]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/amd64-tdep.c
[gdb] Fix typos
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
213516ef 3 Copyright (C) 2001-2023 Free Software Foundation, Inc.
5ae96ec1
MK
4
5 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
21
22#include "defs.h"
83b6e1f1 23#include "language.h"
4de283e4
TT
24#include "opcode/i386.h"
25#include "dis-asm.h"
c4f35dd8 26#include "arch-utils.h"
c4f35dd8 27#include "dummy-frame.h"
4de283e4 28#include "frame.h"
c4f35dd8
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
d55e5aa6
TT
31#include "inferior.h"
32#include "infrun.h"
4de283e4
TT
33#include "gdbcmd.h"
34#include "gdbcore.h"
c4f35dd8 35#include "objfiles.h"
53e95fcf 36#include "regcache.h"
2c261fae 37#include "regset.h"
53e95fcf 38#include "symfile.h"
4de283e4
TT
39#include "disasm.h"
40#include "amd64-tdep.h"
41#include "i387-tdep.h"
268a13a5 42#include "gdbsupport/x86-xstate.h"
4de283e4 43#include <algorithm>
22916b07 44#include "target-descriptions.h"
4de283e4
TT
45#include "arch/amd64.h"
46#include "producer.h"
47#include "ax.h"
48#include "ax-gdb.h"
268a13a5 49#include "gdbsupport/byte-vector.h"
4de283e4 50#include "osabi.h"
1d509aa6 51#include "x86-tdep.h"
257e02d8 52#include "amd64-ravenscar-thread.h"
6710bf39 53
e53bef9f
MK
54/* Note that the AMD64 architecture was previously known as x86-64.
55 The latter is (forever) engraved into the canonical system name as
90f90721 56 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
57 of GNU/Linux. The BSD's have renamed their ports to amd64; they
58 don't like to shout. For GDB we prefer the amd64_-prefix over the
59 x86_64_-prefix since it's so much easier to type. */
60
402ecd56 61/* Register information. */
c4f35dd8 62
27087b7f 63static const char * const amd64_register_names[] =
de220d0f 64{
6707b003 65 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
66
67 /* %r8 is indeed register number 8. */
6707b003
UW
68 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
69 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 70
af233647 71 /* %st0 is register number 24. */
6707b003
UW
72 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 74
af233647 75 /* %xmm0 is register number 40. */
6707b003
UW
76 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
77 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
78 "mxcsr",
0e04a514
ML
79};
80
27087b7f 81static const char * const amd64_ymm_names[] =
a055a187
L
82{
83 "ymm0", "ymm1", "ymm2", "ymm3",
84 "ymm4", "ymm5", "ymm6", "ymm7",
85 "ymm8", "ymm9", "ymm10", "ymm11",
86 "ymm12", "ymm13", "ymm14", "ymm15"
87};
88
27087b7f 89static const char * const amd64_ymm_avx512_names[] =
01f9f808
MS
90{
91 "ymm16", "ymm17", "ymm18", "ymm19",
92 "ymm20", "ymm21", "ymm22", "ymm23",
93 "ymm24", "ymm25", "ymm26", "ymm27",
94 "ymm28", "ymm29", "ymm30", "ymm31"
95};
96
27087b7f 97static const char * const amd64_ymmh_names[] =
a055a187
L
98{
99 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
100 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
101 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
102 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
103};
de220d0f 104
27087b7f 105static const char * const amd64_ymmh_avx512_names[] =
01f9f808
MS
106{
107 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
108 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
109 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
110 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
111};
112
27087b7f 113static const char * const amd64_mpx_names[] =
e43e105e
WT
114{
115 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
116};
117
27087b7f 118static const char * const amd64_k_names[] =
01f9f808
MS
119{
120 "k0", "k1", "k2", "k3",
121 "k4", "k5", "k6", "k7"
122};
123
27087b7f 124static const char * const amd64_zmmh_names[] =
01f9f808
MS
125{
126 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
127 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
128 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
129 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
130 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
131 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
132 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
133 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
134};
135
27087b7f 136static const char * const amd64_zmm_names[] =
01f9f808
MS
137{
138 "zmm0", "zmm1", "zmm2", "zmm3",
139 "zmm4", "zmm5", "zmm6", "zmm7",
140 "zmm8", "zmm9", "zmm10", "zmm11",
141 "zmm12", "zmm13", "zmm14", "zmm15",
142 "zmm16", "zmm17", "zmm18", "zmm19",
143 "zmm20", "zmm21", "zmm22", "zmm23",
144 "zmm24", "zmm25", "zmm26", "zmm27",
145 "zmm28", "zmm29", "zmm30", "zmm31"
146};
147
27087b7f 148static const char * const amd64_xmm_avx512_names[] = {
01f9f808
MS
149 "xmm16", "xmm17", "xmm18", "xmm19",
150 "xmm20", "xmm21", "xmm22", "xmm23",
151 "xmm24", "xmm25", "xmm26", "xmm27",
152 "xmm28", "xmm29", "xmm30", "xmm31"
153};
154
27087b7f 155static const char * const amd64_pkeys_names[] = {
51547df6
MS
156 "pkru"
157};
158
c4f35dd8
MK
159/* DWARF Register Number Mapping as defined in the System V psABI,
160 section 3.6. */
53e95fcf 161
e53bef9f 162static int amd64_dwarf_regmap[] =
0e04a514 163{
c4f35dd8 164 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
165 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
166 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
167 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
168
169 /* Frame Pointer Register RBP. */
90f90721 170 AMD64_RBP_REGNUM,
c4f35dd8
MK
171
172 /* Stack Pointer Register RSP. */
90f90721 173 AMD64_RSP_REGNUM,
c4f35dd8
MK
174
175 /* Extended Integer Registers 8 - 15. */
5b856f36
PM
176 AMD64_R8_REGNUM, /* %r8 */
177 AMD64_R9_REGNUM, /* %r9 */
178 AMD64_R10_REGNUM, /* %r10 */
179 AMD64_R11_REGNUM, /* %r11 */
180 AMD64_R12_REGNUM, /* %r12 */
181 AMD64_R13_REGNUM, /* %r13 */
182 AMD64_R14_REGNUM, /* %r14 */
183 AMD64_R15_REGNUM, /* %r15 */
c4f35dd8 184
59207364 185 /* Return Address RA. Mapped to RIP. */
90f90721 186 AMD64_RIP_REGNUM,
c4f35dd8
MK
187
188 /* SSE Registers 0 - 7. */
90f90721
MK
189 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
190 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
191 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
192 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
193
194 /* Extended SSE Registers 8 - 15. */
90f90721
MK
195 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
196 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
197 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
198 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
199
200 /* Floating Point Registers 0-7. */
90f90721
MK
201 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
202 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
203 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129 204 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
f7ca3fcf
PM
205
206 /* MMX Registers 0 - 7.
207 We have to handle those registers specifically, as their register
208 number within GDB depends on the target (or they may even not be
209 available at all). */
210 -1, -1, -1, -1, -1, -1, -1, -1,
211
c6f4c129
JB
212 /* Control and Status Flags Register. */
213 AMD64_EFLAGS_REGNUM,
214
215 /* Selector Registers. */
216 AMD64_ES_REGNUM,
217 AMD64_CS_REGNUM,
218 AMD64_SS_REGNUM,
219 AMD64_DS_REGNUM,
220 AMD64_FS_REGNUM,
221 AMD64_GS_REGNUM,
222 -1,
223 -1,
224
225 /* Segment Base Address Registers. */
226 -1,
227 -1,
228 -1,
229 -1,
230
231 /* Special Selector Registers. */
232 -1,
233 -1,
234
235 /* Floating Point Control Registers. */
236 AMD64_MXCSR_REGNUM,
237 AMD64_FCTRL_REGNUM,
238 AMD64_FSTAT_REGNUM
c4f35dd8 239};
0e04a514 240
e53bef9f
MK
241static const int amd64_dwarf_regmap_len =
242 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 243
c4f35dd8
MK
244/* Convert DWARF register number REG to the appropriate register
245 number used by GDB. */
26abbdc4 246
c4f35dd8 247static int
d3f73121 248amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
53e95fcf 249{
08106042 250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
a055a187 251 int ymm0_regnum = tdep->ymm0_regnum;
c4f35dd8 252 int regnum = -1;
53e95fcf 253
16aff9a6 254 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 255 regnum = amd64_dwarf_regmap[reg];
53e95fcf 256
0fde2c53 257 if (ymm0_regnum >= 0
a055a187
L
258 && i386_xmm_regnum_p (gdbarch, regnum))
259 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
c4f35dd8
MK
260
261 return regnum;
53e95fcf 262}
d532c08f 263
35669430
DE
264/* Map architectural register numbers to gdb register numbers. */
265
266static const int amd64_arch_regmap[16] =
267{
268 AMD64_RAX_REGNUM, /* %rax */
269 AMD64_RCX_REGNUM, /* %rcx */
270 AMD64_RDX_REGNUM, /* %rdx */
271 AMD64_RBX_REGNUM, /* %rbx */
272 AMD64_RSP_REGNUM, /* %rsp */
273 AMD64_RBP_REGNUM, /* %rbp */
274 AMD64_RSI_REGNUM, /* %rsi */
275 AMD64_RDI_REGNUM, /* %rdi */
276 AMD64_R8_REGNUM, /* %r8 */
277 AMD64_R9_REGNUM, /* %r9 */
278 AMD64_R10_REGNUM, /* %r10 */
279 AMD64_R11_REGNUM, /* %r11 */
280 AMD64_R12_REGNUM, /* %r12 */
281 AMD64_R13_REGNUM, /* %r13 */
282 AMD64_R14_REGNUM, /* %r14 */
283 AMD64_R15_REGNUM /* %r15 */
284};
285
286static const int amd64_arch_regmap_len =
287 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
288
289/* Convert architectural register number REG to the appropriate register
290 number used by GDB. */
291
292static int
293amd64_arch_reg_to_regnum (int reg)
294{
295 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
296
297 return amd64_arch_regmap[reg];
298}
299
1ba53b71
L
300/* Register names for byte pseudo-registers. */
301
27087b7f 302static const char * const amd64_byte_names[] =
1ba53b71
L
303{
304 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
fe01d668
L
305 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
306 "ah", "bh", "ch", "dh"
1ba53b71
L
307};
308
fe01d668
L
309/* Number of lower byte registers. */
310#define AMD64_NUM_LOWER_BYTE_REGS 16
311
1ba53b71
L
312/* Register names for word pseudo-registers. */
313
27087b7f 314static const char * const amd64_word_names[] =
1ba53b71 315{
9cad29ac 316 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
1ba53b71
L
317 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
318};
319
320/* Register names for dword pseudo-registers. */
321
27087b7f 322static const char * const amd64_dword_names[] =
1ba53b71
L
323{
324 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
fff4548b
MK
325 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
326 "eip"
1ba53b71
L
327};
328
329/* Return the name of register REGNUM. */
330
331static const char *
332amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
333{
08106042 334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
1ba53b71
L
335 if (i386_byte_regnum_p (gdbarch, regnum))
336 return amd64_byte_names[regnum - tdep->al_regnum];
01f9f808
MS
337 else if (i386_zmm_regnum_p (gdbarch, regnum))
338 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
a055a187
L
339 else if (i386_ymm_regnum_p (gdbarch, regnum))
340 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
341 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
342 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
1ba53b71
L
343 else if (i386_word_regnum_p (gdbarch, regnum))
344 return amd64_word_names[regnum - tdep->ax_regnum];
345 else if (i386_dword_regnum_p (gdbarch, regnum))
346 return amd64_dword_names[regnum - tdep->eax_regnum];
347 else
348 return i386_pseudo_register_name (gdbarch, regnum);
349}
350
3543a589
TT
351static struct value *
352amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 353 readable_regcache *regcache,
3543a589 354 int regnum)
1ba53b71 355{
08106042 356 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3543a589 357
317c3ed9 358 value *result_value = value::allocate (register_type (gdbarch, regnum));
6f9c9d71 359 result_value->set_lval (lval_register);
3543a589 360 VALUE_REGNUM (result_value) = regnum;
bbe912ba 361 gdb_byte *buf = result_value->contents_raw ().data ();
1ba53b71
L
362
363 if (i386_byte_regnum_p (gdbarch, regnum))
364 {
365 int gpnum = regnum - tdep->al_regnum;
366
367 /* Extract (always little endian). */
fe01d668
L
368 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
369 {
925047fe
SM
370 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
371 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
372
fe01d668 373 /* Special handling for AH, BH, CH, DH. */
925047fe 374 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
375 if (status == REG_VALID)
376 memcpy (buf, raw_buf + 1, 1);
3543a589 377 else
d00664db
TT
378 result_value->mark_bytes_unavailable (0,
379 result_value->type ()->length ());
fe01d668
L
380 }
381 else
382 {
925047fe
SM
383 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
384 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
385 if (status == REG_VALID)
386 memcpy (buf, raw_buf, 1);
3543a589 387 else
d00664db
TT
388 result_value->mark_bytes_unavailable (0,
389 result_value->type ()->length ());
fe01d668 390 }
1ba53b71
L
391 }
392 else if (i386_dword_regnum_p (gdbarch, regnum))
393 {
394 int gpnum = regnum - tdep->eax_regnum;
925047fe 395 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
1ba53b71 396 /* Extract (always little endian). */
925047fe 397 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
398 if (status == REG_VALID)
399 memcpy (buf, raw_buf, 4);
3543a589 400 else
d00664db
TT
401 result_value->mark_bytes_unavailable (0,
402 result_value->type ()->length ());
1ba53b71
L
403 }
404 else
3543a589
TT
405 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
406 result_value);
407
408 return result_value;
1ba53b71
L
409}
410
411static void
412amd64_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
414 int regnum, const gdb_byte *buf)
415{
08106042 416 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
1ba53b71
L
417
418 if (i386_byte_regnum_p (gdbarch, regnum))
419 {
420 int gpnum = regnum - tdep->al_regnum;
421
fe01d668
L
422 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
423 {
925047fe
SM
424 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
425 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
426
fe01d668 427 /* Read ... AH, BH, CH, DH. */
925047fe 428 regcache->raw_read (gpnum, raw_buf);
fe01d668
L
429 /* ... Modify ... (always little endian). */
430 memcpy (raw_buf + 1, buf, 1);
431 /* ... Write. */
925047fe 432 regcache->raw_write (gpnum, raw_buf);
fe01d668
L
433 }
434 else
435 {
925047fe
SM
436 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
437
fe01d668 438 /* Read ... */
0b883586 439 regcache->raw_read (gpnum, raw_buf);
fe01d668
L
440 /* ... Modify ... (always little endian). */
441 memcpy (raw_buf, buf, 1);
442 /* ... Write. */
10eaee5f 443 regcache->raw_write (gpnum, raw_buf);
fe01d668 444 }
1ba53b71
L
445 }
446 else if (i386_dword_regnum_p (gdbarch, regnum))
447 {
448 int gpnum = regnum - tdep->eax_regnum;
925047fe 449 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
1ba53b71
L
450
451 /* Read ... */
0b883586 452 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
453 /* ... Modify ... (always little endian). */
454 memcpy (raw_buf, buf, 4);
455 /* ... Write. */
10eaee5f 456 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
457 }
458 else
459 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
460}
461
62e5fd57
MK
462/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
463
464static int
465amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
466 struct agent_expr *ax, int regnum)
467{
08106042 468 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
62e5fd57
MK
469
470 if (i386_byte_regnum_p (gdbarch, regnum))
471 {
472 int gpnum = regnum - tdep->al_regnum;
473
474 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
475 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
476 else
477 ax_reg_mask (ax, gpnum);
478 return 0;
479 }
480 else if (i386_dword_regnum_p (gdbarch, regnum))
481 {
482 int gpnum = regnum - tdep->eax_regnum;
483
484 ax_reg_mask (ax, gpnum);
485 return 0;
486 }
487 else
488 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
489}
490
53e95fcf
JS
491\f
492
bf4d6c1c
JB
493/* Register classes as defined in the psABI. */
494
495enum amd64_reg_class
496{
497 AMD64_INTEGER,
498 AMD64_SSE,
499 AMD64_SSEUP,
500 AMD64_X87,
501 AMD64_X87UP,
502 AMD64_COMPLEX_X87,
503 AMD64_NO_CLASS,
504 AMD64_MEMORY
505};
506
efb1c01c
MK
507/* Return the union class of CLASS1 and CLASS2. See the psABI for
508 details. */
509
510static enum amd64_reg_class
511amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
512{
513 /* Rule (a): If both classes are equal, this is the resulting class. */
514 if (class1 == class2)
515 return class1;
516
517 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
518 is the other class. */
519 if (class1 == AMD64_NO_CLASS)
520 return class2;
521 if (class2 == AMD64_NO_CLASS)
522 return class1;
523
524 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
525 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
526 return AMD64_MEMORY;
527
528 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
529 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
530 return AMD64_INTEGER;
531
532 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
533 MEMORY is used as class. */
534 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
535 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
536 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
537 return AMD64_MEMORY;
538
539 /* Rule (f): Otherwise class SSE is used. */
540 return AMD64_SSE;
541}
542
fe978cb0 543static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
bf4d6c1c 544
4aa866af 545/* Return true if TYPE is a structure or union with unaligned fields. */
79b1ab3d 546
4aa866af
LS
547static bool
548amd64_has_unaligned_fields (struct type *type)
79b1ab3d 549{
78134374
SM
550 if (type->code () == TYPE_CODE_STRUCT
551 || type->code () == TYPE_CODE_UNION)
4aa866af 552 {
1f704f76 553 for (int i = 0; i < type->num_fields (); i++)
4aa866af 554 {
940da03e 555 struct type *subtype = check_typedef (type->field (i).type ());
4aa866af 556
a59240a4
TT
557 /* Ignore static fields, empty fields (for example nested
558 empty structures), and bitfields (these are handled by
559 the caller). */
c819a338 560 if (type->field (i).is_static ()
4aa866af 561 || (TYPE_FIELD_BITSIZE (type, i) == 0
df86565b 562 && subtype->length () == 0)
a59240a4 563 || TYPE_FIELD_PACKED (type, i))
4aa866af
LS
564 continue;
565
b610c045 566 int bitpos = type->field (i).loc_bitpos ();
cd3f655c 567
4aa866af
LS
568 if (bitpos % 8 != 0)
569 return true;
570
a12a15e7
AB
571 int align = type_align (subtype);
572 if (align == 0)
573 error (_("could not determine alignment of type"));
574
4aa866af
LS
575 int bytepos = bitpos / 8;
576 if (bytepos % align != 0)
577 return true;
578
a59240a4 579 if (amd64_has_unaligned_fields (subtype))
4aa866af
LS
580 return true;
581 }
582 }
79b1ab3d 583
4aa866af 584 return false;
79b1ab3d
MK
585}
586
d10eccaa
TV
587/* Classify field I of TYPE starting at BITOFFSET according to the rules for
588 structures and union types, and store the result in THECLASS. */
589
590static void
591amd64_classify_aggregate_field (struct type *type, int i,
592 enum amd64_reg_class theclass[2],
593 unsigned int bitoffset)
594{
940da03e 595 struct type *subtype = check_typedef (type->field (i).type ());
d10eccaa
TV
596 enum amd64_reg_class subclass[2];
597 int bitsize = TYPE_FIELD_BITSIZE (type, i);
d10eccaa
TV
598
599 if (bitsize == 0)
df86565b 600 bitsize = subtype->length () * 8;
d10eccaa
TV
601
602 /* Ignore static fields, or empty fields, for example nested
603 empty structures.*/
c819a338 604 if (type->field (i).is_static () || bitsize == 0)
d10eccaa
TV
605 return;
606
b610c045 607 int bitpos = bitoffset + type->field (i).loc_bitpos ();
cd3f655c
SM
608 int pos = bitpos / 64;
609 int endpos = (bitpos + bitsize - 1) / 64;
610
78134374
SM
611 if (subtype->code () == TYPE_CODE_STRUCT
612 || subtype->code () == TYPE_CODE_UNION)
d10eccaa
TV
613 {
614 /* Each field of an object is classified recursively. */
615 int j;
1f704f76 616 for (j = 0; j < subtype->num_fields (); j++)
d10eccaa
TV
617 amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
618 return;
619 }
620
621 gdb_assert (pos == 0 || pos == 1);
622
623 amd64_classify (subtype, subclass);
624 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
625 if (bitsize <= 64 && pos == 0 && endpos == 1)
626 /* This is a bit of an odd case: We have a field that would
627 normally fit in one of the two eightbytes, except that
628 it is placed in a way that this field straddles them.
629 This has been seen with a structure containing an array.
630
631 The ABI is a bit unclear in this case, but we assume that
632 this field's class (stored in subclass[0]) must also be merged
633 into class[1]. In other words, our field has a piece stored
634 in the second eight-byte, and thus its class applies to
635 the second eight-byte as well.
636
637 In the case where the field length exceeds 8 bytes,
638 it should not be necessary to merge the field class
639 into class[1]. As LEN > 8, subclass[1] is necessarily
640 different from AMD64_NO_CLASS. If subclass[1] is equal
641 to subclass[0], then the normal class[1]/subclass[1]
642 merging will take care of everything. For subclass[1]
643 to be different from subclass[0], I can only see the case
644 where we have a SSE/SSEUP or X87/X87UP pair, which both
645 use up all 16 bytes of the aggregate, and are already
646 handled just fine (because each portion sits on its own
647 8-byte). */
648 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
649 if (pos == 0)
650 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
651}
652
efb1c01c
MK
653/* Classify TYPE according to the rules for aggregate (structures and
654 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
655
656static void
fe978cb0 657amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
53e95fcf 658{
b1718fcd
AB
659 /* 1. If the size of an object is larger than two times eight bytes, or
660 it is a non-trivial C++ object, or it has unaligned fields, then it
661 has class memory.
662
663 It is important that the trivially_copyable check is before the
664 unaligned fields check, as C++ classes with virtual base classes
665 will have fields (for the virtual base classes) with non-constant
666 loc_bitpos attributes, which will cause an assert to trigger within
667 the unaligned field check. As classes with virtual bases are not
668 trivially copyable, checking that first avoids this problem. */
862ebb27
TT
669 if (TYPE_HAS_DYNAMIC_LENGTH (type)
670 || type->length () > 16
b1718fcd
AB
671 || !language_pass_by_reference (type).trivially_copyable
672 || amd64_has_unaligned_fields (type))
53e95fcf 673 {
fe978cb0 674 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 675 return;
53e95fcf 676 }
efb1c01c
MK
677
678 /* 2. Both eightbytes get initialized to class NO_CLASS. */
fe978cb0 679 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
680
681 /* 3. Each field of an object is classified recursively so that
dda83cd7
SM
682 always two fields are considered. The resulting class is
683 calculated according to the classes of the fields in the
684 eightbyte: */
efb1c01c 685
78134374 686 if (type->code () == TYPE_CODE_ARRAY)
8ffd9b1b 687 {
27710edb 688 struct type *subtype = check_typedef (type->target_type ());
efb1c01c
MK
689
690 /* All fields in an array have the same type. */
fe978cb0 691 amd64_classify (subtype, theclass);
df86565b 692 if (type->length () > 8 && theclass[1] == AMD64_NO_CLASS)
fe978cb0 693 theclass[1] = theclass[0];
8ffd9b1b 694 }
53e95fcf
JS
695 else
696 {
efb1c01c 697 int i;
53e95fcf 698
efb1c01c 699 /* Structure or union. */
78134374
SM
700 gdb_assert (type->code () == TYPE_CODE_STRUCT
701 || type->code () == TYPE_CODE_UNION);
efb1c01c 702
1f704f76 703 for (i = 0; i < type->num_fields (); i++)
d10eccaa 704 amd64_classify_aggregate_field (type, i, theclass, 0);
53e95fcf 705 }
efb1c01c
MK
706
707 /* 4. Then a post merger cleanup is done: */
708
709 /* Rule (a): If one of the classes is MEMORY, the whole argument is
710 passed in memory. */
fe978cb0
PA
711 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
712 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 713
177b42fe 714 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
efb1c01c 715 SSE. */
fe978cb0
PA
716 if (theclass[0] == AMD64_SSEUP)
717 theclass[0] = AMD64_SSE;
718 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
719 theclass[1] = AMD64_SSE;
efb1c01c
MK
720}
721
722/* Classify TYPE, and store the result in CLASS. */
723
bf4d6c1c 724static void
fe978cb0 725amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
efb1c01c 726{
78134374 727 enum type_code code = type->code ();
df86565b 728 int len = type->length ();
efb1c01c 729
fe978cb0 730 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
731
732 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
733 long, long long, and pointers are in the INTEGER class. Similarly,
734 range types, used by languages such as Ada, are also in the INTEGER
735 class. */
efb1c01c 736 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 737 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
9db13498 738 || code == TYPE_CODE_CHAR
aa006118 739 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
efb1c01c 740 && (len == 1 || len == 2 || len == 4 || len == 8))
fe978cb0 741 theclass[0] = AMD64_INTEGER;
efb1c01c 742
0b99a660
FW
743 /* Arguments of types _Float16, float, double, _Decimal32, _Decimal64 and
744 __m64 are in class SSE. */
5daa78cc 745 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
0b99a660 746 && (len == 2 || len == 4 || len == 8))
efb1c01c 747 /* FIXME: __m64 . */
fe978cb0 748 theclass[0] = AMD64_SSE;
efb1c01c 749
5daa78cc
TJB
750 /* Arguments of types __float128, _Decimal128 and __m128 are split into
751 two halves. The least significant ones belong to class SSE, the most
efb1c01c 752 significant one to class SSEUP. */
5daa78cc
TJB
753 else if (code == TYPE_CODE_DECFLOAT && len == 16)
754 /* FIXME: __float128, __m128. */
fe978cb0 755 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
efb1c01c
MK
756
757 /* The 64-bit mantissa of arguments of type long double belongs to
758 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
759 class X87UP. */
760 else if (code == TYPE_CODE_FLT && len == 16)
761 /* Class X87 and X87UP. */
fe978cb0 762 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
efb1c01c 763
0b99a660
FW
764 /* Arguments of complex T - where T is one of the types _Float16, float or
765 double - get treated as if they are implemented as:
7f7930dd
MK
766
767 struct complexT {
768 T real;
769 T imag;
5f52445b
YQ
770 };
771
772 */
0b99a660 773 else if (code == TYPE_CODE_COMPLEX && (len == 8 || len == 4))
fe978cb0 774 theclass[0] = AMD64_SSE;
7f7930dd 775 else if (code == TYPE_CODE_COMPLEX && len == 16)
fe978cb0 776 theclass[0] = theclass[1] = AMD64_SSE;
7f7930dd
MK
777
778 /* A variable of type complex long double is classified as type
779 COMPLEX_X87. */
780 else if (code == TYPE_CODE_COMPLEX && len == 32)
fe978cb0 781 theclass[0] = AMD64_COMPLEX_X87;
7f7930dd 782
efb1c01c
MK
783 /* Aggregates. */
784 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
785 || code == TYPE_CODE_UNION)
fe978cb0 786 amd64_classify_aggregate (type, theclass);
efb1c01c
MK
787}
788
789static enum return_value_convention
6a3a010b 790amd64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 791 struct type *type, struct regcache *regcache,
5cb0f2d5 792 struct value **read_value, const gdb_byte *writebuf)
efb1c01c 793{
fe978cb0 794 enum amd64_reg_class theclass[2];
df86565b 795 int len = type->length ();
90f90721
MK
796 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
797 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
798 int integer_reg = 0;
799 int sse_reg = 0;
800 int i;
801
5cb0f2d5
TT
802 gdb_assert (!(read_value && writebuf));
803
efb1c01c 804 /* 1. Classify the return type with the classification algorithm. */
fe978cb0 805 amd64_classify (type, theclass);
efb1c01c
MK
806
807 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d 808 for the return value and passes the address of this storage in
0963b4bd 809 %rdi as if it were the first argument to the function. In effect,
6fa57a7d
MK
810 this address becomes a hidden first argument.
811
812 On return %rax will contain the address that has been passed in
813 by the caller in %rdi. */
fe978cb0 814 if (theclass[0] == AMD64_MEMORY)
6fa57a7d
MK
815 {
816 /* As indicated by the comment above, the ABI guarantees that we
dda83cd7
SM
817 can always find the return value just after the function has
818 returned. */
6fa57a7d 819
911627e7 820 if (read_value != nullptr)
6fa57a7d
MK
821 {
822 ULONGEST addr;
823
824 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
911627e7 825 *read_value = value_at_non_lval (type, addr);
6fa57a7d
MK
826 }
827
828 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
829 }
efb1c01c 830
911627e7
TT
831 gdb_byte *readbuf = nullptr;
832 if (read_value != nullptr)
833 {
317c3ed9 834 *read_value = value::allocate (type);
bbe912ba 835 readbuf = (*read_value)->contents_raw ().data ();
911627e7
TT
836 }
837
7f7930dd 838 /* 8. If the class is COMPLEX_X87, the real part of the value is
dda83cd7 839 returned in %st0 and the imaginary part in %st1. */
fe978cb0 840 if (theclass[0] == AMD64_COMPLEX_X87)
7f7930dd
MK
841 {
842 if (readbuf)
843 {
0b883586
SM
844 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
845 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
7f7930dd
MK
846 }
847
848 if (writebuf)
849 {
850 i387_return_value (gdbarch, regcache);
10eaee5f
SM
851 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
852 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
7f7930dd
MK
853
854 /* Fix up the tag word such that both %st(0) and %st(1) are
855 marked as valid. */
856 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
857 }
858
859 return RETURN_VALUE_REGISTER_CONVENTION;
860 }
861
fe978cb0 862 gdb_assert (theclass[1] != AMD64_MEMORY);
bad43aa5 863 gdb_assert (len <= 16);
efb1c01c
MK
864
865 for (i = 0; len > 0; i++, len -= 8)
866 {
867 int regnum = -1;
868 int offset = 0;
869
fe978cb0 870 switch (theclass[i])
efb1c01c
MK
871 {
872 case AMD64_INTEGER:
873 /* 3. If the class is INTEGER, the next available register
874 of the sequence %rax, %rdx is used. */
875 regnum = integer_regnum[integer_reg++];
876 break;
877
878 case AMD64_SSE:
879 /* 4. If the class is SSE, the next available SSE register
dda83cd7 880 of the sequence %xmm0, %xmm1 is used. */
efb1c01c
MK
881 regnum = sse_regnum[sse_reg++];
882 break;
883
884 case AMD64_SSEUP:
885 /* 5. If the class is SSEUP, the eightbyte is passed in the
886 upper half of the last used SSE register. */
887 gdb_assert (sse_reg > 0);
888 regnum = sse_regnum[sse_reg - 1];
889 offset = 8;
890 break;
891
892 case AMD64_X87:
893 /* 6. If the class is X87, the value is returned on the X87
dda83cd7 894 stack in %st0 as 80-bit x87 number. */
90f90721 895 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
896 if (writebuf)
897 i387_return_value (gdbarch, regcache);
898 break;
899
900 case AMD64_X87UP:
901 /* 7. If the class is X87UP, the value is returned together
dda83cd7 902 with the previous X87 value in %st0. */
fe978cb0 903 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
90f90721 904 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
905 offset = 8;
906 len = 2;
907 break;
908
909 case AMD64_NO_CLASS:
910 continue;
911
912 default:
913 gdb_assert (!"Unexpected register class.");
914 }
915
916 gdb_assert (regnum != -1);
917
918 if (readbuf)
502fe83e
SM
919 regcache->raw_read_part (regnum, offset, std::min (len, 8),
920 readbuf + i * 8);
efb1c01c 921 if (writebuf)
4f0420fd
SM
922 regcache->raw_write_part (regnum, offset, std::min (len, 8),
923 writebuf + i * 8);
efb1c01c
MK
924 }
925
926 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
927}
928\f
929
720aa428 930static CORE_ADDR
cf84fa6b
AH
931amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
932 CORE_ADDR sp, function_call_return_method return_method)
720aa428 933{
bf4d6c1c
JB
934 static int integer_regnum[] =
935 {
936 AMD64_RDI_REGNUM, /* %rdi */
937 AMD64_RSI_REGNUM, /* %rsi */
938 AMD64_RDX_REGNUM, /* %rdx */
939 AMD64_RCX_REGNUM, /* %rcx */
5b856f36
PM
940 AMD64_R8_REGNUM, /* %r8 */
941 AMD64_R9_REGNUM /* %r9 */
bf4d6c1c 942 };
720aa428
MK
943 static int sse_regnum[] =
944 {
945 /* %xmm0 ... %xmm7 */
90f90721
MK
946 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
947 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
948 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
949 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428 950 };
224c3ddb 951 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
720aa428
MK
952 int num_stack_args = 0;
953 int num_elements = 0;
954 int element = 0;
955 int integer_reg = 0;
956 int sse_reg = 0;
957 int i;
958
6470d250 959 /* Reserve a register for the "hidden" argument. */
cf84fa6b 960if (return_method == return_method_struct)
6470d250
MK
961 integer_reg++;
962
720aa428
MK
963 for (i = 0; i < nargs; i++)
964 {
d0c97917 965 struct type *type = args[i]->type ();
df86565b 966 int len = type->length ();
fe978cb0 967 enum amd64_reg_class theclass[2];
720aa428
MK
968 int needed_integer_regs = 0;
969 int needed_sse_regs = 0;
970 int j;
971
972 /* Classify argument. */
fe978cb0 973 amd64_classify (type, theclass);
720aa428
MK
974
975 /* Calculate the number of integer and SSE registers needed for
dda83cd7 976 this argument. */
720aa428
MK
977 for (j = 0; j < 2; j++)
978 {
fe978cb0 979 if (theclass[j] == AMD64_INTEGER)
720aa428 980 needed_integer_regs++;
fe978cb0 981 else if (theclass[j] == AMD64_SSE)
720aa428
MK
982 needed_sse_regs++;
983 }
984
985 /* Check whether enough registers are available, and if the
dda83cd7 986 argument should be passed in registers at all. */
bf4d6c1c 987 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
720aa428
MK
988 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
989 || (needed_integer_regs == 0 && needed_sse_regs == 0))
990 {
991 /* The argument will be passed on the stack. */
992 num_elements += ((len + 7) / 8);
849e9755 993 stack_args[num_stack_args++] = args[i];
720aa428
MK
994 }
995 else
996 {
997 /* The argument will be passed in registers. */
efaf1ae0 998 const gdb_byte *valbuf = args[i]->contents ().data ();
d8de1ef7 999 gdb_byte buf[8];
720aa428
MK
1000
1001 gdb_assert (len <= 16);
1002
1003 for (j = 0; len > 0; j++, len -= 8)
1004 {
1005 int regnum = -1;
1006 int offset = 0;
1007
fe978cb0 1008 switch (theclass[j])
720aa428
MK
1009 {
1010 case AMD64_INTEGER:
bf4d6c1c 1011 regnum = integer_regnum[integer_reg++];
720aa428
MK
1012 break;
1013
1014 case AMD64_SSE:
1015 regnum = sse_regnum[sse_reg++];
1016 break;
1017
1018 case AMD64_SSEUP:
1019 gdb_assert (sse_reg > 0);
1020 regnum = sse_regnum[sse_reg - 1];
1021 offset = 8;
1022 break;
1023
745ff14e
TV
1024 case AMD64_NO_CLASS:
1025 continue;
1026
720aa428
MK
1027 default:
1028 gdb_assert (!"Unexpected register class.");
1029 }
1030
1031 gdb_assert (regnum != -1);
1032 memset (buf, 0, sizeof buf);
325fac50 1033 memcpy (buf, valbuf + j * 8, std::min (len, 8));
4f0420fd 1034 regcache->raw_write_part (regnum, offset, 8, buf);
720aa428
MK
1035 }
1036 }
1037 }
1038
1039 /* Allocate space for the arguments on the stack. */
1040 sp -= num_elements * 8;
1041
1042 /* The psABI says that "The end of the input argument area shall be
1043 aligned on a 16 byte boundary." */
1044 sp &= ~0xf;
1045
1046 /* Write out the arguments to the stack. */
1047 for (i = 0; i < num_stack_args; i++)
1048 {
d0c97917 1049 struct type *type = stack_args[i]->type ();
efaf1ae0 1050 const gdb_byte *valbuf = stack_args[i]->contents ().data ();
df86565b 1051 int len = type->length ();
849e9755
JB
1052
1053 write_memory (sp + element * 8, valbuf, len);
1054 element += ((len + 7) / 8);
720aa428
MK
1055 }
1056
1057 /* The psABI says that "For calls that may call functions that use
1058 varargs or stdargs (prototype-less calls or calls to functions
1059 containing ellipsis (...) in the declaration) %al is used as
1060 hidden argument to specify the number of SSE registers used. */
90f90721 1061 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
1062 return sp;
1063}
1064
c4f35dd8 1065static CORE_ADDR
7d9b040b 1066amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
1067 struct regcache *regcache, CORE_ADDR bp_addr,
1068 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1069 function_call_return_method return_method,
1070 CORE_ADDR struct_addr)
53e95fcf 1071{
e17a4113 1072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 1073 gdb_byte buf[8];
c4f35dd8 1074
4a612d6f
WT
1075 /* BND registers can be in arbitrary values at the moment of the
1076 inferior call. This can cause boundary violations that are not
1077 due to a real bug or even desired by the user. The best to be done
1078 is set the BND registers to allow access to the whole memory, INIT
1079 state, before pushing the inferior call. */
1080 i387_reset_bnd_regs (gdbarch, regcache);
1081
c4f35dd8 1082 /* Pass arguments. */
cf84fa6b 1083 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
c4f35dd8
MK
1084
1085 /* Pass "hidden" argument". */
cf84fa6b 1086 if (return_method == return_method_struct)
c4f35dd8 1087 {
e17a4113 1088 store_unsigned_integer (buf, 8, byte_order, struct_addr);
b66f5587 1089 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
1090 }
1091
1092 /* Store return address. */
1093 sp -= 8;
e17a4113 1094 store_unsigned_integer (buf, 8, byte_order, bp_addr);
c4f35dd8
MK
1095 write_memory (sp, buf, 8);
1096
1097 /* Finally, update the stack pointer... */
e17a4113 1098 store_unsigned_integer (buf, 8, byte_order, sp);
b66f5587 1099 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
1100
1101 /* ...and fake a frame pointer. */
b66f5587 1102 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
c4f35dd8 1103
3e210248 1104 return sp + 16;
53e95fcf 1105}
c4f35dd8 1106\f
35669430
DE
1107/* Displaced instruction handling. */
1108
1109/* A partially decoded instruction.
1110 This contains enough details for displaced stepping purposes. */
1111
1112struct amd64_insn
1113{
1114 /* The number of opcode bytes. */
1115 int opcode_len;
50a1fdd5
PA
1116 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1117 not present. */
1118 int enc_prefix_offset;
35669430
DE
1119 /* The offset to the first opcode byte. */
1120 int opcode_offset;
1121 /* The offset to the modrm byte or -1 if not present. */
1122 int modrm_offset;
1123
1124 /* The raw instruction. */
1125 gdb_byte *raw_insn;
1126};
1127
1152d984
SM
1128struct amd64_displaced_step_copy_insn_closure
1129 : public displaced_step_copy_insn_closure
35669430 1130{
1152d984 1131 amd64_displaced_step_copy_insn_closure (int insn_buf_len)
cfba9872
SM
1132 : insn_buf (insn_buf_len, 0)
1133 {}
1134
35669430 1135 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
cfba9872 1136 int tmp_used = 0;
35669430
DE
1137 int tmp_regno;
1138 ULONGEST tmp_save;
1139
1140 /* Details of the instruction. */
1141 struct amd64_insn insn_details;
1142
cfba9872
SM
1143 /* The possibly modified insn. */
1144 gdb::byte_vector insn_buf;
35669430
DE
1145};
1146
1147/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1148 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1149 at which point delete these in favor of libopcodes' versions). */
1150
1151static const unsigned char onebyte_has_modrm[256] = {
1152 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1153 /* ------------------------------- */
1154 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1155 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1156 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1157 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1158 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1159 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1160 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1161 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1162 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1163 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1164 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1165 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1166 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1167 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1168 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1169 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1170 /* ------------------------------- */
1171 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1172};
1173
1174static const unsigned char twobyte_has_modrm[256] = {
1175 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1176 /* ------------------------------- */
1177 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1178 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1179 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1180 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1181 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1182 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1183 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1184 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1185 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1186 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1187 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1188 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1189 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1190 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1191 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1192 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1193 /* ------------------------------- */
1194 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1195};
1196
1197static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1198
1199static int
1200rex_prefix_p (gdb_byte pfx)
1201{
1202 return REX_PREFIX_P (pfx);
1203}
1204
50a1fdd5
PA
1205/* True if PFX is the start of the 2-byte VEX prefix. */
1206
1207static bool
1208vex2_prefix_p (gdb_byte pfx)
1209{
1210 return pfx == 0xc5;
1211}
1212
1213/* True if PFX is the start of the 3-byte VEX prefix. */
1214
1215static bool
1216vex3_prefix_p (gdb_byte pfx)
1217{
1218 return pfx == 0xc4;
1219}
1220
35669430
DE
1221/* Skip the legacy instruction prefixes in INSN.
1222 We assume INSN is properly sentineled so we don't have to worry
1223 about falling off the end of the buffer. */
1224
1225static gdb_byte *
1903f0e6 1226amd64_skip_prefixes (gdb_byte *insn)
35669430
DE
1227{
1228 while (1)
1229 {
1230 switch (*insn)
1231 {
1232 case DATA_PREFIX_OPCODE:
1233 case ADDR_PREFIX_OPCODE:
1234 case CS_PREFIX_OPCODE:
1235 case DS_PREFIX_OPCODE:
1236 case ES_PREFIX_OPCODE:
1237 case FS_PREFIX_OPCODE:
1238 case GS_PREFIX_OPCODE:
1239 case SS_PREFIX_OPCODE:
1240 case LOCK_PREFIX_OPCODE:
1241 case REPE_PREFIX_OPCODE:
1242 case REPNE_PREFIX_OPCODE:
1243 ++insn;
1244 continue;
1245 default:
1246 break;
1247 }
1248 break;
1249 }
1250
1251 return insn;
1252}
1253
35669430
DE
1254/* Return an integer register (other than RSP) that is unused as an input
1255 operand in INSN.
1256 In order to not require adding a rex prefix if the insn doesn't already
1257 have one, the result is restricted to RAX ... RDI, sans RSP.
1258 The register numbering of the result follows architecture ordering,
1259 e.g. RDI = 7. */
1260
1261static int
1262amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1263{
1264 /* 1 bit for each reg */
1265 int used_regs_mask = 0;
1266
1267 /* There can be at most 3 int regs used as inputs in an insn, and we have
1268 7 to choose from (RAX ... RDI, sans RSP).
1269 This allows us to take a conservative approach and keep things simple.
1270 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1271 that implicitly specify RAX. */
1272
1273 /* Avoid RAX. */
1274 used_regs_mask |= 1 << EAX_REG_NUM;
1275 /* Similarily avoid RDX, implicit operand in divides. */
1276 used_regs_mask |= 1 << EDX_REG_NUM;
1277 /* Avoid RSP. */
1278 used_regs_mask |= 1 << ESP_REG_NUM;
1279
1280 /* If the opcode is one byte long and there's no ModRM byte,
1281 assume the opcode specifies a register. */
1282 if (details->opcode_len == 1 && details->modrm_offset == -1)
1283 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1284
1285 /* Mark used regs in the modrm/sib bytes. */
1286 if (details->modrm_offset != -1)
1287 {
1288 int modrm = details->raw_insn[details->modrm_offset];
1289 int mod = MODRM_MOD_FIELD (modrm);
1290 int reg = MODRM_REG_FIELD (modrm);
1291 int rm = MODRM_RM_FIELD (modrm);
1292 int have_sib = mod != 3 && rm == 4;
1293
1294 /* Assume the reg field of the modrm byte specifies a register. */
1295 used_regs_mask |= 1 << reg;
1296
1297 if (have_sib)
1298 {
1299 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
d48ebb5b 1300 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
35669430 1301 used_regs_mask |= 1 << base;
d48ebb5b 1302 used_regs_mask |= 1 << idx;
35669430
DE
1303 }
1304 else
1305 {
1306 used_regs_mask |= 1 << rm;
1307 }
1308 }
1309
1310 gdb_assert (used_regs_mask < 256);
1311 gdb_assert (used_regs_mask != 255);
1312
1313 /* Finally, find a free reg. */
1314 {
1315 int i;
1316
1317 for (i = 0; i < 8; ++i)
1318 {
1319 if (! (used_regs_mask & (1 << i)))
1320 return i;
1321 }
1322
1323 /* We shouldn't get here. */
f34652de 1324 internal_error (_("unable to find free reg"));
35669430
DE
1325 }
1326}
1327
1328/* Extract the details of INSN that we need. */
1329
1330static void
1331amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1332{
1333 gdb_byte *start = insn;
1334 int need_modrm;
1335
1336 details->raw_insn = insn;
1337
1338 details->opcode_len = -1;
50a1fdd5 1339 details->enc_prefix_offset = -1;
35669430
DE
1340 details->opcode_offset = -1;
1341 details->modrm_offset = -1;
1342
1343 /* Skip legacy instruction prefixes. */
1903f0e6 1344 insn = amd64_skip_prefixes (insn);
35669430 1345
50a1fdd5 1346 /* Skip REX/VEX instruction encoding prefixes. */
35669430
DE
1347 if (rex_prefix_p (*insn))
1348 {
50a1fdd5 1349 details->enc_prefix_offset = insn - start;
35669430
DE
1350 ++insn;
1351 }
50a1fdd5
PA
1352 else if (vex2_prefix_p (*insn))
1353 {
1354 /* Don't record the offset in this case because this prefix has
1355 no REX.B equivalent. */
1356 insn += 2;
1357 }
1358 else if (vex3_prefix_p (*insn))
1359 {
1360 details->enc_prefix_offset = insn - start;
1361 insn += 3;
1362 }
35669430
DE
1363
1364 details->opcode_offset = insn - start;
1365
1366 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1367 {
1368 /* Two or three-byte opcode. */
1369 ++insn;
1370 need_modrm = twobyte_has_modrm[*insn];
1371
1372 /* Check for three-byte opcode. */
1903f0e6 1373 switch (*insn)
35669430 1374 {
1903f0e6
DE
1375 case 0x24:
1376 case 0x25:
1377 case 0x38:
1378 case 0x3a:
1379 case 0x7a:
1380 case 0x7b:
35669430
DE
1381 ++insn;
1382 details->opcode_len = 3;
1903f0e6
DE
1383 break;
1384 default:
1385 details->opcode_len = 2;
1386 break;
35669430 1387 }
35669430
DE
1388 }
1389 else
1390 {
1391 /* One-byte opcode. */
1392 need_modrm = onebyte_has_modrm[*insn];
1393 details->opcode_len = 1;
1394 }
1395
1396 if (need_modrm)
1397 {
1398 ++insn;
1399 details->modrm_offset = insn - start;
1400 }
1401}
1402
1403/* Update %rip-relative addressing in INSN.
1404
1405 %rip-relative addressing only uses a 32-bit displacement.
1406 32 bits is not enough to be guaranteed to cover the distance between where
1407 the real instruction is and where its copy is.
1408 Convert the insn to use base+disp addressing.
1409 We set base = pc + insn_length so we can leave disp unchanged. */
c4f35dd8 1410
35669430 1411static void
1152d984
SM
1412fixup_riprel (struct gdbarch *gdbarch,
1413 amd64_displaced_step_copy_insn_closure *dsc,
35669430
DE
1414 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1415{
1416 const struct amd64_insn *insn_details = &dsc->insn_details;
1417 int modrm_offset = insn_details->modrm_offset;
35669430 1418 CORE_ADDR rip_base;
35669430
DE
1419 int insn_length;
1420 int arch_tmp_regno, tmp_regno;
1421 ULONGEST orig_value;
1422
35669430 1423 /* Compute the rip-relative address. */
cfba9872
SM
1424 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1425 dsc->insn_buf.size (), from);
35669430
DE
1426 rip_base = from + insn_length;
1427
1428 /* We need a register to hold the address.
1429 Pick one not used in the insn.
1430 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1431 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1432 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1433
50a1fdd5
PA
1434 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1435 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1436
1437 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1438 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1439 is not r8-r15. */
1440 if (insn_details->enc_prefix_offset != -1)
1441 {
1442 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1443 if (rex_prefix_p (pfx[0]))
1444 pfx[0] &= ~REX_B;
1445 else if (vex3_prefix_p (pfx[0]))
1446 pfx[1] |= VEX3_NOT_B;
1447 else
1448 gdb_assert_not_reached ("unhandled prefix");
1449 }
35669430
DE
1450
1451 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1452 dsc->tmp_regno = tmp_regno;
1453 dsc->tmp_save = orig_value;
1454 dsc->tmp_used = 1;
1455
1456 /* Convert the ModRM field to be base+disp. */
1457 dsc->insn_buf[modrm_offset] &= ~0xc7;
1458 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1459
1460 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1461
136821d9
SM
1462 displaced_debug_printf ("%%rip-relative addressing used.");
1463 displaced_debug_printf ("using temp reg %d, old value %s, new value %s",
1464 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1465 paddress (gdbarch, rip_base));
35669430
DE
1466}
1467
1468static void
1469fixup_displaced_copy (struct gdbarch *gdbarch,
1152d984 1470 amd64_displaced_step_copy_insn_closure *dsc,
35669430
DE
1471 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1472{
1473 const struct amd64_insn *details = &dsc->insn_details;
1474
1475 if (details->modrm_offset != -1)
1476 {
1477 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1478
1479 if ((modrm & 0xc7) == 0x05)
1480 {
1481 /* The insn uses rip-relative addressing.
1482 Deal with it. */
1483 fixup_riprel (gdbarch, dsc, from, to, regs);
1484 }
1485 }
1486}
1487
1152d984 1488displaced_step_copy_insn_closure_up
35669430
DE
1489amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1490 CORE_ADDR from, CORE_ADDR to,
1491 struct regcache *regs)
1492{
1493 int len = gdbarch_max_insn_length (gdbarch);
741e63d7 1494 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
35669430
DE
1495 continually watch for running off the end of the buffer. */
1496 int fixup_sentinel_space = len;
1152d984
SM
1497 std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc
1498 (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space));
35669430
DE
1499 gdb_byte *buf = &dsc->insn_buf[0];
1500 struct amd64_insn *details = &dsc->insn_details;
1501
35669430
DE
1502 read_memory (from, buf, len);
1503
1504 /* Set up the sentinel space so we don't have to worry about running
1505 off the end of the buffer. An excessive number of leading prefixes
1506 could otherwise cause this. */
1507 memset (buf + len, 0, fixup_sentinel_space);
1508
1509 amd64_get_insn_details (buf, details);
1510
1511 /* GDB may get control back after the insn after the syscall.
1512 Presumably this is a kernel bug.
1513 If this is a syscall, make sure there's a nop afterwards. */
1514 {
1515 int syscall_length;
1516
1517 if (amd64_syscall_p (details, &syscall_length))
1518 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1519 }
1520
1521 /* Modify the insn to cope with the address where it will be executed from.
1522 In particular, handle any rip-relative addressing. */
e8217e61 1523 fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs);
35669430
DE
1524
1525 write_memory (to, buf, len);
1526
136821d9
SM
1527 displaced_debug_printf ("copy %s->%s: %s",
1528 paddress (gdbarch, from), paddress (gdbarch, to),
a6e5abae 1529 bytes_to_string (buf, len).c_str ());
35669430 1530
6d0cf446 1531 /* This is a work around for a problem with g++ 4.8. */
1152d984 1532 return displaced_step_copy_insn_closure_up (dsc.release ());
35669430
DE
1533}
1534
1535static int
1536amd64_absolute_jmp_p (const struct amd64_insn *details)
1537{
1538 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1539
1540 if (insn[0] == 0xff)
1541 {
1542 /* jump near, absolute indirect (/4) */
1543 if ((insn[1] & 0x38) == 0x20)
1544 return 1;
1545
1546 /* jump far, absolute indirect (/5) */
1547 if ((insn[1] & 0x38) == 0x28)
1548 return 1;
1549 }
1550
1551 return 0;
1552}
1553
c2170eef
MM
1554/* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1555
1556static int
1557amd64_jmp_p (const struct amd64_insn *details)
1558{
1559 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1560
1561 /* jump short, relative. */
1562 if (insn[0] == 0xeb)
1563 return 1;
1564
1565 /* jump near, relative. */
1566 if (insn[0] == 0xe9)
1567 return 1;
1568
1569 return amd64_absolute_jmp_p (details);
1570}
1571
35669430
DE
1572static int
1573amd64_absolute_call_p (const struct amd64_insn *details)
1574{
1575 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1576
1577 if (insn[0] == 0xff)
1578 {
1579 /* Call near, absolute indirect (/2) */
1580 if ((insn[1] & 0x38) == 0x10)
1581 return 1;
1582
1583 /* Call far, absolute indirect (/3) */
1584 if ((insn[1] & 0x38) == 0x18)
1585 return 1;
1586 }
1587
1588 return 0;
1589}
1590
1591static int
1592amd64_ret_p (const struct amd64_insn *details)
1593{
1594 /* NOTE: gcc can emit "repz ; ret". */
1595 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1596
1597 switch (insn[0])
1598 {
1599 case 0xc2: /* ret near, pop N bytes */
1600 case 0xc3: /* ret near */
1601 case 0xca: /* ret far, pop N bytes */
1602 case 0xcb: /* ret far */
1603 case 0xcf: /* iret */
1604 return 1;
1605
1606 default:
1607 return 0;
1608 }
1609}
1610
1611static int
1612amd64_call_p (const struct amd64_insn *details)
1613{
1614 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1615
1616 if (amd64_absolute_call_p (details))
1617 return 1;
1618
1619 /* call near, relative */
1620 if (insn[0] == 0xe8)
1621 return 1;
1622
1623 return 0;
1624}
1625
35669430
DE
1626/* Return non-zero if INSN is a system call, and set *LENGTHP to its
1627 length in bytes. Otherwise, return zero. */
1628
1629static int
1630amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1631{
1632 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1633
1634 if (insn[0] == 0x0f && insn[1] == 0x05)
1635 {
1636 *lengthp = 2;
1637 return 1;
1638 }
1639
1640 return 0;
1641}
1642
c2170eef
MM
1643/* Classify the instruction at ADDR using PRED.
1644 Throw an error if the memory can't be read. */
1645
1646static int
1647amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1648 int (*pred) (const struct amd64_insn *))
1649{
1650 struct amd64_insn details;
c2170eef 1651
83750264 1652 gdb::byte_vector buf (gdbarch_max_insn_length (gdbarch));
c2170eef 1653
83750264
AB
1654 read_code (addr, buf.data (), buf.size ());
1655 amd64_get_insn_details (buf.data (), &details);
c2170eef 1656
83750264 1657 int classification = pred (&details);
c2170eef
MM
1658
1659 return classification;
1660}
1661
1662/* The gdbarch insn_is_call method. */
1663
1664static int
1665amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1666{
1667 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1668}
1669
1670/* The gdbarch insn_is_ret method. */
1671
1672static int
1673amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1674{
1675 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1676}
1677
1678/* The gdbarch insn_is_jump method. */
1679
1680static int
1681amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1682{
1683 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1684}
1685
35669430
DE
1686/* Fix up the state of registers and memory after having single-stepped
1687 a displaced instruction. */
1688
1689void
1690amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 1691 struct displaced_step_copy_insn_closure *dsc_,
35669430 1692 CORE_ADDR from, CORE_ADDR to,
cf141dd8 1693 struct regcache *regs, bool completed_p)
35669430 1694{
1152d984
SM
1695 amd64_displaced_step_copy_insn_closure *dsc
1696 = (amd64_displaced_step_copy_insn_closure *) dsc_;
e17a4113 1697 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1698 /* The offset we applied to the instruction's address. */
1699 ULONGEST insn_offset = to - from;
cfba9872 1700 gdb_byte *insn = dsc->insn_buf.data ();
35669430
DE
1701 const struct amd64_insn *insn_details = &dsc->insn_details;
1702
136821d9
SM
1703 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
1704 paddress (gdbarch, from), paddress (gdbarch, to),
1705 insn[0], insn[1]);
35669430
DE
1706
1707 /* If we used a tmp reg, restore it. */
1708
1709 if (dsc->tmp_used)
1710 {
136821d9
SM
1711 displaced_debug_printf ("restoring reg %d to %s",
1712 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
35669430
DE
1713 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1714 }
1715
1716 /* The list of issues to contend with here is taken from
1717 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1718 Yay for Free Software! */
1719
1720 /* Relocate the %rip back to the program's instruction stream,
1721 if necessary. */
1722
1723 /* Except in the case of absolute or indirect jump or call
1724 instructions, or a return instruction, the new rip is relative to
1725 the displaced instruction; make it relative to the original insn.
1726 Well, signal handler returns don't need relocation either, but we use the
1727 value of %rip to recognize those; see below. */
cf141dd8
AB
1728 if (!completed_p
1729 || (!amd64_absolute_jmp_p (insn_details)
1730 && !amd64_absolute_call_p (insn_details)
1731 && !amd64_ret_p (insn_details)))
35669430 1732 {
35669430
DE
1733 int insn_len;
1734
cf141dd8 1735 CORE_ADDR pc = regcache_read_pc (regs);
35669430
DE
1736
1737 /* A signal trampoline system call changes the %rip, resuming
1738 execution of the main program after the signal handler has
1739 returned. That makes them like 'return' instructions; we
1740 shouldn't relocate %rip.
1741
1742 But most system calls don't, and we do need to relocate %rip.
1743
1744 Our heuristic for distinguishing these cases: if stepping
1745 over the system call instruction left control directly after
1746 the instruction, the we relocate --- control almost certainly
1747 doesn't belong in the displaced copy. Otherwise, we assume
1748 the instruction has put control where it belongs, and leave
1749 it unrelocated. Goodness help us if there are PC-relative
1750 system calls. */
1751 if (amd64_syscall_p (insn_details, &insn_len)
35669430 1752 /* GDB can get control back after the insn after the syscall.
cf141dd8
AB
1753 Presumably this is a kernel bug. Fixup ensures its a nop, we
1754 add one to the length for it. */
1755 && (pc < to || pc > (to + insn_len + 1)))
136821d9 1756 displaced_debug_printf ("syscall changed %%rip; not relocating");
35669430
DE
1757 else
1758 {
cf141dd8 1759 CORE_ADDR rip = pc - insn_offset;
35669430 1760
1903f0e6
DE
1761 /* If we just stepped over a breakpoint insn, we don't backup
1762 the pc on purpose; this is to match behaviour without
1763 stepping. */
35669430 1764
cf141dd8 1765 regcache_write_pc (regs, rip);
35669430 1766
136821d9 1767 displaced_debug_printf ("relocated %%rip from %s to %s",
cf141dd8 1768 paddress (gdbarch, pc),
136821d9 1769 paddress (gdbarch, rip));
35669430
DE
1770 }
1771 }
1772
1773 /* If the instruction was PUSHFL, then the TF bit will be set in the
1774 pushed value, and should be cleared. We'll leave this for later,
1775 since GDB already messes up the TF flag when stepping over a
1776 pushfl. */
1777
1778 /* If the instruction was a call, the return address now atop the
1779 stack is the address following the copied instruction. We need
1780 to make it the address following the original instruction. */
cf141dd8 1781 if (completed_p && amd64_call_p (insn_details))
35669430
DE
1782 {
1783 ULONGEST rsp;
1784 ULONGEST retaddr;
1785 const ULONGEST retaddr_len = 8;
1786
1787 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
e17a4113 1788 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
4dafcdeb 1789 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
e17a4113 1790 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
35669430 1791
136821d9
SM
1792 displaced_debug_printf ("relocated return addr at %s to %s",
1793 paddress (gdbarch, rsp),
1794 paddress (gdbarch, retaddr));
35669430
DE
1795 }
1796}
dde08ee1
PA
1797
1798/* If the instruction INSN uses RIP-relative addressing, return the
1799 offset into the raw INSN where the displacement to be adjusted is
1800 found. Returns 0 if the instruction doesn't use RIP-relative
1801 addressing. */
1802
1803static int
1804rip_relative_offset (struct amd64_insn *insn)
1805{
1806 if (insn->modrm_offset != -1)
1807 {
1808 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1809
1810 if ((modrm & 0xc7) == 0x05)
1811 {
1812 /* The displacement is found right after the ModRM byte. */
1813 return insn->modrm_offset + 1;
1814 }
1815 }
1816
1817 return 0;
1818}
1819
1820static void
1821append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1822{
1823 target_write_memory (*to, buf, len);
1824 *to += len;
1825}
1826
60965737 1827static void
dde08ee1
PA
1828amd64_relocate_instruction (struct gdbarch *gdbarch,
1829 CORE_ADDR *to, CORE_ADDR oldloc)
1830{
1831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1832 int len = gdbarch_max_insn_length (gdbarch);
1833 /* Extra space for sentinels. */
1834 int fixup_sentinel_space = len;
83750264 1835 gdb::byte_vector buf (len + fixup_sentinel_space);
dde08ee1
PA
1836 struct amd64_insn insn_details;
1837 int offset = 0;
1838 LONGEST rel32, newrel;
1839 gdb_byte *insn;
1840 int insn_length;
1841
83750264 1842 read_memory (oldloc, buf.data (), len);
dde08ee1
PA
1843
1844 /* Set up the sentinel space so we don't have to worry about running
1845 off the end of the buffer. An excessive number of leading prefixes
1846 could otherwise cause this. */
83750264 1847 memset (buf.data () + len, 0, fixup_sentinel_space);
dde08ee1 1848
83750264 1849 insn = buf.data ();
dde08ee1
PA
1850 amd64_get_insn_details (insn, &insn_details);
1851
1852 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1853
1854 /* Skip legacy instruction prefixes. */
1855 insn = amd64_skip_prefixes (insn);
1856
1857 /* Adjust calls with 32-bit relative addresses as push/jump, with
1858 the address pushed being the location where the original call in
1859 the user program would return to. */
1860 if (insn[0] == 0xe8)
1861 {
f077e978
PA
1862 gdb_byte push_buf[32];
1863 CORE_ADDR ret_addr;
1864 int i = 0;
dde08ee1
PA
1865
1866 /* Where "ret" in the original code will return to. */
1867 ret_addr = oldloc + insn_length;
f077e978
PA
1868
1869 /* If pushing an address higher than or equal to 0x80000000,
1870 avoid 'pushq', as that sign extends its 32-bit operand, which
1871 would be incorrect. */
1872 if (ret_addr <= 0x7fffffff)
1873 {
1874 push_buf[0] = 0x68; /* pushq $... */
1875 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1876 i = 5;
1877 }
1878 else
1879 {
1880 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1881 push_buf[i++] = 0x83;
1882 push_buf[i++] = 0xec;
1883 push_buf[i++] = 0x08;
1884
1885 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1886 push_buf[i++] = 0x04;
1887 push_buf[i++] = 0x24;
1888 store_unsigned_integer (&push_buf[i], 4, byte_order,
1889 ret_addr & 0xffffffff);
1890 i += 4;
1891
1892 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1893 push_buf[i++] = 0x44;
1894 push_buf[i++] = 0x24;
1895 push_buf[i++] = 0x04;
1896 store_unsigned_integer (&push_buf[i], 4, byte_order,
1897 ret_addr >> 32);
1898 i += 4;
1899 }
1900 gdb_assert (i <= sizeof (push_buf));
dde08ee1 1901 /* Push the push. */
f077e978 1902 append_insns (to, i, push_buf);
dde08ee1
PA
1903
1904 /* Convert the relative call to a relative jump. */
1905 insn[0] = 0xe9;
1906
1907 /* Adjust the destination offset. */
1908 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1909 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1910 store_signed_integer (insn + 1, 4, byte_order, newrel);
1911
136821d9
SM
1912 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1913 hex_string (rel32), paddress (gdbarch, oldloc),
1914 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1915
1916 /* Write the adjusted jump into its displaced location. */
1917 append_insns (to, 5, insn);
1918 return;
1919 }
1920
1921 offset = rip_relative_offset (&insn_details);
1922 if (!offset)
1923 {
1924 /* Adjust jumps with 32-bit relative addresses. Calls are
1925 already handled above. */
1926 if (insn[0] == 0xe9)
1927 offset = 1;
1928 /* Adjust conditional jumps. */
1929 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1930 offset = 2;
1931 }
1932
1933 if (offset)
1934 {
1935 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1936 newrel = (oldloc - *to) + rel32;
f4a1794a 1937 store_signed_integer (insn + offset, 4, byte_order, newrel);
136821d9
SM
1938 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1939 hex_string (rel32), paddress (gdbarch, oldloc),
1940 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1941 }
1942
1943 /* Write the adjusted instruction into its displaced location. */
83750264 1944 append_insns (to, insn_length, buf.data ());
dde08ee1
PA
1945}
1946
35669430 1947\f
c4f35dd8 1948/* The maximum number of saved registers. This should include %rip. */
90f90721 1949#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 1950
e53bef9f 1951struct amd64_frame_cache
c4f35dd8
MK
1952{
1953 /* Base address. */
1954 CORE_ADDR base;
8fbca658 1955 int base_p;
c4f35dd8
MK
1956 CORE_ADDR sp_offset;
1957 CORE_ADDR pc;
1958
1959 /* Saved registers. */
e53bef9f 1960 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8 1961 CORE_ADDR saved_sp;
e0c62198 1962 int saved_sp_reg;
c4f35dd8
MK
1963
1964 /* Do we have a frame? */
1965 int frameless_p;
1966};
8dda9770 1967
d2449ee8 1968/* Initialize a frame cache. */
c4f35dd8 1969
d2449ee8
DJ
1970static void
1971amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 1972{
c4f35dd8
MK
1973 int i;
1974
c4f35dd8
MK
1975 /* Base address. */
1976 cache->base = 0;
8fbca658 1977 cache->base_p = 0;
c4f35dd8
MK
1978 cache->sp_offset = -8;
1979 cache->pc = 0;
1980
1981 /* Saved registers. We initialize these to -1 since zero is a valid
bba66b87
DE
1982 offset (that's where %rbp is supposed to be stored).
1983 The values start out as being offsets, and are later converted to
1984 addresses (at which point -1 is interpreted as an address, still meaning
1985 "invalid"). */
e53bef9f 1986 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
1987 cache->saved_regs[i] = -1;
1988 cache->saved_sp = 0;
e0c62198 1989 cache->saved_sp_reg = -1;
c4f35dd8
MK
1990
1991 /* Frameless until proven otherwise. */
1992 cache->frameless_p = 1;
d2449ee8 1993}
c4f35dd8 1994
d2449ee8
DJ
1995/* Allocate and initialize a frame cache. */
1996
1997static struct amd64_frame_cache *
1998amd64_alloc_frame_cache (void)
1999{
2000 struct amd64_frame_cache *cache;
2001
2002 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
2003 amd64_init_frame_cache (cache);
c4f35dd8 2004 return cache;
8dda9770 2005}
53e95fcf 2006
e0c62198
L
2007/* GCC 4.4 and later, can put code in the prologue to realign the
2008 stack pointer. Check whether PC points to such code, and update
2009 CACHE accordingly. Return the first instruction after the code
2010 sequence or CURRENT_PC, whichever is smaller. If we don't
2011 recognize the code, return PC. */
2012
2013static CORE_ADDR
2014amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2015 struct amd64_frame_cache *cache)
2016{
2017 /* There are 2 code sequences to re-align stack before the frame
2018 gets set up:
2019
2020 1. Use a caller-saved saved register:
2021
2022 leaq 8(%rsp), %reg
2023 andq $-XXX, %rsp
2024 pushq -8(%reg)
2025
2026 2. Use a callee-saved saved register:
2027
2028 pushq %reg
2029 leaq 16(%rsp), %reg
2030 andq $-XXX, %rsp
2031 pushq -8(%reg)
2032
2033 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2034
24b21115
SM
2035 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2036 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
e0c62198
L
2037 */
2038
2039 gdb_byte buf[18];
2040 int reg, r;
2041 int offset, offset_and;
e0c62198 2042
bae8a07a 2043 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
2044 return pc;
2045
2046 /* Check caller-saved saved register. The first instruction has
2047 to be "leaq 8(%rsp), %reg". */
2048 if ((buf[0] & 0xfb) == 0x48
2049 && buf[1] == 0x8d
2050 && buf[3] == 0x24
2051 && buf[4] == 0x8)
2052 {
2053 /* MOD must be binary 10 and R/M must be binary 100. */
2054 if ((buf[2] & 0xc7) != 0x44)
2055 return pc;
2056
2057 /* REG has register number. */
2058 reg = (buf[2] >> 3) & 7;
2059
2060 /* Check the REX.R bit. */
2061 if (buf[0] == 0x4c)
2062 reg += 8;
2063
2064 offset = 5;
2065 }
2066 else
2067 {
2068 /* Check callee-saved saved register. The first instruction
2069 has to be "pushq %reg". */
2070 reg = 0;
2071 if ((buf[0] & 0xf8) == 0x50)
2072 offset = 0;
2073 else if ((buf[0] & 0xf6) == 0x40
2074 && (buf[1] & 0xf8) == 0x50)
2075 {
2076 /* Check the REX.B bit. */
2077 if ((buf[0] & 1) != 0)
2078 reg = 8;
2079
2080 offset = 1;
2081 }
2082 else
2083 return pc;
2084
2085 /* Get register. */
2086 reg += buf[offset] & 0x7;
2087
2088 offset++;
2089
2090 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2091 if ((buf[offset] & 0xfb) != 0x48
2092 || buf[offset + 1] != 0x8d
2093 || buf[offset + 3] != 0x24
2094 || buf[offset + 4] != 0x10)
2095 return pc;
2096
2097 /* MOD must be binary 10 and R/M must be binary 100. */
2098 if ((buf[offset + 2] & 0xc7) != 0x44)
2099 return pc;
2100
2101 /* REG has register number. */
2102 r = (buf[offset + 2] >> 3) & 7;
2103
2104 /* Check the REX.R bit. */
2105 if (buf[offset] == 0x4c)
2106 r += 8;
2107
2108 /* Registers in pushq and leaq have to be the same. */
2109 if (reg != r)
2110 return pc;
2111
2112 offset += 5;
2113 }
2114
2115 /* Rigister can't be %rsp nor %rbp. */
2116 if (reg == 4 || reg == 5)
2117 return pc;
2118
2119 /* The next instruction has to be "andq $-XXX, %rsp". */
2120 if (buf[offset] != 0x48
2121 || buf[offset + 2] != 0xe4
2122 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2123 return pc;
2124
2125 offset_and = offset;
2126 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2127
2128 /* The next instruction has to be "pushq -8(%reg)". */
2129 r = 0;
2130 if (buf[offset] == 0xff)
2131 offset++;
2132 else if ((buf[offset] & 0xf6) == 0x40
2133 && buf[offset + 1] == 0xff)
2134 {
2135 /* Check the REX.B bit. */
2136 if ((buf[offset] & 0x1) != 0)
2137 r = 8;
2138 offset += 2;
2139 }
2140 else
2141 return pc;
2142
2143 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2144 01. */
2145 if (buf[offset + 1] != 0xf8
2146 || (buf[offset] & 0xf8) != 0x70)
2147 return pc;
2148
2149 /* R/M has register. */
2150 r += buf[offset] & 7;
2151
2152 /* Registers in leaq and pushq have to be the same. */
2153 if (reg != r)
2154 return pc;
2155
2156 if (current_pc > pc + offset_and)
35669430 2157 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
e0c62198 2158
325fac50 2159 return std::min (pc + offset + 2, current_pc);
e0c62198
L
2160}
2161
ac142d96
L
2162/* Similar to amd64_analyze_stack_align for x32. */
2163
2164static CORE_ADDR
2165amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2166 struct amd64_frame_cache *cache)
2167{
2168 /* There are 2 code sequences to re-align stack before the frame
2169 gets set up:
2170
2171 1. Use a caller-saved saved register:
2172
2173 leaq 8(%rsp), %reg
2174 andq $-XXX, %rsp
2175 pushq -8(%reg)
2176
2177 or
2178
2179 [addr32] leal 8(%rsp), %reg
2180 andl $-XXX, %esp
2181 [addr32] pushq -8(%reg)
2182
2183 2. Use a callee-saved saved register:
2184
2185 pushq %reg
2186 leaq 16(%rsp), %reg
2187 andq $-XXX, %rsp
2188 pushq -8(%reg)
2189
2190 or
2191
2192 pushq %reg
2193 [addr32] leal 16(%rsp), %reg
2194 andl $-XXX, %esp
2195 [addr32] pushq -8(%reg)
2196
2197 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2198
24b21115
SM
2199 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2200 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
ac142d96
L
2201
2202 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2203
24b21115
SM
2204 0x83 0xe4 0xf0 andl $-16, %esp
2205 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
ac142d96
L
2206 */
2207
2208 gdb_byte buf[19];
2209 int reg, r;
2210 int offset, offset_and;
2211
2212 if (target_read_memory (pc, buf, sizeof buf))
2213 return pc;
2214
2215 /* Skip optional addr32 prefix. */
2216 offset = buf[0] == 0x67 ? 1 : 0;
2217
2218 /* Check caller-saved saved register. The first instruction has
2219 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2220 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2221 && buf[offset + 1] == 0x8d
2222 && buf[offset + 3] == 0x24
2223 && buf[offset + 4] == 0x8)
2224 {
2225 /* MOD must be binary 10 and R/M must be binary 100. */
2226 if ((buf[offset + 2] & 0xc7) != 0x44)
2227 return pc;
2228
2229 /* REG has register number. */
2230 reg = (buf[offset + 2] >> 3) & 7;
2231
2232 /* Check the REX.R bit. */
2233 if ((buf[offset] & 0x4) != 0)
2234 reg += 8;
2235
2236 offset += 5;
2237 }
2238 else
2239 {
2240 /* Check callee-saved saved register. The first instruction
2241 has to be "pushq %reg". */
2242 reg = 0;
2243 if ((buf[offset] & 0xf6) == 0x40
2244 && (buf[offset + 1] & 0xf8) == 0x50)
2245 {
2246 /* Check the REX.B bit. */
2247 if ((buf[offset] & 1) != 0)
2248 reg = 8;
2249
2250 offset += 1;
2251 }
2252 else if ((buf[offset] & 0xf8) != 0x50)
2253 return pc;
2254
2255 /* Get register. */
2256 reg += buf[offset] & 0x7;
2257
2258 offset++;
2259
2260 /* Skip optional addr32 prefix. */
2261 if (buf[offset] == 0x67)
2262 offset++;
2263
2264 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2265 "leal 16(%rsp), %reg". */
2266 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2267 || buf[offset + 1] != 0x8d
2268 || buf[offset + 3] != 0x24
2269 || buf[offset + 4] != 0x10)
2270 return pc;
2271
2272 /* MOD must be binary 10 and R/M must be binary 100. */
2273 if ((buf[offset + 2] & 0xc7) != 0x44)
2274 return pc;
2275
2276 /* REG has register number. */
2277 r = (buf[offset + 2] >> 3) & 7;
2278
2279 /* Check the REX.R bit. */
2280 if ((buf[offset] & 0x4) != 0)
2281 r += 8;
2282
2283 /* Registers in pushq and leaq have to be the same. */
2284 if (reg != r)
2285 return pc;
2286
2287 offset += 5;
2288 }
2289
2290 /* Rigister can't be %rsp nor %rbp. */
2291 if (reg == 4 || reg == 5)
2292 return pc;
2293
2294 /* The next instruction may be "andq $-XXX, %rsp" or
2295 "andl $-XXX, %esp". */
2296 if (buf[offset] != 0x48)
2297 offset--;
2298
2299 if (buf[offset + 2] != 0xe4
2300 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2301 return pc;
2302
2303 offset_and = offset;
2304 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2305
2306 /* Skip optional addr32 prefix. */
2307 if (buf[offset] == 0x67)
2308 offset++;
2309
2310 /* The next instruction has to be "pushq -8(%reg)". */
2311 r = 0;
2312 if (buf[offset] == 0xff)
2313 offset++;
2314 else if ((buf[offset] & 0xf6) == 0x40
2315 && buf[offset + 1] == 0xff)
2316 {
2317 /* Check the REX.B bit. */
2318 if ((buf[offset] & 0x1) != 0)
2319 r = 8;
2320 offset += 2;
2321 }
2322 else
2323 return pc;
2324
2325 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2326 01. */
2327 if (buf[offset + 1] != 0xf8
2328 || (buf[offset] & 0xf8) != 0x70)
2329 return pc;
2330
2331 /* R/M has register. */
2332 r += buf[offset] & 7;
2333
2334 /* Registers in leaq and pushq have to be the same. */
2335 if (reg != r)
2336 return pc;
2337
2338 if (current_pc > pc + offset_and)
2339 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2340
325fac50 2341 return std::min (pc + offset + 2, current_pc);
ac142d96
L
2342}
2343
c4f35dd8
MK
2344/* Do a limited analysis of the prologue at PC and update CACHE
2345 accordingly. Bail out early if CURRENT_PC is reached. Return the
2346 address where the analysis stopped.
2347
2348 We will handle only functions beginning with:
2349
2350 pushq %rbp 0x55
50f1ae7b 2351 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
c4f35dd8 2352
649e6d92
MK
2353 or (for the X32 ABI):
2354
2355 pushq %rbp 0x55
2356 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2357
ac4a4f1c
SM
2358 The `endbr64` instruction can be found before these sequences, and will be
2359 skipped if found.
2360
649e6d92
MK
2361 Any function that doesn't start with one of these sequences will be
2362 assumed to have no prologue and thus no valid frame pointer in
2363 %rbp. */
c4f35dd8
MK
2364
2365static CORE_ADDR
e17a4113
UW
2366amd64_analyze_prologue (struct gdbarch *gdbarch,
2367 CORE_ADDR pc, CORE_ADDR current_pc,
e53bef9f 2368 struct amd64_frame_cache *cache)
53e95fcf 2369{
e17a4113 2370 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ac4a4f1c
SM
2371 /* The `endbr64` instruction. */
2372 static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa };
50f1ae7b
DE
2373 /* There are two variations of movq %rsp, %rbp. */
2374 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2375 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
649e6d92
MK
2376 /* Ditto for movl %esp, %ebp. */
2377 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2378 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2379
d8de1ef7
MK
2380 gdb_byte buf[3];
2381 gdb_byte op;
c4f35dd8
MK
2382
2383 if (current_pc <= pc)
2384 return current_pc;
2385
ac142d96
L
2386 if (gdbarch_ptr_bit (gdbarch) == 32)
2387 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2388 else
2389 pc = amd64_analyze_stack_align (pc, current_pc, cache);
e0c62198 2390
bae8a07a 2391 op = read_code_unsigned_integer (pc, 1, byte_order);
c4f35dd8 2392
ac4a4f1c
SM
2393 /* Check for the `endbr64` instruction, skip it if found. */
2394 if (op == endbr64[0])
2395 {
2396 read_code (pc + 1, buf, 3);
2397
2398 if (memcmp (buf, &endbr64[1], 3) == 0)
2399 pc += 4;
2400
2401 op = read_code_unsigned_integer (pc, 1, byte_order);
2402 }
2403
2404 if (current_pc <= pc)
2405 return current_pc;
2406
c4f35dd8
MK
2407 if (op == 0x55) /* pushq %rbp */
2408 {
2409 /* Take into account that we've executed the `pushq %rbp' that
dda83cd7 2410 starts this instruction sequence. */
90f90721 2411 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
2412 cache->sp_offset += 8;
2413
2414 /* If that's all, return now. */
2415 if (current_pc <= pc + 1)
dda83cd7 2416 return current_pc;
c4f35dd8 2417
bae8a07a 2418 read_code (pc + 1, buf, 3);
c4f35dd8 2419
649e6d92
MK
2420 /* Check for `movq %rsp, %rbp'. */
2421 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2422 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2423 {
2424 /* OK, we actually have a frame. */
2425 cache->frameless_p = 0;
2426 return pc + 4;
2427 }
2428
ed908db6 2429 /* For X32, also check for `movl %esp, %ebp'. */
649e6d92
MK
2430 if (gdbarch_ptr_bit (gdbarch) == 32)
2431 {
2432 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2433 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2434 {
2435 /* OK, we actually have a frame. */
2436 cache->frameless_p = 0;
2437 return pc + 3;
2438 }
2439 }
2440
2441 return pc + 1;
c4f35dd8
MK
2442 }
2443
2444 return pc;
53e95fcf
JS
2445}
2446
df15bd07
JK
2447/* Work around false termination of prologue - GCC PR debug/48827.
2448
2449 START_PC is the first instruction of a function, PC is its minimal already
2450 determined advanced address. Function returns PC if it has nothing to do.
2451
2452 84 c0 test %al,%al
2453 74 23 je after
2454 <-- here is 0 lines advance - the false prologue end marker.
2455 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2456 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2457 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2458 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2459 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2460 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2461 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2462 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2463 after: */
c4f35dd8
MK
2464
2465static CORE_ADDR
df15bd07 2466amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
53e95fcf 2467{
08711b9a
JK
2468 struct symtab_and_line start_pc_sal, next_sal;
2469 gdb_byte buf[4 + 8 * 7];
2470 int offset, xmmreg;
c4f35dd8 2471
08711b9a
JK
2472 if (pc == start_pc)
2473 return pc;
2474
2475 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2476 if (start_pc_sal.symtab == NULL
c6159652
SM
2477 || producer_is_gcc_ge_4 (start_pc_sal.symtab->compunit ()
2478 ->producer ()) < 6
08711b9a
JK
2479 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2480 return pc;
2481
2482 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2483 if (next_sal.line != start_pc_sal.line)
2484 return pc;
2485
2486 /* START_PC can be from overlayed memory, ignored here. */
bae8a07a 2487 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
08711b9a
JK
2488 return pc;
2489
2490 /* test %al,%al */
2491 if (buf[0] != 0x84 || buf[1] != 0xc0)
2492 return pc;
2493 /* je AFTER */
2494 if (buf[2] != 0x74)
2495 return pc;
2496
2497 offset = 4;
2498 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2499 {
bede5f5f 2500 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
08711b9a 2501 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
dda83cd7 2502 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
08711b9a
JK
2503 return pc;
2504
bede5f5f
JK
2505 /* 0b01?????? */
2506 if ((buf[offset + 2] & 0xc0) == 0x40)
08711b9a
JK
2507 {
2508 /* 8-bit displacement. */
2509 offset += 4;
2510 }
bede5f5f
JK
2511 /* 0b10?????? */
2512 else if ((buf[offset + 2] & 0xc0) == 0x80)
08711b9a
JK
2513 {
2514 /* 32-bit displacement. */
2515 offset += 7;
2516 }
2517 else
2518 return pc;
2519 }
2520
2521 /* je AFTER */
2522 if (offset - 4 != buf[3])
2523 return pc;
2524
2525 return next_sal.end;
53e95fcf 2526}
df15bd07
JK
2527
2528/* Return PC of first real instruction. */
2529
2530static CORE_ADDR
2531amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2532{
2533 struct amd64_frame_cache cache;
2534 CORE_ADDR pc;
56bf0743
KB
2535 CORE_ADDR func_addr;
2536
2537 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2538 {
2539 CORE_ADDR post_prologue_pc
2540 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 2541 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743 2542
c2fd7fae 2543 /* LLVM backend (Clang/Flang) always emits a line note before the
16e311ab
FW
2544 prologue and another one after. We trust clang and newer Intel
2545 compilers to emit usable line notes. */
56bf0743 2546 if (post_prologue_pc
43f3e411 2547 && (cust != NULL
ab5f850e
SM
2548 && cust->producer () != nullptr
2549 && (producer_is_llvm (cust->producer ())
2550 || producer_is_icc_ge_19 (cust->producer ()))))
287de656 2551 return std::max (start_pc, post_prologue_pc);
56bf0743 2552 }
df15bd07
JK
2553
2554 amd64_init_frame_cache (&cache);
2555 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2556 &cache);
2557 if (cache.frameless_p)
2558 return start_pc;
2559
2560 return amd64_skip_xmm_prologue (pc, start_pc);
2561}
c4f35dd8 2562\f
53e95fcf 2563
c4f35dd8
MK
2564/* Normal frames. */
2565
8fbca658 2566static void
bd2b40ac 2567amd64_frame_cache_1 (frame_info_ptr this_frame,
8fbca658 2568 struct amd64_frame_cache *cache)
6d686a84 2569{
e17a4113
UW
2570 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2571 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 2572 gdb_byte buf[8];
6d686a84 2573 int i;
6d686a84 2574
10458914 2575 cache->pc = get_frame_func (this_frame);
c4f35dd8 2576 if (cache->pc != 0)
e17a4113
UW
2577 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2578 cache);
c4f35dd8
MK
2579
2580 if (cache->frameless_p)
2581 {
4a28816e
MK
2582 /* We didn't find a valid frame. If we're at the start of a
2583 function, or somewhere half-way its prologue, the function's
2584 frame probably hasn't been fully setup yet. Try to
2585 reconstruct the base address for the stack frame by looking
2586 at the stack pointer. For truly "frameless" functions this
2587 might work too. */
c4f35dd8 2588
e0c62198
L
2589 if (cache->saved_sp_reg != -1)
2590 {
8fbca658
PA
2591 /* Stack pointer has been saved. */
2592 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2593 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2594
e0c62198
L
2595 /* We're halfway aligning the stack. */
2596 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2597 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2598
2599 /* This will be added back below. */
2600 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2601 }
2602 else
2603 {
2604 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
e17a4113
UW
2605 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2606 + cache->sp_offset;
e0c62198 2607 }
c4f35dd8 2608 }
35883a3f
MK
2609 else
2610 {
10458914 2611 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
e17a4113 2612 cache->base = extract_unsigned_integer (buf, 8, byte_order);
35883a3f 2613 }
c4f35dd8
MK
2614
2615 /* Now that we have the base address for the stack frame we can
2616 calculate the value of %rsp in the calling frame. */
2617 cache->saved_sp = cache->base + 16;
2618
35883a3f
MK
2619 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2620 frame we find it at the same offset from the reconstructed base
e0c62198
L
2621 address. If we're halfway aligning the stack, %rip is handled
2622 differently (see above). */
2623 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2624 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 2625
c4f35dd8
MK
2626 /* Adjust all the saved registers such that they contain addresses
2627 instead of offsets. */
e53bef9f 2628 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
2629 if (cache->saved_regs[i] != -1)
2630 cache->saved_regs[i] += cache->base;
2631
8fbca658
PA
2632 cache->base_p = 1;
2633}
2634
2635static struct amd64_frame_cache *
bd2b40ac 2636amd64_frame_cache (frame_info_ptr this_frame, void **this_cache)
8fbca658 2637{
8fbca658
PA
2638 struct amd64_frame_cache *cache;
2639
2640 if (*this_cache)
9a3c8263 2641 return (struct amd64_frame_cache *) *this_cache;
8fbca658
PA
2642
2643 cache = amd64_alloc_frame_cache ();
2644 *this_cache = cache;
2645
a70b8144 2646 try
8fbca658
PA
2647 {
2648 amd64_frame_cache_1 (this_frame, cache);
2649 }
230d2906 2650 catch (const gdb_exception_error &ex)
7556d4a4
PA
2651 {
2652 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2653 throw;
7556d4a4 2654 }
8fbca658 2655
c4f35dd8 2656 return cache;
6d686a84
ML
2657}
2658
8fbca658 2659static enum unwind_stop_reason
bd2b40ac 2660amd64_frame_unwind_stop_reason (frame_info_ptr this_frame,
8fbca658
PA
2661 void **this_cache)
2662{
2663 struct amd64_frame_cache *cache =
2664 amd64_frame_cache (this_frame, this_cache);
2665
2666 if (!cache->base_p)
2667 return UNWIND_UNAVAILABLE;
2668
2669 /* This marks the outermost frame. */
2670 if (cache->base == 0)
2671 return UNWIND_OUTERMOST;
2672
2673 return UNWIND_NO_REASON;
2674}
2675
c4f35dd8 2676static void
bd2b40ac 2677amd64_frame_this_id (frame_info_ptr this_frame, void **this_cache,
e53bef9f 2678 struct frame_id *this_id)
c4f35dd8 2679{
e53bef9f 2680 struct amd64_frame_cache *cache =
10458914 2681 amd64_frame_cache (this_frame, this_cache);
c4f35dd8 2682
8fbca658 2683 if (!cache->base_p)
5ce0145d
PA
2684 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2685 else if (cache->base == 0)
2686 {
2687 /* This marks the outermost frame. */
2688 return;
2689 }
2690 else
2691 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
c4f35dd8 2692}
e76e1718 2693
10458914 2694static struct value *
bd2b40ac 2695amd64_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
10458914 2696 int regnum)
53e95fcf 2697{
10458914 2698 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e53bef9f 2699 struct amd64_frame_cache *cache =
10458914 2700 amd64_frame_cache (this_frame, this_cache);
e76e1718 2701
c4f35dd8 2702 gdb_assert (regnum >= 0);
b1ab997b 2703
2ae02b47 2704 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
10458914 2705 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
e76e1718 2706
e53bef9f 2707 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2708 return frame_unwind_got_memory (this_frame, regnum,
2709 cache->saved_regs[regnum]);
e76e1718 2710
10458914 2711 return frame_unwind_got_register (this_frame, regnum, regnum);
c4f35dd8 2712}
e76e1718 2713
e53bef9f 2714static const struct frame_unwind amd64_frame_unwind =
c4f35dd8 2715{
a154d838 2716 "amd64 prologue",
c4f35dd8 2717 NORMAL_FRAME,
8fbca658 2718 amd64_frame_unwind_stop_reason,
e53bef9f 2719 amd64_frame_this_id,
10458914
DJ
2720 amd64_frame_prev_register,
2721 NULL,
2722 default_frame_sniffer
c4f35dd8 2723};
c4f35dd8 2724\f
6710bf39
SS
2725/* Generate a bytecode expression to get the value of the saved PC. */
2726
2727static void
2728amd64_gen_return_address (struct gdbarch *gdbarch,
2729 struct agent_expr *ax, struct axs_value *value,
2730 CORE_ADDR scope)
2731{
2732 /* The following sequence assumes the traditional use of the base
2733 register. */
2734 ax_reg (ax, AMD64_RBP_REGNUM);
2735 ax_const_l (ax, 8);
2736 ax_simple (ax, aop_add);
2737 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2738 value->kind = axs_lvalue_memory;
2739}
2740\f
e76e1718 2741
c4f35dd8
MK
2742/* Signal trampolines. */
2743
2744/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2745 64-bit variants. This would require using identical frame caches
2746 on both platforms. */
2747
e53bef9f 2748static struct amd64_frame_cache *
bd2b40ac 2749amd64_sigtramp_frame_cache (frame_info_ptr this_frame, void **this_cache)
c4f35dd8 2750{
e17a4113 2751 struct gdbarch *gdbarch = get_frame_arch (this_frame);
08106042 2752 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
e17a4113 2753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e53bef9f 2754 struct amd64_frame_cache *cache;
c4f35dd8 2755 CORE_ADDR addr;
d8de1ef7 2756 gdb_byte buf[8];
2b5e0749 2757 int i;
c4f35dd8
MK
2758
2759 if (*this_cache)
9a3c8263 2760 return (struct amd64_frame_cache *) *this_cache;
c4f35dd8 2761
e53bef9f 2762 cache = amd64_alloc_frame_cache ();
c4f35dd8 2763
a70b8144 2764 try
8fbca658
PA
2765 {
2766 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2767 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2768
2769 addr = tdep->sigcontext_addr (this_frame);
2770 gdb_assert (tdep->sc_reg_offset);
2771 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2772 for (i = 0; i < tdep->sc_num_regs; i++)
2773 if (tdep->sc_reg_offset[i] != -1)
2774 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8 2775
8fbca658
PA
2776 cache->base_p = 1;
2777 }
230d2906 2778 catch (const gdb_exception_error &ex)
7556d4a4
PA
2779 {
2780 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2781 throw;
7556d4a4 2782 }
c4f35dd8
MK
2783
2784 *this_cache = cache;
2785 return cache;
53e95fcf
JS
2786}
2787
8fbca658 2788static enum unwind_stop_reason
bd2b40ac 2789amd64_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame,
8fbca658
PA
2790 void **this_cache)
2791{
2792 struct amd64_frame_cache *cache =
2793 amd64_sigtramp_frame_cache (this_frame, this_cache);
2794
2795 if (!cache->base_p)
2796 return UNWIND_UNAVAILABLE;
2797
2798 return UNWIND_NO_REASON;
2799}
2800
c4f35dd8 2801static void
bd2b40ac 2802amd64_sigtramp_frame_this_id (frame_info_ptr this_frame,
e53bef9f 2803 void **this_cache, struct frame_id *this_id)
c4f35dd8 2804{
e53bef9f 2805 struct amd64_frame_cache *cache =
10458914 2806 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2807
8fbca658 2808 if (!cache->base_p)
5ce0145d
PA
2809 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2810 else if (cache->base == 0)
2811 {
2812 /* This marks the outermost frame. */
2813 return;
2814 }
2815 else
2816 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
c4f35dd8
MK
2817}
2818
10458914 2819static struct value *
bd2b40ac 2820amd64_sigtramp_frame_prev_register (frame_info_ptr this_frame,
10458914 2821 void **this_cache, int regnum)
c4f35dd8
MK
2822{
2823 /* Make sure we've initialized the cache. */
10458914 2824 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2825
10458914 2826 return amd64_frame_prev_register (this_frame, this_cache, regnum);
c4f35dd8
MK
2827}
2828
10458914
DJ
2829static int
2830amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
bd2b40ac 2831 frame_info_ptr this_frame,
10458914 2832 void **this_cache)
c4f35dd8 2833{
345bd07c 2834 gdbarch *arch = get_frame_arch (this_frame);
08106042 2835 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
911bc6ee
MK
2836
2837 /* We shouldn't even bother if we don't have a sigcontext_addr
2838 handler. */
2839 if (tdep->sigcontext_addr == NULL)
10458914 2840 return 0;
911bc6ee
MK
2841
2842 if (tdep->sigtramp_p != NULL)
2843 {
10458914
DJ
2844 if (tdep->sigtramp_p (this_frame))
2845 return 1;
911bc6ee 2846 }
c4f35dd8 2847
911bc6ee 2848 if (tdep->sigtramp_start != 0)
1c3545ae 2849 {
10458914 2850 CORE_ADDR pc = get_frame_pc (this_frame);
1c3545ae 2851
911bc6ee
MK
2852 gdb_assert (tdep->sigtramp_end != 0);
2853 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2854 return 1;
1c3545ae 2855 }
c4f35dd8 2856
10458914 2857 return 0;
c4f35dd8 2858}
10458914
DJ
2859
2860static const struct frame_unwind amd64_sigtramp_frame_unwind =
2861{
a154d838 2862 "amd64 sigtramp",
10458914 2863 SIGTRAMP_FRAME,
8fbca658 2864 amd64_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2865 amd64_sigtramp_frame_this_id,
2866 amd64_sigtramp_frame_prev_register,
2867 NULL,
2868 amd64_sigtramp_frame_sniffer
2869};
c4f35dd8
MK
2870\f
2871
2872static CORE_ADDR
bd2b40ac 2873amd64_frame_base_address (frame_info_ptr this_frame, void **this_cache)
c4f35dd8 2874{
e53bef9f 2875 struct amd64_frame_cache *cache =
10458914 2876 amd64_frame_cache (this_frame, this_cache);
c4f35dd8
MK
2877
2878 return cache->base;
2879}
2880
e53bef9f 2881static const struct frame_base amd64_frame_base =
c4f35dd8 2882{
e53bef9f
MK
2883 &amd64_frame_unwind,
2884 amd64_frame_base_address,
2885 amd64_frame_base_address,
2886 amd64_frame_base_address
c4f35dd8
MK
2887};
2888
872761f4
MS
2889/* Normal frames, but in a function epilogue. */
2890
c9cf6e20
MG
2891/* Implement the stack_frame_destroyed_p gdbarch method.
2892
2893 The epilogue is defined here as the 'ret' instruction, which will
872761f4
MS
2894 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2895 the function's stack frame. */
2896
2897static int
c9cf6e20 2898amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
872761f4
MS
2899{
2900 gdb_byte insn;
e0d00bc7 2901
872761f4
MS
2902 if (target_read_memory (pc, &insn, 1))
2903 return 0; /* Can't read memory at pc. */
2904
2905 if (insn != 0xc3) /* 'ret' instruction. */
2906 return 0;
2907
2908 return 1;
2909}
2910
2911static int
5aca7eaa
TV
2912amd64_epilogue_frame_sniffer_1 (const struct frame_unwind *self,
2913 frame_info_ptr this_frame,
2914 void **this_prologue_cache, bool override_p)
872761f4 2915{
2f9f989c
TV
2916 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2917 CORE_ADDR pc = get_frame_pc (this_frame);
2918
2919 if (frame_relative_level (this_frame) != 0)
2920 /* We're not in the inner frame, so assume we're not in an epilogue. */
872761f4 2921 return 0;
2f9f989c 2922
5aca7eaa
TV
2923 bool unwind_valid_p
2924 = compunit_epilogue_unwind_valid (find_pc_compunit_symtab (pc));
2925 if (override_p)
2926 {
2927 if (unwind_valid_p)
2928 /* Don't override the symtab unwinders, skip
2929 "amd64 epilogue override". */
2930 return 0;
2931 }
2932 else
2933 {
2934 if (!unwind_valid_p)
2935 /* "amd64 epilogue override" unwinder already ran, skip
2936 "amd64 epilogue". */
2937 return 0;
2938 }
2f9f989c
TV
2939
2940 /* Check whether we're in an epilogue. */
2941 return amd64_stack_frame_destroyed_p (gdbarch, pc);
872761f4
MS
2942}
2943
5aca7eaa
TV
2944static int
2945amd64_epilogue_override_frame_sniffer (const struct frame_unwind *self,
2946 frame_info_ptr this_frame,
2947 void **this_prologue_cache)
2948{
2949 return amd64_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache,
2950 true);
2951}
2952
2953static int
2954amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2955 frame_info_ptr this_frame,
2956 void **this_prologue_cache)
2957{
2958 return amd64_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache,
2959 false);
2960}
2961
872761f4 2962static struct amd64_frame_cache *
bd2b40ac 2963amd64_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
872761f4
MS
2964{
2965 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2967 struct amd64_frame_cache *cache;
6c10c06b 2968 gdb_byte buf[8];
872761f4
MS
2969
2970 if (*this_cache)
9a3c8263 2971 return (struct amd64_frame_cache *) *this_cache;
872761f4
MS
2972
2973 cache = amd64_alloc_frame_cache ();
2974 *this_cache = cache;
2975
a70b8144 2976 try
8fbca658 2977 {
49d7cd73 2978 /* Cache base will be %rsp plus cache->sp_offset (-8). */
8fbca658
PA
2979 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2980 cache->base = extract_unsigned_integer (buf, 8,
2981 byte_order) + cache->sp_offset;
2982
2983 /* Cache pc will be the frame func. */
49d7cd73 2984 cache->pc = get_frame_func (this_frame);
872761f4 2985
49d7cd73 2986 /* The previous value of %rsp is cache->base plus 16. */
8fbca658 2987 cache->saved_sp = cache->base + 16;
872761f4 2988
49d7cd73 2989 /* The saved %rip will be at cache->base plus 8. */
8fbca658 2990 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
872761f4 2991
8fbca658
PA
2992 cache->base_p = 1;
2993 }
230d2906 2994 catch (const gdb_exception_error &ex)
7556d4a4
PA
2995 {
2996 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2997 throw;
7556d4a4 2998 }
872761f4
MS
2999
3000 return cache;
3001}
3002
8fbca658 3003static enum unwind_stop_reason
bd2b40ac 3004amd64_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame,
8fbca658
PA
3005 void **this_cache)
3006{
3007 struct amd64_frame_cache *cache
3008 = amd64_epilogue_frame_cache (this_frame, this_cache);
3009
3010 if (!cache->base_p)
3011 return UNWIND_UNAVAILABLE;
3012
3013 return UNWIND_NO_REASON;
3014}
3015
872761f4 3016static void
bd2b40ac 3017amd64_epilogue_frame_this_id (frame_info_ptr this_frame,
872761f4
MS
3018 void **this_cache,
3019 struct frame_id *this_id)
3020{
3021 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
3022 this_cache);
3023
8fbca658 3024 if (!cache->base_p)
5ce0145d
PA
3025 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
3026 else
49d7cd73 3027 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
872761f4
MS
3028}
3029
5aca7eaa
TV
3030static const struct frame_unwind amd64_epilogue_override_frame_unwind =
3031{
3032 "amd64 epilogue override",
3033 NORMAL_FRAME,
3034 amd64_epilogue_frame_unwind_stop_reason,
3035 amd64_epilogue_frame_this_id,
3036 amd64_frame_prev_register,
3037 NULL,
3038 amd64_epilogue_override_frame_sniffer
3039};
3040
872761f4
MS
3041static const struct frame_unwind amd64_epilogue_frame_unwind =
3042{
a154d838 3043 "amd64 epilogue",
872761f4 3044 NORMAL_FRAME,
8fbca658 3045 amd64_epilogue_frame_unwind_stop_reason,
872761f4
MS
3046 amd64_epilogue_frame_this_id,
3047 amd64_frame_prev_register,
3048 NULL,
3049 amd64_epilogue_frame_sniffer
3050};
3051
166f4c7b 3052static struct frame_id
bd2b40ac 3053amd64_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
166f4c7b 3054{
c4f35dd8
MK
3055 CORE_ADDR fp;
3056
10458914 3057 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
c4f35dd8 3058
10458914 3059 return frame_id_build (fp + 16, get_frame_pc (this_frame));
166f4c7b
ML
3060}
3061
8b148df9
AC
3062/* 16 byte align the SP per frame requirements. */
3063
3064static CORE_ADDR
e53bef9f 3065amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
3066{
3067 return sp & -(CORE_ADDR)16;
3068}
473f17b0
MK
3069\f
3070
593adc23
MK
3071/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3072 in the floating-point register set REGSET to register cache
3073 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3074
3075static void
e53bef9f
MK
3076amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3077 int regnum, const void *fpregs, size_t len)
473f17b0 3078{
ac7936df 3079 struct gdbarch *gdbarch = regcache->arch ();
08106042 3080 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
473f17b0 3081
1528345d 3082 gdb_assert (len >= tdep->sizeof_fpregset);
90f90721 3083 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 3084}
8b148df9 3085
593adc23
MK
3086/* Collect register REGNUM from the register cache REGCACHE and store
3087 it in the buffer specified by FPREGS and LEN as described by the
3088 floating-point register set REGSET. If REGNUM is -1, do this for
3089 all registers in REGSET. */
3090
3091static void
3092amd64_collect_fpregset (const struct regset *regset,
3093 const struct regcache *regcache,
3094 int regnum, void *fpregs, size_t len)
3095{
ac7936df 3096 struct gdbarch *gdbarch = regcache->arch ();
08106042 3097 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
593adc23 3098
1528345d 3099 gdb_assert (len >= tdep->sizeof_fpregset);
593adc23
MK
3100 amd64_collect_fxsave (regcache, regnum, fpregs);
3101}
3102
8f0435f7 3103const struct regset amd64_fpregset =
ecc37a5a
AA
3104 {
3105 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3106 };
c6b33596
MK
3107\f
3108
436675d3
PA
3109/* Figure out where the longjmp will land. Slurp the jmp_buf out of
3110 %rdi. We expect its value to be a pointer to the jmp_buf structure
3111 from which we extract the address that we will land at. This
3112 address is copied into PC. This routine returns non-zero on
3113 success. */
3114
3115static int
bd2b40ac 3116amd64_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
436675d3
PA
3117{
3118 gdb_byte buf[8];
3119 CORE_ADDR jb_addr;
3120 struct gdbarch *gdbarch = get_frame_arch (frame);
08106042 3121 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
345bd07c 3122 int jb_pc_offset = tdep->jb_pc_offset;
df86565b 3123 int len = builtin_type (gdbarch)->builtin_func_ptr->length ();
436675d3
PA
3124
3125 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3126 longjmp will land. */
3127 if (jb_pc_offset == -1)
3128 return 0;
3129
3130 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
0dfff4cb
UW
3131 jb_addr= extract_typed_address
3132 (buf, builtin_type (gdbarch)->builtin_data_ptr);
436675d3
PA
3133 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3134 return 0;
3135
0dfff4cb 3136 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
3137
3138 return 1;
3139}
3140
cf648174
HZ
3141static const int amd64_record_regmap[] =
3142{
3143 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3144 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3145 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3146 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3147 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3148 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3149};
3150
1d509aa6
MM
3151/* Implement the "in_indirect_branch_thunk" gdbarch function. */
3152
3153static bool
3154amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3155{
3156 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3157 AMD64_RAX_REGNUM,
3158 AMD64_RIP_REGNUM);
3159}
3160
2213a65d 3161void
c55a47e7 3162amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3163 const target_desc *default_tdesc)
53e95fcf 3164{
08106042 3165 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
90884b2b 3166 const struct target_desc *tdesc = info.target_desc;
05c0465e
SDJ
3167 static const char *const stap_integer_prefixes[] = { "$", NULL };
3168 static const char *const stap_register_prefixes[] = { "%", NULL };
3169 static const char *const stap_register_indirection_prefixes[] = { "(",
3170 NULL };
3171 static const char *const stap_register_indirection_suffixes[] = { ")",
3172 NULL };
53e95fcf 3173
473f17b0
MK
3174 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3175 floating-point registers. */
3176 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
8f0435f7 3177 tdep->fpregset = &amd64_fpregset;
473f17b0 3178
90884b2b 3179 if (! tdesc_has_registers (tdesc))
c55a47e7 3180 tdesc = default_tdesc;
90884b2b
L
3181 tdep->tdesc = tdesc;
3182
3183 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3184 tdep->register_names = amd64_register_names;
3185
01f9f808
MS
3186 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3187 {
3188 tdep->zmmh_register_names = amd64_zmmh_names;
3189 tdep->k_register_names = amd64_k_names;
3190 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3191 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3192
3193 tdep->num_zmm_regs = 32;
3194 tdep->num_xmm_avx512_regs = 16;
3195 tdep->num_ymm_avx512_regs = 16;
3196
3197 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3198 tdep->k0_regnum = AMD64_K0_REGNUM;
3199 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3200 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3201 }
3202
a055a187
L
3203 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3204 {
3205 tdep->ymmh_register_names = amd64_ymmh_names;
3206 tdep->num_ymm_regs = 16;
3207 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3208 }
3209
e43e105e
WT
3210 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3211 {
3212 tdep->mpx_register_names = amd64_mpx_names;
3213 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3214 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3215 }
3216
2735833d
WT
3217 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3218 {
1163a4b7 3219 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
2735833d
WT
3220 }
3221
51547df6
MS
3222 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3223 {
3224 tdep->pkeys_register_names = amd64_pkeys_names;
3225 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3226 tdep->num_pkeys_regs = 1;
3227 }
3228
fe01d668 3229 tdep->num_byte_regs = 20;
1ba53b71
L
3230 tdep->num_word_regs = 16;
3231 tdep->num_dword_regs = 16;
3232 /* Avoid wiring in the MMX registers for now. */
3233 tdep->num_mmx_regs = 0;
3234
3543a589
TT
3235 set_gdbarch_pseudo_register_read_value (gdbarch,
3236 amd64_pseudo_register_read_value);
1ba53b71
L
3237 set_gdbarch_pseudo_register_write (gdbarch,
3238 amd64_pseudo_register_write);
62e5fd57
MK
3239 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3240 amd64_ax_pseudo_register_collect);
1ba53b71
L
3241
3242 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3243
5716833c 3244 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 3245 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 3246 tdep->num_xmm_regs = 16;
53e95fcf 3247
0c1a73d6 3248 /* This is what all the fuss is about. */
53e95fcf
JS
3249 set_gdbarch_long_bit (gdbarch, 64);
3250 set_gdbarch_long_long_bit (gdbarch, 64);
3251 set_gdbarch_ptr_bit (gdbarch, 64);
3252
e53bef9f
MK
3253 /* In contrast to the i386, on AMD64 a `long double' actually takes
3254 up 128 bits, even though it's still based on the i387 extended
3255 floating-point format which has only 80 significant bits. */
b83b026c
MK
3256 set_gdbarch_long_double_bit (gdbarch, 128);
3257
e53bef9f 3258 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
b83b026c
MK
3259
3260 /* Register numbers of various important registers. */
90f90721
MK
3261 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3262 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3263 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3264 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 3265
e53bef9f
MK
3266 /* The "default" register numbering scheme for AMD64 is referred to
3267 as the "DWARF Register Number Mapping" in the System V psABI.
3268 The preferred debugging format for all known AMD64 targets is
3269 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3270 DWARF-1), but we provide the same mapping just in case. This
3271 mapping is also used for stabs, which GCC does support. */
3272 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
e53bef9f 3273 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 3274
c4f35dd8 3275 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 3276 be in use on any of the supported AMD64 targets. */
53e95fcf 3277
c4f35dd8 3278 /* Call dummy code. */
e53bef9f
MK
3279 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3280 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 3281 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 3282
83acabca 3283 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
3284 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3285 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3286
5cb0f2d5 3287 set_gdbarch_return_value_as_value (gdbarch, amd64_return_value);
53e95fcf 3288
e53bef9f 3289 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 3290
cf648174
HZ
3291 tdep->record_regmap = amd64_record_regmap;
3292
10458914 3293 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
53e95fcf 3294
872761f4 3295 /* Hook the function epilogue frame unwinder. This unwinder is
33b5899f 3296 appended to the list first, so that it supersedes the other
872761f4 3297 unwinders in function epilogues. */
5aca7eaa
TV
3298 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_override_frame_unwind);
3299
3300 frame_unwind_append_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
872761f4
MS
3301
3302 /* Hook the prologue-based frame unwinders. */
10458914
DJ
3303 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3304 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
e53bef9f 3305 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596 3306
436675d3 3307 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
dde08ee1
PA
3308
3309 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
6710bf39
SS
3310
3311 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
55aa24fb
SDJ
3312
3313 /* SystemTap variables and functions. */
05c0465e
SDJ
3314 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3315 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3316 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3317 stap_register_indirection_prefixes);
3318 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3319 stap_register_indirection_suffixes);
55aa24fb
SDJ
3320 set_gdbarch_stap_is_single_operand (gdbarch,
3321 i386_stap_is_single_operand);
3322 set_gdbarch_stap_parse_special_token (gdbarch,
3323 i386_stap_parse_special_token);
c2170eef
MM
3324 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3325 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3326 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
1d509aa6
MM
3327
3328 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3329 amd64_in_indirect_branch_thunk);
257e02d8
TT
3330
3331 register_amd64_ravenscar_ops (gdbarch);
c4f35dd8 3332}
c912f608
SM
3333
3334/* Initialize ARCH for x86-64, no osabi. */
3335
3336static void
3337amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3338{
de52b960
PA
3339 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3340 true));
c912f608 3341}
fff4548b
MK
3342
3343static struct type *
3344amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3345{
08106042 3346 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
fff4548b
MK
3347
3348 switch (regnum - tdep->eax_regnum)
3349 {
3350 case AMD64_RBP_REGNUM: /* %ebp */
3351 case AMD64_RSP_REGNUM: /* %esp */
3352 return builtin_type (gdbarch)->builtin_data_ptr;
3353 case AMD64_RIP_REGNUM: /* %eip */
3354 return builtin_type (gdbarch)->builtin_func_ptr;
3355 }
3356
3357 return i386_pseudo_register_type (gdbarch, regnum);
3358}
3359
3360void
c55a47e7 3361amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3362 const target_desc *default_tdesc)
fff4548b 3363{
08106042 3364 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
fff4548b 3365
c55a47e7 3366 amd64_init_abi (info, gdbarch, default_tdesc);
fff4548b
MK
3367
3368 tdep->num_dword_regs = 17;
3369 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3370
3371 set_gdbarch_long_bit (gdbarch, 32);
3372 set_gdbarch_ptr_bit (gdbarch, 32);
3373}
90884b2b 3374
c912f608
SM
3375/* Initialize ARCH for x64-32, no osabi. */
3376
3377static void
3378amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3379{
3380 amd64_x32_init_abi (info, arch,
de52b960 3381 amd64_target_description (X86_XSTATE_SSE_MASK, true));
c912f608
SM
3382}
3383
97de3545
JB
3384/* Return the target description for a specified XSAVE feature mask. */
3385
3386const struct target_desc *
de52b960 3387amd64_target_description (uint64_t xcr0, bool segments)
97de3545 3388{
22916b07 3389 static target_desc *amd64_tdescs \
de52b960 3390 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
3391 target_desc **tdesc;
3392
3393 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3394 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3395 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
de52b960
PA
3396 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3397 [segments ? 1 : 0];
22916b07
YQ
3398
3399 if (*tdesc == NULL)
de52b960
PA
3400 *tdesc = amd64_create_target_description (xcr0, false, false,
3401 segments);
22916b07
YQ
3402
3403 return *tdesc;
97de3545
JB
3404}
3405
6c265988 3406void _initialize_amd64_tdep ();
90884b2b 3407void
6c265988 3408_initialize_amd64_tdep ()
90884b2b 3409{
c912f608 3410 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
24b21115 3411 amd64_none_init_abi);
c912f608 3412 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
24b21115 3413 amd64_x32_none_init_abi);
90884b2b 3414}
c4f35dd8
MK
3415\f
3416
41d041d6
MK
3417/* The 64-bit FXSAVE format differs from the 32-bit format in the
3418 sense that the instruction pointer and data pointer are simply
3419 64-bit offsets into the code segment and the data segment instead
3420 of a selector offset pair. The functions below store the upper 32
3421 bits of these pointers (instead of just the 16-bits of the segment
3422 selector). */
3423
3424/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
3425 floating-point or SSE register value from *FXSAVE. If REGNUM is
3426 -1, do this for all registers. This function masks off any of the
3427 reserved bits in *FXSAVE. */
c4f35dd8
MK
3428
3429void
90f90721 3430amd64_supply_fxsave (struct regcache *regcache, int regnum,
20a6ec49 3431 const void *fxsave)
c4f35dd8 3432{
ac7936df 3433 struct gdbarch *gdbarch = regcache->arch ();
08106042 3434 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
20a6ec49 3435
41d041d6 3436 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 3437
233dfcf0
L
3438 if (fxsave
3439 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
c4f35dd8 3440 {
9a3c8263 3441 const gdb_byte *regs = (const gdb_byte *) fxsave;
41d041d6 3442
20a6ec49 3443 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
73e1c03f 3444 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
20a6ec49 3445 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
73e1c03f 3446 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
c4f35dd8 3447 }
0c1a73d6
MK
3448}
3449
a055a187
L
3450/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3451
3452void
3453amd64_supply_xsave (struct regcache *regcache, int regnum,
3454 const void *xsave)
3455{
ac7936df 3456 struct gdbarch *gdbarch = regcache->arch ();
08106042 3457 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
a055a187
L
3458
3459 i387_supply_xsave (regcache, regnum, xsave);
3460
233dfcf0
L
3461 if (xsave
3462 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187 3463 {
9a3c8263 3464 const gdb_byte *regs = (const gdb_byte *) xsave;
8ee22052 3465 ULONGEST clear_bv;
a055a187 3466
8ee22052
AB
3467 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3468
3469 /* If the FISEG and FOSEG registers have not been initialised yet
3470 (their CLEAR_BV bit is set) then their default values of zero will
3471 have already been setup by I387_SUPPLY_XSAVE. */
3472 if (!(clear_bv & X86_XSTATE_X87))
3473 {
3474 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
73e1c03f 3475 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
8ee22052 3476 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
73e1c03f 3477 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
8ee22052 3478 }
a055a187
L
3479 }
3480}
3481
3c017e40
MK
3482/* Fill register REGNUM (if it is a floating-point or SSE register) in
3483 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3484 all registers. This function doesn't touch any of the reserved
3485 bits in *FXSAVE. */
3486
3487void
3488amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3489 void *fxsave)
3490{
ac7936df 3491 struct gdbarch *gdbarch = regcache->arch ();
08106042 3492 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
9a3c8263 3493 gdb_byte *regs = (gdb_byte *) fxsave;
3c017e40
MK
3494
3495 i387_collect_fxsave (regcache, regnum, fxsave);
3496
233dfcf0 3497 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
f0ef85a5 3498 {
20a6ec49 3499 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
34a79281 3500 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
20a6ec49 3501 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
34a79281 3502 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
f0ef85a5 3503 }
3c017e40 3504}
a055a187 3505
7a9dd1b2 3506/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
a055a187
L
3507
3508void
3509amd64_collect_xsave (const struct regcache *regcache, int regnum,
3510 void *xsave, int gcore)
3511{
ac7936df 3512 struct gdbarch *gdbarch = regcache->arch ();
08106042 3513 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
9a3c8263 3514 gdb_byte *regs = (gdb_byte *) xsave;
a055a187
L
3515
3516 i387_collect_xsave (regcache, regnum, xsave, gcore);
3517
233dfcf0 3518 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3519 {
3520 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
34a79281 3521 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
a055a187
L
3522 regs + 12);
3523 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
34a79281 3524 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
a055a187
L
3525 regs + 20);
3526 }
3527}