]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/cris-tdep.c
gdb: pass frames as `const frame_info_ptr &`
[thirdparty/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
1d506c26 3 Copyright (C) 2001-2024 Free Software Foundation, Inc.
6b4d5c91 4
29134980
OF
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
a9762ec7 8 This file is part of GDB.
29134980 9
a9762ec7
JB
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
29134980 14
a9762ec7
JB
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
29134980 19
a9762ec7
JB
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29134980
OF
22
23#include "defs.h"
d55e5aa6 24#include "frame.h"
4de283e4
TT
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "trad-frame.h"
82ca8957 28#include "dwarf2/frame.h"
4de283e4 29#include "symtab.h"
d55e5aa6 30#include "inferior.h"
4de283e4
TT
31#include "gdbtypes.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "target.h"
35#include "value.h"
29134980 36#include "opcode/cris.h"
749c8b38 37#include "osabi.h"
4de283e4 38#include "arch-utils.h"
29134980 39#include "regcache.h"
69ed9b74 40#include "regset.h"
4de283e4
TT
41
42#include "objfiles.h"
43
ef0f16cc 44#include "solib.h"
76a9d10f 45#include "solib-svr4.h"
4de283e4
TT
46#include "dis-asm.h"
47
48#include "cris-tdep.h"
749c8b38 49
29134980
OF
50enum cris_num_regs
51{
52 /* There are no floating point registers. Used in gdbserver low-linux.c. */
53 NUM_FREGS = 0,
54
55 /* There are 16 general registers. */
56 NUM_GENREGS = 16,
57
58 /* There are 16 special registers. */
c600d464
OF
59 NUM_SPECREGS = 16,
60
61 /* CRISv32 has a pseudo PC register, not noted here. */
62
63 /* CRISv32 has 16 support registers. */
64 NUM_SUPPREGS = 16
29134980
OF
65};
66
67/* Register numbers of various important registers.
2e4b5889 68 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
69 STR_REGNUM Contains the address of structure return values.
70 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
71 ARG1_REGNUM Contains the first parameter to a function.
72 ARG2_REGNUM Contains the second parameter to a function.
73 ARG3_REGNUM Contains the third parameter to a function.
0963b4bd 74 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
3e8c568d
UW
75 gdbarch_sp_regnum Contains address of top of stack.
76 gdbarch_pc_regnum Contains address of next instruction.
29134980
OF
77 SRP_REGNUM Subroutine return pointer register.
78 BRP_REGNUM Breakpoint return pointer register. */
79
29134980
OF
80enum cris_regnums
81{
82 /* Enums with respect to the general registers, valid for all
c600d464 83 CRIS versions. The frame pointer is always in R8. */
2e4b5889 84 CRIS_FP_REGNUM = 8,
c600d464 85 /* ABI related registers. */
29134980
OF
86 STR_REGNUM = 9,
87 RET_REGNUM = 10,
88 ARG1_REGNUM = 10,
89 ARG2_REGNUM = 11,
90 ARG3_REGNUM = 12,
91 ARG4_REGNUM = 13,
92
c600d464 93 /* Registers which happen to be common. */
29134980 94 VR_REGNUM = 17,
c600d464
OF
95 MOF_REGNUM = 23,
96 SRP_REGNUM = 27,
97
0963b4bd 98 /* CRISv10 et al. specific registers. */
c600d464 99 P0_REGNUM = 16,
29134980
OF
100 P4_REGNUM = 20,
101 CCR_REGNUM = 21,
29134980
OF
102 P8_REGNUM = 24,
103 IBR_REGNUM = 25,
104 IRP_REGNUM = 26,
29134980 105 BAR_REGNUM = 28,
2a9ecef2 106 DCCR_REGNUM = 29,
29134980 107 BRP_REGNUM = 30,
c600d464
OF
108 USP_REGNUM = 31,
109
110 /* CRISv32 specific registers. */
111 ACR_REGNUM = 15,
112 BZ_REGNUM = 16,
113 PID_REGNUM = 18,
114 SRS_REGNUM = 19,
115 WZ_REGNUM = 20,
116 EXS_REGNUM = 21,
117 EDA_REGNUM = 22,
118 DZ_REGNUM = 24,
119 EBP_REGNUM = 25,
120 ERP_REGNUM = 26,
121 NRP_REGNUM = 28,
122 CCS_REGNUM = 29,
123 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 SPC_REGNUM = 31,
125 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
126
127 S0_REGNUM = 33,
128 S1_REGNUM = 34,
129 S2_REGNUM = 35,
130 S3_REGNUM = 36,
131 S4_REGNUM = 37,
132 S5_REGNUM = 38,
133 S6_REGNUM = 39,
134 S7_REGNUM = 40,
135 S8_REGNUM = 41,
136 S9_REGNUM = 42,
137 S10_REGNUM = 43,
138 S11_REGNUM = 44,
139 S12_REGNUM = 45,
140 S13_REGNUM = 46,
141 S14_REGNUM = 47,
142 S15_REGNUM = 48,
29134980
OF
143};
144
145extern const struct cris_spec_reg cris_spec_regs[];
146
147/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31 148 register names and sizes. */
e4286e57 149static unsigned int usr_cmd_cris_version;
29134980
OF
150
151/* Indicates whether to trust the above variable. */
491144b5 152static bool usr_cmd_cris_version_valid = false;
29134980 153
41922353
OF
154static const char cris_mode_normal[] = "normal";
155static const char cris_mode_guru[] = "guru";
40478521 156static const char *const cris_modes[] = {
0e6bdb31
OF
157 cris_mode_normal,
158 cris_mode_guru,
159 0
160};
161
162/* CRIS mode, set via the user command 'set cris-mode'. Affects
163 type of break instruction among other things. */
164static const char *usr_cmd_cris_mode = cris_mode_normal;
165
a5f6c8f5 166/* Whether to make use of Dwarf-2 CFI (default on). */
491144b5 167static bool usr_cmd_cris_dwarf2_cfi = true;
29134980 168
a5f6c8f5
OF
169/* Sigtramp identification code copied from i386-linux-tdep.c. */
170
171#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
172#define SIGTRAMP_OFFSET0 0
173#define SIGTRAMP_INSN1 0xe93d /* break 13 */
174#define SIGTRAMP_OFFSET1 4
175
176static const unsigned short sigtramp_code[] =
177{
178 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
179 SIGTRAMP_INSN1 /* break 13 */
180};
181
182#define SIGTRAMP_LEN (sizeof sigtramp_code)
183
184/* Note: same length as normal sigtramp code. */
185
186static const unsigned short rt_sigtramp_code[] =
29134980 187{
a5f6c8f5
OF
188 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
189 SIGTRAMP_INSN1 /* break 13 */
190};
191
192/* If PC is in a sigtramp routine, return the address of the start of
193 the routine. Otherwise, return 0. */
194
195static CORE_ADDR
8480a37e 196cris_sigtramp_start (const frame_info_ptr &this_frame)
a5f6c8f5 197{
94afd7a6 198 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 199 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 200
bdec2917 201 if (!safe_frame_unwind_memory (this_frame, pc, buf))
a5f6c8f5
OF
202 return 0;
203
e2a2a3e8 204 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 205 {
e2a2a3e8 206 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
207 return 0;
208
209 pc -= SIGTRAMP_OFFSET1;
bdec2917 210 if (!safe_frame_unwind_memory (this_frame, pc, buf))
a5f6c8f5
OF
211 return 0;
212 }
213
214 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
215 return 0;
216
217 return pc;
218}
219
220/* If PC is in a RT sigtramp routine, return the address of the start of
221 the routine. Otherwise, return 0. */
222
223static CORE_ADDR
8480a37e 224cris_rt_sigtramp_start (const frame_info_ptr &this_frame)
a5f6c8f5 225{
94afd7a6 226 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 227 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 228
bdec2917 229 if (!safe_frame_unwind_memory (this_frame, pc, buf))
a5f6c8f5
OF
230 return 0;
231
e2a2a3e8 232 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 233 {
e2a2a3e8 234 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
235 return 0;
236
237 pc -= SIGTRAMP_OFFSET1;
bdec2917 238 if (!safe_frame_unwind_memory (this_frame, pc, buf))
a5f6c8f5
OF
239 return 0;
240 }
241
242 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
243 return 0;
244
245 return pc;
246}
247
94afd7a6
UW
248/* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
249 return the address of the associated sigcontext structure. */
a5f6c8f5
OF
250
251static CORE_ADDR
8480a37e 252cris_sigcontext_addr (const frame_info_ptr &this_frame)
a5f6c8f5 253{
e17a4113
UW
254 struct gdbarch *gdbarch = get_frame_arch (this_frame);
255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5
OF
256 CORE_ADDR pc;
257 CORE_ADDR sp;
e362b510 258 gdb_byte buf[4];
a5f6c8f5 259
e17a4113
UW
260 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
261 sp = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5
OF
262
263 /* Look for normal sigtramp frame first. */
94afd7a6 264 pc = cris_sigtramp_start (this_frame);
a5f6c8f5
OF
265 if (pc)
266 {
267 /* struct signal_frame (arch/cris/kernel/signal.c) contains
268 struct sigcontext as its first member, meaning the SP points to
269 it already. */
270 return sp;
271 }
272
94afd7a6 273 pc = cris_rt_sigtramp_start (this_frame);
a5f6c8f5
OF
274 if (pc)
275 {
276 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
277 a struct ucontext, which in turn contains a struct sigcontext.
278 Magic digging:
279 4 + 4 + 128 to struct ucontext, then
280 4 + 4 + 12 to struct sigcontext. */
281 return (sp + 156);
282 }
283
8a3fe4f8 284 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 285 return 0;
29134980
OF
286}
287
2e4b5889 288struct cris_unwind_cache
29134980 289{
2e4b5889
OF
290 /* The previous frame's inner most stack address. Used as this
291 frame ID's stack_addr. */
292 CORE_ADDR prev_sp;
293 /* The frame's base, optionally used by the high-level debug info. */
294 CORE_ADDR base;
295 int size;
296 /* How far the SP and r8 (FP) have been offset from the start of
297 the stack frame (as defined by the previous frame's stack
298 pointer). */
299 LONGEST sp_offset;
300 LONGEST r8_offset;
301 int uses_frame;
302
303 /* From old frame_extra_info struct. */
29134980
OF
304 CORE_ADDR return_pc;
305 int leaf_function;
2e4b5889
OF
306
307 /* Table indicating the location of each and every register. */
098caef4 308 trad_frame_saved_reg *saved_regs;
29134980
OF
309};
310
a5f6c8f5 311static struct cris_unwind_cache *
8480a37e 312cris_sigtramp_frame_unwind_cache (const frame_info_ptr &this_frame,
a5f6c8f5
OF
313 void **this_cache)
314{
94afd7a6 315 struct gdbarch *gdbarch = get_frame_arch (this_frame);
08106042 316 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
e17a4113 317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5 318 struct cris_unwind_cache *info;
a5f6c8f5 319 CORE_ADDR addr;
e362b510 320 gdb_byte buf[4];
a5f6c8f5
OF
321 int i;
322
323 if ((*this_cache))
9a3c8263 324 return (struct cris_unwind_cache *) (*this_cache);
a5f6c8f5
OF
325
326 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
327 (*this_cache) = info;
94afd7a6 328 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a5f6c8f5
OF
329
330 /* Zero all fields. */
331 info->prev_sp = 0;
332 info->base = 0;
333 info->size = 0;
334 info->sp_offset = 0;
335 info->r8_offset = 0;
336 info->uses_frame = 0;
337 info->return_pc = 0;
338 info->leaf_function = 0;
339
94afd7a6 340 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
e17a4113 341 info->base = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5 342
94afd7a6 343 addr = cris_sigcontext_addr (this_frame);
a5f6c8f5
OF
344
345 /* Layout of the sigcontext struct:
346 struct sigcontext {
347 struct pt_regs regs;
348 unsigned long oldmask;
349 unsigned long usp;
350 }; */
351
c600d464
OF
352 if (tdep->cris_version == 10)
353 {
354 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
355 struct pt_regs. */
356 for (i = 0; i <= 13; i++)
098caef4 357 info->saved_regs[i].set_addr (addr + ((15 - i) * 4));
c600d464 358
098caef4
LM
359 info->saved_regs[MOF_REGNUM].set_addr (addr + (16 * 4));
360 info->saved_regs[DCCR_REGNUM].set_addr (addr + (17 * 4));
361 info->saved_regs[SRP_REGNUM].set_addr (addr + (18 * 4));
c600d464
OF
362 /* Note: IRP is off by 2 at this point. There's no point in correcting
363 it though since that will mean that the backtrace will show a PC
364 different from what is shown when stopped. */
098caef4 365 info->saved_regs[IRP_REGNUM].set_addr (addr + (19 * 4));
7fbe2eba 366 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 367 = info->saved_regs[IRP_REGNUM];
098caef4 368 info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_addr (addr + (24 * 4));
c600d464
OF
369 }
370 else
371 {
372 /* CRISv32. */
373 /* R0 to R13 are stored in order at offset (1 * 4) in
374 struct pt_regs. */
375 for (i = 0; i <= 13; i++)
098caef4
LM
376 info->saved_regs[i].set_addr (addr + ((i + 1) * 4));
377
378 info->saved_regs[ACR_REGNUM].set_addr (addr + (15 * 4));
379 info->saved_regs[SRS_REGNUM].set_addr (addr + (16 * 4));
380 info->saved_regs[MOF_REGNUM].set_addr (addr + (17 * 4));
381 info->saved_regs[SPC_REGNUM].set_addr (addr + (18 * 4));
382 info->saved_regs[CCS_REGNUM].set_addr (addr + (19 * 4));
383 info->saved_regs[SRP_REGNUM].set_addr (addr + (20 * 4));
384 info->saved_regs[ERP_REGNUM].set_addr (addr + (21 * 4));
385 info->saved_regs[EXS_REGNUM].set_addr (addr + (22 * 4));
386 info->saved_regs[EDA_REGNUM].set_addr (addr + (23 * 4));
c600d464
OF
387
388 /* FIXME: If ERP is in a delay slot at this point then the PC will
389 be wrong at this point. This problem manifests itself in the
390 sigaltstack.exp test case, which occasionally generates FAILs when
0963b4bd 391 the signal is received while in a delay slot.
c600d464
OF
392
393 This could be solved by a couple of read_memory_unsigned_integer and a
394 trad_frame_set_value. */
7fbe2eba 395 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 396 = info->saved_regs[ERP_REGNUM];
c600d464 397
098caef4 398 info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_addr (addr + (25 * 4));
c600d464 399 }
a5f6c8f5
OF
400
401 return info;
402}
403
404static void
8480a37e 405cris_sigtramp_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
dda83cd7 406 struct frame_id *this_id)
a5f6c8f5
OF
407{
408 struct cris_unwind_cache *cache =
94afd7a6
UW
409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
a5f6c8f5
OF
411}
412
413/* Forward declaration. */
414
8480a37e 415static struct value *cris_frame_prev_register (const frame_info_ptr &this_frame,
94afd7a6
UW
416 void **this_cache, int regnum);
417static struct value *
8480a37e 418cris_sigtramp_frame_prev_register (const frame_info_ptr &this_frame,
dda83cd7 419 void **this_cache, int regnum)
a5f6c8f5
OF
420{
421 /* Make sure we've initialized the cache. */
94afd7a6
UW
422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423 return cris_frame_prev_register (this_frame, this_cache, regnum);
424}
425
426static int
427cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
8480a37e 428 const frame_info_ptr &this_frame,
94afd7a6
UW
429 void **this_cache)
430{
431 if (cris_sigtramp_start (this_frame)
432 || cris_rt_sigtramp_start (this_frame))
433 return 1;
434
435 return 0;
a5f6c8f5
OF
436}
437
438static const struct frame_unwind cris_sigtramp_frame_unwind =
439{
a154d838 440 "cris sigtramp",
a5f6c8f5 441 SIGTRAMP_FRAME,
8fbca658 442 default_frame_unwind_stop_reason,
a5f6c8f5 443 cris_sigtramp_frame_this_id,
94afd7a6
UW
444 cris_sigtramp_frame_prev_register,
445 NULL,
446 cris_sigtramp_frame_sniffer
a5f6c8f5
OF
447};
448
63807e1d 449static int
c600d464 450crisv32_single_step_through_delay (struct gdbarch *gdbarch,
8480a37e 451 const frame_info_ptr &this_frame)
c600d464 452{
08106042 453 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
c600d464
OF
454 ULONGEST erp;
455 int ret = 0;
c600d464 456
35488783 457 if (tdep->cris_mode == cris_mode_guru)
395f2fc2 458 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
0e6bdb31 459 else
395f2fc2 460 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
c600d464
OF
461
462 if (erp & 0x1)
463 {
464 /* In delay slot - check if there's a breakpoint at the preceding
465 instruction. */
6c95b8df 466 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
c600d464
OF
467 ret = 1;
468 }
469 return ret;
470}
471
29134980 472/* The instruction environment needed to find single-step breakpoints. */
c600d464 473
29134980
OF
474typedef
475struct instruction_environment
476{
477 unsigned long reg[NUM_GENREGS];
478 unsigned long preg[NUM_SPECREGS];
479 unsigned long branch_break_address;
480 unsigned long delay_slot_pc;
481 unsigned long prefix_value;
482 int branch_found;
483 int prefix_found;
484 int invalid;
485 int slot_needed;
486 int delay_slot_pc_active;
487 int xflag_found;
488 int disable_interrupt;
78c5b882 489 enum bfd_endian byte_order;
29134980
OF
490} inst_env_type;
491
29134980
OF
492/* Machine-dependencies in CRIS for opcodes. */
493
494/* Instruction sizes. */
495enum cris_instruction_sizes
496{
497 INST_BYTE_SIZE = 0,
498 INST_WORD_SIZE = 1,
499 INST_DWORD_SIZE = 2
500};
501
502/* Addressing modes. */
503enum cris_addressing_modes
504{
505 REGISTER_MODE = 1,
506 INDIRECT_MODE = 2,
507 AUTOINC_MODE = 3
508};
509
510/* Prefix addressing modes. */
511enum cris_prefix_addressing_modes
512{
513 PREFIX_INDEX_MODE = 2,
514 PREFIX_ASSIGN_MODE = 3,
515
516 /* Handle immediate byte offset addressing mode prefix format. */
517 PREFIX_OFFSET_MODE = 2
518};
519
520/* Masks for opcodes. */
521enum cris_opcode_masks
522{
523 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
524 SIGNED_EXTEND_BIT_MASK = 0x2,
525 SIGNED_BYTE_MASK = 0x80,
526 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
527 SIGNED_WORD_MASK = 0x8000,
528 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
529 SIGNED_DWORD_MASK = 0x80000000,
530 SIGNED_QUICK_VALUE_MASK = 0x20,
531 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
532};
533
534/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
535 Bit 15 - 12 Operand2
536 11 - 10 Mode
dda83cd7
SM
537 9 - 6 Opcode
538 5 - 4 Size
539 3 - 0 Operand1 */
29134980
OF
540
541static int
542cris_get_operand2 (unsigned short insn)
543{
544 return ((insn & 0xF000) >> 12);
545}
546
547static int
548cris_get_mode (unsigned short insn)
549{
550 return ((insn & 0x0C00) >> 10);
551}
552
553static int
554cris_get_opcode (unsigned short insn)
555{
556 return ((insn & 0x03C0) >> 6);
557}
558
559static int
560cris_get_size (unsigned short insn)
561{
562 return ((insn & 0x0030) >> 4);
563}
564
565static int
566cris_get_operand1 (unsigned short insn)
567{
568 return (insn & 0x000F);
569}
570
571/* Additional functions in order to handle opcodes. */
572
29134980
OF
573static int
574cris_get_quick_value (unsigned short insn)
575{
576 return (insn & 0x003F);
577}
578
579static int
580cris_get_bdap_quick_offset (unsigned short insn)
581{
582 return (insn & 0x00FF);
583}
584
585static int
586cris_get_branch_short_offset (unsigned short insn)
587{
588 return (insn & 0x00FF);
589}
590
591static int
592cris_get_asr_shift_steps (unsigned long value)
593{
594 return (value & 0x3F);
595}
596
29134980
OF
597static int
598cris_get_clear_size (unsigned short insn)
599{
600 return ((insn) & 0xC000);
601}
602
603static int
604cris_is_signed_extend_bit_on (unsigned short insn)
605{
606 return (((insn) & 0x20) == 0x20);
607}
608
609static int
610cris_is_xflag_bit_on (unsigned short insn)
611{
612 return (((insn) & 0x1000) == 0x1000);
613}
614
615static void
616cris_set_size_to_dword (unsigned short *insn)
617{
618 *insn &= 0xFFCF;
619 *insn |= 0x20;
620}
621
8535cb38 622static signed char
29134980
OF
623cris_get_signed_offset (unsigned short insn)
624{
8535cb38 625 return ((signed char) (insn & 0x00FF));
29134980
OF
626}
627
628/* Calls an op function given the op-type, working on the insn and the
629 inst_env. */
be8626e0
MD
630static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
631 inst_env_type *);
29134980 632
29134980 633static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
dda83cd7 634 struct gdbarch_list *);
29134980 635
29134980
OF
636static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
637
eb4c3f4a 638static void set_cris_version (const char *ignore_args, int from_tty,
a5f6c8f5 639 struct cmd_list_element *c);
29134980 640
eb4c3f4a 641static void set_cris_mode (const char *ignore_args, int from_tty,
0e6bdb31
OF
642 struct cmd_list_element *c);
643
eb4c3f4a 644static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
a5f6c8f5 645 struct cmd_list_element *c);
29134980 646
2e4b5889 647static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
8480a37e 648 const frame_info_ptr &this_frame,
2e4b5889
OF
649 struct cris_unwind_cache *info);
650
5114e29d 651static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
8480a37e 652 const frame_info_ptr &this_frame,
5114e29d
OF
653 struct cris_unwind_cache *info);
654
2e4b5889 655/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 656 order. The below implements a FILO (stack) to do this.
a5f6c8f5 657 Copied from d10v-tdep.c. */
2e4b5889 658
0fecb1a7 659struct cris_stack_item
2e4b5889
OF
660{
661 int len;
0fecb1a7 662 struct cris_stack_item *prev;
7c543f7b 663 gdb_byte *data;
2e4b5889
OF
664};
665
0fecb1a7
TT
666static struct cris_stack_item *
667push_stack_item (struct cris_stack_item *prev, const gdb_byte *contents,
668 int len)
2e4b5889 669{
0fecb1a7 670 struct cris_stack_item *si = XNEW (struct cris_stack_item);
7c543f7b 671 si->data = (gdb_byte *) xmalloc (len);
2e4b5889
OF
672 si->len = len;
673 si->prev = prev;
674 memcpy (si->data, contents, len);
675 return si;
676}
677
0fecb1a7
TT
678static struct cris_stack_item *
679pop_stack_item (struct cris_stack_item *si)
2e4b5889 680{
0fecb1a7 681 struct cris_stack_item *dead = si;
2e4b5889
OF
682 si = si->prev;
683 xfree (dead->data);
684 xfree (dead);
685 return si;
686}
687
688/* Put here the code to store, into fi->saved_regs, the addresses of
689 the saved registers of frame described by FRAME_INFO. This
690 includes special registers such as pc and fp saved in special ways
691 in the stack frame. sp is even more special: the address we return
a5f6c8f5 692 for it IS the sp for the next frame. */
2e4b5889 693
63807e1d 694static struct cris_unwind_cache *
8480a37e 695cris_frame_unwind_cache (const frame_info_ptr &this_frame,
2e4b5889
OF
696 void **this_prologue_cache)
697{
35488783 698 struct gdbarch *gdbarch = get_frame_arch (this_frame);
08106042 699 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
2e4b5889 700 struct cris_unwind_cache *info;
2e4b5889
OF
701
702 if ((*this_prologue_cache))
9a3c8263 703 return (struct cris_unwind_cache *) (*this_prologue_cache);
2e4b5889
OF
704
705 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
706 (*this_prologue_cache) = info;
94afd7a6 707 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2e4b5889
OF
708
709 /* Zero all fields. */
710 info->prev_sp = 0;
711 info->base = 0;
712 info->size = 0;
713 info->sp_offset = 0;
714 info->r8_offset = 0;
715 info->uses_frame = 0;
716 info->return_pc = 0;
717 info->leaf_function = 0;
718
719 /* Prologue analysis does the rest... */
35488783 720 if (tdep->cris_version == 32)
94afd7a6 721 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
5114e29d 722 else
94afd7a6 723 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
2e4b5889
OF
724
725 return info;
726}
727
728/* Given a GDB frame, determine the address of the calling function's
729 frame. This will be used to create a new GDB frame struct. */
730
731static void
8480a37e 732cris_frame_this_id (const frame_info_ptr &this_frame,
2e4b5889
OF
733 void **this_prologue_cache,
734 struct frame_id *this_id)
735{
736 struct cris_unwind_cache *info
94afd7a6 737 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
2e4b5889
OF
738 CORE_ADDR base;
739 CORE_ADDR func;
740 struct frame_id id;
741
742 /* The FUNC is easy. */
94afd7a6 743 func = get_frame_func (this_frame);
2e4b5889
OF
744
745 /* Hopefully the prologue analysis either correctly determined the
746 frame's base (which is the SP from the previous frame), or set
747 that base to "NULL". */
748 base = info->prev_sp;
749 if (base == 0)
750 return;
751
752 id = frame_id_build (base, func);
753
754 (*this_id) = id;
755}
756
94afd7a6 757static struct value *
8480a37e 758cris_frame_prev_register (const frame_info_ptr &this_frame,
94afd7a6 759 void **this_prologue_cache, int regnum)
2e4b5889
OF
760{
761 struct cris_unwind_cache *info
94afd7a6
UW
762 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
763 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2e4b5889
OF
764}
765
2e4b5889
OF
766static CORE_ADDR
767cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
768{
769 /* Align to the size of an instruction (so that they can safely be
770 pushed onto the stack). */
771 return sp & ~3;
772}
773
774static CORE_ADDR
775cris_push_dummy_code (struct gdbarch *gdbarch,
dda83cd7
SM
776 CORE_ADDR sp, CORE_ADDR funaddr,
777 struct value **args, int nargs,
778 struct type *value_type,
779 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
e4fd649a 780 struct regcache *regcache)
2e4b5889
OF
781{
782 /* Allocate space sufficient for a breakpoint. */
783 sp = (sp - 4) & ~3;
784 /* Store the address of that breakpoint */
785 *bp_addr = sp;
786 /* CRIS always starts the call at the callee's entry point. */
787 *real_pc = funaddr;
788 return sp;
789}
790
791static CORE_ADDR
7d9b040b 792cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
793 struct regcache *regcache, CORE_ADDR bp_addr,
794 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
795 function_call_return_method return_method,
796 CORE_ADDR struct_addr)
2e4b5889 797{
e17a4113 798 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
799 int argreg;
800 int argnum;
801
0fecb1a7 802 struct cris_stack_item *si = NULL;
2e4b5889 803
a5f6c8f5 804 /* Push the return address. */
2e4b5889
OF
805 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
806
807 /* Are we returning a value using a structure return or a normal value
808 return? struct_addr is the address of the reserved space for the return
809 structure to be written on the stack. */
cf84fa6b
AH
810 if (return_method == return_method_struct)
811 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
2e4b5889
OF
812
813 /* Now load as many as possible of the first arguments into registers,
814 and push the rest onto the stack. */
815 argreg = ARG1_REGNUM;
2e4b5889
OF
816
817 for (argnum = 0; argnum < nargs; argnum++)
818 {
819 int len;
948f8e3d 820 const gdb_byte *val;
2e4b5889
OF
821 int reg_demand;
822 int i;
823
d0c97917 824 len = args[argnum]->type ()->length ();
efaf1ae0 825 val = args[argnum]->contents ().data ();
2e4b5889
OF
826
827 /* How may registers worth of storage do we need for this argument? */
828 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
dda83cd7 829
2e4b5889 830 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
dda83cd7
SM
831 {
832 /* Data passed by value. Fits in available register(s). */
833 for (i = 0; i < reg_demand; i++)
834 {
835 regcache->cooked_write (argreg, val);
836 argreg++;
837 val += 4;
838 }
839 }
2e4b5889 840 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
dda83cd7
SM
841 {
842 /* Data passed by value. Does not fit in available register(s).
843 Use the register(s) first, then the stack. */
844 for (i = 0; i < reg_demand; i++)
845 {
846 if (argreg <= ARG4_REGNUM)
847 {
848 regcache->cooked_write (argreg, val);
849 argreg++;
850 val += 4;
851 }
852 else
853 {
2e4b5889
OF
854 /* Push item for later so that pushed arguments
855 come in the right order. */
856 si = push_stack_item (si, val, 4);
dda83cd7
SM
857 val += 4;
858 }
859 }
860 }
2e4b5889 861 else if (len > (2 * 4))
dda83cd7 862 {
f6e56ab3
UW
863 /* Data passed by reference. Push copy of data onto stack
864 and pass pointer to this copy as argument. */
865 sp = (sp - len) & ~3;
866 write_memory (sp, val, len);
867
868 if (argreg <= ARG4_REGNUM)
869 {
870 regcache_cooked_write_unsigned (regcache, argreg, sp);
871 argreg++;
872 }
873 else
874 {
875 gdb_byte buf[4];
e17a4113 876 store_unsigned_integer (buf, 4, byte_order, sp);
f6e56ab3
UW
877 si = push_stack_item (si, buf, 4);
878 }
dda83cd7 879 }
2e4b5889 880 else
dda83cd7
SM
881 {
882 /* Data passed by value. No available registers. Put it on
883 the stack. */
2e4b5889 884 si = push_stack_item (si, val, len);
dda83cd7 885 }
2e4b5889
OF
886 }
887
888 while (si)
889 {
890 /* fp_arg must be word-aligned (i.e., don't += len) to match
891 the function prologue. */
892 sp = (sp - si->len) & ~3;
893 write_memory (sp, si->data, si->len);
894 si = pop_stack_item (si);
895 }
896
897 /* Finally, update the SP register. */
7fbe2eba 898 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
2e4b5889
OF
899
900 return sp;
901}
902
e2a2a3e8
OF
903static const struct frame_unwind cris_frame_unwind =
904{
a154d838 905 "cris prologue",
2e4b5889 906 NORMAL_FRAME,
8fbca658 907 default_frame_unwind_stop_reason,
2e4b5889 908 cris_frame_this_id,
94afd7a6
UW
909 cris_frame_prev_register,
910 NULL,
911 default_frame_sniffer
2e4b5889
OF
912};
913
2e4b5889 914static CORE_ADDR
8480a37e 915cris_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
2e4b5889
OF
916{
917 struct cris_unwind_cache *info
94afd7a6 918 = cris_frame_unwind_cache (this_frame, this_cache);
2e4b5889
OF
919 return info->base;
920}
921
e2a2a3e8
OF
922static const struct frame_base cris_frame_base =
923{
2e4b5889
OF
924 &cris_frame_unwind,
925 cris_frame_base_address,
926 cris_frame_base_address,
927 cris_frame_base_address
928};
929
29134980
OF
930/* Frames information. The definition of the struct frame_info is
931
932 CORE_ADDR frame
933 CORE_ADDR pc
5a203e44 934 enum frame_type type;
29134980
OF
935 CORE_ADDR return_pc
936 int leaf_function
937
938 If the compilation option -fno-omit-frame-pointer is present the
939 variable frame will be set to the content of R8 which is the frame
940 pointer register.
941
942 The variable pc contains the address where execution is performed
943 in the present frame. The innermost frame contains the current content
944 of the register PC. All other frames contain the content of the
945 register PC in the next frame.
946
5a203e44
AC
947 The variable `type' indicates the frame's type: normal, SIGTRAMP
948 (associated with a signal handler), dummy (associated with a dummy
949 frame).
29134980
OF
950
951 The variable return_pc contains the address where execution should be
952 resumed when the present frame has finished, the return address.
953
954 The variable leaf_function is 1 if the return address is in the register
955 SRP, and 0 if it is on the stack.
956
957 Prologue instructions C-code.
958 The prologue may consist of (-fno-omit-frame-pointer)
959 1) 2)
960 push srp
961 push r8 push r8
962 move.d sp,r8 move.d sp,r8
963 subq X,sp subq X,sp
964 movem rY,[sp] movem rY,[sp]
965 move.S rZ,[r8-U] move.S rZ,[r8-U]
966
967 where 1 is a non-terminal function, and 2 is a leaf-function.
968
969 Note that this assumption is extremely brittle, and will break at the
970 slightest change in GCC's prologue.
971
972 If local variables are declared or register contents are saved on stack
973 the subq-instruction will be present with X as the number of bytes
974 needed for storage. The reshuffle with respect to r8 may be performed
975 with any size S (b, w, d) and any of the general registers Z={0..13}.
0963b4bd 976 The offset U should be representable by a signed 8-bit value in all cases.
29134980
OF
977 Thus, the prefix word is assumed to be immediate byte offset mode followed
978 by another word containing the instruction.
979
980 Degenerate cases:
981 3)
982 push r8
983 move.d sp,r8
984 move.d r8,sp
985 pop r8
986
987 Prologue instructions C++-code.
988 Case 1) and 2) in the C-code may be followed by
989
990 move.d r10,rS ; this
991 move.d r11,rT ; P1
992 move.d r12,rU ; P2
993 move.d r13,rV ; P3
994 move.S [r8+U],rZ ; P4
995
0963b4bd 996 if any of the call parameters are stored. The host expects these
29134980
OF
997 instructions to be executed in order to get the call parameters right. */
998
999/* Examine the prologue of a function. The variable ip is the address of
1000 the first instruction of the prologue. The variable limit is the address
1001 of the first instruction after the prologue. The variable fi contains the
1002 information in struct frame_info. The variable frameless_p controls whether
1003 the entire prologue is examined (0) or just enough instructions to
1004 determine that it is a prologue (1). */
1005
a78f21af 1006static CORE_ADDR
8480a37e 1007cris_scan_prologue (CORE_ADDR pc, const frame_info_ptr &this_frame,
2e4b5889 1008 struct cris_unwind_cache *info)
29134980 1009{
94afd7a6 1010 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1012
29134980
OF
1013 /* Present instruction. */
1014 unsigned short insn;
1015
1016 /* Next instruction, lookahead. */
1017 unsigned short insn_next;
1018 int regno;
1019
29134980
OF
1020 /* Number of byte on stack used for local variables and movem. */
1021 int val;
1022
1023 /* Highest register number in a movem. */
1024 int regsave;
1025
1026 /* move.d r<source_register>,rS */
1027 short source_register;
1028
2e4b5889
OF
1029 /* Scan limit. */
1030 int limit;
29134980 1031
2e4b5889
OF
1032 /* This frame is with respect to a leaf until a push srp is found. */
1033 if (info)
1034 {
1035 info->leaf_function = 1;
1036 }
29134980
OF
1037
1038 /* Assume nothing on stack. */
1039 val = 0;
1040 regsave = -1;
1041
94afd7a6 1042 /* If we were called without a this_frame, that means we were called
2e4b5889
OF
1043 from cris_skip_prologue which already tried to find the end of the
1044 prologue through the symbol information. 64 instructions past current
1045 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
94afd7a6 1046 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
29134980 1047
29134980 1048 /* Find the prologue instructions. */
a5f6c8f5 1049 while (pc > 0 && pc < limit)
29134980 1050 {
e17a4113 1051 insn = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1052 pc += 2;
29134980 1053 if (insn == 0xE1FC)
dda83cd7
SM
1054 {
1055 /* push <reg> 32 bit instruction. */
1056 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1057 pc += 2;
1058 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1059 if (info)
1060 {
1061 info->sp_offset += 4;
1062 }
dda83cd7
SM
1063 /* This check, meant to recognize srp, used to be regno ==
1064 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1065 if (insn_next == 0xBE7E)
1066 {
2e4b5889
OF
1067 if (info)
1068 {
1069 info->leaf_function = 0;
1070 }
dda83cd7 1071 }
b4206d25 1072 else if (insn_next == 0x8FEE)
dda83cd7 1073 {
b4206d25
OF
1074 /* push $r8 */
1075 if (info)
1076 {
1077 info->r8_offset = info->sp_offset;
1078 }
dda83cd7
SM
1079 }
1080 }
29134980 1081 else if (insn == 0x866E)
dda83cd7
SM
1082 {
1083 /* move.d sp,r8 */
2e4b5889
OF
1084 if (info)
1085 {
1086 info->uses_frame = 1;
2e4b5889 1087 }
dda83cd7
SM
1088 continue;
1089 }
7fbe2eba 1090 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
dda83cd7
SM
1091 && cris_get_mode (insn) == 0x0000
1092 && cris_get_opcode (insn) == 0x000A)
1093 {
1094 /* subq <val>,sp */
2e4b5889
OF
1095 if (info)
1096 {
1097 info->sp_offset += cris_get_quick_value (insn);
1098 }
dda83cd7 1099 }
29134980 1100 else if (cris_get_mode (insn) == 0x0002
dda83cd7
SM
1101 && cris_get_opcode (insn) == 0x000F
1102 && cris_get_size (insn) == 0x0003
1103 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1104 {
1105 /* movem r<regsave>,[sp] */
1106 regsave = cris_get_operand2 (insn);
1107 }
7fbe2eba 1108 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
dda83cd7
SM
1109 && ((insn & 0x0F00) >> 8) == 0x0001
1110 && (cris_get_signed_offset (insn) < 0))
1111 {
1112 /* Immediate byte offset addressing prefix word with sp as base
1113 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1114 is between 64 and 128.
1115 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1116 if (info)
1117 {
1118 info->sp_offset += -cris_get_signed_offset (insn);
1119 }
e17a4113 1120 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
dda83cd7
SM
1121 pc += 2;
1122 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1123 && cris_get_opcode (insn_next) == 0x000F
1124 && cris_get_size (insn_next) == 0x0003
1125 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
7fbe2eba 1126 (gdbarch))
dda83cd7
SM
1127 {
1128 regsave = cris_get_operand2 (insn_next);
1129 }
1130 else
1131 {
1132 /* The prologue ended before the limit was reached. */
1133 pc -= 4;
1134 break;
1135 }
1136 }
29134980 1137 else if (cris_get_mode (insn) == 0x0001
dda83cd7
SM
1138 && cris_get_opcode (insn) == 0x0009
1139 && cris_get_size (insn) == 0x0002)
1140 {
1141 /* move.d r<10..13>,r<0..15> */
1142 source_register = cris_get_operand1 (insn);
1143
1144 /* FIXME? In the glibc solibs, the prologue might contain something
1145 like (this example taken from relocate_doit):
1146 move.d $pc,$r0
1147 sub.d 0xfffef426,$r0
1148 which isn't covered by the source_register check below. Question
1149 is whether to add a check for this combo, or make better use of
1150 the limit variable instead. */
1151 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1152 {
1153 /* The prologue ended before the limit was reached. */
1154 pc -= 2;
1155 break;
1156 }
1157 }
2e4b5889 1158 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
dda83cd7
SM
1159 /* The size is a fixed-size. */
1160 && ((insn & 0x0F00) >> 8) == 0x0001
1161 /* A negative offset. */
1162 && (cris_get_signed_offset (insn) < 0))
1163 {
1164 /* move.S rZ,[r8-U] (?) */
1165 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1166 pc += 2;
1167 regno = cris_get_operand2 (insn_next);
1168 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1169 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1170 && cris_get_opcode (insn_next) == 0x000F)
1171 {
1172 /* move.S rZ,[r8-U] */
1173 continue;
1174 }
1175 else
1176 {
1177 /* The prologue ended before the limit was reached. */
1178 pc -= 4;
1179 break;
1180 }
1181 }
2e4b5889 1182 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
dda83cd7
SM
1183 /* The size is a fixed-size. */
1184 && ((insn & 0x0F00) >> 8) == 0x0001
1185 /* A positive offset. */
1186 && (cris_get_signed_offset (insn) > 0))
1187 {
1188 /* move.S [r8+U],rZ (?) */
e17a4113 1189 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
dda83cd7
SM
1190 pc += 2;
1191 regno = cris_get_operand2 (insn_next);
1192 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1193 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1194 && cris_get_opcode (insn_next) == 0x0009
1195 && cris_get_operand1 (insn_next) == regno)
1196 {
1197 /* move.S [r8+U],rZ */
1198 continue;
1199 }
1200 else
1201 {
1202 /* The prologue ended before the limit was reached. */
1203 pc -= 4;
1204 break;
1205 }
1206 }
29134980 1207 else
dda83cd7
SM
1208 {
1209 /* The prologue ended before the limit was reached. */
1210 pc -= 2;
1211 break;
1212 }
29134980 1213 }
29134980 1214
94afd7a6 1215 /* We only want to know the end of the prologue when this_frame and info
2e4b5889 1216 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1217 if (this_frame == NULL && info == NULL)
2e4b5889
OF
1218 {
1219 return pc;
1220 }
29134980 1221
2e4b5889
OF
1222 info->size = info->sp_offset;
1223
1224 /* Compute the previous frame's stack pointer (which is also the
1225 frame's ID's stack address), and this frame's base pointer. */
1226 if (info->uses_frame)
29134980 1227 {
2e4b5889
OF
1228 ULONGEST this_base;
1229 /* The SP was moved to the FP. This indicates that a new frame
dda83cd7
SM
1230 was created. Get THIS frame's FP value by unwinding it from
1231 the next frame. */
94afd7a6 1232 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
2e4b5889 1233 info->base = this_base;
098caef4 1234 info->saved_regs[CRIS_FP_REGNUM].set_addr (info->base);
b4206d25 1235
2e4b5889 1236 /* The FP points at the last saved register. Adjust the FP back
dda83cd7 1237 to before the first saved register giving the SP. */
2e4b5889
OF
1238 info->prev_sp = info->base + info->r8_offset;
1239 }
1240 else
1241 {
1242 ULONGEST this_base;
1243 /* Assume that the FP is this frame's SP but with that pushed
dda83cd7 1244 stack space added back. */
94afd7a6
UW
1245 this_base = get_frame_register_unsigned (this_frame,
1246 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1247 info->base = this_base;
1248 info->prev_sp = info->base + info->size;
1249 }
29134980 1250
2e4b5889
OF
1251 /* Calculate the addresses for the saved registers on the stack. */
1252 /* FIXME: The address calculation should really be done on the fly while
1253 we're analyzing the prologue (we only hold one regsave value as it is
1254 now). */
1255 val = info->sp_offset;
1256
1257 for (regno = regsave; regno >= 0; regno--)
1258 {
098caef4 1259 info->saved_regs[regno].set_addr (info->base + info->r8_offset - val);
2e4b5889
OF
1260 val -= 4;
1261 }
1262
1263 /* The previous frame's SP needed to be computed. Save the computed
1264 value. */
a9a87d35 1265 info->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (info->prev_sp);
2e4b5889
OF
1266
1267 if (!info->leaf_function)
1268 {
b4206d25
OF
1269 /* SRP saved on the stack. But where? */
1270 if (info->r8_offset == 0)
1271 {
1272 /* R8 not pushed yet. */
098caef4 1273 info->saved_regs[SRP_REGNUM].set_addr (info->base);
b4206d25
OF
1274 }
1275 else
1276 {
1277 /* R8 pushed, but SP may or may not be moved to R8 yet. */
098caef4 1278 info->saved_regs[SRP_REGNUM].set_addr (info->base + 4);
b4206d25 1279 }
29134980 1280 }
2e4b5889
OF
1281
1282 /* The PC is found in SRP (the actual register or located on the stack). */
7fbe2eba 1283 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1284 = info->saved_regs[SRP_REGNUM];
2e4b5889
OF
1285
1286 return pc;
29134980
OF
1287}
1288
5114e29d 1289static CORE_ADDR
8480a37e 1290crisv32_scan_prologue (CORE_ADDR pc, const frame_info_ptr &this_frame,
5114e29d
OF
1291 struct cris_unwind_cache *info)
1292{
94afd7a6 1293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
5114e29d
OF
1294 ULONGEST this_base;
1295
1296 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1297 meant to be a full-fledged prologue scanner. It is only needed for
1298 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1299
1300 * PLT stubs (library calls)
1301 * call dummys
1302 * signal trampolines
1303
1304 For those cases, it is assumed that there is no actual prologue; that
1305 the stack pointer is not adjusted, and (as a consequence) the return
1306 address is not pushed onto the stack. */
1307
94afd7a6 1308 /* We only want to know the end of the prologue when this_frame and info
5114e29d 1309 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1310 if (this_frame == NULL && info == NULL)
5114e29d
OF
1311 {
1312 return pc;
1313 }
1314
1315 /* The SP is assumed to be unaltered. */
94afd7a6
UW
1316 this_base = get_frame_register_unsigned (this_frame,
1317 gdbarch_sp_regnum (gdbarch));
5114e29d
OF
1318 info->base = this_base;
1319 info->prev_sp = this_base;
1320
1321 /* The PC is assumed to be found in SRP. */
7fbe2eba 1322 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1323 = info->saved_regs[SRP_REGNUM];
5114e29d
OF
1324
1325 return pc;
1326}
1327
29134980
OF
1328/* Advance pc beyond any function entry prologue instructions at pc
1329 to reach some "real" code. */
1330
29134980
OF
1331/* Given a PC value corresponding to the start of a function, return the PC
1332 of the first instruction after the function prologue. */
1333
a78f21af 1334static CORE_ADDR
6093d2eb 1335cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
29134980 1336{
08106042 1337 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
2e4b5889
OF
1338 CORE_ADDR func_addr, func_end;
1339 struct symtab_and_line sal;
29134980
OF
1340 CORE_ADDR pc_after_prologue;
1341
2e4b5889
OF
1342 /* If we have line debugging information, then the end of the prologue
1343 should the first assembly instruction of the first source line. */
1344 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1345 {
1346 sal = find_pc_line (func_addr, 0);
1347 if (sal.end > 0 && sal.end < func_end)
1348 return sal.end;
1349 }
29134980 1350
35488783 1351 if (tdep->cris_version == 32)
5114e29d
OF
1352 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1353 else
1354 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1355
29134980
OF
1356 return pc_after_prologue;
1357}
1358
cd6c3b4f
YQ
1359/* Implement the breakpoint_kind_from_pc gdbarch method. */
1360
d19280ad
YQ
1361static int
1362cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1363{
1364 return 2;
1365}
29134980 1366
cd6c3b4f
YQ
1367/* Implement the sw_breakpoint_from_kind gdbarch method. */
1368
d19280ad
YQ
1369static const gdb_byte *
1370cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
29134980 1371{
08106042 1372 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
0e6bdb31
OF
1373 static unsigned char break8_insn[] = {0x38, 0xe9};
1374 static unsigned char break15_insn[] = {0x3f, 0xe9};
d19280ad
YQ
1375
1376 *size = kind;
29134980 1377
35488783 1378 if (tdep->cris_mode == cris_mode_guru)
0e6bdb31
OF
1379 return break15_insn;
1380 else
1381 return break8_insn;
29134980
OF
1382}
1383
29134980
OF
1384/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1385 0 otherwise. */
1386
a78f21af 1387static int
35488783
UW
1388cris_spec_reg_applicable (struct gdbarch *gdbarch,
1389 struct cris_spec_reg spec_reg)
29134980 1390{
08106042 1391 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
e4286e57 1392 unsigned int version = tdep->cris_version;
29134980
OF
1393
1394 switch (spec_reg.applicable_version)
1395 {
1396 case cris_ver_version_all:
1397 return 1;
1398 case cris_ver_warning:
1399 /* Indeterminate/obsolete. */
1400 return 0;
29134980 1401 case cris_ver_v0_3:
b020ff80 1402 return in_inclusive_range (version, 0U, 3U);
29134980
OF
1403 case cris_ver_v3p:
1404 return (version >= 3);
1405 case cris_ver_v8:
b020ff80 1406 return in_inclusive_range (version, 8U, 9U);
29134980
OF
1407 case cris_ver_v8p:
1408 return (version >= 8);
c600d464 1409 case cris_ver_v0_10:
b020ff80 1410 return in_inclusive_range (version, 0U, 10U);
c600d464 1411 case cris_ver_v3_10:
b020ff80 1412 return in_inclusive_range (version, 3U, 10U);
c600d464 1413 case cris_ver_v8_10:
b020ff80 1414 return in_inclusive_range (version, 8U, 10U);
c600d464
OF
1415 case cris_ver_v10:
1416 return (version == 10);
29134980
OF
1417 case cris_ver_v10p:
1418 return (version >= 10);
c600d464
OF
1419 case cris_ver_v32p:
1420 return (version >= 32);
29134980
OF
1421 default:
1422 /* Invalid cris version. */
1423 return 0;
1424 }
1425}
1426
1d94326f
AC
1427/* Returns the register size in unit byte. Returns 0 for an unimplemented
1428 register, -1 for an invalid register. */
1429
1430static int
be8626e0 1431cris_register_size (struct gdbarch *gdbarch, int regno)
1d94326f
AC
1432{
1433 int i;
1434 int spec_regno;
1435
1436 if (regno >= 0 && regno < NUM_GENREGS)
1437 {
1438 /* General registers (R0 - R15) are 32 bits. */
1439 return 4;
1440 }
c600d464 1441 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1442 {
1443 /* Special register (R16 - R31). cris_spec_regs is zero-based.
dda83cd7 1444 Adjust regno accordingly. */
1d94326f
AC
1445 spec_regno = regno - NUM_GENREGS;
1446
c600d464 1447 for (i = 0; cris_spec_regs[i].name != NULL; i++)
dda83cd7
SM
1448 {
1449 if (cris_spec_regs[i].number == spec_regno
1450 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1451 /* Go with the first applicable register. */
1452 return cris_spec_regs[i].reg_size;
1453 }
1d94326f
AC
1454 /* Special register not applicable to this CRIS version. */
1455 return 0;
1456 }
be8626e0
MD
1457 else if (regno >= gdbarch_pc_regnum (gdbarch)
1458 && regno < gdbarch_num_regs (gdbarch))
1d94326f 1459 {
c600d464
OF
1460 /* This will apply to CRISv32 only where there are additional registers
1461 after the special registers (pseudo PC and support registers). */
1462 return 4;
1d94326f 1463 }
c600d464
OF
1464
1465
1466 return -1;
1d94326f
AC
1467}
1468
29134980
OF
1469/* Nonzero if regno should not be fetched from the target. This is the case
1470 for unimplemented (size 0) and non-existant registers. */
1471
a78f21af 1472static int
64a3914f 1473cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
29134980 1474{
64a3914f 1475 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
dda83cd7 1476 || (cris_register_size (gdbarch, regno) == 0));
29134980
OF
1477}
1478
1479/* Nonzero if regno should not be written to the target, for various
1480 reasons. */
1481
a78f21af 1482static int
64a3914f 1483cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
29134980
OF
1484{
1485 /* There are three kinds of registers we refuse to write to.
1486 1. Those that not implemented.
1487 2. Those that are read-only (depends on the processor mode).
0963b4bd 1488 3. Those registers to which a write has no effect. */
29134980 1489
f57d151a 1490 if (regno < 0
64a3914f 1491 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1492 || cris_register_size (gdbarch, regno) == 0)
29134980
OF
1493 /* Not implemented. */
1494 return 1;
1495
1496 else if (regno == VR_REGNUM)
1497 /* Read-only. */
1498 return 1;
1499
1500 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1501 /* Writing has no effect. */
1502 return 1;
1503
a5f6c8f5
OF
1504 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1505 agent decide whether they are writable. */
29134980
OF
1506
1507 return 0;
1508}
1509
c600d464
OF
1510/* Nonzero if regno should not be fetched from the target. This is the case
1511 for unimplemented (size 0) and non-existant registers. */
1512
1513static int
64a3914f 1514crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
c600d464 1515{
64a3914f 1516 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
dda83cd7 1517 || (cris_register_size (gdbarch, regno) == 0));
c600d464
OF
1518}
1519
1520/* Nonzero if regno should not be written to the target, for various
1521 reasons. */
1522
1523static int
64a3914f 1524crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
c600d464
OF
1525{
1526 /* There are three kinds of registers we refuse to write to.
1527 1. Those that not implemented.
1528 2. Those that are read-only (depends on the processor mode).
0963b4bd 1529 3. Those registers to which a write has no effect. */
c600d464 1530
f57d151a 1531 if (regno < 0
64a3914f 1532 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1533 || cris_register_size (gdbarch, regno) == 0)
c600d464
OF
1534 /* Not implemented. */
1535 return 1;
1536
1537 else if (regno == VR_REGNUM)
1538 /* Read-only. */
1539 return 1;
1540
1541 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1542 /* Writing has no effect. */
1543 return 1;
1544
1545 /* Many special registers are read-only in user mode. Let the debug
1546 agent decide whether they are writable. */
1547
1548 return 0;
1549}
1550
29134980
OF
1551/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1552 of data in register regno. */
1553
a78f21af 1554static struct type *
c1d546cd 1555cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1556{
7fbe2eba 1557 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1558 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1559 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1560 || regno == CRIS_FP_REGNUM)
0dfff4cb 1561 return builtin_type (gdbarch)->builtin_data_ptr;
7fbe2eba 1562 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
a5f6c8f5
OF
1563 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1564 /* Note: R8 taken care of previous clause. */
df4df182 1565 return builtin_type (gdbarch)->builtin_uint32;
a5f6c8f5 1566 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
df4df182 1567 return builtin_type (gdbarch)->builtin_uint16;
a5f6c8f5 1568 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
df4df182 1569 return builtin_type (gdbarch)->builtin_uint8;
29134980 1570 else
a5f6c8f5 1571 /* Invalid (unimplemented) register. */
df4df182 1572 return builtin_type (gdbarch)->builtin_int0;
29134980
OF
1573}
1574
c600d464
OF
1575static struct type *
1576crisv32_register_type (struct gdbarch *gdbarch, int regno)
1577{
7fbe2eba 1578 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1579 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1580 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1581 || regno == CRIS_FP_REGNUM)
0dfff4cb 1582 return builtin_type (gdbarch)->builtin_data_ptr;
c600d464
OF
1583 else if ((regno >= 0 && regno <= ACR_REGNUM)
1584 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1585 || (regno == PID_REGNUM)
1586 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1587 /* Note: R8 and SP taken care of by previous clause. */
df4df182 1588 return builtin_type (gdbarch)->builtin_uint32;
c600d464 1589 else if (regno == WZ_REGNUM)
df4df182 1590 return builtin_type (gdbarch)->builtin_uint16;
c600d464 1591 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
df4df182 1592 return builtin_type (gdbarch)->builtin_uint8;
c600d464
OF
1593 else
1594 {
1595 /* Invalid (unimplemented) register. Should not happen as there are
1596 no unimplemented CRISv32 registers. */
8a3fe4f8 1597 warning (_("crisv32_register_type: unknown regno %d"), regno);
df4df182 1598 return builtin_type (gdbarch)->builtin_int0;
c600d464
OF
1599 }
1600}
1601
2e4b5889
OF
1602/* Stores a function return value of type type, where valbuf is the address
1603 of the value to be stored. */
29134980 1604
2e4b5889 1605/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1606
2e4b5889
OF
1607static void
1608cris_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1609 const gdb_byte *valbuf)
29134980 1610{
ac7936df 1611 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1612 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889 1613 ULONGEST val;
df86565b 1614 int len = type->length ();
29134980 1615
bad43aa5 1616 if (len <= 4)
29134980 1617 {
2e4b5889 1618 /* Put the return value in R10. */
bad43aa5 1619 val = extract_unsigned_integer (valbuf, len, byte_order);
2e4b5889 1620 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1621 }
bad43aa5 1622 else if (len <= 8)
29134980 1623 {
2e4b5889 1624 /* Put the return value in R10 and R11. */
e17a4113 1625 val = extract_unsigned_integer (valbuf, 4, byte_order);
2e4b5889 1626 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
948f8e3d 1627 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
2e4b5889 1628 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1629 }
2e4b5889 1630 else
8a3fe4f8 1631 error (_("cris_store_return_value: type length too large."));
29134980
OF
1632}
1633
0963b4bd
MS
1634/* Return the name of register regno as a string. Return NULL for an
1635 invalid or unimplemented register. */
29134980 1636
c600d464 1637static const char *
35488783 1638cris_special_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1639{
1640 int spec_regno;
1641 int i;
1642
1643 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1644 Adjust regno accordingly. */
1645 spec_regno = regno - NUM_GENREGS;
1646
1647 /* Assume nothing about the layout of the cris_spec_regs struct
1648 when searching. */
1649 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1650 {
1651 if (cris_spec_regs[i].number == spec_regno
35488783 1652 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
c600d464
OF
1653 /* Go with the first applicable register. */
1654 return cris_spec_regs[i].name;
1655 }
1656 /* Special register not applicable to this CRIS version. */
9a972b54 1657 return "";
c600d464
OF
1658}
1659
2e4b5889 1660static const char *
d93859e2 1661cris_register_name (struct gdbarch *gdbarch, int regno)
2e4b5889 1662{
a121b7c1 1663 static const char *cris_genreg_names[] =
2e4b5889
OF
1664 { "r0", "r1", "r2", "r3", \
1665 "r4", "r5", "r6", "r7", \
1666 "r8", "r9", "r10", "r11", \
1667 "r12", "r13", "sp", "pc" };
29134980 1668
9b9e61c7 1669 if (regno < NUM_GENREGS)
29134980 1670 {
2e4b5889 1671 /* General register. */
69f6730d 1672 static_assert (ARRAY_SIZE (cris_genreg_names) == NUM_GENREGS);
2e4b5889 1673 return cris_genreg_names[regno];
29134980 1674 }
d93859e2 1675 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
29134980 1676 {
35488783 1677 return cris_special_register_name (gdbarch, regno);
c600d464
OF
1678 }
1679 else
1680 {
1681 /* Invalid register. */
9a972b54 1682 return "";
2e4b5889 1683 }
c600d464
OF
1684}
1685
1686static const char *
d93859e2 1687crisv32_register_name (struct gdbarch *gdbarch, int regno)
c600d464 1688{
a121b7c1 1689 static const char *crisv32_genreg_names[] =
c600d464
OF
1690 { "r0", "r1", "r2", "r3", \
1691 "r4", "r5", "r6", "r7", \
1692 "r8", "r9", "r10", "r11", \
1693 "r12", "r13", "sp", "acr"
1694 };
1695
a121b7c1 1696 static const char *crisv32_sreg_names[] =
c600d464
OF
1697 { "s0", "s1", "s2", "s3", \
1698 "s4", "s5", "s6", "s7", \
1699 "s8", "s9", "s10", "s11", \
1700 "s12", "s13", "s14", "s15"
1701 };
1702
1703 if (regno >= 0 && regno < NUM_GENREGS)
1704 {
1705 /* General register. */
1706 return crisv32_genreg_names[regno];
1707 }
1708 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1709 {
35488783 1710 return cris_special_register_name (gdbarch, regno);
c600d464 1711 }
d93859e2 1712 else if (regno == gdbarch_pc_regnum (gdbarch))
c600d464
OF
1713 {
1714 return "pc";
1715 }
1716 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1717 {
1718 return crisv32_sreg_names[regno - S0_REGNUM];
1719 }
2e4b5889
OF
1720 else
1721 {
1722 /* Invalid register. */
1723 return NULL;
29134980 1724 }
29134980
OF
1725}
1726
a5f6c8f5
OF
1727/* Convert DWARF register number REG to the appropriate register
1728 number used by GDB. */
1729
2e4b5889 1730static int
d3f73121 1731cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
29134980 1732{
a5f6c8f5
OF
1733 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1734 numbering, MOF is 18).
1735 Adapted from gcc/config/cris/cris.h. */
1736 static int cris_dwarf_regmap[] = {
1737 0, 1, 2, 3,
1738 4, 5, 6, 7,
1739 8, 9, 10, 11,
1740 12, 13, 14, 15,
1741 27, -1, -1, -1,
1742 -1, -1, -1, 23,
1743 -1, -1, -1, 27,
1744 -1, -1, -1, -1
1745 };
1746 int regnum = -1;
1747
1748 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1749 regnum = cris_dwarf_regmap[reg];
1750
a5f6c8f5
OF
1751 return regnum;
1752}
1753
1754/* DWARF-2 frame support. */
1755
1756static void
1757cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
dda83cd7 1758 struct dwarf2_frame_state_reg *reg,
8480a37e 1759 const frame_info_ptr &this_frame)
a5f6c8f5
OF
1760{
1761 /* The return address column. */
7fbe2eba 1762 if (regnum == gdbarch_pc_regnum (gdbarch))
a5f6c8f5
OF
1763 reg->how = DWARF2_FRAME_REG_RA;
1764
1765 /* The call frame address. */
7fbe2eba 1766 else if (regnum == gdbarch_sp_regnum (gdbarch))
a5f6c8f5 1767 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1768}
1769
2e4b5889
OF
1770/* Extract from an array regbuf containing the raw register state a function
1771 return value of type type, and copy that, in virtual format, into
1772 valbuf. */
1773
1774/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1775
2e4b5889
OF
1776static void
1777cris_extract_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1778 gdb_byte *valbuf)
29134980 1779{
ac7936df 1780 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889 1782 ULONGEST val;
df86565b 1783 int len = type->length ();
29134980 1784
bad43aa5 1785 if (len <= 4)
29134980 1786 {
2e4b5889
OF
1787 /* Get the return value from R10. */
1788 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
bad43aa5 1789 store_unsigned_integer (valbuf, len, byte_order, val);
29134980 1790 }
bad43aa5 1791 else if (len <= 8)
29134980 1792 {
2e4b5889
OF
1793 /* Get the return value from R10 and R11. */
1794 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
e17a4113 1795 store_unsigned_integer (valbuf, 4, byte_order, val);
2e4b5889 1796 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
948f8e3d 1797 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
29134980 1798 }
2e4b5889 1799 else
8a3fe4f8 1800 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1801}
1802
b4206d25
OF
1803/* Handle the CRIS return value convention. */
1804
1805static enum return_value_convention
6a3a010b 1806cris_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1807 struct type *type, struct regcache *regcache,
1808 gdb_byte *readbuf, const gdb_byte *writebuf)
b4206d25 1809{
78134374
SM
1810 if (type->code () == TYPE_CODE_STRUCT
1811 || type->code () == TYPE_CODE_UNION
df86565b 1812 || type->length () > 8)
b4206d25
OF
1813 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1814 goes on the stack. */
1815 return RETURN_VALUE_STRUCT_CONVENTION;
1816
1817 if (readbuf)
1818 cris_extract_return_value (type, regcache, readbuf);
1819 if (writebuf)
1820 cris_store_return_value (type, regcache, writebuf);
1821
1822 return RETURN_VALUE_REGISTER_CONVENTION;
1823}
1824
29134980
OF
1825/* Calculates a value that measures how good inst_args constraints an
1826 instruction. It stems from cris_constraint, found in cris-dis.c. */
1827
1828static int
948f8e3d 1829constraint (unsigned int insn, const char *inst_args,
dda83cd7 1830 inst_env_type *inst_env)
29134980
OF
1831{
1832 int retval = 0;
1833 int tmp, i;
1834
948f8e3d 1835 const gdb_byte *s = (const gdb_byte *) inst_args;
29134980
OF
1836
1837 for (; *s; s++)
1838 switch (*s)
1839 {
1840 case 'm':
dda83cd7
SM
1841 if ((insn & 0x30) == 0x30)
1842 return -1;
1843 break;
1844
29134980 1845 case 'S':
dda83cd7
SM
1846 /* A prefix operand. */
1847 if (inst_env->prefix_found)
1848 break;
1849 else
1850 return -1;
29134980
OF
1851
1852 case 'B':
dda83cd7
SM
1853 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1854 valid "push" size. In case of special register, it may be != 4. */
1855 if (inst_env->prefix_found)
1856 break;
1857 else
1858 return -1;
29134980
OF
1859
1860 case 'D':
dda83cd7
SM
1861 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1862 if (!retval)
1863 return -1;
1864 else
1865 retval += 4;
1866 break;
29134980
OF
1867
1868 case 'P':
dda83cd7
SM
1869 tmp = (insn >> 0xC) & 0xF;
1870
1871 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1872 {
1873 /* Since we match four bits, we will give a value of
1874 4 - 1 = 3 in a match. If there is a corresponding
1875 exact match of a special register in another pattern, it
1876 will get a value of 4, which will be higher. This should
1877 be correct in that an exact pattern would match better that
1878 a general pattern.
1879 Note that there is a reason for not returning zero; the
1880 pattern for "clear" is partly matched in the bit-pattern
1881 (the two lower bits must be zero), while the bit-pattern
1882 for a move from a special register is matched in the
1883 register constraint.
1884 This also means we will will have a race condition if
1885 there is a partly match in three bits in the bit pattern. */
1886 if (tmp == cris_spec_regs[i].number)
1887 {
1888 retval += 3;
1889 break;
1890 }
1891 }
1892
1893 if (cris_spec_regs[i].name == NULL)
1894 return -1;
1895 break;
29134980
OF
1896 }
1897 return retval;
1898}
1899
1900/* Returns the number of bits set in the variable value. */
1901
1902static int
1903number_of_bits (unsigned int value)
1904{
1905 int number_of_bits = 0;
1906
1907 while (value != 0)
1908 {
1909 number_of_bits += 1;
1910 value &= (value - 1);
1911 }
1912 return number_of_bits;
1913}
1914
1915/* Finds the address that should contain the single step breakpoint(s).
1916 It stems from code in cris-dis.c. */
1917
1918static int
1919find_cris_op (unsigned short insn, inst_env_type *inst_env)
1920{
1921 int i;
1922 int max_level_of_match = -1;
1923 int max_matched = -1;
1924 int level_of_match;
1925
1926 for (i = 0; cris_opcodes[i].name != NULL; i++)
1927 {
1928 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
dda83cd7 1929 && ((cris_opcodes[i].lose & insn) == 0)
c600d464
OF
1930 /* Only CRISv10 instructions, please. */
1931 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
dda83cd7
SM
1932 {
1933 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1934 if (level_of_match >= 0)
1935 {
1936 level_of_match +=
1937 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1938 if (level_of_match > max_level_of_match)
1939 {
1940 max_matched = i;
1941 max_level_of_match = level_of_match;
1942 if (level_of_match == 16)
1943 {
1944 /* All bits matched, cannot find better. */
1945 break;
1946 }
1947 }
1948 }
1949 }
29134980
OF
1950 }
1951 return max_matched;
1952}
1953
1954/* Attempts to find single-step breakpoints. Returns -1 on failure which is
1955 actually an internal error. */
1956
1957static int
5b6e2eee 1958find_step_target (struct regcache *regcache, inst_env_type *inst_env)
29134980
OF
1959{
1960 int i;
1961 int offset;
1962 unsigned short insn;
ac7936df 1963 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1964 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
29134980
OF
1965
1966 /* Create a local register image and set the initial state. */
1967 for (i = 0; i < NUM_GENREGS; i++)
1968 {
0b1b3e42 1969 inst_env->reg[i] =
5b6e2eee 1970 (unsigned long) regcache_raw_get_unsigned (regcache, i);
29134980
OF
1971 }
1972 offset = NUM_GENREGS;
1973 for (i = 0; i < NUM_SPECREGS; i++)
1974 {
0b1b3e42 1975 inst_env->preg[i] =
5b6e2eee 1976 (unsigned long) regcache_raw_get_unsigned (regcache, offset + i);
29134980
OF
1977 }
1978 inst_env->branch_found = 0;
1979 inst_env->slot_needed = 0;
1980 inst_env->delay_slot_pc_active = 0;
1981 inst_env->prefix_found = 0;
1982 inst_env->invalid = 0;
1983 inst_env->xflag_found = 0;
1984 inst_env->disable_interrupt = 0;
e17a4113 1985 inst_env->byte_order = byte_order;
29134980
OF
1986
1987 /* Look for a step target. */
1988 do
1989 {
1990 /* Read an instruction from the client. */
3e8c568d 1991 insn = read_memory_unsigned_integer
e17a4113 1992 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
29134980
OF
1993
1994 /* If the instruction is not in a delay slot the new content of the
dda83cd7
SM
1995 PC is [PC] + 2. If the instruction is in a delay slot it is not
1996 that simple. Since a instruction in a delay slot cannot change
1997 the content of the PC, it does not matter what value PC will have.
1998 Just make sure it is a valid instruction. */
29134980 1999 if (!inst_env->delay_slot_pc_active)
dda83cd7
SM
2000 {
2001 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2002 }
29134980 2003 else
dda83cd7
SM
2004 {
2005 inst_env->delay_slot_pc_active = 0;
2006 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
3e8c568d 2007 = inst_env->delay_slot_pc;
dda83cd7 2008 }
29134980
OF
2009 /* Analyse the present instruction. */
2010 i = find_cris_op (insn, inst_env);
2011 if (i == -1)
dda83cd7
SM
2012 {
2013 inst_env->invalid = 1;
2014 }
29134980 2015 else
dda83cd7
SM
2016 {
2017 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2018 }
29134980 2019 } while (!inst_env->invalid
dda83cd7
SM
2020 && (inst_env->prefix_found || inst_env->xflag_found
2021 || inst_env->slot_needed));
29134980
OF
2022 return i;
2023}
2024
2025/* There is no hardware single-step support. The function find_step_target
0963b4bd 2026 digs through the opcodes in order to find all possible targets.
29134980
OF
2027 Either one ordinary target or two targets for branches may be found. */
2028
a0ff9e1a 2029static std::vector<CORE_ADDR>
f5ea389a 2030cris_software_single_step (struct regcache *regcache)
29134980 2031{
ac7936df 2032 struct gdbarch *gdbarch = regcache->arch ();
29134980 2033 inst_env_type inst_env;
a0ff9e1a 2034 std::vector<CORE_ADDR> next_pcs;
8181d85f 2035
e0cd558a
UW
2036 /* Analyse the present instruction environment and insert
2037 breakpoints. */
5b6e2eee 2038 int status = find_step_target (regcache, &inst_env);
e0cd558a 2039 if (status == -1)
29134980 2040 {
e0cd558a
UW
2041 /* Could not find a target. Things are likely to go downhill
2042 from here. */
2043 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2044 }
2045 else
e0cd558a
UW
2046 {
2047 /* Insert at most two breakpoints. One for the next PC content
dda83cd7 2048 and possibly another one for a branch, jump, etc. */
a6d9a66e
UW
2049 CORE_ADDR next_pc
2050 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
93f9a11f 2051
a0ff9e1a 2052 next_pcs.push_back (next_pc);
e0cd558a
UW
2053 if (inst_env.branch_found
2054 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2055 {
2056 CORE_ADDR branch_target_address
2057 = (CORE_ADDR) inst_env.branch_break_address;
93f9a11f 2058
a0ff9e1a 2059 next_pcs.push_back (branch_target_address);
e0cd558a
UW
2060 }
2061 }
e6590a1b 2062
93f9a11f 2063 return next_pcs;
29134980
OF
2064}
2065
2066/* Calculates the prefix value for quick offset addressing mode. */
2067
a78f21af 2068static void
29134980
OF
2069quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2070{
2071 /* It's invalid to be in a delay slot. You can't have a prefix to this
2072 instruction (not 100% sure). */
2073 if (inst_env->slot_needed || inst_env->prefix_found)
2074 {
2075 inst_env->invalid = 1;
2076 return;
2077 }
2078
2079 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2080 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2081
2082 /* A prefix doesn't change the xflag_found. But the rest of the flags
2083 need updating. */
2084 inst_env->slot_needed = 0;
2085 inst_env->prefix_found = 1;
2086}
2087
2088/* Updates the autoincrement register. The size of the increment is derived
2089 from the size of the operation. The PC is always kept aligned on even
2090 word addresses. */
2091
a78f21af 2092static void
29134980
OF
2093process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2094{
2095 if (size == INST_BYTE_SIZE)
2096 {
2097 inst_env->reg[cris_get_operand1 (inst)] += 1;
2098
2099 /* The PC must be word aligned, so increase the PC with one
dda83cd7 2100 word even if the size is byte. */
29134980 2101 if (cris_get_operand1 (inst) == REG_PC)
dda83cd7
SM
2102 {
2103 inst_env->reg[REG_PC] += 1;
2104 }
29134980
OF
2105 }
2106 else if (size == INST_WORD_SIZE)
2107 {
2108 inst_env->reg[cris_get_operand1 (inst)] += 2;
2109 }
2110 else if (size == INST_DWORD_SIZE)
2111 {
2112 inst_env->reg[cris_get_operand1 (inst)] += 4;
2113 }
2114 else
2115 {
2116 /* Invalid size. */
2117 inst_env->invalid = 1;
2118 }
2119}
2120
2a9ecef2
OF
2121/* Just a forward declaration. */
2122
a78f21af 2123static unsigned long get_data_from_address (unsigned short *inst,
e17a4113
UW
2124 CORE_ADDR address,
2125 enum bfd_endian byte_order);
2a9ecef2 2126
29134980
OF
2127/* Calculates the prefix value for the general case of offset addressing
2128 mode. */
2129
a78f21af 2130static void
29134980
OF
2131bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2132{
29134980
OF
2133 /* It's invalid to be in a delay slot. */
2134 if (inst_env->slot_needed || inst_env->prefix_found)
2135 {
2136 inst_env->invalid = 1;
2137 return;
2138 }
2139
fa4e4598
OF
2140 /* The calculation of prefix_value used to be after process_autoincrement,
2141 but that fails for an instruction such as jsr [$r0+12] which is encoded
2142 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2143 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2144 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2145
2146 /* The offset is an indirection of the contents of the operand1 register. */
2147 inst_env->prefix_value +=
e17a4113
UW
2148 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2149 inst_env->byte_order);
2a9ecef2 2150
fa4e4598
OF
2151 if (cris_get_mode (inst) == AUTOINC_MODE)
2152 {
2153 process_autoincrement (cris_get_size (inst), inst, inst_env);
2154 }
2155
29134980
OF
2156 /* A prefix doesn't change the xflag_found. But the rest of the flags
2157 need updating. */
2158 inst_env->slot_needed = 0;
2159 inst_env->prefix_found = 1;
2160}
2161
2162/* Calculates the prefix value for the index addressing mode. */
2163
a78f21af 2164static void
29134980
OF
2165biap_prefix (unsigned short inst, inst_env_type *inst_env)
2166{
2167 /* It's invalid to be in a delay slot. I can't see that it's possible to
2168 have a prefix to this instruction. So I will treat this as invalid. */
2169 if (inst_env->slot_needed || inst_env->prefix_found)
2170 {
2171 inst_env->invalid = 1;
2172 return;
2173 }
2174
2175 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2176
2177 /* The offset is the operand2 value shifted the size of the instruction
2178 to the left. */
2179 inst_env->prefix_value +=
2180 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2181
2182 /* If the PC is operand1 (base) the address used is the address after
2183 the main instruction, i.e. address + 2 (the PC is already compensated
2184 for the prefix operation). */
2185 if (cris_get_operand1 (inst) == REG_PC)
2186 {
2187 inst_env->prefix_value += 2;
2188 }
2189
2190 /* A prefix doesn't change the xflag_found. But the rest of the flags
2191 need updating. */
2192 inst_env->slot_needed = 0;
2193 inst_env->xflag_found = 0;
2194 inst_env->prefix_found = 1;
2195}
2196
2197/* Calculates the prefix value for the double indirect addressing mode. */
2198
a78f21af 2199static void
29134980
OF
2200dip_prefix (unsigned short inst, inst_env_type *inst_env)
2201{
2202
2203 CORE_ADDR address;
2204
2205 /* It's invalid to be in a delay slot. */
2206 if (inst_env->slot_needed || inst_env->prefix_found)
2207 {
2208 inst_env->invalid = 1;
2209 return;
2210 }
2211
2212 /* The prefix value is one dereference of the contents of the operand1
2213 register. */
2214 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2215 inst_env->prefix_value
2216 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
29134980
OF
2217
2218 /* Check if the mode is autoincrement. */
2219 if (cris_get_mode (inst) == AUTOINC_MODE)
2220 {
2221 inst_env->reg[cris_get_operand1 (inst)] += 4;
2222 }
2223
2224 /* A prefix doesn't change the xflag_found. But the rest of the flags
2225 need updating. */
2226 inst_env->slot_needed = 0;
2227 inst_env->xflag_found = 0;
2228 inst_env->prefix_found = 1;
2229}
2230
2231/* Finds the destination for a branch with 8-bits offset. */
2232
a78f21af 2233static void
29134980
OF
2234eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2235{
2236
2237 short offset;
2238
2239 /* If we have a prefix or are in a delay slot it's bad. */
2240 if (inst_env->slot_needed || inst_env->prefix_found)
2241 {
2242 inst_env->invalid = 1;
2243 return;
2244 }
2245
2246 /* We have a branch, find out where the branch will land. */
2247 offset = cris_get_branch_short_offset (inst);
2248
2249 /* Check if the offset is signed. */
2250 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2251 {
2252 offset |= 0xFF00;
2253 }
2254
2255 /* The offset ends with the sign bit, set it to zero. The address
2256 should always be word aligned. */
2257 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2258
2259 inst_env->branch_found = 1;
2260 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2261
2262 inst_env->slot_needed = 1;
2263 inst_env->prefix_found = 0;
2264 inst_env->xflag_found = 0;
2265 inst_env->disable_interrupt = 1;
2266}
2267
2268/* Finds the destination for a branch with 16-bits offset. */
2269
a78f21af 2270static void
29134980
OF
2271sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2272{
2273 short offset;
2274
2275 /* If we have a prefix or is in a delay slot it's bad. */
2276 if (inst_env->slot_needed || inst_env->prefix_found)
2277 {
2278 inst_env->invalid = 1;
2279 return;
2280 }
2281
2282 /* We have a branch, find out the offset for the branch. */
0963b4bd
MS
2283 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2284 inst_env->byte_order);
29134980
OF
2285
2286 /* The instruction is one word longer than normal, so add one word
2287 to the PC. */
2288 inst_env->reg[REG_PC] += 2;
2289
2290 inst_env->branch_found = 1;
2291 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2292
2293
2294 inst_env->slot_needed = 1;
2295 inst_env->prefix_found = 0;
2296 inst_env->xflag_found = 0;
2297 inst_env->disable_interrupt = 1;
2298}
2299
2300/* Handles the ABS instruction. */
2301
a78f21af 2302static void
29134980
OF
2303abs_op (unsigned short inst, inst_env_type *inst_env)
2304{
2305
2306 long value;
2307
2308 /* ABS can't have a prefix, so it's bad if it does. */
2309 if (inst_env->prefix_found)
2310 {
2311 inst_env->invalid = 1;
2312 return;
2313 }
2314
2315 /* Check if the operation affects the PC. */
2316 if (cris_get_operand2 (inst) == REG_PC)
2317 {
2318
2319 /* It's invalid to change to the PC if we are in a delay slot. */
2320 if (inst_env->slot_needed)
dda83cd7
SM
2321 {
2322 inst_env->invalid = 1;
2323 return;
2324 }
29134980
OF
2325
2326 value = (long) inst_env->reg[REG_PC];
2327
2328 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2329 if (value != SIGNED_DWORD_MASK)
dda83cd7
SM
2330 {
2331 value = -value;
2332 inst_env->reg[REG_PC] = (long) value;
2333 }
29134980
OF
2334 }
2335
2336 inst_env->slot_needed = 0;
2337 inst_env->prefix_found = 0;
2338 inst_env->xflag_found = 0;
2339 inst_env->disable_interrupt = 0;
2340}
2341
2342/* Handles the ADDI instruction. */
2343
a78f21af 2344static void
29134980
OF
2345addi_op (unsigned short inst, inst_env_type *inst_env)
2346{
2347 /* It's invalid to have the PC as base register. And ADDI can't have
2348 a prefix. */
2349 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2350 {
2351 inst_env->invalid = 1;
2352 return;
2353 }
2354
2355 inst_env->slot_needed = 0;
2356 inst_env->prefix_found = 0;
2357 inst_env->xflag_found = 0;
2358 inst_env->disable_interrupt = 0;
2359}
2360
2361/* Handles the ASR instruction. */
2362
a78f21af 2363static void
29134980
OF
2364asr_op (unsigned short inst, inst_env_type *inst_env)
2365{
2366 int shift_steps;
2367 unsigned long value;
2368 unsigned long signed_extend_mask = 0;
2369
2370 /* ASR can't have a prefix, so check that it doesn't. */
2371 if (inst_env->prefix_found)
2372 {
2373 inst_env->invalid = 1;
2374 return;
2375 }
2376
2377 /* Check if the PC is the target register. */
2378 if (cris_get_operand2 (inst) == REG_PC)
2379 {
2380 /* It's invalid to change the PC in a delay slot. */
2381 if (inst_env->slot_needed)
dda83cd7
SM
2382 {
2383 inst_env->invalid = 1;
2384 return;
2385 }
29134980 2386 /* Get the number of bits to shift. */
0963b4bd
MS
2387 shift_steps
2388 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
29134980
OF
2389 value = inst_env->reg[REG_PC];
2390
2391 /* Find out how many bits the operation should apply to. */
2392 if (cris_get_size (inst) == INST_BYTE_SIZE)
dda83cd7
SM
2393 {
2394 if (value & SIGNED_BYTE_MASK)
2395 {
2396 signed_extend_mask = 0xFF;
2397 signed_extend_mask = signed_extend_mask >> shift_steps;
2398 signed_extend_mask = ~signed_extend_mask;
2399 }
2400 value = value >> shift_steps;
2401 value |= signed_extend_mask;
2402 value &= 0xFF;
2403 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2404 inst_env->reg[REG_PC] |= value;
2405 }
29134980 2406 else if (cris_get_size (inst) == INST_WORD_SIZE)
dda83cd7
SM
2407 {
2408 if (value & SIGNED_WORD_MASK)
2409 {
2410 signed_extend_mask = 0xFFFF;
2411 signed_extend_mask = signed_extend_mask >> shift_steps;
2412 signed_extend_mask = ~signed_extend_mask;
2413 }
2414 value = value >> shift_steps;
2415 value |= signed_extend_mask;
2416 value &= 0xFFFF;
2417 inst_env->reg[REG_PC] &= 0xFFFF0000;
2418 inst_env->reg[REG_PC] |= value;
2419 }
29134980 2420 else if (cris_get_size (inst) == INST_DWORD_SIZE)
dda83cd7
SM
2421 {
2422 if (value & SIGNED_DWORD_MASK)
2423 {
2424 signed_extend_mask = 0xFFFFFFFF;
2425 signed_extend_mask = signed_extend_mask >> shift_steps;
2426 signed_extend_mask = ~signed_extend_mask;
2427 }
2428 value = value >> shift_steps;
2429 value |= signed_extend_mask;
2430 inst_env->reg[REG_PC] = value;
2431 }
29134980
OF
2432 }
2433 inst_env->slot_needed = 0;
2434 inst_env->prefix_found = 0;
2435 inst_env->xflag_found = 0;
2436 inst_env->disable_interrupt = 0;
2437}
2438
2439/* Handles the ASRQ instruction. */
2440
a78f21af 2441static void
29134980
OF
2442asrq_op (unsigned short inst, inst_env_type *inst_env)
2443{
2444
2445 int shift_steps;
2446 unsigned long value;
2447 unsigned long signed_extend_mask = 0;
2448
2449 /* ASRQ can't have a prefix, so check that it doesn't. */
2450 if (inst_env->prefix_found)
2451 {
2452 inst_env->invalid = 1;
2453 return;
2454 }
2455
2456 /* Check if the PC is the target register. */
2457 if (cris_get_operand2 (inst) == REG_PC)
2458 {
2459
2460 /* It's invalid to change the PC in a delay slot. */
2461 if (inst_env->slot_needed)
dda83cd7
SM
2462 {
2463 inst_env->invalid = 1;
2464 return;
2465 }
29134980 2466 /* The shift size is given as a 5 bit quick value, i.e. we don't
dda83cd7 2467 want the sign bit of the quick value. */
29134980
OF
2468 shift_steps = cris_get_asr_shift_steps (inst);
2469 value = inst_env->reg[REG_PC];
2470 if (value & SIGNED_DWORD_MASK)
dda83cd7
SM
2471 {
2472 signed_extend_mask = 0xFFFFFFFF;
2473 signed_extend_mask = signed_extend_mask >> shift_steps;
2474 signed_extend_mask = ~signed_extend_mask;
2475 }
29134980
OF
2476 value = value >> shift_steps;
2477 value |= signed_extend_mask;
2478 inst_env->reg[REG_PC] = value;
2479 }
2480 inst_env->slot_needed = 0;
2481 inst_env->prefix_found = 0;
2482 inst_env->xflag_found = 0;
2483 inst_env->disable_interrupt = 0;
2484}
2485
2486/* Handles the AX, EI and SETF instruction. */
2487
a78f21af 2488static void
29134980
OF
2489ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2490{
2491 if (inst_env->prefix_found)
2492 {
2493 inst_env->invalid = 1;
2494 return;
2495 }
2496 /* Check if the instruction is setting the X flag. */
2497 if (cris_is_xflag_bit_on (inst))
2498 {
2499 inst_env->xflag_found = 1;
2500 }
2501 else
2502 {
2503 inst_env->xflag_found = 0;
2504 }
2505 inst_env->slot_needed = 0;
2506 inst_env->prefix_found = 0;
2507 inst_env->disable_interrupt = 1;
2508}
2509
2510/* Checks if the instruction is in assign mode. If so, it updates the assign
2511 register. Note that check_assign assumes that the caller has checked that
2512 there is a prefix to this instruction. The mode check depends on this. */
2513
a78f21af 2514static void
29134980
OF
2515check_assign (unsigned short inst, inst_env_type *inst_env)
2516{
2517 /* Check if it's an assign addressing mode. */
2518 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2519 {
2520 /* Assign the prefix value to operand 1. */
2521 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2522 }
2523}
2524
2525/* Handles the 2-operand BOUND instruction. */
2526
a78f21af 2527static void
29134980
OF
2528two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2529{
2530 /* It's invalid to have the PC as the index operand. */
2531 if (cris_get_operand2 (inst) == REG_PC)
2532 {
2533 inst_env->invalid = 1;
2534 return;
2535 }
2536 /* Check if we have a prefix. */
2537 if (inst_env->prefix_found)
2538 {
2539 check_assign (inst, inst_env);
2540 }
2541 /* Check if this is an autoincrement mode. */
2542 else if (cris_get_mode (inst) == AUTOINC_MODE)
2543 {
2544 /* It's invalid to change the PC in a delay slot. */
2545 if (inst_env->slot_needed)
dda83cd7
SM
2546 {
2547 inst_env->invalid = 1;
2548 return;
2549 }
29134980
OF
2550 process_autoincrement (cris_get_size (inst), inst, inst_env);
2551 }
2552 inst_env->slot_needed = 0;
2553 inst_env->prefix_found = 0;
2554 inst_env->xflag_found = 0;
2555 inst_env->disable_interrupt = 0;
2556}
2557
2558/* Handles the 3-operand BOUND instruction. */
2559
a78f21af 2560static void
29134980
OF
2561three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2562{
2563 /* It's an error if we haven't got a prefix. And it's also an error
2564 if the PC is the destination register. */
2565 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2566 {
2567 inst_env->invalid = 1;
2568 return;
2569 }
2570 inst_env->slot_needed = 0;
2571 inst_env->prefix_found = 0;
2572 inst_env->xflag_found = 0;
2573 inst_env->disable_interrupt = 0;
2574}
2575
2576/* Clears the status flags in inst_env. */
2577
a78f21af 2578static void
29134980
OF
2579btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2580{
2581 /* It's an error if we have got a prefix. */
2582 if (inst_env->prefix_found)
2583 {
2584 inst_env->invalid = 1;
2585 return;
2586 }
2587
2588 inst_env->slot_needed = 0;
2589 inst_env->prefix_found = 0;
2590 inst_env->xflag_found = 0;
2591 inst_env->disable_interrupt = 0;
2592}
2593
2594/* Clears the status flags in inst_env. */
2595
a78f21af 2596static void
29134980
OF
2597clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2598{
2599 /* It's an error if we have got a prefix. */
2600 if (inst_env->prefix_found)
2601 {
2602 inst_env->invalid = 1;
2603 return;
2604 }
2605
2606 inst_env->slot_needed = 0;
2607 inst_env->prefix_found = 0;
2608 inst_env->xflag_found = 0;
2609 inst_env->disable_interrupt = 1;
2610}
2611
2612/* Handles the CLEAR instruction if it's in register mode. */
2613
a78f21af 2614static void
29134980
OF
2615reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2616{
2617 /* Check if the target is the PC. */
2618 if (cris_get_operand2 (inst) == REG_PC)
2619 {
2620 /* The instruction will clear the instruction's size bits. */
2621 int clear_size = cris_get_clear_size (inst);
2622 if (clear_size == INST_BYTE_SIZE)
dda83cd7
SM
2623 {
2624 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2625 }
29134980 2626 if (clear_size == INST_WORD_SIZE)
dda83cd7
SM
2627 {
2628 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2629 }
29134980 2630 if (clear_size == INST_DWORD_SIZE)
dda83cd7
SM
2631 {
2632 inst_env->delay_slot_pc = 0x0;
2633 }
29134980 2634 /* The jump will be delayed with one delay slot. So we need a delay
dda83cd7 2635 slot. */
29134980
OF
2636 inst_env->slot_needed = 1;
2637 inst_env->delay_slot_pc_active = 1;
2638 }
2639 else
2640 {
2641 /* The PC will not change => no delay slot. */
2642 inst_env->slot_needed = 0;
2643 }
2644 inst_env->prefix_found = 0;
2645 inst_env->xflag_found = 0;
2646 inst_env->disable_interrupt = 0;
2647}
2648
2649/* Handles the TEST instruction if it's in register mode. */
2650
a78f21af 2651static void
29134980
OF
2652reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2653{
2654 /* It's an error if we have got a prefix. */
2655 if (inst_env->prefix_found)
2656 {
2657 inst_env->invalid = 1;
2658 return;
2659 }
2660 inst_env->slot_needed = 0;
2661 inst_env->prefix_found = 0;
2662 inst_env->xflag_found = 0;
2663 inst_env->disable_interrupt = 0;
2664
2665}
2666
2667/* Handles the CLEAR and TEST instruction if the instruction isn't
2668 in register mode. */
2669
a78f21af 2670static void
29134980
OF
2671none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2672{
2673 /* Check if we are in a prefix mode. */
2674 if (inst_env->prefix_found)
2675 {
2676 /* The only way the PC can change is if this instruction is in
dda83cd7 2677 assign addressing mode. */
29134980
OF
2678 check_assign (inst, inst_env);
2679 }
2680 /* Indirect mode can't change the PC so just check if the mode is
2681 autoincrement. */
2682 else if (cris_get_mode (inst) == AUTOINC_MODE)
2683 {
2684 process_autoincrement (cris_get_size (inst), inst, inst_env);
2685 }
2686 inst_env->slot_needed = 0;
2687 inst_env->prefix_found = 0;
2688 inst_env->xflag_found = 0;
2689 inst_env->disable_interrupt = 0;
2690}
2691
2692/* Checks that the PC isn't the destination register or the instructions has
2693 a prefix. */
2694
a78f21af 2695static void
29134980
OF
2696dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2697{
2698 /* It's invalid to have the PC as the destination. The instruction can't
2699 have a prefix. */
2700 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2701 {
2702 inst_env->invalid = 1;
2703 return;
2704 }
2705
2706 inst_env->slot_needed = 0;
2707 inst_env->prefix_found = 0;
2708 inst_env->xflag_found = 0;
2709 inst_env->disable_interrupt = 0;
2710}
2711
2712/* Checks that the instruction doesn't have a prefix. */
2713
a78f21af 2714static void
29134980
OF
2715break_op (unsigned short inst, inst_env_type *inst_env)
2716{
2717 /* The instruction can't have a prefix. */
2718 if (inst_env->prefix_found)
2719 {
2720 inst_env->invalid = 1;
2721 return;
2722 }
2723
2724 inst_env->slot_needed = 0;
2725 inst_env->prefix_found = 0;
2726 inst_env->xflag_found = 0;
2727 inst_env->disable_interrupt = 1;
2728}
2729
2730/* Checks that the PC isn't the destination register and that the instruction
2731 doesn't have a prefix. */
2732
a78f21af 2733static void
29134980
OF
2734scc_op (unsigned short inst, inst_env_type *inst_env)
2735{
2736 /* It's invalid to have the PC as the destination. The instruction can't
2737 have a prefix. */
2738 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2739 {
2740 inst_env->invalid = 1;
2741 return;
2742 }
2743
2744 inst_env->slot_needed = 0;
2745 inst_env->prefix_found = 0;
2746 inst_env->xflag_found = 0;
2747 inst_env->disable_interrupt = 1;
2748}
2749
2750/* Handles the register mode JUMP instruction. */
2751
a78f21af 2752static void
29134980
OF
2753reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2754{
2755 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2756 you can't have a prefix. */
2757 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2758 {
2759 inst_env->invalid = 1;
2760 return;
2761 }
2762
2763 /* Just change the PC. */
2764 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2765 inst_env->slot_needed = 0;
2766 inst_env->prefix_found = 0;
2767 inst_env->xflag_found = 0;
2768 inst_env->disable_interrupt = 1;
2769}
2770
2771/* Handles the JUMP instruction for all modes except register. */
2772
a78f21af
AC
2773static void
2774none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2775{
2776 unsigned long newpc;
2777 CORE_ADDR address;
2778
2779 /* It's invalid to do a JUMP in a delay slot. */
2780 if (inst_env->slot_needed)
2781 {
2782 inst_env->invalid = 1;
2783 }
2784 else
2785 {
2786 /* Check if we have a prefix. */
2787 if (inst_env->prefix_found)
dda83cd7
SM
2788 {
2789 check_assign (inst, inst_env);
2790
2791 /* Get the new value for the PC. */
2792 newpc =
2793 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2794 4, inst_env->byte_order);
2795 }
29134980 2796 else
dda83cd7
SM
2797 {
2798 /* Get the new value for the PC. */
2799 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2800 newpc = read_memory_unsigned_integer (address,
e17a4113 2801 4, inst_env->byte_order);
29134980 2802
dda83cd7
SM
2803 /* Check if we should increment a register. */
2804 if (cris_get_mode (inst) == AUTOINC_MODE)
2805 {
2806 inst_env->reg[cris_get_operand1 (inst)] += 4;
2807 }
2808 }
29134980
OF
2809 inst_env->reg[REG_PC] = newpc;
2810 }
2811 inst_env->slot_needed = 0;
2812 inst_env->prefix_found = 0;
2813 inst_env->xflag_found = 0;
2814 inst_env->disable_interrupt = 1;
2815}
2816
2817/* Handles moves to special registers (aka P-register) for all modes. */
2818
a78f21af 2819static void
be8626e0
MD
2820move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2821 inst_env_type *inst_env)
29134980
OF
2822{
2823 if (inst_env->prefix_found)
2824 {
2825 /* The instruction has a prefix that means we are only interested if
dda83cd7 2826 the instruction is in assign mode. */
29134980 2827 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
dda83cd7
SM
2828 {
2829 /* The prefix handles the problem if we are in a delay slot. */
2830 if (cris_get_operand1 (inst) == REG_PC)
2831 {
2832 /* Just take care of the assign. */
2833 check_assign (inst, inst_env);
2834 }
2835 }
29134980
OF
2836 }
2837 else if (cris_get_mode (inst) == AUTOINC_MODE)
2838 {
2839 /* The instruction doesn't have a prefix, the only case left that we
dda83cd7 2840 are interested in is the autoincrement mode. */
29134980 2841 if (cris_get_operand1 (inst) == REG_PC)
dda83cd7
SM
2842 {
2843 /* If the PC is to be incremented it's invalid to be in a
2844 delay slot. */
2845 if (inst_env->slot_needed)
2846 {
2847 inst_env->invalid = 1;
2848 return;
2849 }
2850
2851 /* The increment depends on the size of the special register. */
2852 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2853 {
2854 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2855 }
2856 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2857 {
2858 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2859 }
2860 else
2861 {
2862 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2863 }
2864 }
29134980
OF
2865 }
2866 inst_env->slot_needed = 0;
2867 inst_env->prefix_found = 0;
2868 inst_env->xflag_found = 0;
2869 inst_env->disable_interrupt = 1;
2870}
2871
2872/* Handles moves from special registers (aka P-register) for all modes
2873 except register. */
2874
a78f21af 2875static void
be8626e0
MD
2876none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2877 inst_env_type *inst_env)
29134980
OF
2878{
2879 if (inst_env->prefix_found)
2880 {
2881 /* The instruction has a prefix that means we are only interested if
dda83cd7 2882 the instruction is in assign mode. */
29134980 2883 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
dda83cd7
SM
2884 {
2885 /* The prefix handles the problem if we are in a delay slot. */
2886 if (cris_get_operand1 (inst) == REG_PC)
2887 {
2888 /* Just take care of the assign. */
2889 check_assign (inst, inst_env);
2890 }
2891 }
29134980
OF
2892 }
2893 /* The instruction doesn't have a prefix, the only case left that we
2894 are interested in is the autoincrement mode. */
2895 else if (cris_get_mode (inst) == AUTOINC_MODE)
2896 {
2897 if (cris_get_operand1 (inst) == REG_PC)
dda83cd7
SM
2898 {
2899 /* If the PC is to be incremented it's invalid to be in a
2900 delay slot. */
2901 if (inst_env->slot_needed)
2902 {
2903 inst_env->invalid = 1;
2904 return;
2905 }
2906
2907 /* The increment depends on the size of the special register. */
2908 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2909 {
2910 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2911 }
2912 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2913 {
2914 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2915 }
2916 else
2917 {
2918 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2919 }
2920 }
29134980
OF
2921 }
2922 inst_env->slot_needed = 0;
2923 inst_env->prefix_found = 0;
2924 inst_env->xflag_found = 0;
2925 inst_env->disable_interrupt = 1;
2926}
2927
2928/* Handles moves from special registers (aka P-register) when the mode
2929 is register. */
2930
a78f21af 2931static void
29134980
OF
2932reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2933{
2934 /* Register mode move from special register can't have a prefix. */
2935 if (inst_env->prefix_found)
2936 {
2937 inst_env->invalid = 1;
2938 return;
2939 }
2940
2941 if (cris_get_operand1 (inst) == REG_PC)
2942 {
2943 /* It's invalid to change the PC in a delay slot. */
2944 if (inst_env->slot_needed)
dda83cd7
SM
2945 {
2946 inst_env->invalid = 1;
2947 return;
2948 }
29134980
OF
2949 /* The destination is the PC, the jump will have a delay slot. */
2950 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2951 inst_env->slot_needed = 1;
2952 inst_env->delay_slot_pc_active = 1;
2953 }
2954 else
2955 {
2956 /* If the destination isn't PC, there will be no jump. */
2957 inst_env->slot_needed = 0;
2958 }
2959 inst_env->prefix_found = 0;
2960 inst_env->xflag_found = 0;
2961 inst_env->disable_interrupt = 1;
2962}
2963
2964/* Handles the MOVEM from memory to general register instruction. */
2965
a78f21af 2966static void
29134980
OF
2967move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2968{
2969 if (inst_env->prefix_found)
2970 {
2971 /* The prefix handles the problem if we are in a delay slot. Is the
dda83cd7 2972 MOVEM instruction going to change the PC? */
29134980 2973 if (cris_get_operand2 (inst) >= REG_PC)
dda83cd7
SM
2974 {
2975 inst_env->reg[REG_PC] =
2976 read_memory_unsigned_integer (inst_env->prefix_value,
e17a4113 2977 4, inst_env->byte_order);
dda83cd7 2978 }
29134980 2979 /* The assign value is the value after the increment. Normally, the
dda83cd7 2980 assign value is the value before the increment. */
29134980 2981 if ((cris_get_operand1 (inst) == REG_PC)
dda83cd7
SM
2982 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2983 {
2984 inst_env->reg[REG_PC] = inst_env->prefix_value;
2985 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2986 }
29134980
OF
2987 }
2988 else
2989 {
2990 /* Is the MOVEM instruction going to change the PC? */
2991 if (cris_get_operand2 (inst) == REG_PC)
dda83cd7
SM
2992 {
2993 /* It's invalid to change the PC in a delay slot. */
2994 if (inst_env->slot_needed)
2995 {
2996 inst_env->invalid = 1;
2997 return;
2998 }
2999 inst_env->reg[REG_PC] =
3000 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3001 4, inst_env->byte_order);
3002 }
29134980 3003 /* The increment is not depending on the size, instead it's depending
dda83cd7 3004 on the number of registers loaded from memory. */
0963b4bd
MS
3005 if ((cris_get_operand1 (inst) == REG_PC)
3006 && (cris_get_mode (inst) == AUTOINC_MODE))
dda83cd7
SM
3007 {
3008 /* It's invalid to change the PC in a delay slot. */
3009 if (inst_env->slot_needed)
3010 {
3011 inst_env->invalid = 1;
3012 return;
3013 }
3014 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3015 }
29134980
OF
3016 }
3017 inst_env->slot_needed = 0;
3018 inst_env->prefix_found = 0;
3019 inst_env->xflag_found = 0;
3020 inst_env->disable_interrupt = 0;
3021}
3022
3023/* Handles the MOVEM to memory from general register instruction. */
3024
a78f21af 3025static void
29134980
OF
3026move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3027{
3028 if (inst_env->prefix_found)
3029 {
3030 /* The assign value is the value after the increment. Normally, the
dda83cd7 3031 assign value is the value before the increment. */
5aafa1cc 3032 if ((cris_get_operand1 (inst) == REG_PC)
dda83cd7
SM
3033 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3034 {
3035 /* The prefix handles the problem if we are in a delay slot. */
3036 inst_env->reg[REG_PC] = inst_env->prefix_value;
3037 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3038 }
29134980
OF
3039 }
3040 else
3041 {
3042 /* The increment is not depending on the size, instead it's depending
dda83cd7 3043 on the number of registers loaded to memory. */
0963b4bd
MS
3044 if ((cris_get_operand1 (inst) == REG_PC)
3045 && (cris_get_mode (inst) == AUTOINC_MODE))
dda83cd7
SM
3046 {
3047 /* It's invalid to change the PC in a delay slot. */
3048 if (inst_env->slot_needed)
3049 {
3050 inst_env->invalid = 1;
3051 return;
3052 }
3053 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3054 }
29134980
OF
3055 }
3056 inst_env->slot_needed = 0;
3057 inst_env->prefix_found = 0;
3058 inst_env->xflag_found = 0;
3059 inst_env->disable_interrupt = 0;
3060}
3061
85102364 3062/* Handles the instructions that's not yet implemented, by setting
29134980
OF
3063 inst_env->invalid to true. */
3064
a78f21af 3065static void
29134980
OF
3066not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3067{
3068 inst_env->invalid = 1;
3069}
3070
3071/* Handles the XOR instruction. */
3072
a78f21af 3073static void
29134980
OF
3074xor_op (unsigned short inst, inst_env_type *inst_env)
3075{
3076 /* XOR can't have a prefix. */
3077 if (inst_env->prefix_found)
3078 {
3079 inst_env->invalid = 1;
3080 return;
3081 }
3082
3083 /* Check if the PC is the target. */
3084 if (cris_get_operand2 (inst) == REG_PC)
3085 {
3086 /* It's invalid to change the PC in a delay slot. */
3087 if (inst_env->slot_needed)
dda83cd7
SM
3088 {
3089 inst_env->invalid = 1;
3090 return;
3091 }
29134980
OF
3092 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3093 }
3094 inst_env->slot_needed = 0;
3095 inst_env->prefix_found = 0;
3096 inst_env->xflag_found = 0;
3097 inst_env->disable_interrupt = 0;
3098}
3099
3100/* Handles the MULS instruction. */
3101
a78f21af 3102static void
29134980
OF
3103muls_op (unsigned short inst, inst_env_type *inst_env)
3104{
3105 /* MULS/U can't have a prefix. */
3106 if (inst_env->prefix_found)
3107 {
3108 inst_env->invalid = 1;
3109 return;
3110 }
3111
3112 /* Consider it invalid if the PC is the target. */
3113 if (cris_get_operand2 (inst) == REG_PC)
3114 {
3115 inst_env->invalid = 1;
3116 return;
3117 }
3118 inst_env->slot_needed = 0;
3119 inst_env->prefix_found = 0;
3120 inst_env->xflag_found = 0;
3121 inst_env->disable_interrupt = 0;
3122}
3123
3124/* Handles the MULU instruction. */
3125
a78f21af 3126static void
29134980
OF
3127mulu_op (unsigned short inst, inst_env_type *inst_env)
3128{
3129 /* MULS/U can't have a prefix. */
3130 if (inst_env->prefix_found)
3131 {
3132 inst_env->invalid = 1;
3133 return;
3134 }
3135
3136 /* Consider it invalid if the PC is the target. */
3137 if (cris_get_operand2 (inst) == REG_PC)
3138 {
3139 inst_env->invalid = 1;
3140 return;
3141 }
3142 inst_env->slot_needed = 0;
3143 inst_env->prefix_found = 0;
3144 inst_env->xflag_found = 0;
3145 inst_env->disable_interrupt = 0;
3146}
3147
0963b4bd 3148/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
29134980
OF
3149 The MOVE instruction is the move from source to register. */
3150
a78f21af 3151static void
29134980 3152add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
dda83cd7 3153 unsigned long source1, unsigned long source2)
29134980
OF
3154{
3155 unsigned long pc_mask;
3156 unsigned long operation_mask;
3157
3158 /* Find out how many bits the operation should apply to. */
3159 if (cris_get_size (inst) == INST_BYTE_SIZE)
3160 {
3161 pc_mask = 0xFFFFFF00;
3162 operation_mask = 0xFF;
3163 }
3164 else if (cris_get_size (inst) == INST_WORD_SIZE)
3165 {
3166 pc_mask = 0xFFFF0000;
3167 operation_mask = 0xFFFF;
3168 }
3169 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3170 {
3171 pc_mask = 0x0;
3172 operation_mask = 0xFFFFFFFF;
3173 }
3174 else
3175 {
3176 /* The size is out of range. */
3177 inst_env->invalid = 1;
3178 return;
3179 }
3180
3181 /* The instruction just works on uw_operation_mask bits. */
3182 source2 &= operation_mask;
3183 source1 &= operation_mask;
3184
3185 /* Now calculate the result. The opcode's 3 first bits separates
3186 the different actions. */
3187 switch (cris_get_opcode (inst) & 7)
3188 {
3189 case 0: /* add */
3190 source1 += source2;
3191 break;
3192
3193 case 1: /* move */
3194 source1 = source2;
3195 break;
3196
3197 case 2: /* subtract */
3198 source1 -= source2;
3199 break;
3200
3201 case 3: /* compare */
3202 break;
3203
3204 case 4: /* and */
3205 source1 &= source2;
3206 break;
3207
3208 case 5: /* or */
3209 source1 |= source2;
3210 break;
3211
3212 default:
3213 inst_env->invalid = 1;
3214 return;
3215
3216 break;
3217 }
3218
3219 /* Make sure that the result doesn't contain more than the instruction
3220 size bits. */
3221 source2 &= operation_mask;
3222
3223 /* Calculate the new breakpoint address. */
3224 inst_env->reg[REG_PC] &= pc_mask;
3225 inst_env->reg[REG_PC] |= source1;
3226
3227}
3228
3229/* Extends the value from either byte or word size to a dword. If the mode
3230 is zero extend then the value is extended with zero. If instead the mode
3231 is signed extend the sign bit of the value is taken into consideration. */
3232
a78f21af 3233static unsigned long
29134980
OF
3234do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3235{
3236 /* The size can be either byte or word, check which one it is.
3237 Don't check the highest bit, it's indicating if it's a zero
3238 or sign extend. */
3239 if (cris_get_size (*inst) & INST_WORD_SIZE)
3240 {
3241 /* Word size. */
3242 value &= 0xFFFF;
3243
3244 /* Check if the instruction is signed extend. If so, check if value has
dda83cd7 3245 the sign bit on. */
29134980 3246 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
dda83cd7
SM
3247 {
3248 value |= SIGNED_WORD_EXTEND_MASK;
3249 }
29134980
OF
3250 }
3251 else
3252 {
3253 /* Byte size. */
3254 value &= 0xFF;
3255
3256 /* Check if the instruction is signed extend. If so, check if value has
dda83cd7 3257 the sign bit on. */
29134980 3258 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
dda83cd7
SM
3259 {
3260 value |= SIGNED_BYTE_EXTEND_MASK;
3261 }
29134980
OF
3262 }
3263 /* The size should now be dword. */
3264 cris_set_size_to_dword (inst);
3265 return value;
3266}
3267
3268/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3269 instruction. The MOVE instruction is the move from source to register. */
3270
a78f21af 3271static void
29134980 3272reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
dda83cd7 3273 inst_env_type *inst_env)
29134980
OF
3274{
3275 unsigned long operand1;
3276 unsigned long operand2;
3277
3278 /* It's invalid to have a prefix to the instruction. This is a register
3279 mode instruction and can't have a prefix. */
3280 if (inst_env->prefix_found)
3281 {
3282 inst_env->invalid = 1;
3283 return;
3284 }
3285 /* Check if the instruction has PC as its target. */
3286 if (cris_get_operand2 (inst) == REG_PC)
3287 {
3288 if (inst_env->slot_needed)
dda83cd7
SM
3289 {
3290 inst_env->invalid = 1;
3291 return;
3292 }
29134980 3293 /* The instruction has the PC as its target register. */
7ab98e9e 3294 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3295 operand2 = inst_env->reg[REG_PC];
3296
3297 /* Check if it's a extend, signed or zero instruction. */
3298 if (cris_get_opcode (inst) < 4)
dda83cd7
SM
3299 {
3300 operand1 = do_sign_or_zero_extend (operand1, &inst);
3301 }
29134980 3302 /* Calculate the PC value after the instruction, i.e. where the
dda83cd7 3303 breakpoint should be. The order of the udw_operands is vital. */
29134980
OF
3304 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3305 }
3306 inst_env->slot_needed = 0;
3307 inst_env->prefix_found = 0;
3308 inst_env->xflag_found = 0;
3309 inst_env->disable_interrupt = 0;
3310}
3311
3312/* Returns the data contained at address. The size of the data is derived from
3313 the size of the operation. If the instruction is a zero or signed
3314 extend instruction, the size field is changed in instruction. */
3315
a78f21af 3316static unsigned long
0963b4bd
MS
3317get_data_from_address (unsigned short *inst, CORE_ADDR address,
3318 enum bfd_endian byte_order)
29134980
OF
3319{
3320 int size = cris_get_size (*inst);
3321 unsigned long value;
3322
3323 /* If it's an extend instruction we don't want the signed extend bit,
3324 because it influences the size. */
3325 if (cris_get_opcode (*inst) < 4)
3326 {
3327 size &= ~SIGNED_EXTEND_BIT_MASK;
3328 }
3329 /* Is there a need for checking the size? Size should contain the number of
3330 bytes to read. */
3331 size = 1 << size;
e17a4113 3332 value = read_memory_unsigned_integer (address, size, byte_order);
29134980
OF
3333
3334 /* Check if it's an extend, signed or zero instruction. */
3335 if (cris_get_opcode (*inst) < 4)
3336 {
3337 value = do_sign_or_zero_extend (value, inst);
3338 }
3339 return value;
3340}
3341
3342/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3343 instructions. The MOVE instruction is the move from source to register. */
3344
a78f21af 3345static void
29134980 3346handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
dda83cd7 3347 inst_env_type *inst_env)
29134980
OF
3348{
3349 unsigned long operand2;
3350 unsigned long operand3;
3351
3352 check_assign (inst, inst_env);
3353 if (cris_get_operand2 (inst) == REG_PC)
3354 {
3355 operand2 = inst_env->reg[REG_PC];
3356
3357 /* Get the value of the third operand. */
e17a4113
UW
3358 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3359 inst_env->byte_order);
29134980
OF
3360
3361 /* Calculate the PC value after the instruction, i.e. where the
dda83cd7 3362 breakpoint should be. The order of the udw_operands is vital. */
29134980
OF
3363 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3364 }
3365 inst_env->slot_needed = 0;
3366 inst_env->prefix_found = 0;
3367 inst_env->xflag_found = 0;
3368 inst_env->disable_interrupt = 0;
3369}
3370
3371/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3372 OR instructions. Note that for this to work as expected, the calling
3373 function must have made sure that there is a prefix to this instruction. */
3374
a78f21af 3375static void
29134980 3376three_operand_add_sub_cmp_and_or_op (unsigned short inst,
dda83cd7 3377 inst_env_type *inst_env)
29134980
OF
3378{
3379 unsigned long operand2;
3380 unsigned long operand3;
3381
3382 if (cris_get_operand1 (inst) == REG_PC)
3383 {
3384 /* The PC will be changed by the instruction. */
3385 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3386
3387 /* Get the value of the third operand. */
e17a4113
UW
3388 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3389 inst_env->byte_order);
29134980
OF
3390
3391 /* Calculate the PC value after the instruction, i.e. where the
dda83cd7 3392 breakpoint should be. */
29134980
OF
3393 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3394 }
3395 inst_env->slot_needed = 0;
3396 inst_env->prefix_found = 0;
3397 inst_env->xflag_found = 0;
3398 inst_env->disable_interrupt = 0;
3399}
3400
3401/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3402 instructions. The MOVE instruction is the move from source to register. */
3403
a78f21af 3404static void
29134980 3405handle_prefix_index_mode_for_aritm_op (unsigned short inst,
dda83cd7 3406 inst_env_type *inst_env)
29134980
OF
3407{
3408 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3409 {
3410 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
dda83cd7
SM
3411 SUB, AND or OR something weird is going on (if everything works these
3412 instructions should end up in the three operand version). */
29134980
OF
3413 inst_env->invalid = 1;
3414 return;
3415 }
3416 else
3417 {
3418 /* three_operand_add_sub_cmp_and_or does the same as we should do here
dda83cd7 3419 so use it. */
29134980
OF
3420 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3421 }
3422 inst_env->slot_needed = 0;
3423 inst_env->prefix_found = 0;
3424 inst_env->xflag_found = 0;
3425 inst_env->disable_interrupt = 0;
3426}
3427
3428/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3429 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3430 source to register. */
3431
a78f21af 3432static void
29134980 3433handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
dda83cd7 3434 inst_env_type *inst_env)
29134980
OF
3435{
3436 unsigned long operand1;
3437 unsigned long operand2;
3438 unsigned long operand3;
3439 int size;
3440
0963b4bd 3441 /* The instruction is either an indirect or autoincrement addressing mode.
29134980
OF
3442 Check if the destination register is the PC. */
3443 if (cris_get_operand2 (inst) == REG_PC)
3444 {
3445 /* Must be done here, get_data_from_address may change the size
dda83cd7 3446 field. */
29134980
OF
3447 size = cris_get_size (inst);
3448 operand2 = inst_env->reg[REG_PC];
3449
3450 /* Get the value of the third operand, i.e. the indirect operand. */
3451 operand1 = inst_env->reg[cris_get_operand1 (inst)];
e17a4113 3452 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
29134980
OF
3453
3454 /* Calculate the PC value after the instruction, i.e. where the
dda83cd7 3455 breakpoint should be. The order of the udw_operands is vital. */
29134980
OF
3456 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3457 }
3458 /* If this is an autoincrement addressing mode, check if the increment
3459 changes the PC. */
0963b4bd
MS
3460 if ((cris_get_operand1 (inst) == REG_PC)
3461 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3462 {
3463 /* Get the size field. */
3464 size = cris_get_size (inst);
3465
3466 /* If it's an extend instruction we don't want the signed extend bit,
dda83cd7 3467 because it influences the size. */
29134980 3468 if (cris_get_opcode (inst) < 4)
dda83cd7
SM
3469 {
3470 size &= ~SIGNED_EXTEND_BIT_MASK;
3471 }
29134980
OF
3472 process_autoincrement (size, inst, inst_env);
3473 }
3474 inst_env->slot_needed = 0;
3475 inst_env->prefix_found = 0;
3476 inst_env->xflag_found = 0;
3477 inst_env->disable_interrupt = 0;
3478}
3479
3480/* Handles the two-operand addressing mode, all modes except register, for
3481 the ADD, SUB CMP, AND and OR instruction. */
3482
a78f21af 3483static void
29134980 3484none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
dda83cd7 3485 inst_env_type *inst_env)
29134980
OF
3486{
3487 if (inst_env->prefix_found)
3488 {
3489 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
dda83cd7
SM
3490 {
3491 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3492 }
29134980 3493 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
dda83cd7
SM
3494 {
3495 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3496 }
29134980 3497 else
dda83cd7
SM
3498 {
3499 /* The mode is invalid for a prefixed base instruction. */
3500 inst_env->invalid = 1;
3501 return;
3502 }
29134980
OF
3503 }
3504 else
3505 {
3506 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3507 }
3508}
3509
3510/* Handles the quick addressing mode for the ADD and SUB instruction. */
3511
a78f21af 3512static void
29134980
OF
3513quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3514{
3515 unsigned long operand1;
3516 unsigned long operand2;
3517
3518 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3519 instruction and can't have a prefix. */
3520 if (inst_env->prefix_found)
3521 {
3522 inst_env->invalid = 1;
3523 return;
3524 }
3525
3526 /* Check if the instruction has PC as its target. */
3527 if (cris_get_operand2 (inst) == REG_PC)
3528 {
3529 if (inst_env->slot_needed)
dda83cd7
SM
3530 {
3531 inst_env->invalid = 1;
3532 return;
3533 }
29134980
OF
3534 operand1 = cris_get_quick_value (inst);
3535 operand2 = inst_env->reg[REG_PC];
3536
3537 /* The size should now be dword. */
3538 cris_set_size_to_dword (&inst);
3539
3540 /* Calculate the PC value after the instruction, i.e. where the
dda83cd7 3541 breakpoint should be. */
29134980
OF
3542 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3543 }
3544 inst_env->slot_needed = 0;
3545 inst_env->prefix_found = 0;
3546 inst_env->xflag_found = 0;
3547 inst_env->disable_interrupt = 0;
3548}
3549
3550/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3551
a78f21af 3552static void
29134980
OF
3553quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3554{
3555 unsigned long operand1;
3556 unsigned long operand2;
3557
3558 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3559 instruction and can't have a prefix. */
3560 if (inst_env->prefix_found)
3561 {
3562 inst_env->invalid = 1;
3563 return;
3564 }
3565 /* Check if the instruction has PC as its target. */
3566 if (cris_get_operand2 (inst) == REG_PC)
3567 {
3568 if (inst_env->slot_needed)
dda83cd7
SM
3569 {
3570 inst_env->invalid = 1;
3571 return;
3572 }
29134980
OF
3573 /* The instruction has the PC as its target register. */
3574 operand1 = cris_get_quick_value (inst);
3575 operand2 = inst_env->reg[REG_PC];
3576
3577 /* The quick value is signed, so check if we must do a signed extend. */
3578 if (operand1 & SIGNED_QUICK_VALUE_MASK)
dda83cd7
SM
3579 {
3580 /* sign extend */
3581 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3582 }
29134980
OF
3583 /* The size should now be dword. */
3584 cris_set_size_to_dword (&inst);
3585
3586 /* Calculate the PC value after the instruction, i.e. where the
dda83cd7 3587 breakpoint should be. */
29134980
OF
3588 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3589 }
3590 inst_env->slot_needed = 0;
3591 inst_env->prefix_found = 0;
3592 inst_env->xflag_found = 0;
3593 inst_env->disable_interrupt = 0;
3594}
3595
3596/* Translate op_type to a function and call it. */
3597
a78f21af 3598static void
be8626e0
MD
3599cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3600 unsigned short inst, inst_env_type *inst_env)
29134980
OF
3601{
3602 switch (op_type)
3603 {
3604 case cris_not_implemented_op:
3605 not_implemented_op (inst, inst_env);
3606 break;
3607
3608 case cris_abs_op:
3609 abs_op (inst, inst_env);
3610 break;
3611
3612 case cris_addi_op:
3613 addi_op (inst, inst_env);
3614 break;
3615
3616 case cris_asr_op:
3617 asr_op (inst, inst_env);
3618 break;
3619
3620 case cris_asrq_op:
3621 asrq_op (inst, inst_env);
3622 break;
3623
3624 case cris_ax_ei_setf_op:
3625 ax_ei_setf_op (inst, inst_env);
3626 break;
3627
3628 case cris_bdap_prefix:
3629 bdap_prefix (inst, inst_env);
3630 break;
3631
3632 case cris_biap_prefix:
3633 biap_prefix (inst, inst_env);
3634 break;
3635
3636 case cris_break_op:
3637 break_op (inst, inst_env);
3638 break;
3639
3640 case cris_btst_nop_op:
3641 btst_nop_op (inst, inst_env);
3642 break;
3643
3644 case cris_clearf_di_op:
3645 clearf_di_op (inst, inst_env);
3646 break;
3647
3648 case cris_dip_prefix:
3649 dip_prefix (inst, inst_env);
3650 break;
3651
3652 case cris_dstep_logshift_mstep_neg_not_op:
3653 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3654 break;
3655
3656 case cris_eight_bit_offset_branch_op:
3657 eight_bit_offset_branch_op (inst, inst_env);
3658 break;
3659
3660 case cris_move_mem_to_reg_movem_op:
3661 move_mem_to_reg_movem_op (inst, inst_env);
3662 break;
3663
3664 case cris_move_reg_to_mem_movem_op:
3665 move_reg_to_mem_movem_op (inst, inst_env);
3666 break;
3667
3668 case cris_move_to_preg_op:
be8626e0 3669 move_to_preg_op (gdbarch, inst, inst_env);
29134980
OF
3670 break;
3671
3672 case cris_muls_op:
3673 muls_op (inst, inst_env);
3674 break;
3675
3676 case cris_mulu_op:
3677 mulu_op (inst, inst_env);
3678 break;
3679
3680 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3681 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3682 break;
3683
3684 case cris_none_reg_mode_clear_test_op:
3685 none_reg_mode_clear_test_op (inst, inst_env);
3686 break;
3687
3688 case cris_none_reg_mode_jump_op:
3689 none_reg_mode_jump_op (inst, inst_env);
3690 break;
3691
3692 case cris_none_reg_mode_move_from_preg_op:
be8626e0 3693 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
29134980
OF
3694 break;
3695
3696 case cris_quick_mode_add_sub_op:
3697 quick_mode_add_sub_op (inst, inst_env);
3698 break;
3699
3700 case cris_quick_mode_and_cmp_move_or_op:
3701 quick_mode_and_cmp_move_or_op (inst, inst_env);
3702 break;
3703
3704 case cris_quick_mode_bdap_prefix:
3705 quick_mode_bdap_prefix (inst, inst_env);
3706 break;
3707
3708 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3709 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3710 break;
3711
3712 case cris_reg_mode_clear_op:
3713 reg_mode_clear_op (inst, inst_env);
3714 break;
3715
3716 case cris_reg_mode_jump_op:
3717 reg_mode_jump_op (inst, inst_env);
3718 break;
3719
3720 case cris_reg_mode_move_from_preg_op:
3721 reg_mode_move_from_preg_op (inst, inst_env);
3722 break;
3723
3724 case cris_reg_mode_test_op:
3725 reg_mode_test_op (inst, inst_env);
3726 break;
3727
3728 case cris_scc_op:
3729 scc_op (inst, inst_env);
3730 break;
3731
3732 case cris_sixteen_bit_offset_branch_op:
3733 sixteen_bit_offset_branch_op (inst, inst_env);
3734 break;
3735
3736 case cris_three_operand_add_sub_cmp_and_or_op:
3737 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3738 break;
3739
3740 case cris_three_operand_bound_op:
3741 three_operand_bound_op (inst, inst_env);
3742 break;
3743
3744 case cris_two_operand_bound_op:
3745 two_operand_bound_op (inst, inst_env);
3746 break;
3747
3748 case cris_xor_op:
3749 xor_op (inst, inst_env);
3750 break;
3751 }
3752}
3753
18b3c2f5
RW
3754/* Originally from <asm/elf.h>. */
3755typedef unsigned char cris_elf_greg_t[4];
dbbff683
OF
3756
3757/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464 3758#define CRISV10_ELF_NGREG 35
18b3c2f5 3759typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
c600d464
OF
3760
3761#define CRISV32_ELF_NGREG 32
18b3c2f5 3762typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683 3763
18b3c2f5 3764/* Unpack a cris_elf_gregset_t into GDB's register cache. */
dbbff683 3765
a78f21af 3766static void
69ed9b74
CB
3767cris_supply_gregset (const struct regset *regset, struct regcache *regcache,
3768 int regnum, const void *gregs, size_t len)
dbbff683 3769{
ac7936df 3770 struct gdbarch *gdbarch = regcache->arch ();
08106042 3771 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
dbbff683 3772 int i;
69ed9b74
CB
3773 const cris_elf_greg_t *regp = static_cast<const cris_elf_greg_t *>(gregs);
3774
3775 if (len != sizeof (cris_elf_gregset_t)
3776 && len != sizeof (crisv32_elf_gregset_t))
3777 warning (_("wrong size gregset struct in core file"));
3778 gdb_assert (len >= sizeof (crisv32_elf_gregset_t));
dbbff683
OF
3779
3780 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3781 knows about the actual size of each register so that's no problem. */
3782 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3783 {
69ed9b74
CB
3784 if (regnum == -1 || regnum == i)
3785 regcache->raw_supply (i, (char *)&regp[i]);
dbbff683 3786 }
c600d464 3787
69ed9b74 3788 if (tdep->cris_version == 32 && (regnum == -1 || regnum == ERP_REGNUM))
c600d464
OF
3789 {
3790 /* Needed to set pseudo-register PC for CRISv32. */
3791 /* FIXME: If ERP is in a delay slot at this point then the PC will
3792 be wrong. Issue a warning to alert the user. */
73e1c03f
SM
3793 regcache->raw_supply (gdbarch_pc_regnum (gdbarch),
3794 (char *)&regp[ERP_REGNUM]);
c600d464
OF
3795
3796 if (*(char *)&regp[ERP_REGNUM] & 0x1)
6cb06a8c 3797 gdb_printf (gdb_stderr, "Warning: PC in delay slot\n");
c600d464 3798 }
dbbff683
OF
3799}
3800
69ed9b74
CB
3801static const struct regset cris_regset = {
3802 nullptr,
3803 cris_supply_gregset,
3804 /* We don't need a collect function because we only use this for core files
3805 (via iterate_over_regset_sections). */
3806 nullptr,
3807 REGSET_VARIABLE_SIZE
3808};
dbbff683 3809
69ed9b74
CB
3810static void cris_iterate_over_regset_sections (struct gdbarch *gdbarch,
3811 iterate_over_regset_sections_cb *cb,
3812 void *cb_data,
3813 const struct regcache *regcache)
dbbff683 3814{
69ed9b74
CB
3815 cb (".reg", sizeof (crisv32_elf_gregset_t), sizeof (crisv32_elf_gregset_t),
3816 &cris_regset, NULL, cb_data);
dbbff683
OF
3817}
3818
6c265988 3819void _initialize_cris_tdep ();
29134980 3820void
6c265988 3821_initialize_cris_tdep ()
29134980 3822{
29134980
OF
3823 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3824
29134980 3825 /* CRIS-specific user-commands. */
addb4faf
PA
3826 add_setshow_zuinteger_cmd ("cris-version", class_support,
3827 &usr_cmd_cris_version,
3828 _("Set the current CRIS version."),
3829 _("Show the current CRIS version."),
3830 _("\
bdd56253
OF
3831Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3832Defaults to 10. "),
addb4faf
PA
3833 set_cris_version,
3834 NULL, /* FIXME: i18n: Current CRIS version
3835 is %s. */
3836 &setlist, &showlist);
0e6bdb31
OF
3837
3838 add_setshow_enum_cmd ("cris-mode", class_support,
3839 cris_modes, &usr_cmd_cris_mode,
3840 _("Set the current CRIS mode."),
3841 _("Show the current CRIS mode."),
bdd56253
OF
3842 _("\
3843Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3844Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3845 set_cris_mode,
3846 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3847 &setlist, &showlist);
dbbff683 3848
a5f6c8f5
OF
3849 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3850 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3851 _("Set the usage of Dwarf-2 CFI for CRIS."),
3852 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3853 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3854 set_cris_dwarf2_cfi,
0963b4bd
MS
3855 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3856 for CRIS is %d. */
a5f6c8f5 3857 &setlist, &showlist);
29134980
OF
3858}
3859
3860/* Prints out all target specific values. */
3861
3862static void
3863cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3864{
08106042 3865 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
29134980
OF
3866 if (tdep != NULL)
3867 {
6cb06a8c
TT
3868 gdb_printf (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3869 tdep->cris_version);
3870 gdb_printf (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3871 tdep->cris_mode);
3872 gdb_printf (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3873 tdep->cris_dwarf2_cfi);
29134980
OF
3874 }
3875}
3876
3877static void
eb4c3f4a 3878set_cris_version (const char *ignore_args, int from_tty,
a5f6c8f5 3879 struct cmd_list_element *c)
29134980
OF
3880{
3881 struct gdbarch_info info;
3882
a5f6c8f5 3883 usr_cmd_cris_version_valid = 1;
29134980 3884
a5f6c8f5 3885 /* Update the current architecture, if needed. */
a5f6c8f5 3886 if (!gdbarch_update_p (info))
f34652de 3887 internal_error (_("cris_gdbarch_update: failed to update architecture."));
29134980
OF
3888}
3889
0e6bdb31 3890static void
eb4c3f4a 3891set_cris_mode (const char *ignore_args, int from_tty,
0e6bdb31
OF
3892 struct cmd_list_element *c)
3893{
3894 struct gdbarch_info info;
3895
3896 /* Update the current architecture, if needed. */
0e6bdb31 3897 if (!gdbarch_update_p (info))
f34652de 3898 internal_error ("cris_gdbarch_update: failed to update architecture.");
0e6bdb31
OF
3899}
3900
29134980 3901static void
eb4c3f4a 3902set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
a5f6c8f5 3903 struct cmd_list_element *c)
29134980
OF
3904{
3905 struct gdbarch_info info;
a5f6c8f5
OF
3906
3907 /* Update the current architecture, if needed. */
a5f6c8f5 3908 if (!gdbarch_update_p (info))
f34652de 3909 internal_error (_("cris_gdbarch_update: failed to update architecture."));
29134980
OF
3910}
3911
29134980
OF
3912static struct gdbarch *
3913cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3914{
e4286e57 3915 unsigned int cris_version;
29134980
OF
3916
3917 if (usr_cmd_cris_version_valid)
3918 {
3919 /* Trust the user's CRIS version setting. */
3920 cris_version = usr_cmd_cris_version;
3921 }
c600d464
OF
3922 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3923 {
3924 cris_version = 32;
3925 }
29134980
OF
3926 else
3927 {
3928 /* Assume it's CRIS version 10. */
3929 cris_version = 10;
3930 }
3931
29134980
OF
3932 /* Make the current settings visible to the user. */
3933 usr_cmd_cris_version = cris_version;
29134980 3934
0e6bdb31 3935 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
3936 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3937 arches != NULL;
3938 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3939 {
345bd07c 3940 cris_gdbarch_tdep *tdep
08106042 3941 = gdbarch_tdep<cris_gdbarch_tdep> (arches->gdbarch);
345bd07c
SM
3942
3943 if (tdep->cris_version == usr_cmd_cris_version
3944 && tdep->cris_mode == usr_cmd_cris_mode
3945 && tdep->cris_dwarf2_cfi == usr_cmd_cris_dwarf2_cfi)
dda83cd7 3946 return arches->gdbarch;
29134980
OF
3947 }
3948
3949 /* No matching architecture was found. Create a new one. */
7cf1de6c 3950 info.byte_order = BFD_ENDIAN_LITTLE;
2b16913c
SM
3951 gdbarch *gdbarch
3952 = gdbarch_alloc (&info, gdbarch_tdep_up (new cris_gdbarch_tdep));
3953 cris_gdbarch_tdep *tdep = gdbarch_tdep<cris_gdbarch_tdep> (gdbarch);
29134980 3954
a5f6c8f5 3955 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 3956 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 3957 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980 3958
b4206d25 3959 set_gdbarch_return_value (gdbarch, cris_return_value);
29134980 3960 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
3961
3962 /* Length of ordinary registers used in push_word and a few other
3963 places. register_size() is the real way to know how big a
3964 register is. */
a5f6c8f5 3965
2e4b5889 3966 set_gdbarch_double_bit (gdbarch, 64);
ea06eb3d 3967 /* The default definition of a long double is 2 * gdbarch_double_bit,
2e4b5889 3968 which means we have to set this explicitly. */
c600d464 3969 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 3970
29134980
OF
3971 /* The total amount of space needed to store (in an array called registers)
3972 GDB's copy of the machine's register state. Note: We can not use
d93859e2 3973 cris_register_size at this point, since it relies on gdbarch
29134980
OF
3974 being set. */
3975 switch (tdep->cris_version)
3976 {
3977 case 0:
3978 case 1:
3979 case 2:
3980 case 3:
29134980
OF
3981 case 8:
3982 case 9:
a5f6c8f5 3983 /* Old versions; not supported. */
114d7832 3984 return 0;
29134980
OF
3985
3986 case 10:
3987 case 11:
3988 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
dda83cd7 3989 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
3990 set_gdbarch_pc_regnum (gdbarch, 15);
3991 set_gdbarch_register_type (gdbarch, cris_register_type);
3992 /* There are 32 registers (some of which may not be implemented). */
3993 set_gdbarch_num_regs (gdbarch, 32);
3994 set_gdbarch_register_name (gdbarch, cris_register_name);
3995 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
3996 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
3997
3998 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
3999 break;
4000
4001 case 32:
4002 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4003 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4004 and pseudo-register PC (32 bits). */
4005 set_gdbarch_pc_regnum (gdbarch, 32);
4006 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4007 /* 32 registers + pseudo-register PC + 16 support registers. */
4008 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4009 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4010
4011 set_gdbarch_cannot_store_register
4012 (gdbarch, crisv32_cannot_store_register);
4013 set_gdbarch_cannot_fetch_register
4014 (gdbarch, crisv32_cannot_fetch_register);
4015
4016 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4017
4018 set_gdbarch_single_step_through_delay
4019 (gdbarch, crisv32_single_step_through_delay);
4020
29134980
OF
4021 break;
4022
4023 default:
114d7832
PA
4024 /* Unknown version. */
4025 return 0;
29134980
OF
4026 }
4027
c600d464
OF
4028 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4029 have the same ABI). */
2e4b5889
OF
4030 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4031 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4032 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4033 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4034
4035 /* The stack grows downward. */
4036 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4037
04180708
YQ
4038 set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
4039 set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
69ed9b74 4040 set_gdbarch_iterate_over_regset_sections (gdbarch, cris_iterate_over_regset_sections);
29134980 4041
a5f6c8f5
OF
4042 if (tdep->cris_dwarf2_cfi == 1)
4043 {
4044 /* Hook in the Dwarf-2 frame sniffer. */
4045 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4046 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
94afd7a6 4047 dwarf2_append_unwinders (gdbarch);
a5f6c8f5
OF
4048 }
4049
0e6bdb31
OF
4050 if (tdep->cris_mode != cris_mode_guru)
4051 {
94afd7a6 4052 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
0e6bdb31 4053 }
a5f6c8f5 4054
94afd7a6 4055 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
2e4b5889 4056 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4057
749c8b38
RW
4058 /* Hook in ABI-specific overrides, if they have been registered. */
4059 gdbarch_init_osabi (info, gdbarch);
4060
29134980
OF
4061 return gdbarch;
4062}