arg1, arg3))
9778 && (value_less (arg2, arg1)
9779 || value_equal (arg2, arg1)));
9780
9781 case TERNOP_IN_RANGE:
9782 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9783 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9784 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9785
9786 if (noside == EVAL_SKIP)
9787 goto nosideret;
9788
f44316fa
UW
9789 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9790 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9791 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9792 return
fbb06eb1 9793 value_from_longest (type,
4c4b4cd2
PH
9794 (value_less (arg1, arg3)
9795 || value_equal (arg1, arg3))
9796 && (value_less (arg2, arg1)
9797 || value_equal (arg2, arg1)));
9798
9799 case OP_ATR_FIRST:
9800 case OP_ATR_LAST:
9801 case OP_ATR_LENGTH:
9802 {
76a01679 9803 struct type *type_arg;
5b4ee69b 9804
76a01679
JB
9805 if (exp->elts[*pos].opcode == OP_TYPE)
9806 {
9807 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9808 arg1 = NULL;
5bc23cb3 9809 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9810 }
9811 else
9812 {
9813 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9814 type_arg = NULL;
9815 }
9816
9817 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9818 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9819 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9820 *pos += 4;
9821
9822 if (noside == EVAL_SKIP)
9823 goto nosideret;
9824
9825 if (type_arg == NULL)
9826 {
9827 arg1 = ada_coerce_ref (arg1);
9828
ad82864c 9829 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9830 arg1 = ada_coerce_to_simple_array (arg1);
9831
1eea4ebd
UW
9832 type = ada_index_type (value_type (arg1), tem,
9833 ada_attribute_name (op));
9834 if (type == NULL)
9835 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9836
9837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9838 return allocate_value (type);
76a01679
JB
9839
9840 switch (op)
9841 {
9842 default: /* Should never happen. */
323e0a4a 9843 error (_("unexpected attribute encountered"));
76a01679 9844 case OP_ATR_FIRST:
1eea4ebd
UW
9845 return value_from_longest
9846 (type, ada_array_bound (arg1, tem, 0));
76a01679 9847 case OP_ATR_LAST:
1eea4ebd
UW
9848 return value_from_longest
9849 (type, ada_array_bound (arg1, tem, 1));
76a01679 9850 case OP_ATR_LENGTH:
1eea4ebd
UW
9851 return value_from_longest
9852 (type, ada_array_length (arg1, tem));
76a01679
JB
9853 }
9854 }
9855 else if (discrete_type_p (type_arg))
9856 {
9857 struct type *range_type;
9858 char *name = ada_type_name (type_arg);
5b4ee69b 9859
76a01679
JB
9860 range_type = NULL;
9861 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9862 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9863 if (range_type == NULL)
9864 range_type = type_arg;
9865 switch (op)
9866 {
9867 default:
323e0a4a 9868 error (_("unexpected attribute encountered"));
76a01679 9869 case OP_ATR_FIRST:
690cc4eb 9870 return value_from_longest
43bbcdc2 9871 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9872 case OP_ATR_LAST:
690cc4eb 9873 return value_from_longest
43bbcdc2 9874 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9875 case OP_ATR_LENGTH:
323e0a4a 9876 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9877 }
9878 }
9879 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9880 error (_("unimplemented type attribute"));
76a01679
JB
9881 else
9882 {
9883 LONGEST low, high;
9884
ad82864c
JB
9885 if (ada_is_constrained_packed_array_type (type_arg))
9886 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9887
1eea4ebd 9888 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9889 if (type == NULL)
1eea4ebd
UW
9890 type = builtin_type (exp->gdbarch)->builtin_int;
9891
76a01679
JB
9892 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9893 return allocate_value (type);
9894
9895 switch (op)
9896 {
9897 default:
323e0a4a 9898 error (_("unexpected attribute encountered"));
76a01679 9899 case OP_ATR_FIRST:
1eea4ebd 9900 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9901 return value_from_longest (type, low);
9902 case OP_ATR_LAST:
1eea4ebd 9903 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9904 return value_from_longest (type, high);
9905 case OP_ATR_LENGTH:
1eea4ebd
UW
9906 low = ada_array_bound_from_type (type_arg, tem, 0);
9907 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9908 return value_from_longest (type, high - low + 1);
9909 }
9910 }
14f9c5c9
AS
9911 }
9912
4c4b4cd2
PH
9913 case OP_ATR_TAG:
9914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9915 if (noside == EVAL_SKIP)
76a01679 9916 goto nosideret;
4c4b4cd2
PH
9917
9918 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9919 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9920
9921 return ada_value_tag (arg1);
9922
9923 case OP_ATR_MIN:
9924 case OP_ATR_MAX:
9925 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9926 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9927 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9928 if (noside == EVAL_SKIP)
76a01679 9929 goto nosideret;
d2e4a39e 9930 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9931 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9932 else
f44316fa
UW
9933 {
9934 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9935 return value_binop (arg1, arg2,
9936 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9937 }
14f9c5c9 9938
4c4b4cd2
PH
9939 case OP_ATR_MODULUS:
9940 {
31dedfee 9941 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9942
5b4ee69b 9943 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9944 if (noside == EVAL_SKIP)
9945 goto nosideret;
4c4b4cd2 9946
76a01679 9947 if (!ada_is_modular_type (type_arg))
323e0a4a 9948 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9949
76a01679
JB
9950 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9951 ada_modulus (type_arg));
4c4b4cd2
PH
9952 }
9953
9954
9955 case OP_ATR_POS:
9956 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9957 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9958 if (noside == EVAL_SKIP)
76a01679 9959 goto nosideret;
3cb382c9
UW
9960 type = builtin_type (exp->gdbarch)->builtin_int;
9961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9962 return value_zero (type, not_lval);
14f9c5c9 9963 else
3cb382c9 9964 return value_pos_atr (type, arg1);
14f9c5c9 9965
4c4b4cd2
PH
9966 case OP_ATR_SIZE:
9967 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9968 type = value_type (arg1);
9969
9970 /* If the argument is a reference, then dereference its type, since
9971 the user is really asking for the size of the actual object,
9972 not the size of the pointer. */
9973 if (TYPE_CODE (type) == TYPE_CODE_REF)
9974 type = TYPE_TARGET_TYPE (type);
9975
4c4b4cd2 9976 if (noside == EVAL_SKIP)
76a01679 9977 goto nosideret;
4c4b4cd2 9978 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9979 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9980 else
22601c15 9981 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9982 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9983
9984 case OP_ATR_VAL:
9985 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9987 type = exp->elts[pc + 2].type;
14f9c5c9 9988 if (noside == EVAL_SKIP)
76a01679 9989 goto nosideret;
4c4b4cd2 9990 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9991 return value_zero (type, not_lval);
4c4b4cd2 9992 else
76a01679 9993 return value_val_atr (type, arg1);
4c4b4cd2
PH
9994
9995 case BINOP_EXP:
9996 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9997 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9998 if (noside == EVAL_SKIP)
9999 goto nosideret;
10000 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10001 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10002 else
f44316fa
UW
10003 {
10004 /* For integer exponentiation operations,
10005 only promote the first argument. */
10006 if (is_integral_type (value_type (arg2)))
10007 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10008 else
10009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10010
10011 return value_binop (arg1, arg2, op);
10012 }
4c4b4cd2
PH
10013
10014 case UNOP_PLUS:
10015 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10016 if (noside == EVAL_SKIP)
10017 goto nosideret;
10018 else
10019 return arg1;
10020
10021 case UNOP_ABS:
10022 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10023 if (noside == EVAL_SKIP)
10024 goto nosideret;
f44316fa 10025 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10026 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10027 return value_neg (arg1);
14f9c5c9 10028 else
4c4b4cd2 10029 return arg1;
14f9c5c9
AS
10030
10031 case UNOP_IND:
6b0d7253 10032 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10033 if (noside == EVAL_SKIP)
4c4b4cd2 10034 goto nosideret;
df407dfe 10035 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10036 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10037 {
10038 if (ada_is_array_descriptor_type (type))
10039 /* GDB allows dereferencing GNAT array descriptors. */
10040 {
10041 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10042
4c4b4cd2 10043 if (arrType == NULL)
323e0a4a 10044 error (_("Attempt to dereference null array pointer."));
00a4c844 10045 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10046 }
10047 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10048 || TYPE_CODE (type) == TYPE_CODE_REF
10049 /* In C you can dereference an array to get the 1st elt. */
10050 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10051 {
10052 type = to_static_fixed_type
10053 (ada_aligned_type
10054 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10055 check_size (type);
10056 return value_zero (type, lval_memory);
10057 }
4c4b4cd2 10058 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10059 {
10060 /* GDB allows dereferencing an int. */
10061 if (expect_type == NULL)
10062 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10063 lval_memory);
10064 else
10065 {
10066 expect_type =
10067 to_static_fixed_type (ada_aligned_type (expect_type));
10068 return value_zero (expect_type, lval_memory);
10069 }
10070 }
4c4b4cd2 10071 else
323e0a4a 10072 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10073 }
0963b4bd 10074 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10075 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10076
96967637
JB
10077 if (TYPE_CODE (type) == TYPE_CODE_INT)
10078 /* GDB allows dereferencing an int. If we were given
10079 the expect_type, then use that as the target type.
10080 Otherwise, assume that the target type is an int. */
10081 {
10082 if (expect_type != NULL)
10083 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10084 arg1));
10085 else
10086 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10087 (CORE_ADDR) value_as_address (arg1));
10088 }
6b0d7253 10089
4c4b4cd2
PH
10090 if (ada_is_array_descriptor_type (type))
10091 /* GDB allows dereferencing GNAT array descriptors. */
10092 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10093 else
4c4b4cd2 10094 return ada_value_ind (arg1);
14f9c5c9
AS
10095
10096 case STRUCTOP_STRUCT:
10097 tem = longest_to_int (exp->elts[pc + 1].longconst);
10098 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10100 if (noside == EVAL_SKIP)
4c4b4cd2 10101 goto nosideret;
14f9c5c9 10102 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10103 {
df407dfe 10104 struct type *type1 = value_type (arg1);
5b4ee69b 10105
76a01679
JB
10106 if (ada_is_tagged_type (type1, 1))
10107 {
10108 type = ada_lookup_struct_elt_type (type1,
10109 &exp->elts[pc + 2].string,
10110 1, 1, NULL);
10111 if (type == NULL)
10112 /* In this case, we assume that the field COULD exist
10113 in some extension of the type. Return an object of
10114 "type" void, which will match any formal
0963b4bd 10115 (see ada_type_match). */
30b15541
UW
10116 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10117 lval_memory);
76a01679
JB
10118 }
10119 else
10120 type =
10121 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10122 0, NULL);
10123
10124 return value_zero (ada_aligned_type (type), lval_memory);
10125 }
14f9c5c9 10126 else
284614f0
JB
10127 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10128 arg1 = unwrap_value (arg1);
10129 return ada_to_fixed_value (arg1);
10130
14f9c5c9 10131 case OP_TYPE:
4c4b4cd2
PH
10132 /* The value is not supposed to be used. This is here to make it
10133 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10134 (*pos) += 2;
10135 if (noside == EVAL_SKIP)
4c4b4cd2 10136 goto nosideret;
14f9c5c9 10137 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10138 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10139 else
323e0a4a 10140 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10141
10142 case OP_AGGREGATE:
10143 case OP_CHOICES:
10144 case OP_OTHERS:
10145 case OP_DISCRETE_RANGE:
10146 case OP_POSITIONAL:
10147 case OP_NAME:
10148 if (noside == EVAL_NORMAL)
10149 switch (op)
10150 {
10151 case OP_NAME:
10152 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10153 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10154 case OP_AGGREGATE:
10155 error (_("Aggregates only allowed on the right of an assignment"));
10156 default:
0963b4bd
MS
10157 internal_error (__FILE__, __LINE__,
10158 _("aggregate apparently mangled"));
52ce6436
PH
10159 }
10160
10161 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10162 *pos += oplen - 1;
10163 for (tem = 0; tem < nargs; tem += 1)
10164 ada_evaluate_subexp (NULL, exp, pos, noside);
10165 goto nosideret;
14f9c5c9
AS
10166 }
10167
10168nosideret:
22601c15 10169 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10170}
14f9c5c9 10171\f
d2e4a39e 10172
4c4b4cd2 10173 /* Fixed point */
14f9c5c9
AS
10174
10175/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10176 type name that encodes the 'small and 'delta information.
4c4b4cd2 10177 Otherwise, return NULL. */
14f9c5c9 10178
d2e4a39e 10179static const char *
ebf56fd3 10180fixed_type_info (struct type *type)
14f9c5c9 10181{
d2e4a39e 10182 const char *name = ada_type_name (type);
14f9c5c9
AS
10183 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10184
d2e4a39e
AS
10185 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10186 {
14f9c5c9 10187 const char *tail = strstr (name, "___XF_");
5b4ee69b 10188
14f9c5c9 10189 if (tail == NULL)
4c4b4cd2 10190 return NULL;
d2e4a39e 10191 else
4c4b4cd2 10192 return tail + 5;
14f9c5c9
AS
10193 }
10194 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10195 return fixed_type_info (TYPE_TARGET_TYPE (type));
10196 else
10197 return NULL;
10198}
10199
4c4b4cd2 10200/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10201
10202int
ebf56fd3 10203ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10204{
10205 return fixed_type_info (type) != NULL;
10206}
10207
4c4b4cd2
PH
10208/* Return non-zero iff TYPE represents a System.Address type. */
10209
10210int
10211ada_is_system_address_type (struct type *type)
10212{
10213 return (TYPE_NAME (type)
10214 && strcmp (TYPE_NAME (type), "system__address") == 0);
10215}
10216
14f9c5c9
AS
10217/* Assuming that TYPE is the representation of an Ada fixed-point
10218 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10219 delta cannot be determined. */
14f9c5c9
AS
10220
10221DOUBLEST
ebf56fd3 10222ada_delta (struct type *type)
14f9c5c9
AS
10223{
10224 const char *encoding = fixed_type_info (type);
facc390f 10225 DOUBLEST num, den;
14f9c5c9 10226
facc390f
JB
10227 /* Strictly speaking, num and den are encoded as integer. However,
10228 they may not fit into a long, and they will have to be converted
10229 to DOUBLEST anyway. So scan them as DOUBLEST. */
10230 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10231 &num, &den) < 2)
14f9c5c9 10232 return -1.0;
d2e4a39e 10233 else
facc390f 10234 return num / den;
14f9c5c9
AS
10235}
10236
10237/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10238 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10239
10240static DOUBLEST
ebf56fd3 10241scaling_factor (struct type *type)
14f9c5c9
AS
10242{
10243 const char *encoding = fixed_type_info (type);
facc390f 10244 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10245 int n;
d2e4a39e 10246
facc390f
JB
10247 /* Strictly speaking, num's and den's are encoded as integer. However,
10248 they may not fit into a long, and they will have to be converted
10249 to DOUBLEST anyway. So scan them as DOUBLEST. */
10250 n = sscanf (encoding,
10251 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10252 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10253 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10254
10255 if (n < 2)
10256 return 1.0;
10257 else if (n == 4)
facc390f 10258 return num1 / den1;
d2e4a39e 10259 else
facc390f 10260 return num0 / den0;
14f9c5c9
AS
10261}
10262
10263
10264/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10265 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10266
10267DOUBLEST
ebf56fd3 10268ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10269{
d2e4a39e 10270 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10271}
10272
4c4b4cd2
PH
10273/* The representation of a fixed-point value of type TYPE
10274 corresponding to the value X. */
14f9c5c9
AS
10275
10276LONGEST
ebf56fd3 10277ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10278{
10279 return (LONGEST) (x / scaling_factor (type) + 0.5);
10280}
10281
14f9c5c9 10282\f
d2e4a39e 10283
4c4b4cd2 10284 /* Range types */
14f9c5c9
AS
10285
10286/* Scan STR beginning at position K for a discriminant name, and
10287 return the value of that discriminant field of DVAL in *PX. If
10288 PNEW_K is not null, put the position of the character beyond the
10289 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10290 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10291
10292static int
07d8f827 10293scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10294 int *pnew_k)
14f9c5c9
AS
10295{
10296 static char *bound_buffer = NULL;
10297 static size_t bound_buffer_len = 0;
10298 char *bound;
10299 char *pend;
d2e4a39e 10300 struct value *bound_val;
14f9c5c9
AS
10301
10302 if (dval == NULL || str == NULL || str[k] == '\0')
10303 return 0;
10304
d2e4a39e 10305 pend = strstr (str + k, "__");
14f9c5c9
AS
10306 if (pend == NULL)
10307 {
d2e4a39e 10308 bound = str + k;
14f9c5c9
AS
10309 k += strlen (bound);
10310 }
d2e4a39e 10311 else
14f9c5c9 10312 {
d2e4a39e 10313 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10314 bound = bound_buffer;
d2e4a39e
AS
10315 strncpy (bound_buffer, str + k, pend - (str + k));
10316 bound[pend - (str + k)] = '\0';
10317 k = pend - str;
14f9c5c9 10318 }
d2e4a39e 10319
df407dfe 10320 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10321 if (bound_val == NULL)
10322 return 0;
10323
10324 *px = value_as_long (bound_val);
10325 if (pnew_k != NULL)
10326 *pnew_k = k;
10327 return 1;
10328}
10329
10330/* Value of variable named NAME in the current environment. If
10331 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10332 otherwise causes an error with message ERR_MSG. */
10333
d2e4a39e
AS
10334static struct value *
10335get_var_value (char *name, char *err_msg)
14f9c5c9 10336{
4c4b4cd2 10337 struct ada_symbol_info *syms;
14f9c5c9
AS
10338 int nsyms;
10339
4c4b4cd2
PH
10340 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10341 &syms);
14f9c5c9
AS
10342
10343 if (nsyms != 1)
10344 {
10345 if (err_msg == NULL)
4c4b4cd2 10346 return 0;
14f9c5c9 10347 else
8a3fe4f8 10348 error (("%s"), err_msg);
14f9c5c9
AS
10349 }
10350
4c4b4cd2 10351 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10352}
d2e4a39e 10353
14f9c5c9 10354/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10355 no such variable found, returns 0, and sets *FLAG to 0. If
10356 successful, sets *FLAG to 1. */
10357
14f9c5c9 10358LONGEST
4c4b4cd2 10359get_int_var_value (char *name, int *flag)
14f9c5c9 10360{
4c4b4cd2 10361 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10362
14f9c5c9
AS
10363 if (var_val == 0)
10364 {
10365 if (flag != NULL)
4c4b4cd2 10366 *flag = 0;
14f9c5c9
AS
10367 return 0;
10368 }
10369 else
10370 {
10371 if (flag != NULL)
4c4b4cd2 10372 *flag = 1;
14f9c5c9
AS
10373 return value_as_long (var_val);
10374 }
10375}
d2e4a39e 10376
14f9c5c9
AS
10377
10378/* Return a range type whose base type is that of the range type named
10379 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10380 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10381 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10382 corresponding range type from debug information; fall back to using it
10383 if symbol lookup fails. If a new type must be created, allocate it
10384 like ORIG_TYPE was. The bounds information, in general, is encoded
10385 in NAME, the base type given in the named range type. */
14f9c5c9 10386
d2e4a39e 10387static struct type *
28c85d6c 10388to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10389{
28c85d6c 10390 char *name;
14f9c5c9 10391 struct type *base_type;
d2e4a39e 10392 char *subtype_info;
14f9c5c9 10393
28c85d6c
JB
10394 gdb_assert (raw_type != NULL);
10395 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10396
1ce677a4 10397 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10398 base_type = TYPE_TARGET_TYPE (raw_type);
10399 else
10400 base_type = raw_type;
10401
28c85d6c 10402 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10403 subtype_info = strstr (name, "___XD");
10404 if (subtype_info == NULL)
690cc4eb 10405 {
43bbcdc2
PH
10406 LONGEST L = ada_discrete_type_low_bound (raw_type);
10407 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10408
690cc4eb
PH
10409 if (L < INT_MIN || U > INT_MAX)
10410 return raw_type;
10411 else
28c85d6c 10412 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10413 ada_discrete_type_low_bound (raw_type),
10414 ada_discrete_type_high_bound (raw_type));
690cc4eb 10415 }
14f9c5c9
AS
10416 else
10417 {
10418 static char *name_buf = NULL;
10419 static size_t name_len = 0;
10420 int prefix_len = subtype_info - name;
10421 LONGEST L, U;
10422 struct type *type;
10423 char *bounds_str;
10424 int n;
10425
10426 GROW_VECT (name_buf, name_len, prefix_len + 5);
10427 strncpy (name_buf, name, prefix_len);
10428 name_buf[prefix_len] = '\0';
10429
10430 subtype_info += 5;
10431 bounds_str = strchr (subtype_info, '_');
10432 n = 1;
10433
d2e4a39e 10434 if (*subtype_info == 'L')
4c4b4cd2
PH
10435 {
10436 if (!ada_scan_number (bounds_str, n, &L, &n)
10437 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10438 return raw_type;
10439 if (bounds_str[n] == '_')
10440 n += 2;
0963b4bd 10441 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10442 n += 1;
10443 subtype_info += 1;
10444 }
d2e4a39e 10445 else
4c4b4cd2
PH
10446 {
10447 int ok;
5b4ee69b 10448
4c4b4cd2
PH
10449 strcpy (name_buf + prefix_len, "___L");
10450 L = get_int_var_value (name_buf, &ok);
10451 if (!ok)
10452 {
323e0a4a 10453 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10454 L = 1;
10455 }
10456 }
14f9c5c9 10457
d2e4a39e 10458 if (*subtype_info == 'U')
4c4b4cd2
PH
10459 {
10460 if (!ada_scan_number (bounds_str, n, &U, &n)
10461 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10462 return raw_type;
10463 }
d2e4a39e 10464 else
4c4b4cd2
PH
10465 {
10466 int ok;
5b4ee69b 10467
4c4b4cd2
PH
10468 strcpy (name_buf + prefix_len, "___U");
10469 U = get_int_var_value (name_buf, &ok);
10470 if (!ok)
10471 {
323e0a4a 10472 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10473 U = L;
10474 }
10475 }
14f9c5c9 10476
28c85d6c 10477 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10478 TYPE_NAME (type) = name;
14f9c5c9
AS
10479 return type;
10480 }
10481}
10482
4c4b4cd2
PH
10483/* True iff NAME is the name of a range type. */
10484
14f9c5c9 10485int
d2e4a39e 10486ada_is_range_type_name (const char *name)
14f9c5c9
AS
10487{
10488 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10489}
14f9c5c9 10490\f
d2e4a39e 10491
4c4b4cd2
PH
10492 /* Modular types */
10493
10494/* True iff TYPE is an Ada modular type. */
14f9c5c9 10495
14f9c5c9 10496int
d2e4a39e 10497ada_is_modular_type (struct type *type)
14f9c5c9 10498{
18af8284 10499 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10500
10501 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10502 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10503 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10504}
10505
0056e4d5
JB
10506/* Try to determine the lower and upper bounds of the given modular type
10507 using the type name only. Return non-zero and set L and U as the lower
10508 and upper bounds (respectively) if successful. */
10509
10510int
10511ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10512{
10513 char *name = ada_type_name (type);
10514 char *suffix;
10515 int k;
10516 LONGEST U;
10517
10518 if (name == NULL)
10519 return 0;
10520
10521 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10522 we are looking for static bounds, which means an __XDLU suffix.
10523 Moreover, we know that the lower bound of modular types is always
10524 zero, so the actual suffix should start with "__XDLU_0__", and
10525 then be followed by the upper bound value. */
10526 suffix = strstr (name, "__XDLU_0__");
10527 if (suffix == NULL)
10528 return 0;
10529 k = 10;
10530 if (!ada_scan_number (suffix, k, &U, NULL))
10531 return 0;
10532
10533 *modulus = (ULONGEST) U + 1;
10534 return 1;
10535}
10536
4c4b4cd2
PH
10537/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10538
61ee279c 10539ULONGEST
0056e4d5 10540ada_modulus (struct type *type)
14f9c5c9 10541{
43bbcdc2 10542 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10543}
d2e4a39e 10544\f
f7f9143b
JB
10545
10546/* Ada exception catchpoint support:
10547 ---------------------------------
10548
10549 We support 3 kinds of exception catchpoints:
10550 . catchpoints on Ada exceptions
10551 . catchpoints on unhandled Ada exceptions
10552 . catchpoints on failed assertions
10553
10554 Exceptions raised during failed assertions, or unhandled exceptions
10555 could perfectly be caught with the general catchpoint on Ada exceptions.
10556 However, we can easily differentiate these two special cases, and having
10557 the option to distinguish these two cases from the rest can be useful
10558 to zero-in on certain situations.
10559
10560 Exception catchpoints are a specialized form of breakpoint,
10561 since they rely on inserting breakpoints inside known routines
10562 of the GNAT runtime. The implementation therefore uses a standard
10563 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10564 of breakpoint_ops.
10565
0259addd
JB
10566 Support in the runtime for exception catchpoints have been changed
10567 a few times already, and these changes affect the implementation
10568 of these catchpoints. In order to be able to support several
10569 variants of the runtime, we use a sniffer that will determine
28010a5d 10570 the runtime variant used by the program being debugged. */
f7f9143b
JB
10571
10572/* The different types of catchpoints that we introduced for catching
10573 Ada exceptions. */
10574
10575enum exception_catchpoint_kind
10576{
10577 ex_catch_exception,
10578 ex_catch_exception_unhandled,
10579 ex_catch_assert
10580};
10581
3d0b0fa3
JB
10582/* Ada's standard exceptions. */
10583
10584static char *standard_exc[] = {
10585 "constraint_error",
10586 "program_error",
10587 "storage_error",
10588 "tasking_error"
10589};
10590
0259addd
JB
10591typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10592
10593/* A structure that describes how to support exception catchpoints
10594 for a given executable. */
10595
10596struct exception_support_info
10597{
10598 /* The name of the symbol to break on in order to insert
10599 a catchpoint on exceptions. */
10600 const char *catch_exception_sym;
10601
10602 /* The name of the symbol to break on in order to insert
10603 a catchpoint on unhandled exceptions. */
10604 const char *catch_exception_unhandled_sym;
10605
10606 /* The name of the symbol to break on in order to insert
10607 a catchpoint on failed assertions. */
10608 const char *catch_assert_sym;
10609
10610 /* Assuming that the inferior just triggered an unhandled exception
10611 catchpoint, this function is responsible for returning the address
10612 in inferior memory where the name of that exception is stored.
10613 Return zero if the address could not be computed. */
10614 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10615};
10616
10617static CORE_ADDR ada_unhandled_exception_name_addr (void);
10618static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10619
10620/* The following exception support info structure describes how to
10621 implement exception catchpoints with the latest version of the
10622 Ada runtime (as of 2007-03-06). */
10623
10624static const struct exception_support_info default_exception_support_info =
10625{
10626 "__gnat_debug_raise_exception", /* catch_exception_sym */
10627 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10628 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10629 ada_unhandled_exception_name_addr
10630};
10631
10632/* The following exception support info structure describes how to
10633 implement exception catchpoints with a slightly older version
10634 of the Ada runtime. */
10635
10636static const struct exception_support_info exception_support_info_fallback =
10637{
10638 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10639 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10640 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10641 ada_unhandled_exception_name_addr_from_raise
10642};
10643
f17011e0
JB
10644/* Return nonzero if we can detect the exception support routines
10645 described in EINFO.
10646
10647 This function errors out if an abnormal situation is detected
10648 (for instance, if we find the exception support routines, but
10649 that support is found to be incomplete). */
10650
10651static int
10652ada_has_this_exception_support (const struct exception_support_info *einfo)
10653{
10654 struct symbol *sym;
10655
10656 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10657 that should be compiled with debugging information. As a result, we
10658 expect to find that symbol in the symtabs. */
10659
10660 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10661 if (sym == NULL)
10662 return 0;
10663
10664 /* Make sure that the symbol we found corresponds to a function. */
10665
10666 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10667 error (_("Symbol \"%s\" is not a function (class = %d)"),
10668 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10669
10670 return 1;
10671}
10672
0259addd
JB
10673/* For each executable, we sniff which exception info structure to use
10674 and cache it in the following global variable. */
10675
10676static const struct exception_support_info *exception_info = NULL;
10677
10678/* Inspect the Ada runtime and determine which exception info structure
10679 should be used to provide support for exception catchpoints.
10680
10681 This function will always set exception_info, or raise an error. */
10682
10683static void
10684ada_exception_support_info_sniffer (void)
10685{
10686 struct symbol *sym;
10687
10688 /* If the exception info is already known, then no need to recompute it. */
10689 if (exception_info != NULL)
10690 return;
10691
10692 /* Check the latest (default) exception support info. */
f17011e0 10693 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd
JB
10694 {
10695 exception_info = &default_exception_support_info;
10696 return;
10697 }
10698
10699 /* Try our fallback exception suport info. */
f17011e0 10700 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd
JB
10701 {
10702 exception_info = &exception_support_info_fallback;
10703 return;
10704 }
10705
10706 /* Sometimes, it is normal for us to not be able to find the routine
10707 we are looking for. This happens when the program is linked with
10708 the shared version of the GNAT runtime, and the program has not been
10709 started yet. Inform the user of these two possible causes if
10710 applicable. */
10711
ccefe4c4 10712 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10713 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10714
10715 /* If the symbol does not exist, then check that the program is
10716 already started, to make sure that shared libraries have been
10717 loaded. If it is not started, this may mean that the symbol is
10718 in a shared library. */
10719
10720 if (ptid_get_pid (inferior_ptid) == 0)
10721 error (_("Unable to insert catchpoint. Try to start the program first."));
10722
10723 /* At this point, we know that we are debugging an Ada program and
10724 that the inferior has been started, but we still are not able to
0963b4bd 10725 find the run-time symbols. That can mean that we are in
0259addd
JB
10726 configurable run time mode, or that a-except as been optimized
10727 out by the linker... In any case, at this point it is not worth
10728 supporting this feature. */
10729
10730 error (_("Cannot insert catchpoints in this configuration."));
10731}
10732
10733/* An observer of "executable_changed" events.
10734 Its role is to clear certain cached values that need to be recomputed
10735 each time a new executable is loaded by GDB. */
10736
10737static void
781b42b0 10738ada_executable_changed_observer (void)
0259addd
JB
10739{
10740 /* If the executable changed, then it is possible that the Ada runtime
10741 is different. So we need to invalidate the exception support info
10742 cache. */
10743 exception_info = NULL;
10744}
10745
f7f9143b
JB
10746/* True iff FRAME is very likely to be that of a function that is
10747 part of the runtime system. This is all very heuristic, but is
10748 intended to be used as advice as to what frames are uninteresting
10749 to most users. */
10750
10751static int
10752is_known_support_routine (struct frame_info *frame)
10753{
4ed6b5be 10754 struct symtab_and_line sal;
f7f9143b 10755 char *func_name;
692465f1 10756 enum language func_lang;
f7f9143b 10757 int i;
f7f9143b 10758
4ed6b5be
JB
10759 /* If this code does not have any debugging information (no symtab),
10760 This cannot be any user code. */
f7f9143b 10761
4ed6b5be 10762 find_frame_sal (frame, &sal);
f7f9143b
JB
10763 if (sal.symtab == NULL)
10764 return 1;
10765
4ed6b5be
JB
10766 /* If there is a symtab, but the associated source file cannot be
10767 located, then assume this is not user code: Selecting a frame
10768 for which we cannot display the code would not be very helpful
10769 for the user. This should also take care of case such as VxWorks
10770 where the kernel has some debugging info provided for a few units. */
f7f9143b 10771
9bbc9174 10772 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10773 return 1;
10774
4ed6b5be
JB
10775 /* Check the unit filename againt the Ada runtime file naming.
10776 We also check the name of the objfile against the name of some
10777 known system libraries that sometimes come with debugging info
10778 too. */
10779
f7f9143b
JB
10780 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10781 {
10782 re_comp (known_runtime_file_name_patterns[i]);
10783 if (re_exec (sal.symtab->filename))
10784 return 1;
4ed6b5be
JB
10785 if (sal.symtab->objfile != NULL
10786 && re_exec (sal.symtab->objfile->name))
10787 return 1;
f7f9143b
JB
10788 }
10789
4ed6b5be 10790 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10791
e9e07ba6 10792 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10793 if (func_name == NULL)
10794 return 1;
10795
10796 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10797 {
10798 re_comp (known_auxiliary_function_name_patterns[i]);
10799 if (re_exec (func_name))
10800 return 1;
10801 }
10802
10803 return 0;
10804}
10805
10806/* Find the first frame that contains debugging information and that is not
10807 part of the Ada run-time, starting from FI and moving upward. */
10808
0ef643c8 10809void
f7f9143b
JB
10810ada_find_printable_frame (struct frame_info *fi)
10811{
10812 for (; fi != NULL; fi = get_prev_frame (fi))
10813 {
10814 if (!is_known_support_routine (fi))
10815 {
10816 select_frame (fi);
10817 break;
10818 }
10819 }
10820
10821}
10822
10823/* Assuming that the inferior just triggered an unhandled exception
10824 catchpoint, return the address in inferior memory where the name
10825 of the exception is stored.
10826
10827 Return zero if the address could not be computed. */
10828
10829static CORE_ADDR
10830ada_unhandled_exception_name_addr (void)
0259addd
JB
10831{
10832 return parse_and_eval_address ("e.full_name");
10833}
10834
10835/* Same as ada_unhandled_exception_name_addr, except that this function
10836 should be used when the inferior uses an older version of the runtime,
10837 where the exception name needs to be extracted from a specific frame
10838 several frames up in the callstack. */
10839
10840static CORE_ADDR
10841ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10842{
10843 int frame_level;
10844 struct frame_info *fi;
10845
10846 /* To determine the name of this exception, we need to select
10847 the frame corresponding to RAISE_SYM_NAME. This frame is
10848 at least 3 levels up, so we simply skip the first 3 frames
10849 without checking the name of their associated function. */
10850 fi = get_current_frame ();
10851 for (frame_level = 0; frame_level < 3; frame_level += 1)
10852 if (fi != NULL)
10853 fi = get_prev_frame (fi);
10854
10855 while (fi != NULL)
10856 {
692465f1
JB
10857 char *func_name;
10858 enum language func_lang;
10859
e9e07ba6 10860 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10861 if (func_name != NULL
0259addd 10862 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10863 break; /* We found the frame we were looking for... */
10864 fi = get_prev_frame (fi);
10865 }
10866
10867 if (fi == NULL)
10868 return 0;
10869
10870 select_frame (fi);
10871 return parse_and_eval_address ("id.full_name");
10872}
10873
10874/* Assuming the inferior just triggered an Ada exception catchpoint
10875 (of any type), return the address in inferior memory where the name
10876 of the exception is stored, if applicable.
10877
10878 Return zero if the address could not be computed, or if not relevant. */
10879
10880static CORE_ADDR
10881ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10882 struct breakpoint *b)
10883{
10884 switch (ex)
10885 {
10886 case ex_catch_exception:
10887 return (parse_and_eval_address ("e.full_name"));
10888 break;
10889
10890 case ex_catch_exception_unhandled:
0259addd 10891 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10892 break;
10893
10894 case ex_catch_assert:
10895 return 0; /* Exception name is not relevant in this case. */
10896 break;
10897
10898 default:
10899 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10900 break;
10901 }
10902
10903 return 0; /* Should never be reached. */
10904}
10905
10906/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10907 any error that ada_exception_name_addr_1 might cause to be thrown.
10908 When an error is intercepted, a warning with the error message is printed,
10909 and zero is returned. */
10910
10911static CORE_ADDR
10912ada_exception_name_addr (enum exception_catchpoint_kind ex,
10913 struct breakpoint *b)
10914{
10915 struct gdb_exception e;
10916 CORE_ADDR result = 0;
10917
10918 TRY_CATCH (e, RETURN_MASK_ERROR)
10919 {
10920 result = ada_exception_name_addr_1 (ex, b);
10921 }
10922
10923 if (e.reason < 0)
10924 {
10925 warning (_("failed to get exception name: %s"), e.message);
10926 return 0;
10927 }
10928
10929 return result;
10930}
10931
28010a5d
PA
10932static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10933 char *, char **,
c0a91b2b 10934 const struct breakpoint_ops **);
28010a5d
PA
10935static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10936
10937/* Ada catchpoints.
10938
10939 In the case of catchpoints on Ada exceptions, the catchpoint will
10940 stop the target on every exception the program throws. When a user
10941 specifies the name of a specific exception, we translate this
10942 request into a condition expression (in text form), and then parse
10943 it into an expression stored in each of the catchpoint's locations.
10944 We then use this condition to check whether the exception that was
10945 raised is the one the user is interested in. If not, then the
10946 target is resumed again. We store the name of the requested
10947 exception, in order to be able to re-set the condition expression
10948 when symbols change. */
10949
10950/* An instance of this type is used to represent an Ada catchpoint
10951 breakpoint location. It includes a "struct bp_location" as a kind
10952 of base class; users downcast to "struct bp_location *" when
10953 needed. */
10954
10955struct ada_catchpoint_location
10956{
10957 /* The base class. */
10958 struct bp_location base;
10959
10960 /* The condition that checks whether the exception that was raised
10961 is the specific exception the user specified on catchpoint
10962 creation. */
10963 struct expression *excep_cond_expr;
10964};
10965
10966/* Implement the DTOR method in the bp_location_ops structure for all
10967 Ada exception catchpoint kinds. */
10968
10969static void
10970ada_catchpoint_location_dtor (struct bp_location *bl)
10971{
10972 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
10973
10974 xfree (al->excep_cond_expr);
10975}
10976
10977/* The vtable to be used in Ada catchpoint locations. */
10978
10979static const struct bp_location_ops ada_catchpoint_location_ops =
10980{
10981 ada_catchpoint_location_dtor
10982};
10983
10984/* An instance of this type is used to represent an Ada catchpoint.
10985 It includes a "struct breakpoint" as a kind of base class; users
10986 downcast to "struct breakpoint *" when needed. */
10987
10988struct ada_catchpoint
10989{
10990 /* The base class. */
10991 struct breakpoint base;
10992
10993 /* The name of the specific exception the user specified. */
10994 char *excep_string;
10995};
10996
10997/* Parse the exception condition string in the context of each of the
10998 catchpoint's locations, and store them for later evaluation. */
10999
11000static void
11001create_excep_cond_exprs (struct ada_catchpoint *c)
11002{
11003 struct cleanup *old_chain;
11004 struct bp_location *bl;
11005 char *cond_string;
11006
11007 /* Nothing to do if there's no specific exception to catch. */
11008 if (c->excep_string == NULL)
11009 return;
11010
11011 /* Same if there are no locations... */
11012 if (c->base.loc == NULL)
11013 return;
11014
11015 /* Compute the condition expression in text form, from the specific
11016 expection we want to catch. */
11017 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11018 old_chain = make_cleanup (xfree, cond_string);
11019
11020 /* Iterate over all the catchpoint's locations, and parse an
11021 expression for each. */
11022 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11023 {
11024 struct ada_catchpoint_location *ada_loc
11025 = (struct ada_catchpoint_location *) bl;
11026 struct expression *exp = NULL;
11027
11028 if (!bl->shlib_disabled)
11029 {
11030 volatile struct gdb_exception e;
11031 char *s;
11032
11033 s = cond_string;
11034 TRY_CATCH (e, RETURN_MASK_ERROR)
11035 {
11036 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11037 }
11038 if (e.reason < 0)
11039 warning (_("failed to reevaluate internal exception condition "
11040 "for catchpoint %d: %s"),
11041 c->base.number, e.message);
11042 }
11043
11044 ada_loc->excep_cond_expr = exp;
11045 }
11046
11047 do_cleanups (old_chain);
11048}
11049
11050/* Implement the DTOR method in the breakpoint_ops structure for all
11051 exception catchpoint kinds. */
11052
11053static void
11054dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11055{
11056 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11057
11058 xfree (c->excep_string);
348d480f 11059
2060206e 11060 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11061}
11062
11063/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11064 structure for all exception catchpoint kinds. */
11065
11066static struct bp_location *
11067allocate_location_exception (enum exception_catchpoint_kind ex,
11068 struct breakpoint *self)
11069{
11070 struct ada_catchpoint_location *loc;
11071
11072 loc = XNEW (struct ada_catchpoint_location);
11073 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11074 loc->excep_cond_expr = NULL;
11075 return &loc->base;
11076}
11077
11078/* Implement the RE_SET method in the breakpoint_ops structure for all
11079 exception catchpoint kinds. */
11080
11081static void
11082re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11083{
11084 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11085
11086 /* Call the base class's method. This updates the catchpoint's
11087 locations. */
2060206e 11088 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11089
11090 /* Reparse the exception conditional expressions. One for each
11091 location. */
11092 create_excep_cond_exprs (c);
11093}
11094
11095/* Returns true if we should stop for this breakpoint hit. If the
11096 user specified a specific exception, we only want to cause a stop
11097 if the program thrown that exception. */
11098
11099static int
11100should_stop_exception (const struct bp_location *bl)
11101{
11102 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11103 const struct ada_catchpoint_location *ada_loc
11104 = (const struct ada_catchpoint_location *) bl;
11105 volatile struct gdb_exception ex;
11106 int stop;
11107
11108 /* With no specific exception, should always stop. */
11109 if (c->excep_string == NULL)
11110 return 1;
11111
11112 if (ada_loc->excep_cond_expr == NULL)
11113 {
11114 /* We will have a NULL expression if back when we were creating
11115 the expressions, this location's had failed to parse. */
11116 return 1;
11117 }
11118
11119 stop = 1;
11120 TRY_CATCH (ex, RETURN_MASK_ALL)
11121 {
11122 struct value *mark;
11123
11124 mark = value_mark ();
11125 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11126 value_free_to_mark (mark);
11127 }
11128 if (ex.reason < 0)
11129 exception_fprintf (gdb_stderr, ex,
11130 _("Error in testing exception condition:\n"));
11131 return stop;
11132}
11133
11134/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11135 for all exception catchpoint kinds. */
11136
11137static void
11138check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11139{
11140 bs->stop = should_stop_exception (bs->bp_location_at);
11141}
11142
f7f9143b
JB
11143/* Implement the PRINT_IT method in the breakpoint_ops structure
11144 for all exception catchpoint kinds. */
11145
11146static enum print_stop_action
348d480f 11147print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11148{
79a45e25 11149 struct ui_out *uiout = current_uiout;
348d480f
PA
11150 struct breakpoint *b = bs->breakpoint_at;
11151
956a9fb9 11152 annotate_catchpoint (b->number);
f7f9143b 11153
956a9fb9 11154 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11155 {
956a9fb9
JB
11156 ui_out_field_string (uiout, "reason",
11157 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11158 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11159 }
11160
00eb2c4a
JB
11161 ui_out_text (uiout,
11162 b->disposition == disp_del ? "\nTemporary catchpoint "
11163 : "\nCatchpoint ");
956a9fb9
JB
11164 ui_out_field_int (uiout, "bkptno", b->number);
11165 ui_out_text (uiout, ", ");
f7f9143b 11166
f7f9143b
JB
11167 switch (ex)
11168 {
11169 case ex_catch_exception:
f7f9143b 11170 case ex_catch_exception_unhandled:
956a9fb9
JB
11171 {
11172 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11173 char exception_name[256];
11174
11175 if (addr != 0)
11176 {
11177 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11178 exception_name [sizeof (exception_name) - 1] = '\0';
11179 }
11180 else
11181 {
11182 /* For some reason, we were unable to read the exception
11183 name. This could happen if the Runtime was compiled
11184 without debugging info, for instance. In that case,
11185 just replace the exception name by the generic string
11186 "exception" - it will read as "an exception" in the
11187 notification we are about to print. */
967cff16 11188 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11189 }
11190 /* In the case of unhandled exception breakpoints, we print
11191 the exception name as "unhandled EXCEPTION_NAME", to make
11192 it clearer to the user which kind of catchpoint just got
11193 hit. We used ui_out_text to make sure that this extra
11194 info does not pollute the exception name in the MI case. */
11195 if (ex == ex_catch_exception_unhandled)
11196 ui_out_text (uiout, "unhandled ");
11197 ui_out_field_string (uiout, "exception-name", exception_name);
11198 }
11199 break;
f7f9143b 11200 case ex_catch_assert:
956a9fb9
JB
11201 /* In this case, the name of the exception is not really
11202 important. Just print "failed assertion" to make it clearer
11203 that his program just hit an assertion-failure catchpoint.
11204 We used ui_out_text because this info does not belong in
11205 the MI output. */
11206 ui_out_text (uiout, "failed assertion");
11207 break;
f7f9143b 11208 }
956a9fb9
JB
11209 ui_out_text (uiout, " at ");
11210 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11211
11212 return PRINT_SRC_AND_LOC;
11213}
11214
11215/* Implement the PRINT_ONE method in the breakpoint_ops structure
11216 for all exception catchpoint kinds. */
11217
11218static void
11219print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11220 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11221{
79a45e25 11222 struct ui_out *uiout = current_uiout;
28010a5d 11223 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11224 struct value_print_options opts;
11225
11226 get_user_print_options (&opts);
11227 if (opts.addressprint)
f7f9143b
JB
11228 {
11229 annotate_field (4);
5af949e3 11230 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11231 }
11232
11233 annotate_field (5);
a6d9a66e 11234 *last_loc = b->loc;
f7f9143b
JB
11235 switch (ex)
11236 {
11237 case ex_catch_exception:
28010a5d 11238 if (c->excep_string != NULL)
f7f9143b 11239 {
28010a5d
PA
11240 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11241
f7f9143b
JB
11242 ui_out_field_string (uiout, "what", msg);
11243 xfree (msg);
11244 }
11245 else
11246 ui_out_field_string (uiout, "what", "all Ada exceptions");
11247
11248 break;
11249
11250 case ex_catch_exception_unhandled:
11251 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11252 break;
11253
11254 case ex_catch_assert:
11255 ui_out_field_string (uiout, "what", "failed Ada assertions");
11256 break;
11257
11258 default:
11259 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11260 break;
11261 }
11262}
11263
11264/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11265 for all exception catchpoint kinds. */
11266
11267static void
11268print_mention_exception (enum exception_catchpoint_kind ex,
11269 struct breakpoint *b)
11270{
28010a5d 11271 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11272 struct ui_out *uiout = current_uiout;
28010a5d 11273
00eb2c4a
JB
11274 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11275 : _("Catchpoint "));
11276 ui_out_field_int (uiout, "bkptno", b->number);
11277 ui_out_text (uiout, ": ");
11278
f7f9143b
JB
11279 switch (ex)
11280 {
11281 case ex_catch_exception:
28010a5d 11282 if (c->excep_string != NULL)
00eb2c4a
JB
11283 {
11284 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11285 struct cleanup *old_chain = make_cleanup (xfree, info);
11286
11287 ui_out_text (uiout, info);
11288 do_cleanups (old_chain);
11289 }
f7f9143b 11290 else
00eb2c4a 11291 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11292 break;
11293
11294 case ex_catch_exception_unhandled:
00eb2c4a 11295 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11296 break;
11297
11298 case ex_catch_assert:
00eb2c4a 11299 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11300 break;
11301
11302 default:
11303 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11304 break;
11305 }
11306}
11307
6149aea9
PA
11308/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11309 for all exception catchpoint kinds. */
11310
11311static void
11312print_recreate_exception (enum exception_catchpoint_kind ex,
11313 struct breakpoint *b, struct ui_file *fp)
11314{
28010a5d
PA
11315 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11316
6149aea9
PA
11317 switch (ex)
11318 {
11319 case ex_catch_exception:
11320 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11321 if (c->excep_string != NULL)
11322 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11323 break;
11324
11325 case ex_catch_exception_unhandled:
78076abc 11326 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11327 break;
11328
11329 case ex_catch_assert:
11330 fprintf_filtered (fp, "catch assert");
11331 break;
11332
11333 default:
11334 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11335 }
d9b3f62e 11336 print_recreate_thread (b, fp);
6149aea9
PA
11337}
11338
f7f9143b
JB
11339/* Virtual table for "catch exception" breakpoints. */
11340
28010a5d
PA
11341static void
11342dtor_catch_exception (struct breakpoint *b)
11343{
11344 dtor_exception (ex_catch_exception, b);
11345}
11346
11347static struct bp_location *
11348allocate_location_catch_exception (struct breakpoint *self)
11349{
11350 return allocate_location_exception (ex_catch_exception, self);
11351}
11352
11353static void
11354re_set_catch_exception (struct breakpoint *b)
11355{
11356 re_set_exception (ex_catch_exception, b);
11357}
11358
11359static void
11360check_status_catch_exception (bpstat bs)
11361{
11362 check_status_exception (ex_catch_exception, bs);
11363}
11364
f7f9143b 11365static enum print_stop_action
348d480f 11366print_it_catch_exception (bpstat bs)
f7f9143b 11367{
348d480f 11368 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11369}
11370
11371static void
a6d9a66e 11372print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11373{
a6d9a66e 11374 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11375}
11376
11377static void
11378print_mention_catch_exception (struct breakpoint *b)
11379{
11380 print_mention_exception (ex_catch_exception, b);
11381}
11382
6149aea9
PA
11383static void
11384print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11385{
11386 print_recreate_exception (ex_catch_exception, b, fp);
11387}
11388
2060206e 11389static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11390
11391/* Virtual table for "catch exception unhandled" breakpoints. */
11392
28010a5d
PA
11393static void
11394dtor_catch_exception_unhandled (struct breakpoint *b)
11395{
11396 dtor_exception (ex_catch_exception_unhandled, b);
11397}
11398
11399static struct bp_location *
11400allocate_location_catch_exception_unhandled (struct breakpoint *self)
11401{
11402 return allocate_location_exception (ex_catch_exception_unhandled, self);
11403}
11404
11405static void
11406re_set_catch_exception_unhandled (struct breakpoint *b)
11407{
11408 re_set_exception (ex_catch_exception_unhandled, b);
11409}
11410
11411static void
11412check_status_catch_exception_unhandled (bpstat bs)
11413{
11414 check_status_exception (ex_catch_exception_unhandled, bs);
11415}
11416
f7f9143b 11417static enum print_stop_action
348d480f 11418print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11419{
348d480f 11420 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11421}
11422
11423static void
a6d9a66e
UW
11424print_one_catch_exception_unhandled (struct breakpoint *b,
11425 struct bp_location **last_loc)
f7f9143b 11426{
a6d9a66e 11427 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11428}
11429
11430static void
11431print_mention_catch_exception_unhandled (struct breakpoint *b)
11432{
11433 print_mention_exception (ex_catch_exception_unhandled, b);
11434}
11435
6149aea9
PA
11436static void
11437print_recreate_catch_exception_unhandled (struct breakpoint *b,
11438 struct ui_file *fp)
11439{
11440 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11441}
11442
2060206e 11443static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11444
11445/* Virtual table for "catch assert" breakpoints. */
11446
28010a5d
PA
11447static void
11448dtor_catch_assert (struct breakpoint *b)
11449{
11450 dtor_exception (ex_catch_assert, b);
11451}
11452
11453static struct bp_location *
11454allocate_location_catch_assert (struct breakpoint *self)
11455{
11456 return allocate_location_exception (ex_catch_assert, self);
11457}
11458
11459static void
11460re_set_catch_assert (struct breakpoint *b)
11461{
11462 return re_set_exception (ex_catch_assert, b);
11463}
11464
11465static void
11466check_status_catch_assert (bpstat bs)
11467{
11468 check_status_exception (ex_catch_assert, bs);
11469}
11470
f7f9143b 11471static enum print_stop_action
348d480f 11472print_it_catch_assert (bpstat bs)
f7f9143b 11473{
348d480f 11474 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11475}
11476
11477static void
a6d9a66e 11478print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11479{
a6d9a66e 11480 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11481}
11482
11483static void
11484print_mention_catch_assert (struct breakpoint *b)
11485{
11486 print_mention_exception (ex_catch_assert, b);
11487}
11488
6149aea9
PA
11489static void
11490print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11491{
11492 print_recreate_exception (ex_catch_assert, b, fp);
11493}
11494
2060206e 11495static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11496
f7f9143b
JB
11497/* Return a newly allocated copy of the first space-separated token
11498 in ARGSP, and then adjust ARGSP to point immediately after that
11499 token.
11500
11501 Return NULL if ARGPS does not contain any more tokens. */
11502
11503static char *
11504ada_get_next_arg (char **argsp)
11505{
11506 char *args = *argsp;
11507 char *end;
11508 char *result;
11509
11510 /* Skip any leading white space. */
11511
11512 while (isspace (*args))
11513 args++;
11514
11515 if (args[0] == '\0')
11516 return NULL; /* No more arguments. */
11517
11518 /* Find the end of the current argument. */
11519
11520 end = args;
11521 while (*end != '\0' && !isspace (*end))
11522 end++;
11523
11524 /* Adjust ARGSP to point to the start of the next argument. */
11525
11526 *argsp = end;
11527
11528 /* Make a copy of the current argument and return it. */
11529
11530 result = xmalloc (end - args + 1);
11531 strncpy (result, args, end - args);
11532 result[end - args] = '\0';
11533
11534 return result;
11535}
11536
11537/* Split the arguments specified in a "catch exception" command.
11538 Set EX to the appropriate catchpoint type.
28010a5d 11539 Set EXCEP_STRING to the name of the specific exception if
f7f9143b
JB
11540 specified by the user. */
11541
11542static void
11543catch_ada_exception_command_split (char *args,
11544 enum exception_catchpoint_kind *ex,
28010a5d 11545 char **excep_string)
f7f9143b
JB
11546{
11547 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11548 char *exception_name;
11549
11550 exception_name = ada_get_next_arg (&args);
11551 make_cleanup (xfree, exception_name);
11552
11553 /* Check that we do not have any more arguments. Anything else
11554 is unexpected. */
11555
11556 while (isspace (*args))
11557 args++;
11558
11559 if (args[0] != '\0')
11560 error (_("Junk at end of expression"));
11561
11562 discard_cleanups (old_chain);
11563
11564 if (exception_name == NULL)
11565 {
11566 /* Catch all exceptions. */
11567 *ex = ex_catch_exception;
28010a5d 11568 *excep_string = NULL;
f7f9143b
JB
11569 }
11570 else if (strcmp (exception_name, "unhandled") == 0)
11571 {
11572 /* Catch unhandled exceptions. */
11573 *ex = ex_catch_exception_unhandled;
28010a5d 11574 *excep_string = NULL;
f7f9143b
JB
11575 }
11576 else
11577 {
11578 /* Catch a specific exception. */
11579 *ex = ex_catch_exception;
28010a5d 11580 *excep_string = exception_name;
f7f9143b
JB
11581 }
11582}
11583
11584/* Return the name of the symbol on which we should break in order to
11585 implement a catchpoint of the EX kind. */
11586
11587static const char *
11588ada_exception_sym_name (enum exception_catchpoint_kind ex)
11589{
0259addd
JB
11590 gdb_assert (exception_info != NULL);
11591
f7f9143b
JB
11592 switch (ex)
11593 {
11594 case ex_catch_exception:
0259addd 11595 return (exception_info->catch_exception_sym);
f7f9143b
JB
11596 break;
11597 case ex_catch_exception_unhandled:
0259addd 11598 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11599 break;
11600 case ex_catch_assert:
0259addd 11601 return (exception_info->catch_assert_sym);
f7f9143b
JB
11602 break;
11603 default:
11604 internal_error (__FILE__, __LINE__,
11605 _("unexpected catchpoint kind (%d)"), ex);
11606 }
11607}
11608
11609/* Return the breakpoint ops "virtual table" used for catchpoints
11610 of the EX kind. */
11611
c0a91b2b 11612static const struct breakpoint_ops *
4b9eee8c 11613ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11614{
11615 switch (ex)
11616 {
11617 case ex_catch_exception:
11618 return (&catch_exception_breakpoint_ops);
11619 break;
11620 case ex_catch_exception_unhandled:
11621 return (&catch_exception_unhandled_breakpoint_ops);
11622 break;
11623 case ex_catch_assert:
11624 return (&catch_assert_breakpoint_ops);
11625 break;
11626 default:
11627 internal_error (__FILE__, __LINE__,
11628 _("unexpected catchpoint kind (%d)"), ex);
11629 }
11630}
11631
11632/* Return the condition that will be used to match the current exception
11633 being raised with the exception that the user wants to catch. This
11634 assumes that this condition is used when the inferior just triggered
11635 an exception catchpoint.
11636
11637 The string returned is a newly allocated string that needs to be
11638 deallocated later. */
11639
11640static char *
28010a5d 11641ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11642{
3d0b0fa3
JB
11643 int i;
11644
0963b4bd 11645 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11646 runtime units that have been compiled without debugging info; if
28010a5d 11647 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11648 exception (e.g. "constraint_error") then, during the evaluation
11649 of the condition expression, the symbol lookup on this name would
0963b4bd 11650 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11651 may then be set only on user-defined exceptions which have the
11652 same not-fully-qualified name (e.g. my_package.constraint_error).
11653
11654 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11655 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11656 exception constraint_error" is rewritten into "catch exception
11657 standard.constraint_error".
11658
11659 If an exception named contraint_error is defined in another package of
11660 the inferior program, then the only way to specify this exception as a
11661 breakpoint condition is to use its fully-qualified named:
11662 e.g. my_package.constraint_error. */
11663
11664 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11665 {
28010a5d 11666 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11667 {
11668 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11669 excep_string);
3d0b0fa3
JB
11670 }
11671 }
28010a5d 11672 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11673}
11674
11675/* Return the symtab_and_line that should be used to insert an exception
11676 catchpoint of the TYPE kind.
11677
28010a5d
PA
11678 EXCEP_STRING should contain the name of a specific exception that
11679 the catchpoint should catch, or NULL otherwise.
f7f9143b 11680
28010a5d
PA
11681 ADDR_STRING returns the name of the function where the real
11682 breakpoint that implements the catchpoints is set, depending on the
11683 type of catchpoint we need to create. */
f7f9143b
JB
11684
11685static struct symtab_and_line
28010a5d 11686ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11687 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11688{
11689 const char *sym_name;
11690 struct symbol *sym;
f7f9143b 11691
0259addd
JB
11692 /* First, find out which exception support info to use. */
11693 ada_exception_support_info_sniffer ();
11694
11695 /* Then lookup the function on which we will break in order to catch
f7f9143b 11696 the Ada exceptions requested by the user. */
f7f9143b
JB
11697 sym_name = ada_exception_sym_name (ex);
11698 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11699
f17011e0
JB
11700 /* We can assume that SYM is not NULL at this stage. If the symbol
11701 did not exist, ada_exception_support_info_sniffer would have
11702 raised an exception.
f7f9143b 11703
f17011e0
JB
11704 Also, ada_exception_support_info_sniffer should have already
11705 verified that SYM is a function symbol. */
11706 gdb_assert (sym != NULL);
11707 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11708
11709 /* Set ADDR_STRING. */
f7f9143b
JB
11710 *addr_string = xstrdup (sym_name);
11711
f7f9143b 11712 /* Set OPS. */
4b9eee8c 11713 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11714
f17011e0 11715 return find_function_start_sal (sym, 1);
f7f9143b
JB
11716}
11717
11718/* Parse the arguments (ARGS) of the "catch exception" command.
11719
f7f9143b
JB
11720 If the user asked the catchpoint to catch only a specific
11721 exception, then save the exception name in ADDR_STRING.
11722
11723 See ada_exception_sal for a description of all the remaining
11724 function arguments of this function. */
11725
9ac4176b 11726static struct symtab_and_line
f7f9143b 11727ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11728 char **excep_string,
c0a91b2b 11729 const struct breakpoint_ops **ops)
f7f9143b
JB
11730{
11731 enum exception_catchpoint_kind ex;
11732
28010a5d
PA
11733 catch_ada_exception_command_split (args, &ex, excep_string);
11734 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11735}
11736
11737/* Create an Ada exception catchpoint. */
11738
11739static void
11740create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11741 struct symtab_and_line sal,
11742 char *addr_string,
11743 char *excep_string,
c0a91b2b 11744 const struct breakpoint_ops *ops,
28010a5d
PA
11745 int tempflag,
11746 int from_tty)
11747{
11748 struct ada_catchpoint *c;
11749
11750 c = XNEW (struct ada_catchpoint);
11751 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11752 ops, tempflag, from_tty);
11753 c->excep_string = excep_string;
11754 create_excep_cond_exprs (c);
3ea46bff 11755 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11756}
11757
9ac4176b
PA
11758/* Implement the "catch exception" command. */
11759
11760static void
11761catch_ada_exception_command (char *arg, int from_tty,
11762 struct cmd_list_element *command)
11763{
11764 struct gdbarch *gdbarch = get_current_arch ();
11765 int tempflag;
11766 struct symtab_and_line sal;
11767 char *addr_string = NULL;
28010a5d 11768 char *excep_string = NULL;
c0a91b2b 11769 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11770
11771 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11772
11773 if (!arg)
11774 arg = "";
28010a5d
PA
11775 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11776 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11777 excep_string, ops, tempflag, from_tty);
9ac4176b
PA
11778}
11779
11780static struct symtab_and_line
f7f9143b 11781ada_decode_assert_location (char *args, char **addr_string,
c0a91b2b 11782 const struct breakpoint_ops **ops)
f7f9143b
JB
11783{
11784 /* Check that no argument where provided at the end of the command. */
11785
11786 if (args != NULL)
11787 {
11788 while (isspace (*args))
11789 args++;
11790 if (*args != '\0')
11791 error (_("Junk at end of arguments."));
11792 }
11793
28010a5d 11794 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11795}
11796
9ac4176b
PA
11797/* Implement the "catch assert" command. */
11798
11799static void
11800catch_assert_command (char *arg, int from_tty,
11801 struct cmd_list_element *command)
11802{
11803 struct gdbarch *gdbarch = get_current_arch ();
11804 int tempflag;
11805 struct symtab_and_line sal;
11806 char *addr_string = NULL;
c0a91b2b 11807 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11808
11809 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11810
11811 if (!arg)
11812 arg = "";
11813 sal = ada_decode_assert_location (arg, &addr_string, &ops);
28010a5d
PA
11814 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11815 NULL, ops, tempflag, from_tty);
9ac4176b 11816}
4c4b4cd2
PH
11817 /* Operators */
11818/* Information about operators given special treatment in functions
11819 below. */
11820/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11821
11822#define ADA_OPERATORS \
11823 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11824 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11825 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11826 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11827 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11828 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11829 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11830 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11831 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11832 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11833 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11834 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11835 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11836 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11837 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11838 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11839 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11840 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11841 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11842
11843static void
554794dc
SDJ
11844ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11845 int *argsp)
4c4b4cd2
PH
11846{
11847 switch (exp->elts[pc - 1].opcode)
11848 {
76a01679 11849 default:
4c4b4cd2
PH
11850 operator_length_standard (exp, pc, oplenp, argsp);
11851 break;
11852
11853#define OP_DEFN(op, len, args, binop) \
11854 case op: *oplenp = len; *argsp = args; break;
11855 ADA_OPERATORS;
11856#undef OP_DEFN
52ce6436
PH
11857
11858 case OP_AGGREGATE:
11859 *oplenp = 3;
11860 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11861 break;
11862
11863 case OP_CHOICES:
11864 *oplenp = 3;
11865 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11866 break;
4c4b4cd2
PH
11867 }
11868}
11869
c0201579
JK
11870/* Implementation of the exp_descriptor method operator_check. */
11871
11872static int
11873ada_operator_check (struct expression *exp, int pos,
11874 int (*objfile_func) (struct objfile *objfile, void *data),
11875 void *data)
11876{
11877 const union exp_element *const elts = exp->elts;
11878 struct type *type = NULL;
11879
11880 switch (elts[pos].opcode)
11881 {
11882 case UNOP_IN_RANGE:
11883 case UNOP_QUAL:
11884 type = elts[pos + 1].type;
11885 break;
11886
11887 default:
11888 return operator_check_standard (exp, pos, objfile_func, data);
11889 }
11890
11891 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11892
11893 if (type && TYPE_OBJFILE (type)
11894 && (*objfile_func) (TYPE_OBJFILE (type), data))
11895 return 1;
11896
11897 return 0;
11898}
11899
4c4b4cd2
PH
11900static char *
11901ada_op_name (enum exp_opcode opcode)
11902{
11903 switch (opcode)
11904 {
76a01679 11905 default:
4c4b4cd2 11906 return op_name_standard (opcode);
52ce6436 11907
4c4b4cd2
PH
11908#define OP_DEFN(op, len, args, binop) case op: return #op;
11909 ADA_OPERATORS;
11910#undef OP_DEFN
52ce6436
PH
11911
11912 case OP_AGGREGATE:
11913 return "OP_AGGREGATE";
11914 case OP_CHOICES:
11915 return "OP_CHOICES";
11916 case OP_NAME:
11917 return "OP_NAME";
4c4b4cd2
PH
11918 }
11919}
11920
11921/* As for operator_length, but assumes PC is pointing at the first
11922 element of the operator, and gives meaningful results only for the
52ce6436 11923 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11924
11925static void
76a01679
JB
11926ada_forward_operator_length (struct expression *exp, int pc,
11927 int *oplenp, int *argsp)
4c4b4cd2 11928{
76a01679 11929 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11930 {
11931 default:
11932 *oplenp = *argsp = 0;
11933 break;
52ce6436 11934
4c4b4cd2
PH
11935#define OP_DEFN(op, len, args, binop) \
11936 case op: *oplenp = len; *argsp = args; break;
11937 ADA_OPERATORS;
11938#undef OP_DEFN
52ce6436
PH
11939
11940 case OP_AGGREGATE:
11941 *oplenp = 3;
11942 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11943 break;
11944
11945 case OP_CHOICES:
11946 *oplenp = 3;
11947 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11948 break;
11949
11950 case OP_STRING:
11951 case OP_NAME:
11952 {
11953 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11954
52ce6436
PH
11955 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11956 *argsp = 0;
11957 break;
11958 }
4c4b4cd2
PH
11959 }
11960}
11961
11962static int
11963ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11964{
11965 enum exp_opcode op = exp->elts[elt].opcode;
11966 int oplen, nargs;
11967 int pc = elt;
11968 int i;
76a01679 11969
4c4b4cd2
PH
11970 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11971
76a01679 11972 switch (op)
4c4b4cd2 11973 {
76a01679 11974 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11975 case OP_ATR_FIRST:
11976 case OP_ATR_LAST:
11977 case OP_ATR_LENGTH:
11978 case OP_ATR_IMAGE:
11979 case OP_ATR_MAX:
11980 case OP_ATR_MIN:
11981 case OP_ATR_MODULUS:
11982 case OP_ATR_POS:
11983 case OP_ATR_SIZE:
11984 case OP_ATR_TAG:
11985 case OP_ATR_VAL:
11986 break;
11987
11988 case UNOP_IN_RANGE:
11989 case UNOP_QUAL:
323e0a4a
AC
11990 /* XXX: gdb_sprint_host_address, type_sprint */
11991 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11992 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11993 fprintf_filtered (stream, " (");
11994 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11995 fprintf_filtered (stream, ")");
11996 break;
11997 case BINOP_IN_BOUNDS:
52ce6436
PH
11998 fprintf_filtered (stream, " (%d)",
11999 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12000 break;
12001 case TERNOP_IN_RANGE:
12002 break;
12003
52ce6436
PH
12004 case OP_AGGREGATE:
12005 case OP_OTHERS:
12006 case OP_DISCRETE_RANGE:
12007 case OP_POSITIONAL:
12008 case OP_CHOICES:
12009 break;
12010
12011 case OP_NAME:
12012 case OP_STRING:
12013 {
12014 char *name = &exp->elts[elt + 2].string;
12015 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12016
52ce6436
PH
12017 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12018 break;
12019 }
12020
4c4b4cd2
PH
12021 default:
12022 return dump_subexp_body_standard (exp, stream, elt);
12023 }
12024
12025 elt += oplen;
12026 for (i = 0; i < nargs; i += 1)
12027 elt = dump_subexp (exp, stream, elt);
12028
12029 return elt;
12030}
12031
12032/* The Ada extension of print_subexp (q.v.). */
12033
76a01679
JB
12034static void
12035ada_print_subexp (struct expression *exp, int *pos,
12036 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12037{
52ce6436 12038 int oplen, nargs, i;
4c4b4cd2
PH
12039 int pc = *pos;
12040 enum exp_opcode op = exp->elts[pc].opcode;
12041
12042 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12043
52ce6436 12044 *pos += oplen;
4c4b4cd2
PH
12045 switch (op)
12046 {
12047 default:
52ce6436 12048 *pos -= oplen;
4c4b4cd2
PH
12049 print_subexp_standard (exp, pos, stream, prec);
12050 return;
12051
12052 case OP_VAR_VALUE:
4c4b4cd2
PH
12053 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12054 return;
12055
12056 case BINOP_IN_BOUNDS:
323e0a4a 12057 /* XXX: sprint_subexp */
4c4b4cd2 12058 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12059 fputs_filtered (" in ", stream);
4c4b4cd2 12060 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12061 fputs_filtered ("'range", stream);
4c4b4cd2 12062 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12063 fprintf_filtered (stream, "(%ld)",
12064 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12065 return;
12066
12067 case TERNOP_IN_RANGE:
4c4b4cd2 12068 if (prec >= PREC_EQUAL)
76a01679 12069 fputs_filtered ("(", stream);
323e0a4a 12070 /* XXX: sprint_subexp */
4c4b4cd2 12071 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12072 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12073 print_subexp (exp, pos, stream, PREC_EQUAL);
12074 fputs_filtered (" .. ", stream);
12075 print_subexp (exp, pos, stream, PREC_EQUAL);
12076 if (prec >= PREC_EQUAL)
76a01679
JB
12077 fputs_filtered (")", stream);
12078 return;
4c4b4cd2
PH
12079
12080 case OP_ATR_FIRST:
12081 case OP_ATR_LAST:
12082 case OP_ATR_LENGTH:
12083 case OP_ATR_IMAGE:
12084 case OP_ATR_MAX:
12085 case OP_ATR_MIN:
12086 case OP_ATR_MODULUS:
12087 case OP_ATR_POS:
12088 case OP_ATR_SIZE:
12089 case OP_ATR_TAG:
12090 case OP_ATR_VAL:
4c4b4cd2 12091 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12092 {
12093 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12094 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12095 *pos += 3;
12096 }
4c4b4cd2 12097 else
76a01679 12098 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12099 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12100 if (nargs > 1)
76a01679
JB
12101 {
12102 int tem;
5b4ee69b 12103
76a01679
JB
12104 for (tem = 1; tem < nargs; tem += 1)
12105 {
12106 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12107 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12108 }
12109 fputs_filtered (")", stream);
12110 }
4c4b4cd2 12111 return;
14f9c5c9 12112
4c4b4cd2 12113 case UNOP_QUAL:
4c4b4cd2
PH
12114 type_print (exp->elts[pc + 1].type, "", stream, 0);
12115 fputs_filtered ("'(", stream);
12116 print_subexp (exp, pos, stream, PREC_PREFIX);
12117 fputs_filtered (")", stream);
12118 return;
14f9c5c9 12119
4c4b4cd2 12120 case UNOP_IN_RANGE:
323e0a4a 12121 /* XXX: sprint_subexp */
4c4b4cd2 12122 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12123 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12124 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12125 return;
52ce6436
PH
12126
12127 case OP_DISCRETE_RANGE:
12128 print_subexp (exp, pos, stream, PREC_SUFFIX);
12129 fputs_filtered ("..", stream);
12130 print_subexp (exp, pos, stream, PREC_SUFFIX);
12131 return;
12132
12133 case OP_OTHERS:
12134 fputs_filtered ("others => ", stream);
12135 print_subexp (exp, pos, stream, PREC_SUFFIX);
12136 return;
12137
12138 case OP_CHOICES:
12139 for (i = 0; i < nargs-1; i += 1)
12140 {
12141 if (i > 0)
12142 fputs_filtered ("|", stream);
12143 print_subexp (exp, pos, stream, PREC_SUFFIX);
12144 }
12145 fputs_filtered (" => ", stream);
12146 print_subexp (exp, pos, stream, PREC_SUFFIX);
12147 return;
12148
12149 case OP_POSITIONAL:
12150 print_subexp (exp, pos, stream, PREC_SUFFIX);
12151 return;
12152
12153 case OP_AGGREGATE:
12154 fputs_filtered ("(", stream);
12155 for (i = 0; i < nargs; i += 1)
12156 {
12157 if (i > 0)
12158 fputs_filtered (", ", stream);
12159 print_subexp (exp, pos, stream, PREC_SUFFIX);
12160 }
12161 fputs_filtered (")", stream);
12162 return;
4c4b4cd2
PH
12163 }
12164}
14f9c5c9
AS
12165
12166/* Table mapping opcodes into strings for printing operators
12167 and precedences of the operators. */
12168
d2e4a39e
AS
12169static const struct op_print ada_op_print_tab[] = {
12170 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12171 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12172 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12173 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12174 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12175 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12176 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12177 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12178 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12179 {">=", BINOP_GEQ, PREC_ORDER, 0},
12180 {">", BINOP_GTR, PREC_ORDER, 0},
12181 {"<", BINOP_LESS, PREC_ORDER, 0},
12182 {">>", BINOP_RSH, PREC_SHIFT, 0},
12183 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12184 {"+", BINOP_ADD, PREC_ADD, 0},
12185 {"-", BINOP_SUB, PREC_ADD, 0},
12186 {"&", BINOP_CONCAT, PREC_ADD, 0},
12187 {"*", BINOP_MUL, PREC_MUL, 0},
12188 {"/", BINOP_DIV, PREC_MUL, 0},
12189 {"rem", BINOP_REM, PREC_MUL, 0},
12190 {"mod", BINOP_MOD, PREC_MUL, 0},
12191 {"**", BINOP_EXP, PREC_REPEAT, 0},
12192 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12193 {"-", UNOP_NEG, PREC_PREFIX, 0},
12194 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12195 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12196 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12197 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12198 {".all", UNOP_IND, PREC_SUFFIX, 1},
12199 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12200 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12201 {NULL, 0, 0, 0}
14f9c5c9
AS
12202};
12203\f
72d5681a
PH
12204enum ada_primitive_types {
12205 ada_primitive_type_int,
12206 ada_primitive_type_long,
12207 ada_primitive_type_short,
12208 ada_primitive_type_char,
12209 ada_primitive_type_float,
12210 ada_primitive_type_double,
12211 ada_primitive_type_void,
12212 ada_primitive_type_long_long,
12213 ada_primitive_type_long_double,
12214 ada_primitive_type_natural,
12215 ada_primitive_type_positive,
12216 ada_primitive_type_system_address,
12217 nr_ada_primitive_types
12218};
6c038f32
PH
12219
12220static void
d4a9a881 12221ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12222 struct language_arch_info *lai)
12223{
d4a9a881 12224 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12225
72d5681a 12226 lai->primitive_type_vector
d4a9a881 12227 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12228 struct type *);
e9bb382b
UW
12229
12230 lai->primitive_type_vector [ada_primitive_type_int]
12231 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12232 0, "integer");
12233 lai->primitive_type_vector [ada_primitive_type_long]
12234 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12235 0, "long_integer");
12236 lai->primitive_type_vector [ada_primitive_type_short]
12237 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12238 0, "short_integer");
12239 lai->string_char_type
12240 = lai->primitive_type_vector [ada_primitive_type_char]
12241 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12242 lai->primitive_type_vector [ada_primitive_type_float]
12243 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12244 "float", NULL);
12245 lai->primitive_type_vector [ada_primitive_type_double]
12246 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12247 "long_float", NULL);
12248 lai->primitive_type_vector [ada_primitive_type_long_long]
12249 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12250 0, "long_long_integer");
12251 lai->primitive_type_vector [ada_primitive_type_long_double]
12252 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12253 "long_long_float", NULL);
12254 lai->primitive_type_vector [ada_primitive_type_natural]
12255 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12256 0, "natural");
12257 lai->primitive_type_vector [ada_primitive_type_positive]
12258 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12259 0, "positive");
12260 lai->primitive_type_vector [ada_primitive_type_void]
12261 = builtin->builtin_void;
12262
12263 lai->primitive_type_vector [ada_primitive_type_system_address]
12264 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12265 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12266 = "system__address";
fbb06eb1 12267
47e729a8 12268 lai->bool_type_symbol = NULL;
fbb06eb1 12269 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12270}
6c038f32
PH
12271\f
12272 /* Language vector */
12273
12274/* Not really used, but needed in the ada_language_defn. */
12275
12276static void
6c7a06a3 12277emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12278{
6c7a06a3 12279 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12280}
12281
12282static int
12283parse (void)
12284{
12285 warnings_issued = 0;
12286 return ada_parse ();
12287}
12288
12289static const struct exp_descriptor ada_exp_descriptor = {
12290 ada_print_subexp,
12291 ada_operator_length,
c0201579 12292 ada_operator_check,
6c038f32
PH
12293 ada_op_name,
12294 ada_dump_subexp_body,
12295 ada_evaluate_subexp
12296};
12297
12298const struct language_defn ada_language_defn = {
12299 "ada", /* Language name */
12300 language_ada,
6c038f32
PH
12301 range_check_off,
12302 type_check_off,
12303 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12304 that's not quite what this means. */
6c038f32 12305 array_row_major,
9a044a89 12306 macro_expansion_no,
6c038f32
PH
12307 &ada_exp_descriptor,
12308 parse,
12309 ada_error,
12310 resolve,
12311 ada_printchar, /* Print a character constant */
12312 ada_printstr, /* Function to print string constant */
12313 emit_char, /* Function to print single char (not used) */
6c038f32 12314 ada_print_type, /* Print a type using appropriate syntax */
be942545 12315 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12316 ada_val_print, /* Print a value using appropriate syntax */
12317 ada_value_print, /* Print a top-level value */
12318 NULL, /* Language specific skip_trampoline */
2b2d9e11 12319 NULL, /* name_of_this */
6c038f32
PH
12320 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12321 basic_lookup_transparent_type, /* lookup_transparent_type */
12322 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12323 NULL, /* Language specific
12324 class_name_from_physname */
6c038f32
PH
12325 ada_op_print_tab, /* expression operators for printing */
12326 0, /* c-style arrays */
12327 1, /* String lower bound */
6c038f32 12328 ada_get_gdb_completer_word_break_characters,
41d27058 12329 ada_make_symbol_completion_list,
72d5681a 12330 ada_language_arch_info,
e79af960 12331 ada_print_array_index,
41f1b697 12332 default_pass_by_reference,
ae6a3a4c 12333 c_get_string,
f8eba3c6
TT
12334 compare_names,
12335 ada_iterate_over_symbols,
6c038f32
PH
12336 LANG_MAGIC
12337};
12338
2c0b251b
PA
12339/* Provide a prototype to silence -Wmissing-prototypes. */
12340extern initialize_file_ftype _initialize_ada_language;
12341
5bf03f13
JB
12342/* Command-list for the "set/show ada" prefix command. */
12343static struct cmd_list_element *set_ada_list;
12344static struct cmd_list_element *show_ada_list;
12345
12346/* Implement the "set ada" prefix command. */
12347
12348static void
12349set_ada_command (char *arg, int from_tty)
12350{
12351 printf_unfiltered (_(\
12352"\"set ada\" must be followed by the name of a setting.\n"));
12353 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12354}
12355
12356/* Implement the "show ada" prefix command. */
12357
12358static void
12359show_ada_command (char *args, int from_tty)
12360{
12361 cmd_show_list (show_ada_list, from_tty, "");
12362}
12363
2060206e
PA
12364static void
12365initialize_ada_catchpoint_ops (void)
12366{
12367 struct breakpoint_ops *ops;
12368
12369 initialize_breakpoint_ops ();
12370
12371 ops = &catch_exception_breakpoint_ops;
12372 *ops = bkpt_breakpoint_ops;
12373 ops->dtor = dtor_catch_exception;
12374 ops->allocate_location = allocate_location_catch_exception;
12375 ops->re_set = re_set_catch_exception;
12376 ops->check_status = check_status_catch_exception;
12377 ops->print_it = print_it_catch_exception;
12378 ops->print_one = print_one_catch_exception;
12379 ops->print_mention = print_mention_catch_exception;
12380 ops->print_recreate = print_recreate_catch_exception;
12381
12382 ops = &catch_exception_unhandled_breakpoint_ops;
12383 *ops = bkpt_breakpoint_ops;
12384 ops->dtor = dtor_catch_exception_unhandled;
12385 ops->allocate_location = allocate_location_catch_exception_unhandled;
12386 ops->re_set = re_set_catch_exception_unhandled;
12387 ops->check_status = check_status_catch_exception_unhandled;
12388 ops->print_it = print_it_catch_exception_unhandled;
12389 ops->print_one = print_one_catch_exception_unhandled;
12390 ops->print_mention = print_mention_catch_exception_unhandled;
12391 ops->print_recreate = print_recreate_catch_exception_unhandled;
12392
12393 ops = &catch_assert_breakpoint_ops;
12394 *ops = bkpt_breakpoint_ops;
12395 ops->dtor = dtor_catch_assert;
12396 ops->allocate_location = allocate_location_catch_assert;
12397 ops->re_set = re_set_catch_assert;
12398 ops->check_status = check_status_catch_assert;
12399 ops->print_it = print_it_catch_assert;
12400 ops->print_one = print_one_catch_assert;
12401 ops->print_mention = print_mention_catch_assert;
12402 ops->print_recreate = print_recreate_catch_assert;
12403}
12404
d2e4a39e 12405void
6c038f32 12406_initialize_ada_language (void)
14f9c5c9 12407{
6c038f32
PH
12408 add_language (&ada_language_defn);
12409
2060206e
PA
12410 initialize_ada_catchpoint_ops ();
12411
5bf03f13
JB
12412 add_prefix_cmd ("ada", no_class, set_ada_command,
12413 _("Prefix command for changing Ada-specfic settings"),
12414 &set_ada_list, "set ada ", 0, &setlist);
12415
12416 add_prefix_cmd ("ada", no_class, show_ada_command,
12417 _("Generic command for showing Ada-specific settings."),
12418 &show_ada_list, "show ada ", 0, &showlist);
12419
12420 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12421 &trust_pad_over_xvs, _("\
12422Enable or disable an optimization trusting PAD types over XVS types"), _("\
12423Show whether an optimization trusting PAD types over XVS types is activated"),
12424 _("\
12425This is related to the encoding used by the GNAT compiler. The debugger\n\
12426should normally trust the contents of PAD types, but certain older versions\n\
12427of GNAT have a bug that sometimes causes the information in the PAD type\n\
12428to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12429work around this bug. It is always safe to turn this option \"off\", but\n\
12430this incurs a slight performance penalty, so it is recommended to NOT change\n\
12431this option to \"off\" unless necessary."),
12432 NULL, NULL, &set_ada_list, &show_ada_list);
12433
9ac4176b
PA
12434 add_catch_command ("exception", _("\
12435Catch Ada exceptions, when raised.\n\
12436With an argument, catch only exceptions with the given name."),
12437 catch_ada_exception_command,
12438 NULL,
12439 CATCH_PERMANENT,
12440 CATCH_TEMPORARY);
12441 add_catch_command ("assert", _("\
12442Catch failed Ada assertions, when raised.\n\
12443With an argument, catch only exceptions with the given name."),
12444 catch_assert_command,
12445 NULL,
12446 CATCH_PERMANENT,
12447 CATCH_TEMPORARY);
12448
6c038f32 12449 varsize_limit = 65536;
6c038f32
PH
12450
12451 obstack_init (&symbol_list_obstack);
12452
12453 decoded_names_store = htab_create_alloc
12454 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12455 NULL, xcalloc, xfree);
6b69afc4
JB
12456
12457 observer_attach_executable_changed (ada_executable_changed_observer);
e802dbe0
JB
12458
12459 /* Setup per-inferior data. */
12460 observer_attach_inferior_exit (ada_inferior_exit);
12461 ada_inferior_data
12462 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12463}