]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ax-gdb.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
c906108c
SS
1/* GDB-specific functions for operating on agent expressions
2 Copyright 1998 Free Software Foundation, Inc.
3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c 20
c906108c
SS
21#include "defs.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "expression.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "frame.h"
30#include "target.h"
31#include "ax.h"
32#include "ax-gdb.h"
33
34/* Probably the best way to read this file is to start with the types
35 and enums in ax-gdb.h, and then look at gen_expr, towards the
36 bottom; that's the main function that looks at the GDB expressions
37 and calls everything else to generate code.
38
39 I'm beginning to wonder whether it wouldn't be nicer to internally
40 generate trees, with types, and then spit out the bytecode in
41 linear form afterwards; we could generate fewer `swap', `ext', and
42 `zero_ext' bytecodes that way; it would make good constant folding
43 easier, too. But at the moment, I think we should be willing to
44 pay for the simplicity of this code with less-than-optimal bytecode
45 strings.
46
c5aa993b
JM
47 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
48\f
c906108c
SS
49
50
c906108c
SS
51/* Prototypes for local functions. */
52
53/* There's a standard order to the arguments of these functions:
54 union exp_element ** --- pointer into expression
55 struct agent_expr * --- agent expression buffer to generate code into
56 struct axs_value * --- describes value left on top of stack */
c5aa993b
JM
57
58static struct value *const_var_ref PARAMS ((struct symbol * var));
59static struct value *const_expr PARAMS ((union exp_element ** pc));
60static struct value *maybe_const_expr PARAMS ((union exp_element ** pc));
c906108c
SS
61
62static void gen_traced_pop PARAMS ((struct agent_expr *, struct axs_value *));
63
64static void gen_sign_extend PARAMS ((struct agent_expr *, struct type *));
65static void gen_extend PARAMS ((struct agent_expr *, struct type *));
66static void gen_fetch PARAMS ((struct agent_expr *, struct type *));
67static void gen_left_shift PARAMS ((struct agent_expr *, int));
68
69
c5aa993b 70static void gen_frame_args_address PARAMS ((struct agent_expr *));
c906108c 71static void gen_frame_locals_address PARAMS ((struct agent_expr *));
c5aa993b 72static void gen_offset PARAMS ((struct agent_expr * ax, int offset));
c906108c 73static void gen_sym_offset PARAMS ((struct agent_expr *, struct symbol *));
c5aa993b
JM
74static void gen_var_ref PARAMS ((struct agent_expr * ax,
75 struct axs_value * value,
76 struct symbol * var));
77
78
79static void gen_int_literal PARAMS ((struct agent_expr * ax,
80 struct axs_value * value,
81 LONGEST k, struct type * type));
82
83
84static void require_rvalue PARAMS ((struct agent_expr * ax,
85 struct axs_value * value));
86static void gen_usual_unary PARAMS ((struct agent_expr * ax,
87 struct axs_value * value));
88static int type_wider_than PARAMS ((struct type * type1,
89 struct type * type2));
90static struct type *max_type PARAMS ((struct type * type1,
91 struct type * type2));
92static void gen_conversion PARAMS ((struct agent_expr * ax,
93 struct type * from,
94 struct type * to));
95static int is_nontrivial_conversion PARAMS ((struct type * from,
96 struct type * to));
97static void gen_usual_arithmetic PARAMS ((struct agent_expr * ax,
98 struct axs_value * value1,
99 struct axs_value * value2));
100static void gen_integral_promotions PARAMS ((struct agent_expr * ax,
101 struct axs_value * value));
102static void gen_cast PARAMS ((struct agent_expr * ax,
103 struct axs_value * value,
104 struct type * type));
105static void gen_scale PARAMS ((struct agent_expr * ax,
c906108c 106 enum agent_op op,
c5aa993b
JM
107 struct type * type));
108static void gen_add PARAMS ((struct agent_expr * ax,
109 struct axs_value * value,
110 struct axs_value * value1,
111 struct axs_value * value2,
c906108c 112 char *name));
c5aa993b
JM
113static void gen_sub PARAMS ((struct agent_expr * ax,
114 struct axs_value * value,
115 struct axs_value * value1,
116 struct axs_value * value2));
117static void gen_binop PARAMS ((struct agent_expr * ax,
118 struct axs_value * value,
119 struct axs_value * value1,
120 struct axs_value * value2,
c906108c
SS
121 enum agent_op op,
122 enum agent_op op_unsigned,
123 int may_carry,
124 char *name));
c5aa993b
JM
125static void gen_logical_not PARAMS ((struct agent_expr * ax,
126 struct axs_value * value));
127static void gen_complement PARAMS ((struct agent_expr * ax,
128 struct axs_value * value));
c906108c
SS
129static void gen_deref PARAMS ((struct agent_expr *, struct axs_value *));
130static void gen_address_of PARAMS ((struct agent_expr *, struct axs_value *));
c5aa993b
JM
131static int find_field PARAMS ((struct type * type, char *name));
132static void gen_bitfield_ref PARAMS ((struct agent_expr * ax,
133 struct axs_value * value,
134 struct type * type,
c906108c 135 int start, int end));
c5aa993b
JM
136static void gen_struct_ref PARAMS ((struct agent_expr * ax,
137 struct axs_value * value,
c906108c
SS
138 char *field,
139 char *operator_name,
140 char *operand_name));
c5aa993b
JM
141static void gen_repeat PARAMS ((union exp_element ** pc,
142 struct agent_expr * ax,
143 struct axs_value * value));
144static void gen_sizeof PARAMS ((union exp_element ** pc,
145 struct agent_expr * ax,
146 struct axs_value * value));
147static void gen_expr PARAMS ((union exp_element ** pc,
148 struct agent_expr * ax,
149 struct axs_value * value));
150
151static void print_axs_value PARAMS ((GDB_FILE * f, struct axs_value * value));
c906108c 152static void agent_command PARAMS ((char *exp, int from_tty));
c906108c 153\f
c5aa993b 154
c906108c
SS
155/* Detecting constant expressions. */
156
157/* If the variable reference at *PC is a constant, return its value.
158 Otherwise, return zero.
159
160 Hey, Wally! How can a variable reference be a constant?
161
162 Well, Beav, this function really handles the OP_VAR_VALUE operator,
163 not specifically variable references. GDB uses OP_VAR_VALUE to
164 refer to any kind of symbolic reference: function names, enum
165 elements, and goto labels are all handled through the OP_VAR_VALUE
166 operator, even though they're constants. It makes sense given the
167 situation.
168
169 Gee, Wally, don'cha wonder sometimes if data representations that
170 subvert commonly accepted definitions of terms in favor of heavily
171 context-specific interpretations are really just a tool of the
172 programming hegemony to preserve their power and exclude the
173 proletariat? */
174
175static struct value *
176const_var_ref (var)
177 struct symbol *var;
178{
179 struct type *type = SYMBOL_TYPE (var);
180
181 switch (SYMBOL_CLASS (var))
182 {
183 case LOC_CONST:
184 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
185
186 case LOC_LABEL:
187 return value_from_longest (type, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
188
189 default:
190 return 0;
191 }
192}
193
194
195/* If the expression starting at *PC has a constant value, return it.
196 Otherwise, return zero. If we return a value, then *PC will be
197 advanced to the end of it. If we return zero, *PC could be
198 anywhere. */
199static struct value *
200const_expr (pc)
201 union exp_element **pc;
202{
203 enum exp_opcode op = (*pc)->opcode;
204 struct value *v1;
205
206 switch (op)
207 {
208 case OP_LONG:
209 {
210 struct type *type = (*pc)[1].type;
211 LONGEST k = (*pc)[2].longconst;
212 (*pc) += 4;
213 return value_from_longest (type, k);
214 }
215
216 case OP_VAR_VALUE:
217 {
218 struct value *v = const_var_ref ((*pc)[2].symbol);
219 (*pc) += 4;
220 return v;
221 }
222
c5aa993b 223 /* We could add more operators in here. */
c906108c
SS
224
225 case UNOP_NEG:
226 (*pc)++;
227 v1 = const_expr (pc);
228 if (v1)
229 return value_neg (v1);
230 else
231 return 0;
232
233 default:
234 return 0;
235 }
236}
237
238
239/* Like const_expr, but guarantee also that *PC is undisturbed if the
240 expression is not constant. */
241static struct value *
242maybe_const_expr (pc)
243 union exp_element **pc;
244{
245 union exp_element *tentative_pc = *pc;
246 struct value *v = const_expr (&tentative_pc);
247
248 /* If we got a value, then update the real PC. */
249 if (v)
250 *pc = tentative_pc;
c5aa993b 251
c906108c
SS
252 return v;
253}
c906108c 254\f
c5aa993b 255
c906108c
SS
256/* Generating bytecode from GDB expressions: general assumptions */
257
258/* Here are a few general assumptions made throughout the code; if you
259 want to make a change that contradicts one of these, then you'd
260 better scan things pretty thoroughly.
261
262 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
263 sometimes we'll swap to get at the left argument to a binary
264 operator. If we decide that void values should occupy no stack
265 elements, or that synthetic arrays (whose size is determined at
266 run time, created by the `@' operator) should occupy two stack
267 elements (address and length), then this will cause trouble.
c906108c
SS
268
269 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
270 don't have to worry what happens if the user requests an
271 operation that is wider than the actual interpreter's stack.
272 That is, it's up to the interpreter to handle directly all the
273 integer widths the user has access to. (Woe betide the language
274 with bignums!)
c906108c
SS
275
276 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 277 GCC's generalized lvalues, function calls, etc.
c906108c
SS
278
279 - We don't support floating point. Many places where we switch on
c5aa993b
JM
280 some type don't bother to include cases for floating point; there
281 may be even more subtle ways this assumption exists. For
282 example, the arguments to % must be integers.
c906108c
SS
283
284 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
285 we tried to support convenience variables, this would be a
286 problem.
c906108c
SS
287
288 - All values on the stack should always be fully zero- or
c5aa993b
JM
289 sign-extended.
290
291 (I wasn't sure whether to choose this or its opposite --- that
292 only addresses are assumed extended --- but it turns out that
293 neither convention completely eliminates spurious extend
294 operations (if everything is always extended, then you have to
295 extend after add, because it could overflow; if nothing is
296 extended, then you end up producing extends whenever you change
297 sizes), and this is simpler.) */
c906108c 298\f
c5aa993b 299
c906108c
SS
300/* Generating bytecode from GDB expressions: the `trace' kludge */
301
302/* The compiler in this file is a general-purpose mechanism for
303 translating GDB expressions into bytecode. One ought to be able to
304 find a million and one uses for it.
305
306 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
307 of expediency. Let he who is without sin cast the first stone.
308
309 For the data tracing facility, we need to insert `trace' bytecodes
310 before each data fetch; this records all the memory that the
311 expression touches in the course of evaluation, so that memory will
312 be available when the user later tries to evaluate the expression
313 in GDB.
314
315 This should be done (I think) in a post-processing pass, that walks
316 an arbitrary agent expression and inserts `trace' operations at the
317 appropriate points. But it's much faster to just hack them
318 directly into the code. And since we're in a crunch, that's what
319 I've done.
320
321 Setting the flag trace_kludge to non-zero enables the code that
322 emits the trace bytecodes at the appropriate points. */
323static int trace_kludge;
324
325/* Trace the lvalue on the stack, if it needs it. In either case, pop
326 the value. Useful on the left side of a comma, and at the end of
327 an expression being used for tracing. */
328static void
329gen_traced_pop (ax, value)
330 struct agent_expr *ax;
331 struct axs_value *value;
332{
333 if (trace_kludge)
334 switch (value->kind)
335 {
336 case axs_rvalue:
337 /* We don't trace rvalues, just the lvalues necessary to
c5aa993b 338 produce them. So just dispose of this value. */
c906108c
SS
339 ax_simple (ax, aop_pop);
340 break;
341
342 case axs_lvalue_memory:
343 {
344 int length = TYPE_LENGTH (value->type);
345
346 /* There's no point in trying to use a trace_quick bytecode
347 here, since "trace_quick SIZE pop" is three bytes, whereas
348 "const8 SIZE trace" is also three bytes, does the same
349 thing, and the simplest code which generates that will also
350 work correctly for objects with large sizes. */
351 ax_const_l (ax, length);
352 ax_simple (ax, aop_trace);
353 }
c5aa993b 354 break;
c906108c
SS
355
356 case axs_lvalue_register:
357 /* We need to mention the register somewhere in the bytecode,
358 so ax_reqs will pick it up and add it to the mask of
359 registers used. */
360 ax_reg (ax, value->u.reg);
361 ax_simple (ax, aop_pop);
362 break;
363 }
364 else
365 /* If we're not tracing, just pop the value. */
366 ax_simple (ax, aop_pop);
367}
c5aa993b 368\f
c906108c
SS
369
370
c906108c
SS
371/* Generating bytecode from GDB expressions: helper functions */
372
373/* Assume that the lower bits of the top of the stack is a value of
374 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
375static void
376gen_sign_extend (ax, type)
377 struct agent_expr *ax;
378 struct type *type;
379{
380 /* Do we need to sign-extend this? */
c5aa993b 381 if (!TYPE_UNSIGNED (type))
c906108c
SS
382 ax_ext (ax, type->length * TARGET_CHAR_BIT);
383}
384
385
386/* Assume the lower bits of the top of the stack hold a value of type
387 TYPE, and the upper bits are garbage. Sign-extend or truncate as
388 needed. */
389static void
390gen_extend (ax, type)
391 struct agent_expr *ax;
392 struct type *type;
393{
394 int bits = type->length * TARGET_CHAR_BIT;
395 /* I just had to. */
396 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
397}
398
399
400/* Assume that the top of the stack contains a value of type "pointer
401 to TYPE"; generate code to fetch its value. Note that TYPE is the
402 target type, not the pointer type. */
403static void
404gen_fetch (ax, type)
405 struct agent_expr *ax;
406 struct type *type;
407{
408 if (trace_kludge)
409 {
410 /* Record the area of memory we're about to fetch. */
411 ax_trace_quick (ax, TYPE_LENGTH (type));
412 }
413
414 switch (type->code)
415 {
416 case TYPE_CODE_PTR:
417 case TYPE_CODE_ENUM:
418 case TYPE_CODE_INT:
419 case TYPE_CODE_CHAR:
420 /* It's a scalar value, so we know how to dereference it. How
421 many bytes long is it? */
422 switch (type->length)
423 {
c5aa993b
JM
424 case 8 / TARGET_CHAR_BIT:
425 ax_simple (ax, aop_ref8);
426 break;
427 case 16 / TARGET_CHAR_BIT:
428 ax_simple (ax, aop_ref16);
429 break;
430 case 32 / TARGET_CHAR_BIT:
431 ax_simple (ax, aop_ref32);
432 break;
433 case 64 / TARGET_CHAR_BIT:
434 ax_simple (ax, aop_ref64);
435 break;
c906108c
SS
436
437 /* Either our caller shouldn't have asked us to dereference
438 that pointer (other code's fault), or we're not
439 implementing something we should be (this code's fault).
440 In any case, it's a bug the user shouldn't see. */
441 default:
442 error ("GDB bug: ax-gdb.c (gen_fetch): strange size");
443 }
444
445 gen_sign_extend (ax, type);
446 break;
447
448 default:
449 /* Either our caller shouldn't have asked us to dereference that
c5aa993b
JM
450 pointer (other code's fault), or we're not implementing
451 something we should be (this code's fault). In any case,
452 it's a bug the user shouldn't see. */
c906108c
SS
453 error ("GDB bug: ax-gdb.c (gen_fetch): bad type code");
454 }
455}
456
457
458/* Generate code to left shift the top of the stack by DISTANCE bits, or
459 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
460 unsigned (logical) right shifts. */
461static void
462gen_left_shift (ax, distance)
463 struct agent_expr *ax;
464 int distance;
465{
466 if (distance > 0)
467 {
468 ax_const_l (ax, distance);
469 ax_simple (ax, aop_lsh);
470 }
471 else if (distance < 0)
472 {
473 ax_const_l (ax, -distance);
474 ax_simple (ax, aop_rsh_unsigned);
475 }
476}
c5aa993b 477\f
c906108c
SS
478
479
c906108c
SS
480/* Generating bytecode from GDB expressions: symbol references */
481
482/* Generate code to push the base address of the argument portion of
483 the top stack frame. */
484static void
485gen_frame_args_address (ax)
486 struct agent_expr *ax;
487{
488 long frame_reg, frame_offset;
489
490 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 491 ax_reg (ax, frame_reg);
c906108c
SS
492 gen_offset (ax, frame_offset);
493}
494
495
496/* Generate code to push the base address of the locals portion of the
497 top stack frame. */
498static void
499gen_frame_locals_address (ax)
500 struct agent_expr *ax;
501{
502 long frame_reg, frame_offset;
503
504 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 505 ax_reg (ax, frame_reg);
c906108c
SS
506 gen_offset (ax, frame_offset);
507}
508
509
510/* Generate code to add OFFSET to the top of the stack. Try to
511 generate short and readable code. We use this for getting to
512 variables on the stack, and structure members. If we were
513 programming in ML, it would be clearer why these are the same
514 thing. */
515static void
516gen_offset (ax, offset)
517 struct agent_expr *ax;
518 int offset;
519{
520 /* It would suffice to simply push the offset and add it, but this
521 makes it easier to read positive and negative offsets in the
522 bytecode. */
523 if (offset > 0)
524 {
525 ax_const_l (ax, offset);
526 ax_simple (ax, aop_add);
527 }
528 else if (offset < 0)
529 {
530 ax_const_l (ax, -offset);
531 ax_simple (ax, aop_sub);
532 }
533}
534
535
536/* In many cases, a symbol's value is the offset from some other
537 address (stack frame, base register, etc.) Generate code to add
538 VAR's value to the top of the stack. */
539static void
540gen_sym_offset (ax, var)
541 struct agent_expr *ax;
542 struct symbol *var;
543{
544 gen_offset (ax, SYMBOL_VALUE (var));
545}
546
547
548/* Generate code for a variable reference to AX. The variable is the
549 symbol VAR. Set VALUE to describe the result. */
550
551static void
552gen_var_ref (ax, value, var)
553 struct agent_expr *ax;
554 struct axs_value *value;
555 struct symbol *var;
556{
557 /* Dereference any typedefs. */
558 value->type = check_typedef (SYMBOL_TYPE (var));
559
560 /* I'm imitating the code in read_var_value. */
561 switch (SYMBOL_CLASS (var))
562 {
563 case LOC_CONST: /* A constant, like an enum value. */
564 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
565 value->kind = axs_rvalue;
566 break;
567
568 case LOC_LABEL: /* A goto label, being used as a value. */
569 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
570 value->kind = axs_rvalue;
571 break;
572
573 case LOC_CONST_BYTES:
574 error ("GDB bug: ax-gdb.c (gen_var_ref): LOC_CONST_BYTES symbols are not supported");
575
576 /* Variable at a fixed location in memory. Easy. */
577 case LOC_STATIC:
578 /* Push the address of the variable. */
579 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
580 value->kind = axs_lvalue_memory;
581 break;
582
583 case LOC_ARG: /* var lives in argument area of frame */
584 gen_frame_args_address (ax);
585 gen_sym_offset (ax, var);
586 value->kind = axs_lvalue_memory;
587 break;
588
589 case LOC_REF_ARG: /* As above, but the frame slot really
590 holds the address of the variable. */
591 gen_frame_args_address (ax);
592 gen_sym_offset (ax, var);
593 /* Don't assume any particular pointer size. */
594 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
595 value->kind = axs_lvalue_memory;
596 break;
597
598 case LOC_LOCAL: /* var lives in locals area of frame */
599 case LOC_LOCAL_ARG:
600 gen_frame_locals_address (ax);
601 gen_sym_offset (ax, var);
602 value->kind = axs_lvalue_memory;
603 break;
604
605 case LOC_BASEREG: /* relative to some base register */
606 case LOC_BASEREG_ARG:
607 ax_reg (ax, SYMBOL_BASEREG (var));
608 gen_sym_offset (ax, var);
609 value->kind = axs_lvalue_memory;
610 break;
611
612 case LOC_TYPEDEF:
613 error ("Cannot compute value of typedef `%s'.",
614 SYMBOL_SOURCE_NAME (var));
615 break;
616
617 case LOC_BLOCK:
618 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
619 value->kind = axs_rvalue;
620 break;
621
622 case LOC_REGISTER:
623 case LOC_REGPARM:
624 /* Don't generate any code at all; in the process of treating
625 this as an lvalue or rvalue, the caller will generate the
626 right code. */
627 value->kind = axs_lvalue_register;
628 value->u.reg = SYMBOL_VALUE (var);
629 break;
630
631 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
c5aa993b
JM
632 register, not on the stack. Simpler than LOC_REGISTER and
633 LOC_REGPARM, because it's just like any other case where the
634 thing has a real address. */
c906108c
SS
635 case LOC_REGPARM_ADDR:
636 ax_reg (ax, SYMBOL_VALUE (var));
637 value->kind = axs_lvalue_memory;
638 break;
639
640 case LOC_UNRESOLVED:
641 {
c5aa993b
JM
642 struct minimal_symbol *msym
643 = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
644 if (!msym)
c906108c 645 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
c5aa993b 646
c906108c
SS
647 /* Push the address of the variable. */
648 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
649 value->kind = axs_lvalue_memory;
650 }
c5aa993b 651 break;
c906108c
SS
652
653 case LOC_OPTIMIZED_OUT:
654 error ("The variable `%s' has been optimized out.",
655 SYMBOL_SOURCE_NAME (var));
656 break;
657
658 default:
659 error ("Cannot find value of botched symbol `%s'.",
660 SYMBOL_SOURCE_NAME (var));
661 break;
662 }
663}
c5aa993b 664\f
c906108c
SS
665
666
c906108c
SS
667/* Generating bytecode from GDB expressions: literals */
668
669static void
670gen_int_literal (ax, value, k, type)
671 struct agent_expr *ax;
672 struct axs_value *value;
673 LONGEST k;
674 struct type *type;
675{
676 ax_const_l (ax, k);
677 value->kind = axs_rvalue;
678 value->type = type;
679}
c5aa993b 680\f
c906108c
SS
681
682
c906108c
SS
683/* Generating bytecode from GDB expressions: unary conversions, casts */
684
685/* Take what's on the top of the stack (as described by VALUE), and
686 try to make an rvalue out of it. Signal an error if we can't do
687 that. */
688static void
689require_rvalue (ax, value)
690 struct agent_expr *ax;
691 struct axs_value *value;
692{
693 switch (value->kind)
694 {
695 case axs_rvalue:
696 /* It's already an rvalue. */
697 break;
698
699 case axs_lvalue_memory:
700 /* The top of stack is the address of the object. Dereference. */
701 gen_fetch (ax, value->type);
702 break;
703
704 case axs_lvalue_register:
705 /* There's nothing on the stack, but value->u.reg is the
706 register number containing the value.
707
c5aa993b
JM
708 When we add floating-point support, this is going to have to
709 change. What about SPARC register pairs, for example? */
c906108c
SS
710 ax_reg (ax, value->u.reg);
711 gen_extend (ax, value->type);
712 break;
713 }
714
715 value->kind = axs_rvalue;
716}
717
718
719/* Assume the top of the stack is described by VALUE, and perform the
720 usual unary conversions. This is motivated by ANSI 6.2.2, but of
721 course GDB expressions are not ANSI; they're the mishmash union of
722 a bunch of languages. Rah.
723
724 NOTE! This function promises to produce an rvalue only when the
725 incoming value is of an appropriate type. In other words, the
726 consumer of the value this function produces may assume the value
727 is an rvalue only after checking its type.
728
729 The immediate issue is that if the user tries to use a structure or
730 union as an operand of, say, the `+' operator, we don't want to try
731 to convert that structure to an rvalue; require_rvalue will bomb on
732 structs and unions. Rather, we want to simply pass the struct
733 lvalue through unchanged, and let `+' raise an error. */
734
735static void
736gen_usual_unary (ax, value)
737 struct agent_expr *ax;
738 struct axs_value *value;
739{
740 /* We don't have to generate any code for the usual integral
741 conversions, since values are always represented as full-width on
742 the stack. Should we tweak the type? */
743
744 /* Some types require special handling. */
745 switch (value->type->code)
746 {
747 /* Functions get converted to a pointer to the function. */
748 case TYPE_CODE_FUNC:
749 value->type = lookup_pointer_type (value->type);
750 value->kind = axs_rvalue; /* Should always be true, but just in case. */
751 break;
752
753 /* Arrays get converted to a pointer to their first element, and
c5aa993b 754 are no longer an lvalue. */
c906108c
SS
755 case TYPE_CODE_ARRAY:
756 {
757 struct type *elements = TYPE_TARGET_TYPE (value->type);
758 value->type = lookup_pointer_type (elements);
759 value->kind = axs_rvalue;
760 /* We don't need to generate any code; the address of the array
761 is also the address of its first element. */
762 }
c5aa993b 763 break;
c906108c 764
c5aa993b
JM
765 /* Don't try to convert structures and unions to rvalues. Let the
766 consumer signal an error. */
c906108c
SS
767 case TYPE_CODE_STRUCT:
768 case TYPE_CODE_UNION:
769 return;
770
771 /* If the value is an enum, call it an integer. */
772 case TYPE_CODE_ENUM:
773 value->type = builtin_type_int;
774 break;
775 }
776
777 /* If the value is an lvalue, dereference it. */
778 require_rvalue (ax, value);
779}
780
781
782/* Return non-zero iff the type TYPE1 is considered "wider" than the
783 type TYPE2, according to the rules described in gen_usual_arithmetic. */
784static int
785type_wider_than (type1, type2)
786 struct type *type1, *type2;
787{
788 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
789 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
790 && TYPE_UNSIGNED (type1)
c5aa993b 791 && !TYPE_UNSIGNED (type2)));
c906108c
SS
792}
793
794
795/* Return the "wider" of the two types TYPE1 and TYPE2. */
796static struct type *
797max_type (type1, type2)
798 struct type *type1, *type2;
799{
800 return type_wider_than (type1, type2) ? type1 : type2;
801}
802
803
804/* Generate code to convert a scalar value of type FROM to type TO. */
805static void
806gen_conversion (ax, from, to)
807 struct agent_expr *ax;
808 struct type *from, *to;
809{
810 /* Perhaps there is a more graceful way to state these rules. */
811
812 /* If we're converting to a narrower type, then we need to clear out
813 the upper bits. */
814 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
815 gen_extend (ax, from);
816
817 /* If the two values have equal width, but different signednesses,
818 then we need to extend. */
819 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
820 {
821 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
822 gen_extend (ax, to);
823 }
824
825 /* If we're converting to a wider type, and becoming unsigned, then
826 we need to zero out any possible sign bits. */
827 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
828 {
829 if (TYPE_UNSIGNED (to))
830 gen_extend (ax, to);
831 }
832}
833
834
835/* Return non-zero iff the type FROM will require any bytecodes to be
836 emitted to be converted to the type TO. */
837static int
838is_nontrivial_conversion (from, to)
839 struct type *from, *to;
840{
841 struct agent_expr *ax = new_agent_expr (0);
842 int nontrivial;
843
844 /* Actually generate the code, and see if anything came out. At the
845 moment, it would be trivial to replicate the code in
846 gen_conversion here, but in the future, when we're supporting
847 floating point and the like, it may not be. Doing things this
848 way allows this function to be independent of the logic in
849 gen_conversion. */
850 gen_conversion (ax, from, to);
851 nontrivial = ax->len > 0;
852 free_agent_expr (ax);
853 return nontrivial;
854}
855
856
857/* Generate code to perform the "usual arithmetic conversions" (ANSI C
858 6.2.1.5) for the two operands of an arithmetic operator. This
859 effectively finds a "least upper bound" type for the two arguments,
860 and promotes each argument to that type. *VALUE1 and *VALUE2
861 describe the values as they are passed in, and as they are left. */
862static void
863gen_usual_arithmetic (ax, value1, value2)
864 struct agent_expr *ax;
865 struct axs_value *value1, *value2;
866{
867 /* Do the usual binary conversions. */
868 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
869 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
870 {
871 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
872 integer types by size, and then by signedness: an n-bit
873 unsigned type is considered "wider" than an n-bit signed
874 type. Promote to the "wider" of the two types, and always
875 promote at least to int. */
c906108c
SS
876 struct type *target = max_type (builtin_type_int,
877 max_type (value1->type, value2->type));
878
879 /* Deal with value2, on the top of the stack. */
880 gen_conversion (ax, value2->type, target);
881
882 /* Deal with value1, not on the top of the stack. Don't
883 generate the `swap' instructions if we're not actually going
884 to do anything. */
885 if (is_nontrivial_conversion (value1->type, target))
886 {
887 ax_simple (ax, aop_swap);
888 gen_conversion (ax, value1->type, target);
889 ax_simple (ax, aop_swap);
890 }
891
892 value1->type = value2->type = target;
893 }
894}
895
896
897/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
898 the value on the top of the stack, as described by VALUE. Assume
899 the value has integral type. */
900static void
901gen_integral_promotions (ax, value)
902 struct agent_expr *ax;
903 struct axs_value *value;
904{
c5aa993b 905 if (!type_wider_than (value->type, builtin_type_int))
c906108c
SS
906 {
907 gen_conversion (ax, value->type, builtin_type_int);
908 value->type = builtin_type_int;
909 }
c5aa993b 910 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
c906108c
SS
911 {
912 gen_conversion (ax, value->type, builtin_type_unsigned_int);
913 value->type = builtin_type_unsigned_int;
914 }
915}
916
917
918/* Generate code for a cast to TYPE. */
919static void
920gen_cast (ax, value, type)
921 struct agent_expr *ax;
922 struct axs_value *value;
923 struct type *type;
924{
925 /* GCC does allow casts to yield lvalues, so this should be fixed
926 before merging these changes into the trunk. */
927 require_rvalue (ax, value);
928 /* Dereference typedefs. */
929 type = check_typedef (type);
930
931 switch (type->code)
932 {
933 case TYPE_CODE_PTR:
934 /* It's implementation-defined, and I'll bet this is what GCC
935 does. */
936 break;
937
938 case TYPE_CODE_ARRAY:
939 case TYPE_CODE_STRUCT:
940 case TYPE_CODE_UNION:
941 case TYPE_CODE_FUNC:
942 error ("Illegal type cast: intended type must be scalar.");
943
944 case TYPE_CODE_ENUM:
945 /* We don't have to worry about the size of the value, because
946 all our integral values are fully sign-extended, and when
947 casting pointers we can do anything we like. Is there any
948 way for us to actually know what GCC actually does with a
949 cast like this? */
950 value->type = type;
951 break;
c5aa993b 952
c906108c
SS
953 case TYPE_CODE_INT:
954 gen_conversion (ax, value->type, type);
955 break;
956
957 case TYPE_CODE_VOID:
958 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
959 the type and notice that this value doesn't occupy a stack
960 slot. But for now, leave the value on the stack, and
961 preserve the "value == stack element" assumption. */
c906108c
SS
962 break;
963
964 default:
965 error ("Casts to requested type are not yet implemented.");
966 }
967
968 value->type = type;
969}
c5aa993b 970\f
c906108c
SS
971
972
c906108c
SS
973/* Generating bytecode from GDB expressions: arithmetic */
974
975/* Scale the integer on the top of the stack by the size of the target
976 of the pointer type TYPE. */
977static void
978gen_scale (ax, op, type)
979 struct agent_expr *ax;
980 enum agent_op op;
981 struct type *type;
982{
983 struct type *element = TYPE_TARGET_TYPE (type);
984
985 if (element->length != 1)
986 {
987 ax_const_l (ax, element->length);
988 ax_simple (ax, op);
989 }
990}
991
992
993/* Generate code for an addition; non-trivial because we deal with
994 pointer arithmetic. We set VALUE to describe the result value; we
995 assume VALUE1 and VALUE2 describe the two operands, and that
996 they've undergone the usual binary conversions. Used by both
997 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
998static void
999gen_add (ax, value, value1, value2, name)
1000 struct agent_expr *ax;
1001 struct axs_value *value, *value1, *value2;
1002 char *name;
1003{
1004 /* Is it INT+PTR? */
1005 if (value1->type->code == TYPE_CODE_INT
1006 && value2->type->code == TYPE_CODE_PTR)
1007 {
1008 /* Swap the values and proceed normally. */
1009 ax_simple (ax, aop_swap);
1010 gen_scale (ax, aop_mul, value2->type);
1011 ax_simple (ax, aop_add);
c5aa993b 1012 gen_extend (ax, value2->type); /* Catch overflow. */
c906108c
SS
1013 value->type = value2->type;
1014 }
1015
1016 /* Is it PTR+INT? */
1017 else if (value1->type->code == TYPE_CODE_PTR
1018 && value2->type->code == TYPE_CODE_INT)
1019 {
1020 gen_scale (ax, aop_mul, value1->type);
1021 ax_simple (ax, aop_add);
c5aa993b 1022 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1023 value->type = value1->type;
1024 }
1025
1026 /* Must be number + number; the usual binary conversions will have
1027 brought them both to the same width. */
1028 else if (value1->type->code == TYPE_CODE_INT
1029 && value2->type->code == TYPE_CODE_INT)
1030 {
1031 ax_simple (ax, aop_add);
c5aa993b 1032 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1033 value->type = value1->type;
1034 }
1035
1036 else
1037 error ("Illegal combination of types in %s.", name);
1038
1039 value->kind = axs_rvalue;
1040}
1041
1042
1043/* Generate code for an addition; non-trivial because we have to deal
1044 with pointer arithmetic. We set VALUE to describe the result
1045 value; we assume VALUE1 and VALUE2 describe the two operands, and
1046 that they've undergone the usual binary conversions. */
1047static void
1048gen_sub (ax, value, value1, value2)
1049 struct agent_expr *ax;
1050 struct axs_value *value, *value1, *value2;
1051{
1052 struct type *element;
1053
1054 if (value1->type->code == TYPE_CODE_PTR)
1055 {
1056 /* Is it PTR - INT? */
1057 if (value2->type->code == TYPE_CODE_INT)
1058 {
1059 gen_scale (ax, aop_mul, value1->type);
1060 ax_simple (ax, aop_sub);
c5aa993b 1061 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1062 value->type = value1->type;
1063 }
1064
1065 /* Is it PTR - PTR? Strictly speaking, the types ought to
c5aa993b
JM
1066 match, but this is what the normal GDB expression evaluator
1067 tests for. */
c906108c
SS
1068 else if (value2->type->code == TYPE_CODE_PTR
1069 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1070 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1071 {
1072 ax_simple (ax, aop_sub);
1073 gen_scale (ax, aop_div_unsigned, value1->type);
c5aa993b 1074 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
c906108c
SS
1075 }
1076 else
1077 error ("\
1078First argument of `-' is a pointer, but second argument is neither\n\
1079an integer nor a pointer of the same type.");
1080 }
1081
1082 /* Must be number + number. */
1083 else if (value1->type->code == TYPE_CODE_INT
1084 && value2->type->code == TYPE_CODE_INT)
1085 {
1086 ax_simple (ax, aop_sub);
c5aa993b 1087 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1088 value->type = value1->type;
1089 }
c5aa993b 1090
c906108c
SS
1091 else
1092 error ("Illegal combination of types in subtraction.");
1093
1094 value->kind = axs_rvalue;
1095}
1096
1097/* Generate code for a binary operator that doesn't do pointer magic.
1098 We set VALUE to describe the result value; we assume VALUE1 and
1099 VALUE2 describe the two operands, and that they've undergone the
1100 usual binary conversions. MAY_CARRY should be non-zero iff the
1101 result needs to be extended. NAME is the English name of the
1102 operator, used in error messages */
1103static void
1104gen_binop (ax, value, value1, value2, op, op_unsigned, may_carry, name)
1105 struct agent_expr *ax;
1106 struct axs_value *value, *value1, *value2;
1107 enum agent_op op, op_unsigned;
1108 int may_carry;
1109 char *name;
1110{
1111 /* We only handle INT op INT. */
1112 if ((value1->type->code != TYPE_CODE_INT)
1113 || (value2->type->code != TYPE_CODE_INT))
1114 error ("Illegal combination of types in %s.", name);
c5aa993b 1115
c906108c
SS
1116 ax_simple (ax,
1117 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1118 if (may_carry)
c5aa993b 1119 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1120 value->type = value1->type;
1121 value->kind = axs_rvalue;
1122}
1123
1124
1125static void
1126gen_logical_not (ax, value)
1127 struct agent_expr *ax;
1128 struct axs_value *value;
1129{
1130 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1131 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1132 error ("Illegal type of operand to `!'.");
1133
1134 gen_usual_unary (ax, value);
1135 ax_simple (ax, aop_log_not);
1136 value->type = builtin_type_int;
1137}
1138
1139
1140static void
1141gen_complement (ax, value)
1142 struct agent_expr *ax;
1143 struct axs_value *value;
1144{
1145 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1146 error ("Illegal type of operand to `~'.");
1147
1148 gen_usual_unary (ax, value);
1149 gen_integral_promotions (ax, value);
1150 ax_simple (ax, aop_bit_not);
1151 gen_extend (ax, value->type);
1152}
c5aa993b 1153\f
c906108c
SS
1154
1155
c906108c
SS
1156/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1157
1158/* Dereference the value on the top of the stack. */
1159static void
1160gen_deref (ax, value)
1161 struct agent_expr *ax;
1162 struct axs_value *value;
1163{
1164 /* The caller should check the type, because several operators use
1165 this, and we don't know what error message to generate. */
1166 if (value->type->code != TYPE_CODE_PTR)
1167 error ("GDB bug: ax-gdb.c (gen_deref): expected a pointer");
1168
1169 /* We've got an rvalue now, which is a pointer. We want to yield an
1170 lvalue, whose address is exactly that pointer. So we don't
1171 actually emit any code; we just change the type from "Pointer to
1172 T" to "T", and mark the value as an lvalue in memory. Leave it
1173 to the consumer to actually dereference it. */
1174 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1175 value->kind = ((value->type->code == TYPE_CODE_FUNC)
1176 ? axs_rvalue : axs_lvalue_memory);
1177}
1178
1179
1180/* Produce the address of the lvalue on the top of the stack. */
1181static void
1182gen_address_of (ax, value)
1183 struct agent_expr *ax;
1184 struct axs_value *value;
1185{
1186 /* Special case for taking the address of a function. The ANSI
1187 standard describes this as a special case, too, so this
1188 arrangement is not without motivation. */
1189 if (value->type->code == TYPE_CODE_FUNC)
1190 /* The value's already an rvalue on the stack, so we just need to
1191 change the type. */
1192 value->type = lookup_pointer_type (value->type);
1193 else
1194 switch (value->kind)
1195 {
1196 case axs_rvalue:
1197 error ("Operand of `&' is an rvalue, which has no address.");
1198
1199 case axs_lvalue_register:
1200 error ("Operand of `&' is in a register, and has no address.");
1201
1202 case axs_lvalue_memory:
1203 value->kind = axs_rvalue;
1204 value->type = lookup_pointer_type (value->type);
1205 break;
1206 }
1207}
1208
1209
1210/* A lot of this stuff will have to change to support C++. But we're
1211 not going to deal with that at the moment. */
1212
1213/* Find the field in the structure type TYPE named NAME, and return
1214 its index in TYPE's field array. */
1215static int
1216find_field (type, name)
1217 struct type *type;
1218 char *name;
1219{
1220 int i;
1221
1222 CHECK_TYPEDEF (type);
1223
1224 /* Make sure this isn't C++. */
1225 if (TYPE_N_BASECLASSES (type) != 0)
1226 error ("GDB bug: ax-gdb.c (find_field): derived classes supported");
1227
1228 for (i = 0; i < TYPE_NFIELDS (type); i++)
1229 {
1230 char *this_name = TYPE_FIELD_NAME (type, i);
1231
1232 if (this_name && STREQ (name, this_name))
1233 return i;
1234
1235 if (this_name[0] == '\0')
1236 error ("GDB bug: ax-gdb.c (find_field): anonymous unions not supported");
1237 }
1238
1239 error ("Couldn't find member named `%s' in struct/union `%s'",
1240 name, type->tag_name);
1241
1242 return 0;
1243}
1244
1245
1246/* Generate code to push the value of a bitfield of a structure whose
1247 address is on the top of the stack. START and END give the
1248 starting and one-past-ending *bit* numbers of the field within the
1249 structure. */
1250static void
1251gen_bitfield_ref (ax, value, type, start, end)
1252 struct agent_expr *ax;
1253 struct axs_value *value;
1254 struct type *type;
1255 int start, end;
1256{
1257 /* Note that ops[i] fetches 8 << i bits. */
1258 static enum agent_op ops[]
c5aa993b
JM
1259 =
1260 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1261 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1262
1263 /* We don't want to touch any byte that the bitfield doesn't
1264 actually occupy; we shouldn't make any accesses we're not
1265 explicitly permitted to. We rely here on the fact that the
1266 bytecode `ref' operators work on unaligned addresses.
1267
1268 It takes some fancy footwork to get the stack to work the way
1269 we'd like. Say we're retrieving a bitfield that requires three
1270 fetches. Initially, the stack just contains the address:
c5aa993b 1271 addr
c906108c 1272 For the first fetch, we duplicate the address
c5aa993b 1273 addr addr
c906108c
SS
1274 then add the byte offset, do the fetch, and shift and mask as
1275 needed, yielding a fragment of the value, properly aligned for
1276 the final bitwise or:
c5aa993b 1277 addr frag1
c906108c 1278 then we swap, and repeat the process:
c5aa993b
JM
1279 frag1 addr --- address on top
1280 frag1 addr addr --- duplicate it
1281 frag1 addr frag2 --- get second fragment
1282 frag1 frag2 addr --- swap again
1283 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1284 Notice that, since the third fragment is the last one, we don't
1285 bother duplicating the address this time. Now we have all the
1286 fragments on the stack, and we can simply `or' them together,
1287 yielding the final value of the bitfield. */
1288
1289 /* The first and one-after-last bits in the field, but rounded down
1290 and up to byte boundaries. */
1291 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1292 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1293 / TARGET_CHAR_BIT)
1294 * TARGET_CHAR_BIT);
c906108c
SS
1295
1296 /* current bit offset within the structure */
1297 int offset;
1298
1299 /* The index in ops of the opcode we're considering. */
1300 int op;
1301
1302 /* The number of fragments we generated in the process. Probably
1303 equal to the number of `one' bits in bytesize, but who cares? */
1304 int fragment_count;
1305
1306 /* Dereference any typedefs. */
1307 type = check_typedef (type);
1308
1309 /* Can we fetch the number of bits requested at all? */
1310 if ((end - start) > ((1 << num_ops) * 8))
1311 error ("GDB bug: ax-gdb.c (gen_bitfield_ref): bitfield too wide");
1312
1313 /* Note that we know here that we only need to try each opcode once.
1314 That may not be true on machines with weird byte sizes. */
1315 offset = bound_start;
1316 fragment_count = 0;
1317 for (op = num_ops - 1; op >= 0; op--)
1318 {
1319 /* number of bits that ops[op] would fetch */
1320 int op_size = 8 << op;
1321
1322 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1323 more fragments, then the address. */
1324
c906108c
SS
1325 /* Does this fetch fit within the bitfield? */
1326 if (offset + op_size <= bound_end)
1327 {
1328 /* Is this the last fragment? */
1329 int last_frag = (offset + op_size == bound_end);
1330
c5aa993b
JM
1331 if (!last_frag)
1332 ax_simple (ax, aop_dup); /* keep a copy of the address */
1333
c906108c
SS
1334 /* Add the offset. */
1335 gen_offset (ax, offset / TARGET_CHAR_BIT);
1336
1337 if (trace_kludge)
1338 {
1339 /* Record the area of memory we're about to fetch. */
1340 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1341 }
1342
1343 /* Perform the fetch. */
1344 ax_simple (ax, ops[op]);
c5aa993b
JM
1345
1346 /* Shift the bits we have to their proper position.
c906108c
SS
1347 gen_left_shift will generate right shifts when the operand
1348 is negative.
1349
c5aa993b
JM
1350 A big-endian field diagram to ponder:
1351 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1352 +------++------++------++------++------++------++------++------+
1353 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1354 ^ ^ ^ ^
1355 bit number 16 32 48 53
c906108c
SS
1356 These are bit numbers as supplied by GDB. Note that the
1357 bit numbers run from right to left once you've fetched the
1358 value!
1359
c5aa993b
JM
1360 A little-endian field diagram to ponder:
1361 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1362 +------++------++------++------++------++------++------++------+
1363 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1364 ^ ^ ^ ^ ^
1365 bit number 48 32 16 4 0
1366
1367 In both cases, the most significant end is on the left
1368 (i.e. normal numeric writing order), which means that you
1369 don't go crazy thinking about `left' and `right' shifts.
1370
1371 We don't have to worry about masking yet:
1372 - If they contain garbage off the least significant end, then we
1373 must be looking at the low end of the field, and the right
1374 shift will wipe them out.
1375 - If they contain garbage off the most significant end, then we
1376 must be looking at the most significant end of the word, and
1377 the sign/zero extension will wipe them out.
1378 - If we're in the interior of the word, then there is no garbage
1379 on either end, because the ref operators zero-extend. */
c906108c
SS
1380 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1381 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1382 else
c906108c
SS
1383 gen_left_shift (ax, offset - start);
1384
c5aa993b 1385 if (!last_frag)
c906108c
SS
1386 /* Bring the copy of the address up to the top. */
1387 ax_simple (ax, aop_swap);
1388
1389 offset += op_size;
1390 fragment_count++;
1391 }
1392 }
1393
1394 /* Generate enough bitwise `or' operations to combine all the
1395 fragments we left on the stack. */
1396 while (fragment_count-- > 1)
1397 ax_simple (ax, aop_bit_or);
1398
1399 /* Sign- or zero-extend the value as appropriate. */
1400 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1401
1402 /* This is *not* an lvalue. Ugh. */
1403 value->kind = axs_rvalue;
1404 value->type = type;
1405}
1406
1407
1408/* Generate code to reference the member named FIELD of a structure or
1409 union. The top of the stack, as described by VALUE, should have
1410 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1411 the operator being compiled, and OPERAND_NAME is the kind of thing
1412 it operates on; we use them in error messages. */
1413static void
1414gen_struct_ref (ax, value, field, operator_name, operand_name)
1415 struct agent_expr *ax;
1416 struct axs_value *value;
1417 char *field;
1418 char *operator_name;
1419 char *operand_name;
1420{
1421 struct type *type;
1422 int i;
1423
1424 /* Follow pointers until we reach a non-pointer. These aren't the C
1425 semantics, but they're what the normal GDB evaluator does, so we
1426 should at least be consistent. */
1427 while (value->type->code == TYPE_CODE_PTR)
1428 {
1429 gen_usual_unary (ax, value);
1430 gen_deref (ax, value);
1431 }
1432 type = value->type;
1433
1434 /* This must yield a structure or a union. */
1435 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1436 && TYPE_CODE (type) != TYPE_CODE_UNION)
1437 error ("The left operand of `%s' is not a %s.",
1438 operator_name, operand_name);
1439
1440 /* And it must be in memory; we don't deal with structure rvalues,
1441 or structures living in registers. */
1442 if (value->kind != axs_lvalue_memory)
1443 error ("Structure does not live in memory.");
1444
1445 i = find_field (type, field);
c5aa993b 1446
c906108c
SS
1447 /* Is this a bitfield? */
1448 if (TYPE_FIELD_PACKED (type, i))
1449 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1450 TYPE_FIELD_BITPOS (type, i),
1451 (TYPE_FIELD_BITPOS (type, i)
1452 + TYPE_FIELD_BITSIZE (type, i)));
1453 else
1454 {
1455 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1456 value->kind = axs_lvalue_memory;
1457 value->type = TYPE_FIELD_TYPE (type, i);
1458 }
1459}
1460
1461
1462/* Generate code for GDB's magical `repeat' operator.
1463 LVALUE @ INT creates an array INT elements long, and whose elements
1464 have the same type as LVALUE, located in memory so that LVALUE is
1465 its first element. For example, argv[0]@argc gives you the array
1466 of command-line arguments.
1467
1468 Unfortunately, because we have to know the types before we actually
1469 have a value for the expression, we can't implement this perfectly
1470 without changing the type system, having values that occupy two
1471 stack slots, doing weird things with sizeof, etc. So we require
1472 the right operand to be a constant expression. */
1473static void
1474gen_repeat (pc, ax, value)
1475 union exp_element **pc;
1476 struct agent_expr *ax;
1477 struct axs_value *value;
1478{
1479 struct axs_value value1;
1480 /* We don't want to turn this into an rvalue, so no conversions
1481 here. */
1482 gen_expr (pc, ax, &value1);
1483 if (value1.kind != axs_lvalue_memory)
1484 error ("Left operand of `@' must be an object in memory.");
1485
1486 /* Evaluate the length; it had better be a constant. */
1487 {
1488 struct value *v = const_expr (pc);
1489 int length;
1490
c5aa993b 1491 if (!v)
c906108c
SS
1492 error ("Right operand of `@' must be a constant, in agent expressions.");
1493 if (v->type->code != TYPE_CODE_INT)
1494 error ("Right operand of `@' must be an integer.");
1495 length = value_as_long (v);
1496 if (length <= 0)
1497 error ("Right operand of `@' must be positive.");
1498
1499 /* The top of the stack is already the address of the object, so
1500 all we need to do is frob the type of the lvalue. */
1501 {
1502 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1503 done with it. */
c906108c 1504 struct type *range
c5aa993b 1505 = create_range_type (0, builtin_type_int, 0, length - 1);
c906108c
SS
1506 struct type *array = create_array_type (0, value1.type, range);
1507
1508 value->kind = axs_lvalue_memory;
1509 value->type = array;
1510 }
1511 }
1512}
1513
1514
1515/* Emit code for the `sizeof' operator.
1516 *PC should point at the start of the operand expression; we advance it
1517 to the first instruction after the operand. */
1518static void
1519gen_sizeof (pc, ax, value)
1520 union exp_element **pc;
1521 struct agent_expr *ax;
1522 struct axs_value *value;
1523{
1524 /* We don't care about the value of the operand expression; we only
1525 care about its type. However, in the current arrangement, the
1526 only way to find an expression's type is to generate code for it.
1527 So we generate code for the operand, and then throw it away,
1528 replacing it with code that simply pushes its size. */
1529 int start = ax->len;
1530 gen_expr (pc, ax, value);
1531
1532 /* Throw away the code we just generated. */
1533 ax->len = start;
c5aa993b 1534
c906108c
SS
1535 ax_const_l (ax, TYPE_LENGTH (value->type));
1536 value->kind = axs_rvalue;
1537 value->type = builtin_type_int;
1538}
c906108c 1539\f
c5aa993b 1540
c906108c
SS
1541/* Generating bytecode from GDB expressions: general recursive thingy */
1542
1543/* A gen_expr function written by a Gen-X'er guy.
1544 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1545static void
1546gen_expr (pc, ax, value)
1547 union exp_element **pc;
1548 struct agent_expr *ax;
1549 struct axs_value *value;
1550{
1551 /* Used to hold the descriptions of operand expressions. */
1552 struct axs_value value1, value2;
1553 enum exp_opcode op = (*pc)[0].opcode;
1554
1555 /* If we're looking at a constant expression, just push its value. */
1556 {
1557 struct value *v = maybe_const_expr (pc);
c5aa993b 1558
c906108c
SS
1559 if (v)
1560 {
1561 ax_const_l (ax, value_as_long (v));
1562 value->kind = axs_rvalue;
1563 value->type = check_typedef (VALUE_TYPE (v));
1564 return;
1565 }
1566 }
1567
1568 /* Otherwise, go ahead and generate code for it. */
1569 switch (op)
1570 {
1571 /* Binary arithmetic operators. */
1572 case BINOP_ADD:
1573 case BINOP_SUB:
1574 case BINOP_MUL:
1575 case BINOP_DIV:
1576 case BINOP_REM:
1577 case BINOP_SUBSCRIPT:
1578 case BINOP_BITWISE_AND:
1579 case BINOP_BITWISE_IOR:
1580 case BINOP_BITWISE_XOR:
1581 (*pc)++;
1582 gen_expr (pc, ax, &value1);
1583 gen_usual_unary (ax, &value1);
1584 gen_expr (pc, ax, &value2);
1585 gen_usual_unary (ax, &value2);
1586 gen_usual_arithmetic (ax, &value1, &value2);
1587 switch (op)
1588 {
1589 case BINOP_ADD:
1590 gen_add (ax, value, &value1, &value2, "addition");
1591 break;
1592 case BINOP_SUB:
1593 gen_sub (ax, value, &value1, &value2);
1594 break;
1595 case BINOP_MUL:
1596 gen_binop (ax, value, &value1, &value2,
1597 aop_mul, aop_mul, 1, "multiplication");
1598 break;
1599 case BINOP_DIV:
1600 gen_binop (ax, value, &value1, &value2,
1601 aop_div_signed, aop_div_unsigned, 1, "division");
1602 break;
1603 case BINOP_REM:
1604 gen_binop (ax, value, &value1, &value2,
1605 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1606 break;
1607 case BINOP_SUBSCRIPT:
1608 gen_add (ax, value, &value1, &value2, "array subscripting");
1609 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1610 error ("Illegal combination of types in array subscripting.");
1611 gen_deref (ax, value);
1612 break;
1613 case BINOP_BITWISE_AND:
1614 gen_binop (ax, value, &value1, &value2,
1615 aop_bit_and, aop_bit_and, 0, "bitwise and");
1616 break;
1617
1618 case BINOP_BITWISE_IOR:
1619 gen_binop (ax, value, &value1, &value2,
1620 aop_bit_or, aop_bit_or, 0, "bitwise or");
1621 break;
1622
1623 case BINOP_BITWISE_XOR:
1624 gen_binop (ax, value, &value1, &value2,
1625 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1626 break;
1627
1628 default:
1629 /* We should only list operators in the outer case statement
c5aa993b 1630 that we actually handle in the inner case statement. */
c906108c
SS
1631 error ("GDB bug: ax-gdb.c (gen_expr): op case sets don't match");
1632 }
1633 break;
1634
1635 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1636 for comma. In C, we can do some optimizations here because
1637 we know the left operand is only being evaluated for effect.
1638 However, if the tracing kludge is in effect, then we always
1639 need to evaluate the left hand side fully, so that all the
1640 variables it mentions get traced. */
c906108c
SS
1641 case BINOP_COMMA:
1642 (*pc)++;
1643 gen_expr (pc, ax, &value1);
1644 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1645 in which case we want to emit code to trace it if it's an
1646 lvalue. */
c906108c
SS
1647 gen_traced_pop (ax, &value1);
1648 gen_expr (pc, ax, value);
1649 /* It's the consumer's responsibility to trace the right operand. */
1650 break;
c5aa993b 1651
c906108c
SS
1652 case OP_LONG: /* some integer constant */
1653 {
1654 struct type *type = (*pc)[1].type;
1655 LONGEST k = (*pc)[2].longconst;
1656 (*pc) += 4;
1657 gen_int_literal (ax, value, k, type);
1658 }
c5aa993b 1659 break;
c906108c
SS
1660
1661 case OP_VAR_VALUE:
1662 gen_var_ref (ax, value, (*pc)[2].symbol);
1663 (*pc) += 4;
1664 break;
1665
1666 case OP_REGISTER:
1667 {
1668 int reg = (int) (*pc)[1].longconst;
1669 (*pc) += 3;
1670 value->kind = axs_lvalue_register;
1671 value->u.reg = reg;
1672 value->type = REGISTER_VIRTUAL_TYPE (reg);
1673 }
c5aa993b 1674 break;
c906108c
SS
1675
1676 case OP_INTERNALVAR:
1677 error ("GDB agent expressions cannot use convenience variables.");
1678
c5aa993b 1679 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
1680 case BINOP_REPEAT:
1681 /* Note that gen_repeat handles its own argument evaluation. */
1682 (*pc)++;
1683 gen_repeat (pc, ax, value);
1684 break;
1685
1686 case UNOP_CAST:
1687 {
1688 struct type *type = (*pc)[1].type;
1689 (*pc) += 3;
1690 gen_expr (pc, ax, value);
1691 gen_cast (ax, value, type);
1692 }
c5aa993b 1693 break;
c906108c
SS
1694
1695 case UNOP_MEMVAL:
1696 {
1697 struct type *type = check_typedef ((*pc)[1].type);
1698 (*pc) += 3;
1699 gen_expr (pc, ax, value);
1700 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1701 it's just a hack for dealing with minsyms; you take some
1702 integer constant, pretend it's the address of an lvalue of
1703 the given type, and dereference it. */
1704 if (value->kind != axs_rvalue)
1705 /* This would be weird. */
1706 error ("GDB bug: ax-gdb.c (gen_expr): OP_MEMVAL operand isn't an rvalue???");
1707 value->type = type;
1708 value->kind = axs_lvalue_memory;
1709 }
c5aa993b 1710 break;
c906108c
SS
1711
1712 case UNOP_NEG:
1713 (*pc)++;
1714 /* -FOO is equivalent to 0 - FOO. */
1715 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
c5aa993b 1716 gen_usual_unary (ax, &value1); /* shouldn't do much */
c906108c
SS
1717 gen_expr (pc, ax, &value2);
1718 gen_usual_unary (ax, &value2);
1719 gen_usual_arithmetic (ax, &value1, &value2);
1720 gen_sub (ax, value, &value1, &value2);
1721 break;
1722
1723 case UNOP_LOGICAL_NOT:
1724 (*pc)++;
1725 gen_expr (pc, ax, value);
1726 gen_logical_not (ax, value);
1727 break;
1728
1729 case UNOP_COMPLEMENT:
1730 (*pc)++;
1731 gen_expr (pc, ax, value);
1732 gen_complement (ax, value);
1733 break;
1734
1735 case UNOP_IND:
1736 (*pc)++;
1737 gen_expr (pc, ax, value);
1738 gen_usual_unary (ax, value);
1739 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1740 error ("Argument of unary `*' is not a pointer.");
1741 gen_deref (ax, value);
1742 break;
1743
1744 case UNOP_ADDR:
1745 (*pc)++;
1746 gen_expr (pc, ax, value);
1747 gen_address_of (ax, value);
1748 break;
1749
1750 case UNOP_SIZEOF:
1751 (*pc)++;
1752 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
1753 of the other unary operator functions. This is because we
1754 have to throw away the code we generate. */
c906108c
SS
1755 gen_sizeof (pc, ax, value);
1756 break;
1757
1758 case STRUCTOP_STRUCT:
1759 case STRUCTOP_PTR:
1760 {
1761 int length = (*pc)[1].longconst;
1762 char *name = &(*pc)[2].string;
1763
1764 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1765 gen_expr (pc, ax, value);
1766 if (op == STRUCTOP_STRUCT)
1767 gen_struct_ref (ax, value, name, ".", "structure or union");
1768 else if (op == STRUCTOP_PTR)
1769 gen_struct_ref (ax, value, name, "->",
1770 "pointer to a structure or union");
1771 else
1772 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 1773 shouldn't mention it, and we shouldn't be here. */
c906108c
SS
1774 error ("GDB bug: ax-gdb.c (gen_expr): unhandled struct case");
1775 }
c5aa993b 1776 break;
c906108c
SS
1777
1778 case OP_TYPE:
1779 error ("Attempt to use a type name as an expression.");
1780
1781 default:
1782 error ("Unsupported operator in expression.");
1783 }
1784}
c906108c 1785\f
c5aa993b
JM
1786
1787
1788#if 0 /* not used */
c906108c
SS
1789/* Generating bytecode from GDB expressions: driver */
1790
1791/* Given a GDB expression EXPR, produce a string of agent bytecode
1792 which computes its value. Return the agent expression, and set
1793 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1794struct agent_expr *
1795expr_to_agent (expr, value)
1796 struct expression *expr;
1797 struct axs_value *value;
1798{
1799 struct cleanup *old_chain = 0;
1800 struct agent_expr *ax = new_agent_expr ();
1801 union exp_element *pc;
1802
1803 old_chain = make_cleanup ((make_cleanup_func) free_agent_expr, ax);
1804
1805 pc = expr->elts;
1806 trace_kludge = 0;
1807 gen_expr (&pc, ax, value);
1808
1809 /* We have successfully built the agent expr, so cancel the cleanup
1810 request. If we add more cleanups that we always want done, this
1811 will have to get more complicated. */
1812 discard_cleanups (old_chain);
1813 return ax;
1814}
1815
1816
1817/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1818 string of agent bytecode which will leave its address and size on
1819 the top of stack. Return the agent expression.
1820
1821 Not sure this function is useful at all. */
1822struct agent_expr *
1823expr_to_address_and_size (expr)
1824 struct expression *expr;
1825{
1826 struct axs_value value;
1827 struct agent_expr *ax = expr_to_agent (expr, &value);
1828
1829 /* Complain if the result is not a memory lvalue. */
1830 if (value.kind != axs_lvalue_memory)
1831 {
1832 free_agent_expr (ax);
1833 error ("Expression does not denote an object in memory.");
1834 }
1835
1836 /* Push the object's size on the stack. */
1837 ax_const_l (ax, TYPE_LENGTH (value.type));
1838
1839 return ax;
1840}
1841#endif /* 0 */
1842
1843/* Given a GDB expression EXPR, return bytecode to trace its value.
1844 The result will use the `trace' and `trace_quick' bytecodes to
1845 record the value of all memory touched by the expression. The
1846 caller can then use the ax_reqs function to discover which
1847 registers it relies upon. */
1848struct agent_expr *
1849gen_trace_for_expr (scope, expr)
1850 CORE_ADDR scope;
1851 struct expression *expr;
1852{
1853 struct cleanup *old_chain = 0;
1854 struct agent_expr *ax = new_agent_expr (scope);
1855 union exp_element *pc;
1856 struct axs_value value;
1857
1858 old_chain = make_cleanup ((make_cleanup_func) free_agent_expr, ax);
1859
1860 pc = expr->elts;
1861 trace_kludge = 1;
1862 gen_expr (&pc, ax, &value);
1863
1864 /* Make sure we record the final object, and get rid of it. */
1865 gen_traced_pop (ax, &value);
1866
1867 /* Oh, and terminate. */
1868 ax_simple (ax, aop_end);
1869
1870 /* We have successfully built the agent expr, so cancel the cleanup
1871 request. If we add more cleanups that we always want done, this
1872 will have to get more complicated. */
1873 discard_cleanups (old_chain);
1874 return ax;
1875}
c5aa993b 1876\f
c906108c
SS
1877
1878
c906108c
SS
1879/* The "agent" command, for testing: compile and disassemble an expression. */
1880
1881static void
1882print_axs_value (f, value)
1883 GDB_FILE *f;
1884 struct axs_value *value;
1885{
1886 switch (value->kind)
1887 {
1888 case axs_rvalue:
1889 fputs_filtered ("rvalue", f);
1890 break;
1891
1892 case axs_lvalue_memory:
1893 fputs_filtered ("memory lvalue", f);
1894 break;
1895
1896 case axs_lvalue_register:
1897 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1898 break;
1899 }
1900
1901 fputs_filtered (" : ", f);
1902 type_print (value->type, "", f, -1);
1903}
1904
1905
1906static void
1907agent_command (exp, from_tty)
1908 char *exp;
1909 int from_tty;
1910{
1911 struct cleanup *old_chain = 0;
1912 struct expression *expr;
1913 struct agent_expr *agent;
c5aa993b 1914 struct frame_info *fi = get_current_frame (); /* need current scope */
c906108c
SS
1915
1916 /* We don't deal with overlay debugging at the moment. We need to
1917 think more carefully about this. If you copy this code into
1918 another command, change the error message; the user shouldn't
1919 have to know anything about agent expressions. */
1920 if (overlay_debugging)
1921 error ("GDB can't do agent expression translation with overlays.");
1922
1923 if (exp == 0)
1924 error_no_arg ("expression to translate");
c5aa993b 1925
c906108c
SS
1926 expr = parse_expression (exp);
1927 old_chain = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
1928 agent = gen_trace_for_expr (fi->pc, expr);
1929 make_cleanup ((make_cleanup_func) free_agent_expr, agent);
1930 ax_print (gdb_stdout, agent);
085dd6e6
JM
1931
1932 /* It would be nice to call ax_reqs here to gather some general info
1933 about the expression, and then print out the result. */
c906108c
SS
1934
1935 do_cleanups (old_chain);
1936 dont_repeat ();
1937}
c906108c 1938\f
c5aa993b 1939
c906108c
SS
1940/* Initialization code. */
1941
1942void _initialize_ax_gdb PARAMS ((void));
1943void
1944_initialize_ax_gdb ()
1945{
1946 struct cmd_list_element *c;
1947
1948 add_cmd ("agent", class_maintenance, agent_command,
1949 "Translate an expression into remote agent bytecode.",
1950 &maintenancelist);
1951}