]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/config/pa/tm-hppa.h
import gdb-1999-09-21
[thirdparty/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
CommitLineData
c906108c 1/* Parameters for execution on any Hewlett-Packard PA-RISC machine.
cce74817 2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1995, 1999
c906108c
SS
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25/* Forward declarations of some types we use in prototypes */
26
c906108c
SS
27struct frame_info;
28struct frame_saved_regs;
29struct value;
30struct type;
31struct inferior_status;
c906108c
SS
32
33/* Target system byte order. */
34
35#define TARGET_BYTE_ORDER BIG_ENDIAN
36
37/* By default assume we don't have to worry about software floating point. */
38#ifndef SOFT_FLOAT
39#define SOFT_FLOAT 0
40#endif
41
42/* Get at various relevent fields of an instruction word. */
43
44#define MASK_5 0x1f
45#define MASK_11 0x7ff
46#define MASK_14 0x3fff
47#define MASK_21 0x1fffff
48
49/* This macro gets bit fields using HP's numbering (MSB = 0) */
50#ifndef GET_FIELD
51#define GET_FIELD(X, FROM, TO) \
52 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
53#endif
54
55/* Watch out for NaNs */
56
57#define IEEE_FLOAT
58
59/* On the PA, any pass-by-value structure > 8 bytes is actually
60 passed via a pointer regardless of its type or the compiler
61 used. */
62
63#define REG_STRUCT_HAS_ADDR(gcc_p,type) \
64 (TYPE_LENGTH (type) > 8)
65
66/* Offset from address of function to start of its code.
67 Zero on most machines. */
68
69#define FUNCTION_START_OFFSET 0
c5aa993b 70
c906108c
SS
71/* Advance PC across any function entry prologue instructions
72 to reach some "real" code. */
73
b83266a0
SS
74extern CORE_ADDR hppa_skip_prologue PARAMS ((CORE_ADDR));
75#define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
c906108c
SS
76
77/* If PC is in some function-call trampoline code, return the PC
78 where the function itself actually starts. If not, return NULL. */
79
80#define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
81extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
82
83/* Return non-zero if we are in an appropriate trampoline. */
84
85#define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
86 in_solib_call_trampoline (pc, name)
87extern int in_solib_call_trampoline PARAMS ((CORE_ADDR, char *));
88
89#define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
90 in_solib_return_trampoline (pc, name)
91extern int in_solib_return_trampoline PARAMS ((CORE_ADDR, char *));
92
93/* Immediately after a function call, return the saved pc.
94 Can't go through the frames for this because on some machines
95 the new frame is not set up until the new function executes
96 some instructions. */
97
98#undef SAVED_PC_AFTER_CALL
99#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
100extern CORE_ADDR saved_pc_after_call PARAMS ((struct frame_info *));
101
102/* Stack grows upward */
103#define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
104
105/* elz: adjust the quantity to the next highest value which is 64-bit aligned.
106 This is used in valops.c, when the sp is adjusted.
c5aa993b 107 On hppa the sp must always be kept 64-bit aligned */
c906108c
SS
108
109#define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
c5aa993b 110#define NO_EXTRA_ALIGNMENT_NEEDED 1
c906108c
SS
111
112/* Sequence of bytes for breakpoint instruction. */
113
114#define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
115#define BREAKPOINT32 0x10004
116
117/* Amount PC must be decremented by after a breakpoint.
118 This is often the number of bytes in BREAKPOINT
119 but not always.
120
121 Not on the PA-RISC */
122
123#define DECR_PC_AFTER_BREAK 0
124
125/* Sometimes we may pluck out a minimal symbol that has a negative
126 address.
127
128 An example of this occurs when an a.out is linked against a foo.sl.
129 The foo.sl defines a global bar(), and the a.out declares a signature
130 for bar(). However, the a.out doesn't directly call bar(), but passes
131 its address in another call.
132
133 If you have this scenario and attempt to "break bar" before running,
134 gdb will find a minimal symbol for bar() in the a.out. But that
135 symbol's address will be negative. What this appears to denote is
136 an index backwards from the base of the procedure linkage table (PLT)
137 into the data linkage table (DLT), the end of which is contiguous
138 with the start of the PLT. This is clearly not a valid address for
139 us to set a breakpoint on.
140
141 Note that one must be careful in how one checks for a negative address.
142 0xc0000000 is a legitimate address of something in a shared text
143 segment, for example. Since I don't know what the possible range
144 is of these "really, truly negative" addresses that come from the
145 minimal symbols, I'm resorting to the gross hack of checking the
146 top byte of the address for all 1's. Sigh.
c5aa993b 147 */
c906108c
SS
148#define PC_REQUIRES_RUN_BEFORE_USE(pc) \
149 (! target_has_stack && (pc & 0xFF000000))
150
c5aa993b 151/* return instruction is bv r0(rp) or bv,n r0(rp) */
c906108c
SS
152
153#define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
154
155/* Say how long (ordinary) registers are. This is a piece of bogosity
156 used in push_word and a few other places; REGISTER_RAW_SIZE is the
157 real way to know how big a register is. */
158
159#define REGISTER_SIZE 4
160
161/* Number of machine registers */
162
163#define NUM_REGS 128
164
165/* Initializer for an array of names of registers.
166 There should be NUM_REGS strings in this initializer.
167 They are in rows of eight entries */
168
169#define REGISTER_NAMES \
170 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
171 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
172 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
173 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
174 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
175 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
176 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
177 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
178 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
179 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
180 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
181 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
182 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
183 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
184 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
185 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
186
187/* Register numbers of various important registers.
188 Note that some of these values are "real" register numbers,
189 and correspond to the general registers of the machine,
190 and some are "phony" register numbers which are too large
191 to be actual register numbers as far as the user is concerned
192 but do serve to get the desired values when passed to read_register. */
193
194#define R0_REGNUM 0 /* Doesn't actually exist, used as base for
195 other r registers. */
196#define FLAGS_REGNUM 0 /* Various status flags */
197#define RP_REGNUM 2 /* return pointer */
198#define FP_REGNUM 3 /* Contains address of executing stack */
199 /* frame */
200#define SP_REGNUM 30 /* Contains address of top of stack */
201#define SAR_REGNUM 32 /* Shift Amount Register */
202#define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
203#define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
204#define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
205#define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
206#define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
207#define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
208#define IIR_REGNUM 38 /* Interrupt Instruction Register */
209#define IOR_REGNUM 40 /* Interrupt Offset Register */
210#define SR4_REGNUM 43 /* space register 4 */
211#define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
212#define CCR_REGNUM 54 /* Coprocessor Configuration Register */
213#define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
c5aa993b
JM
214#define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
215#define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
c906108c
SS
216#define FP4_REGNUM 72
217
c5aa993b
JM
218#define ARG0_REGNUM 26 /* The first argument of a callee. */
219#define ARG1_REGNUM 25 /* The second argument of a callee. */
220#define ARG2_REGNUM 24 /* The third argument of a callee. */
221#define ARG3_REGNUM 23 /* The fourth argument of a callee. */
c906108c
SS
222
223/* compatibility with the rest of gdb. */
224#define PC_REGNUM PCOQ_HEAD_REGNUM
225#define NPC_REGNUM PCOQ_TAIL_REGNUM
226
227/*
228 * Processor Status Word Masks
229 */
230
c5aa993b
JM
231#define PSW_T 0x01000000 /* Taken Branch Trap Enable */
232#define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
233#define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
234#define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
235#define PSW_X 0x00100000 /* Data Memory Break Disable */
236#define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
237#define PSW_C 0x00040000 /* Code Address Translation Enable */
238#define PSW_V 0x00020000 /* Divide Step Correction */
239#define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
240#define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
241#define PSW_R 0x00000010 /* Recovery Counter Enable */
242#define PSW_Q 0x00000008 /* Interruption State Collection Enable */
243#define PSW_P 0x00000004 /* Protection ID Validation Enable */
244#define PSW_D 0x00000002 /* Data Address Translation Enable */
245#define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
246 /* Machine Check Interruption Enable */
c906108c
SS
247
248/* When fetching register values from an inferior or a core file,
249 clean them up using this macro. BUF is a char pointer to
250 the raw value of the register in the registers[] array. */
251
252#define CLEAN_UP_REGISTER_VALUE(regno, buf) \
253 do { \
254 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
7be570e7 255 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
c906108c
SS
256 } while (0)
257
258/* Define DO_REGISTERS_INFO() to do machine-specific formatting
259 of register dumps. */
260
261#define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
262extern void pa_do_registers_info PARAMS ((int, int));
263
264#if 0
265#define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
266extern void pa_do_strcat_registers_info PARAMS ((int, int, GDB_FILE *, enum precision_type));
267#endif
268
269/* PA specific macro to see if the current instruction is nullified. */
270#ifndef INSTRUCTION_NULLIFIED
271#define INSTRUCTION_NULLIFIED \
272 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
273 !((int)read_register (FLAGS_REGNUM) & 0x2))
274#endif
275
276/* Number of bytes of storage in the actual machine representation
277 for register N. On the PA-RISC, all regs are 4 bytes, including
278 the FP registers (they're accessed as two 4 byte halves). */
279
280#define REGISTER_RAW_SIZE(N) 4
281
282/* Total amount of space needed to store our copies of the machine's
283 register state, the array `registers'. */
284#define REGISTER_BYTES (NUM_REGS * 4)
285
286/* Index within `registers' of the first byte of the space for
287 register N. */
288
289#define REGISTER_BYTE(N) (N) * 4
290
291/* Number of bytes of storage in the program's representation
292 for register N. */
293
294#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
295
296/* Largest value REGISTER_RAW_SIZE can have. */
297
298#define MAX_REGISTER_RAW_SIZE 4
299
300/* Largest value REGISTER_VIRTUAL_SIZE can have. */
301
302#define MAX_REGISTER_VIRTUAL_SIZE 8
303
304/* Return the GDB type object for the "standard" data type
305 of data in register N. */
306
307#define REGISTER_VIRTUAL_TYPE(N) \
308 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
309
310/* Store the address of the place in which to copy the structure the
311 subroutine will return. This is called from call_function. */
312
313#define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
314
315/* Extract from an array REGBUF containing the (raw) register state
316 a function return value of type TYPE, and copy that, in virtual format,
317 into VALBUF.
318
319 elz: changed what to return when length is > 4: the stored result is
320 in register 28 and in register 29, with the lower order word being in reg 29,
321 so we must start reading it from somehere in the middle of reg28
322
323 FIXME: Not sure what to do for soft float here. */
324
325#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
326 { \
327 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT && !SOFT_FLOAT) \
328 memcpy ((VALBUF), \
329 ((char *)(REGBUF)) + REGISTER_BYTE (FP4_REGNUM), \
330 TYPE_LENGTH (TYPE)); \
331 else \
332 memcpy ((VALBUF), \
333 (char *)(REGBUF) + REGISTER_BYTE (28) + \
334 (TYPE_LENGTH (TYPE) > 4 ? (8 - TYPE_LENGTH (TYPE)) : (4 - TYPE_LENGTH (TYPE))), \
335 TYPE_LENGTH (TYPE)); \
336 }
337
338
339 /* elz: decide whether the function returning a value of type type
340 will put it on the stack or in the registers.
341 The pa calling convention says that:
342 register 28 (called ret0 by gdb) contains any ASCII char,
343 and any non_floating point value up to 32-bits.
344 reg 28 and 29 contain non-floating point up tp 64 bits and larger
345 than 32 bits. (higer order word in reg 28).
346 fr4: floating point up to 64 bits
347 sr1: space identifier (32-bit)
348 stack: any lager than 64-bit, with the address in r28
c5aa993b 349 */
c906108c
SS
350extern use_struct_convention_fn hppa_use_struct_convention;
351#define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
352
353/* Write into appropriate registers a function return value
354 of type TYPE, given in virtual format.
355
356 For software floating point the return value goes into the integer
357 registers. But we don't have any flag to key this on, so we always
358 store the value into the integer registers, and if it's a float value,
359 then we put it in the float registers too. */
360
361#define STORE_RETURN_VALUE(TYPE,VALBUF) \
362 write_register_bytes (REGISTER_BYTE (28),(VALBUF), TYPE_LENGTH (TYPE)) ; \
363 if (!SOFT_FLOAT) \
364 write_register_bytes ((TYPE_CODE(TYPE) == TYPE_CODE_FLT \
365 ? REGISTER_BYTE (FP4_REGNUM) \
366 : REGISTER_BYTE (28)), \
367 (VALBUF), TYPE_LENGTH (TYPE))
368
369/* Extract from an array REGBUF containing the (raw) register state
370 the address in which a function should return its structure value,
371 as a CORE_ADDR (or an expression that can be used as one). */
372
373#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
374 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
375
376/* elz: Return a large value, which is stored on the stack at addr.
377 This is defined only for the hppa, at this moment.
378 The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
379 because it assumes that on exit from a called function which returns
380 a large structure on the stack, the address of the ret structure is
381 still in register 28. Unfortunately this register is usually overwritten
382 by the called function itself, on hppa. This is specified in the calling
383 convention doc. As far as I know, the only way to get the return value
384 is to have the caller tell us where it told the callee to put it, rather
385 than have the callee tell us.
c5aa993b 386 */
c906108c
SS
387#define VALUE_RETURNED_FROM_STACK(valtype,addr) \
388 hppa_value_returned_from_stack (valtype, addr)
389
390/*
391 * This macro defines the register numbers (from REGISTER_NAMES) that
392 * are effectively unavailable to the user through ptrace(). It allows
393 * us to include the whole register set in REGISTER_NAMES (inorder to
394 * better support remote debugging). If it is used in
395 * fetch/store_inferior_registers() gdb will not complain about I/O errors
396 * on fetching these registers. If all registers in REGISTER_NAMES
397 * are available, then return false (0).
398 */
399
400#define CANNOT_STORE_REGISTER(regno) \
401 ((regno) == 0) || \
402 ((regno) == PCSQ_HEAD_REGNUM) || \
403 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
404 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
405
406#define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
407extern void init_extra_frame_info PARAMS ((int, struct frame_info *));
408
409/* Describe the pointer in each stack frame to the previous stack frame
410 (its caller). */
411
412/* FRAME_CHAIN takes a frame's nominal address
413 and produces the frame's chain-pointer.
414
415 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
416 and produces the nominal address of the caller frame.
417
418 However, if FRAME_CHAIN_VALID returns zero,
419 it means the given frame is the outermost one and has no caller.
420 In that case, FRAME_CHAIN_COMBINE is not used. */
421
422/* In the case of the PA-RISC, the frame's nominal address
423 is the address of a 4-byte word containing the calling frame's
424 address (previous FP). */
425
426#define FRAME_CHAIN(thisframe) frame_chain (thisframe)
427extern CORE_ADDR frame_chain PARAMS ((struct frame_info *));
428
429extern int hppa_frame_chain_valid PARAMS ((CORE_ADDR, struct frame_info *));
430#define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
431
432#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
433
434/* Define other aspects of the stack frame. */
435
436/* A macro that tells us whether the function invocation represented
437 by FI does not have a frame on the stack associated with it. If it
438 does not, FRAMELESS is set to 1, else 0. */
392a587b
JM
439#define FRAMELESS_FUNCTION_INVOCATION(FI) \
440 (frameless_function_invocation (FI))
c906108c
SS
441extern int frameless_function_invocation PARAMS ((struct frame_info *));
442
c5aa993b 443extern CORE_ADDR hppa_frame_saved_pc PARAMS ((struct frame_info * frame));
c906108c
SS
444#define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
445
446#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
447
448#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
449/* Set VAL to the number of args passed to frame described by FI.
450 Can set VAL to -1, meaning no way to tell. */
451
452/* We can't tell how many args there are
453 now that the C compiler delays popping them. */
392a587b 454#define FRAME_NUM_ARGS(fi) (-1)
c906108c
SS
455
456/* Return number of bytes at start of arglist that are not really args. */
457
458#define FRAME_ARGS_SKIP 0
459
460#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
461 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
462extern void
463hppa_frame_find_saved_regs PARAMS ((struct frame_info *,
464 struct frame_saved_regs *));
c906108c 465\f
c5aa993b 466
c906108c
SS
467/* Things needed for making the inferior call functions. */
468
469/* Push an empty stack frame, to record the current PC, etc. */
470
7a292a7a 471#define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
c906108c
SS
472extern void push_dummy_frame PARAMS ((struct inferior_status *));
473
474/* Discard from the stack the innermost frame,
475 restoring all saved registers. */
476#define POP_FRAME hppa_pop_frame ()
477extern void hppa_pop_frame PARAMS ((void));
478
479#define INSTRUCTION_SIZE 4
480
481#ifndef PA_LEVEL_0
482
483/* Non-level zero PA's have space registers (but they don't always have
484 floating-point, do they???? */
485
486/* This sequence of words is the instructions
487
c5aa993b
JM
488 ; Call stack frame has already been built by gdb. Since we could be calling
489 ; a varargs function, and we do not have the benefit of a stub to put things in
490 ; the right place, we load the first 4 word of arguments into both the general
491 ; and fp registers.
492 call_dummy
493 ldw -36(sp), arg0
494 ldw -40(sp), arg1
495 ldw -44(sp), arg2
496 ldw -48(sp), arg3
497 ldo -36(sp), r1
498 fldws 0(0, r1), fr4
499 fldds -4(0, r1), fr5
500 fldws -8(0, r1), fr6
501 fldds -12(0, r1), fr7
502 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
503 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
504 ldsid (0,r22), r4
505 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
506 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
507 ldsid (0,r1), r20
508 combt,=,n r4, r20, text_space ; If target is in data space, do a
509 ble 0(sr5, r22) ; "normal" procedure call
510 copy r31, r2
511 break 4, 8
512 mtsp r21, sr0
513 ble,n 0(sr0, r22)
514 text_space ; Otherwise, go through _sr4export,
515 ble (sr4, r1) ; which will return back here.
516 stw r31,-24(r30)
517 break 4, 8
518 mtsp r21, sr0
519 ble,n 0(sr0, r22)
520 nop ; To avoid kernel bugs
521 nop ; and keep the dummy 8 byte aligned
c906108c
SS
522
523 The dummy decides if the target is in text space or data space. If
524 it's in data space, there's no problem because the target can
525 return back to the dummy. However, if the target is in text space,
526 the dummy calls the secret, undocumented routine _sr4export, which
527 calls a function in text space and can return to any space. Instead
528 of including fake instructions to represent saved registers, we
529 know that the frame is associated with the call dummy and treat it
530 specially.
531
532 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
533 kernels. If the memory at the location pointed to by the PC is
534 0xffffffff then a ptrace step call will fail (even if the instruction
535 is nullified).
536
537 The code to pop a dummy frame single steps three instructions
538 starting with the last mtsp. This includes the nullified "instruction"
539 following the ble (which is uninitialized junk). If the
540 "instruction" following the last BLE is 0xffffffff, then the ptrace
541 will fail and the dummy frame is not correctly popped.
542
543 By placing a NOP in the delay slot of the BLE instruction we can be
544 sure that we never try to execute a 0xffffffff instruction and
545 avoid the kernel bug. The second NOP is needed to keep the call
546 dummy 8 byte aligned. */
547
548/* Define offsets into the call dummy for the target function address */
549#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
550#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
551
552/* Define offsets into the call dummy for the _sr4export address */
553#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
554#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
555
556#define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
557 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
558 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
559 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
560 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
561 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
562 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
563
564#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
7be570e7 565#define REG_PARM_STACK_SPACE 16
c906108c
SS
566
567#else /* defined PA_LEVEL_0 */
568
569/* This is the call dummy for a level 0 PA. Level 0's don't have space
570 registers (or floating point??), so we skip all that inter-space call stuff,
571 and avoid touching the fp regs.
572
c5aa993b
JM
573 call_dummy
574
575 ldw -36(%sp), %arg0
576 ldw -40(%sp), %arg1
577 ldw -44(%sp), %arg2
578 ldw -48(%sp), %arg3
579 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
580 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
581 ble 0(%sr0, %r31)
582 copy %r31, %r2
583 break 4, 8
584 nop ; restore_pc_queue expects these
585 bv,n 0(%r22) ; instructions to be here...
586 nop
587 */
c906108c
SS
588
589/* Define offsets into the call dummy for the target function address */
590#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
591#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
592
593#define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
594 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
595 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
596
597#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
598
599#endif
600
601#define CALL_DUMMY_START_OFFSET 0
602
603/* If we've reached a trap instruction within the call dummy, then
604 we'll consider that to mean that we've reached the call dummy's
605 end after its successful completion. */
606#define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
607 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
608 (read_memory_integer((pc), 4) == BREAKPOINT32))
609
610/*
611 * Insert the specified number of args and function address
612 * into a call sequence of the above form stored at DUMMYNAME.
613 *
614 * On the hppa we need to call the stack dummy through $$dyncall.
615 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
616 * real_pc, which is the location where gdb should start up the
617 * inferior to do the function call.
618 */
619
620#define FIX_CALL_DUMMY hppa_fix_call_dummy
621
622extern CORE_ADDR
c5aa993b
JM
623 hppa_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR, int,
624 struct value **, struct type *, int));
c906108c
SS
625
626#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
392a587b 627 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
c906108c 628extern CORE_ADDR
c5aa993b
JM
629 hppa_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int,
630 CORE_ADDR));
c906108c
SS
631\f
632/* The low two bits of the PC on the PA contain the privilege level. Some
633 genius implementing a (non-GCC) compiler apparently decided this means
634 that "addresses" in a text section therefore include a privilege level,
635 and thus symbol tables should contain these bits. This seems like a
636 bonehead thing to do--anyway, it seems to work for our purposes to just
637 ignore those bits. */
638#define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
639
640#define GDB_TARGET_IS_HPPA
641
642#define BELIEVE_PCC_PROMOTION 1
643
644/*
645 * Unwind table and descriptor.
646 */
647
c5aa993b
JM
648struct unwind_table_entry
649 {
7be570e7
JM
650 CORE_ADDR region_start;
651 CORE_ADDR region_end;
c5aa993b
JM
652
653 unsigned int Cannot_unwind:1; /* 0 */
654 unsigned int Millicode:1; /* 1 */
655 unsigned int Millicode_save_sr0:1; /* 2 */
656 unsigned int Region_description:2; /* 3..4 */
657 unsigned int reserved1:1; /* 5 */
658 unsigned int Entry_SR:1; /* 6 */
659 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
660 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
661 unsigned int Args_stored:1; /* 16 */
662 unsigned int Variable_Frame:1; /* 17 */
663 unsigned int Separate_Package_Body:1; /* 18 */
664 unsigned int Frame_Extension_Millicode:1; /* 19 */
665 unsigned int Stack_Overflow_Check:1; /* 20 */
666 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
667 unsigned int Ada_Region:1; /* 22 */
668 unsigned int cxx_info:1; /* 23 */
669 unsigned int cxx_try_catch:1; /* 24 */
670 unsigned int sched_entry_seq:1; /* 25 */
671 unsigned int reserved2:1; /* 26 */
672 unsigned int Save_SP:1; /* 27 */
673 unsigned int Save_RP:1; /* 28 */
674 unsigned int Save_MRP_in_frame:1; /* 29 */
675 unsigned int extn_ptr_defined:1; /* 30 */
676 unsigned int Cleanup_defined:1; /* 31 */
677
678 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
679 unsigned int HP_UX_interrupt_marker:1; /* 1 */
680 unsigned int Large_frame:1; /* 2 */
681 unsigned int Pseudo_SP_Set:1; /* 3 */
682 unsigned int reserved4:1; /* 4 */
683 unsigned int Total_frame_size:27; /* 5..31 */
684
685 /* This is *NOT* part of an actual unwind_descriptor in an object
686 file. It is *ONLY* part of the "internalized" descriptors that
687 we create from those in a file.
c906108c 688 */
c5aa993b
JM
689 struct
690 {
691 unsigned int stub_type:4; /* 0..3 */
692 unsigned int padding:28; /* 4..31 */
693 }
694 stub_unwind;
695 };
c906108c
SS
696
697/* HP linkers also generate unwinds for various linker-generated stubs.
698 GDB reads in the stubs from the $UNWIND_END$ subspace, then
699 "converts" them into normal unwind entries using some of the reserved
700 fields to store the stub type. */
701
702struct stub_unwind_entry
c5aa993b
JM
703 {
704 /* The offset within the executable for the associated stub. */
705 unsigned stub_offset;
c906108c 706
c5aa993b
JM
707 /* The type of stub this unwind entry describes. */
708 char type;
c906108c 709
c5aa993b
JM
710 /* Unknown. Not needed by GDB at this time. */
711 char prs_info;
c906108c 712
c5aa993b
JM
713 /* Length (in instructions) of the associated stub. */
714 short stub_length;
715 };
c906108c
SS
716
717/* Sizes (in bytes) of the native unwind entries. */
718#define UNWIND_ENTRY_SIZE 16
719#define STUB_UNWIND_ENTRY_SIZE 8
720
721/* The gaps represent linker stubs used in MPE and space for future
722 expansion. */
723enum unwind_stub_types
c5aa993b
JM
724 {
725 LONG_BRANCH = 1,
726 PARAMETER_RELOCATION = 2,
727 EXPORT = 10,
728 IMPORT = 11,
729 IMPORT_SHLIB = 12,
730 };
c906108c
SS
731
732/* We use the objfile->obj_private pointer for two things:
c5aa993b 733
c906108c
SS
734 * 1. An unwind table;
735 *
736 * 2. A pointer to any associated shared library object.
737 *
738 * #defines are used to help refer to these objects.
739 */
c5aa993b 740
c906108c 741/* Info about the unwind table associated with an object file.
c5aa993b 742
c906108c
SS
743 * This is hung off of the "objfile->obj_private" pointer, and
744 * is allocated in the objfile's psymbol obstack. This allows
745 * us to have unique unwind info for each executable and shared
746 * library that we are debugging.
747 */
c5aa993b
JM
748struct obj_unwind_info
749 {
750 struct unwind_table_entry *table; /* Pointer to unwind info */
751 struct unwind_table_entry *cache; /* Pointer to last entry we found */
752 int last; /* Index of last entry */
753 };
754
755typedef struct obj_private_struct
756 {
757 struct obj_unwind_info *unwind_info; /* a pointer */
758 struct so_list *so_info; /* a pointer */
53a5351d 759 CORE_ADDR dp;
c5aa993b
JM
760 }
761obj_private_data_t;
c906108c
SS
762
763#if 0
c5aa993b
JM
764extern void target_write_pc
765PARAMS ((CORE_ADDR, int))
766 extern CORE_ADDR target_read_pc PARAMS ((int));
767 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
c906108c
SS
768#endif
769
770#define TARGET_READ_PC(pid) target_read_pc (pid)
c5aa993b 771 extern CORE_ADDR target_read_pc PARAMS ((int));
c906108c
SS
772
773#define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
c5aa993b 774 extern void target_write_pc PARAMS ((CORE_ADDR, int));
c906108c
SS
775
776#define TARGET_READ_FP() target_read_fp (inferior_pid)
c5aa993b 777 extern CORE_ADDR target_read_fp PARAMS ((int));
c906108c
SS
778
779/* For a number of horrible reasons we may have to adjust the location
780 of variables on the stack. Ugh. */
781#define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
782
c5aa993b 783 extern int hpread_adjust_stack_address PARAMS ((CORE_ADDR));
c906108c
SS
784
785/* If the current gcc for for this target does not produce correct debugging
786 information for float parameters, both prototyped and unprototyped, then
787 define this macro. This forces gdb to always assume that floats are
788 passed as doubles and then converted in the callee.
789
790 For the pa, it appears that the debug info marks the parameters as
791 floats regardless of whether the function is prototyped, but the actual
792 values are passed as doubles for the non-prototyped case and floats for
793 the prototyped case. Thus we choose to make the non-prototyped case work
794 for C and break the prototyped case, since the non-prototyped case is
795 probably much more common. (FIXME). */
796
797#define COERCE_FLOAT_TO_DOUBLE (current_language -> la_language == language_c)
c2c6d25f
JM
798
799/* Here's how to step off a permanent breakpoint. */
800#define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
801extern void hppa_skip_permanent_breakpoint (void);