]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
2011-01-05 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
7b6bb8da 4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
9291a0cd
TT
54#include "exceptions.h"
55#include "gdb_stat.h"
96d19272 56#include "completer.h"
34eaf542 57#include "vec.h"
98bfdba5
PA
58#include "c-lang.h"
59#include "valprint.h"
4c2df51b 60
c906108c
SS
61#include <fcntl.h>
62#include "gdb_string.h"
4bdf3d34 63#include "gdb_assert.h"
c906108c 64#include <sys/types.h>
233a11ab
CS
65#ifdef HAVE_ZLIB_H
66#include <zlib.h>
67#endif
dce234bc
PP
68#ifdef HAVE_MMAP
69#include <sys/mman.h>
85d9bd0e
TT
70#ifndef MAP_FAILED
71#define MAP_FAILED ((void *) -1)
72#endif
dce234bc 73#endif
d8151005 74
34eaf542
TT
75typedef struct symbol *symbolp;
76DEF_VEC_P (symbolp);
77
107d2387 78#if 0
357e46e7 79/* .debug_info header for a compilation unit
c906108c
SS
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91_COMP_UNIT_HEADER;
92#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 93#endif
c906108c 94
c906108c
SS
95/* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116_STATEMENT_PROLOGUE;
117
d97bc12b
DE
118/* When non-zero, dump DIEs after they are read in. */
119static int dwarf2_die_debug = 0;
120
dce234bc
PP
121static int pagesize;
122
df8a16a1
DJ
123/* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127static int processing_has_namespace_info;
128
6502dd73
DJ
129static const struct objfile_data *dwarf2_objfile_data_key;
130
dce234bc
PP
131struct dwarf2_section_info
132{
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
be391dca
TT
137 /* True if we have tried to read this section. */
138 int readin;
dce234bc
PP
139};
140
9291a0cd
TT
141/* All offsets in the index are of this type. It must be
142 architecture-independent. */
143typedef uint32_t offset_type;
144
145DEF_VEC_I (offset_type);
146
147/* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149struct mapped_index
150{
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
3876f04e
DE
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
9291a0cd 159 /* Size in slots, each slot is 2 offset_types. */
3876f04e 160 offset_type symbol_table_slots;
9291a0cd
TT
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163};
164
6502dd73
DJ
165struct dwarf2_per_objfile
166{
dce234bc
PP
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
dce234bc
PP
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
348e048f 174 struct dwarf2_section_info types;
dce234bc
PP
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
9291a0cd 177 struct dwarf2_section_info gdb_index;
ae038cb0 178
be391dca
TT
179 /* Back link. */
180 struct objfile *objfile;
181
10b3939b
DJ
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
ae038cb0
DJ
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
1fd400ff
TT
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
ae038cb0
DJ
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 198
348e048f
DE
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
72dca2f5
FR
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
9291a0cd 206
ae2de4f8
DE
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
209 unsigned char using_index;
210
ae2de4f8 211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 212 struct mapped_index *index_table;
98bfdba5 213
7b9f3c50
DE
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
98bfdba5
PA
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
673bfd45
DE
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
6502dd73
DJ
233};
234
235static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
236
237/* names of the debugging sections */
238
233a11ab
CS
239/* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242#define INFO_SECTION "debug_info"
243#define ABBREV_SECTION "debug_abbrev"
244#define LINE_SECTION "debug_line"
233a11ab
CS
245#define LOC_SECTION "debug_loc"
246#define MACINFO_SECTION "debug_macinfo"
247#define STR_SECTION "debug_str"
248#define RANGES_SECTION "debug_ranges"
348e048f 249#define TYPES_SECTION "debug_types"
233a11ab
CS
250#define FRAME_SECTION "debug_frame"
251#define EH_FRAME_SECTION "eh_frame"
9291a0cd 252#define GDB_INDEX_SECTION "gdb_index"
c906108c
SS
253
254/* local data types */
255
57349743
JB
256/* We hold several abbreviation tables in memory at the same time. */
257#ifndef ABBREV_HASH_SIZE
258#define ABBREV_HASH_SIZE 121
259#endif
260
107d2387
AC
261/* The data in a compilation unit header, after target2host
262 translation, looks like this. */
c906108c 263struct comp_unit_head
a738430d 264{
c764a876 265 unsigned int length;
a738430d 266 short version;
a738430d
MK
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
9cbfa09e 269 unsigned int abbrev_offset;
57349743 270
a738430d
MK
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
57349743 273
a738430d
MK
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
57349743 276
a738430d
MK
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
57349743 280
d00adf39
DE
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
a738430d 284};
c906108c 285
3da10d80
KS
286/* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288struct delayed_method_info
289{
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304};
305
306typedef struct delayed_method_info delayed_method_info;
307DEF_VEC_O (delayed_method_info);
308
e7c27a73
DJ
309/* Internal state when decoding a particular compilation unit. */
310struct dwarf2_cu
311{
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
d00adf39 315 /* The header of the compilation unit. */
e7c27a73 316 struct comp_unit_head header;
e142c38c 317
d00adf39
DE
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
e142c38c
DJ
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
b0f35d58
DL
330 const char *producer;
331
e142c38c
DJ
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
f3dd6933
DJ
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
72bf9492
DJ
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
ae038cb0
DJ
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
10b3939b 368 /* A hash table of die offsets for following references. */
51545339 369 htab_t die_hash;
10b3939b
DJ
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
cb1df416
DJ
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
3da10d80
KS
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
ae038cb0
DJ
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
72bf9492
DJ
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
e7c27a73
DJ
398};
399
10b3939b
DJ
400/* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
ae038cb0
DJ
406struct dwarf2_per_cu_data
407{
348e048f 408 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 409 bytes should suffice to store the length of any compilation unit
45452591
DE
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
c764a876 413 unsigned int offset;
348e048f 414 unsigned int length : 29;
ae038cb0
DJ
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
c764a876 418 unsigned int queued : 1;
ae038cb0 419
5afb4e99
DJ
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
348e048f
DE
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
17ea53c3
JK
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
ae038cb0 432 struct dwarf2_cu *cu;
1c379e20 433
9291a0cd
TT
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
ae038cb0
DJ
449};
450
348e048f
DE
451/* Entry in the signatured_types hash table. */
452
453struct signatured_type
454{
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465};
466
93311388
DE
467/* Struct used to pass misc. parameters to read_die_and_children, et. al.
468 which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call.
470 This struct exists to abstract away the constant parameters of
471 die reading. */
472
473struct die_reader_specs
474{
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484};
485
debd256d
JB
486/* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489struct line_header
490{
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
2dc7f7b3 495 unsigned char maximum_ops_per_instruction;
debd256d
JB
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
c906108c 519 {
debd256d
JB
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
aaa75496 524 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 525 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
526 } *file_names;
527
528 /* The start and end of the statement program following this
6502dd73 529 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 530 gdb_byte *statement_program_start, *statement_program_end;
debd256d 531};
c906108c
SS
532
533/* When we construct a partial symbol table entry we only
534 need this much information. */
535struct partial_die_info
536 {
72bf9492 537 /* Offset of this DIE. */
c906108c 538 unsigned int offset;
72bf9492
DJ
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
72bf9492
DJ
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
fa4028e9
JB
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
98bfdba5
PA
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
abc72ce4
DE
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
72bf9492 564 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 565 sometimes a default name for unnamed DIEs. */
c906108c 566 char *name;
72bf9492 567
abc72ce4
DE
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
72bf9492
DJ
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
72bf9492 582
93311388 583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 584 DW_AT_sibling, if any. */
abc72ce4
DE
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 587 gdb_byte *sibling;
72bf9492
DJ
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
597 };
598
599/* This data structure holds the information of an abbrev. */
600struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
c906108c
SS
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610struct attr_abbrev
611 {
9d25dd43
DE
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
614 };
615
b60c80d6
DJ
616/* Attributes have a name and a value */
617struct attribute
618 {
9d25dd43 619 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
b60c80d6
DJ
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
43bbcdc2
PH
631 ULONGEST unsnd;
632 LONGEST snd;
b60c80d6 633 CORE_ADDR addr;
348e048f 634 struct signatured_type *signatured_type;
b60c80d6
DJ
635 }
636 u;
637 };
638
c906108c
SS
639/* This data structure holds a complete die structure. */
640struct die_info
641 {
76815b17
DE
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
98bfdba5
PA
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
76815b17
DE
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
93311388 655 /* Offset in .debug_info or .debug_types section. */
76815b17 656 unsigned int offset;
78ba4af6
JB
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
4950bc1c 661 together via their SIBLING fields. */
639d11d3
DC
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
c906108c 665
b60c80d6
DJ
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
c906108c
SS
670 };
671
5fb290d7
DJ
672struct function_range
673{
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678};
679
c906108c
SS
680/* Get at parts of an attribute structure */
681
682#define DW_STRING(attr) ((attr)->u.str)
8285870a 683#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
684#define DW_UNSND(attr) ((attr)->u.unsnd)
685#define DW_BLOCK(attr) ((attr)->u.blk)
686#define DW_SND(attr) ((attr)->u.snd)
687#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 688#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c
SS
689
690/* Blocks are a bunch of untyped bytes. */
691struct dwarf_block
692 {
693 unsigned int size;
fe1b8b76 694 gdb_byte *data;
c906108c
SS
695 };
696
c906108c
SS
697#ifndef ATTR_ALLOC_CHUNK
698#define ATTR_ALLOC_CHUNK 4
699#endif
700
c906108c
SS
701/* Allocate fields for structs, unions and enums in this size. */
702#ifndef DW_FIELD_ALLOC_CHUNK
703#define DW_FIELD_ALLOC_CHUNK 4
704#endif
705
c906108c
SS
706/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709static int bits_per_byte = 8;
710
711/* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714struct field_info
c5aa993b
JM
715 {
716 /* List of data member and baseclasses fields. */
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
7d0ccb61 724 *fields, *baseclasses;
c906108c 725
7d0ccb61 726 /* Number of fields (including baseclasses). */
c5aa993b 727 int nfields;
c906108c 728
c5aa993b
JM
729 /* Number of baseclasses. */
730 int nbaseclasses;
c906108c 731
c5aa993b
JM
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
c906108c 734
c5aa993b
JM
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
c906108c 743
c5aa993b
JM
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
c906108c 754
c5aa993b
JM
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
98751a41
JK
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
c5aa993b 767 };
c906108c 768
10b3939b
DJ
769/* One item on the queue of compilation units to read in full symbols
770 for. */
771struct dwarf2_queue_item
772{
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775};
776
777/* The current queue. */
778static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
ae038cb0
DJ
780/* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785static int dwarf2_max_cache_age = 5;
920d2a44
AC
786static void
787show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789{
3e43a32a
MS
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
792 value);
793}
794
ae038cb0 795
c906108c
SS
796/* Various complaints about symbol reading that don't abort the process */
797
4d3c2250
KB
798static void
799dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 800{
4d3c2250 801 complaint (&symfile_complaints,
e2e0b3e5 802 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
803}
804
25e43795
DJ
805static void
806dwarf2_debug_line_missing_file_complaint (void)
807{
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810}
811
59205f5a
JB
812static void
813dwarf2_debug_line_missing_end_sequence_complaint (void)
814{
815 complaint (&symfile_complaints,
3e43a32a
MS
816 _(".debug_line section has line "
817 "program sequence without an end"));
59205f5a
JB
818}
819
4d3c2250
KB
820static void
821dwarf2_complex_location_expr_complaint (void)
2e276125 822{
e2e0b3e5 823 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
824}
825
4d3c2250
KB
826static void
827dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
2e276125 829{
4d3c2250 830 complaint (&symfile_complaints,
3e43a32a
MS
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
4d3c2250
KB
833}
834
835static void
836dwarf2_macros_too_long_complaint (void)
2e276125 837{
4d3c2250 838 complaint (&symfile_complaints,
e2e0b3e5 839 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
840}
841
842static void
843dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 844{
4d3c2250 845 complaint (&symfile_complaints,
3e43a32a
MS
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
4d3c2250
KB
848 arg1);
849}
850
851static void
852dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 853{
4d3c2250 854 complaint (&symfile_complaints,
3e43a32a
MS
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
4d3c2250 857}
c906108c 858
c906108c
SS
859/* local function prototypes */
860
4efb68b1 861static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 862
aaa75496
JB
863static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
c67a9c90 866static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 867
72bf9492
DJ
868static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
5734ee8b 870 int, struct dwarf2_cu *);
c906108c 871
72bf9492
DJ
872static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
63d06c5c 874
72bf9492
DJ
875static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 877 int need_pc, struct dwarf2_cu *cu);
63d06c5c 878
5d7cb8df
JK
879static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
72bf9492
DJ
883static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
91c24f0a 885
bc30ff58
JB
886static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 888 int need_pc, struct dwarf2_cu *cu);
bc30ff58 889
fe1b8b76 890static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 893
a14ed312 894static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 895
a14ed312 896static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 897
e7c27a73 898static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 899
f3dd6933 900static void dwarf2_free_abbrev_table (void *);
c906108c 901
fe1b8b76 902static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 903 struct dwarf2_cu *);
72bf9492 904
57349743 905static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 906 struct dwarf2_cu *);
c906108c 907
93311388
DE
908static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
72bf9492 911
fe1b8b76 912static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
c906108c 917
c764a876 918static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 919 struct dwarf2_cu *);
72bf9492
DJ
920
921static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
fe1b8b76
JB
924static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 926
fe1b8b76
JB
927static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 929
fe1b8b76 930static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 931
fe1b8b76 932static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 933
fe1b8b76 934static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 935
fe1b8b76 936static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 937
93311388 938static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 939
fe1b8b76 940static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 941 unsigned int *);
c906108c 942
c764a876
DE
943static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
613e1657 948
fe1b8b76 949static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
950 unsigned int *);
951
952static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 953
fe1b8b76 954static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 955
9b1c24c8 956static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 957
fe1b8b76
JB
958static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
4bdf3d34 961
fe1b8b76 962static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 963
fe1b8b76 964static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 965
fe1b8b76 966static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 967
e142c38c 968static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 969
e142c38c
DJ
970static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
c906108c 972
348e048f
DE
973static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
05cf31d1
JB
977static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
e142c38c 980static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 981
e142c38c 982static struct die_info *die_specification (struct die_info *die,
f2f0e013 983 struct dwarf2_cu **);
63d06c5c 984
debd256d
JB
985static void free_line_header (struct line_header *lh);
986
aaa75496
JB
987static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
debd256d
JB
990static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
e7c27a73 992 bfd *abfd, struct dwarf2_cu *cu));
debd256d 993
72b9f47f 994static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
aaa75496 995 struct dwarf2_cu *, struct partial_symtab *);
c906108c 996
72b9f47f 997static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 998
a14ed312 999static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1000 struct dwarf2_cu *);
c906108c 1001
34eaf542
TT
1002static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
a14ed312 1005static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1006 struct dwarf2_cu *);
c906108c 1007
98bfdba5
PA
1008static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
2df3850c 1015
e7c27a73 1016static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1017
b4ba55a1
JB
1018static int need_gnat_info (struct dwarf2_cu *);
1019
3e43a32a
MS
1020static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
b4ba55a1
JB
1022
1023static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
e7c27a73
DJ
1026static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
c906108c 1028
673bfd45
DE
1029static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
c906108c 1031
f792889a 1032static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1033
673bfd45
DE
1034static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
086ed43d 1036static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1037
6e70227d 1038static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
63d06c5c 1041
e7c27a73 1042static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1043
348e048f
DE
1044static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
e7c27a73 1046static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1047
e7c27a73 1048static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1049
ff013f42
JK
1050static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
a14ed312 1053static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
c906108c 1056
fae299cd
DC
1057static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
801e3a5b
JB
1061static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
a14ed312 1064static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1065 struct dwarf2_cu *);
c906108c 1066
a14ed312 1067static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1068 struct type *, struct dwarf2_cu *);
c906108c 1069
a14ed312 1070static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1071 struct die_info *, struct type *,
e7c27a73 1072 struct dwarf2_cu *);
c906108c 1073
a14ed312 1074static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1075 struct type *,
1076 struct dwarf2_cu *);
c906108c 1077
134d01f1 1078static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1079
e7c27a73 1080static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1081
e7c27a73 1082static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1083
5d7cb8df
JK
1084static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
27aa8d6a
SW
1086static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
f55ee35c
JK
1088static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
38d518c9 1091static const char *namespace_name (struct die_info *die,
e142c38c 1092 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1093
134d01f1 1094static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1095
e7c27a73 1096static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1097
6e70227d 1098static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1099 struct dwarf2_cu *);
1100
93311388 1101static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1102
93311388
DE
1103static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
d97bc12b
DE
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
93311388
DE
1108static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
fe1b8b76 1110 gdb_byte **new_info_ptr,
639d11d3
DC
1111 struct die_info *parent);
1112
93311388
DE
1113static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
fe1b8b76 1115 gdb_byte **new_info_ptr,
639d11d3
DC
1116 struct die_info *parent);
1117
93311388
DE
1118static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
e7c27a73 1122static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1123
71c25dea
TT
1124static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
e142c38c 1127static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1128
98bfdba5
PA
1129static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
e142c38c 1133static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1134 struct dwarf2_cu **);
9219021c 1135
a14ed312 1136static char *dwarf_tag_name (unsigned int);
c906108c 1137
a14ed312 1138static char *dwarf_attr_name (unsigned int);
c906108c 1139
a14ed312 1140static char *dwarf_form_name (unsigned int);
c906108c 1141
a14ed312 1142static char *dwarf_bool_name (unsigned int);
c906108c 1143
a14ed312 1144static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1145
1146#if 0
a14ed312 1147static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1148#endif
1149
f9aca02d 1150static struct die_info *sibling_die (struct die_info *);
c906108c 1151
d97bc12b
DE
1152static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154static void dump_die_for_error (struct die_info *);
1155
1156static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
c906108c 1158
d97bc12b 1159/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1160
51545339 1161static void store_in_ref_table (struct die_info *,
10b3939b 1162 struct dwarf2_cu *);
c906108c 1163
93311388
DE
1164static int is_ref_attr (struct attribute *);
1165
c764a876 1166static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1167
43bbcdc2 1168static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1169
348e048f
DE
1170static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
10b3939b
DJ
1174static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
f2f0e013 1176 struct dwarf2_cu **);
c906108c 1177
348e048f
DE
1178static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
c906108c
SS
1188/* memory allocation interface */
1189
7b5a2f43 1190static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1191
f3dd6933 1192static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1193
b60c80d6 1194static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1195
e142c38c 1196static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1197
e142c38c
DJ
1198static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
5fb290d7 1200
2e276125 1201static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1202 char *, bfd *, struct dwarf2_cu *);
2e276125 1203
8e19ed76
PS
1204static int attr_form_is_block (struct attribute *);
1205
3690dd37
JB
1206static int attr_form_is_section_offset (struct attribute *);
1207
1208static int attr_form_is_constant (struct attribute *);
1209
8cf6f0b1
TT
1210static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
93e7bd98
DJ
1214static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
4c2df51b 1217
93311388
DE
1218static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
4bb7a0a7 1221
72bf9492
DJ
1222static void free_stack_comp_unit (void *);
1223
72bf9492
DJ
1224static hashval_t partial_die_hash (const void *item);
1225
1226static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
ae038cb0 1228static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1229 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1230
1231static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1232 (unsigned int offset, struct objfile *objfile);
ae038cb0 1233
9816fde3
JK
1234static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
93311388 1239
ae038cb0
DJ
1240static void free_one_comp_unit (void *);
1241
1242static void free_cached_comp_units (void *);
1243
1244static void age_cached_comp_units (void);
1245
1246static void free_one_cached_comp_unit (void *);
1247
f792889a
DJ
1248static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1c379e20 1250
ae038cb0
DJ
1251static void create_all_comp_units (struct objfile *);
1252
1fd400ff
TT
1253static int create_debug_types_hash_table (struct objfile *objfile);
1254
93311388
DE
1255static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
10b3939b
DJ
1257
1258static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
ae038cb0
DJ
1263static void dwarf2_mark (struct dwarf2_cu *);
1264
1265static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
673bfd45
DE
1267static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
f792889a 1270static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1271
9291a0cd
TT
1272static void dwarf2_release_queue (void *dummy);
1273
1274static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277static void process_queue (struct objfile *objfile);
1278
1279static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
673bfd45 1295static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1296
9291a0cd
TT
1297#if WORDS_BIGENDIAN
1298
1299/* Convert VALUE between big- and little-endian. */
1300static offset_type
1301byte_swap (offset_type value)
1302{
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310}
1311
1312#define MAYBE_SWAP(V) byte_swap (V)
1313
1314#else
1315#define MAYBE_SWAP(V) (V)
1316#endif /* WORDS_BIGENDIAN */
1317
1318/* The suffix for an index file. */
1319#define INDEX_SUFFIX ".gdb-index"
1320
3da10d80
KS
1321static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
c906108c
SS
1324/* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327int
6502dd73 1328dwarf2_has_info (struct objfile *objfile)
c906108c 1329{
be391dca
TT
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1336
be391dca
TT
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
6502dd73 1340
be391dca
TT
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1346}
1347
233a11ab
CS
1348/* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351static int
dce234bc 1352section_is_p (const char *section_name, const char *name)
233a11ab 1353{
dce234bc
PP
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1358}
1359
c906108c
SS
1360/* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364static void
72dca2f5 1365dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1366{
dce234bc 1367 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1368 {
dce234bc
PP
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1371 }
dce234bc 1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1373 {
dce234bc
PP
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1376 }
dce234bc 1377 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1378 {
dce234bc
PP
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1381 }
dce234bc 1382 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1383 {
dce234bc
PP
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1386 }
dce234bc 1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1388 {
dce234bc
PP
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1391 }
dce234bc 1392 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1393 {
dce234bc
PP
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1396 }
dce234bc 1397 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1398 {
dce234bc
PP
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1401 }
dce234bc 1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1403 {
3799ccc6 1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1405
3799ccc6
EZ
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
dce234bc
PP
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1410 }
b6af0555 1411 }
dce234bc 1412 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1413 {
dce234bc
PP
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1416 }
348e048f
DE
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
9291a0cd
TT
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
dce234bc 1427
72dca2f5
FR
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1431}
1432
dce234bc
PP
1433/* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1435
1436static void
dce234bc
PP
1437zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439{
1440 bfd *abfd = objfile->obfd;
1441#ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445#else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
3e43a32a
MS
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
dce234bc
PP
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
affddf13 1506 do_cleanups (cleanup);
dce234bc
PP
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509#endif
233a11ab
CS
1510}
1511
dce234bc
PP
1512/* Read the contents of the section SECTP from object file specified by
1513 OBJFILE, store info about the section into INFO.
1514 If the section is compressed, uncompress it before returning. */
c906108c 1515
dce234bc
PP
1516static void
1517dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1518{
dce234bc
PP
1519 bfd *abfd = objfile->obfd;
1520 asection *sectp = info->asection;
1521 gdb_byte *buf, *retbuf;
1522 unsigned char header[4];
c906108c 1523
be391dca
TT
1524 if (info->readin)
1525 return;
dce234bc
PP
1526 info->buffer = NULL;
1527 info->was_mmapped = 0;
be391dca 1528 info->readin = 1;
188dd5d6 1529
dce234bc
PP
1530 if (info->asection == NULL || info->size == 0)
1531 return;
c906108c 1532
dce234bc
PP
1533 /* Check if the file has a 4-byte header indicating compression. */
1534 if (info->size > sizeof (header)
1535 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1536 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1537 {
1538 /* Upon decompression, update the buffer and its size. */
1539 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1540 {
1541 zlib_decompress_section (objfile, sectp, &info->buffer,
1542 &info->size);
1543 return;
1544 }
1545 }
4bdf3d34 1546
dce234bc
PP
1547#ifdef HAVE_MMAP
1548 if (pagesize == 0)
1549 pagesize = getpagesize ();
2e276125 1550
dce234bc
PP
1551 /* Only try to mmap sections which are large enough: we don't want to
1552 waste space due to fragmentation. Also, only try mmap for sections
1553 without relocations. */
1554
1555 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1556 {
1557 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1558 size_t map_length = info->size + sectp->filepos - pg_offset;
1559 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1560 MAP_PRIVATE, pg_offset);
1561
1562 if (retbuf != MAP_FAILED)
1563 {
1564 info->was_mmapped = 1;
1565 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1566#if HAVE_POSIX_MADVISE
1567 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1568#endif
dce234bc
PP
1569 return;
1570 }
1571 }
1572#endif
1573
1574 /* If we get here, we are a normal, not-compressed section. */
1575 info->buffer = buf
1576 = obstack_alloc (&objfile->objfile_obstack, info->size);
1577
1578 /* When debugging .o files, we may need to apply relocations; see
1579 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1580 We never compress sections in .o files, so we only need to
1581 try this when the section is not compressed. */
ac8035ab 1582 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1583 if (retbuf != NULL)
1584 {
1585 info->buffer = retbuf;
1586 return;
1587 }
1588
1589 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1590 || bfd_bread (buf, info->size, abfd) != info->size)
1591 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1592 bfd_get_filename (abfd));
1593}
1594
1595/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1596 SECTION_NAME. */
af34e669 1597
dce234bc
PP
1598void
1599dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1600 asection **sectp, gdb_byte **bufp,
1601 bfd_size_type *sizep)
1602{
1603 struct dwarf2_per_objfile *data
1604 = objfile_data (objfile, dwarf2_objfile_data_key);
1605 struct dwarf2_section_info *info;
a3b2a86b
TT
1606
1607 /* We may see an objfile without any DWARF, in which case we just
1608 return nothing. */
1609 if (data == NULL)
1610 {
1611 *sectp = NULL;
1612 *bufp = NULL;
1613 *sizep = 0;
1614 return;
1615 }
dce234bc
PP
1616 if (section_is_p (section_name, EH_FRAME_SECTION))
1617 info = &data->eh_frame;
1618 else if (section_is_p (section_name, FRAME_SECTION))
1619 info = &data->frame;
0d53c4c4 1620 else
f3574227 1621 gdb_assert_not_reached ("unexpected section");
dce234bc
PP
1622
1623 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1624 /* We haven't read this section in yet. Do it now. */
1625 dwarf2_read_section (objfile, info);
1626
1627 *sectp = info->asection;
1628 *bufp = info->buffer;
1629 *sizep = info->size;
1630}
1631
9291a0cd 1632\f
7b9f3c50
DE
1633/* DWARF quick_symbols_functions support. */
1634
1635/* TUs can share .debug_line entries, and there can be a lot more TUs than
1636 unique line tables, so we maintain a separate table of all .debug_line
1637 derived entries to support the sharing.
1638 All the quick functions need is the list of file names. We discard the
1639 line_header when we're done and don't need to record it here. */
1640struct quick_file_names
1641{
1642 /* The offset in .debug_line of the line table. We hash on this. */
1643 unsigned int offset;
1644
1645 /* The number of entries in file_names, real_names. */
1646 unsigned int num_file_names;
1647
1648 /* The file names from the line table, after being run through
1649 file_full_name. */
1650 const char **file_names;
1651
1652 /* The file names from the line table after being run through
1653 gdb_realpath. These are computed lazily. */
1654 const char **real_names;
1655};
1656
1657/* When using the index (and thus not using psymtabs), each CU has an
1658 object of this type. This is used to hold information needed by
1659 the various "quick" methods. */
1660struct dwarf2_per_cu_quick_data
1661{
1662 /* The file table. This can be NULL if there was no file table
1663 or it's currently not read in.
1664 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1665 struct quick_file_names *file_names;
1666
1667 /* The corresponding symbol table. This is NULL if symbols for this
1668 CU have not yet been read. */
1669 struct symtab *symtab;
1670
1671 /* A temporary mark bit used when iterating over all CUs in
1672 expand_symtabs_matching. */
1673 unsigned int mark : 1;
1674
1675 /* True if we've tried to read the file table and found there isn't one.
1676 There will be no point in trying to read it again next time. */
1677 unsigned int no_file_data : 1;
1678};
1679
1680/* Hash function for a quick_file_names. */
1681
1682static hashval_t
1683hash_file_name_entry (const void *e)
1684{
1685 const struct quick_file_names *file_data = e;
1686
1687 return file_data->offset;
1688}
1689
1690/* Equality function for a quick_file_names. */
1691
1692static int
1693eq_file_name_entry (const void *a, const void *b)
1694{
1695 const struct quick_file_names *ea = a;
1696 const struct quick_file_names *eb = b;
1697
1698 return ea->offset == eb->offset;
1699}
1700
1701/* Delete function for a quick_file_names. */
1702
1703static void
1704delete_file_name_entry (void *e)
1705{
1706 struct quick_file_names *file_data = e;
1707 int i;
1708
1709 for (i = 0; i < file_data->num_file_names; ++i)
1710 {
1711 xfree ((void*) file_data->file_names[i]);
1712 if (file_data->real_names)
1713 xfree ((void*) file_data->real_names[i]);
1714 }
1715
1716 /* The space for the struct itself lives on objfile_obstack,
1717 so we don't free it here. */
1718}
1719
1720/* Create a quick_file_names hash table. */
1721
1722static htab_t
1723create_quick_file_names_table (unsigned int nr_initial_entries)
1724{
1725 return htab_create_alloc (nr_initial_entries,
1726 hash_file_name_entry, eq_file_name_entry,
1727 delete_file_name_entry, xcalloc, xfree);
1728}
9291a0cd
TT
1729
1730/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1731 this CU came. */
2fdf6df6 1732
9291a0cd
TT
1733static void
1734dw2_do_instantiate_symtab (struct objfile *objfile,
1735 struct dwarf2_per_cu_data *per_cu)
1736{
1737 struct cleanup *back_to;
1738
1739 back_to = make_cleanup (dwarf2_release_queue, NULL);
1740
1741 queue_comp_unit (per_cu, objfile);
1742
1743 if (per_cu->from_debug_types)
1744 read_signatured_type_at_offset (objfile, per_cu->offset);
1745 else
1746 load_full_comp_unit (per_cu, objfile);
1747
1748 process_queue (objfile);
1749
1750 /* Age the cache, releasing compilation units that have not
1751 been used recently. */
1752 age_cached_comp_units ();
1753
1754 do_cleanups (back_to);
1755}
1756
1757/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1758 the objfile from which this CU came. Returns the resulting symbol
1759 table. */
2fdf6df6 1760
9291a0cd
TT
1761static struct symtab *
1762dw2_instantiate_symtab (struct objfile *objfile,
1763 struct dwarf2_per_cu_data *per_cu)
1764{
1765 if (!per_cu->v.quick->symtab)
1766 {
1767 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1768 increment_reading_symtab ();
1769 dw2_do_instantiate_symtab (objfile, per_cu);
1770 do_cleanups (back_to);
1771 }
1772 return per_cu->v.quick->symtab;
1773}
1774
1fd400ff 1775/* Return the CU given its index. */
2fdf6df6 1776
1fd400ff
TT
1777static struct dwarf2_per_cu_data *
1778dw2_get_cu (int index)
1779{
1780 if (index >= dwarf2_per_objfile->n_comp_units)
1781 {
1782 index -= dwarf2_per_objfile->n_comp_units;
1783 return dwarf2_per_objfile->type_comp_units[index];
1784 }
1785 return dwarf2_per_objfile->all_comp_units[index];
1786}
1787
9291a0cd
TT
1788/* A helper function that knows how to read a 64-bit value in a way
1789 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1790 otherwise. */
2fdf6df6 1791
9291a0cd
TT
1792static int
1793extract_cu_value (const char *bytes, ULONGEST *result)
1794{
1795 if (sizeof (ULONGEST) < 8)
1796 {
1797 int i;
1798
1799 /* Ignore the upper 4 bytes if they are all zero. */
1800 for (i = 0; i < 4; ++i)
1801 if (bytes[i + 4] != 0)
1802 return 0;
1803
1804 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1805 }
1806 else
1807 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1808 return 1;
1809}
1810
1811/* Read the CU list from the mapped index, and use it to create all
1812 the CU objects for this objfile. Return 0 if something went wrong,
1813 1 if everything went ok. */
2fdf6df6 1814
9291a0cd 1815static int
1fd400ff
TT
1816create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1817 offset_type cu_list_elements)
9291a0cd
TT
1818{
1819 offset_type i;
9291a0cd
TT
1820
1821 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1822 dwarf2_per_objfile->all_comp_units
1823 = obstack_alloc (&objfile->objfile_obstack,
1824 dwarf2_per_objfile->n_comp_units
1825 * sizeof (struct dwarf2_per_cu_data *));
1826
1827 for (i = 0; i < cu_list_elements; i += 2)
1828 {
1829 struct dwarf2_per_cu_data *the_cu;
1830 ULONGEST offset, length;
1831
1832 if (!extract_cu_value (cu_list, &offset)
1833 || !extract_cu_value (cu_list + 8, &length))
1834 return 0;
1835 cu_list += 2 * 8;
1836
1837 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1838 struct dwarf2_per_cu_data);
1839 the_cu->offset = offset;
1840 the_cu->length = length;
1841 the_cu->objfile = objfile;
1842 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1843 struct dwarf2_per_cu_quick_data);
1844 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1845 }
1846
1847 return 1;
1848}
1849
1fd400ff 1850/* Create the signatured type hash table from the index. */
673bfd45 1851
1fd400ff 1852static int
673bfd45
DE
1853create_signatured_type_table_from_index (struct objfile *objfile,
1854 const gdb_byte *bytes,
1855 offset_type elements)
1fd400ff
TT
1856{
1857 offset_type i;
673bfd45 1858 htab_t sig_types_hash;
1fd400ff
TT
1859
1860 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1861 dwarf2_per_objfile->type_comp_units
1862 = obstack_alloc (&objfile->objfile_obstack,
1863 dwarf2_per_objfile->n_type_comp_units
1864 * sizeof (struct dwarf2_per_cu_data *));
1865
673bfd45 1866 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
1867
1868 for (i = 0; i < elements; i += 3)
1869 {
1870 struct signatured_type *type_sig;
1871 ULONGEST offset, type_offset, signature;
1872 void **slot;
1873
1874 if (!extract_cu_value (bytes, &offset)
1875 || !extract_cu_value (bytes + 8, &type_offset))
1876 return 0;
1877 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1878 bytes += 3 * 8;
1879
1880 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1881 struct signatured_type);
1882 type_sig->signature = signature;
1883 type_sig->offset = offset;
1884 type_sig->type_offset = type_offset;
1885 type_sig->per_cu.from_debug_types = 1;
1886 type_sig->per_cu.offset = offset;
1887 type_sig->per_cu.objfile = objfile;
1888 type_sig->per_cu.v.quick
1889 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1890 struct dwarf2_per_cu_quick_data);
1891
673bfd45 1892 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1fd400ff
TT
1893 *slot = type_sig;
1894
1895 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1896 }
1897
673bfd45 1898 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
1899
1900 return 1;
1901}
1902
9291a0cd
TT
1903/* Read the address map data from the mapped index, and use it to
1904 populate the objfile's psymtabs_addrmap. */
2fdf6df6 1905
9291a0cd
TT
1906static void
1907create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1908{
1909 const gdb_byte *iter, *end;
1910 struct obstack temp_obstack;
1911 struct addrmap *mutable_map;
1912 struct cleanup *cleanup;
1913 CORE_ADDR baseaddr;
1914
1915 obstack_init (&temp_obstack);
1916 cleanup = make_cleanup_obstack_free (&temp_obstack);
1917 mutable_map = addrmap_create_mutable (&temp_obstack);
1918
1919 iter = index->address_table;
1920 end = iter + index->address_table_size;
1921
1922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1923
1924 while (iter < end)
1925 {
1926 ULONGEST hi, lo, cu_index;
1927 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1928 iter += 8;
1929 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1930 iter += 8;
1931 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1932 iter += 4;
1933
1934 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 1935 dw2_get_cu (cu_index));
9291a0cd
TT
1936 }
1937
1938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1939 &objfile->objfile_obstack);
1940 do_cleanups (cleanup);
1941}
1942
1943/* The hash function for strings in the mapped index. This is the
1944 same as the hashtab.c hash function, but we keep a separate copy to
1945 maintain control over the implementation. This is necessary
1946 because the hash function is tied to the format of the mapped index
1947 file. */
2fdf6df6 1948
9291a0cd
TT
1949static hashval_t
1950mapped_index_string_hash (const void *p)
1951{
1952 const unsigned char *str = (const unsigned char *) p;
1953 hashval_t r = 0;
1954 unsigned char c;
1955
1956 while ((c = *str++) != 0)
1957 r = r * 67 + c - 113;
1958
1959 return r;
1960}
1961
1962/* Find a slot in the mapped index INDEX for the object named NAME.
1963 If NAME is found, set *VEC_OUT to point to the CU vector in the
1964 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 1965
9291a0cd
TT
1966static int
1967find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1968 offset_type **vec_out)
1969{
1970 offset_type hash = mapped_index_string_hash (name);
1971 offset_type slot, step;
1972
3876f04e
DE
1973 slot = hash & (index->symbol_table_slots - 1);
1974 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
9291a0cd
TT
1975
1976 for (;;)
1977 {
1978 /* Convert a slot number to an offset into the table. */
1979 offset_type i = 2 * slot;
1980 const char *str;
3876f04e 1981 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
9291a0cd
TT
1982 return 0;
1983
3876f04e 1984 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
9291a0cd
TT
1985 if (!strcmp (name, str))
1986 {
1987 *vec_out = (offset_type *) (index->constant_pool
3876f04e 1988 + MAYBE_SWAP (index->symbol_table[i + 1]));
9291a0cd
TT
1989 return 1;
1990 }
1991
3876f04e 1992 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
1993 }
1994}
1995
1996/* Read the index file. If everything went ok, initialize the "quick"
1997 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 1998
9291a0cd
TT
1999static int
2000dwarf2_read_index (struct objfile *objfile)
2001{
9291a0cd
TT
2002 char *addr;
2003 struct mapped_index *map;
b3b272e1 2004 offset_type *metadata;
ac0b195c
KW
2005 const gdb_byte *cu_list;
2006 const gdb_byte *types_list = NULL;
2007 offset_type version, cu_list_elements;
2008 offset_type types_list_elements = 0;
1fd400ff 2009 int i;
9291a0cd
TT
2010
2011 if (dwarf2_per_objfile->gdb_index.asection == NULL
2012 || dwarf2_per_objfile->gdb_index.size == 0)
2013 return 0;
82430852
JK
2014
2015 /* Older elfutils strip versions could keep the section in the main
2016 executable while splitting it for the separate debug info file. */
2017 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2018 & SEC_HAS_CONTENTS) == 0)
2019 return 0;
2020
9291a0cd
TT
2021 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2022
2023 addr = dwarf2_per_objfile->gdb_index.buffer;
2024 /* Version check. */
1fd400ff 2025 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c
TT
2026 /* Versions earlier than 3 emitted every copy of a psymbol. This
2027 causes the index to behave very poorly for certain requests. So,
2028 it seems better to just ignore such indices. */
2029 if (version < 3)
9291a0cd 2030 return 0;
594e8718
JK
2031 /* Indexes with higher version than the one supported by GDB may be no
2032 longer backward compatible. */
2033 if (version > 3)
2034 return 0;
9291a0cd
TT
2035
2036 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
b3b272e1 2037 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
2038
2039 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2040
2041 i = 0;
2042 cu_list = addr + MAYBE_SWAP (metadata[i]);
2043 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 2044 / 8);
1fd400ff
TT
2045 ++i;
2046
987d643c
TT
2047 types_list = addr + MAYBE_SWAP (metadata[i]);
2048 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2049 - MAYBE_SWAP (metadata[i]))
2050 / 8);
2051 ++i;
1fd400ff
TT
2052
2053 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2054 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2055 - MAYBE_SWAP (metadata[i]));
2056 ++i;
2057
3876f04e
DE
2058 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2059 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2060 - MAYBE_SWAP (metadata[i]))
2061 / (2 * sizeof (offset_type)));
1fd400ff 2062 ++i;
9291a0cd 2063
1fd400ff
TT
2064 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2065
2066 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2067 return 0;
2068
987d643c 2069 if (types_list_elements
673bfd45
DE
2070 && !create_signatured_type_table_from_index (objfile, types_list,
2071 types_list_elements))
9291a0cd
TT
2072 return 0;
2073
2074 create_addrmap_from_index (objfile, map);
2075
2076 dwarf2_per_objfile->index_table = map;
2077 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2078 dwarf2_per_objfile->quick_file_names_table =
2079 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2080
2081 return 1;
2082}
2083
2084/* A helper for the "quick" functions which sets the global
2085 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2086
9291a0cd
TT
2087static void
2088dw2_setup (struct objfile *objfile)
2089{
2090 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2091 gdb_assert (dwarf2_per_objfile);
2092}
2093
2094/* A helper for the "quick" functions which attempts to read the line
2095 table for THIS_CU. */
2fdf6df6 2096
7b9f3c50
DE
2097static struct quick_file_names *
2098dw2_get_file_names (struct objfile *objfile,
2099 struct dwarf2_per_cu_data *this_cu)
9291a0cd
TT
2100{
2101 bfd *abfd = objfile->obfd;
7b9f3c50 2102 struct line_header *lh;
9291a0cd
TT
2103 struct attribute *attr;
2104 struct cleanup *cleanups;
2105 struct die_info *comp_unit_die;
36374493 2106 struct dwarf2_section_info* sec;
9291a0cd
TT
2107 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2108 int has_children, i;
2109 struct dwarf2_cu cu;
2110 unsigned int bytes_read, buffer_size;
2111 struct die_reader_specs reader_specs;
2112 char *name, *comp_dir;
7b9f3c50
DE
2113 void **slot;
2114 struct quick_file_names *qfn;
2115 unsigned int line_offset;
9291a0cd 2116
7b9f3c50
DE
2117 if (this_cu->v.quick->file_names != NULL)
2118 return this_cu->v.quick->file_names;
2119 /* If we know there is no line data, no point in looking again. */
2120 if (this_cu->v.quick->no_file_data)
2121 return NULL;
9291a0cd 2122
9816fde3 2123 init_one_comp_unit (&cu, objfile);
9291a0cd
TT
2124 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2125
36374493
DE
2126 if (this_cu->from_debug_types)
2127 sec = &dwarf2_per_objfile->types;
2128 else
2129 sec = &dwarf2_per_objfile->info;
2130 dwarf2_read_section (objfile, sec);
2131 buffer_size = sec->size;
2132 buffer = sec->buffer;
9291a0cd
TT
2133 info_ptr = buffer + this_cu->offset;
2134 beg_of_comp_unit = info_ptr;
2135
2136 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2137 buffer, buffer_size,
2138 abfd);
2139
2140 /* Complete the cu_header. */
2141 cu.header.offset = beg_of_comp_unit - buffer;
2142 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2143
2144 this_cu->cu = &cu;
2145 cu.per_cu = this_cu;
2146
2147 dwarf2_read_abbrevs (abfd, &cu);
2148 make_cleanup (dwarf2_free_abbrev_table, &cu);
2149
2150 if (this_cu->from_debug_types)
2151 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2152 init_cu_die_reader (&reader_specs, &cu);
2153 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2154 &has_children);
2155
7b9f3c50
DE
2156 lh = NULL;
2157 slot = NULL;
2158 line_offset = 0;
9291a0cd
TT
2159 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2160 if (attr)
2161 {
7b9f3c50
DE
2162 struct quick_file_names find_entry;
2163
2164 line_offset = DW_UNSND (attr);
2165
2166 /* We may have already read in this line header (TU line header sharing).
2167 If we have we're done. */
2168 find_entry.offset = line_offset;
2169 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2170 &find_entry, INSERT);
2171 if (*slot != NULL)
2172 {
2173 do_cleanups (cleanups);
2174 this_cu->v.quick->file_names = *slot;
2175 return *slot;
2176 }
2177
9291a0cd
TT
2178 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2179 }
2180 if (lh == NULL)
2181 {
2182 do_cleanups (cleanups);
7b9f3c50
DE
2183 this_cu->v.quick->no_file_data = 1;
2184 return NULL;
9291a0cd
TT
2185 }
2186
7b9f3c50
DE
2187 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2188 qfn->offset = line_offset;
2189 gdb_assert (slot != NULL);
2190 *slot = qfn;
9291a0cd 2191
7b9f3c50 2192 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
9291a0cd 2193
7b9f3c50
DE
2194 qfn->num_file_names = lh->num_file_names;
2195 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2196 lh->num_file_names * sizeof (char *));
9291a0cd 2197 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2198 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2199 qfn->real_names = NULL;
9291a0cd 2200
7b9f3c50 2201 free_line_header (lh);
9291a0cd 2202 do_cleanups (cleanups);
7b9f3c50
DE
2203
2204 this_cu->v.quick->file_names = qfn;
2205 return qfn;
9291a0cd
TT
2206}
2207
2208/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2209 real path for a given file name from the line table. */
2fdf6df6 2210
9291a0cd 2211static const char *
7b9f3c50
DE
2212dw2_get_real_path (struct objfile *objfile,
2213 struct quick_file_names *qfn, int index)
9291a0cd 2214{
7b9f3c50
DE
2215 if (qfn->real_names == NULL)
2216 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2217 qfn->num_file_names, sizeof (char *));
9291a0cd 2218
7b9f3c50
DE
2219 if (qfn->real_names[index] == NULL)
2220 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2221
7b9f3c50 2222 return qfn->real_names[index];
9291a0cd
TT
2223}
2224
2225static struct symtab *
2226dw2_find_last_source_symtab (struct objfile *objfile)
2227{
2228 int index;
ae2de4f8 2229
9291a0cd
TT
2230 dw2_setup (objfile);
2231 index = dwarf2_per_objfile->n_comp_units - 1;
1fd400ff 2232 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
9291a0cd
TT
2233}
2234
7b9f3c50
DE
2235/* Traversal function for dw2_forget_cached_source_info. */
2236
2237static int
2238dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2239{
7b9f3c50 2240 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2241
7b9f3c50 2242 if (file_data->real_names)
9291a0cd 2243 {
7b9f3c50 2244 int i;
9291a0cd 2245
7b9f3c50 2246 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 2247 {
7b9f3c50
DE
2248 xfree ((void*) file_data->real_names[i]);
2249 file_data->real_names[i] = NULL;
9291a0cd
TT
2250 }
2251 }
7b9f3c50
DE
2252
2253 return 1;
2254}
2255
2256static void
2257dw2_forget_cached_source_info (struct objfile *objfile)
2258{
2259 dw2_setup (objfile);
2260
2261 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2262 dw2_free_cached_file_names, NULL);
9291a0cd
TT
2263}
2264
2265static int
2266dw2_lookup_symtab (struct objfile *objfile, const char *name,
2267 const char *full_path, const char *real_path,
2268 struct symtab **result)
2269{
2270 int i;
2271 int check_basename = lbasename (name) == name;
2272 struct dwarf2_per_cu_data *base_cu = NULL;
2273
2274 dw2_setup (objfile);
ae2de4f8 2275
1fd400ff
TT
2276 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2277 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2278 {
2279 int j;
e254ef6a 2280 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2281 struct quick_file_names *file_data;
9291a0cd 2282
e254ef6a 2283 if (per_cu->v.quick->symtab)
9291a0cd
TT
2284 continue;
2285
7b9f3c50
DE
2286 file_data = dw2_get_file_names (objfile, per_cu);
2287 if (file_data == NULL)
9291a0cd
TT
2288 continue;
2289
7b9f3c50 2290 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2291 {
7b9f3c50 2292 const char *this_name = file_data->file_names[j];
9291a0cd
TT
2293
2294 if (FILENAME_CMP (name, this_name) == 0)
2295 {
e254ef6a 2296 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2297 return 1;
2298 }
2299
2300 if (check_basename && ! base_cu
2301 && FILENAME_CMP (lbasename (this_name), name) == 0)
e254ef6a 2302 base_cu = per_cu;
9291a0cd
TT
2303
2304 if (full_path != NULL)
2305 {
7b9f3c50
DE
2306 const char *this_real_name = dw2_get_real_path (objfile,
2307 file_data, j);
9291a0cd 2308
7b9f3c50
DE
2309 if (this_real_name != NULL
2310 && FILENAME_CMP (full_path, this_real_name) == 0)
9291a0cd 2311 {
e254ef6a 2312 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2313 return 1;
2314 }
2315 }
2316
2317 if (real_path != NULL)
2318 {
7b9f3c50
DE
2319 const char *this_real_name = dw2_get_real_path (objfile,
2320 file_data, j);
9291a0cd 2321
7b9f3c50
DE
2322 if (this_real_name != NULL
2323 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 2324 {
74dd2ca6
DE
2325 *result = dw2_instantiate_symtab (objfile, per_cu);
2326 return 1;
9291a0cd
TT
2327 }
2328 }
2329 }
2330 }
2331
2332 if (base_cu)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, base_cu);
2335 return 1;
2336 }
2337
2338 return 0;
2339}
2340
2341static struct symtab *
2342dw2_lookup_symbol (struct objfile *objfile, int block_index,
2343 const char *name, domain_enum domain)
2344{
774b6a14 2345 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2346 instead. */
2347 return NULL;
2348}
2349
2350/* A helper function that expands all symtabs that hold an object
2351 named NAME. */
2fdf6df6 2352
9291a0cd
TT
2353static void
2354dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2355{
2356 dw2_setup (objfile);
2357
ae2de4f8 2358 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2359 if (dwarf2_per_objfile->index_table)
2360 {
2361 offset_type *vec;
2362
2363 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2364 name, &vec))
2365 {
2366 offset_type i, len = MAYBE_SWAP (*vec);
2367 for (i = 0; i < len; ++i)
2368 {
2369 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2370 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2371
e254ef6a 2372 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2373 }
2374 }
2375 }
2376}
2377
774b6a14
TT
2378static void
2379dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2380 int kind, const char *name,
2381 domain_enum domain)
9291a0cd 2382{
774b6a14 2383 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2384}
2385
2386static void
2387dw2_print_stats (struct objfile *objfile)
2388{
2389 int i, count;
2390
2391 dw2_setup (objfile);
2392 count = 0;
1fd400ff
TT
2393 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2394 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2395 {
e254ef6a 2396 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2397
e254ef6a 2398 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2399 ++count;
2400 }
2401 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2402}
2403
2404static void
2405dw2_dump (struct objfile *objfile)
2406{
2407 /* Nothing worth printing. */
2408}
2409
2410static void
2411dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2412 struct section_offsets *delta)
2413{
2414 /* There's nothing to relocate here. */
2415}
2416
2417static void
2418dw2_expand_symtabs_for_function (struct objfile *objfile,
2419 const char *func_name)
2420{
2421 dw2_do_expand_symtabs_matching (objfile, func_name);
2422}
2423
2424static void
2425dw2_expand_all_symtabs (struct objfile *objfile)
2426{
2427 int i;
2428
2429 dw2_setup (objfile);
1fd400ff
TT
2430
2431 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2432 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2433 {
e254ef6a 2434 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2435
e254ef6a 2436 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2437 }
2438}
2439
2440static void
2441dw2_expand_symtabs_with_filename (struct objfile *objfile,
2442 const char *filename)
2443{
2444 int i;
2445
2446 dw2_setup (objfile);
d4637a04
DE
2447
2448 /* We don't need to consider type units here.
2449 This is only called for examining code, e.g. expand_line_sal.
2450 There can be an order of magnitude (or more) more type units
2451 than comp units, and we avoid them if we can. */
2452
2453 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
2454 {
2455 int j;
e254ef6a 2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2457 struct quick_file_names *file_data;
9291a0cd 2458
e254ef6a 2459 if (per_cu->v.quick->symtab)
9291a0cd
TT
2460 continue;
2461
7b9f3c50
DE
2462 file_data = dw2_get_file_names (objfile, per_cu);
2463 if (file_data == NULL)
9291a0cd
TT
2464 continue;
2465
7b9f3c50 2466 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2467 {
7b9f3c50 2468 const char *this_name = file_data->file_names[j];
1ef75ecc 2469 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 2470 {
e254ef6a 2471 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2472 break;
2473 }
2474 }
2475 }
2476}
2477
dd786858 2478static const char *
9291a0cd
TT
2479dw2_find_symbol_file (struct objfile *objfile, const char *name)
2480{
e254ef6a 2481 struct dwarf2_per_cu_data *per_cu;
9291a0cd 2482 offset_type *vec;
7b9f3c50 2483 struct quick_file_names *file_data;
9291a0cd
TT
2484
2485 dw2_setup (objfile);
2486
ae2de4f8 2487 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2488 if (!dwarf2_per_objfile->index_table)
2489 return NULL;
2490
2491 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2492 name, &vec))
2493 return NULL;
2494
2495 /* Note that this just looks at the very first one named NAME -- but
2496 actually we are looking for a function. find_main_filename
2497 should be rewritten so that it doesn't require a custom hook. It
2498 could just use the ordinary symbol tables. */
2499 /* vec[0] is the length, which must always be >0. */
e254ef6a 2500 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2501
7b9f3c50
DE
2502 file_data = dw2_get_file_names (objfile, per_cu);
2503 if (file_data == NULL)
9291a0cd
TT
2504 return NULL;
2505
7b9f3c50 2506 return file_data->file_names[file_data->num_file_names - 1];
9291a0cd
TT
2507}
2508
2509static void
40658b94
PH
2510dw2_map_matching_symbols (const char * name, domain_enum namespace,
2511 struct objfile *objfile, int global,
2512 int (*callback) (struct block *,
2513 struct symbol *, void *),
2edb89d3
JK
2514 void *data, symbol_compare_ftype *match,
2515 symbol_compare_ftype *ordered_compare)
9291a0cd 2516{
40658b94 2517 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2518 current language is Ada for a non-Ada objfile using GNU index. As Ada
2519 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2520}
2521
2522static void
2523dw2_expand_symtabs_matching (struct objfile *objfile,
2524 int (*file_matcher) (const char *, void *),
2525 int (*name_matcher) (const char *, void *),
2526 domain_enum kind,
2527 void *data)
2528{
2529 int i;
2530 offset_type iter;
4b5246aa 2531 struct mapped_index *index;
9291a0cd
TT
2532
2533 dw2_setup (objfile);
ae2de4f8
DE
2534
2535 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2536 if (!dwarf2_per_objfile->index_table)
2537 return;
4b5246aa 2538 index = dwarf2_per_objfile->index_table;
9291a0cd 2539
1fd400ff
TT
2540 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2541 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2542 {
2543 int j;
e254ef6a 2544 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2545 struct quick_file_names *file_data;
9291a0cd 2546
e254ef6a
DE
2547 per_cu->v.quick->mark = 0;
2548 if (per_cu->v.quick->symtab)
9291a0cd
TT
2549 continue;
2550
7b9f3c50
DE
2551 file_data = dw2_get_file_names (objfile, per_cu);
2552 if (file_data == NULL)
9291a0cd
TT
2553 continue;
2554
7b9f3c50 2555 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2556 {
7b9f3c50 2557 if (file_matcher (file_data->file_names[j], data))
9291a0cd 2558 {
e254ef6a 2559 per_cu->v.quick->mark = 1;
9291a0cd
TT
2560 break;
2561 }
2562 }
2563 }
2564
3876f04e 2565 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2566 {
2567 offset_type idx = 2 * iter;
2568 const char *name;
2569 offset_type *vec, vec_len, vec_idx;
2570
3876f04e 2571 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2572 continue;
2573
3876f04e 2574 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd
TT
2575
2576 if (! (*name_matcher) (name, data))
2577 continue;
2578
2579 /* The name was matched, now expand corresponding CUs that were
2580 marked. */
4b5246aa 2581 vec = (offset_type *) (index->constant_pool
3876f04e 2582 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
2583 vec_len = MAYBE_SWAP (vec[0]);
2584 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2585 {
e254ef6a 2586 struct dwarf2_per_cu_data *per_cu;
1fd400ff 2587
e254ef6a
DE
2588 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2589 if (per_cu->v.quick->mark)
2590 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2591 }
2592 }
2593}
2594
2595static struct symtab *
2596dw2_find_pc_sect_symtab (struct objfile *objfile,
2597 struct minimal_symbol *msymbol,
2598 CORE_ADDR pc,
2599 struct obj_section *section,
2600 int warn_if_readin)
2601{
2602 struct dwarf2_per_cu_data *data;
2603
2604 dw2_setup (objfile);
2605
2606 if (!objfile->psymtabs_addrmap)
2607 return NULL;
2608
2609 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2610 if (!data)
2611 return NULL;
2612
2613 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 2614 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
2615 paddress (get_objfile_arch (objfile), pc));
2616
2617 return dw2_instantiate_symtab (objfile, data);
2618}
2619
2620static void
2621dw2_map_symbol_names (struct objfile *objfile,
2622 void (*fun) (const char *, void *),
2623 void *data)
2624{
2625 offset_type iter;
4b5246aa
TT
2626 struct mapped_index *index;
2627
9291a0cd
TT
2628 dw2_setup (objfile);
2629
ae2de4f8 2630 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2631 if (!dwarf2_per_objfile->index_table)
2632 return;
4b5246aa 2633 index = dwarf2_per_objfile->index_table;
9291a0cd 2634
3876f04e 2635 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2636 {
2637 offset_type idx = 2 * iter;
2638 const char *name;
2639 offset_type *vec, vec_len, vec_idx;
2640
3876f04e 2641 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2642 continue;
2643
3876f04e 2644 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
9291a0cd
TT
2645
2646 (*fun) (name, data);
2647 }
2648}
2649
2650static void
2651dw2_map_symbol_filenames (struct objfile *objfile,
2652 void (*fun) (const char *, const char *, void *),
2653 void *data)
2654{
2655 int i;
2656
2657 dw2_setup (objfile);
ae2de4f8 2658
1fd400ff
TT
2659 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2660 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2661 {
2662 int j;
e254ef6a 2663 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2664 struct quick_file_names *file_data;
9291a0cd 2665
e254ef6a 2666 if (per_cu->v.quick->symtab)
9291a0cd
TT
2667 continue;
2668
7b9f3c50
DE
2669 file_data = dw2_get_file_names (objfile, per_cu);
2670 if (file_data == NULL)
9291a0cd
TT
2671 continue;
2672
7b9f3c50 2673 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2674 {
7b9f3c50
DE
2675 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2676 j);
2677 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
2678 }
2679 }
2680}
2681
2682static int
2683dw2_has_symbols (struct objfile *objfile)
2684{
2685 return 1;
2686}
2687
2688const struct quick_symbol_functions dwarf2_gdb_index_functions =
2689{
2690 dw2_has_symbols,
2691 dw2_find_last_source_symtab,
2692 dw2_forget_cached_source_info,
2693 dw2_lookup_symtab,
2694 dw2_lookup_symbol,
774b6a14 2695 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
2696 dw2_print_stats,
2697 dw2_dump,
2698 dw2_relocate,
2699 dw2_expand_symtabs_for_function,
2700 dw2_expand_all_symtabs,
2701 dw2_expand_symtabs_with_filename,
2702 dw2_find_symbol_file,
40658b94 2703 dw2_map_matching_symbols,
9291a0cd
TT
2704 dw2_expand_symtabs_matching,
2705 dw2_find_pc_sect_symtab,
2706 dw2_map_symbol_names,
2707 dw2_map_symbol_filenames
2708};
2709
2710/* Initialize for reading DWARF for this objfile. Return 0 if this
2711 file will use psymtabs, or 1 if using the GNU index. */
2712
2713int
2714dwarf2_initialize_objfile (struct objfile *objfile)
2715{
2716 /* If we're about to read full symbols, don't bother with the
2717 indices. In this case we also don't care if some other debug
2718 format is making psymtabs, because they are all about to be
2719 expanded anyway. */
2720 if ((objfile->flags & OBJF_READNOW))
2721 {
2722 int i;
2723
2724 dwarf2_per_objfile->using_index = 1;
2725 create_all_comp_units (objfile);
1fd400ff 2726 create_debug_types_hash_table (objfile);
7b9f3c50
DE
2727 dwarf2_per_objfile->quick_file_names_table =
2728 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 2729
1fd400ff
TT
2730 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2731 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2732 {
e254ef6a 2733 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2734
e254ef6a
DE
2735 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
2737 }
2738
2739 /* Return 1 so that gdb sees the "quick" functions. However,
2740 these functions will be no-ops because we will have expanded
2741 all symtabs. */
2742 return 1;
2743 }
2744
2745 if (dwarf2_read_index (objfile))
2746 return 1;
2747
2748 dwarf2_build_psymtabs (objfile);
2749 return 0;
2750}
2751
2752\f
2753
dce234bc
PP
2754/* Build a partial symbol table. */
2755
2756void
f29dff0a 2757dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2758{
f29dff0a 2759 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2760 {
2761 init_psymbol_list (objfile, 1024);
2762 }
2763
d146bf1e 2764 dwarf2_build_psymtabs_hard (objfile);
c906108c 2765}
c906108c 2766
45452591
DE
2767/* Return TRUE if OFFSET is within CU_HEADER. */
2768
2769static inline int
2770offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2771{
2772 unsigned int bottom = cu_header->offset;
2773 unsigned int top = (cu_header->offset
2774 + cu_header->length
2775 + cu_header->initial_length_size);
9a619af0 2776
45452591
DE
2777 return (offset >= bottom && offset < top);
2778}
2779
93311388
DE
2780/* Read in the comp unit header information from the debug_info at info_ptr.
2781 NOTE: This leaves members offset, first_die_offset to be filled in
2782 by the caller. */
107d2387 2783
fe1b8b76 2784static gdb_byte *
107d2387 2785read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2786 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2787{
2788 int signed_addr;
891d2f0b 2789 unsigned int bytes_read;
c764a876
DE
2790
2791 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2792 cu_header->initial_length_size = bytes_read;
2793 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2794 info_ptr += bytes_read;
107d2387
AC
2795 cu_header->version = read_2_bytes (abfd, info_ptr);
2796 info_ptr += 2;
613e1657 2797 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2798 &bytes_read);
613e1657 2799 info_ptr += bytes_read;
107d2387
AC
2800 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2801 info_ptr += 1;
2802 signed_addr = bfd_get_sign_extend_vma (abfd);
2803 if (signed_addr < 0)
8e65ff28 2804 internal_error (__FILE__, __LINE__,
e2e0b3e5 2805 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2806 cu_header->signed_addr_p = signed_addr;
c764a876 2807
107d2387
AC
2808 return info_ptr;
2809}
2810
fe1b8b76
JB
2811static gdb_byte *
2812partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 2813 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
2814 bfd *abfd)
2815{
fe1b8b76 2816 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
2817
2818 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2819
2dc7f7b3 2820 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 2821 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
2822 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2823 bfd_get_filename (abfd));
72bf9492 2824
dce234bc 2825 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
2826 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2827 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 2828 (long) header->abbrev_offset,
93311388 2829 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2830 bfd_get_filename (abfd));
2831
2832 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 2833 > buffer + buffer_size)
8a3fe4f8
AC
2834 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2835 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 2836 (long) header->length,
93311388 2837 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2838 bfd_get_filename (abfd));
2839
2840 return info_ptr;
2841}
2842
348e048f
DE
2843/* Read in the types comp unit header information from .debug_types entry at
2844 types_ptr. The result is a pointer to one past the end of the header. */
2845
2846static gdb_byte *
2847read_type_comp_unit_head (struct comp_unit_head *cu_header,
2848 ULONGEST *signature,
2849 gdb_byte *types_ptr, bfd *abfd)
2850{
348e048f
DE
2851 gdb_byte *initial_types_ptr = types_ptr;
2852
6e70227d 2853 dwarf2_read_section (dwarf2_per_objfile->objfile,
fa238c03 2854 &dwarf2_per_objfile->types);
348e048f
DE
2855 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2856
2857 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2858
2859 *signature = read_8_bytes (abfd, types_ptr);
2860 types_ptr += 8;
2861 types_ptr += cu_header->offset_size;
2862 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2863
2864 return types_ptr;
2865}
2866
aaa75496
JB
2867/* Allocate a new partial symtab for file named NAME and mark this new
2868 partial symtab as being an include of PST. */
2869
2870static void
2871dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2872 struct objfile *objfile)
2873{
2874 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2875
2876 subpst->section_offsets = pst->section_offsets;
2877 subpst->textlow = 0;
2878 subpst->texthigh = 0;
2879
2880 subpst->dependencies = (struct partial_symtab **)
2881 obstack_alloc (&objfile->objfile_obstack,
2882 sizeof (struct partial_symtab *));
2883 subpst->dependencies[0] = pst;
2884 subpst->number_of_dependencies = 1;
2885
2886 subpst->globals_offset = 0;
2887 subpst->n_global_syms = 0;
2888 subpst->statics_offset = 0;
2889 subpst->n_static_syms = 0;
2890 subpst->symtab = NULL;
2891 subpst->read_symtab = pst->read_symtab;
2892 subpst->readin = 0;
2893
2894 /* No private part is necessary for include psymtabs. This property
2895 can be used to differentiate between such include psymtabs and
10b3939b 2896 the regular ones. */
58a9656e 2897 subpst->read_symtab_private = NULL;
aaa75496
JB
2898}
2899
2900/* Read the Line Number Program data and extract the list of files
2901 included by the source file represented by PST. Build an include
d85a05f0 2902 partial symtab for each of these included files. */
aaa75496
JB
2903
2904static void
2905dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 2906 struct die_info *die,
aaa75496
JB
2907 struct partial_symtab *pst)
2908{
2909 struct objfile *objfile = cu->objfile;
2910 bfd *abfd = objfile->obfd;
d85a05f0
DJ
2911 struct line_header *lh = NULL;
2912 struct attribute *attr;
aaa75496 2913
d85a05f0
DJ
2914 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 unsigned int line_offset = DW_UNSND (attr);
9a619af0 2918
d85a05f0
DJ
2919 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2920 }
aaa75496
JB
2921 if (lh == NULL)
2922 return; /* No linetable, so no includes. */
2923
c6da4cef
DE
2924 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2925 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
aaa75496
JB
2926
2927 free_line_header (lh);
2928}
2929
348e048f
DE
2930static hashval_t
2931hash_type_signature (const void *item)
2932{
2933 const struct signatured_type *type_sig = item;
9a619af0 2934
348e048f
DE
2935 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2936 return type_sig->signature;
2937}
2938
2939static int
2940eq_type_signature (const void *item_lhs, const void *item_rhs)
2941{
2942 const struct signatured_type *lhs = item_lhs;
2943 const struct signatured_type *rhs = item_rhs;
9a619af0 2944
348e048f
DE
2945 return lhs->signature == rhs->signature;
2946}
2947
1fd400ff
TT
2948/* Allocate a hash table for signatured types. */
2949
2950static htab_t
673bfd45 2951allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
2952{
2953 return htab_create_alloc_ex (41,
2954 hash_type_signature,
2955 eq_type_signature,
2956 NULL,
2957 &objfile->objfile_obstack,
2958 hashtab_obstack_allocate,
2959 dummy_obstack_deallocate);
2960}
2961
2962/* A helper function to add a signatured type CU to a list. */
2963
2964static int
2965add_signatured_type_cu_to_list (void **slot, void *datum)
2966{
2967 struct signatured_type *sigt = *slot;
2968 struct dwarf2_per_cu_data ***datap = datum;
2969
2970 **datap = &sigt->per_cu;
2971 ++*datap;
2972
2973 return 1;
2974}
2975
348e048f
DE
2976/* Create the hash table of all entries in the .debug_types section.
2977 The result is zero if there is an error (e.g. missing .debug_types section),
2978 otherwise non-zero. */
2979
2980static int
2981create_debug_types_hash_table (struct objfile *objfile)
2982{
be391dca 2983 gdb_byte *info_ptr;
348e048f 2984 htab_t types_htab;
1fd400ff 2985 struct dwarf2_per_cu_data **iter;
348e048f 2986
be391dca
TT
2987 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2988 info_ptr = dwarf2_per_objfile->types.buffer;
2989
348e048f
DE
2990 if (info_ptr == NULL)
2991 {
2992 dwarf2_per_objfile->signatured_types = NULL;
2993 return 0;
2994 }
2995
673bfd45 2996 types_htab = allocate_signatured_type_table (objfile);
348e048f
DE
2997
2998 if (dwarf2_die_debug)
2999 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3000
3e43a32a
MS
3001 while (info_ptr < dwarf2_per_objfile->types.buffer
3002 + dwarf2_per_objfile->types.size)
348e048f
DE
3003 {
3004 unsigned int offset;
3005 unsigned int offset_size;
3006 unsigned int type_offset;
3007 unsigned int length, initial_length_size;
3008 unsigned short version;
3009 ULONGEST signature;
3010 struct signatured_type *type_sig;
3011 void **slot;
3012 gdb_byte *ptr = info_ptr;
3013
3014 offset = ptr - dwarf2_per_objfile->types.buffer;
3015
3016 /* We need to read the type's signature in order to build the hash
3017 table, but we don't need to read anything else just yet. */
3018
3019 /* Sanity check to ensure entire cu is present. */
3020 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3021 if (ptr + length + initial_length_size
3022 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3023 {
3024 complaint (&symfile_complaints,
3e43a32a
MS
3025 _("debug type entry runs off end "
3026 "of `.debug_types' section, ignored"));
348e048f
DE
3027 break;
3028 }
3029
3030 offset_size = initial_length_size == 4 ? 4 : 8;
3031 ptr += initial_length_size;
3032 version = bfd_get_16 (objfile->obfd, ptr);
3033 ptr += 2;
3034 ptr += offset_size; /* abbrev offset */
3035 ptr += 1; /* address size */
3036 signature = bfd_get_64 (objfile->obfd, ptr);
3037 ptr += 8;
3038 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3039
3040 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3041 memset (type_sig, 0, sizeof (*type_sig));
3042 type_sig->signature = signature;
3043 type_sig->offset = offset;
3044 type_sig->type_offset = type_offset;
ca1f3406 3045 type_sig->per_cu.objfile = objfile;
1fd400ff 3046 type_sig->per_cu.from_debug_types = 1;
348e048f
DE
3047
3048 slot = htab_find_slot (types_htab, type_sig, INSERT);
3049 gdb_assert (slot != NULL);
3050 *slot = type_sig;
3051
3052 if (dwarf2_die_debug)
3053 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3054 offset, phex (signature, sizeof (signature)));
3055
3056 info_ptr = info_ptr + initial_length_size + length;
3057 }
3058
3059 dwarf2_per_objfile->signatured_types = types_htab;
3060
1fd400ff
TT
3061 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3062 dwarf2_per_objfile->type_comp_units
3063 = obstack_alloc (&objfile->objfile_obstack,
3064 dwarf2_per_objfile->n_type_comp_units
3065 * sizeof (struct dwarf2_per_cu_data *));
3066 iter = &dwarf2_per_objfile->type_comp_units[0];
3067 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3068 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3069 == dwarf2_per_objfile->n_type_comp_units);
3070
348e048f
DE
3071 return 1;
3072}
3073
3074/* Lookup a signature based type.
3075 Returns NULL if SIG is not present in the table. */
3076
3077static struct signatured_type *
3078lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3079{
3080 struct signatured_type find_entry, *entry;
3081
3082 if (dwarf2_per_objfile->signatured_types == NULL)
3083 {
3084 complaint (&symfile_complaints,
3085 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3086 return 0;
3087 }
3088
3089 find_entry.signature = sig;
3090 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3091 return entry;
3092}
3093
d85a05f0
DJ
3094/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3095
3096static void
3097init_cu_die_reader (struct die_reader_specs *reader,
3098 struct dwarf2_cu *cu)
3099{
3100 reader->abfd = cu->objfile->obfd;
3101 reader->cu = cu;
3102 if (cu->per_cu->from_debug_types)
be391dca
TT
3103 {
3104 gdb_assert (dwarf2_per_objfile->types.readin);
3105 reader->buffer = dwarf2_per_objfile->types.buffer;
3106 }
d85a05f0 3107 else
be391dca
TT
3108 {
3109 gdb_assert (dwarf2_per_objfile->info.readin);
3110 reader->buffer = dwarf2_per_objfile->info.buffer;
3111 }
d85a05f0
DJ
3112}
3113
3114/* Find the base address of the compilation unit for range lists and
3115 location lists. It will normally be specified by DW_AT_low_pc.
3116 In DWARF-3 draft 4, the base address could be overridden by
3117 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3118 compilation units with discontinuous ranges. */
3119
3120static void
3121dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3122{
3123 struct attribute *attr;
3124
3125 cu->base_known = 0;
3126 cu->base_address = 0;
3127
3128 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3129 if (attr)
3130 {
3131 cu->base_address = DW_ADDR (attr);
3132 cu->base_known = 1;
3133 }
3134 else
3135 {
3136 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3137 if (attr)
3138 {
3139 cu->base_address = DW_ADDR (attr);
3140 cu->base_known = 1;
3141 }
3142 }
3143}
3144
348e048f
DE
3145/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3146 to combine the common parts.
93311388 3147 Process a compilation unit for a psymtab.
348e048f
DE
3148 BUFFER is a pointer to the beginning of the dwarf section buffer,
3149 either .debug_info or debug_types.
93311388
DE
3150 INFO_PTR is a pointer to the start of the CU.
3151 Returns a pointer to the next CU. */
aaa75496 3152
93311388
DE
3153static gdb_byte *
3154process_psymtab_comp_unit (struct objfile *objfile,
3155 struct dwarf2_per_cu_data *this_cu,
3156 gdb_byte *buffer, gdb_byte *info_ptr,
3157 unsigned int buffer_size)
c906108c 3158{
c906108c 3159 bfd *abfd = objfile->obfd;
93311388 3160 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 3161 struct die_info *comp_unit_die;
c906108c 3162 struct partial_symtab *pst;
5734ee8b 3163 CORE_ADDR baseaddr;
93311388
DE
3164 struct cleanup *back_to_inner;
3165 struct dwarf2_cu cu;
d85a05f0
DJ
3166 int has_children, has_pc_info;
3167 struct attribute *attr;
d85a05f0
DJ
3168 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3169 struct die_reader_specs reader_specs;
c906108c 3170
9816fde3 3171 init_one_comp_unit (&cu, objfile);
93311388 3172 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 3173
93311388
DE
3174 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3175 buffer, buffer_size,
3176 abfd);
10b3939b 3177
93311388
DE
3178 /* Complete the cu_header. */
3179 cu.header.offset = beg_of_comp_unit - buffer;
3180 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 3181
93311388 3182 cu.list_in_scope = &file_symbols;
af703f96 3183
328c9494
DJ
3184 /* If this compilation unit was already read in, free the
3185 cached copy in order to read it in again. This is
3186 necessary because we skipped some symbols when we first
3187 read in the compilation unit (see load_partial_dies).
3188 This problem could be avoided, but the benefit is
3189 unclear. */
3190 if (this_cu->cu != NULL)
3191 free_one_cached_comp_unit (this_cu->cu);
3192
3193 /* Note that this is a pointer to our stack frame, being
3194 added to a global data structure. It will be cleaned up
3195 in free_stack_comp_unit when we finish with this
3196 compilation unit. */
3197 this_cu->cu = &cu;
d85a05f0
DJ
3198 cu.per_cu = this_cu;
3199
93311388
DE
3200 /* Read the abbrevs for this compilation unit into a table. */
3201 dwarf2_read_abbrevs (abfd, &cu);
3202 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 3203
93311388 3204 /* Read the compilation unit die. */
348e048f
DE
3205 if (this_cu->from_debug_types)
3206 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
3207 init_cu_die_reader (&reader_specs, &cu);
3208 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3209 &has_children);
93311388 3210
348e048f
DE
3211 if (this_cu->from_debug_types)
3212 {
3213 /* offset,length haven't been set yet for type units. */
3214 this_cu->offset = cu.header.offset;
3215 this_cu->length = cu.header.length + cu.header.initial_length_size;
3216 }
d85a05f0 3217 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 3218 {
93311388
DE
3219 info_ptr = (beg_of_comp_unit + cu.header.length
3220 + cu.header.initial_length_size);
3221 do_cleanups (back_to_inner);
3222 return info_ptr;
3223 }
72bf9492 3224
9816fde3 3225 prepare_one_comp_unit (&cu, comp_unit_die);
c906108c 3226
93311388 3227 /* Allocate a new partial symbol table structure. */
d85a05f0 3228 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 3229 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 3230 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
3231 /* TEXTLOW and TEXTHIGH are set below. */
3232 0,
3233 objfile->global_psymbols.next,
3234 objfile->static_psymbols.next);
72bf9492 3235
d85a05f0
DJ
3236 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3237 if (attr != NULL)
3238 pst->dirname = DW_STRING (attr);
72bf9492 3239
e38df1d0 3240 pst->read_symtab_private = this_cu;
72bf9492 3241
93311388 3242 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 3243
93311388
DE
3244 /* Store the function that reads in the rest of the symbol table */
3245 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 3246
9291a0cd 3247 this_cu->v.psymtab = pst;
c906108c 3248
d85a05f0
DJ
3249 dwarf2_find_base_address (comp_unit_die, &cu);
3250
93311388
DE
3251 /* Possibly set the default values of LOWPC and HIGHPC from
3252 `DW_AT_ranges'. */
d85a05f0
DJ
3253 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3254 &best_highpc, &cu, pst);
3255 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
3256 /* Store the contiguous range if it is not empty; it can be empty for
3257 CUs with no code. */
3258 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
3259 best_lowpc + baseaddr,
3260 best_highpc + baseaddr - 1, pst);
93311388
DE
3261
3262 /* Check if comp unit has_children.
3263 If so, read the rest of the partial symbols from this comp unit.
3264 If not, there's no more debug_info for this comp unit. */
d85a05f0 3265 if (has_children)
93311388
DE
3266 {
3267 struct partial_die_info *first_die;
3268 CORE_ADDR lowpc, highpc;
31ffec48 3269
93311388
DE
3270 lowpc = ((CORE_ADDR) -1);
3271 highpc = ((CORE_ADDR) 0);
c906108c 3272
93311388 3273 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 3274
93311388 3275 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 3276 ! has_pc_info, &cu);
57c22c6c 3277
93311388
DE
3278 /* If we didn't find a lowpc, set it to highpc to avoid
3279 complaints from `maint check'. */
3280 if (lowpc == ((CORE_ADDR) -1))
3281 lowpc = highpc;
10b3939b 3282
93311388
DE
3283 /* If the compilation unit didn't have an explicit address range,
3284 then use the information extracted from its child dies. */
d85a05f0 3285 if (! has_pc_info)
93311388 3286 {
d85a05f0
DJ
3287 best_lowpc = lowpc;
3288 best_highpc = highpc;
93311388
DE
3289 }
3290 }
d85a05f0
DJ
3291 pst->textlow = best_lowpc + baseaddr;
3292 pst->texthigh = best_highpc + baseaddr;
c906108c 3293
93311388
DE
3294 pst->n_global_syms = objfile->global_psymbols.next -
3295 (objfile->global_psymbols.list + pst->globals_offset);
3296 pst->n_static_syms = objfile->static_psymbols.next -
3297 (objfile->static_psymbols.list + pst->statics_offset);
3298 sort_pst_symbols (pst);
c906108c 3299
93311388
DE
3300 info_ptr = (beg_of_comp_unit + cu.header.length
3301 + cu.header.initial_length_size);
ae038cb0 3302
348e048f
DE
3303 if (this_cu->from_debug_types)
3304 {
3305 /* It's not clear we want to do anything with stmt lists here.
3306 Waiting to see what gcc ultimately does. */
3307 }
d85a05f0 3308 else
93311388
DE
3309 {
3310 /* Get the list of files included in the current compilation unit,
3311 and build a psymtab for each of them. */
d85a05f0 3312 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 3313 }
ae038cb0 3314
93311388 3315 do_cleanups (back_to_inner);
ae038cb0 3316
93311388
DE
3317 return info_ptr;
3318}
ff013f42 3319
348e048f
DE
3320/* Traversal function for htab_traverse_noresize.
3321 Process one .debug_types comp-unit. */
3322
3323static int
3324process_type_comp_unit (void **slot, void *info)
3325{
3326 struct signatured_type *entry = (struct signatured_type *) *slot;
3327 struct objfile *objfile = (struct objfile *) info;
3328 struct dwarf2_per_cu_data *this_cu;
3329
3330 this_cu = &entry->per_cu;
348e048f 3331
be391dca 3332 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
3333 process_psymtab_comp_unit (objfile, this_cu,
3334 dwarf2_per_objfile->types.buffer,
3335 dwarf2_per_objfile->types.buffer + entry->offset,
3336 dwarf2_per_objfile->types.size);
3337
3338 return 1;
3339}
3340
3341/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3342 Build partial symbol tables for the .debug_types comp-units. */
3343
3344static void
3345build_type_psymtabs (struct objfile *objfile)
3346{
3347 if (! create_debug_types_hash_table (objfile))
3348 return;
3349
3350 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3351 process_type_comp_unit, objfile);
3352}
3353
60606b2c
TT
3354/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3355
3356static void
3357psymtabs_addrmap_cleanup (void *o)
3358{
3359 struct objfile *objfile = o;
ec61707d 3360
60606b2c
TT
3361 objfile->psymtabs_addrmap = NULL;
3362}
3363
93311388
DE
3364/* Build the partial symbol table by doing a quick pass through the
3365 .debug_info and .debug_abbrev sections. */
72bf9492 3366
93311388 3367static void
c67a9c90 3368dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3369{
93311388 3370 gdb_byte *info_ptr;
60606b2c
TT
3371 struct cleanup *back_to, *addrmap_cleanup;
3372 struct obstack temp_obstack;
93311388 3373
98bfdba5
PA
3374 dwarf2_per_objfile->reading_partial_symbols = 1;
3375
be391dca 3376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 3377 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 3378
93311388
DE
3379 /* Any cached compilation units will be linked by the per-objfile
3380 read_in_chain. Make sure to free them when we're done. */
3381 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3382
348e048f
DE
3383 build_type_psymtabs (objfile);
3384
93311388 3385 create_all_comp_units (objfile);
c906108c 3386
60606b2c
TT
3387 /* Create a temporary address map on a temporary obstack. We later
3388 copy this to the final obstack. */
3389 obstack_init (&temp_obstack);
3390 make_cleanup_obstack_free (&temp_obstack);
3391 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3392 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3393
93311388
DE
3394 /* Since the objects we're extracting from .debug_info vary in
3395 length, only the individual functions to extract them (like
3396 read_comp_unit_head and load_partial_die) can really know whether
3397 the buffer is large enough to hold another complete object.
c906108c 3398
93311388
DE
3399 At the moment, they don't actually check that. If .debug_info
3400 holds just one extra byte after the last compilation unit's dies,
3401 then read_comp_unit_head will happily read off the end of the
3402 buffer. read_partial_die is similarly casual. Those functions
3403 should be fixed.
c906108c 3404
93311388
DE
3405 For this loop condition, simply checking whether there's any data
3406 left at all should be sufficient. */
c906108c 3407
93311388
DE
3408 while (info_ptr < (dwarf2_per_objfile->info.buffer
3409 + dwarf2_per_objfile->info.size))
3410 {
3411 struct dwarf2_per_cu_data *this_cu;
dd373385 3412
3e43a32a
MS
3413 this_cu = dwarf2_find_comp_unit (info_ptr
3414 - dwarf2_per_objfile->info.buffer,
93311388 3415 objfile);
aaa75496 3416
93311388
DE
3417 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3418 dwarf2_per_objfile->info.buffer,
3419 info_ptr,
3420 dwarf2_per_objfile->info.size);
c906108c 3421 }
ff013f42
JK
3422
3423 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3424 &objfile->objfile_obstack);
60606b2c 3425 discard_cleanups (addrmap_cleanup);
ff013f42 3426
ae038cb0
DJ
3427 do_cleanups (back_to);
3428}
3429
93311388 3430/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3431
3432static void
93311388
DE
3433load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3434 struct objfile *objfile)
ae038cb0
DJ
3435{
3436 bfd *abfd = objfile->obfd;
fe1b8b76 3437 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 3438 struct die_info *comp_unit_die;
ae038cb0 3439 struct dwarf2_cu *cu;
1d9ec526 3440 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
d85a05f0
DJ
3441 int has_children;
3442 struct die_reader_specs reader_specs;
98bfdba5 3443 int read_cu = 0;
ae038cb0 3444
348e048f
DE
3445 gdb_assert (! this_cu->from_debug_types);
3446
be391dca 3447 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 3448 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
3449 beg_of_comp_unit = info_ptr;
3450
98bfdba5
PA
3451 if (this_cu->cu == NULL)
3452 {
9816fde3
JK
3453 cu = xmalloc (sizeof (*cu));
3454 init_one_comp_unit (cu, objfile);
ae038cb0 3455
98bfdba5 3456 read_cu = 1;
ae038cb0 3457
98bfdba5
PA
3458 /* If an error occurs while loading, release our storage. */
3459 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
328c9494 3460
98bfdba5
PA
3461 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3462 dwarf2_per_objfile->info.buffer,
3463 dwarf2_per_objfile->info.size,
3464 abfd);
ae038cb0 3465
98bfdba5
PA
3466 /* Complete the cu_header. */
3467 cu->header.offset = this_cu->offset;
3468 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3469
3470 /* Link this compilation unit into the compilation unit tree. */
3471 this_cu->cu = cu;
3472 cu->per_cu = this_cu;
98bfdba5
PA
3473
3474 /* Link this CU into read_in_chain. */
3475 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3476 dwarf2_per_objfile->read_in_chain = this_cu;
3477 }
3478 else
3479 {
3480 cu = this_cu->cu;
3481 info_ptr += cu->header.first_die_offset;
3482 }
ae038cb0
DJ
3483
3484 /* Read the abbrevs for this compilation unit into a table. */
98bfdba5 3485 gdb_assert (cu->dwarf2_abbrevs == NULL);
ae038cb0 3486 dwarf2_read_abbrevs (abfd, cu);
98bfdba5 3487 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
ae038cb0
DJ
3488
3489 /* Read the compilation unit die. */
d85a05f0
DJ
3490 init_cu_die_reader (&reader_specs, cu);
3491 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3492 &has_children);
ae038cb0 3493
9816fde3 3494 prepare_one_comp_unit (cu, comp_unit_die);
ae038cb0 3495
ae038cb0
DJ
3496 /* Check if comp unit has_children.
3497 If so, read the rest of the partial symbols from this comp unit.
3498 If not, there's no more debug_info for this comp unit. */
d85a05f0 3499 if (has_children)
93311388 3500 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0 3501
98bfdba5
PA
3502 do_cleanups (free_abbrevs_cleanup);
3503
3504 if (read_cu)
3505 {
3506 /* We've successfully allocated this compilation unit. Let our
3507 caller clean it up when finished with it. */
3508 discard_cleanups (free_cu_cleanup);
3509 }
ae038cb0
DJ
3510}
3511
3512/* Create a list of all compilation units in OBJFILE. We do this only
3513 if an inter-comp-unit reference is found; presumably if there is one,
3514 there will be many, and one will occur early in the .debug_info section.
3515 So there's no point in building this list incrementally. */
3516
3517static void
3518create_all_comp_units (struct objfile *objfile)
3519{
3520 int n_allocated;
3521 int n_comp_units;
3522 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3523 gdb_byte *info_ptr;
3524
3525 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3526 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3527
3528 n_comp_units = 0;
3529 n_allocated = 10;
3530 all_comp_units = xmalloc (n_allocated
3531 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3532
3e43a32a
MS
3533 while (info_ptr < dwarf2_per_objfile->info.buffer
3534 + dwarf2_per_objfile->info.size)
ae038cb0 3535 {
c764a876 3536 unsigned int length, initial_length_size;
ae038cb0 3537 struct dwarf2_per_cu_data *this_cu;
c764a876 3538 unsigned int offset;
ae038cb0 3539
dce234bc 3540 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3541
3542 /* Read just enough information to find out where the next
3543 compilation unit is. */
c764a876
DE
3544 length = read_initial_length (objfile->obfd, info_ptr,
3545 &initial_length_size);
ae038cb0
DJ
3546
3547 /* Save the compilation unit for later lookup. */
3548 this_cu = obstack_alloc (&objfile->objfile_obstack,
3549 sizeof (struct dwarf2_per_cu_data));
3550 memset (this_cu, 0, sizeof (*this_cu));
3551 this_cu->offset = offset;
c764a876 3552 this_cu->length = length + initial_length_size;
9291a0cd 3553 this_cu->objfile = objfile;
ae038cb0
DJ
3554
3555 if (n_comp_units == n_allocated)
3556 {
3557 n_allocated *= 2;
3558 all_comp_units = xrealloc (all_comp_units,
3559 n_allocated
3560 * sizeof (struct dwarf2_per_cu_data *));
3561 }
3562 all_comp_units[n_comp_units++] = this_cu;
3563
3564 info_ptr = info_ptr + this_cu->length;
3565 }
3566
3567 dwarf2_per_objfile->all_comp_units
3568 = obstack_alloc (&objfile->objfile_obstack,
3569 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3570 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3571 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3572 xfree (all_comp_units);
3573 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3574}
3575
5734ee8b
DJ
3576/* Process all loaded DIEs for compilation unit CU, starting at
3577 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3578 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3579 DW_AT_ranges). If NEED_PC is set, then this function will set
3580 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3581 and record the covered ranges in the addrmap. */
c906108c 3582
72bf9492
DJ
3583static void
3584scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3585 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3586{
72bf9492 3587 struct partial_die_info *pdi;
c906108c 3588
91c24f0a
DC
3589 /* Now, march along the PDI's, descending into ones which have
3590 interesting children but skipping the children of the other ones,
3591 until we reach the end of the compilation unit. */
c906108c 3592
72bf9492 3593 pdi = first_die;
91c24f0a 3594
72bf9492
DJ
3595 while (pdi != NULL)
3596 {
3597 fixup_partial_die (pdi, cu);
c906108c 3598
f55ee35c 3599 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3600 children, so we need to look at them. Ditto for anonymous
3601 enums. */
933c6fe4 3602
72bf9492 3603 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3604 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3605 {
72bf9492 3606 switch (pdi->tag)
c906108c
SS
3607 {
3608 case DW_TAG_subprogram:
5734ee8b 3609 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 3610 break;
72929c62 3611 case DW_TAG_constant:
c906108c
SS
3612 case DW_TAG_variable:
3613 case DW_TAG_typedef:
91c24f0a 3614 case DW_TAG_union_type:
72bf9492 3615 if (!pdi->is_declaration)
63d06c5c 3616 {
72bf9492 3617 add_partial_symbol (pdi, cu);
63d06c5c
DC
3618 }
3619 break;
c906108c 3620 case DW_TAG_class_type:
680b30c7 3621 case DW_TAG_interface_type:
c906108c 3622 case DW_TAG_structure_type:
72bf9492 3623 if (!pdi->is_declaration)
c906108c 3624 {
72bf9492 3625 add_partial_symbol (pdi, cu);
c906108c
SS
3626 }
3627 break;
91c24f0a 3628 case DW_TAG_enumeration_type:
72bf9492
DJ
3629 if (!pdi->is_declaration)
3630 add_partial_enumeration (pdi, cu);
c906108c
SS
3631 break;
3632 case DW_TAG_base_type:
a02abb62 3633 case DW_TAG_subrange_type:
c906108c 3634 /* File scope base type definitions are added to the partial
c5aa993b 3635 symbol table. */
72bf9492 3636 add_partial_symbol (pdi, cu);
c906108c 3637 break;
d9fa45fe 3638 case DW_TAG_namespace:
5734ee8b 3639 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3640 break;
5d7cb8df
JK
3641 case DW_TAG_module:
3642 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3643 break;
c906108c
SS
3644 default:
3645 break;
3646 }
3647 }
3648
72bf9492
DJ
3649 /* If the die has a sibling, skip to the sibling. */
3650
3651 pdi = pdi->die_sibling;
3652 }
3653}
3654
3655/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3656
72bf9492 3657 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3658 name is concatenated with "::" and the partial DIE's name. For
3659 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3660 Enumerators are an exception; they use the scope of their parent
3661 enumeration type, i.e. the name of the enumeration type is not
3662 prepended to the enumerator.
91c24f0a 3663
72bf9492
DJ
3664 There are two complexities. One is DW_AT_specification; in this
3665 case "parent" means the parent of the target of the specification,
3666 instead of the direct parent of the DIE. The other is compilers
3667 which do not emit DW_TAG_namespace; in this case we try to guess
3668 the fully qualified name of structure types from their members'
3669 linkage names. This must be done using the DIE's children rather
3670 than the children of any DW_AT_specification target. We only need
3671 to do this for structures at the top level, i.e. if the target of
3672 any DW_AT_specification (if any; otherwise the DIE itself) does not
3673 have a parent. */
3674
3675/* Compute the scope prefix associated with PDI's parent, in
3676 compilation unit CU. The result will be allocated on CU's
3677 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3678 field. NULL is returned if no prefix is necessary. */
3679static char *
3680partial_die_parent_scope (struct partial_die_info *pdi,
3681 struct dwarf2_cu *cu)
3682{
3683 char *grandparent_scope;
3684 struct partial_die_info *parent, *real_pdi;
91c24f0a 3685
72bf9492
DJ
3686 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3687 then this means the parent of the specification DIE. */
3688
3689 real_pdi = pdi;
72bf9492 3690 while (real_pdi->has_specification)
10b3939b 3691 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3692
3693 parent = real_pdi->die_parent;
3694 if (parent == NULL)
3695 return NULL;
3696
3697 if (parent->scope_set)
3698 return parent->scope;
3699
3700 fixup_partial_die (parent, cu);
3701
10b3939b 3702 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3703
acebe513
UW
3704 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3705 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3706 Work around this problem here. */
3707 if (cu->language == language_cplus
6e70227d 3708 && parent->tag == DW_TAG_namespace
acebe513
UW
3709 && strcmp (parent->name, "::") == 0
3710 && grandparent_scope == NULL)
3711 {
3712 parent->scope = NULL;
3713 parent->scope_set = 1;
3714 return NULL;
3715 }
3716
72bf9492 3717 if (parent->tag == DW_TAG_namespace
f55ee35c 3718 || parent->tag == DW_TAG_module
72bf9492
DJ
3719 || parent->tag == DW_TAG_structure_type
3720 || parent->tag == DW_TAG_class_type
680b30c7 3721 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3722 || parent->tag == DW_TAG_union_type
3723 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3724 {
3725 if (grandparent_scope == NULL)
3726 parent->scope = parent->name;
3727 else
3e43a32a
MS
3728 parent->scope = typename_concat (&cu->comp_unit_obstack,
3729 grandparent_scope,
f55ee35c 3730 parent->name, 0, cu);
72bf9492 3731 }
ceeb3d5a 3732 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
3733 /* Enumerators should not get the name of the enumeration as a prefix. */
3734 parent->scope = grandparent_scope;
3735 else
3736 {
3737 /* FIXME drow/2004-04-01: What should we be doing with
3738 function-local names? For partial symbols, we should probably be
3739 ignoring them. */
3740 complaint (&symfile_complaints,
e2e0b3e5 3741 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3742 parent->tag, pdi->offset);
3743 parent->scope = grandparent_scope;
c906108c
SS
3744 }
3745
72bf9492
DJ
3746 parent->scope_set = 1;
3747 return parent->scope;
3748}
3749
3750/* Return the fully scoped name associated with PDI, from compilation unit
3751 CU. The result will be allocated with malloc. */
3752static char *
3753partial_die_full_name (struct partial_die_info *pdi,
3754 struct dwarf2_cu *cu)
3755{
3756 char *parent_scope;
3757
98bfdba5
PA
3758 /* If this is a template instantiation, we can not work out the
3759 template arguments from partial DIEs. So, unfortunately, we have
3760 to go through the full DIEs. At least any work we do building
3761 types here will be reused if full symbols are loaded later. */
3762 if (pdi->has_template_arguments)
3763 {
3764 fixup_partial_die (pdi, cu);
3765
3766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3767 {
3768 struct die_info *die;
3769 struct attribute attr;
3770 struct dwarf2_cu *ref_cu = cu;
3771
3772 attr.name = 0;
3773 attr.form = DW_FORM_ref_addr;
3774 attr.u.addr = pdi->offset;
3775 die = follow_die_ref (NULL, &attr, &ref_cu);
3776
3777 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3778 }
3779 }
3780
72bf9492
DJ
3781 parent_scope = partial_die_parent_scope (pdi, cu);
3782 if (parent_scope == NULL)
3783 return NULL;
3784 else
f55ee35c 3785 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3786}
3787
3788static void
72bf9492 3789add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3790{
e7c27a73 3791 struct objfile *objfile = cu->objfile;
c906108c 3792 CORE_ADDR addr = 0;
decbce07 3793 char *actual_name = NULL;
5c4e30ca 3794 const struct partial_symbol *psym = NULL;
e142c38c 3795 CORE_ADDR baseaddr;
72bf9492 3796 int built_actual_name = 0;
e142c38c
DJ
3797
3798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3799
94af9270
KS
3800 actual_name = partial_die_full_name (pdi, cu);
3801 if (actual_name)
3802 built_actual_name = 1;
63d06c5c 3803
72bf9492
DJ
3804 if (actual_name == NULL)
3805 actual_name = pdi->name;
3806
c906108c
SS
3807 switch (pdi->tag)
3808 {
3809 case DW_TAG_subprogram:
2cfa0c8d 3810 if (pdi->is_external || cu->language == language_ada)
c906108c 3811 {
2cfa0c8d
JB
3812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3813 of the global scope. But in Ada, we want to be able to access
3814 nested procedures globally. So all Ada subprograms are stored
3815 in the global scope. */
38d518c9 3816 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3817 mst_text, objfile); */
38d518c9 3818 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3819 built_actual_name,
5c4e30ca
DC
3820 VAR_DOMAIN, LOC_BLOCK,
3821 &objfile->global_psymbols,
3822 0, pdi->lowpc + baseaddr,
e142c38c 3823 cu->language, objfile);
c906108c
SS
3824 }
3825 else
3826 {
38d518c9 3827 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3828 mst_file_text, objfile); */
38d518c9 3829 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3830 built_actual_name,
5c4e30ca
DC
3831 VAR_DOMAIN, LOC_BLOCK,
3832 &objfile->static_psymbols,
3833 0, pdi->lowpc + baseaddr,
e142c38c 3834 cu->language, objfile);
c906108c
SS
3835 }
3836 break;
72929c62
JB
3837 case DW_TAG_constant:
3838 {
3839 struct psymbol_allocation_list *list;
3840
3841 if (pdi->is_external)
3842 list = &objfile->global_psymbols;
3843 else
3844 list = &objfile->static_psymbols;
3845 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3846 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3847 list, 0, 0, cu->language, objfile);
3848
3849 }
3850 break;
c906108c 3851 case DW_TAG_variable:
caac4577
JG
3852 if (pdi->locdesc)
3853 addr = decode_locdesc (pdi->locdesc, cu);
3854
3855 if (pdi->locdesc
3856 && addr == 0
3857 && !dwarf2_per_objfile->has_section_at_zero)
3858 {
3859 /* A global or static variable may also have been stripped
3860 out by the linker if unused, in which case its address
3861 will be nullified; do not add such variables into partial
3862 symbol table then. */
3863 }
3864 else if (pdi->is_external)
c906108c
SS
3865 {
3866 /* Global Variable.
3867 Don't enter into the minimal symbol tables as there is
3868 a minimal symbol table entry from the ELF symbols already.
3869 Enter into partial symbol table if it has a location
3870 descriptor or a type.
3871 If the location descriptor is missing, new_symbol will create
3872 a LOC_UNRESOLVED symbol, the address of the variable will then
3873 be determined from the minimal symbol table whenever the variable
3874 is referenced.
3875 The address for the partial symbol table entry is not
3876 used by GDB, but it comes in handy for debugging partial symbol
3877 table building. */
3878
c906108c 3879 if (pdi->locdesc || pdi->has_type)
38d518c9 3880 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3881 built_actual_name,
5c4e30ca
DC
3882 VAR_DOMAIN, LOC_STATIC,
3883 &objfile->global_psymbols,
3884 0, addr + baseaddr,
e142c38c 3885 cu->language, objfile);
c906108c
SS
3886 }
3887 else
3888 {
3889 /* Static Variable. Skip symbols without location descriptors. */
3890 if (pdi->locdesc == NULL)
decbce07
MS
3891 {
3892 if (built_actual_name)
3893 xfree (actual_name);
3894 return;
3895 }
38d518c9 3896 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 3897 mst_file_data, objfile); */
38d518c9 3898 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3899 built_actual_name,
5c4e30ca
DC
3900 VAR_DOMAIN, LOC_STATIC,
3901 &objfile->static_psymbols,
3902 0, addr + baseaddr,
e142c38c 3903 cu->language, objfile);
c906108c
SS
3904 }
3905 break;
3906 case DW_TAG_typedef:
3907 case DW_TAG_base_type:
a02abb62 3908 case DW_TAG_subrange_type:
38d518c9 3909 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3910 built_actual_name,
176620f1 3911 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 3912 &objfile->static_psymbols,
e142c38c 3913 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3914 break;
72bf9492
DJ
3915 case DW_TAG_namespace:
3916 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3917 built_actual_name,
72bf9492
DJ
3918 VAR_DOMAIN, LOC_TYPEDEF,
3919 &objfile->global_psymbols,
3920 0, (CORE_ADDR) 0, cu->language, objfile);
3921 break;
c906108c 3922 case DW_TAG_class_type:
680b30c7 3923 case DW_TAG_interface_type:
c906108c
SS
3924 case DW_TAG_structure_type:
3925 case DW_TAG_union_type:
3926 case DW_TAG_enumeration_type:
fa4028e9
JB
3927 /* Skip external references. The DWARF standard says in the section
3928 about "Structure, Union, and Class Type Entries": "An incomplete
3929 structure, union or class type is represented by a structure,
3930 union or class entry that does not have a byte size attribute
3931 and that has a DW_AT_declaration attribute." */
3932 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
3933 {
3934 if (built_actual_name)
3935 xfree (actual_name);
3936 return;
3937 }
fa4028e9 3938
63d06c5c
DC
3939 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3940 static vs. global. */
38d518c9 3941 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3942 built_actual_name,
176620f1 3943 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
3944 (cu->language == language_cplus
3945 || cu->language == language_java)
63d06c5c
DC
3946 ? &objfile->global_psymbols
3947 : &objfile->static_psymbols,
e142c38c 3948 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3949
c906108c
SS
3950 break;
3951 case DW_TAG_enumerator:
38d518c9 3952 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3953 built_actual_name,
176620f1 3954 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
3955 (cu->language == language_cplus
3956 || cu->language == language_java)
f6fe98ef
DJ
3957 ? &objfile->global_psymbols
3958 : &objfile->static_psymbols,
e142c38c 3959 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
3960 break;
3961 default:
3962 break;
3963 }
5c4e30ca 3964
72bf9492
DJ
3965 if (built_actual_name)
3966 xfree (actual_name);
c906108c
SS
3967}
3968
5c4e30ca
DC
3969/* Read a partial die corresponding to a namespace; also, add a symbol
3970 corresponding to that namespace to the symbol table. NAMESPACE is
3971 the name of the enclosing namespace. */
91c24f0a 3972
72bf9492
DJ
3973static void
3974add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 3975 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 3976 int need_pc, struct dwarf2_cu *cu)
91c24f0a 3977{
72bf9492 3978 /* Add a symbol for the namespace. */
e7c27a73 3979
72bf9492 3980 add_partial_symbol (pdi, cu);
5c4e30ca
DC
3981
3982 /* Now scan partial symbols in that namespace. */
3983
91c24f0a 3984 if (pdi->has_children)
5734ee8b 3985 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
3986}
3987
5d7cb8df
JK
3988/* Read a partial die corresponding to a Fortran module. */
3989
3990static void
3991add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3992 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3993{
f55ee35c 3994 /* Now scan partial symbols in that module. */
5d7cb8df
JK
3995
3996 if (pdi->has_children)
3997 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3998}
3999
bc30ff58
JB
4000/* Read a partial die corresponding to a subprogram and create a partial
4001 symbol for that subprogram. When the CU language allows it, this
4002 routine also defines a partial symbol for each nested subprogram
4003 that this subprogram contains.
6e70227d 4004
bc30ff58
JB
4005 DIE my also be a lexical block, in which case we simply search
4006 recursively for suprograms defined inside that lexical block.
4007 Again, this is only performed when the CU language allows this
4008 type of definitions. */
4009
4010static void
4011add_partial_subprogram (struct partial_die_info *pdi,
4012 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4013 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
4014{
4015 if (pdi->tag == DW_TAG_subprogram)
4016 {
4017 if (pdi->has_pc_info)
4018 {
4019 if (pdi->lowpc < *lowpc)
4020 *lowpc = pdi->lowpc;
4021 if (pdi->highpc > *highpc)
4022 *highpc = pdi->highpc;
5734ee8b
DJ
4023 if (need_pc)
4024 {
4025 CORE_ADDR baseaddr;
4026 struct objfile *objfile = cu->objfile;
4027
4028 baseaddr = ANOFFSET (objfile->section_offsets,
4029 SECT_OFF_TEXT (objfile));
4030 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
4031 pdi->lowpc + baseaddr,
4032 pdi->highpc - 1 + baseaddr,
9291a0cd 4033 cu->per_cu->v.psymtab);
5734ee8b 4034 }
bc30ff58 4035 if (!pdi->is_declaration)
e8d05480
JB
4036 /* Ignore subprogram DIEs that do not have a name, they are
4037 illegal. Do not emit a complaint at this point, we will
4038 do so when we convert this psymtab into a symtab. */
4039 if (pdi->name)
4040 add_partial_symbol (pdi, cu);
bc30ff58
JB
4041 }
4042 }
6e70227d 4043
bc30ff58
JB
4044 if (! pdi->has_children)
4045 return;
4046
4047 if (cu->language == language_ada)
4048 {
4049 pdi = pdi->die_child;
4050 while (pdi != NULL)
4051 {
4052 fixup_partial_die (pdi, cu);
4053 if (pdi->tag == DW_TAG_subprogram
4054 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 4055 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
4056 pdi = pdi->die_sibling;
4057 }
4058 }
4059}
4060
91c24f0a
DC
4061/* Read a partial die corresponding to an enumeration type. */
4062
72bf9492
DJ
4063static void
4064add_partial_enumeration (struct partial_die_info *enum_pdi,
4065 struct dwarf2_cu *cu)
91c24f0a 4066{
72bf9492 4067 struct partial_die_info *pdi;
91c24f0a
DC
4068
4069 if (enum_pdi->name != NULL)
72bf9492
DJ
4070 add_partial_symbol (enum_pdi, cu);
4071
4072 pdi = enum_pdi->die_child;
4073 while (pdi)
91c24f0a 4074 {
72bf9492 4075 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 4076 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 4077 else
72bf9492
DJ
4078 add_partial_symbol (pdi, cu);
4079 pdi = pdi->die_sibling;
91c24f0a 4080 }
91c24f0a
DC
4081}
4082
4bb7a0a7
DJ
4083/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4084 Return the corresponding abbrev, or NULL if the number is zero (indicating
4085 an empty DIE). In either case *BYTES_READ will be set to the length of
4086 the initial number. */
4087
4088static struct abbrev_info *
fe1b8b76 4089peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 4090 struct dwarf2_cu *cu)
4bb7a0a7
DJ
4091{
4092 bfd *abfd = cu->objfile->obfd;
4093 unsigned int abbrev_number;
4094 struct abbrev_info *abbrev;
4095
4096 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4097
4098 if (abbrev_number == 0)
4099 return NULL;
4100
4101 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4102 if (!abbrev)
4103 {
3e43a32a
MS
4104 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4105 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
4106 }
4107
4108 return abbrev;
4109}
4110
93311388
DE
4111/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4112 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
4113 DIE. Any children of the skipped DIEs will also be skipped. */
4114
fe1b8b76 4115static gdb_byte *
93311388 4116skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4117{
4118 struct abbrev_info *abbrev;
4119 unsigned int bytes_read;
4120
4121 while (1)
4122 {
4123 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4124 if (abbrev == NULL)
4125 return info_ptr + bytes_read;
4126 else
93311388 4127 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
4128 }
4129}
4130
93311388
DE
4131/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4132 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
4133 abbrev corresponding to that skipped uleb128 should be passed in
4134 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4135 children. */
4136
fe1b8b76 4137static gdb_byte *
93311388
DE
4138skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4139 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4140{
4141 unsigned int bytes_read;
4142 struct attribute attr;
4143 bfd *abfd = cu->objfile->obfd;
4144 unsigned int form, i;
4145
4146 for (i = 0; i < abbrev->num_attrs; i++)
4147 {
4148 /* The only abbrev we care about is DW_AT_sibling. */
4149 if (abbrev->attrs[i].name == DW_AT_sibling)
4150 {
4151 read_attribute (&attr, &abbrev->attrs[i],
4152 abfd, info_ptr, cu);
4153 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
4154 complaint (&symfile_complaints,
4155 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 4156 else
93311388 4157 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
4158 }
4159
4160 /* If it isn't DW_AT_sibling, skip this attribute. */
4161 form = abbrev->attrs[i].form;
4162 skip_attribute:
4163 switch (form)
4164 {
4bb7a0a7 4165 case DW_FORM_ref_addr:
ae411497
TT
4166 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4167 and later it is offset sized. */
4168 if (cu->header.version == 2)
4169 info_ptr += cu->header.addr_size;
4170 else
4171 info_ptr += cu->header.offset_size;
4172 break;
4173 case DW_FORM_addr:
4bb7a0a7
DJ
4174 info_ptr += cu->header.addr_size;
4175 break;
4176 case DW_FORM_data1:
4177 case DW_FORM_ref1:
4178 case DW_FORM_flag:
4179 info_ptr += 1;
4180 break;
2dc7f7b3
TT
4181 case DW_FORM_flag_present:
4182 break;
4bb7a0a7
DJ
4183 case DW_FORM_data2:
4184 case DW_FORM_ref2:
4185 info_ptr += 2;
4186 break;
4187 case DW_FORM_data4:
4188 case DW_FORM_ref4:
4189 info_ptr += 4;
4190 break;
4191 case DW_FORM_data8:
4192 case DW_FORM_ref8:
348e048f 4193 case DW_FORM_sig8:
4bb7a0a7
DJ
4194 info_ptr += 8;
4195 break;
4196 case DW_FORM_string:
9b1c24c8 4197 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
4198 info_ptr += bytes_read;
4199 break;
2dc7f7b3 4200 case DW_FORM_sec_offset:
4bb7a0a7
DJ
4201 case DW_FORM_strp:
4202 info_ptr += cu->header.offset_size;
4203 break;
2dc7f7b3 4204 case DW_FORM_exprloc:
4bb7a0a7
DJ
4205 case DW_FORM_block:
4206 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4207 info_ptr += bytes_read;
4208 break;
4209 case DW_FORM_block1:
4210 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4211 break;
4212 case DW_FORM_block2:
4213 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4214 break;
4215 case DW_FORM_block4:
4216 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4217 break;
4218 case DW_FORM_sdata:
4219 case DW_FORM_udata:
4220 case DW_FORM_ref_udata:
4221 info_ptr = skip_leb128 (abfd, info_ptr);
4222 break;
4223 case DW_FORM_indirect:
4224 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4225 info_ptr += bytes_read;
4226 /* We need to continue parsing from here, so just go back to
4227 the top. */
4228 goto skip_attribute;
4229
4230 default:
3e43a32a
MS
4231 error (_("Dwarf Error: Cannot handle %s "
4232 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
4233 dwarf_form_name (form),
4234 bfd_get_filename (abfd));
4235 }
4236 }
4237
4238 if (abbrev->has_children)
93311388 4239 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
4240 else
4241 return info_ptr;
4242}
4243
93311388
DE
4244/* Locate ORIG_PDI's sibling.
4245 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4246 in BUFFER. */
91c24f0a 4247
fe1b8b76 4248static gdb_byte *
93311388
DE
4249locate_pdi_sibling (struct partial_die_info *orig_pdi,
4250 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 4251 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
4252{
4253 /* Do we know the sibling already? */
72bf9492 4254
91c24f0a
DC
4255 if (orig_pdi->sibling)
4256 return orig_pdi->sibling;
4257
4258 /* Are there any children to deal with? */
4259
4260 if (!orig_pdi->has_children)
4261 return info_ptr;
4262
4bb7a0a7 4263 /* Skip the children the long way. */
91c24f0a 4264
93311388 4265 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
4266}
4267
c906108c
SS
4268/* Expand this partial symbol table into a full symbol table. */
4269
4270static void
fba45db2 4271dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 4272{
c906108c
SS
4273 if (pst != NULL)
4274 {
4275 if (pst->readin)
4276 {
3e43a32a
MS
4277 warning (_("bug: psymtab for %s is already read in."),
4278 pst->filename);
c906108c
SS
4279 }
4280 else
4281 {
4282 if (info_verbose)
4283 {
3e43a32a
MS
4284 printf_filtered (_("Reading in symbols for %s..."),
4285 pst->filename);
c906108c
SS
4286 gdb_flush (gdb_stdout);
4287 }
4288
10b3939b
DJ
4289 /* Restore our global data. */
4290 dwarf2_per_objfile = objfile_data (pst->objfile,
4291 dwarf2_objfile_data_key);
4292
b2ab525c
KB
4293 /* If this psymtab is constructed from a debug-only objfile, the
4294 has_section_at_zero flag will not necessarily be correct. We
4295 can get the correct value for this flag by looking at the data
4296 associated with the (presumably stripped) associated objfile. */
4297 if (pst->objfile->separate_debug_objfile_backlink)
4298 {
4299 struct dwarf2_per_objfile *dpo_backlink
4300 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4301 dwarf2_objfile_data_key);
9a619af0 4302
b2ab525c
KB
4303 dwarf2_per_objfile->has_section_at_zero
4304 = dpo_backlink->has_section_at_zero;
4305 }
4306
98bfdba5
PA
4307 dwarf2_per_objfile->reading_partial_symbols = 0;
4308
c906108c
SS
4309 psymtab_to_symtab_1 (pst);
4310
4311 /* Finish up the debug error message. */
4312 if (info_verbose)
a3f17187 4313 printf_filtered (_("done.\n"));
c906108c
SS
4314 }
4315 }
4316}
4317
10b3939b
DJ
4318/* Add PER_CU to the queue. */
4319
4320static void
03dd20cc 4321queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
4322{
4323 struct dwarf2_queue_item *item;
4324
4325 per_cu->queued = 1;
4326 item = xmalloc (sizeof (*item));
4327 item->per_cu = per_cu;
4328 item->next = NULL;
4329
4330 if (dwarf2_queue == NULL)
4331 dwarf2_queue = item;
4332 else
4333 dwarf2_queue_tail->next = item;
4334
4335 dwarf2_queue_tail = item;
4336}
4337
4338/* Process the queue. */
4339
4340static void
4341process_queue (struct objfile *objfile)
4342{
4343 struct dwarf2_queue_item *item, *next_item;
4344
03dd20cc
DJ
4345 /* The queue starts out with one item, but following a DIE reference
4346 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
4347 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4348 {
9291a0cd
TT
4349 if (dwarf2_per_objfile->using_index
4350 ? !item->per_cu->v.quick->symtab
4351 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
4352 process_full_comp_unit (item->per_cu);
4353
4354 item->per_cu->queued = 0;
4355 next_item = item->next;
4356 xfree (item);
4357 }
4358
4359 dwarf2_queue_tail = NULL;
4360}
4361
4362/* Free all allocated queue entries. This function only releases anything if
4363 an error was thrown; if the queue was processed then it would have been
4364 freed as we went along. */
4365
4366static void
4367dwarf2_release_queue (void *dummy)
4368{
4369 struct dwarf2_queue_item *item, *last;
4370
4371 item = dwarf2_queue;
4372 while (item)
4373 {
4374 /* Anything still marked queued is likely to be in an
4375 inconsistent state, so discard it. */
4376 if (item->per_cu->queued)
4377 {
4378 if (item->per_cu->cu != NULL)
4379 free_one_cached_comp_unit (item->per_cu->cu);
4380 item->per_cu->queued = 0;
4381 }
4382
4383 last = item;
4384 item = item->next;
4385 xfree (last);
4386 }
4387
4388 dwarf2_queue = dwarf2_queue_tail = NULL;
4389}
4390
4391/* Read in full symbols for PST, and anything it depends on. */
4392
c906108c 4393static void
fba45db2 4394psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 4395{
10b3939b 4396 struct dwarf2_per_cu_data *per_cu;
c906108c 4397 struct cleanup *back_to;
aaa75496
JB
4398 int i;
4399
4400 for (i = 0; i < pst->number_of_dependencies; i++)
4401 if (!pst->dependencies[i]->readin)
4402 {
4403 /* Inform about additional files that need to be read in. */
4404 if (info_verbose)
4405 {
a3f17187 4406 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4407 fputs_filtered (" ", gdb_stdout);
4408 wrap_here ("");
4409 fputs_filtered ("and ", gdb_stdout);
4410 wrap_here ("");
4411 printf_filtered ("%s...", pst->dependencies[i]->filename);
4412 wrap_here (""); /* Flush output */
4413 gdb_flush (gdb_stdout);
4414 }
4415 psymtab_to_symtab_1 (pst->dependencies[i]);
4416 }
4417
e38df1d0 4418 per_cu = pst->read_symtab_private;
10b3939b
DJ
4419
4420 if (per_cu == NULL)
aaa75496
JB
4421 {
4422 /* It's an include file, no symbols to read for it.
4423 Everything is in the parent symtab. */
4424 pst->readin = 1;
4425 return;
4426 }
c906108c 4427
9291a0cd 4428 dw2_do_instantiate_symtab (pst->objfile, per_cu);
10b3939b
DJ
4429}
4430
93311388 4431/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4432
93311388 4433static void
3e43a32a
MS
4434load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4435 struct objfile *objfile)
10b3939b 4436{
31ffec48 4437 bfd *abfd = objfile->obfd;
10b3939b 4438 struct dwarf2_cu *cu;
c764a876 4439 unsigned int offset;
93311388 4440 gdb_byte *info_ptr, *beg_of_comp_unit;
98bfdba5 4441 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
10b3939b 4442 struct attribute *attr;
98bfdba5 4443 int read_cu = 0;
6502dd73 4444
348e048f
DE
4445 gdb_assert (! per_cu->from_debug_types);
4446
c906108c 4447 /* Set local variables from the partial symbol table info. */
10b3939b 4448 offset = per_cu->offset;
6502dd73 4449
be391dca 4450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4451 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4452 beg_of_comp_unit = info_ptr;
63d06c5c 4453
98bfdba5
PA
4454 if (per_cu->cu == NULL)
4455 {
9816fde3
JK
4456 cu = xmalloc (sizeof (*cu));
4457 init_one_comp_unit (cu, objfile);
98bfdba5
PA
4458
4459 read_cu = 1;
c906108c 4460
98bfdba5
PA
4461 /* If an error occurs while loading, release our storage. */
4462 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 4463
98bfdba5
PA
4464 /* Read in the comp_unit header. */
4465 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4466
98bfdba5
PA
4467 /* Complete the cu_header. */
4468 cu->header.offset = offset;
4469 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
93311388 4470
98bfdba5
PA
4471 /* Read the abbrevs for this compilation unit. */
4472 dwarf2_read_abbrevs (abfd, cu);
4473 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
10b3939b 4474
98bfdba5
PA
4475 /* Link this compilation unit into the compilation unit tree. */
4476 per_cu->cu = cu;
4477 cu->per_cu = per_cu;
98bfdba5
PA
4478
4479 /* Link this CU into read_in_chain. */
4480 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4481 dwarf2_per_objfile->read_in_chain = per_cu;
4482 }
4483 else
4484 {
4485 cu = per_cu->cu;
4486 info_ptr += cu->header.first_die_offset;
4487 }
e142c38c 4488
93311388 4489 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4490
4491 /* We try not to read any attributes in this function, because not
4492 all objfiles needed for references have been loaded yet, and symbol
4493 table processing isn't initialized. But we have to set the CU language,
4494 or we won't be able to build types correctly. */
9816fde3 4495 prepare_one_comp_unit (cu, cu->dies);
10b3939b 4496
a6c727b2
DJ
4497 /* Similarly, if we do not read the producer, we can not apply
4498 producer-specific interpretation. */
4499 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4500 if (attr)
4501 cu->producer = DW_STRING (attr);
4502
98bfdba5
PA
4503 if (read_cu)
4504 {
4505 do_cleanups (free_abbrevs_cleanup);
e142c38c 4506
98bfdba5
PA
4507 /* We've successfully allocated this compilation unit. Let our
4508 caller clean it up when finished with it. */
4509 discard_cleanups (free_cu_cleanup);
4510 }
10b3939b
DJ
4511}
4512
3da10d80
KS
4513/* Add a DIE to the delayed physname list. */
4514
4515static void
4516add_to_method_list (struct type *type, int fnfield_index, int index,
4517 const char *name, struct die_info *die,
4518 struct dwarf2_cu *cu)
4519{
4520 struct delayed_method_info mi;
4521 mi.type = type;
4522 mi.fnfield_index = fnfield_index;
4523 mi.index = index;
4524 mi.name = name;
4525 mi.die = die;
4526 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4527}
4528
4529/* A cleanup for freeing the delayed method list. */
4530
4531static void
4532free_delayed_list (void *ptr)
4533{
4534 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4535 if (cu->method_list != NULL)
4536 {
4537 VEC_free (delayed_method_info, cu->method_list);
4538 cu->method_list = NULL;
4539 }
4540}
4541
4542/* Compute the physnames of any methods on the CU's method list.
4543
4544 The computation of method physnames is delayed in order to avoid the
4545 (bad) condition that one of the method's formal parameters is of an as yet
4546 incomplete type. */
4547
4548static void
4549compute_delayed_physnames (struct dwarf2_cu *cu)
4550{
4551 int i;
4552 struct delayed_method_info *mi;
4553 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4554 {
4555 char *physname;
4556 struct fn_fieldlist *fn_flp
4557 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4558 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4559 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4560 }
4561}
4562
10b3939b
DJ
4563/* Generate full symbol information for PST and CU, whose DIEs have
4564 already been loaded into memory. */
4565
4566static void
4567process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4568{
10b3939b 4569 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4570 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4571 CORE_ADDR lowpc, highpc;
4572 struct symtab *symtab;
3da10d80 4573 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
4574 CORE_ADDR baseaddr;
4575
4576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4577
10b3939b
DJ
4578 buildsym_init ();
4579 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 4580 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
4581
4582 cu->list_in_scope = &file_symbols;
c906108c 4583
d85a05f0 4584 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 4585
c906108c 4586 /* Do line number decoding in read_file_scope () */
10b3939b 4587 process_die (cu->dies, cu);
c906108c 4588
3da10d80
KS
4589 /* Now that we have processed all the DIEs in the CU, all the types
4590 should be complete, and it should now be safe to compute all of the
4591 physnames. */
4592 compute_delayed_physnames (cu);
4593 do_cleanups (delayed_list_cleanup);
4594
fae299cd
DC
4595 /* Some compilers don't define a DW_AT_high_pc attribute for the
4596 compilation unit. If the DW_AT_high_pc is missing, synthesize
4597 it, by scanning the DIE's below the compilation unit. */
10b3939b 4598 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4599
613e1657 4600 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
4601
4602 /* Set symtab language to language from DW_AT_language.
4603 If the compilation is from a C file generated by language preprocessors,
4604 do not set the language if it was already deduced by start_subfile. */
4605 if (symtab != NULL
10b3939b 4606 && !(cu->language == language_c && symtab->language != language_c))
c906108c 4607 {
10b3939b 4608 symtab->language = cu->language;
c906108c 4609 }
9291a0cd
TT
4610
4611 if (dwarf2_per_objfile->using_index)
4612 per_cu->v.quick->symtab = symtab;
4613 else
4614 {
4615 struct partial_symtab *pst = per_cu->v.psymtab;
4616 pst->symtab = symtab;
4617 pst->readin = 1;
4618 }
c906108c
SS
4619
4620 do_cleanups (back_to);
4621}
4622
4623/* Process a die and its children. */
4624
4625static void
e7c27a73 4626process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4627{
4628 switch (die->tag)
4629 {
4630 case DW_TAG_padding:
4631 break;
4632 case DW_TAG_compile_unit:
e7c27a73 4633 read_file_scope (die, cu);
c906108c 4634 break;
348e048f
DE
4635 case DW_TAG_type_unit:
4636 read_type_unit_scope (die, cu);
4637 break;
c906108c 4638 case DW_TAG_subprogram:
c906108c 4639 case DW_TAG_inlined_subroutine:
edb3359d 4640 read_func_scope (die, cu);
c906108c
SS
4641 break;
4642 case DW_TAG_lexical_block:
14898363
L
4643 case DW_TAG_try_block:
4644 case DW_TAG_catch_block:
e7c27a73 4645 read_lexical_block_scope (die, cu);
c906108c
SS
4646 break;
4647 case DW_TAG_class_type:
680b30c7 4648 case DW_TAG_interface_type:
c906108c
SS
4649 case DW_TAG_structure_type:
4650 case DW_TAG_union_type:
134d01f1 4651 process_structure_scope (die, cu);
c906108c
SS
4652 break;
4653 case DW_TAG_enumeration_type:
134d01f1 4654 process_enumeration_scope (die, cu);
c906108c 4655 break;
134d01f1 4656
f792889a
DJ
4657 /* These dies have a type, but processing them does not create
4658 a symbol or recurse to process the children. Therefore we can
4659 read them on-demand through read_type_die. */
c906108c 4660 case DW_TAG_subroutine_type:
72019c9c 4661 case DW_TAG_set_type:
c906108c 4662 case DW_TAG_array_type:
c906108c 4663 case DW_TAG_pointer_type:
c906108c 4664 case DW_TAG_ptr_to_member_type:
c906108c 4665 case DW_TAG_reference_type:
c906108c 4666 case DW_TAG_string_type:
c906108c 4667 break;
134d01f1 4668
c906108c 4669 case DW_TAG_base_type:
a02abb62 4670 case DW_TAG_subrange_type:
cb249c71 4671 case DW_TAG_typedef:
134d01f1
DJ
4672 /* Add a typedef symbol for the type definition, if it has a
4673 DW_AT_name. */
f792889a 4674 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4675 break;
c906108c 4676 case DW_TAG_common_block:
e7c27a73 4677 read_common_block (die, cu);
c906108c
SS
4678 break;
4679 case DW_TAG_common_inclusion:
4680 break;
d9fa45fe 4681 case DW_TAG_namespace:
63d06c5c 4682 processing_has_namespace_info = 1;
e7c27a73 4683 read_namespace (die, cu);
d9fa45fe 4684 break;
5d7cb8df 4685 case DW_TAG_module:
f55ee35c 4686 processing_has_namespace_info = 1;
5d7cb8df
JK
4687 read_module (die, cu);
4688 break;
d9fa45fe
DC
4689 case DW_TAG_imported_declaration:
4690 case DW_TAG_imported_module:
63d06c5c 4691 processing_has_namespace_info = 1;
27aa8d6a
SW
4692 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4693 || cu->language != language_fortran))
4694 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4695 dwarf_tag_name (die->tag));
4696 read_import_statement (die, cu);
d9fa45fe 4697 break;
c906108c 4698 default:
e7c27a73 4699 new_symbol (die, NULL, cu);
c906108c
SS
4700 break;
4701 }
4702}
4703
94af9270
KS
4704/* A helper function for dwarf2_compute_name which determines whether DIE
4705 needs to have the name of the scope prepended to the name listed in the
4706 die. */
4707
4708static int
4709die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4710{
1c809c68
TT
4711 struct attribute *attr;
4712
94af9270
KS
4713 switch (die->tag)
4714 {
4715 case DW_TAG_namespace:
4716 case DW_TAG_typedef:
4717 case DW_TAG_class_type:
4718 case DW_TAG_interface_type:
4719 case DW_TAG_structure_type:
4720 case DW_TAG_union_type:
4721 case DW_TAG_enumeration_type:
4722 case DW_TAG_enumerator:
4723 case DW_TAG_subprogram:
4724 case DW_TAG_member:
4725 return 1;
4726
4727 case DW_TAG_variable:
c2b0a229 4728 case DW_TAG_constant:
94af9270
KS
4729 /* We only need to prefix "globally" visible variables. These include
4730 any variable marked with DW_AT_external or any variable that
4731 lives in a namespace. [Variables in anonymous namespaces
4732 require prefixing, but they are not DW_AT_external.] */
4733
4734 if (dwarf2_attr (die, DW_AT_specification, cu))
4735 {
4736 struct dwarf2_cu *spec_cu = cu;
9a619af0 4737
94af9270
KS
4738 return die_needs_namespace (die_specification (die, &spec_cu),
4739 spec_cu);
4740 }
4741
1c809c68 4742 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4743 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4744 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4745 return 0;
4746 /* A variable in a lexical block of some kind does not need a
4747 namespace, even though in C++ such variables may be external
4748 and have a mangled name. */
4749 if (die->parent->tag == DW_TAG_lexical_block
4750 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4751 || die->parent->tag == DW_TAG_catch_block
4752 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4753 return 0;
4754 return 1;
94af9270
KS
4755
4756 default:
4757 return 0;
4758 }
4759}
4760
98bfdba5
PA
4761/* Retrieve the last character from a mem_file. */
4762
4763static void
4764do_ui_file_peek_last (void *object, const char *buffer, long length)
4765{
4766 char *last_char_p = (char *) object;
4767
4768 if (length > 0)
4769 *last_char_p = buffer[length - 1];
4770}
4771
94af9270
KS
4772/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4773 compute the physname for the object, which include a method's
4774 formal parameters (C++/Java) and return type (Java).
4775
af6b7be1
JB
4776 For Ada, return the DIE's linkage name rather than the fully qualified
4777 name. PHYSNAME is ignored..
4778
94af9270
KS
4779 The result is allocated on the objfile_obstack and canonicalized. */
4780
4781static const char *
4782dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4783 int physname)
4784{
4785 if (name == NULL)
4786 name = dwarf2_name (die, cu);
4787
f55ee35c
JK
4788 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4789 compute it by typename_concat inside GDB. */
4790 if (cu->language == language_ada
4791 || (cu->language == language_fortran && physname))
4792 {
4793 /* For Ada unit, we prefer the linkage name over the name, as
4794 the former contains the exported name, which the user expects
4795 to be able to reference. Ideally, we want the user to be able
4796 to reference this entity using either natural or linkage name,
4797 but we haven't started looking at this enhancement yet. */
4798 struct attribute *attr;
4799
4800 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4801 if (attr == NULL)
4802 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4803 if (attr && DW_STRING (attr))
4804 return DW_STRING (attr);
4805 }
4806
94af9270
KS
4807 /* These are the only languages we know how to qualify names in. */
4808 if (name != NULL
f55ee35c
JK
4809 && (cu->language == language_cplus || cu->language == language_java
4810 || cu->language == language_fortran))
94af9270
KS
4811 {
4812 if (die_needs_namespace (die, cu))
4813 {
4814 long length;
4815 char *prefix;
4816 struct ui_file *buf;
4817
4818 prefix = determine_prefix (die, cu);
4819 buf = mem_fileopen ();
4820 if (*prefix != '\0')
4821 {
f55ee35c
JK
4822 char *prefixed_name = typename_concat (NULL, prefix, name,
4823 physname, cu);
9a619af0 4824
94af9270
KS
4825 fputs_unfiltered (prefixed_name, buf);
4826 xfree (prefixed_name);
4827 }
4828 else
4829 fputs_unfiltered (name ? name : "", buf);
4830
98bfdba5
PA
4831 /* Template parameters may be specified in the DIE's DW_AT_name, or
4832 as children with DW_TAG_template_type_param or
4833 DW_TAG_value_type_param. If the latter, add them to the name
4834 here. If the name already has template parameters, then
4835 skip this step; some versions of GCC emit both, and
4836 it is more efficient to use the pre-computed name.
4837
4838 Something to keep in mind about this process: it is very
4839 unlikely, or in some cases downright impossible, to produce
4840 something that will match the mangled name of a function.
4841 If the definition of the function has the same debug info,
4842 we should be able to match up with it anyway. But fallbacks
4843 using the minimal symbol, for instance to find a method
4844 implemented in a stripped copy of libstdc++, will not work.
4845 If we do not have debug info for the definition, we will have to
4846 match them up some other way.
4847
4848 When we do name matching there is a related problem with function
4849 templates; two instantiated function templates are allowed to
4850 differ only by their return types, which we do not add here. */
4851
4852 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4853 {
4854 struct attribute *attr;
4855 struct die_info *child;
4856 int first = 1;
4857
4858 die->building_fullname = 1;
4859
4860 for (child = die->child; child != NULL; child = child->sibling)
4861 {
4862 struct type *type;
4863 long value;
4864 gdb_byte *bytes;
4865 struct dwarf2_locexpr_baton *baton;
4866 struct value *v;
4867
4868 if (child->tag != DW_TAG_template_type_param
4869 && child->tag != DW_TAG_template_value_param)
4870 continue;
4871
4872 if (first)
4873 {
4874 fputs_unfiltered ("<", buf);
4875 first = 0;
4876 }
4877 else
4878 fputs_unfiltered (", ", buf);
4879
4880 attr = dwarf2_attr (child, DW_AT_type, cu);
4881 if (attr == NULL)
4882 {
4883 complaint (&symfile_complaints,
4884 _("template parameter missing DW_AT_type"));
4885 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4886 continue;
4887 }
4888 type = die_type (child, cu);
4889
4890 if (child->tag == DW_TAG_template_type_param)
4891 {
4892 c_print_type (type, "", buf, -1, 0);
4893 continue;
4894 }
4895
4896 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4897 if (attr == NULL)
4898 {
4899 complaint (&symfile_complaints,
3e43a32a
MS
4900 _("template parameter missing "
4901 "DW_AT_const_value"));
98bfdba5
PA
4902 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4903 continue;
4904 }
4905
4906 dwarf2_const_value_attr (attr, type, name,
4907 &cu->comp_unit_obstack, cu,
4908 &value, &bytes, &baton);
4909
4910 if (TYPE_NOSIGN (type))
4911 /* GDB prints characters as NUMBER 'CHAR'. If that's
4912 changed, this can use value_print instead. */
4913 c_printchar (value, type, buf);
4914 else
4915 {
4916 struct value_print_options opts;
4917
4918 if (baton != NULL)
4919 v = dwarf2_evaluate_loc_desc (type, NULL,
4920 baton->data,
4921 baton->size,
4922 baton->per_cu);
4923 else if (bytes != NULL)
4924 {
4925 v = allocate_value (type);
4926 memcpy (value_contents_writeable (v), bytes,
4927 TYPE_LENGTH (type));
4928 }
4929 else
4930 v = value_from_longest (type, value);
4931
3e43a32a
MS
4932 /* Specify decimal so that we do not depend on
4933 the radix. */
98bfdba5
PA
4934 get_formatted_print_options (&opts, 'd');
4935 opts.raw = 1;
4936 value_print (v, buf, &opts);
4937 release_value (v);
4938 value_free (v);
4939 }
4940 }
4941
4942 die->building_fullname = 0;
4943
4944 if (!first)
4945 {
4946 /* Close the argument list, with a space if necessary
4947 (nested templates). */
4948 char last_char = '\0';
4949 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4950 if (last_char == '>')
4951 fputs_unfiltered (" >", buf);
4952 else
4953 fputs_unfiltered (">", buf);
4954 }
4955 }
4956
94af9270
KS
4957 /* For Java and C++ methods, append formal parameter type
4958 information, if PHYSNAME. */
6e70227d 4959
94af9270
KS
4960 if (physname && die->tag == DW_TAG_subprogram
4961 && (cu->language == language_cplus
4962 || cu->language == language_java))
4963 {
4964 struct type *type = read_type_die (die, cu);
4965
4966 c_type_print_args (type, buf, 0, cu->language);
4967
4968 if (cu->language == language_java)
4969 {
4970 /* For java, we must append the return type to method
4971 names. */
4972 if (die->tag == DW_TAG_subprogram)
4973 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4974 0, 0);
4975 }
4976 else if (cu->language == language_cplus)
4977 {
60430eff
DJ
4978 /* Assume that an artificial first parameter is
4979 "this", but do not crash if it is not. RealView
4980 marks unnamed (and thus unused) parameters as
4981 artificial; there is no way to differentiate
4982 the two cases. */
94af9270
KS
4983 if (TYPE_NFIELDS (type) > 0
4984 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 4985 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
4986 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
4987 0))))
94af9270
KS
4988 fputs_unfiltered (" const", buf);
4989 }
4990 }
4991
4992 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4993 &length);
4994 ui_file_delete (buf);
4995
4996 if (cu->language == language_cplus)
4997 {
4998 char *cname
4999 = dwarf2_canonicalize_name (name, cu,
5000 &cu->objfile->objfile_obstack);
9a619af0 5001
94af9270
KS
5002 if (cname != NULL)
5003 name = cname;
5004 }
5005 }
5006 }
5007
5008 return name;
5009}
5010
0114d602
DJ
5011/* Return the fully qualified name of DIE, based on its DW_AT_name.
5012 If scope qualifiers are appropriate they will be added. The result
5013 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
5014 not have a name. NAME may either be from a previous call to
5015 dwarf2_name or NULL.
5016
5017 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
5018
5019static const char *
94af9270 5020dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 5021{
94af9270
KS
5022 return dwarf2_compute_name (name, die, cu, 0);
5023}
0114d602 5024
94af9270
KS
5025/* Construct a physname for the given DIE in CU. NAME may either be
5026 from a previous call to dwarf2_name or NULL. The result will be
5027 allocated on the objfile_objstack or NULL if the DIE does not have a
5028 name.
0114d602 5029
94af9270 5030 The output string will be canonicalized (if C++/Java). */
0114d602 5031
94af9270
KS
5032static const char *
5033dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5034{
5035 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
5036}
5037
27aa8d6a
SW
5038/* Read the import statement specified by the given die and record it. */
5039
5040static void
5041read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5042{
5043 struct attribute *import_attr;
5044 struct die_info *imported_die;
de4affc9 5045 struct dwarf2_cu *imported_cu;
27aa8d6a 5046 const char *imported_name;
794684b6 5047 const char *imported_name_prefix;
13387711
SW
5048 const char *canonical_name;
5049 const char *import_alias;
5050 const char *imported_declaration = NULL;
794684b6 5051 const char *import_prefix;
13387711
SW
5052
5053 char *temp;
27aa8d6a
SW
5054
5055 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5056 if (import_attr == NULL)
5057 {
5058 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5059 dwarf_tag_name (die->tag));
5060 return;
5061 }
5062
de4affc9
CC
5063 imported_cu = cu;
5064 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5065 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
5066 if (imported_name == NULL)
5067 {
5068 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5069
5070 The import in the following code:
5071 namespace A
5072 {
5073 typedef int B;
5074 }
5075
5076 int main ()
5077 {
5078 using A::B;
5079 B b;
5080 return b;
5081 }
5082
5083 ...
5084 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5085 <52> DW_AT_decl_file : 1
5086 <53> DW_AT_decl_line : 6
5087 <54> DW_AT_import : <0x75>
5088 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5089 <59> DW_AT_name : B
5090 <5b> DW_AT_decl_file : 1
5091 <5c> DW_AT_decl_line : 2
5092 <5d> DW_AT_type : <0x6e>
5093 ...
5094 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5095 <76> DW_AT_byte_size : 4
5096 <77> DW_AT_encoding : 5 (signed)
5097
5098 imports the wrong die ( 0x75 instead of 0x58 ).
5099 This case will be ignored until the gcc bug is fixed. */
5100 return;
5101 }
5102
82856980
SW
5103 /* Figure out the local name after import. */
5104 import_alias = dwarf2_name (die, cu);
27aa8d6a 5105
794684b6
SW
5106 /* Figure out where the statement is being imported to. */
5107 import_prefix = determine_prefix (die, cu);
5108
5109 /* Figure out what the scope of the imported die is and prepend it
5110 to the name of the imported die. */
de4affc9 5111 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 5112
f55ee35c
JK
5113 if (imported_die->tag != DW_TAG_namespace
5114 && imported_die->tag != DW_TAG_module)
794684b6 5115 {
13387711
SW
5116 imported_declaration = imported_name;
5117 canonical_name = imported_name_prefix;
794684b6 5118 }
13387711 5119 else if (strlen (imported_name_prefix) > 0)
794684b6 5120 {
13387711
SW
5121 temp = alloca (strlen (imported_name_prefix)
5122 + 2 + strlen (imported_name) + 1);
5123 strcpy (temp, imported_name_prefix);
5124 strcat (temp, "::");
5125 strcat (temp, imported_name);
5126 canonical_name = temp;
794684b6 5127 }
13387711
SW
5128 else
5129 canonical_name = imported_name;
794684b6 5130
c0cc3a76
SW
5131 cp_add_using_directive (import_prefix,
5132 canonical_name,
5133 import_alias,
13387711 5134 imported_declaration,
c0cc3a76 5135 &cu->objfile->objfile_obstack);
27aa8d6a
SW
5136}
5137
5fb290d7 5138static void
e142c38c 5139initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 5140{
e142c38c 5141 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
5142}
5143
ae2de4f8
DE
5144/* Cleanup function for read_file_scope. */
5145
cb1df416
DJ
5146static void
5147free_cu_line_header (void *arg)
5148{
5149 struct dwarf2_cu *cu = arg;
5150
5151 free_line_header (cu->line_header);
5152 cu->line_header = NULL;
5153}
5154
9291a0cd
TT
5155static void
5156find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5157 char **name, char **comp_dir)
5158{
5159 struct attribute *attr;
5160
5161 *name = NULL;
5162 *comp_dir = NULL;
5163
5164 /* Find the filename. Do not use dwarf2_name here, since the filename
5165 is not a source language identifier. */
5166 attr = dwarf2_attr (die, DW_AT_name, cu);
5167 if (attr)
5168 {
5169 *name = DW_STRING (attr);
5170 }
5171
5172 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5173 if (attr)
5174 *comp_dir = DW_STRING (attr);
5175 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5176 {
5177 *comp_dir = ldirname (*name);
5178 if (*comp_dir != NULL)
5179 make_cleanup (xfree, *comp_dir);
5180 }
5181 if (*comp_dir != NULL)
5182 {
5183 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5184 directory, get rid of it. */
5185 char *cp = strchr (*comp_dir, ':');
5186
5187 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5188 *comp_dir = cp + 1;
5189 }
5190
5191 if (*name == NULL)
5192 *name = "<unknown>";
5193}
5194
ae2de4f8
DE
5195/* Process DW_TAG_compile_unit. */
5196
c906108c 5197static void
e7c27a73 5198read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5199{
e7c27a73 5200 struct objfile *objfile = cu->objfile;
debd256d 5201 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 5202 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
5203 CORE_ADDR highpc = ((CORE_ADDR) 0);
5204 struct attribute *attr;
e1024ff1 5205 char *name = NULL;
c906108c
SS
5206 char *comp_dir = NULL;
5207 struct die_info *child_die;
5208 bfd *abfd = objfile->obfd;
debd256d 5209 struct line_header *line_header = 0;
e142c38c 5210 CORE_ADDR baseaddr;
6e70227d 5211
e142c38c 5212 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5213
fae299cd 5214 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
5215
5216 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5217 from finish_block. */
2acceee2 5218 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
5219 lowpc = highpc;
5220 lowpc += baseaddr;
5221 highpc += baseaddr;
5222
9291a0cd 5223 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 5224
e142c38c 5225 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
5226 if (attr)
5227 {
e142c38c 5228 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
5229 }
5230
b0f35d58 5231 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5232 if (attr)
b0f35d58 5233 cu->producer = DW_STRING (attr);
303b6f5d 5234
f4b8a18d
KW
5235 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5236 standardised yet. As a workaround for the language detection we fall
5237 back to the DW_AT_producer string. */
5238 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5239 cu->language = language_opencl;
5240
c906108c
SS
5241 /* We assume that we're processing GCC output. */
5242 processing_gcc_compilation = 2;
c906108c 5243
df8a16a1
DJ
5244 processing_has_namespace_info = 0;
5245
c906108c
SS
5246 start_symtab (name, comp_dir, lowpc);
5247 record_debugformat ("DWARF 2");
303b6f5d 5248 record_producer (cu->producer);
c906108c 5249
e142c38c 5250 initialize_cu_func_list (cu);
c906108c 5251
cb1df416
DJ
5252 /* Decode line number information if present. We do this before
5253 processing child DIEs, so that the line header table is available
5254 for DW_AT_decl_file. */
e142c38c 5255 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
5256 if (attr)
5257 {
debd256d 5258 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 5259 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
5260 if (line_header)
5261 {
cb1df416
DJ
5262 cu->line_header = line_header;
5263 make_cleanup (free_cu_line_header, cu);
aaa75496 5264 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 5265 }
5fb290d7 5266 }
debd256d 5267
cb1df416
DJ
5268 /* Process all dies in compilation unit. */
5269 if (die->child != NULL)
5270 {
5271 child_die = die->child;
5272 while (child_die && child_die->tag)
5273 {
5274 process_die (child_die, cu);
5275 child_die = sibling_die (child_die);
5276 }
5277 }
5278
2e276125
JB
5279 /* Decode macro information, if present. Dwarf 2 macro information
5280 refers to information in the line number info statement program
5281 header, so we can only read it if we've read the header
5282 successfully. */
e142c38c 5283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 5284 if (attr && line_header)
2e276125
JB
5285 {
5286 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 5287
2e276125 5288 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 5289 comp_dir, abfd, cu);
2e276125 5290 }
debd256d 5291 do_cleanups (back_to);
5fb290d7
DJ
5292}
5293
ae2de4f8
DE
5294/* Process DW_TAG_type_unit.
5295 For TUs we want to skip the first top level sibling if it's not the
348e048f
DE
5296 actual type being defined by this TU. In this case the first top
5297 level sibling is there to provide context only. */
5298
5299static void
5300read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5301{
5302 struct objfile *objfile = cu->objfile;
5303 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5304 CORE_ADDR lowpc;
5305 struct attribute *attr;
5306 char *name = NULL;
5307 char *comp_dir = NULL;
5308 struct die_info *child_die;
5309 bfd *abfd = objfile->obfd;
348e048f
DE
5310
5311 /* start_symtab needs a low pc, but we don't really have one.
5312 Do what read_file_scope would do in the absence of such info. */
5313 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5314
5315 /* Find the filename. Do not use dwarf2_name here, since the filename
5316 is not a source language identifier. */
5317 attr = dwarf2_attr (die, DW_AT_name, cu);
5318 if (attr)
5319 name = DW_STRING (attr);
5320
5321 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5322 if (attr)
5323 comp_dir = DW_STRING (attr);
5324 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5325 {
5326 comp_dir = ldirname (name);
5327 if (comp_dir != NULL)
5328 make_cleanup (xfree, comp_dir);
5329 }
5330
5331 if (name == NULL)
5332 name = "<unknown>";
5333
5334 attr = dwarf2_attr (die, DW_AT_language, cu);
5335 if (attr)
5336 set_cu_language (DW_UNSND (attr), cu);
5337
5338 /* This isn't technically needed today. It is done for symmetry
5339 with read_file_scope. */
5340 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5341 if (attr)
348e048f
DE
5342 cu->producer = DW_STRING (attr);
5343
5344 /* We assume that we're processing GCC output. */
5345 processing_gcc_compilation = 2;
5346
5347 processing_has_namespace_info = 0;
5348
5349 start_symtab (name, comp_dir, lowpc);
5350 record_debugformat ("DWARF 2");
5351 record_producer (cu->producer);
5352
5353 /* Process the dies in the type unit. */
5354 if (die->child == NULL)
5355 {
5356 dump_die_for_error (die);
5357 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5358 bfd_get_filename (abfd));
5359 }
5360
5361 child_die = die->child;
5362
5363 while (child_die && child_die->tag)
5364 {
5365 process_die (child_die, cu);
5366
5367 child_die = sibling_die (child_die);
5368 }
5369
5370 do_cleanups (back_to);
5371}
5372
5fb290d7 5373static void
e142c38c
DJ
5374add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5375 struct dwarf2_cu *cu)
5fb290d7
DJ
5376{
5377 struct function_range *thisfn;
5378
5379 thisfn = (struct function_range *)
7b5a2f43 5380 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
5381 thisfn->name = name;
5382 thisfn->lowpc = lowpc;
5383 thisfn->highpc = highpc;
5384 thisfn->seen_line = 0;
5385 thisfn->next = NULL;
5386
e142c38c
DJ
5387 if (cu->last_fn == NULL)
5388 cu->first_fn = thisfn;
5fb290d7 5389 else
e142c38c 5390 cu->last_fn->next = thisfn;
5fb290d7 5391
e142c38c 5392 cu->last_fn = thisfn;
c906108c
SS
5393}
5394
d389af10
JK
5395/* qsort helper for inherit_abstract_dies. */
5396
5397static int
5398unsigned_int_compar (const void *ap, const void *bp)
5399{
5400 unsigned int a = *(unsigned int *) ap;
5401 unsigned int b = *(unsigned int *) bp;
5402
5403 return (a > b) - (b > a);
5404}
5405
5406/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
5407 Inherit only the children of the DW_AT_abstract_origin DIE not being
5408 already referenced by DW_AT_abstract_origin from the children of the
5409 current DIE. */
d389af10
JK
5410
5411static void
5412inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5413{
5414 struct die_info *child_die;
5415 unsigned die_children_count;
5416 /* CU offsets which were referenced by children of the current DIE. */
5417 unsigned *offsets;
5418 unsigned *offsets_end, *offsetp;
5419 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5420 struct die_info *origin_die;
5421 /* Iterator of the ORIGIN_DIE children. */
5422 struct die_info *origin_child_die;
5423 struct cleanup *cleanups;
5424 struct attribute *attr;
cd02d79d
PA
5425 struct dwarf2_cu *origin_cu;
5426 struct pending **origin_previous_list_in_scope;
d389af10
JK
5427
5428 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5429 if (!attr)
5430 return;
5431
cd02d79d
PA
5432 /* Note that following die references may follow to a die in a
5433 different cu. */
5434
5435 origin_cu = cu;
5436 origin_die = follow_die_ref (die, attr, &origin_cu);
5437
5438 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5439 symbols in. */
5440 origin_previous_list_in_scope = origin_cu->list_in_scope;
5441 origin_cu->list_in_scope = cu->list_in_scope;
5442
edb3359d
DJ
5443 if (die->tag != origin_die->tag
5444 && !(die->tag == DW_TAG_inlined_subroutine
5445 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5446 complaint (&symfile_complaints,
5447 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5448 die->offset, origin_die->offset);
5449
5450 child_die = die->child;
5451 die_children_count = 0;
5452 while (child_die && child_die->tag)
5453 {
5454 child_die = sibling_die (child_die);
5455 die_children_count++;
5456 }
5457 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5458 cleanups = make_cleanup (xfree, offsets);
5459
5460 offsets_end = offsets;
5461 child_die = die->child;
5462 while (child_die && child_die->tag)
5463 {
c38f313d
DJ
5464 /* For each CHILD_DIE, find the corresponding child of
5465 ORIGIN_DIE. If there is more than one layer of
5466 DW_AT_abstract_origin, follow them all; there shouldn't be,
5467 but GCC versions at least through 4.4 generate this (GCC PR
5468 40573). */
5469 struct die_info *child_origin_die = child_die;
cd02d79d 5470 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 5471
c38f313d
DJ
5472 while (1)
5473 {
cd02d79d
PA
5474 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5475 child_origin_cu);
c38f313d
DJ
5476 if (attr == NULL)
5477 break;
cd02d79d
PA
5478 child_origin_die = follow_die_ref (child_origin_die, attr,
5479 &child_origin_cu);
c38f313d
DJ
5480 }
5481
d389af10
JK
5482 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5483 counterpart may exist. */
c38f313d 5484 if (child_origin_die != child_die)
d389af10 5485 {
edb3359d
DJ
5486 if (child_die->tag != child_origin_die->tag
5487 && !(child_die->tag == DW_TAG_inlined_subroutine
5488 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5489 complaint (&symfile_complaints,
5490 _("Child DIE 0x%x and its abstract origin 0x%x have "
5491 "different tags"), child_die->offset,
5492 child_origin_die->offset);
c38f313d
DJ
5493 if (child_origin_die->parent != origin_die)
5494 complaint (&symfile_complaints,
5495 _("Child DIE 0x%x and its abstract origin 0x%x have "
5496 "different parents"), child_die->offset,
5497 child_origin_die->offset);
5498 else
5499 *offsets_end++ = child_origin_die->offset;
d389af10
JK
5500 }
5501 child_die = sibling_die (child_die);
5502 }
5503 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5504 unsigned_int_compar);
5505 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5506 if (offsetp[-1] == *offsetp)
3e43a32a
MS
5507 complaint (&symfile_complaints,
5508 _("Multiple children of DIE 0x%x refer "
5509 "to DIE 0x%x as their abstract origin"),
d389af10
JK
5510 die->offset, *offsetp);
5511
5512 offsetp = offsets;
5513 origin_child_die = origin_die->child;
5514 while (origin_child_die && origin_child_die->tag)
5515 {
5516 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5517 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5518 offsetp++;
5519 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5520 {
5521 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 5522 process_die (origin_child_die, origin_cu);
d389af10
JK
5523 }
5524 origin_child_die = sibling_die (origin_child_die);
5525 }
cd02d79d 5526 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
5527
5528 do_cleanups (cleanups);
5529}
5530
c906108c 5531static void
e7c27a73 5532read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5533{
e7c27a73 5534 struct objfile *objfile = cu->objfile;
52f0bd74 5535 struct context_stack *new;
c906108c
SS
5536 CORE_ADDR lowpc;
5537 CORE_ADDR highpc;
5538 struct die_info *child_die;
edb3359d 5539 struct attribute *attr, *call_line, *call_file;
c906108c 5540 char *name;
e142c38c 5541 CORE_ADDR baseaddr;
801e3a5b 5542 struct block *block;
edb3359d 5543 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
5544 VEC (symbolp) *template_args = NULL;
5545 struct template_symbol *templ_func = NULL;
edb3359d
DJ
5546
5547 if (inlined_func)
5548 {
5549 /* If we do not have call site information, we can't show the
5550 caller of this inlined function. That's too confusing, so
5551 only use the scope for local variables. */
5552 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5553 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5554 if (call_line == NULL || call_file == NULL)
5555 {
5556 read_lexical_block_scope (die, cu);
5557 return;
5558 }
5559 }
c906108c 5560
e142c38c
DJ
5561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5562
94af9270 5563 name = dwarf2_name (die, cu);
c906108c 5564
e8d05480
JB
5565 /* Ignore functions with missing or empty names. These are actually
5566 illegal according to the DWARF standard. */
5567 if (name == NULL)
5568 {
5569 complaint (&symfile_complaints,
5570 _("missing name for subprogram DIE at %d"), die->offset);
5571 return;
5572 }
5573
5574 /* Ignore functions with missing or invalid low and high pc attributes. */
5575 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5576 {
ae4d0c03
PM
5577 attr = dwarf2_attr (die, DW_AT_external, cu);
5578 if (!attr || !DW_UNSND (attr))
5579 complaint (&symfile_complaints,
3e43a32a
MS
5580 _("cannot get low and high bounds "
5581 "for subprogram DIE at %d"),
ae4d0c03 5582 die->offset);
e8d05480
JB
5583 return;
5584 }
c906108c
SS
5585
5586 lowpc += baseaddr;
5587 highpc += baseaddr;
5588
5fb290d7 5589 /* Record the function range for dwarf_decode_lines. */
e142c38c 5590 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 5591
34eaf542
TT
5592 /* If we have any template arguments, then we must allocate a
5593 different sort of symbol. */
5594 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5595 {
5596 if (child_die->tag == DW_TAG_template_type_param
5597 || child_die->tag == DW_TAG_template_value_param)
5598 {
5599 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5600 struct template_symbol);
5601 templ_func->base.is_cplus_template_function = 1;
5602 break;
5603 }
5604 }
5605
c906108c 5606 new = push_context (0, lowpc);
34eaf542
TT
5607 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5608 (struct symbol *) templ_func);
4c2df51b 5609
4cecd739
DJ
5610 /* If there is a location expression for DW_AT_frame_base, record
5611 it. */
e142c38c 5612 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 5613 if (attr)
c034e007
AC
5614 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5615 expression is being recorded directly in the function's symbol
5616 and not in a separate frame-base object. I guess this hack is
5617 to avoid adding some sort of frame-base adjunct/annex to the
5618 function's symbol :-(. The problem with doing this is that it
5619 results in a function symbol with a location expression that
5620 has nothing to do with the location of the function, ouch! The
5621 relationship should be: a function's symbol has-a frame base; a
5622 frame-base has-a location expression. */
e7c27a73 5623 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 5624
e142c38c 5625 cu->list_in_scope = &local_symbols;
c906108c 5626
639d11d3 5627 if (die->child != NULL)
c906108c 5628 {
639d11d3 5629 child_die = die->child;
c906108c
SS
5630 while (child_die && child_die->tag)
5631 {
34eaf542
TT
5632 if (child_die->tag == DW_TAG_template_type_param
5633 || child_die->tag == DW_TAG_template_value_param)
5634 {
5635 struct symbol *arg = new_symbol (child_die, NULL, cu);
5636
f1078f66
DJ
5637 if (arg != NULL)
5638 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
5639 }
5640 else
5641 process_die (child_die, cu);
c906108c
SS
5642 child_die = sibling_die (child_die);
5643 }
5644 }
5645
d389af10
JK
5646 inherit_abstract_dies (die, cu);
5647
4a811a97
UW
5648 /* If we have a DW_AT_specification, we might need to import using
5649 directives from the context of the specification DIE. See the
5650 comment in determine_prefix. */
5651 if (cu->language == language_cplus
5652 && dwarf2_attr (die, DW_AT_specification, cu))
5653 {
5654 struct dwarf2_cu *spec_cu = cu;
5655 struct die_info *spec_die = die_specification (die, &spec_cu);
5656
5657 while (spec_die)
5658 {
5659 child_die = spec_die->child;
5660 while (child_die && child_die->tag)
5661 {
5662 if (child_die->tag == DW_TAG_imported_module)
5663 process_die (child_die, spec_cu);
5664 child_die = sibling_die (child_die);
5665 }
5666
5667 /* In some cases, GCC generates specification DIEs that
5668 themselves contain DW_AT_specification attributes. */
5669 spec_die = die_specification (spec_die, &spec_cu);
5670 }
5671 }
5672
c906108c
SS
5673 new = pop_context ();
5674 /* Make a block for the local symbols within. */
801e3a5b
JB
5675 block = finish_block (new->name, &local_symbols, new->old_blocks,
5676 lowpc, highpc, objfile);
5677
df8a16a1 5678 /* For C++, set the block's scope. */
f55ee35c 5679 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 5680 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 5681 determine_prefix (die, cu),
df8a16a1
DJ
5682 processing_has_namespace_info);
5683
801e3a5b
JB
5684 /* If we have address ranges, record them. */
5685 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 5686
34eaf542
TT
5687 /* Attach template arguments to function. */
5688 if (! VEC_empty (symbolp, template_args))
5689 {
5690 gdb_assert (templ_func != NULL);
5691
5692 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5693 templ_func->template_arguments
5694 = obstack_alloc (&objfile->objfile_obstack,
5695 (templ_func->n_template_arguments
5696 * sizeof (struct symbol *)));
5697 memcpy (templ_func->template_arguments,
5698 VEC_address (symbolp, template_args),
5699 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5700 VEC_free (symbolp, template_args);
5701 }
5702
208d8187
JB
5703 /* In C++, we can have functions nested inside functions (e.g., when
5704 a function declares a class that has methods). This means that
5705 when we finish processing a function scope, we may need to go
5706 back to building a containing block's symbol lists. */
5707 local_symbols = new->locals;
5708 param_symbols = new->params;
27aa8d6a 5709 using_directives = new->using_directives;
208d8187 5710
921e78cf
JB
5711 /* If we've finished processing a top-level function, subsequent
5712 symbols go in the file symbol list. */
5713 if (outermost_context_p ())
e142c38c 5714 cu->list_in_scope = &file_symbols;
c906108c
SS
5715}
5716
5717/* Process all the DIES contained within a lexical block scope. Start
5718 a new scope, process the dies, and then close the scope. */
5719
5720static void
e7c27a73 5721read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5722{
e7c27a73 5723 struct objfile *objfile = cu->objfile;
52f0bd74 5724 struct context_stack *new;
c906108c
SS
5725 CORE_ADDR lowpc, highpc;
5726 struct die_info *child_die;
e142c38c
DJ
5727 CORE_ADDR baseaddr;
5728
5729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
5730
5731 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
5732 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5733 as multiple lexical blocks? Handling children in a sane way would
6e70227d 5734 be nasty. Might be easier to properly extend generic blocks to
af34e669 5735 describe ranges. */
d85a05f0 5736 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
5737 return;
5738 lowpc += baseaddr;
5739 highpc += baseaddr;
5740
5741 push_context (0, lowpc);
639d11d3 5742 if (die->child != NULL)
c906108c 5743 {
639d11d3 5744 child_die = die->child;
c906108c
SS
5745 while (child_die && child_die->tag)
5746 {
e7c27a73 5747 process_die (child_die, cu);
c906108c
SS
5748 child_die = sibling_die (child_die);
5749 }
5750 }
5751 new = pop_context ();
5752
8540c487 5753 if (local_symbols != NULL || using_directives != NULL)
c906108c 5754 {
801e3a5b
JB
5755 struct block *block
5756 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5757 highpc, objfile);
5758
5759 /* Note that recording ranges after traversing children, as we
5760 do here, means that recording a parent's ranges entails
5761 walking across all its children's ranges as they appear in
5762 the address map, which is quadratic behavior.
5763
5764 It would be nicer to record the parent's ranges before
5765 traversing its children, simply overriding whatever you find
5766 there. But since we don't even decide whether to create a
5767 block until after we've traversed its children, that's hard
5768 to do. */
5769 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
5770 }
5771 local_symbols = new->locals;
27aa8d6a 5772 using_directives = new->using_directives;
c906108c
SS
5773}
5774
43039443 5775/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
5776 Return 1 if the attributes are present and valid, otherwise, return 0.
5777 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
5778
5779static int
5780dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
5781 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5782 struct partial_symtab *ranges_pst)
43039443
JK
5783{
5784 struct objfile *objfile = cu->objfile;
5785 struct comp_unit_head *cu_header = &cu->header;
5786 bfd *obfd = objfile->obfd;
5787 unsigned int addr_size = cu_header->addr_size;
5788 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5789 /* Base address selection entry. */
5790 CORE_ADDR base;
5791 int found_base;
5792 unsigned int dummy;
5793 gdb_byte *buffer;
5794 CORE_ADDR marker;
5795 int low_set;
5796 CORE_ADDR low = 0;
5797 CORE_ADDR high = 0;
ff013f42 5798 CORE_ADDR baseaddr;
43039443 5799
d00adf39
DE
5800 found_base = cu->base_known;
5801 base = cu->base_address;
43039443 5802
be391dca 5803 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 5804 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
5805 {
5806 complaint (&symfile_complaints,
5807 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5808 offset);
5809 return 0;
5810 }
dce234bc 5811 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
5812
5813 /* Read in the largest possible address. */
5814 marker = read_address (obfd, buffer, cu, &dummy);
5815 if ((marker & mask) == mask)
5816 {
5817 /* If we found the largest possible address, then
5818 read the base address. */
5819 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5820 buffer += 2 * addr_size;
5821 offset += 2 * addr_size;
5822 found_base = 1;
5823 }
5824
5825 low_set = 0;
5826
e7030f15 5827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 5828
43039443
JK
5829 while (1)
5830 {
5831 CORE_ADDR range_beginning, range_end;
5832
5833 range_beginning = read_address (obfd, buffer, cu, &dummy);
5834 buffer += addr_size;
5835 range_end = read_address (obfd, buffer, cu, &dummy);
5836 buffer += addr_size;
5837 offset += 2 * addr_size;
5838
5839 /* An end of list marker is a pair of zero addresses. */
5840 if (range_beginning == 0 && range_end == 0)
5841 /* Found the end of list entry. */
5842 break;
5843
5844 /* Each base address selection entry is a pair of 2 values.
5845 The first is the largest possible address, the second is
5846 the base address. Check for a base address here. */
5847 if ((range_beginning & mask) == mask)
5848 {
5849 /* If we found the largest possible address, then
5850 read the base address. */
5851 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5852 found_base = 1;
5853 continue;
5854 }
5855
5856 if (!found_base)
5857 {
5858 /* We have no valid base address for the ranges
5859 data. */
5860 complaint (&symfile_complaints,
5861 _("Invalid .debug_ranges data (no base address)"));
5862 return 0;
5863 }
5864
5865 range_beginning += base;
5866 range_end += base;
5867
ff013f42
JK
5868 if (ranges_pst != NULL && range_beginning < range_end)
5869 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
5870 range_beginning + baseaddr,
5871 range_end - 1 + baseaddr,
ff013f42
JK
5872 ranges_pst);
5873
43039443
JK
5874 /* FIXME: This is recording everything as a low-high
5875 segment of consecutive addresses. We should have a
5876 data structure for discontiguous block ranges
5877 instead. */
5878 if (! low_set)
5879 {
5880 low = range_beginning;
5881 high = range_end;
5882 low_set = 1;
5883 }
5884 else
5885 {
5886 if (range_beginning < low)
5887 low = range_beginning;
5888 if (range_end > high)
5889 high = range_end;
5890 }
5891 }
5892
5893 if (! low_set)
5894 /* If the first entry is an end-of-list marker, the range
5895 describes an empty scope, i.e. no instructions. */
5896 return 0;
5897
5898 if (low_return)
5899 *low_return = low;
5900 if (high_return)
5901 *high_return = high;
5902 return 1;
5903}
5904
af34e669
DJ
5905/* Get low and high pc attributes from a die. Return 1 if the attributes
5906 are present and valid, otherwise, return 0. Return -1 if the range is
5907 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 5908static int
af34e669 5909dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
5910 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5911 struct partial_symtab *pst)
c906108c
SS
5912{
5913 struct attribute *attr;
af34e669
DJ
5914 CORE_ADDR low = 0;
5915 CORE_ADDR high = 0;
5916 int ret = 0;
c906108c 5917
e142c38c 5918 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 5919 if (attr)
af34e669
DJ
5920 {
5921 high = DW_ADDR (attr);
e142c38c 5922 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
5923 if (attr)
5924 low = DW_ADDR (attr);
5925 else
5926 /* Found high w/o low attribute. */
5927 return 0;
5928
5929 /* Found consecutive range of addresses. */
5930 ret = 1;
5931 }
c906108c 5932 else
af34e669 5933 {
e142c38c 5934 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
5935 if (attr != NULL)
5936 {
af34e669 5937 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 5938 .debug_ranges section. */
d85a05f0 5939 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 5940 return 0;
43039443 5941 /* Found discontinuous range of addresses. */
af34e669
DJ
5942 ret = -1;
5943 }
5944 }
c906108c
SS
5945
5946 if (high < low)
5947 return 0;
5948
5949 /* When using the GNU linker, .gnu.linkonce. sections are used to
5950 eliminate duplicate copies of functions and vtables and such.
5951 The linker will arbitrarily choose one and discard the others.
5952 The AT_*_pc values for such functions refer to local labels in
5953 these sections. If the section from that file was discarded, the
5954 labels are not in the output, so the relocs get a value of 0.
5955 If this is a discarded function, mark the pc bounds as invalid,
5956 so that GDB will ignore it. */
72dca2f5 5957 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
5958 return 0;
5959
5960 *lowpc = low;
5961 *highpc = high;
af34e669 5962 return ret;
c906108c
SS
5963}
5964
b084d499
JB
5965/* Assuming that DIE represents a subprogram DIE or a lexical block, get
5966 its low and high PC addresses. Do nothing if these addresses could not
5967 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5968 and HIGHPC to the high address if greater than HIGHPC. */
5969
5970static void
5971dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5972 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5973 struct dwarf2_cu *cu)
5974{
5975 CORE_ADDR low, high;
5976 struct die_info *child = die->child;
5977
d85a05f0 5978 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
5979 {
5980 *lowpc = min (*lowpc, low);
5981 *highpc = max (*highpc, high);
5982 }
5983
5984 /* If the language does not allow nested subprograms (either inside
5985 subprograms or lexical blocks), we're done. */
5986 if (cu->language != language_ada)
5987 return;
6e70227d 5988
b084d499
JB
5989 /* Check all the children of the given DIE. If it contains nested
5990 subprograms, then check their pc bounds. Likewise, we need to
5991 check lexical blocks as well, as they may also contain subprogram
5992 definitions. */
5993 while (child && child->tag)
5994 {
5995 if (child->tag == DW_TAG_subprogram
5996 || child->tag == DW_TAG_lexical_block)
5997 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5998 child = sibling_die (child);
5999 }
6000}
6001
fae299cd
DC
6002/* Get the low and high pc's represented by the scope DIE, and store
6003 them in *LOWPC and *HIGHPC. If the correct values can't be
6004 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6005
6006static void
6007get_scope_pc_bounds (struct die_info *die,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 struct dwarf2_cu *cu)
6010{
6011 CORE_ADDR best_low = (CORE_ADDR) -1;
6012 CORE_ADDR best_high = (CORE_ADDR) 0;
6013 CORE_ADDR current_low, current_high;
6014
d85a05f0 6015 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
6016 {
6017 best_low = current_low;
6018 best_high = current_high;
6019 }
6020 else
6021 {
6022 struct die_info *child = die->child;
6023
6024 while (child && child->tag)
6025 {
6026 switch (child->tag) {
6027 case DW_TAG_subprogram:
b084d499 6028 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
6029 break;
6030 case DW_TAG_namespace:
f55ee35c 6031 case DW_TAG_module:
fae299cd
DC
6032 /* FIXME: carlton/2004-01-16: Should we do this for
6033 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6034 that current GCC's always emit the DIEs corresponding
6035 to definitions of methods of classes as children of a
6036 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6037 the DIEs giving the declarations, which could be
6038 anywhere). But I don't see any reason why the
6039 standards says that they have to be there. */
6040 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6041
6042 if (current_low != ((CORE_ADDR) -1))
6043 {
6044 best_low = min (best_low, current_low);
6045 best_high = max (best_high, current_high);
6046 }
6047 break;
6048 default:
6049 /* Ignore. */
6050 break;
6051 }
6052
6053 child = sibling_die (child);
6054 }
6055 }
6056
6057 *lowpc = best_low;
6058 *highpc = best_high;
6059}
6060
801e3a5b
JB
6061/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6062 in DIE. */
6063static void
6064dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6065 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6066{
6067 struct attribute *attr;
6068
6069 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6070 if (attr)
6071 {
6072 CORE_ADDR high = DW_ADDR (attr);
9a619af0 6073
801e3a5b
JB
6074 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6075 if (attr)
6076 {
6077 CORE_ADDR low = DW_ADDR (attr);
9a619af0 6078
801e3a5b
JB
6079 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6080 }
6081 }
6082
6083 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6084 if (attr)
6085 {
6086 bfd *obfd = cu->objfile->obfd;
6087
6088 /* The value of the DW_AT_ranges attribute is the offset of the
6089 address range list in the .debug_ranges section. */
6090 unsigned long offset = DW_UNSND (attr);
dce234bc 6091 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
6092
6093 /* For some target architectures, but not others, the
6094 read_address function sign-extends the addresses it returns.
6095 To recognize base address selection entries, we need a
6096 mask. */
6097 unsigned int addr_size = cu->header.addr_size;
6098 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6099
6100 /* The base address, to which the next pair is relative. Note
6101 that this 'base' is a DWARF concept: most entries in a range
6102 list are relative, to reduce the number of relocs against the
6103 debugging information. This is separate from this function's
6104 'baseaddr' argument, which GDB uses to relocate debugging
6105 information from a shared library based on the address at
6106 which the library was loaded. */
d00adf39
DE
6107 CORE_ADDR base = cu->base_address;
6108 int base_known = cu->base_known;
801e3a5b 6109
be391dca 6110 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 6111 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
6112 {
6113 complaint (&symfile_complaints,
6114 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6115 offset);
6116 return;
6117 }
6118
6119 for (;;)
6120 {
6121 unsigned int bytes_read;
6122 CORE_ADDR start, end;
6123
6124 start = read_address (obfd, buffer, cu, &bytes_read);
6125 buffer += bytes_read;
6126 end = read_address (obfd, buffer, cu, &bytes_read);
6127 buffer += bytes_read;
6128
6129 /* Did we find the end of the range list? */
6130 if (start == 0 && end == 0)
6131 break;
6132
6133 /* Did we find a base address selection entry? */
6134 else if ((start & base_select_mask) == base_select_mask)
6135 {
6136 base = end;
6137 base_known = 1;
6138 }
6139
6140 /* We found an ordinary address range. */
6141 else
6142 {
6143 if (!base_known)
6144 {
6145 complaint (&symfile_complaints,
3e43a32a
MS
6146 _("Invalid .debug_ranges data "
6147 "(no base address)"));
801e3a5b
JB
6148 return;
6149 }
6150
6e70227d
DE
6151 record_block_range (block,
6152 baseaddr + base + start,
801e3a5b
JB
6153 baseaddr + base + end - 1);
6154 }
6155 }
6156 }
6157}
6158
c906108c
SS
6159/* Add an aggregate field to the field list. */
6160
6161static void
107d2387 6162dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 6163 struct dwarf2_cu *cu)
6e70227d 6164{
e7c27a73 6165 struct objfile *objfile = cu->objfile;
5e2b427d 6166 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6167 struct nextfield *new_field;
6168 struct attribute *attr;
6169 struct field *fp;
6170 char *fieldname = "";
6171
6172 /* Allocate a new field list entry and link it in. */
6173 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 6174 make_cleanup (xfree, new_field);
c906108c 6175 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
6176
6177 if (die->tag == DW_TAG_inheritance)
6178 {
6179 new_field->next = fip->baseclasses;
6180 fip->baseclasses = new_field;
6181 }
6182 else
6183 {
6184 new_field->next = fip->fields;
6185 fip->fields = new_field;
6186 }
c906108c
SS
6187 fip->nfields++;
6188
6189 /* Handle accessibility and virtuality of field.
6190 The default accessibility for members is public, the default
6191 accessibility for inheritance is private. */
6192 if (die->tag != DW_TAG_inheritance)
6193 new_field->accessibility = DW_ACCESS_public;
6194 else
6195 new_field->accessibility = DW_ACCESS_private;
6196 new_field->virtuality = DW_VIRTUALITY_none;
6197
e142c38c 6198 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6199 if (attr)
6200 new_field->accessibility = DW_UNSND (attr);
6201 if (new_field->accessibility != DW_ACCESS_public)
6202 fip->non_public_fields = 1;
e142c38c 6203 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
6204 if (attr)
6205 new_field->virtuality = DW_UNSND (attr);
6206
6207 fp = &new_field->field;
a9a9bd0f 6208
e142c38c 6209 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 6210 {
a9a9bd0f 6211 /* Data member other than a C++ static data member. */
6e70227d 6212
c906108c 6213 /* Get type of field. */
e7c27a73 6214 fp->type = die_type (die, cu);
c906108c 6215
d6a843b5 6216 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 6217
c906108c 6218 /* Get bit size of field (zero if none). */
e142c38c 6219 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
6220 if (attr)
6221 {
6222 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6223 }
6224 else
6225 {
6226 FIELD_BITSIZE (*fp) = 0;
6227 }
6228
6229 /* Get bit offset of field. */
e142c38c 6230 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
6231 if (attr)
6232 {
d4b96c9a 6233 int byte_offset = 0;
c6a0999f 6234
3690dd37 6235 if (attr_form_is_section_offset (attr))
d4b96c9a 6236 dwarf2_complex_location_expr_complaint ();
3690dd37 6237 else if (attr_form_is_constant (attr))
c6a0999f 6238 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 6239 else if (attr_form_is_block (attr))
c6a0999f 6240 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
6241 else
6242 dwarf2_complex_location_expr_complaint ();
c6a0999f 6243
d6a843b5 6244 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 6245 }
e142c38c 6246 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
6247 if (attr)
6248 {
5e2b427d 6249 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
6250 {
6251 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
6252 additional bit offset from the MSB of the containing
6253 anonymous object to the MSB of the field. We don't
6254 have to do anything special since we don't need to
6255 know the size of the anonymous object. */
c906108c
SS
6256 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6257 }
6258 else
6259 {
6260 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
6261 MSB of the anonymous object, subtract off the number of
6262 bits from the MSB of the field to the MSB of the
6263 object, and then subtract off the number of bits of
6264 the field itself. The result is the bit offset of
6265 the LSB of the field. */
c906108c
SS
6266 int anonymous_size;
6267 int bit_offset = DW_UNSND (attr);
6268
e142c38c 6269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6270 if (attr)
6271 {
6272 /* The size of the anonymous object containing
6273 the bit field is explicit, so use the
6274 indicated size (in bytes). */
6275 anonymous_size = DW_UNSND (attr);
6276 }
6277 else
6278 {
6279 /* The size of the anonymous object containing
6280 the bit field must be inferred from the type
6281 attribute of the data member containing the
6282 bit field. */
6283 anonymous_size = TYPE_LENGTH (fp->type);
6284 }
6285 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6286 - bit_offset - FIELD_BITSIZE (*fp);
6287 }
6288 }
6289
6290 /* Get name of field. */
39cbfefa
DJ
6291 fieldname = dwarf2_name (die, cu);
6292 if (fieldname == NULL)
6293 fieldname = "";
d8151005
DJ
6294
6295 /* The name is already allocated along with this objfile, so we don't
6296 need to duplicate it for the type. */
6297 fp->name = fieldname;
c906108c
SS
6298
6299 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 6300 pointer or virtual base class pointer) to private. */
e142c38c 6301 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 6302 {
d48cc9dd 6303 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
6304 new_field->accessibility = DW_ACCESS_private;
6305 fip->non_public_fields = 1;
6306 }
6307 }
a9a9bd0f 6308 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 6309 {
a9a9bd0f
DC
6310 /* C++ static member. */
6311
6312 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6313 is a declaration, but all versions of G++ as of this writing
6314 (so through at least 3.2.1) incorrectly generate
6315 DW_TAG_variable tags. */
6e70227d 6316
c906108c 6317 char *physname;
c906108c 6318
a9a9bd0f 6319 /* Get name of field. */
39cbfefa
DJ
6320 fieldname = dwarf2_name (die, cu);
6321 if (fieldname == NULL)
c906108c
SS
6322 return;
6323
254e6b9e 6324 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
6325 if (attr
6326 /* Only create a symbol if this is an external value.
6327 new_symbol checks this and puts the value in the global symbol
6328 table, which we want. If it is not external, new_symbol
6329 will try to put the value in cu->list_in_scope which is wrong. */
6330 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
6331 {
6332 /* A static const member, not much different than an enum as far as
6333 we're concerned, except that we can support more types. */
6334 new_symbol (die, NULL, cu);
6335 }
6336
2df3850c 6337 /* Get physical name. */
94af9270 6338 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 6339
d8151005
DJ
6340 /* The name is already allocated along with this objfile, so we don't
6341 need to duplicate it for the type. */
6342 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 6343 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 6344 FIELD_NAME (*fp) = fieldname;
c906108c
SS
6345 }
6346 else if (die->tag == DW_TAG_inheritance)
6347 {
6348 /* C++ base class field. */
e142c38c 6349 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 6350 if (attr)
d4b96c9a
JK
6351 {
6352 int byte_offset = 0;
6353
6354 if (attr_form_is_section_offset (attr))
6355 dwarf2_complex_location_expr_complaint ();
6356 else if (attr_form_is_constant (attr))
6357 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6358 else if (attr_form_is_block (attr))
6359 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6360 else
6361 dwarf2_complex_location_expr_complaint ();
6362
6363 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6364 }
c906108c 6365 FIELD_BITSIZE (*fp) = 0;
e7c27a73 6366 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
6367 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6368 fip->nbaseclasses++;
6369 }
6370}
6371
98751a41
JK
6372/* Add a typedef defined in the scope of the FIP's class. */
6373
6374static void
6375dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6376 struct dwarf2_cu *cu)
6e70227d 6377{
98751a41
JK
6378 struct objfile *objfile = cu->objfile;
6379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6380 struct typedef_field_list *new_field;
6381 struct attribute *attr;
6382 struct typedef_field *fp;
6383 char *fieldname = "";
6384
6385 /* Allocate a new field list entry and link it in. */
6386 new_field = xzalloc (sizeof (*new_field));
6387 make_cleanup (xfree, new_field);
6388
6389 gdb_assert (die->tag == DW_TAG_typedef);
6390
6391 fp = &new_field->field;
6392
6393 /* Get name of field. */
6394 fp->name = dwarf2_name (die, cu);
6395 if (fp->name == NULL)
6396 return;
6397
6398 fp->type = read_type_die (die, cu);
6399
6400 new_field->next = fip->typedef_field_list;
6401 fip->typedef_field_list = new_field;
6402 fip->typedef_field_list_count++;
6403}
6404
c906108c
SS
6405/* Create the vector of fields, and attach it to the type. */
6406
6407static void
fba45db2 6408dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6409 struct dwarf2_cu *cu)
c906108c
SS
6410{
6411 int nfields = fip->nfields;
6412
6413 /* Record the field count, allocate space for the array of fields,
6414 and create blank accessibility bitfields if necessary. */
6415 TYPE_NFIELDS (type) = nfields;
6416 TYPE_FIELDS (type) = (struct field *)
6417 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6418 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6419
b4ba55a1 6420 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
6421 {
6422 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6423
6424 TYPE_FIELD_PRIVATE_BITS (type) =
6425 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6426 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6427
6428 TYPE_FIELD_PROTECTED_BITS (type) =
6429 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6430 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6431
774b6a14
TT
6432 TYPE_FIELD_IGNORE_BITS (type) =
6433 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6434 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
6435 }
6436
6437 /* If the type has baseclasses, allocate and clear a bit vector for
6438 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 6439 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
6440 {
6441 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 6442 unsigned char *pointer;
c906108c
SS
6443
6444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
6445 pointer = TYPE_ALLOC (type, num_bytes);
6446 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
6447 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6448 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6449 }
6450
3e43a32a
MS
6451 /* Copy the saved-up fields into the field vector. Start from the head of
6452 the list, adding to the tail of the field array, so that they end up in
6453 the same order in the array in which they were added to the list. */
c906108c
SS
6454 while (nfields-- > 0)
6455 {
7d0ccb61
DJ
6456 struct nextfield *fieldp;
6457
6458 if (fip->fields)
6459 {
6460 fieldp = fip->fields;
6461 fip->fields = fieldp->next;
6462 }
6463 else
6464 {
6465 fieldp = fip->baseclasses;
6466 fip->baseclasses = fieldp->next;
6467 }
6468
6469 TYPE_FIELD (type, nfields) = fieldp->field;
6470 switch (fieldp->accessibility)
c906108c 6471 {
c5aa993b 6472 case DW_ACCESS_private:
b4ba55a1
JB
6473 if (cu->language != language_ada)
6474 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 6475 break;
c906108c 6476
c5aa993b 6477 case DW_ACCESS_protected:
b4ba55a1
JB
6478 if (cu->language != language_ada)
6479 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 6480 break;
c906108c 6481
c5aa993b
JM
6482 case DW_ACCESS_public:
6483 break;
c906108c 6484
c5aa993b
JM
6485 default:
6486 /* Unknown accessibility. Complain and treat it as public. */
6487 {
e2e0b3e5 6488 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 6489 fieldp->accessibility);
c5aa993b
JM
6490 }
6491 break;
c906108c
SS
6492 }
6493 if (nfields < fip->nbaseclasses)
6494 {
7d0ccb61 6495 switch (fieldp->virtuality)
c906108c 6496 {
c5aa993b
JM
6497 case DW_VIRTUALITY_virtual:
6498 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
6499 if (cu->language == language_ada)
6500 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
6501 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6502 break;
c906108c
SS
6503 }
6504 }
c906108c
SS
6505 }
6506}
6507
c906108c
SS
6508/* Add a member function to the proper fieldlist. */
6509
6510static void
107d2387 6511dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 6512 struct type *type, struct dwarf2_cu *cu)
c906108c 6513{
e7c27a73 6514 struct objfile *objfile = cu->objfile;
c906108c
SS
6515 struct attribute *attr;
6516 struct fnfieldlist *flp;
6517 int i;
6518 struct fn_field *fnp;
6519 char *fieldname;
c906108c 6520 struct nextfnfield *new_fnfield;
f792889a 6521 struct type *this_type;
c906108c 6522
b4ba55a1
JB
6523 if (cu->language == language_ada)
6524 error ("unexpected member function in Ada type");
6525
2df3850c 6526 /* Get name of member function. */
39cbfefa
DJ
6527 fieldname = dwarf2_name (die, cu);
6528 if (fieldname == NULL)
2df3850c 6529 return;
c906108c 6530
c906108c
SS
6531 /* Look up member function name in fieldlist. */
6532 for (i = 0; i < fip->nfnfields; i++)
6533 {
27bfe10e 6534 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
6535 break;
6536 }
6537
6538 /* Create new list element if necessary. */
6539 if (i < fip->nfnfields)
6540 flp = &fip->fnfieldlists[i];
6541 else
6542 {
6543 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6544 {
6545 fip->fnfieldlists = (struct fnfieldlist *)
6546 xrealloc (fip->fnfieldlists,
6547 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 6548 * sizeof (struct fnfieldlist));
c906108c 6549 if (fip->nfnfields == 0)
c13c43fd 6550 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
6551 }
6552 flp = &fip->fnfieldlists[fip->nfnfields];
6553 flp->name = fieldname;
6554 flp->length = 0;
6555 flp->head = NULL;
3da10d80 6556 i = fip->nfnfields++;
c906108c
SS
6557 }
6558
6559 /* Create a new member function field and chain it to the field list
6560 entry. */
6561 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 6562 make_cleanup (xfree, new_fnfield);
c906108c
SS
6563 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6564 new_fnfield->next = flp->head;
6565 flp->head = new_fnfield;
6566 flp->length++;
6567
6568 /* Fill in the member function field info. */
6569 fnp = &new_fnfield->fnfield;
3da10d80
KS
6570
6571 /* Delay processing of the physname until later. */
6572 if (cu->language == language_cplus || cu->language == language_java)
6573 {
6574 add_to_method_list (type, i, flp->length - 1, fieldname,
6575 die, cu);
6576 }
6577 else
6578 {
6579 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6580 fnp->physname = physname ? physname : "";
6581 }
6582
c906108c 6583 fnp->type = alloc_type (objfile);
f792889a
DJ
6584 this_type = read_type_die (die, cu);
6585 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 6586 {
f792889a 6587 int nparams = TYPE_NFIELDS (this_type);
c906108c 6588
f792889a 6589 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
6590 of the method itself (TYPE_CODE_METHOD). */
6591 smash_to_method_type (fnp->type, type,
f792889a
DJ
6592 TYPE_TARGET_TYPE (this_type),
6593 TYPE_FIELDS (this_type),
6594 TYPE_NFIELDS (this_type),
6595 TYPE_VARARGS (this_type));
c906108c
SS
6596
6597 /* Handle static member functions.
c5aa993b
JM
6598 Dwarf2 has no clean way to discern C++ static and non-static
6599 member functions. G++ helps GDB by marking the first
6600 parameter for non-static member functions (which is the
6601 this pointer) as artificial. We obtain this information
6602 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 6603 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
6604 fnp->voffset = VOFFSET_STATIC;
6605 }
6606 else
e2e0b3e5 6607 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 6608 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
6609
6610 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 6611 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 6612 fnp->fcontext = die_containing_type (die, cu);
c906108c 6613
3e43a32a
MS
6614 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6615 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
6616
6617 /* Get accessibility. */
e142c38c 6618 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6619 if (attr)
6620 {
6621 switch (DW_UNSND (attr))
6622 {
c5aa993b
JM
6623 case DW_ACCESS_private:
6624 fnp->is_private = 1;
6625 break;
6626 case DW_ACCESS_protected:
6627 fnp->is_protected = 1;
6628 break;
c906108c
SS
6629 }
6630 }
6631
b02dede2 6632 /* Check for artificial methods. */
e142c38c 6633 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
6634 if (attr && DW_UNSND (attr) != 0)
6635 fnp->is_artificial = 1;
6636
0d564a31 6637 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
6638 function. For older versions of GCC, this is an offset in the
6639 appropriate virtual table, as specified by DW_AT_containing_type.
6640 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
6641 to the object address. */
6642
e142c38c 6643 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 6644 if (attr)
8e19ed76 6645 {
aec5aa8b 6646 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 6647 {
aec5aa8b
TT
6648 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6649 {
6650 /* Old-style GCC. */
6651 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6652 }
6653 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6654 || (DW_BLOCK (attr)->size > 1
6655 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6656 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6657 {
6658 struct dwarf_block blk;
6659 int offset;
6660
6661 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6662 ? 1 : 2);
6663 blk.size = DW_BLOCK (attr)->size - offset;
6664 blk.data = DW_BLOCK (attr)->data + offset;
6665 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6666 if ((fnp->voffset % cu->header.addr_size) != 0)
6667 dwarf2_complex_location_expr_complaint ();
6668 else
6669 fnp->voffset /= cu->header.addr_size;
6670 fnp->voffset += 2;
6671 }
6672 else
6673 dwarf2_complex_location_expr_complaint ();
6674
6675 if (!fnp->fcontext)
6676 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6677 }
3690dd37 6678 else if (attr_form_is_section_offset (attr))
8e19ed76 6679 {
4d3c2250 6680 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6681 }
6682 else
6683 {
4d3c2250
KB
6684 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6685 fieldname);
8e19ed76 6686 }
0d564a31 6687 }
d48cc9dd
DJ
6688 else
6689 {
6690 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6691 if (attr && DW_UNSND (attr))
6692 {
6693 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6694 complaint (&symfile_complaints,
3e43a32a
MS
6695 _("Member function \"%s\" (offset %d) is virtual "
6696 "but the vtable offset is not specified"),
d48cc9dd 6697 fieldname, die->offset);
9655fd1a 6698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
6699 TYPE_CPLUS_DYNAMIC (type) = 1;
6700 }
6701 }
c906108c
SS
6702}
6703
6704/* Create the vector of member function fields, and attach it to the type. */
6705
6706static void
fba45db2 6707dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6708 struct dwarf2_cu *cu)
c906108c
SS
6709{
6710 struct fnfieldlist *flp;
6711 int total_length = 0;
6712 int i;
6713
b4ba55a1
JB
6714 if (cu->language == language_ada)
6715 error ("unexpected member functions in Ada type");
6716
c906108c
SS
6717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6718 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6719 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6720
6721 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6722 {
6723 struct nextfnfield *nfp = flp->head;
6724 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6725 int k;
6726
6727 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6728 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6729 fn_flp->fn_fields = (struct fn_field *)
6730 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6731 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 6732 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
6733
6734 total_length += flp->length;
6735 }
6736
6737 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6738 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6739}
6740
1168df01
JB
6741/* Returns non-zero if NAME is the name of a vtable member in CU's
6742 language, zero otherwise. */
6743static int
6744is_vtable_name (const char *name, struct dwarf2_cu *cu)
6745{
6746 static const char vptr[] = "_vptr";
987504bb 6747 static const char vtable[] = "vtable";
1168df01 6748
987504bb
JJ
6749 /* Look for the C++ and Java forms of the vtable. */
6750 if ((cu->language == language_java
6751 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6752 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6753 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
6754 return 1;
6755
6756 return 0;
6757}
6758
c0dd20ea 6759/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
6760 functions, with the ABI-specified layout. If TYPE describes
6761 such a structure, smash it into a member function type.
61049d3b
DJ
6762
6763 GCC shouldn't do this; it should just output pointer to member DIEs.
6764 This is GCC PR debug/28767. */
c0dd20ea 6765
0b92b5bb
TT
6766static void
6767quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 6768{
0b92b5bb 6769 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
6770
6771 /* Check for a structure with no name and two children. */
0b92b5bb
TT
6772 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6773 return;
c0dd20ea
DJ
6774
6775 /* Check for __pfn and __delta members. */
0b92b5bb
TT
6776 if (TYPE_FIELD_NAME (type, 0) == NULL
6777 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6778 || TYPE_FIELD_NAME (type, 1) == NULL
6779 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6780 return;
c0dd20ea
DJ
6781
6782 /* Find the type of the method. */
0b92b5bb 6783 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
6784 if (pfn_type == NULL
6785 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6786 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 6787 return;
c0dd20ea
DJ
6788
6789 /* Look for the "this" argument. */
6790 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6791 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 6792 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 6793 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 6794 return;
c0dd20ea
DJ
6795
6796 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
6797 new_type = alloc_type (objfile);
6798 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
6799 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6800 TYPE_VARARGS (pfn_type));
0b92b5bb 6801 smash_to_methodptr_type (type, new_type);
c0dd20ea 6802}
1168df01 6803
c906108c 6804/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
6805 (definition) to create a type for the structure or union. Fill in
6806 the type's name and general properties; the members will not be
6807 processed until process_structure_type.
c906108c 6808
c767944b
DJ
6809 NOTE: we need to call these functions regardless of whether or not the
6810 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
6811 structure or union. This gets the type entered into our set of
6812 user defined types.
6813
6814 However, if the structure is incomplete (an opaque struct/union)
6815 then suppress creating a symbol table entry for it since gdb only
6816 wants to find the one with the complete definition. Note that if
6817 it is complete, we just call new_symbol, which does it's own
6818 checking about whether the struct/union is anonymous or not (and
6819 suppresses creating a symbol table entry itself). */
6820
f792889a 6821static struct type *
134d01f1 6822read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6823{
e7c27a73 6824 struct objfile *objfile = cu->objfile;
c906108c
SS
6825 struct type *type;
6826 struct attribute *attr;
39cbfefa 6827 char *name;
c906108c 6828
348e048f
DE
6829 /* If the definition of this type lives in .debug_types, read that type.
6830 Don't follow DW_AT_specification though, that will take us back up
6831 the chain and we want to go down. */
6832 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6833 if (attr)
6834 {
6835 struct dwarf2_cu *type_cu = cu;
6836 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6837
348e048f
DE
6838 /* We could just recurse on read_structure_type, but we need to call
6839 get_die_type to ensure only one type for this DIE is created.
6840 This is important, for example, because for c++ classes we need
6841 TYPE_NAME set which is only done by new_symbol. Blech. */
6842 type = read_type_die (type_die, type_cu);
9dc481d3
DE
6843
6844 /* TYPE_CU may not be the same as CU.
6845 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
6846 return set_die_type (die, type, cu);
6847 }
6848
c0dd20ea 6849 type = alloc_type (objfile);
c906108c 6850 INIT_CPLUS_SPECIFIC (type);
93311388 6851
39cbfefa
DJ
6852 name = dwarf2_name (die, cu);
6853 if (name != NULL)
c906108c 6854 {
987504bb
JJ
6855 if (cu->language == language_cplus
6856 || cu->language == language_java)
63d06c5c 6857 {
3da10d80
KS
6858 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6859
6860 /* dwarf2_full_name might have already finished building the DIE's
6861 type. If so, there is no need to continue. */
6862 if (get_die_type (die, cu) != NULL)
6863 return get_die_type (die, cu);
6864
6865 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
6866 if (die->tag == DW_TAG_structure_type
6867 || die->tag == DW_TAG_class_type)
6868 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
6869 }
6870 else
6871 {
d8151005
DJ
6872 /* The name is already allocated along with this objfile, so
6873 we don't need to duplicate it for the type. */
94af9270
KS
6874 TYPE_TAG_NAME (type) = (char *) name;
6875 if (die->tag == DW_TAG_class_type)
6876 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 6877 }
c906108c
SS
6878 }
6879
6880 if (die->tag == DW_TAG_structure_type)
6881 {
6882 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6883 }
6884 else if (die->tag == DW_TAG_union_type)
6885 {
6886 TYPE_CODE (type) = TYPE_CODE_UNION;
6887 }
6888 else
6889 {
c906108c
SS
6890 TYPE_CODE (type) = TYPE_CODE_CLASS;
6891 }
6892
0cc2414c
TT
6893 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6894 TYPE_DECLARED_CLASS (type) = 1;
6895
e142c38c 6896 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6897 if (attr)
6898 {
6899 TYPE_LENGTH (type) = DW_UNSND (attr);
6900 }
6901 else
6902 {
6903 TYPE_LENGTH (type) = 0;
6904 }
6905
876cecd0 6906 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 6907 if (die_is_declaration (die, cu))
876cecd0 6908 TYPE_STUB (type) = 1;
a6c727b2
DJ
6909 else if (attr == NULL && die->child == NULL
6910 && producer_is_realview (cu->producer))
6911 /* RealView does not output the required DW_AT_declaration
6912 on incomplete types. */
6913 TYPE_STUB (type) = 1;
dc718098 6914
c906108c
SS
6915 /* We need to add the type field to the die immediately so we don't
6916 infinitely recurse when dealing with pointers to the structure
6917 type within the structure itself. */
1c379e20 6918 set_die_type (die, type, cu);
c906108c 6919
7e314c57
JK
6920 /* set_die_type should be already done. */
6921 set_descriptive_type (type, die, cu);
6922
c767944b
DJ
6923 return type;
6924}
6925
6926/* Finish creating a structure or union type, including filling in
6927 its members and creating a symbol for it. */
6928
6929static void
6930process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6931{
6932 struct objfile *objfile = cu->objfile;
6933 struct die_info *child_die = die->child;
6934 struct type *type;
6935
6936 type = get_die_type (die, cu);
6937 if (type == NULL)
6938 type = read_structure_type (die, cu);
6939
e142c38c 6940 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
6941 {
6942 struct field_info fi;
6943 struct die_info *child_die;
34eaf542 6944 VEC (symbolp) *template_args = NULL;
c767944b 6945 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
6946
6947 memset (&fi, 0, sizeof (struct field_info));
6948
639d11d3 6949 child_die = die->child;
c906108c
SS
6950
6951 while (child_die && child_die->tag)
6952 {
a9a9bd0f
DC
6953 if (child_die->tag == DW_TAG_member
6954 || child_die->tag == DW_TAG_variable)
c906108c 6955 {
a9a9bd0f
DC
6956 /* NOTE: carlton/2002-11-05: A C++ static data member
6957 should be a DW_TAG_member that is a declaration, but
6958 all versions of G++ as of this writing (so through at
6959 least 3.2.1) incorrectly generate DW_TAG_variable
6960 tags for them instead. */
e7c27a73 6961 dwarf2_add_field (&fi, child_die, cu);
c906108c 6962 }
8713b1b1 6963 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
6964 {
6965 /* C++ member function. */
e7c27a73 6966 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
6967 }
6968 else if (child_die->tag == DW_TAG_inheritance)
6969 {
6970 /* C++ base class field. */
e7c27a73 6971 dwarf2_add_field (&fi, child_die, cu);
c906108c 6972 }
98751a41
JK
6973 else if (child_die->tag == DW_TAG_typedef)
6974 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
6975 else if (child_die->tag == DW_TAG_template_type_param
6976 || child_die->tag == DW_TAG_template_value_param)
6977 {
6978 struct symbol *arg = new_symbol (child_die, NULL, cu);
6979
f1078f66
DJ
6980 if (arg != NULL)
6981 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
6982 }
6983
c906108c
SS
6984 child_die = sibling_die (child_die);
6985 }
6986
34eaf542
TT
6987 /* Attach template arguments to type. */
6988 if (! VEC_empty (symbolp, template_args))
6989 {
6990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6991 TYPE_N_TEMPLATE_ARGUMENTS (type)
6992 = VEC_length (symbolp, template_args);
6993 TYPE_TEMPLATE_ARGUMENTS (type)
6994 = obstack_alloc (&objfile->objfile_obstack,
6995 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6996 * sizeof (struct symbol *)));
6997 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6998 VEC_address (symbolp, template_args),
6999 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7000 * sizeof (struct symbol *)));
7001 VEC_free (symbolp, template_args);
7002 }
7003
c906108c
SS
7004 /* Attach fields and member functions to the type. */
7005 if (fi.nfields)
e7c27a73 7006 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
7007 if (fi.nfnfields)
7008 {
e7c27a73 7009 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 7010
c5aa993b 7011 /* Get the type which refers to the base class (possibly this
c906108c 7012 class itself) which contains the vtable pointer for the current
0d564a31
DJ
7013 class from the DW_AT_containing_type attribute. This use of
7014 DW_AT_containing_type is a GNU extension. */
c906108c 7015
e142c38c 7016 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 7017 {
e7c27a73 7018 struct type *t = die_containing_type (die, cu);
c906108c
SS
7019
7020 TYPE_VPTR_BASETYPE (type) = t;
7021 if (type == t)
7022 {
c906108c
SS
7023 int i;
7024
7025 /* Our own class provides vtbl ptr. */
7026 for (i = TYPE_NFIELDS (t) - 1;
7027 i >= TYPE_N_BASECLASSES (t);
7028 --i)
7029 {
7030 char *fieldname = TYPE_FIELD_NAME (t, i);
7031
1168df01 7032 if (is_vtable_name (fieldname, cu))
c906108c
SS
7033 {
7034 TYPE_VPTR_FIELDNO (type) = i;
7035 break;
7036 }
7037 }
7038
7039 /* Complain if virtual function table field not found. */
7040 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 7041 complaint (&symfile_complaints,
3e43a32a
MS
7042 _("virtual function table pointer "
7043 "not found when defining class '%s'"),
4d3c2250
KB
7044 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7045 "");
c906108c
SS
7046 }
7047 else
7048 {
7049 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7050 }
7051 }
f6235d4c
EZ
7052 else if (cu->producer
7053 && strncmp (cu->producer,
7054 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7055 {
7056 /* The IBM XLC compiler does not provide direct indication
7057 of the containing type, but the vtable pointer is
7058 always named __vfp. */
7059
7060 int i;
7061
7062 for (i = TYPE_NFIELDS (type) - 1;
7063 i >= TYPE_N_BASECLASSES (type);
7064 --i)
7065 {
7066 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7067 {
7068 TYPE_VPTR_FIELDNO (type) = i;
7069 TYPE_VPTR_BASETYPE (type) = type;
7070 break;
7071 }
7072 }
7073 }
c906108c 7074 }
98751a41
JK
7075
7076 /* Copy fi.typedef_field_list linked list elements content into the
7077 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7078 if (fi.typedef_field_list)
7079 {
7080 int i = fi.typedef_field_list_count;
7081
a0d7a4ff 7082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
7083 TYPE_TYPEDEF_FIELD_ARRAY (type)
7084 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7085 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7086
7087 /* Reverse the list order to keep the debug info elements order. */
7088 while (--i >= 0)
7089 {
7090 struct typedef_field *dest, *src;
6e70227d 7091
98751a41
JK
7092 dest = &TYPE_TYPEDEF_FIELD (type, i);
7093 src = &fi.typedef_field_list->field;
7094 fi.typedef_field_list = fi.typedef_field_list->next;
7095 *dest = *src;
7096 }
7097 }
c767944b
DJ
7098
7099 do_cleanups (back_to);
c906108c 7100 }
63d06c5c 7101
0b92b5bb
TT
7102 quirk_gcc_member_function_pointer (type, cu->objfile);
7103
90aeadfc
DC
7104 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7105 snapshots) has been known to create a die giving a declaration
7106 for a class that has, as a child, a die giving a definition for a
7107 nested class. So we have to process our children even if the
7108 current die is a declaration. Normally, of course, a declaration
7109 won't have any children at all. */
134d01f1 7110
90aeadfc
DC
7111 while (child_die != NULL && child_die->tag)
7112 {
7113 if (child_die->tag == DW_TAG_member
7114 || child_die->tag == DW_TAG_variable
34eaf542
TT
7115 || child_die->tag == DW_TAG_inheritance
7116 || child_die->tag == DW_TAG_template_value_param
7117 || child_die->tag == DW_TAG_template_type_param)
134d01f1 7118 {
90aeadfc 7119 /* Do nothing. */
134d01f1 7120 }
90aeadfc
DC
7121 else
7122 process_die (child_die, cu);
134d01f1 7123
90aeadfc 7124 child_die = sibling_die (child_die);
134d01f1
DJ
7125 }
7126
fa4028e9
JB
7127 /* Do not consider external references. According to the DWARF standard,
7128 these DIEs are identified by the fact that they have no byte_size
7129 attribute, and a declaration attribute. */
7130 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7131 || !die_is_declaration (die, cu))
c767944b 7132 new_symbol (die, type, cu);
134d01f1
DJ
7133}
7134
7135/* Given a DW_AT_enumeration_type die, set its type. We do not
7136 complete the type's fields yet, or create any symbols. */
c906108c 7137
f792889a 7138static struct type *
134d01f1 7139read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7140{
e7c27a73 7141 struct objfile *objfile = cu->objfile;
c906108c 7142 struct type *type;
c906108c 7143 struct attribute *attr;
0114d602 7144 const char *name;
134d01f1 7145
348e048f
DE
7146 /* If the definition of this type lives in .debug_types, read that type.
7147 Don't follow DW_AT_specification though, that will take us back up
7148 the chain and we want to go down. */
7149 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7150 if (attr)
7151 {
7152 struct dwarf2_cu *type_cu = cu;
7153 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7154
348e048f 7155 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7156
7157 /* TYPE_CU may not be the same as CU.
7158 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7159 return set_die_type (die, type, cu);
7160 }
7161
c906108c
SS
7162 type = alloc_type (objfile);
7163
7164 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 7165 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 7166 if (name != NULL)
0114d602 7167 TYPE_TAG_NAME (type) = (char *) name;
c906108c 7168
e142c38c 7169 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7170 if (attr)
7171 {
7172 TYPE_LENGTH (type) = DW_UNSND (attr);
7173 }
7174 else
7175 {
7176 TYPE_LENGTH (type) = 0;
7177 }
7178
137033e9
JB
7179 /* The enumeration DIE can be incomplete. In Ada, any type can be
7180 declared as private in the package spec, and then defined only
7181 inside the package body. Such types are known as Taft Amendment
7182 Types. When another package uses such a type, an incomplete DIE
7183 may be generated by the compiler. */
02eb380e 7184 if (die_is_declaration (die, cu))
876cecd0 7185 TYPE_STUB (type) = 1;
02eb380e 7186
f792889a 7187 return set_die_type (die, type, cu);
134d01f1
DJ
7188}
7189
7190/* Given a pointer to a die which begins an enumeration, process all
7191 the dies that define the members of the enumeration, and create the
7192 symbol for the enumeration type.
7193
7194 NOTE: We reverse the order of the element list. */
7195
7196static void
7197process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7198{
f792889a 7199 struct type *this_type;
134d01f1 7200
f792889a
DJ
7201 this_type = get_die_type (die, cu);
7202 if (this_type == NULL)
7203 this_type = read_enumeration_type (die, cu);
9dc481d3 7204
639d11d3 7205 if (die->child != NULL)
c906108c 7206 {
9dc481d3
DE
7207 struct die_info *child_die;
7208 struct symbol *sym;
7209 struct field *fields = NULL;
7210 int num_fields = 0;
7211 int unsigned_enum = 1;
7212 char *name;
7213
639d11d3 7214 child_die = die->child;
c906108c
SS
7215 while (child_die && child_die->tag)
7216 {
7217 if (child_die->tag != DW_TAG_enumerator)
7218 {
e7c27a73 7219 process_die (child_die, cu);
c906108c
SS
7220 }
7221 else
7222 {
39cbfefa
DJ
7223 name = dwarf2_name (child_die, cu);
7224 if (name)
c906108c 7225 {
f792889a 7226 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
7227 if (SYMBOL_VALUE (sym) < 0)
7228 unsigned_enum = 0;
7229
7230 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7231 {
7232 fields = (struct field *)
7233 xrealloc (fields,
7234 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7235 * sizeof (struct field));
c906108c
SS
7236 }
7237
3567439c 7238 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 7239 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 7240 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
7241 FIELD_BITSIZE (fields[num_fields]) = 0;
7242
7243 num_fields++;
7244 }
7245 }
7246
7247 child_die = sibling_die (child_die);
7248 }
7249
7250 if (num_fields)
7251 {
f792889a
DJ
7252 TYPE_NFIELDS (this_type) = num_fields;
7253 TYPE_FIELDS (this_type) = (struct field *)
7254 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7255 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 7256 sizeof (struct field) * num_fields);
b8c9b27d 7257 xfree (fields);
c906108c
SS
7258 }
7259 if (unsigned_enum)
876cecd0 7260 TYPE_UNSIGNED (this_type) = 1;
c906108c 7261 }
134d01f1 7262
f792889a 7263 new_symbol (die, this_type, cu);
c906108c
SS
7264}
7265
7266/* Extract all information from a DW_TAG_array_type DIE and put it in
7267 the DIE's type field. For now, this only handles one dimensional
7268 arrays. */
7269
f792889a 7270static struct type *
e7c27a73 7271read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7272{
e7c27a73 7273 struct objfile *objfile = cu->objfile;
c906108c 7274 struct die_info *child_die;
7e314c57 7275 struct type *type;
c906108c
SS
7276 struct type *element_type, *range_type, *index_type;
7277 struct type **range_types = NULL;
7278 struct attribute *attr;
7279 int ndim = 0;
7280 struct cleanup *back_to;
39cbfefa 7281 char *name;
c906108c 7282
e7c27a73 7283 element_type = die_type (die, cu);
c906108c 7284
7e314c57
JK
7285 /* The die_type call above may have already set the type for this DIE. */
7286 type = get_die_type (die, cu);
7287 if (type)
7288 return type;
7289
c906108c
SS
7290 /* Irix 6.2 native cc creates array types without children for
7291 arrays with unspecified length. */
639d11d3 7292 if (die->child == NULL)
c906108c 7293 {
46bf5051 7294 index_type = objfile_type (objfile)->builtin_int;
c906108c 7295 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
7296 type = create_array_type (NULL, element_type, range_type);
7297 return set_die_type (die, type, cu);
c906108c
SS
7298 }
7299
7300 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 7301 child_die = die->child;
c906108c
SS
7302 while (child_die && child_die->tag)
7303 {
7304 if (child_die->tag == DW_TAG_subrange_type)
7305 {
f792889a 7306 struct type *child_type = read_type_die (child_die, cu);
9a619af0 7307
f792889a 7308 if (child_type != NULL)
a02abb62
JB
7309 {
7310 /* The range type was succesfully read. Save it for
7311 the array type creation. */
7312 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7313 {
7314 range_types = (struct type **)
7315 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7316 * sizeof (struct type *));
7317 if (ndim == 0)
7318 make_cleanup (free_current_contents, &range_types);
7319 }
f792889a 7320 range_types[ndim++] = child_type;
a02abb62 7321 }
c906108c
SS
7322 }
7323 child_die = sibling_die (child_die);
7324 }
7325
7326 /* Dwarf2 dimensions are output from left to right, create the
7327 necessary array types in backwards order. */
7ca2d3a3 7328
c906108c 7329 type = element_type;
7ca2d3a3
DL
7330
7331 if (read_array_order (die, cu) == DW_ORD_col_major)
7332 {
7333 int i = 0;
9a619af0 7334
7ca2d3a3
DL
7335 while (i < ndim)
7336 type = create_array_type (NULL, type, range_types[i++]);
7337 }
7338 else
7339 {
7340 while (ndim-- > 0)
7341 type = create_array_type (NULL, type, range_types[ndim]);
7342 }
c906108c 7343
f5f8a009
EZ
7344 /* Understand Dwarf2 support for vector types (like they occur on
7345 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7346 array type. This is not part of the Dwarf2/3 standard yet, but a
7347 custom vendor extension. The main difference between a regular
7348 array and the vector variant is that vectors are passed by value
7349 to functions. */
e142c38c 7350 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 7351 if (attr)
ea37ba09 7352 make_vector_type (type);
f5f8a009 7353
dbc98a8b
KW
7354 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7355 implementation may choose to implement triple vectors using this
7356 attribute. */
7357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7358 if (attr)
7359 {
7360 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7361 TYPE_LENGTH (type) = DW_UNSND (attr);
7362 else
3e43a32a
MS
7363 complaint (&symfile_complaints,
7364 _("DW_AT_byte_size for array type smaller "
7365 "than the total size of elements"));
dbc98a8b
KW
7366 }
7367
39cbfefa
DJ
7368 name = dwarf2_name (die, cu);
7369 if (name)
7370 TYPE_NAME (type) = name;
6e70227d 7371
7e314c57
JK
7372 /* Install the type in the die. */
7373 set_die_type (die, type, cu);
7374
7375 /* set_die_type should be already done. */
b4ba55a1
JB
7376 set_descriptive_type (type, die, cu);
7377
c906108c
SS
7378 do_cleanups (back_to);
7379
7e314c57 7380 return type;
c906108c
SS
7381}
7382
7ca2d3a3 7383static enum dwarf_array_dim_ordering
6e70227d 7384read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
7385{
7386 struct attribute *attr;
7387
7388 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7389
7390 if (attr) return DW_SND (attr);
7391
7392 /*
7393 GNU F77 is a special case, as at 08/2004 array type info is the
6e70227d 7394 opposite order to the dwarf2 specification, but data is still
7ca2d3a3
DL
7395 laid out as per normal fortran.
7396
6e70227d 7397 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7ca2d3a3
DL
7398 version checking.
7399 */
7400
905e0470
PM
7401 if (cu->language == language_fortran
7402 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
7403 {
7404 return DW_ORD_row_major;
7405 }
7406
6e70227d 7407 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
7408 {
7409 case array_column_major:
7410 return DW_ORD_col_major;
7411 case array_row_major:
7412 default:
7413 return DW_ORD_row_major;
7414 };
7415}
7416
72019c9c
GM
7417/* Extract all information from a DW_TAG_set_type DIE and put it in
7418 the DIE's type field. */
7419
f792889a 7420static struct type *
72019c9c
GM
7421read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7422{
7e314c57
JK
7423 struct type *domain_type, *set_type;
7424 struct attribute *attr;
f792889a 7425
7e314c57
JK
7426 domain_type = die_type (die, cu);
7427
7428 /* The die_type call above may have already set the type for this DIE. */
7429 set_type = get_die_type (die, cu);
7430 if (set_type)
7431 return set_type;
7432
7433 set_type = create_set_type (NULL, domain_type);
7434
7435 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
7436 if (attr)
7437 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 7438
f792889a 7439 return set_die_type (die, set_type, cu);
72019c9c 7440}
7ca2d3a3 7441
c906108c
SS
7442/* First cut: install each common block member as a global variable. */
7443
7444static void
e7c27a73 7445read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7446{
7447 struct die_info *child_die;
7448 struct attribute *attr;
7449 struct symbol *sym;
7450 CORE_ADDR base = (CORE_ADDR) 0;
7451
e142c38c 7452 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7453 if (attr)
7454 {
8e19ed76
PS
7455 /* Support the .debug_loc offsets */
7456 if (attr_form_is_block (attr))
7457 {
e7c27a73 7458 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 7459 }
3690dd37 7460 else if (attr_form_is_section_offset (attr))
8e19ed76 7461 {
4d3c2250 7462 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7463 }
7464 else
7465 {
4d3c2250
KB
7466 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7467 "common block member");
8e19ed76 7468 }
c906108c 7469 }
639d11d3 7470 if (die->child != NULL)
c906108c 7471 {
639d11d3 7472 child_die = die->child;
c906108c
SS
7473 while (child_die && child_die->tag)
7474 {
e7c27a73 7475 sym = new_symbol (child_die, NULL, cu);
e142c38c 7476 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
f1078f66 7477 if (sym != NULL && attr != NULL)
c906108c 7478 {
d4b96c9a
JK
7479 CORE_ADDR byte_offset = 0;
7480
7481 if (attr_form_is_section_offset (attr))
7482 dwarf2_complex_location_expr_complaint ();
7483 else if (attr_form_is_constant (attr))
7484 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7485 else if (attr_form_is_block (attr))
7486 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7487 else
7488 dwarf2_complex_location_expr_complaint ();
7489
7490 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
7491 add_symbol_to_list (sym, &global_symbols);
7492 }
7493 child_die = sibling_die (child_die);
7494 }
7495 }
7496}
7497
0114d602 7498/* Create a type for a C++ namespace. */
d9fa45fe 7499
0114d602
DJ
7500static struct type *
7501read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 7502{
e7c27a73 7503 struct objfile *objfile = cu->objfile;
0114d602 7504 const char *previous_prefix, *name;
9219021c 7505 int is_anonymous;
0114d602
DJ
7506 struct type *type;
7507
7508 /* For extensions, reuse the type of the original namespace. */
7509 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7510 {
7511 struct die_info *ext_die;
7512 struct dwarf2_cu *ext_cu = cu;
9a619af0 7513
0114d602
DJ
7514 ext_die = dwarf2_extension (die, &ext_cu);
7515 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
7516
7517 /* EXT_CU may not be the same as CU.
7518 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
7519 return set_die_type (die, type, cu);
7520 }
9219021c 7521
e142c38c 7522 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
7523
7524 /* Now build the name of the current namespace. */
7525
0114d602
DJ
7526 previous_prefix = determine_prefix (die, cu);
7527 if (previous_prefix[0] != '\0')
7528 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 7529 previous_prefix, name, 0, cu);
0114d602
DJ
7530
7531 /* Create the type. */
7532 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7533 objfile);
7534 TYPE_NAME (type) = (char *) name;
7535 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7536
60531b24 7537 return set_die_type (die, type, cu);
0114d602
DJ
7538}
7539
7540/* Read a C++ namespace. */
7541
7542static void
7543read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7544{
7545 struct objfile *objfile = cu->objfile;
7546 const char *name;
7547 int is_anonymous;
9219021c 7548
5c4e30ca
DC
7549 /* Add a symbol associated to this if we haven't seen the namespace
7550 before. Also, add a using directive if it's an anonymous
7551 namespace. */
9219021c 7552
f2f0e013 7553 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
7554 {
7555 struct type *type;
7556
0114d602 7557 type = read_type_die (die, cu);
e7c27a73 7558 new_symbol (die, type, cu);
5c4e30ca 7559
0114d602 7560 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 7561 if (is_anonymous)
0114d602
DJ
7562 {
7563 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 7564
c0cc3a76 7565 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 7566 NULL, &objfile->objfile_obstack);
0114d602 7567 }
5c4e30ca 7568 }
9219021c 7569
639d11d3 7570 if (die->child != NULL)
d9fa45fe 7571 {
639d11d3 7572 struct die_info *child_die = die->child;
6e70227d 7573
d9fa45fe
DC
7574 while (child_die && child_die->tag)
7575 {
e7c27a73 7576 process_die (child_die, cu);
d9fa45fe
DC
7577 child_die = sibling_die (child_die);
7578 }
7579 }
38d518c9
EZ
7580}
7581
f55ee35c
JK
7582/* Read a Fortran module as type. This DIE can be only a declaration used for
7583 imported module. Still we need that type as local Fortran "use ... only"
7584 declaration imports depend on the created type in determine_prefix. */
7585
7586static struct type *
7587read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7588{
7589 struct objfile *objfile = cu->objfile;
7590 char *module_name;
7591 struct type *type;
7592
7593 module_name = dwarf2_name (die, cu);
7594 if (!module_name)
3e43a32a
MS
7595 complaint (&symfile_complaints,
7596 _("DW_TAG_module has no name, offset 0x%x"),
f55ee35c
JK
7597 die->offset);
7598 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7599
7600 /* determine_prefix uses TYPE_TAG_NAME. */
7601 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7602
7603 return set_die_type (die, type, cu);
7604}
7605
5d7cb8df
JK
7606/* Read a Fortran module. */
7607
7608static void
7609read_module (struct die_info *die, struct dwarf2_cu *cu)
7610{
7611 struct die_info *child_die = die->child;
7612
5d7cb8df
JK
7613 while (child_die && child_die->tag)
7614 {
7615 process_die (child_die, cu);
7616 child_die = sibling_die (child_die);
7617 }
7618}
7619
38d518c9
EZ
7620/* Return the name of the namespace represented by DIE. Set
7621 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7622 namespace. */
7623
7624static const char *
e142c38c 7625namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
7626{
7627 struct die_info *current_die;
7628 const char *name = NULL;
7629
7630 /* Loop through the extensions until we find a name. */
7631
7632 for (current_die = die;
7633 current_die != NULL;
f2f0e013 7634 current_die = dwarf2_extension (die, &cu))
38d518c9 7635 {
e142c38c 7636 name = dwarf2_name (current_die, cu);
38d518c9
EZ
7637 if (name != NULL)
7638 break;
7639 }
7640
7641 /* Is it an anonymous namespace? */
7642
7643 *is_anonymous = (name == NULL);
7644 if (*is_anonymous)
7645 name = "(anonymous namespace)";
7646
7647 return name;
d9fa45fe
DC
7648}
7649
c906108c
SS
7650/* Extract all information from a DW_TAG_pointer_type DIE and add to
7651 the user defined type vector. */
7652
f792889a 7653static struct type *
e7c27a73 7654read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7655{
5e2b427d 7656 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 7657 struct comp_unit_head *cu_header = &cu->header;
c906108c 7658 struct type *type;
8b2dbe47
KB
7659 struct attribute *attr_byte_size;
7660 struct attribute *attr_address_class;
7661 int byte_size, addr_class;
7e314c57
JK
7662 struct type *target_type;
7663
7664 target_type = die_type (die, cu);
c906108c 7665
7e314c57
JK
7666 /* The die_type call above may have already set the type for this DIE. */
7667 type = get_die_type (die, cu);
7668 if (type)
7669 return type;
7670
7671 type = lookup_pointer_type (target_type);
8b2dbe47 7672
e142c38c 7673 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
7674 if (attr_byte_size)
7675 byte_size = DW_UNSND (attr_byte_size);
c906108c 7676 else
8b2dbe47
KB
7677 byte_size = cu_header->addr_size;
7678
e142c38c 7679 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
7680 if (attr_address_class)
7681 addr_class = DW_UNSND (attr_address_class);
7682 else
7683 addr_class = DW_ADDR_none;
7684
7685 /* If the pointer size or address class is different than the
7686 default, create a type variant marked as such and set the
7687 length accordingly. */
7688 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 7689 {
5e2b427d 7690 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
7691 {
7692 int type_flags;
7693
849957d9 7694 type_flags = gdbarch_address_class_type_flags
5e2b427d 7695 (gdbarch, byte_size, addr_class);
876cecd0
TT
7696 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7697 == 0);
8b2dbe47
KB
7698 type = make_type_with_address_space (type, type_flags);
7699 }
7700 else if (TYPE_LENGTH (type) != byte_size)
7701 {
3e43a32a
MS
7702 complaint (&symfile_complaints,
7703 _("invalid pointer size %d"), byte_size);
8b2dbe47 7704 }
6e70227d 7705 else
9a619af0
MS
7706 {
7707 /* Should we also complain about unhandled address classes? */
7708 }
c906108c 7709 }
8b2dbe47
KB
7710
7711 TYPE_LENGTH (type) = byte_size;
f792889a 7712 return set_die_type (die, type, cu);
c906108c
SS
7713}
7714
7715/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7716 the user defined type vector. */
7717
f792889a 7718static struct type *
e7c27a73 7719read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7720{
7721 struct type *type;
7722 struct type *to_type;
7723 struct type *domain;
7724
e7c27a73
DJ
7725 to_type = die_type (die, cu);
7726 domain = die_containing_type (die, cu);
0d5de010 7727
7e314c57
JK
7728 /* The calls above may have already set the type for this DIE. */
7729 type = get_die_type (die, cu);
7730 if (type)
7731 return type;
7732
0d5de010
DJ
7733 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7734 type = lookup_methodptr_type (to_type);
7735 else
7736 type = lookup_memberptr_type (to_type, domain);
c906108c 7737
f792889a 7738 return set_die_type (die, type, cu);
c906108c
SS
7739}
7740
7741/* Extract all information from a DW_TAG_reference_type DIE and add to
7742 the user defined type vector. */
7743
f792889a 7744static struct type *
e7c27a73 7745read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7746{
e7c27a73 7747 struct comp_unit_head *cu_header = &cu->header;
7e314c57 7748 struct type *type, *target_type;
c906108c
SS
7749 struct attribute *attr;
7750
7e314c57
JK
7751 target_type = die_type (die, cu);
7752
7753 /* The die_type call above may have already set the type for this DIE. */
7754 type = get_die_type (die, cu);
7755 if (type)
7756 return type;
7757
7758 type = lookup_reference_type (target_type);
e142c38c 7759 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7760 if (attr)
7761 {
7762 TYPE_LENGTH (type) = DW_UNSND (attr);
7763 }
7764 else
7765 {
107d2387 7766 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 7767 }
f792889a 7768 return set_die_type (die, type, cu);
c906108c
SS
7769}
7770
f792889a 7771static struct type *
e7c27a73 7772read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7773{
f792889a 7774 struct type *base_type, *cv_type;
c906108c 7775
e7c27a73 7776 base_type = die_type (die, cu);
7e314c57
JK
7777
7778 /* The die_type call above may have already set the type for this DIE. */
7779 cv_type = get_die_type (die, cu);
7780 if (cv_type)
7781 return cv_type;
7782
2f608a3a
KW
7783 /* In case the const qualifier is applied to an array type, the element type
7784 is so qualified, not the array type (section 6.7.3 of C99). */
7785 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7786 {
7787 struct type *el_type, *inner_array;
7788
7789 base_type = copy_type (base_type);
7790 inner_array = base_type;
7791
7792 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7793 {
7794 TYPE_TARGET_TYPE (inner_array) =
7795 copy_type (TYPE_TARGET_TYPE (inner_array));
7796 inner_array = TYPE_TARGET_TYPE (inner_array);
7797 }
7798
7799 el_type = TYPE_TARGET_TYPE (inner_array);
7800 TYPE_TARGET_TYPE (inner_array) =
7801 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7802
7803 return set_die_type (die, base_type, cu);
7804 }
7805
f792889a
DJ
7806 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7807 return set_die_type (die, cv_type, cu);
c906108c
SS
7808}
7809
f792889a 7810static struct type *
e7c27a73 7811read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7812{
f792889a 7813 struct type *base_type, *cv_type;
c906108c 7814
e7c27a73 7815 base_type = die_type (die, cu);
7e314c57
JK
7816
7817 /* The die_type call above may have already set the type for this DIE. */
7818 cv_type = get_die_type (die, cu);
7819 if (cv_type)
7820 return cv_type;
7821
f792889a
DJ
7822 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7823 return set_die_type (die, cv_type, cu);
c906108c
SS
7824}
7825
7826/* Extract all information from a DW_TAG_string_type DIE and add to
7827 the user defined type vector. It isn't really a user defined type,
7828 but it behaves like one, with other DIE's using an AT_user_def_type
7829 attribute to reference it. */
7830
f792889a 7831static struct type *
e7c27a73 7832read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7833{
e7c27a73 7834 struct objfile *objfile = cu->objfile;
3b7538c0 7835 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
7836 struct type *type, *range_type, *index_type, *char_type;
7837 struct attribute *attr;
7838 unsigned int length;
7839
e142c38c 7840 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
7841 if (attr)
7842 {
7843 length = DW_UNSND (attr);
7844 }
7845 else
7846 {
b21b22e0 7847 /* check for the DW_AT_byte_size attribute */
e142c38c 7848 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
7849 if (attr)
7850 {
7851 length = DW_UNSND (attr);
7852 }
7853 else
7854 {
7855 length = 1;
7856 }
c906108c 7857 }
6ccb9162 7858
46bf5051 7859 index_type = objfile_type (objfile)->builtin_int;
c906108c 7860 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
7861 char_type = language_string_char_type (cu->language_defn, gdbarch);
7862 type = create_string_type (NULL, char_type, range_type);
6ccb9162 7863
f792889a 7864 return set_die_type (die, type, cu);
c906108c
SS
7865}
7866
7867/* Handle DIES due to C code like:
7868
7869 struct foo
c5aa993b
JM
7870 {
7871 int (*funcp)(int a, long l);
7872 int b;
7873 };
c906108c
SS
7874
7875 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 7876 */
c906108c 7877
f792889a 7878static struct type *
e7c27a73 7879read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7880{
7881 struct type *type; /* Type that this function returns */
7882 struct type *ftype; /* Function that returns above type */
7883 struct attribute *attr;
7884
e7c27a73 7885 type = die_type (die, cu);
7e314c57
JK
7886
7887 /* The die_type call above may have already set the type for this DIE. */
7888 ftype = get_die_type (die, cu);
7889 if (ftype)
7890 return ftype;
7891
0c8b41f1 7892 ftype = lookup_function_type (type);
c906108c 7893
5b8101ae 7894 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 7895 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 7896 if ((attr && (DW_UNSND (attr) != 0))
987504bb 7897 || cu->language == language_cplus
5b8101ae
PM
7898 || cu->language == language_java
7899 || cu->language == language_pascal)
876cecd0 7900 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
7901 else if (producer_is_realview (cu->producer))
7902 /* RealView does not emit DW_AT_prototyped. We can not
7903 distinguish prototyped and unprototyped functions; default to
7904 prototyped, since that is more common in modern code (and
7905 RealView warns about unprototyped functions). */
7906 TYPE_PROTOTYPED (ftype) = 1;
c906108c 7907
c055b101
CV
7908 /* Store the calling convention in the type if it's available in
7909 the subroutine die. Otherwise set the calling convention to
7910 the default value DW_CC_normal. */
7911 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7912 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
7913
7914 /* We need to add the subroutine type to the die immediately so
7915 we don't infinitely recurse when dealing with parameters
7916 declared as the same subroutine type. */
7917 set_die_type (die, ftype, cu);
6e70227d 7918
639d11d3 7919 if (die->child != NULL)
c906108c 7920 {
8072405b 7921 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 7922 struct die_info *child_die;
8072405b 7923 int nparams, iparams;
c906108c
SS
7924
7925 /* Count the number of parameters.
7926 FIXME: GDB currently ignores vararg functions, but knows about
7927 vararg member functions. */
8072405b 7928 nparams = 0;
639d11d3 7929 child_die = die->child;
c906108c
SS
7930 while (child_die && child_die->tag)
7931 {
7932 if (child_die->tag == DW_TAG_formal_parameter)
7933 nparams++;
7934 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 7935 TYPE_VARARGS (ftype) = 1;
c906108c
SS
7936 child_die = sibling_die (child_die);
7937 }
7938
7939 /* Allocate storage for parameters and fill them in. */
7940 TYPE_NFIELDS (ftype) = nparams;
7941 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 7942 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 7943
8072405b
JK
7944 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7945 even if we error out during the parameters reading below. */
7946 for (iparams = 0; iparams < nparams; iparams++)
7947 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7948
7949 iparams = 0;
639d11d3 7950 child_die = die->child;
c906108c
SS
7951 while (child_die && child_die->tag)
7952 {
7953 if (child_die->tag == DW_TAG_formal_parameter)
7954 {
3ce3b1ba
PA
7955 struct type *arg_type;
7956
7957 /* DWARF version 2 has no clean way to discern C++
7958 static and non-static member functions. G++ helps
7959 GDB by marking the first parameter for non-static
7960 member functions (which is the this pointer) as
7961 artificial. We pass this information to
7962 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7963
7964 DWARF version 3 added DW_AT_object_pointer, which GCC
7965 4.5 does not yet generate. */
e142c38c 7966 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
7967 if (attr)
7968 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7969 else
418835cc
KS
7970 {
7971 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7972
7973 /* GCC/43521: In java, the formal parameter
7974 "this" is sometimes not marked with DW_AT_artificial. */
7975 if (cu->language == language_java)
7976 {
7977 const char *name = dwarf2_name (child_die, cu);
9a619af0 7978
418835cc
KS
7979 if (name && !strcmp (name, "this"))
7980 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7981 }
7982 }
3ce3b1ba
PA
7983 arg_type = die_type (child_die, cu);
7984
7985 /* RealView does not mark THIS as const, which the testsuite
7986 expects. GCC marks THIS as const in method definitions,
7987 but not in the class specifications (GCC PR 43053). */
7988 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7989 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7990 {
7991 int is_this = 0;
7992 struct dwarf2_cu *arg_cu = cu;
7993 const char *name = dwarf2_name (child_die, cu);
7994
7995 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7996 if (attr)
7997 {
7998 /* If the compiler emits this, use it. */
7999 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8000 is_this = 1;
8001 }
8002 else if (name && strcmp (name, "this") == 0)
8003 /* Function definitions will have the argument names. */
8004 is_this = 1;
8005 else if (name == NULL && iparams == 0)
8006 /* Declarations may not have the names, so like
8007 elsewhere in GDB, assume an artificial first
8008 argument is "this". */
8009 is_this = 1;
8010
8011 if (is_this)
8012 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8013 arg_type, 0);
8014 }
8015
8016 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
8017 iparams++;
8018 }
8019 child_die = sibling_die (child_die);
8020 }
8021 }
8022
76c10ea2 8023 return ftype;
c906108c
SS
8024}
8025
f792889a 8026static struct type *
e7c27a73 8027read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8028{
e7c27a73 8029 struct objfile *objfile = cu->objfile;
0114d602 8030 const char *name = NULL;
f792889a 8031 struct type *this_type;
c906108c 8032
94af9270 8033 name = dwarf2_full_name (NULL, die, cu);
f792889a 8034 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
8035 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8036 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
8037 set_die_type (die, this_type, cu);
8038 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8039 return this_type;
c906108c
SS
8040}
8041
8042/* Find a representation of a given base type and install
8043 it in the TYPE field of the die. */
8044
f792889a 8045static struct type *
e7c27a73 8046read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8047{
e7c27a73 8048 struct objfile *objfile = cu->objfile;
c906108c
SS
8049 struct type *type;
8050 struct attribute *attr;
8051 int encoding = 0, size = 0;
39cbfefa 8052 char *name;
6ccb9162
UW
8053 enum type_code code = TYPE_CODE_INT;
8054 int type_flags = 0;
8055 struct type *target_type = NULL;
c906108c 8056
e142c38c 8057 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
8058 if (attr)
8059 {
8060 encoding = DW_UNSND (attr);
8061 }
e142c38c 8062 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8063 if (attr)
8064 {
8065 size = DW_UNSND (attr);
8066 }
39cbfefa 8067 name = dwarf2_name (die, cu);
6ccb9162 8068 if (!name)
c906108c 8069 {
6ccb9162
UW
8070 complaint (&symfile_complaints,
8071 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 8072 }
6ccb9162
UW
8073
8074 switch (encoding)
c906108c 8075 {
6ccb9162
UW
8076 case DW_ATE_address:
8077 /* Turn DW_ATE_address into a void * pointer. */
8078 code = TYPE_CODE_PTR;
8079 type_flags |= TYPE_FLAG_UNSIGNED;
8080 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8081 break;
8082 case DW_ATE_boolean:
8083 code = TYPE_CODE_BOOL;
8084 type_flags |= TYPE_FLAG_UNSIGNED;
8085 break;
8086 case DW_ATE_complex_float:
8087 code = TYPE_CODE_COMPLEX;
8088 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8089 break;
8090 case DW_ATE_decimal_float:
8091 code = TYPE_CODE_DECFLOAT;
8092 break;
8093 case DW_ATE_float:
8094 code = TYPE_CODE_FLT;
8095 break;
8096 case DW_ATE_signed:
8097 break;
8098 case DW_ATE_unsigned:
8099 type_flags |= TYPE_FLAG_UNSIGNED;
8100 break;
8101 case DW_ATE_signed_char:
6e70227d 8102 if (cu->language == language_ada || cu->language == language_m2
868a0084 8103 || cu->language == language_pascal)
6ccb9162
UW
8104 code = TYPE_CODE_CHAR;
8105 break;
8106 case DW_ATE_unsigned_char:
868a0084
PM
8107 if (cu->language == language_ada || cu->language == language_m2
8108 || cu->language == language_pascal)
6ccb9162
UW
8109 code = TYPE_CODE_CHAR;
8110 type_flags |= TYPE_FLAG_UNSIGNED;
8111 break;
75079b2b
TT
8112 case DW_ATE_UTF:
8113 /* We just treat this as an integer and then recognize the
8114 type by name elsewhere. */
8115 break;
8116
6ccb9162
UW
8117 default:
8118 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8119 dwarf_type_encoding_name (encoding));
8120 break;
c906108c 8121 }
6ccb9162 8122
0114d602
DJ
8123 type = init_type (code, size, type_flags, NULL, objfile);
8124 TYPE_NAME (type) = name;
6ccb9162
UW
8125 TYPE_TARGET_TYPE (type) = target_type;
8126
0114d602 8127 if (name && strcmp (name, "char") == 0)
876cecd0 8128 TYPE_NOSIGN (type) = 1;
0114d602 8129
f792889a 8130 return set_die_type (die, type, cu);
c906108c
SS
8131}
8132
a02abb62
JB
8133/* Read the given DW_AT_subrange DIE. */
8134
f792889a 8135static struct type *
a02abb62
JB
8136read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8137{
5e2b427d 8138 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
8139 struct type *base_type;
8140 struct type *range_type;
8141 struct attribute *attr;
43bbcdc2
PH
8142 LONGEST low = 0;
8143 LONGEST high = -1;
39cbfefa 8144 char *name;
43bbcdc2 8145 LONGEST negative_mask;
e77813c8 8146
a02abb62 8147 base_type = die_type (die, cu);
953ac07e
JK
8148 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8149 check_typedef (base_type);
a02abb62 8150
7e314c57
JK
8151 /* The die_type call above may have already set the type for this DIE. */
8152 range_type = get_die_type (die, cu);
8153 if (range_type)
8154 return range_type;
8155
e142c38c 8156 if (cu->language == language_fortran)
6e70227d 8157 {
a02abb62
JB
8158 /* FORTRAN implies a lower bound of 1, if not given. */
8159 low = 1;
8160 }
8161
dd5e6932
DJ
8162 /* FIXME: For variable sized arrays either of these could be
8163 a variable rather than a constant value. We'll allow it,
8164 but we don't know how to handle it. */
e142c38c 8165 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
8166 if (attr)
8167 low = dwarf2_get_attr_constant_value (attr, 0);
8168
e142c38c 8169 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 8170 if (attr)
6e70227d 8171 {
e77813c8 8172 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
a02abb62
JB
8173 {
8174 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 8175 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
8176 FIXME: GDB does not yet know how to handle dynamic
8177 arrays properly, treat them as arrays with unspecified
8178 length for now.
8179
8180 FIXME: jimb/2003-09-22: GDB does not really know
8181 how to handle arrays of unspecified length
8182 either; we just represent them as zero-length
8183 arrays. Choose an appropriate upper bound given
8184 the lower bound we've computed above. */
8185 high = low - 1;
8186 }
8187 else
8188 high = dwarf2_get_attr_constant_value (attr, 1);
8189 }
e77813c8
PM
8190 else
8191 {
8192 attr = dwarf2_attr (die, DW_AT_count, cu);
8193 if (attr)
8194 {
8195 int count = dwarf2_get_attr_constant_value (attr, 1);
8196 high = low + count - 1;
8197 }
8198 }
8199
8200 /* Dwarf-2 specifications explicitly allows to create subrange types
8201 without specifying a base type.
8202 In that case, the base type must be set to the type of
8203 the lower bound, upper bound or count, in that order, if any of these
8204 three attributes references an object that has a type.
8205 If no base type is found, the Dwarf-2 specifications say that
8206 a signed integer type of size equal to the size of an address should
8207 be used.
8208 For the following C code: `extern char gdb_int [];'
8209 GCC produces an empty range DIE.
8210 FIXME: muller/2010-05-28: Possible references to object for low bound,
8211 high bound or count are not yet handled by this code.
8212 */
8213 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8214 {
8215 struct objfile *objfile = cu->objfile;
8216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8217 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8218 struct type *int_type = objfile_type (objfile)->builtin_int;
8219
8220 /* Test "int", "long int", and "long long int" objfile types,
8221 and select the first one having a size above or equal to the
8222 architecture address size. */
8223 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8224 base_type = int_type;
8225 else
8226 {
8227 int_type = objfile_type (objfile)->builtin_long;
8228 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8229 base_type = int_type;
8230 else
8231 {
8232 int_type = objfile_type (objfile)->builtin_long_long;
8233 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8234 base_type = int_type;
8235 }
8236 }
8237 }
a02abb62 8238
6e70227d 8239 negative_mask =
43bbcdc2
PH
8240 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8241 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8242 low |= negative_mask;
8243 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8244 high |= negative_mask;
8245
a02abb62
JB
8246 range_type = create_range_type (NULL, base_type, low, high);
8247
bbb0eef6
JK
8248 /* Mark arrays with dynamic length at least as an array of unspecified
8249 length. GDB could check the boundary but before it gets implemented at
8250 least allow accessing the array elements. */
8251 if (attr && attr->form == DW_FORM_block1)
8252 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8253
39cbfefa
DJ
8254 name = dwarf2_name (die, cu);
8255 if (name)
8256 TYPE_NAME (range_type) = name;
6e70227d 8257
e142c38c 8258 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
8259 if (attr)
8260 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8261
7e314c57
JK
8262 set_die_type (die, range_type, cu);
8263
8264 /* set_die_type should be already done. */
b4ba55a1
JB
8265 set_descriptive_type (range_type, die, cu);
8266
7e314c57 8267 return range_type;
a02abb62 8268}
6e70227d 8269
f792889a 8270static struct type *
81a17f79
JB
8271read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8272{
8273 struct type *type;
81a17f79 8274
81a17f79
JB
8275 /* For now, we only support the C meaning of an unspecified type: void. */
8276
0114d602
DJ
8277 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8278 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 8279
f792889a 8280 return set_die_type (die, type, cu);
81a17f79 8281}
a02abb62 8282
51545339
DJ
8283/* Trivial hash function for die_info: the hash value of a DIE
8284 is its offset in .debug_info for this objfile. */
8285
8286static hashval_t
8287die_hash (const void *item)
8288{
8289 const struct die_info *die = item;
9a619af0 8290
51545339
DJ
8291 return die->offset;
8292}
8293
8294/* Trivial comparison function for die_info structures: two DIEs
8295 are equal if they have the same offset. */
8296
8297static int
8298die_eq (const void *item_lhs, const void *item_rhs)
8299{
8300 const struct die_info *die_lhs = item_lhs;
8301 const struct die_info *die_rhs = item_rhs;
9a619af0 8302
51545339
DJ
8303 return die_lhs->offset == die_rhs->offset;
8304}
8305
c906108c
SS
8306/* Read a whole compilation unit into a linked list of dies. */
8307
f9aca02d 8308static struct die_info *
93311388 8309read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 8310{
93311388 8311 struct die_reader_specs reader_specs;
98bfdba5 8312 int read_abbrevs = 0;
1d9ec526 8313 struct cleanup *back_to = NULL;
98bfdba5
PA
8314 struct die_info *die;
8315
8316 if (cu->dwarf2_abbrevs == NULL)
8317 {
8318 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8319 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8320 read_abbrevs = 1;
8321 }
93311388 8322
348e048f 8323 gdb_assert (cu->die_hash == NULL);
51545339
DJ
8324 cu->die_hash
8325 = htab_create_alloc_ex (cu->header.length / 12,
8326 die_hash,
8327 die_eq,
8328 NULL,
8329 &cu->comp_unit_obstack,
8330 hashtab_obstack_allocate,
8331 dummy_obstack_deallocate);
8332
93311388
DE
8333 init_cu_die_reader (&reader_specs, cu);
8334
98bfdba5
PA
8335 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8336
8337 if (read_abbrevs)
8338 do_cleanups (back_to);
8339
8340 return die;
639d11d3
DC
8341}
8342
d97bc12b
DE
8343/* Main entry point for reading a DIE and all children.
8344 Read the DIE and dump it if requested. */
8345
8346static struct die_info *
93311388
DE
8347read_die_and_children (const struct die_reader_specs *reader,
8348 gdb_byte *info_ptr,
d97bc12b
DE
8349 gdb_byte **new_info_ptr,
8350 struct die_info *parent)
8351{
93311388 8352 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
8353 new_info_ptr, parent);
8354
8355 if (dwarf2_die_debug)
8356 {
348e048f
DE
8357 fprintf_unfiltered (gdb_stdlog,
8358 "\nRead die from %s of %s:\n",
8359 reader->buffer == dwarf2_per_objfile->info.buffer
8360 ? ".debug_info"
8361 : reader->buffer == dwarf2_per_objfile->types.buffer
8362 ? ".debug_types"
8363 : "unknown section",
8364 reader->abfd->filename);
d97bc12b
DE
8365 dump_die (result, dwarf2_die_debug);
8366 }
8367
8368 return result;
8369}
8370
639d11d3
DC
8371/* Read a single die and all its descendents. Set the die's sibling
8372 field to NULL; set other fields in the die correctly, and set all
8373 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8374 location of the info_ptr after reading all of those dies. PARENT
8375 is the parent of the die in question. */
8376
8377static struct die_info *
93311388
DE
8378read_die_and_children_1 (const struct die_reader_specs *reader,
8379 gdb_byte *info_ptr,
d97bc12b
DE
8380 gdb_byte **new_info_ptr,
8381 struct die_info *parent)
639d11d3
DC
8382{
8383 struct die_info *die;
fe1b8b76 8384 gdb_byte *cur_ptr;
639d11d3
DC
8385 int has_children;
8386
93311388 8387 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
8388 if (die == NULL)
8389 {
8390 *new_info_ptr = cur_ptr;
8391 return NULL;
8392 }
93311388 8393 store_in_ref_table (die, reader->cu);
639d11d3
DC
8394
8395 if (has_children)
348e048f 8396 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
8397 else
8398 {
8399 die->child = NULL;
8400 *new_info_ptr = cur_ptr;
8401 }
8402
8403 die->sibling = NULL;
8404 die->parent = parent;
8405 return die;
8406}
8407
8408/* Read a die, all of its descendents, and all of its siblings; set
8409 all of the fields of all of the dies correctly. Arguments are as
8410 in read_die_and_children. */
8411
8412static struct die_info *
93311388
DE
8413read_die_and_siblings (const struct die_reader_specs *reader,
8414 gdb_byte *info_ptr,
fe1b8b76 8415 gdb_byte **new_info_ptr,
639d11d3
DC
8416 struct die_info *parent)
8417{
8418 struct die_info *first_die, *last_sibling;
fe1b8b76 8419 gdb_byte *cur_ptr;
639d11d3 8420
c906108c 8421 cur_ptr = info_ptr;
639d11d3
DC
8422 first_die = last_sibling = NULL;
8423
8424 while (1)
c906108c 8425 {
639d11d3 8426 struct die_info *die
93311388 8427 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 8428
1d325ec1 8429 if (die == NULL)
c906108c 8430 {
639d11d3
DC
8431 *new_info_ptr = cur_ptr;
8432 return first_die;
c906108c 8433 }
1d325ec1
DJ
8434
8435 if (!first_die)
8436 first_die = die;
c906108c 8437 else
1d325ec1
DJ
8438 last_sibling->sibling = die;
8439
8440 last_sibling = die;
c906108c 8441 }
c906108c
SS
8442}
8443
93311388
DE
8444/* Read the die from the .debug_info section buffer. Set DIEP to
8445 point to a newly allocated die with its information, except for its
8446 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8447 whether the die has children or not. */
8448
8449static gdb_byte *
8450read_full_die (const struct die_reader_specs *reader,
8451 struct die_info **diep, gdb_byte *info_ptr,
8452 int *has_children)
8453{
8454 unsigned int abbrev_number, bytes_read, i, offset;
8455 struct abbrev_info *abbrev;
8456 struct die_info *die;
8457 struct dwarf2_cu *cu = reader->cu;
8458 bfd *abfd = reader->abfd;
8459
8460 offset = info_ptr - reader->buffer;
8461 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8462 info_ptr += bytes_read;
8463 if (!abbrev_number)
8464 {
8465 *diep = NULL;
8466 *has_children = 0;
8467 return info_ptr;
8468 }
8469
8470 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8471 if (!abbrev)
348e048f
DE
8472 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8473 abbrev_number,
8474 bfd_get_filename (abfd));
8475
93311388
DE
8476 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8477 die->offset = offset;
8478 die->tag = abbrev->tag;
8479 die->abbrev = abbrev_number;
8480
8481 die->num_attrs = abbrev->num_attrs;
8482
8483 for (i = 0; i < abbrev->num_attrs; ++i)
8484 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8485 abfd, info_ptr, cu);
8486
8487 *diep = die;
8488 *has_children = abbrev->has_children;
8489 return info_ptr;
8490}
8491
c906108c
SS
8492/* In DWARF version 2, the description of the debugging information is
8493 stored in a separate .debug_abbrev section. Before we read any
8494 dies from a section we read in all abbreviations and install them
72bf9492
DJ
8495 in a hash table. This function also sets flags in CU describing
8496 the data found in the abbrev table. */
c906108c
SS
8497
8498static void
e7c27a73 8499dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 8500{
e7c27a73 8501 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 8502 gdb_byte *abbrev_ptr;
c906108c
SS
8503 struct abbrev_info *cur_abbrev;
8504 unsigned int abbrev_number, bytes_read, abbrev_name;
8505 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
8506 struct attr_abbrev *cur_attrs;
8507 unsigned int allocated_attrs;
c906108c 8508
57349743 8509 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
8510 obstack_init (&cu->abbrev_obstack);
8511 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8512 (ABBREV_HASH_SIZE
8513 * sizeof (struct abbrev_info *)));
8514 memset (cu->dwarf2_abbrevs, 0,
8515 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 8516
be391dca
TT
8517 dwarf2_read_section (dwarf2_per_objfile->objfile,
8518 &dwarf2_per_objfile->abbrev);
dce234bc 8519 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
8520 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8521 abbrev_ptr += bytes_read;
8522
f3dd6933
DJ
8523 allocated_attrs = ATTR_ALLOC_CHUNK;
8524 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 8525
c906108c
SS
8526 /* loop until we reach an abbrev number of 0 */
8527 while (abbrev_number)
8528 {
f3dd6933 8529 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
8530
8531 /* read in abbrev header */
8532 cur_abbrev->number = abbrev_number;
8533 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8534 abbrev_ptr += bytes_read;
8535 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8536 abbrev_ptr += 1;
8537
72bf9492
DJ
8538 if (cur_abbrev->tag == DW_TAG_namespace)
8539 cu->has_namespace_info = 1;
8540
c906108c
SS
8541 /* now read in declarations */
8542 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8543 abbrev_ptr += bytes_read;
8544 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8545 abbrev_ptr += bytes_read;
8546 while (abbrev_name)
8547 {
f3dd6933 8548 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 8549 {
f3dd6933
DJ
8550 allocated_attrs += ATTR_ALLOC_CHUNK;
8551 cur_attrs
8552 = xrealloc (cur_attrs, (allocated_attrs
8553 * sizeof (struct attr_abbrev)));
c906108c 8554 }
ae038cb0
DJ
8555
8556 /* Record whether this compilation unit might have
8557 inter-compilation-unit references. If we don't know what form
8558 this attribute will have, then it might potentially be a
8559 DW_FORM_ref_addr, so we conservatively expect inter-CU
8560 references. */
8561
8562 if (abbrev_form == DW_FORM_ref_addr
8563 || abbrev_form == DW_FORM_indirect)
8564 cu->has_form_ref_addr = 1;
8565
f3dd6933
DJ
8566 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8567 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
8568 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8569 abbrev_ptr += bytes_read;
8570 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8571 abbrev_ptr += bytes_read;
8572 }
8573
f3dd6933
DJ
8574 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8575 (cur_abbrev->num_attrs
8576 * sizeof (struct attr_abbrev)));
8577 memcpy (cur_abbrev->attrs, cur_attrs,
8578 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8579
c906108c 8580 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
8581 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8582 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
8583
8584 /* Get next abbreviation.
8585 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
8586 always properly terminated with an abbrev number of 0.
8587 Exit loop if we encounter an abbreviation which we have
8588 already read (which means we are about to read the abbreviations
8589 for the next compile unit) or if the end of the abbreviation
8590 table is reached. */
dce234bc
PP
8591 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8592 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
8593 break;
8594 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8595 abbrev_ptr += bytes_read;
e7c27a73 8596 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
8597 break;
8598 }
f3dd6933
DJ
8599
8600 xfree (cur_attrs);
c906108c
SS
8601}
8602
f3dd6933 8603/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 8604
c906108c 8605static void
f3dd6933 8606dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 8607{
f3dd6933 8608 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 8609
f3dd6933
DJ
8610 obstack_free (&cu->abbrev_obstack, NULL);
8611 cu->dwarf2_abbrevs = NULL;
c906108c
SS
8612}
8613
8614/* Lookup an abbrev_info structure in the abbrev hash table. */
8615
8616static struct abbrev_info *
e7c27a73 8617dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
8618{
8619 unsigned int hash_number;
8620 struct abbrev_info *abbrev;
8621
8622 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 8623 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
8624
8625 while (abbrev)
8626 {
8627 if (abbrev->number == number)
8628 return abbrev;
8629 else
8630 abbrev = abbrev->next;
8631 }
8632 return NULL;
8633}
8634
72bf9492
DJ
8635/* Returns nonzero if TAG represents a type that we might generate a partial
8636 symbol for. */
8637
8638static int
8639is_type_tag_for_partial (int tag)
8640{
8641 switch (tag)
8642 {
8643#if 0
8644 /* Some types that would be reasonable to generate partial symbols for,
8645 that we don't at present. */
8646 case DW_TAG_array_type:
8647 case DW_TAG_file_type:
8648 case DW_TAG_ptr_to_member_type:
8649 case DW_TAG_set_type:
8650 case DW_TAG_string_type:
8651 case DW_TAG_subroutine_type:
8652#endif
8653 case DW_TAG_base_type:
8654 case DW_TAG_class_type:
680b30c7 8655 case DW_TAG_interface_type:
72bf9492
DJ
8656 case DW_TAG_enumeration_type:
8657 case DW_TAG_structure_type:
8658 case DW_TAG_subrange_type:
8659 case DW_TAG_typedef:
8660 case DW_TAG_union_type:
8661 return 1;
8662 default:
8663 return 0;
8664 }
8665}
8666
8667/* Load all DIEs that are interesting for partial symbols into memory. */
8668
8669static struct partial_die_info *
93311388
DE
8670load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8671 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
8672{
8673 struct partial_die_info *part_die;
8674 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8675 struct abbrev_info *abbrev;
8676 unsigned int bytes_read;
5afb4e99 8677 unsigned int load_all = 0;
72bf9492
DJ
8678
8679 int nesting_level = 1;
8680
8681 parent_die = NULL;
8682 last_die = NULL;
8683
5afb4e99
DJ
8684 if (cu->per_cu && cu->per_cu->load_all_dies)
8685 load_all = 1;
8686
72bf9492
DJ
8687 cu->partial_dies
8688 = htab_create_alloc_ex (cu->header.length / 12,
8689 partial_die_hash,
8690 partial_die_eq,
8691 NULL,
8692 &cu->comp_unit_obstack,
8693 hashtab_obstack_allocate,
8694 dummy_obstack_deallocate);
8695
8696 part_die = obstack_alloc (&cu->comp_unit_obstack,
8697 sizeof (struct partial_die_info));
8698
8699 while (1)
8700 {
8701 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8702
8703 /* A NULL abbrev means the end of a series of children. */
8704 if (abbrev == NULL)
8705 {
8706 if (--nesting_level == 0)
8707 {
8708 /* PART_DIE was probably the last thing allocated on the
8709 comp_unit_obstack, so we could call obstack_free
8710 here. We don't do that because the waste is small,
8711 and will be cleaned up when we're done with this
8712 compilation unit. This way, we're also more robust
8713 against other users of the comp_unit_obstack. */
8714 return first_die;
8715 }
8716 info_ptr += bytes_read;
8717 last_die = parent_die;
8718 parent_die = parent_die->die_parent;
8719 continue;
8720 }
8721
98bfdba5
PA
8722 /* Check for template arguments. We never save these; if
8723 they're seen, we just mark the parent, and go on our way. */
8724 if (parent_die != NULL
8725 && cu->language == language_cplus
8726 && (abbrev->tag == DW_TAG_template_type_param
8727 || abbrev->tag == DW_TAG_template_value_param))
8728 {
8729 parent_die->has_template_arguments = 1;
8730
8731 if (!load_all)
8732 {
8733 /* We don't need a partial DIE for the template argument. */
8734 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8735 cu);
8736 continue;
8737 }
8738 }
8739
8740 /* We only recurse into subprograms looking for template arguments.
8741 Skip their other children. */
8742 if (!load_all
8743 && cu->language == language_cplus
8744 && parent_die != NULL
8745 && parent_die->tag == DW_TAG_subprogram)
8746 {
8747 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8748 continue;
8749 }
8750
5afb4e99
DJ
8751 /* Check whether this DIE is interesting enough to save. Normally
8752 we would not be interested in members here, but there may be
8753 later variables referencing them via DW_AT_specification (for
8754 static members). */
8755 if (!load_all
8756 && !is_type_tag_for_partial (abbrev->tag)
72929c62 8757 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
8758 && abbrev->tag != DW_TAG_enumerator
8759 && abbrev->tag != DW_TAG_subprogram
bc30ff58 8760 && abbrev->tag != DW_TAG_lexical_block
72bf9492 8761 && abbrev->tag != DW_TAG_variable
5afb4e99 8762 && abbrev->tag != DW_TAG_namespace
f55ee35c 8763 && abbrev->tag != DW_TAG_module
5afb4e99 8764 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
8765 {
8766 /* Otherwise we skip to the next sibling, if any. */
93311388 8767 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
8768 continue;
8769 }
8770
93311388
DE
8771 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8772 buffer, info_ptr, cu);
72bf9492
DJ
8773
8774 /* This two-pass algorithm for processing partial symbols has a
8775 high cost in cache pressure. Thus, handle some simple cases
8776 here which cover the majority of C partial symbols. DIEs
8777 which neither have specification tags in them, nor could have
8778 specification tags elsewhere pointing at them, can simply be
8779 processed and discarded.
8780
8781 This segment is also optional; scan_partial_symbols and
8782 add_partial_symbol will handle these DIEs if we chain
8783 them in normally. When compilers which do not emit large
8784 quantities of duplicate debug information are more common,
8785 this code can probably be removed. */
8786
8787 /* Any complete simple types at the top level (pretty much all
8788 of them, for a language without namespaces), can be processed
8789 directly. */
8790 if (parent_die == NULL
8791 && part_die->has_specification == 0
8792 && part_die->is_declaration == 0
8793 && (part_die->tag == DW_TAG_typedef
8794 || part_die->tag == DW_TAG_base_type
8795 || part_die->tag == DW_TAG_subrange_type))
8796 {
8797 if (building_psymtab && part_die->name != NULL)
04a679b8 8798 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
8799 VAR_DOMAIN, LOC_TYPEDEF,
8800 &cu->objfile->static_psymbols,
8801 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 8802 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8803 continue;
8804 }
8805
8806 /* If we're at the second level, and we're an enumerator, and
8807 our parent has no specification (meaning possibly lives in a
8808 namespace elsewhere), then we can add the partial symbol now
8809 instead of queueing it. */
8810 if (part_die->tag == DW_TAG_enumerator
8811 && parent_die != NULL
8812 && parent_die->die_parent == NULL
8813 && parent_die->tag == DW_TAG_enumeration_type
8814 && parent_die->has_specification == 0)
8815 {
8816 if (part_die->name == NULL)
3e43a32a
MS
8817 complaint (&symfile_complaints,
8818 _("malformed enumerator DIE ignored"));
72bf9492 8819 else if (building_psymtab)
04a679b8 8820 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 8821 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
8822 (cu->language == language_cplus
8823 || cu->language == language_java)
72bf9492
DJ
8824 ? &cu->objfile->global_psymbols
8825 : &cu->objfile->static_psymbols,
8826 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8827
93311388 8828 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8829 continue;
8830 }
8831
8832 /* We'll save this DIE so link it in. */
8833 part_die->die_parent = parent_die;
8834 part_die->die_sibling = NULL;
8835 part_die->die_child = NULL;
8836
8837 if (last_die && last_die == parent_die)
8838 last_die->die_child = part_die;
8839 else if (last_die)
8840 last_die->die_sibling = part_die;
8841
8842 last_die = part_die;
8843
8844 if (first_die == NULL)
8845 first_die = part_die;
8846
8847 /* Maybe add the DIE to the hash table. Not all DIEs that we
8848 find interesting need to be in the hash table, because we
8849 also have the parent/sibling/child chains; only those that we
8850 might refer to by offset later during partial symbol reading.
8851
8852 For now this means things that might have be the target of a
8853 DW_AT_specification, DW_AT_abstract_origin, or
8854 DW_AT_extension. DW_AT_extension will refer only to
8855 namespaces; DW_AT_abstract_origin refers to functions (and
8856 many things under the function DIE, but we do not recurse
8857 into function DIEs during partial symbol reading) and
8858 possibly variables as well; DW_AT_specification refers to
8859 declarations. Declarations ought to have the DW_AT_declaration
8860 flag. It happens that GCC forgets to put it in sometimes, but
8861 only for functions, not for types.
8862
8863 Adding more things than necessary to the hash table is harmless
8864 except for the performance cost. Adding too few will result in
5afb4e99
DJ
8865 wasted time in find_partial_die, when we reread the compilation
8866 unit with load_all_dies set. */
72bf9492 8867
5afb4e99 8868 if (load_all
72929c62 8869 || abbrev->tag == DW_TAG_constant
5afb4e99 8870 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
8871 || abbrev->tag == DW_TAG_variable
8872 || abbrev->tag == DW_TAG_namespace
8873 || part_die->is_declaration)
8874 {
8875 void **slot;
8876
8877 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8878 part_die->offset, INSERT);
8879 *slot = part_die;
8880 }
8881
8882 part_die = obstack_alloc (&cu->comp_unit_obstack,
8883 sizeof (struct partial_die_info));
8884
8885 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 8886 we have no reason to follow the children of structures; for other
98bfdba5
PA
8887 languages we have to, so that we can get at method physnames
8888 to infer fully qualified class names, for DW_AT_specification,
8889 and for C++ template arguments. For C++, we also look one level
8890 inside functions to find template arguments (if the name of the
8891 function does not already contain the template arguments).
bc30ff58
JB
8892
8893 For Ada, we need to scan the children of subprograms and lexical
8894 blocks as well because Ada allows the definition of nested
8895 entities that could be interesting for the debugger, such as
8896 nested subprograms for instance. */
72bf9492 8897 if (last_die->has_children
5afb4e99
DJ
8898 && (load_all
8899 || last_die->tag == DW_TAG_namespace
f55ee35c 8900 || last_die->tag == DW_TAG_module
72bf9492 8901 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
8902 || (cu->language == language_cplus
8903 && last_die->tag == DW_TAG_subprogram
8904 && (last_die->name == NULL
8905 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
8906 || (cu->language != language_c
8907 && (last_die->tag == DW_TAG_class_type
680b30c7 8908 || last_die->tag == DW_TAG_interface_type
72bf9492 8909 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
8910 || last_die->tag == DW_TAG_union_type))
8911 || (cu->language == language_ada
8912 && (last_die->tag == DW_TAG_subprogram
8913 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
8914 {
8915 nesting_level++;
8916 parent_die = last_die;
8917 continue;
8918 }
8919
8920 /* Otherwise we skip to the next sibling, if any. */
93311388 8921 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8922
8923 /* Back to the top, do it again. */
8924 }
8925}
8926
c906108c
SS
8927/* Read a minimal amount of information into the minimal die structure. */
8928
fe1b8b76 8929static gdb_byte *
72bf9492
DJ
8930read_partial_die (struct partial_die_info *part_die,
8931 struct abbrev_info *abbrev,
8932 unsigned int abbrev_len, bfd *abfd,
93311388
DE
8933 gdb_byte *buffer, gdb_byte *info_ptr,
8934 struct dwarf2_cu *cu)
c906108c 8935{
fa238c03 8936 unsigned int i;
c906108c 8937 struct attribute attr;
c5aa993b 8938 int has_low_pc_attr = 0;
c906108c
SS
8939 int has_high_pc_attr = 0;
8940
72bf9492 8941 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 8942
93311388 8943 part_die->offset = info_ptr - buffer;
72bf9492
DJ
8944
8945 info_ptr += abbrev_len;
8946
8947 if (abbrev == NULL)
8948 return info_ptr;
8949
c906108c
SS
8950 part_die->tag = abbrev->tag;
8951 part_die->has_children = abbrev->has_children;
c906108c
SS
8952
8953 for (i = 0; i < abbrev->num_attrs; ++i)
8954 {
e7c27a73 8955 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
8956
8957 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 8958 partial symbol table. */
c906108c
SS
8959 switch (attr.name)
8960 {
8961 case DW_AT_name:
71c25dea
TT
8962 switch (part_die->tag)
8963 {
8964 case DW_TAG_compile_unit:
348e048f 8965 case DW_TAG_type_unit:
71c25dea
TT
8966 /* Compilation units have a DW_AT_name that is a filename, not
8967 a source language identifier. */
8968 case DW_TAG_enumeration_type:
8969 case DW_TAG_enumerator:
8970 /* These tags always have simple identifiers already; no need
8971 to canonicalize them. */
8972 part_die->name = DW_STRING (&attr);
8973 break;
8974 default:
8975 part_die->name
8976 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 8977 &cu->objfile->objfile_obstack);
71c25dea
TT
8978 break;
8979 }
c906108c 8980 break;
31ef98ae 8981 case DW_AT_linkage_name:
c906108c 8982 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
8983 /* Note that both forms of linkage name might appear. We
8984 assume they will be the same, and we only store the last
8985 one we see. */
94af9270
KS
8986 if (cu->language == language_ada)
8987 part_die->name = DW_STRING (&attr);
abc72ce4 8988 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
8989 break;
8990 case DW_AT_low_pc:
8991 has_low_pc_attr = 1;
8992 part_die->lowpc = DW_ADDR (&attr);
8993 break;
8994 case DW_AT_high_pc:
8995 has_high_pc_attr = 1;
8996 part_die->highpc = DW_ADDR (&attr);
8997 break;
8998 case DW_AT_location:
8e19ed76
PS
8999 /* Support the .debug_loc offsets */
9000 if (attr_form_is_block (&attr))
9001 {
9002 part_die->locdesc = DW_BLOCK (&attr);
9003 }
3690dd37 9004 else if (attr_form_is_section_offset (&attr))
8e19ed76 9005 {
4d3c2250 9006 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
9007 }
9008 else
9009 {
4d3c2250
KB
9010 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9011 "partial symbol information");
8e19ed76 9012 }
c906108c 9013 break;
c906108c
SS
9014 case DW_AT_external:
9015 part_die->is_external = DW_UNSND (&attr);
9016 break;
9017 case DW_AT_declaration:
9018 part_die->is_declaration = DW_UNSND (&attr);
9019 break;
9020 case DW_AT_type:
9021 part_die->has_type = 1;
9022 break;
9023 case DW_AT_abstract_origin:
9024 case DW_AT_specification:
72bf9492
DJ
9025 case DW_AT_extension:
9026 part_die->has_specification = 1;
c764a876 9027 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
9028 break;
9029 case DW_AT_sibling:
9030 /* Ignore absolute siblings, they might point outside of
9031 the current compile unit. */
9032 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
9033 complaint (&symfile_complaints,
9034 _("ignoring absolute DW_AT_sibling"));
c906108c 9035 else
93311388 9036 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 9037 break;
fa4028e9
JB
9038 case DW_AT_byte_size:
9039 part_die->has_byte_size = 1;
9040 break;
68511cec
CES
9041 case DW_AT_calling_convention:
9042 /* DWARF doesn't provide a way to identify a program's source-level
9043 entry point. DW_AT_calling_convention attributes are only meant
9044 to describe functions' calling conventions.
9045
9046 However, because it's a necessary piece of information in
9047 Fortran, and because DW_CC_program is the only piece of debugging
9048 information whose definition refers to a 'main program' at all,
9049 several compilers have begun marking Fortran main programs with
9050 DW_CC_program --- even when those functions use the standard
9051 calling conventions.
9052
9053 So until DWARF specifies a way to provide this information and
9054 compilers pick up the new representation, we'll support this
9055 practice. */
9056 if (DW_UNSND (&attr) == DW_CC_program
9057 && cu->language == language_fortran)
01f8c46d
JK
9058 {
9059 set_main_name (part_die->name);
9060
9061 /* As this DIE has a static linkage the name would be difficult
9062 to look up later. */
9063 language_of_main = language_fortran;
9064 }
68511cec 9065 break;
c906108c
SS
9066 default:
9067 break;
9068 }
9069 }
9070
c906108c
SS
9071 /* When using the GNU linker, .gnu.linkonce. sections are used to
9072 eliminate duplicate copies of functions and vtables and such.
9073 The linker will arbitrarily choose one and discard the others.
9074 The AT_*_pc values for such functions refer to local labels in
9075 these sections. If the section from that file was discarded, the
9076 labels are not in the output, so the relocs get a value of 0.
9077 If this is a discarded function, mark the pc bounds as invalid,
9078 so that GDB will ignore it. */
9079 if (has_low_pc_attr && has_high_pc_attr
9080 && part_die->lowpc < part_die->highpc
9081 && (part_die->lowpc != 0
72dca2f5 9082 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 9083 part_die->has_pc_info = 1;
85cbf3d3 9084
c906108c
SS
9085 return info_ptr;
9086}
9087
72bf9492
DJ
9088/* Find a cached partial DIE at OFFSET in CU. */
9089
9090static struct partial_die_info *
c764a876 9091find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
9092{
9093 struct partial_die_info *lookup_die = NULL;
9094 struct partial_die_info part_die;
9095
9096 part_die.offset = offset;
9097 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9098
72bf9492
DJ
9099 return lookup_die;
9100}
9101
348e048f
DE
9102/* Find a partial DIE at OFFSET, which may or may not be in CU,
9103 except in the case of .debug_types DIEs which do not reference
9104 outside their CU (they do however referencing other types via
9105 DW_FORM_sig8). */
72bf9492
DJ
9106
9107static struct partial_die_info *
c764a876 9108find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 9109{
5afb4e99
DJ
9110 struct dwarf2_per_cu_data *per_cu = NULL;
9111 struct partial_die_info *pd = NULL;
72bf9492 9112
348e048f
DE
9113 if (cu->per_cu->from_debug_types)
9114 {
9115 pd = find_partial_die_in_comp_unit (offset, cu);
9116 if (pd != NULL)
9117 return pd;
9118 goto not_found;
9119 }
9120
45452591 9121 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
9122 {
9123 pd = find_partial_die_in_comp_unit (offset, cu);
9124 if (pd != NULL)
9125 return pd;
9126 }
72bf9492 9127
ae038cb0
DJ
9128 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9129
98bfdba5
PA
9130 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9131 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
9132
9133 per_cu->cu->last_used = 0;
5afb4e99
DJ
9134 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9135
9136 if (pd == NULL && per_cu->load_all_dies == 0)
9137 {
9138 struct cleanup *back_to;
9139 struct partial_die_info comp_unit_die;
9140 struct abbrev_info *abbrev;
9141 unsigned int bytes_read;
9142 char *info_ptr;
9143
9144 per_cu->load_all_dies = 1;
9145
9146 /* Re-read the DIEs. */
9147 back_to = make_cleanup (null_cleanup, 0);
9148 if (per_cu->cu->dwarf2_abbrevs == NULL)
9149 {
9150 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 9151 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 9152 }
dce234bc 9153 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
9154 + per_cu->cu->header.offset
9155 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
9156 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9157 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
9158 per_cu->cu->objfile->obfd,
9159 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
9160 per_cu->cu);
9161 if (comp_unit_die.has_children)
93311388
DE
9162 load_partial_dies (per_cu->cu->objfile->obfd,
9163 dwarf2_per_objfile->info.buffer, info_ptr,
9164 0, per_cu->cu);
5afb4e99
DJ
9165 do_cleanups (back_to);
9166
9167 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9168 }
9169
348e048f
DE
9170 not_found:
9171
5afb4e99
DJ
9172 if (pd == NULL)
9173 internal_error (__FILE__, __LINE__,
3e43a32a
MS
9174 _("could not find partial DIE 0x%x "
9175 "in cache [from module %s]\n"),
5afb4e99
DJ
9176 offset, bfd_get_filename (cu->objfile->obfd));
9177 return pd;
72bf9492
DJ
9178}
9179
abc72ce4
DE
9180/* See if we can figure out if the class lives in a namespace. We do
9181 this by looking for a member function; its demangled name will
9182 contain namespace info, if there is any. */
9183
9184static void
9185guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9186 struct dwarf2_cu *cu)
9187{
9188 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9189 what template types look like, because the demangler
9190 frequently doesn't give the same name as the debug info. We
9191 could fix this by only using the demangled name to get the
9192 prefix (but see comment in read_structure_type). */
9193
9194 struct partial_die_info *real_pdi;
9195 struct partial_die_info *child_pdi;
9196
9197 /* If this DIE (this DIE's specification, if any) has a parent, then
9198 we should not do this. We'll prepend the parent's fully qualified
9199 name when we create the partial symbol. */
9200
9201 real_pdi = struct_pdi;
9202 while (real_pdi->has_specification)
9203 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9204
9205 if (real_pdi->die_parent != NULL)
9206 return;
9207
9208 for (child_pdi = struct_pdi->die_child;
9209 child_pdi != NULL;
9210 child_pdi = child_pdi->die_sibling)
9211 {
9212 if (child_pdi->tag == DW_TAG_subprogram
9213 && child_pdi->linkage_name != NULL)
9214 {
9215 char *actual_class_name
9216 = language_class_name_from_physname (cu->language_defn,
9217 child_pdi->linkage_name);
9218 if (actual_class_name != NULL)
9219 {
9220 struct_pdi->name
9221 = obsavestring (actual_class_name,
9222 strlen (actual_class_name),
9223 &cu->objfile->objfile_obstack);
9224 xfree (actual_class_name);
9225 }
9226 break;
9227 }
9228 }
9229}
9230
72bf9492
DJ
9231/* Adjust PART_DIE before generating a symbol for it. This function
9232 may set the is_external flag or change the DIE's name. */
9233
9234static void
9235fixup_partial_die (struct partial_die_info *part_die,
9236 struct dwarf2_cu *cu)
9237{
abc72ce4
DE
9238 /* Once we've fixed up a die, there's no point in doing so again.
9239 This also avoids a memory leak if we were to call
9240 guess_partial_die_structure_name multiple times. */
9241 if (part_die->fixup_called)
9242 return;
9243
72bf9492
DJ
9244 /* If we found a reference attribute and the DIE has no name, try
9245 to find a name in the referred to DIE. */
9246
9247 if (part_die->name == NULL && part_die->has_specification)
9248 {
9249 struct partial_die_info *spec_die;
72bf9492 9250
10b3939b 9251 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 9252
10b3939b 9253 fixup_partial_die (spec_die, cu);
72bf9492
DJ
9254
9255 if (spec_die->name)
9256 {
9257 part_die->name = spec_die->name;
9258
9259 /* Copy DW_AT_external attribute if it is set. */
9260 if (spec_die->is_external)
9261 part_die->is_external = spec_die->is_external;
9262 }
9263 }
9264
9265 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
9266
9267 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9268 part_die->name = "(anonymous namespace)";
9269
abc72ce4
DE
9270 /* If there is no parent die to provide a namespace, and there are
9271 children, see if we can determine the namespace from their linkage
9272 name.
9273 NOTE: We need to do this even if cu->has_namespace_info != 0.
9274 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9275 if (cu->language == language_cplus
9276 && dwarf2_per_objfile->types.asection != NULL
9277 && part_die->die_parent == NULL
9278 && part_die->has_children
9279 && (part_die->tag == DW_TAG_class_type
9280 || part_die->tag == DW_TAG_structure_type
9281 || part_die->tag == DW_TAG_union_type))
9282 guess_partial_die_structure_name (part_die, cu);
9283
9284 part_die->fixup_called = 1;
72bf9492
DJ
9285}
9286
a8329558 9287/* Read an attribute value described by an attribute form. */
c906108c 9288
fe1b8b76 9289static gdb_byte *
a8329558 9290read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 9291 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 9292 struct dwarf2_cu *cu)
c906108c 9293{
e7c27a73 9294 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9295 unsigned int bytes_read;
9296 struct dwarf_block *blk;
9297
a8329558
KW
9298 attr->form = form;
9299 switch (form)
c906108c 9300 {
c906108c 9301 case DW_FORM_ref_addr:
ae411497
TT
9302 if (cu->header.version == 2)
9303 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9304 else
3e43a32a
MS
9305 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9306 &cu->header, &bytes_read);
ae411497
TT
9307 info_ptr += bytes_read;
9308 break;
9309 case DW_FORM_addr:
e7c27a73 9310 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 9311 info_ptr += bytes_read;
c906108c
SS
9312 break;
9313 case DW_FORM_block2:
7b5a2f43 9314 blk = dwarf_alloc_block (cu);
c906108c
SS
9315 blk->size = read_2_bytes (abfd, info_ptr);
9316 info_ptr += 2;
9317 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9318 info_ptr += blk->size;
9319 DW_BLOCK (attr) = blk;
9320 break;
9321 case DW_FORM_block4:
7b5a2f43 9322 blk = dwarf_alloc_block (cu);
c906108c
SS
9323 blk->size = read_4_bytes (abfd, info_ptr);
9324 info_ptr += 4;
9325 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9326 info_ptr += blk->size;
9327 DW_BLOCK (attr) = blk;
9328 break;
9329 case DW_FORM_data2:
9330 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9331 info_ptr += 2;
9332 break;
9333 case DW_FORM_data4:
9334 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9335 info_ptr += 4;
9336 break;
9337 case DW_FORM_data8:
9338 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9339 info_ptr += 8;
9340 break;
2dc7f7b3
TT
9341 case DW_FORM_sec_offset:
9342 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9343 info_ptr += bytes_read;
9344 break;
c906108c 9345 case DW_FORM_string:
9b1c24c8 9346 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 9347 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
9348 info_ptr += bytes_read;
9349 break;
4bdf3d34
JJ
9350 case DW_FORM_strp:
9351 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9352 &bytes_read);
8285870a 9353 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
9354 info_ptr += bytes_read;
9355 break;
2dc7f7b3 9356 case DW_FORM_exprloc:
c906108c 9357 case DW_FORM_block:
7b5a2f43 9358 blk = dwarf_alloc_block (cu);
c906108c
SS
9359 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9361 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9362 info_ptr += blk->size;
9363 DW_BLOCK (attr) = blk;
9364 break;
9365 case DW_FORM_block1:
7b5a2f43 9366 blk = dwarf_alloc_block (cu);
c906108c
SS
9367 blk->size = read_1_byte (abfd, info_ptr);
9368 info_ptr += 1;
9369 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9370 info_ptr += blk->size;
9371 DW_BLOCK (attr) = blk;
9372 break;
9373 case DW_FORM_data1:
9374 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9375 info_ptr += 1;
9376 break;
9377 case DW_FORM_flag:
9378 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9379 info_ptr += 1;
9380 break;
2dc7f7b3
TT
9381 case DW_FORM_flag_present:
9382 DW_UNSND (attr) = 1;
9383 break;
c906108c
SS
9384 case DW_FORM_sdata:
9385 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9386 info_ptr += bytes_read;
9387 break;
9388 case DW_FORM_udata:
9389 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9390 info_ptr += bytes_read;
9391 break;
9392 case DW_FORM_ref1:
10b3939b 9393 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
9394 info_ptr += 1;
9395 break;
9396 case DW_FORM_ref2:
10b3939b 9397 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
9398 info_ptr += 2;
9399 break;
9400 case DW_FORM_ref4:
10b3939b 9401 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
9402 info_ptr += 4;
9403 break;
613e1657 9404 case DW_FORM_ref8:
10b3939b 9405 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
9406 info_ptr += 8;
9407 break;
348e048f
DE
9408 case DW_FORM_sig8:
9409 /* Convert the signature to something we can record in DW_UNSND
9410 for later lookup.
9411 NOTE: This is NULL if the type wasn't found. */
9412 DW_SIGNATURED_TYPE (attr) =
9413 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9414 info_ptr += 8;
9415 break;
c906108c 9416 case DW_FORM_ref_udata:
10b3939b
DJ
9417 DW_ADDR (attr) = (cu->header.offset
9418 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
9419 info_ptr += bytes_read;
9420 break;
c906108c 9421 case DW_FORM_indirect:
a8329558
KW
9422 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9423 info_ptr += bytes_read;
e7c27a73 9424 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 9425 break;
c906108c 9426 default:
8a3fe4f8 9427 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
9428 dwarf_form_name (form),
9429 bfd_get_filename (abfd));
c906108c 9430 }
28e94949
JB
9431
9432 /* We have seen instances where the compiler tried to emit a byte
9433 size attribute of -1 which ended up being encoded as an unsigned
9434 0xffffffff. Although 0xffffffff is technically a valid size value,
9435 an object of this size seems pretty unlikely so we can relatively
9436 safely treat these cases as if the size attribute was invalid and
9437 treat them as zero by default. */
9438 if (attr->name == DW_AT_byte_size
9439 && form == DW_FORM_data4
9440 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
9441 {
9442 complaint
9443 (&symfile_complaints,
43bbcdc2
PH
9444 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9445 hex_string (DW_UNSND (attr)));
01c66ae6
JB
9446 DW_UNSND (attr) = 0;
9447 }
28e94949 9448
c906108c
SS
9449 return info_ptr;
9450}
9451
a8329558
KW
9452/* Read an attribute described by an abbreviated attribute. */
9453
fe1b8b76 9454static gdb_byte *
a8329558 9455read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 9456 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
9457{
9458 attr->name = abbrev->name;
e7c27a73 9459 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
9460}
9461
c906108c
SS
9462/* read dwarf information from a buffer */
9463
9464static unsigned int
fe1b8b76 9465read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 9466{
fe1b8b76 9467 return bfd_get_8 (abfd, buf);
c906108c
SS
9468}
9469
9470static int
fe1b8b76 9471read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 9472{
fe1b8b76 9473 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
9474}
9475
9476static unsigned int
fe1b8b76 9477read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9478{
fe1b8b76 9479 return bfd_get_16 (abfd, buf);
c906108c
SS
9480}
9481
9482static int
fe1b8b76 9483read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9484{
fe1b8b76 9485 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
9486}
9487
9488static unsigned int
fe1b8b76 9489read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9490{
fe1b8b76 9491 return bfd_get_32 (abfd, buf);
c906108c
SS
9492}
9493
9494static int
fe1b8b76 9495read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9496{
fe1b8b76 9497 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
9498}
9499
93311388 9500static ULONGEST
fe1b8b76 9501read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 9502{
fe1b8b76 9503 return bfd_get_64 (abfd, buf);
c906108c
SS
9504}
9505
9506static CORE_ADDR
fe1b8b76 9507read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 9508 unsigned int *bytes_read)
c906108c 9509{
e7c27a73 9510 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9511 CORE_ADDR retval = 0;
9512
107d2387 9513 if (cu_header->signed_addr_p)
c906108c 9514 {
107d2387
AC
9515 switch (cu_header->addr_size)
9516 {
9517 case 2:
fe1b8b76 9518 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
9519 break;
9520 case 4:
fe1b8b76 9521 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
9522 break;
9523 case 8:
fe1b8b76 9524 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
9525 break;
9526 default:
8e65ff28 9527 internal_error (__FILE__, __LINE__,
e2e0b3e5 9528 _("read_address: bad switch, signed [in module %s]"),
659b0389 9529 bfd_get_filename (abfd));
107d2387
AC
9530 }
9531 }
9532 else
9533 {
9534 switch (cu_header->addr_size)
9535 {
9536 case 2:
fe1b8b76 9537 retval = bfd_get_16 (abfd, buf);
107d2387
AC
9538 break;
9539 case 4:
fe1b8b76 9540 retval = bfd_get_32 (abfd, buf);
107d2387
AC
9541 break;
9542 case 8:
fe1b8b76 9543 retval = bfd_get_64 (abfd, buf);
107d2387
AC
9544 break;
9545 default:
8e65ff28 9546 internal_error (__FILE__, __LINE__,
e2e0b3e5 9547 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 9548 bfd_get_filename (abfd));
107d2387 9549 }
c906108c 9550 }
64367e0a 9551
107d2387
AC
9552 *bytes_read = cu_header->addr_size;
9553 return retval;
c906108c
SS
9554}
9555
f7ef9339 9556/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
9557 specification allows the initial length to take up either 4 bytes
9558 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9559 bytes describe the length and all offsets will be 8 bytes in length
9560 instead of 4.
9561
f7ef9339
KB
9562 An older, non-standard 64-bit format is also handled by this
9563 function. The older format in question stores the initial length
9564 as an 8-byte quantity without an escape value. Lengths greater
9565 than 2^32 aren't very common which means that the initial 4 bytes
9566 is almost always zero. Since a length value of zero doesn't make
9567 sense for the 32-bit format, this initial zero can be considered to
9568 be an escape value which indicates the presence of the older 64-bit
9569 format. As written, the code can't detect (old format) lengths
917c78fc
MK
9570 greater than 4GB. If it becomes necessary to handle lengths
9571 somewhat larger than 4GB, we could allow other small values (such
9572 as the non-sensical values of 1, 2, and 3) to also be used as
9573 escape values indicating the presence of the old format.
f7ef9339 9574
917c78fc
MK
9575 The value returned via bytes_read should be used to increment the
9576 relevant pointer after calling read_initial_length().
c764a876 9577
613e1657
KB
9578 [ Note: read_initial_length() and read_offset() are based on the
9579 document entitled "DWARF Debugging Information Format", revision
f7ef9339 9580 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
9581 from:
9582
f7ef9339 9583 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 9584
613e1657
KB
9585 This document is only a draft and is subject to change. (So beware.)
9586
f7ef9339 9587 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
9588 determined empirically by examining 64-bit ELF files produced by
9589 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
9590
9591 - Kevin, July 16, 2002
613e1657
KB
9592 ] */
9593
9594static LONGEST
c764a876 9595read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 9596{
fe1b8b76 9597 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 9598
dd373385 9599 if (length == 0xffffffff)
613e1657 9600 {
fe1b8b76 9601 length = bfd_get_64 (abfd, buf + 4);
613e1657 9602 *bytes_read = 12;
613e1657 9603 }
dd373385 9604 else if (length == 0)
f7ef9339 9605 {
dd373385 9606 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 9607 length = bfd_get_64 (abfd, buf);
f7ef9339 9608 *bytes_read = 8;
f7ef9339 9609 }
613e1657
KB
9610 else
9611 {
9612 *bytes_read = 4;
613e1657
KB
9613 }
9614
c764a876
DE
9615 return length;
9616}
dd373385 9617
c764a876
DE
9618/* Cover function for read_initial_length.
9619 Returns the length of the object at BUF, and stores the size of the
9620 initial length in *BYTES_READ and stores the size that offsets will be in
9621 *OFFSET_SIZE.
9622 If the initial length size is not equivalent to that specified in
9623 CU_HEADER then issue a complaint.
9624 This is useful when reading non-comp-unit headers. */
dd373385 9625
c764a876
DE
9626static LONGEST
9627read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9628 const struct comp_unit_head *cu_header,
9629 unsigned int *bytes_read,
9630 unsigned int *offset_size)
9631{
9632 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9633
9634 gdb_assert (cu_header->initial_length_size == 4
9635 || cu_header->initial_length_size == 8
9636 || cu_header->initial_length_size == 12);
9637
9638 if (cu_header->initial_length_size != *bytes_read)
9639 complaint (&symfile_complaints,
9640 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 9641
c764a876 9642 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 9643 return length;
613e1657
KB
9644}
9645
9646/* Read an offset from the data stream. The size of the offset is
917c78fc 9647 given by cu_header->offset_size. */
613e1657
KB
9648
9649static LONGEST
fe1b8b76 9650read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 9651 unsigned int *bytes_read)
c764a876
DE
9652{
9653 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 9654
c764a876
DE
9655 *bytes_read = cu_header->offset_size;
9656 return offset;
9657}
9658
9659/* Read an offset from the data stream. */
9660
9661static LONGEST
9662read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
9663{
9664 LONGEST retval = 0;
9665
c764a876 9666 switch (offset_size)
613e1657
KB
9667 {
9668 case 4:
fe1b8b76 9669 retval = bfd_get_32 (abfd, buf);
613e1657
KB
9670 break;
9671 case 8:
fe1b8b76 9672 retval = bfd_get_64 (abfd, buf);
613e1657
KB
9673 break;
9674 default:
8e65ff28 9675 internal_error (__FILE__, __LINE__,
c764a876 9676 _("read_offset_1: bad switch [in module %s]"),
659b0389 9677 bfd_get_filename (abfd));
613e1657
KB
9678 }
9679
917c78fc 9680 return retval;
613e1657
KB
9681}
9682
fe1b8b76
JB
9683static gdb_byte *
9684read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
9685{
9686 /* If the size of a host char is 8 bits, we can return a pointer
9687 to the buffer, otherwise we have to copy the data to a buffer
9688 allocated on the temporary obstack. */
4bdf3d34 9689 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 9690 return buf;
c906108c
SS
9691}
9692
9693static char *
9b1c24c8 9694read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
9695{
9696 /* If the size of a host char is 8 bits, we can return a pointer
9697 to the string, otherwise we have to copy the string to a buffer
9698 allocated on the temporary obstack. */
4bdf3d34 9699 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
9700 if (*buf == '\0')
9701 {
9702 *bytes_read_ptr = 1;
9703 return NULL;
9704 }
fe1b8b76
JB
9705 *bytes_read_ptr = strlen ((char *) buf) + 1;
9706 return (char *) buf;
4bdf3d34
JJ
9707}
9708
9709static char *
fe1b8b76 9710read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
9711 const struct comp_unit_head *cu_header,
9712 unsigned int *bytes_read_ptr)
9713{
c764a876 9714 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 9715
be391dca 9716 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 9717 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 9718 {
8a3fe4f8 9719 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 9720 bfd_get_filename (abfd));
4bdf3d34 9721 return NULL;
c906108c 9722 }
dce234bc 9723 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 9724 {
3e43a32a
MS
9725 error (_("DW_FORM_strp pointing outside of "
9726 ".debug_str section [in module %s]"),
9727 bfd_get_filename (abfd));
c906108c
SS
9728 return NULL;
9729 }
4bdf3d34 9730 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 9731 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 9732 return NULL;
dce234bc 9733 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
9734}
9735
ce5d95e1 9736static unsigned long
fe1b8b76 9737read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9738{
ce5d95e1
JB
9739 unsigned long result;
9740 unsigned int num_read;
c906108c
SS
9741 int i, shift;
9742 unsigned char byte;
9743
9744 result = 0;
9745 shift = 0;
9746 num_read = 0;
9747 i = 0;
9748 while (1)
9749 {
fe1b8b76 9750 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9751 buf++;
9752 num_read++;
ce5d95e1 9753 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
9754 if ((byte & 128) == 0)
9755 {
9756 break;
9757 }
9758 shift += 7;
9759 }
9760 *bytes_read_ptr = num_read;
9761 return result;
9762}
9763
ce5d95e1 9764static long
fe1b8b76 9765read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 9766{
ce5d95e1 9767 long result;
77e0b926 9768 int i, shift, num_read;
c906108c
SS
9769 unsigned char byte;
9770
9771 result = 0;
9772 shift = 0;
c906108c
SS
9773 num_read = 0;
9774 i = 0;
9775 while (1)
9776 {
fe1b8b76 9777 byte = bfd_get_8 (abfd, buf);
c906108c
SS
9778 buf++;
9779 num_read++;
ce5d95e1 9780 result |= ((long)(byte & 127) << shift);
c906108c
SS
9781 shift += 7;
9782 if ((byte & 128) == 0)
9783 {
9784 break;
9785 }
9786 }
77e0b926
DJ
9787 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9788 result |= -(((long)1) << shift);
c906108c
SS
9789 *bytes_read_ptr = num_read;
9790 return result;
9791}
9792
4bb7a0a7
DJ
9793/* Return a pointer to just past the end of an LEB128 number in BUF. */
9794
fe1b8b76
JB
9795static gdb_byte *
9796skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
9797{
9798 int byte;
9799
9800 while (1)
9801 {
fe1b8b76 9802 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
9803 buf++;
9804 if ((byte & 128) == 0)
9805 return buf;
9806 }
9807}
9808
c906108c 9809static void
e142c38c 9810set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
9811{
9812 switch (lang)
9813 {
9814 case DW_LANG_C89:
76bee0cc 9815 case DW_LANG_C99:
c906108c 9816 case DW_LANG_C:
e142c38c 9817 cu->language = language_c;
c906108c
SS
9818 break;
9819 case DW_LANG_C_plus_plus:
e142c38c 9820 cu->language = language_cplus;
c906108c 9821 break;
6aecb9c2
JB
9822 case DW_LANG_D:
9823 cu->language = language_d;
9824 break;
c906108c
SS
9825 case DW_LANG_Fortran77:
9826 case DW_LANG_Fortran90:
b21b22e0 9827 case DW_LANG_Fortran95:
e142c38c 9828 cu->language = language_fortran;
c906108c
SS
9829 break;
9830 case DW_LANG_Mips_Assembler:
e142c38c 9831 cu->language = language_asm;
c906108c 9832 break;
bebd888e 9833 case DW_LANG_Java:
e142c38c 9834 cu->language = language_java;
bebd888e 9835 break;
c906108c 9836 case DW_LANG_Ada83:
8aaf0b47 9837 case DW_LANG_Ada95:
bc5f45f8
JB
9838 cu->language = language_ada;
9839 break;
72019c9c
GM
9840 case DW_LANG_Modula2:
9841 cu->language = language_m2;
9842 break;
fe8e67fd
PM
9843 case DW_LANG_Pascal83:
9844 cu->language = language_pascal;
9845 break;
22566fbd
DJ
9846 case DW_LANG_ObjC:
9847 cu->language = language_objc;
9848 break;
c906108c
SS
9849 case DW_LANG_Cobol74:
9850 case DW_LANG_Cobol85:
c906108c 9851 default:
e142c38c 9852 cu->language = language_minimal;
c906108c
SS
9853 break;
9854 }
e142c38c 9855 cu->language_defn = language_def (cu->language);
c906108c
SS
9856}
9857
9858/* Return the named attribute or NULL if not there. */
9859
9860static struct attribute *
e142c38c 9861dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
9862{
9863 unsigned int i;
9864 struct attribute *spec = NULL;
9865
9866 for (i = 0; i < die->num_attrs; ++i)
9867 {
9868 if (die->attrs[i].name == name)
10b3939b 9869 return &die->attrs[i];
c906108c
SS
9870 if (die->attrs[i].name == DW_AT_specification
9871 || die->attrs[i].name == DW_AT_abstract_origin)
9872 spec = &die->attrs[i];
9873 }
c906108c 9874
10b3939b 9875 if (spec)
f2f0e013
DJ
9876 {
9877 die = follow_die_ref (die, spec, &cu);
9878 return dwarf2_attr (die, name, cu);
9879 }
c5aa993b 9880
c906108c
SS
9881 return NULL;
9882}
9883
348e048f
DE
9884/* Return the named attribute or NULL if not there,
9885 but do not follow DW_AT_specification, etc.
9886 This is for use in contexts where we're reading .debug_types dies.
9887 Following DW_AT_specification, DW_AT_abstract_origin will take us
9888 back up the chain, and we want to go down. */
9889
9890static struct attribute *
9891dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9892 struct dwarf2_cu *cu)
9893{
9894 unsigned int i;
9895
9896 for (i = 0; i < die->num_attrs; ++i)
9897 if (die->attrs[i].name == name)
9898 return &die->attrs[i];
9899
9900 return NULL;
9901}
9902
05cf31d1
JB
9903/* Return non-zero iff the attribute NAME is defined for the given DIE,
9904 and holds a non-zero value. This function should only be used for
2dc7f7b3 9905 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
9906
9907static int
9908dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9909{
9910 struct attribute *attr = dwarf2_attr (die, name, cu);
9911
9912 return (attr && DW_UNSND (attr));
9913}
9914
3ca72b44 9915static int
e142c38c 9916die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 9917{
05cf31d1
JB
9918 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9919 which value is non-zero. However, we have to be careful with
9920 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9921 (via dwarf2_flag_true_p) follows this attribute. So we may
9922 end up accidently finding a declaration attribute that belongs
9923 to a different DIE referenced by the specification attribute,
9924 even though the given DIE does not have a declaration attribute. */
9925 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9926 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
9927}
9928
63d06c5c 9929/* Return the die giving the specification for DIE, if there is
f2f0e013 9930 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
9931 containing the return value on output. If there is no
9932 specification, but there is an abstract origin, that is
9933 returned. */
63d06c5c
DC
9934
9935static struct die_info *
f2f0e013 9936die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 9937{
f2f0e013
DJ
9938 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9939 *spec_cu);
63d06c5c 9940
edb3359d
DJ
9941 if (spec_attr == NULL)
9942 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9943
63d06c5c
DC
9944 if (spec_attr == NULL)
9945 return NULL;
9946 else
f2f0e013 9947 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 9948}
c906108c 9949
debd256d 9950/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
9951 refers to.
9952 NOTE: This is also used as a "cleanup" function. */
9953
debd256d
JB
9954static void
9955free_line_header (struct line_header *lh)
9956{
9957 if (lh->standard_opcode_lengths)
a8bc7b56 9958 xfree (lh->standard_opcode_lengths);
debd256d
JB
9959
9960 /* Remember that all the lh->file_names[i].name pointers are
9961 pointers into debug_line_buffer, and don't need to be freed. */
9962 if (lh->file_names)
a8bc7b56 9963 xfree (lh->file_names);
debd256d
JB
9964
9965 /* Similarly for the include directory names. */
9966 if (lh->include_dirs)
a8bc7b56 9967 xfree (lh->include_dirs);
debd256d 9968
a8bc7b56 9969 xfree (lh);
debd256d
JB
9970}
9971
debd256d 9972/* Add an entry to LH's include directory table. */
ae2de4f8 9973
debd256d
JB
9974static void
9975add_include_dir (struct line_header *lh, char *include_dir)
c906108c 9976{
debd256d
JB
9977 /* Grow the array if necessary. */
9978 if (lh->include_dirs_size == 0)
c5aa993b 9979 {
debd256d
JB
9980 lh->include_dirs_size = 1; /* for testing */
9981 lh->include_dirs = xmalloc (lh->include_dirs_size
9982 * sizeof (*lh->include_dirs));
9983 }
9984 else if (lh->num_include_dirs >= lh->include_dirs_size)
9985 {
9986 lh->include_dirs_size *= 2;
9987 lh->include_dirs = xrealloc (lh->include_dirs,
9988 (lh->include_dirs_size
9989 * sizeof (*lh->include_dirs)));
c5aa993b 9990 }
c906108c 9991
debd256d
JB
9992 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9993}
6e70227d 9994
debd256d 9995/* Add an entry to LH's file name table. */
ae2de4f8 9996
debd256d
JB
9997static void
9998add_file_name (struct line_header *lh,
9999 char *name,
10000 unsigned int dir_index,
10001 unsigned int mod_time,
10002 unsigned int length)
10003{
10004 struct file_entry *fe;
10005
10006 /* Grow the array if necessary. */
10007 if (lh->file_names_size == 0)
10008 {
10009 lh->file_names_size = 1; /* for testing */
10010 lh->file_names = xmalloc (lh->file_names_size
10011 * sizeof (*lh->file_names));
10012 }
10013 else if (lh->num_file_names >= lh->file_names_size)
10014 {
10015 lh->file_names_size *= 2;
10016 lh->file_names = xrealloc (lh->file_names,
10017 (lh->file_names_size
10018 * sizeof (*lh->file_names)));
10019 }
10020
10021 fe = &lh->file_names[lh->num_file_names++];
10022 fe->name = name;
10023 fe->dir_index = dir_index;
10024 fe->mod_time = mod_time;
10025 fe->length = length;
aaa75496 10026 fe->included_p = 0;
cb1df416 10027 fe->symtab = NULL;
debd256d 10028}
6e70227d 10029
debd256d 10030/* Read the statement program header starting at OFFSET in
6502dd73
DJ
10031 .debug_line, according to the endianness of ABFD. Return a pointer
10032 to a struct line_header, allocated using xmalloc.
debd256d
JB
10033
10034 NOTE: the strings in the include directory and file name tables of
10035 the returned object point into debug_line_buffer, and must not be
10036 freed. */
ae2de4f8 10037
debd256d
JB
10038static struct line_header *
10039dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 10040 struct dwarf2_cu *cu)
debd256d
JB
10041{
10042 struct cleanup *back_to;
10043 struct line_header *lh;
fe1b8b76 10044 gdb_byte *line_ptr;
c764a876 10045 unsigned int bytes_read, offset_size;
debd256d
JB
10046 int i;
10047 char *cur_dir, *cur_file;
10048
be391dca 10049 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 10050 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 10051 {
e2e0b3e5 10052 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
10053 return 0;
10054 }
10055
a738430d
MK
10056 /* Make sure that at least there's room for the total_length field.
10057 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 10058 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 10059 {
4d3c2250 10060 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10061 return 0;
10062 }
10063
10064 lh = xmalloc (sizeof (*lh));
10065 memset (lh, 0, sizeof (*lh));
10066 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10067 (void *) lh);
10068
dce234bc 10069 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 10070
a738430d 10071 /* Read in the header. */
6e70227d 10072 lh->total_length =
c764a876
DE
10073 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10074 &bytes_read, &offset_size);
debd256d 10075 line_ptr += bytes_read;
dce234bc
PP
10076 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10077 + dwarf2_per_objfile->line.size))
debd256d 10078 {
4d3c2250 10079 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10080 return 0;
10081 }
10082 lh->statement_program_end = line_ptr + lh->total_length;
10083 lh->version = read_2_bytes (abfd, line_ptr);
10084 line_ptr += 2;
c764a876
DE
10085 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10086 line_ptr += offset_size;
debd256d
JB
10087 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10088 line_ptr += 1;
2dc7f7b3
TT
10089 if (lh->version >= 4)
10090 {
10091 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10092 line_ptr += 1;
10093 }
10094 else
10095 lh->maximum_ops_per_instruction = 1;
10096
10097 if (lh->maximum_ops_per_instruction == 0)
10098 {
10099 lh->maximum_ops_per_instruction = 1;
10100 complaint (&symfile_complaints,
3e43a32a
MS
10101 _("invalid maximum_ops_per_instruction "
10102 "in `.debug_line' section"));
2dc7f7b3
TT
10103 }
10104
debd256d
JB
10105 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10106 line_ptr += 1;
10107 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10108 line_ptr += 1;
10109 lh->line_range = read_1_byte (abfd, line_ptr);
10110 line_ptr += 1;
10111 lh->opcode_base = read_1_byte (abfd, line_ptr);
10112 line_ptr += 1;
10113 lh->standard_opcode_lengths
fe1b8b76 10114 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
10115
10116 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10117 for (i = 1; i < lh->opcode_base; ++i)
10118 {
10119 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10120 line_ptr += 1;
10121 }
10122
a738430d 10123 /* Read directory table. */
9b1c24c8 10124 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10125 {
10126 line_ptr += bytes_read;
10127 add_include_dir (lh, cur_dir);
10128 }
10129 line_ptr += bytes_read;
10130
a738430d 10131 /* Read file name table. */
9b1c24c8 10132 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10133 {
10134 unsigned int dir_index, mod_time, length;
10135
10136 line_ptr += bytes_read;
10137 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10138 line_ptr += bytes_read;
10139 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10140 line_ptr += bytes_read;
10141 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10142 line_ptr += bytes_read;
10143
10144 add_file_name (lh, cur_file, dir_index, mod_time, length);
10145 }
10146 line_ptr += bytes_read;
6e70227d 10147 lh->statement_program_start = line_ptr;
debd256d 10148
dce234bc
PP
10149 if (line_ptr > (dwarf2_per_objfile->line.buffer
10150 + dwarf2_per_objfile->line.size))
4d3c2250 10151 complaint (&symfile_complaints,
3e43a32a
MS
10152 _("line number info header doesn't "
10153 "fit in `.debug_line' section"));
debd256d
JB
10154
10155 discard_cleanups (back_to);
10156 return lh;
10157}
c906108c 10158
5fb290d7
DJ
10159/* This function exists to work around a bug in certain compilers
10160 (particularly GCC 2.95), in which the first line number marker of a
10161 function does not show up until after the prologue, right before
10162 the second line number marker. This function shifts ADDRESS down
10163 to the beginning of the function if necessary, and is called on
10164 addresses passed to record_line. */
10165
10166static CORE_ADDR
e142c38c 10167check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
10168{
10169 struct function_range *fn;
10170
10171 /* Find the function_range containing address. */
e142c38c 10172 if (!cu->first_fn)
5fb290d7
DJ
10173 return address;
10174
e142c38c
DJ
10175 if (!cu->cached_fn)
10176 cu->cached_fn = cu->first_fn;
5fb290d7 10177
e142c38c 10178 fn = cu->cached_fn;
5fb290d7
DJ
10179 while (fn)
10180 if (fn->lowpc <= address && fn->highpc > address)
10181 goto found;
10182 else
10183 fn = fn->next;
10184
e142c38c
DJ
10185 fn = cu->first_fn;
10186 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
10187 if (fn->lowpc <= address && fn->highpc > address)
10188 goto found;
10189 else
10190 fn = fn->next;
10191
10192 return address;
10193
10194 found:
10195 if (fn->seen_line)
10196 return address;
10197 if (address != fn->lowpc)
4d3c2250 10198 complaint (&symfile_complaints,
e2e0b3e5 10199 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 10200 (unsigned long) address, fn->name);
5fb290d7
DJ
10201 fn->seen_line = 1;
10202 return fn->lowpc;
10203}
10204
c6da4cef
DE
10205/* Subroutine of dwarf_decode_lines to simplify it.
10206 Return the file name of the psymtab for included file FILE_INDEX
10207 in line header LH of PST.
10208 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10209 If space for the result is malloc'd, it will be freed by a cleanup.
10210 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10211
10212static char *
10213psymtab_include_file_name (const struct line_header *lh, int file_index,
10214 const struct partial_symtab *pst,
10215 const char *comp_dir)
10216{
10217 const struct file_entry fe = lh->file_names [file_index];
10218 char *include_name = fe.name;
10219 char *include_name_to_compare = include_name;
10220 char *dir_name = NULL;
72b9f47f
TT
10221 const char *pst_filename;
10222 char *copied_name = NULL;
c6da4cef
DE
10223 int file_is_pst;
10224
10225 if (fe.dir_index)
10226 dir_name = lh->include_dirs[fe.dir_index - 1];
10227
10228 if (!IS_ABSOLUTE_PATH (include_name)
10229 && (dir_name != NULL || comp_dir != NULL))
10230 {
10231 /* Avoid creating a duplicate psymtab for PST.
10232 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10233 Before we do the comparison, however, we need to account
10234 for DIR_NAME and COMP_DIR.
10235 First prepend dir_name (if non-NULL). If we still don't
10236 have an absolute path prepend comp_dir (if non-NULL).
10237 However, the directory we record in the include-file's
10238 psymtab does not contain COMP_DIR (to match the
10239 corresponding symtab(s)).
10240
10241 Example:
10242
10243 bash$ cd /tmp
10244 bash$ gcc -g ./hello.c
10245 include_name = "hello.c"
10246 dir_name = "."
10247 DW_AT_comp_dir = comp_dir = "/tmp"
10248 DW_AT_name = "./hello.c" */
10249
10250 if (dir_name != NULL)
10251 {
10252 include_name = concat (dir_name, SLASH_STRING,
10253 include_name, (char *)NULL);
10254 include_name_to_compare = include_name;
10255 make_cleanup (xfree, include_name);
10256 }
10257 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10258 {
10259 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10260 include_name, (char *)NULL);
10261 }
10262 }
10263
10264 pst_filename = pst->filename;
10265 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10266 {
72b9f47f
TT
10267 copied_name = concat (pst->dirname, SLASH_STRING,
10268 pst_filename, (char *)NULL);
10269 pst_filename = copied_name;
c6da4cef
DE
10270 }
10271
1e3fad37 10272 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
10273
10274 if (include_name_to_compare != include_name)
10275 xfree (include_name_to_compare);
72b9f47f
TT
10276 if (copied_name != NULL)
10277 xfree (copied_name);
c6da4cef
DE
10278
10279 if (file_is_pst)
10280 return NULL;
10281 return include_name;
10282}
10283
aaa75496
JB
10284/* Decode the Line Number Program (LNP) for the given line_header
10285 structure and CU. The actual information extracted and the type
10286 of structures created from the LNP depends on the value of PST.
10287
10288 1. If PST is NULL, then this procedure uses the data from the program
10289 to create all necessary symbol tables, and their linetables.
6e70227d 10290
aaa75496
JB
10291 2. If PST is not NULL, this procedure reads the program to determine
10292 the list of files included by the unit represented by PST, and
c6da4cef
DE
10293 builds all the associated partial symbol tables.
10294
10295 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10296 It is used for relative paths in the line table.
10297 NOTE: When processing partial symtabs (pst != NULL),
10298 comp_dir == pst->dirname.
10299
10300 NOTE: It is important that psymtabs have the same file name (via strcmp)
10301 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10302 symtab we don't use it in the name of the psymtabs we create.
10303 E.g. expand_line_sal requires this when finding psymtabs to expand.
10304 A good testcase for this is mb-inline.exp. */
debd256d 10305
c906108c 10306static void
72b9f47f 10307dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
aaa75496 10308 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 10309{
a8c50c1f 10310 gdb_byte *line_ptr, *extended_end;
fe1b8b76 10311 gdb_byte *line_end;
a8c50c1f 10312 unsigned int bytes_read, extended_len;
c906108c 10313 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
10314 CORE_ADDR baseaddr;
10315 struct objfile *objfile = cu->objfile;
fbf65064 10316 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 10317 const int decode_for_pst_p = (pst != NULL);
cb1df416 10318 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
10319
10320 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10321
debd256d
JB
10322 line_ptr = lh->statement_program_start;
10323 line_end = lh->statement_program_end;
c906108c
SS
10324
10325 /* Read the statement sequences until there's nothing left. */
10326 while (line_ptr < line_end)
10327 {
10328 /* state machine registers */
10329 CORE_ADDR address = 0;
10330 unsigned int file = 1;
10331 unsigned int line = 1;
10332 unsigned int column = 0;
debd256d 10333 int is_stmt = lh->default_is_stmt;
c906108c
SS
10334 int basic_block = 0;
10335 int end_sequence = 0;
fbf65064 10336 CORE_ADDR addr;
2dc7f7b3 10337 unsigned char op_index = 0;
c906108c 10338
aaa75496 10339 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 10340 {
aaa75496 10341 /* Start a subfile for the current file of the state machine. */
debd256d
JB
10342 /* lh->include_dirs and lh->file_names are 0-based, but the
10343 directory and file name numbers in the statement program
10344 are 1-based. */
10345 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 10346 char *dir = NULL;
a738430d 10347
debd256d
JB
10348 if (fe->dir_index)
10349 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
10350
10351 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
10352 }
10353
a738430d 10354 /* Decode the table. */
c5aa993b 10355 while (!end_sequence)
c906108c
SS
10356 {
10357 op_code = read_1_byte (abfd, line_ptr);
10358 line_ptr += 1;
59205f5a
JB
10359 if (line_ptr > line_end)
10360 {
10361 dwarf2_debug_line_missing_end_sequence_complaint ();
10362 break;
10363 }
9aa1fe7e 10364
debd256d 10365 if (op_code >= lh->opcode_base)
6e70227d 10366 {
a738430d 10367 /* Special operand. */
debd256d 10368 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
10369 address += (((op_index + (adj_opcode / lh->line_range))
10370 / lh->maximum_ops_per_instruction)
10371 * lh->minimum_instruction_length);
10372 op_index = ((op_index + (adj_opcode / lh->line_range))
10373 % lh->maximum_ops_per_instruction);
debd256d 10374 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 10375 if (lh->num_file_names < file || file == 0)
25e43795 10376 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
10377 /* For now we ignore lines not starting on an
10378 instruction boundary. */
10379 else if (op_index == 0)
25e43795
DJ
10380 {
10381 lh->file_names[file - 1].included_p = 1;
ca5f395d 10382 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10383 {
10384 if (last_subfile != current_subfile)
10385 {
10386 addr = gdbarch_addr_bits_remove (gdbarch, address);
10387 if (last_subfile)
10388 record_line (last_subfile, 0, addr);
10389 last_subfile = current_subfile;
10390 }
25e43795 10391 /* Append row to matrix using current values. */
fbf65064
UW
10392 addr = check_cu_functions (address, cu);
10393 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10394 record_line (current_subfile, line, addr);
366da635 10395 }
25e43795 10396 }
ca5f395d 10397 basic_block = 0;
9aa1fe7e
GK
10398 }
10399 else switch (op_code)
c906108c
SS
10400 {
10401 case DW_LNS_extended_op:
3e43a32a
MS
10402 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10403 &bytes_read);
473b7be6 10404 line_ptr += bytes_read;
a8c50c1f 10405 extended_end = line_ptr + extended_len;
c906108c
SS
10406 extended_op = read_1_byte (abfd, line_ptr);
10407 line_ptr += 1;
10408 switch (extended_op)
10409 {
10410 case DW_LNE_end_sequence:
10411 end_sequence = 1;
c906108c
SS
10412 break;
10413 case DW_LNE_set_address:
e7c27a73 10414 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 10415 op_index = 0;
107d2387
AC
10416 line_ptr += bytes_read;
10417 address += baseaddr;
c906108c
SS
10418 break;
10419 case DW_LNE_define_file:
debd256d
JB
10420 {
10421 char *cur_file;
10422 unsigned int dir_index, mod_time, length;
6e70227d 10423
3e43a32a
MS
10424 cur_file = read_direct_string (abfd, line_ptr,
10425 &bytes_read);
debd256d
JB
10426 line_ptr += bytes_read;
10427 dir_index =
10428 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10429 line_ptr += bytes_read;
10430 mod_time =
10431 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10432 line_ptr += bytes_read;
10433 length =
10434 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10435 line_ptr += bytes_read;
10436 add_file_name (lh, cur_file, dir_index, mod_time, length);
10437 }
c906108c 10438 break;
d0c6ba3d
CC
10439 case DW_LNE_set_discriminator:
10440 /* The discriminator is not interesting to the debugger;
10441 just ignore it. */
10442 line_ptr = extended_end;
10443 break;
c906108c 10444 default:
4d3c2250 10445 complaint (&symfile_complaints,
e2e0b3e5 10446 _("mangled .debug_line section"));
debd256d 10447 return;
c906108c 10448 }
a8c50c1f
DJ
10449 /* Make sure that we parsed the extended op correctly. If e.g.
10450 we expected a different address size than the producer used,
10451 we may have read the wrong number of bytes. */
10452 if (line_ptr != extended_end)
10453 {
10454 complaint (&symfile_complaints,
10455 _("mangled .debug_line section"));
10456 return;
10457 }
c906108c
SS
10458 break;
10459 case DW_LNS_copy:
59205f5a 10460 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10461 dwarf2_debug_line_missing_file_complaint ();
10462 else
366da635 10463 {
25e43795 10464 lh->file_names[file - 1].included_p = 1;
ca5f395d 10465 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10466 {
10467 if (last_subfile != current_subfile)
10468 {
10469 addr = gdbarch_addr_bits_remove (gdbarch, address);
10470 if (last_subfile)
10471 record_line (last_subfile, 0, addr);
10472 last_subfile = current_subfile;
10473 }
10474 addr = check_cu_functions (address, cu);
10475 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10476 record_line (current_subfile, line, addr);
10477 }
366da635 10478 }
c906108c
SS
10479 basic_block = 0;
10480 break;
10481 case DW_LNS_advance_pc:
2dc7f7b3
TT
10482 {
10483 CORE_ADDR adjust
10484 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10485
10486 address += (((op_index + adjust)
10487 / lh->maximum_ops_per_instruction)
10488 * lh->minimum_instruction_length);
10489 op_index = ((op_index + adjust)
10490 % lh->maximum_ops_per_instruction);
10491 line_ptr += bytes_read;
10492 }
c906108c
SS
10493 break;
10494 case DW_LNS_advance_line:
10495 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10496 line_ptr += bytes_read;
10497 break;
10498 case DW_LNS_set_file:
debd256d 10499 {
a738430d
MK
10500 /* The arrays lh->include_dirs and lh->file_names are
10501 0-based, but the directory and file name numbers in
10502 the statement program are 1-based. */
debd256d 10503 struct file_entry *fe;
4f1520fb 10504 char *dir = NULL;
a738430d 10505
debd256d
JB
10506 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10507 line_ptr += bytes_read;
59205f5a 10508 if (lh->num_file_names < file || file == 0)
25e43795
DJ
10509 dwarf2_debug_line_missing_file_complaint ();
10510 else
10511 {
10512 fe = &lh->file_names[file - 1];
10513 if (fe->dir_index)
10514 dir = lh->include_dirs[fe->dir_index - 1];
10515 if (!decode_for_pst_p)
10516 {
10517 last_subfile = current_subfile;
10518 dwarf2_start_subfile (fe->name, dir, comp_dir);
10519 }
10520 }
debd256d 10521 }
c906108c
SS
10522 break;
10523 case DW_LNS_set_column:
10524 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10525 line_ptr += bytes_read;
10526 break;
10527 case DW_LNS_negate_stmt:
10528 is_stmt = (!is_stmt);
10529 break;
10530 case DW_LNS_set_basic_block:
10531 basic_block = 1;
10532 break;
c2c6d25f
JM
10533 /* Add to the address register of the state machine the
10534 address increment value corresponding to special opcode
a738430d
MK
10535 255. I.e., this value is scaled by the minimum
10536 instruction length since special opcode 255 would have
10537 scaled the the increment. */
c906108c 10538 case DW_LNS_const_add_pc:
2dc7f7b3
TT
10539 {
10540 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10541
10542 address += (((op_index + adjust)
10543 / lh->maximum_ops_per_instruction)
10544 * lh->minimum_instruction_length);
10545 op_index = ((op_index + adjust)
10546 % lh->maximum_ops_per_instruction);
10547 }
c906108c
SS
10548 break;
10549 case DW_LNS_fixed_advance_pc:
10550 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 10551 op_index = 0;
c906108c
SS
10552 line_ptr += 2;
10553 break;
9aa1fe7e 10554 default:
a738430d
MK
10555 {
10556 /* Unknown standard opcode, ignore it. */
9aa1fe7e 10557 int i;
a738430d 10558
debd256d 10559 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
10560 {
10561 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10562 line_ptr += bytes_read;
10563 }
10564 }
c906108c
SS
10565 }
10566 }
59205f5a
JB
10567 if (lh->num_file_names < file || file == 0)
10568 dwarf2_debug_line_missing_file_complaint ();
10569 else
10570 {
10571 lh->file_names[file - 1].included_p = 1;
10572 if (!decode_for_pst_p)
fbf65064
UW
10573 {
10574 addr = gdbarch_addr_bits_remove (gdbarch, address);
10575 record_line (current_subfile, 0, addr);
10576 }
59205f5a 10577 }
c906108c 10578 }
aaa75496
JB
10579
10580 if (decode_for_pst_p)
10581 {
10582 int file_index;
10583
10584 /* Now that we're done scanning the Line Header Program, we can
10585 create the psymtab of each included file. */
10586 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10587 if (lh->file_names[file_index].included_p == 1)
10588 {
c6da4cef
DE
10589 char *include_name =
10590 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10591 if (include_name != NULL)
aaa75496
JB
10592 dwarf2_create_include_psymtab (include_name, pst, objfile);
10593 }
10594 }
cb1df416
DJ
10595 else
10596 {
10597 /* Make sure a symtab is created for every file, even files
10598 which contain only variables (i.e. no code with associated
10599 line numbers). */
10600
10601 int i;
10602 struct file_entry *fe;
10603
10604 for (i = 0; i < lh->num_file_names; i++)
10605 {
10606 char *dir = NULL;
9a619af0 10607
cb1df416
DJ
10608 fe = &lh->file_names[i];
10609 if (fe->dir_index)
10610 dir = lh->include_dirs[fe->dir_index - 1];
10611 dwarf2_start_subfile (fe->name, dir, comp_dir);
10612
10613 /* Skip the main file; we don't need it, and it must be
10614 allocated last, so that it will show up before the
10615 non-primary symtabs in the objfile's symtab list. */
10616 if (current_subfile == first_subfile)
10617 continue;
10618
10619 if (current_subfile->symtab == NULL)
10620 current_subfile->symtab = allocate_symtab (current_subfile->name,
10621 cu->objfile);
10622 fe->symtab = current_subfile->symtab;
10623 }
10624 }
c906108c
SS
10625}
10626
10627/* Start a subfile for DWARF. FILENAME is the name of the file and
10628 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
10629 or NULL if not known. COMP_DIR is the compilation directory for the
10630 linetable's compilation unit or NULL if not known.
c906108c
SS
10631 This routine tries to keep line numbers from identical absolute and
10632 relative file names in a common subfile.
10633
10634 Using the `list' example from the GDB testsuite, which resides in
10635 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10636 of /srcdir/list0.c yields the following debugging information for list0.c:
10637
c5aa993b
JM
10638 DW_AT_name: /srcdir/list0.c
10639 DW_AT_comp_dir: /compdir
357e46e7 10640 files.files[0].name: list0.h
c5aa993b 10641 files.files[0].dir: /srcdir
357e46e7 10642 files.files[1].name: list0.c
c5aa993b 10643 files.files[1].dir: /srcdir
c906108c
SS
10644
10645 The line number information for list0.c has to end up in a single
4f1520fb
FR
10646 subfile, so that `break /srcdir/list0.c:1' works as expected.
10647 start_subfile will ensure that this happens provided that we pass the
10648 concatenation of files.files[1].dir and files.files[1].name as the
10649 subfile's name. */
c906108c
SS
10650
10651static void
3e43a32a
MS
10652dwarf2_start_subfile (char *filename, const char *dirname,
10653 const char *comp_dir)
c906108c 10654{
4f1520fb
FR
10655 char *fullname;
10656
10657 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10658 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10659 second argument to start_subfile. To be consistent, we do the
10660 same here. In order not to lose the line information directory,
10661 we concatenate it to the filename when it makes sense.
10662 Note that the Dwarf3 standard says (speaking of filenames in line
10663 information): ``The directory index is ignored for file names
10664 that represent full path names''. Thus ignoring dirname in the
10665 `else' branch below isn't an issue. */
c906108c 10666
d5166ae1 10667 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
10668 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10669 else
10670 fullname = filename;
c906108c 10671
4f1520fb
FR
10672 start_subfile (fullname, comp_dir);
10673
10674 if (fullname != filename)
10675 xfree (fullname);
c906108c
SS
10676}
10677
4c2df51b
DJ
10678static void
10679var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 10680 struct dwarf2_cu *cu)
4c2df51b 10681{
e7c27a73
DJ
10682 struct objfile *objfile = cu->objfile;
10683 struct comp_unit_head *cu_header = &cu->header;
10684
4c2df51b
DJ
10685 /* NOTE drow/2003-01-30: There used to be a comment and some special
10686 code here to turn a symbol with DW_AT_external and a
10687 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10688 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10689 with some versions of binutils) where shared libraries could have
10690 relocations against symbols in their debug information - the
10691 minimal symbol would have the right address, but the debug info
10692 would not. It's no longer necessary, because we will explicitly
10693 apply relocations when we read in the debug information now. */
10694
10695 /* A DW_AT_location attribute with no contents indicates that a
10696 variable has been optimized away. */
10697 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10698 {
10699 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10700 return;
10701 }
10702
10703 /* Handle one degenerate form of location expression specially, to
10704 preserve GDB's previous behavior when section offsets are
10705 specified. If this is just a DW_OP_addr then mark this symbol
10706 as LOC_STATIC. */
10707
10708 if (attr_form_is_block (attr)
10709 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10710 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10711 {
891d2f0b 10712 unsigned int dummy;
4c2df51b
DJ
10713
10714 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 10715 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 10716 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
10717 fixup_symbol_section (sym, objfile);
10718 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10719 SYMBOL_SECTION (sym));
4c2df51b
DJ
10720 return;
10721 }
10722
10723 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10724 expression evaluator, and use LOC_COMPUTED only when necessary
10725 (i.e. when the value of a register or memory location is
10726 referenced, or a thread-local block, etc.). Then again, it might
10727 not be worthwhile. I'm assuming that it isn't unless performance
10728 or memory numbers show me otherwise. */
10729
e7c27a73 10730 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
10731 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10732}
10733
c906108c
SS
10734/* Given a pointer to a DWARF information entry, figure out if we need
10735 to make a symbol table entry for it, and if so, create a new entry
10736 and return a pointer to it.
10737 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
10738 used the passed type.
10739 If SPACE is not NULL, use it to hold the new symbol. If it is
10740 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
10741
10742static struct symbol *
34eaf542
TT
10743new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10744 struct symbol *space)
c906108c 10745{
e7c27a73 10746 struct objfile *objfile = cu->objfile;
c906108c
SS
10747 struct symbol *sym = NULL;
10748 char *name;
10749 struct attribute *attr = NULL;
10750 struct attribute *attr2 = NULL;
e142c38c 10751 CORE_ADDR baseaddr;
e37fd15a
SW
10752 struct pending **list_to_add = NULL;
10753
edb3359d 10754 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
10755
10756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10757
94af9270 10758 name = dwarf2_name (die, cu);
c906108c
SS
10759 if (name)
10760 {
94af9270 10761 const char *linkagename;
34eaf542 10762 int suppress_add = 0;
94af9270 10763
34eaf542
TT
10764 if (space)
10765 sym = space;
10766 else
10767 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 10768 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
10769
10770 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 10771 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
10772 linkagename = dwarf2_physname (name, die, cu);
10773 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 10774
f55ee35c
JK
10775 /* Fortran does not have mangling standard and the mangling does differ
10776 between gfortran, iFort etc. */
10777 if (cu->language == language_fortran
b250c185 10778 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
10779 symbol_set_demangled_name (&(sym->ginfo),
10780 (char *) dwarf2_full_name (name, die, cu),
10781 NULL);
f55ee35c 10782
c906108c 10783 /* Default assumptions.
c5aa993b 10784 Use the passed type or decode it from the die. */
176620f1 10785 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 10786 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
10787 if (type != NULL)
10788 SYMBOL_TYPE (sym) = type;
10789 else
e7c27a73 10790 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
10791 attr = dwarf2_attr (die,
10792 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10793 cu);
c906108c
SS
10794 if (attr)
10795 {
10796 SYMBOL_LINE (sym) = DW_UNSND (attr);
10797 }
cb1df416 10798
edb3359d
DJ
10799 attr = dwarf2_attr (die,
10800 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10801 cu);
cb1df416
DJ
10802 if (attr)
10803 {
10804 int file_index = DW_UNSND (attr);
9a619af0 10805
cb1df416
DJ
10806 if (cu->line_header == NULL
10807 || file_index > cu->line_header->num_file_names)
10808 complaint (&symfile_complaints,
10809 _("file index out of range"));
1c3d648d 10810 else if (file_index > 0)
cb1df416
DJ
10811 {
10812 struct file_entry *fe;
9a619af0 10813
cb1df416
DJ
10814 fe = &cu->line_header->file_names[file_index - 1];
10815 SYMBOL_SYMTAB (sym) = fe->symtab;
10816 }
10817 }
10818
c906108c
SS
10819 switch (die->tag)
10820 {
10821 case DW_TAG_label:
e142c38c 10822 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
10823 if (attr)
10824 {
10825 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10826 }
0f5238ed
TT
10827 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10828 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 10829 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 10830 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
10831 break;
10832 case DW_TAG_subprogram:
10833 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10834 finish_block. */
10835 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 10836 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
10837 if ((attr2 && (DW_UNSND (attr2) != 0))
10838 || cu->language == language_ada)
c906108c 10839 {
2cfa0c8d
JB
10840 /* Subprograms marked external are stored as a global symbol.
10841 Ada subprograms, whether marked external or not, are always
10842 stored as a global symbol, because we want to be able to
10843 access them globally. For instance, we want to be able
10844 to break on a nested subprogram without having to
10845 specify the context. */
e37fd15a 10846 list_to_add = &global_symbols;
c906108c
SS
10847 }
10848 else
10849 {
e37fd15a 10850 list_to_add = cu->list_in_scope;
c906108c
SS
10851 }
10852 break;
edb3359d
DJ
10853 case DW_TAG_inlined_subroutine:
10854 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10855 finish_block. */
10856 SYMBOL_CLASS (sym) = LOC_BLOCK;
10857 SYMBOL_INLINED (sym) = 1;
10858 /* Do not add the symbol to any lists. It will be found via
10859 BLOCK_FUNCTION from the blockvector. */
10860 break;
34eaf542
TT
10861 case DW_TAG_template_value_param:
10862 suppress_add = 1;
10863 /* Fall through. */
72929c62 10864 case DW_TAG_constant:
c906108c 10865 case DW_TAG_variable:
254e6b9e 10866 case DW_TAG_member:
c906108c
SS
10867 /* Compilation with minimal debug info may result in variables
10868 with missing type entries. Change the misleading `void' type
10869 to something sensible. */
10870 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 10871 SYMBOL_TYPE (sym)
46bf5051 10872 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 10873
e142c38c 10874 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
10875 /* In the case of DW_TAG_member, we should only be called for
10876 static const members. */
10877 if (die->tag == DW_TAG_member)
10878 {
3863f96c
DE
10879 /* dwarf2_add_field uses die_is_declaration,
10880 so we do the same. */
254e6b9e
DE
10881 gdb_assert (die_is_declaration (die, cu));
10882 gdb_assert (attr);
10883 }
c906108c
SS
10884 if (attr)
10885 {
e7c27a73 10886 dwarf2_const_value (attr, sym, cu);
e142c38c 10887 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 10888 if (!suppress_add)
34eaf542
TT
10889 {
10890 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 10891 list_to_add = &global_symbols;
34eaf542 10892 else
e37fd15a 10893 list_to_add = cu->list_in_scope;
34eaf542 10894 }
c906108c
SS
10895 break;
10896 }
e142c38c 10897 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
10898 if (attr)
10899 {
e7c27a73 10900 var_decode_location (attr, sym, cu);
e142c38c 10901 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
10902 if (SYMBOL_CLASS (sym) == LOC_STATIC
10903 && SYMBOL_VALUE_ADDRESS (sym) == 0
10904 && !dwarf2_per_objfile->has_section_at_zero)
10905 {
10906 /* When a static variable is eliminated by the linker,
10907 the corresponding debug information is not stripped
10908 out, but the variable address is set to null;
10909 do not add such variables into symbol table. */
10910 }
10911 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 10912 {
f55ee35c
JK
10913 /* Workaround gfortran PR debug/40040 - it uses
10914 DW_AT_location for variables in -fPIC libraries which may
10915 get overriden by other libraries/executable and get
10916 a different address. Resolve it by the minimal symbol
10917 which may come from inferior's executable using copy
10918 relocation. Make this workaround only for gfortran as for
10919 other compilers GDB cannot guess the minimal symbol
10920 Fortran mangling kind. */
10921 if (cu->language == language_fortran && die->parent
10922 && die->parent->tag == DW_TAG_module
10923 && cu->producer
10924 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10925 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10926
1c809c68
TT
10927 /* A variable with DW_AT_external is never static,
10928 but it may be block-scoped. */
10929 list_to_add = (cu->list_in_scope == &file_symbols
10930 ? &global_symbols : cu->list_in_scope);
1c809c68 10931 }
c906108c 10932 else
e37fd15a 10933 list_to_add = cu->list_in_scope;
c906108c
SS
10934 }
10935 else
10936 {
10937 /* We do not know the address of this symbol.
c5aa993b
JM
10938 If it is an external symbol and we have type information
10939 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10940 The address of the variable will then be determined from
10941 the minimal symbol table whenever the variable is
10942 referenced. */
e142c38c 10943 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 10944 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 10945 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 10946 {
0fe7935b
DJ
10947 /* A variable with DW_AT_external is never static, but it
10948 may be block-scoped. */
10949 list_to_add = (cu->list_in_scope == &file_symbols
10950 ? &global_symbols : cu->list_in_scope);
10951
c906108c 10952 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 10953 }
442ddf59
JK
10954 else if (!die_is_declaration (die, cu))
10955 {
10956 /* Use the default LOC_OPTIMIZED_OUT class. */
10957 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
10958 if (!suppress_add)
10959 list_to_add = cu->list_in_scope;
442ddf59 10960 }
c906108c
SS
10961 }
10962 break;
10963 case DW_TAG_formal_parameter:
edb3359d
DJ
10964 /* If we are inside a function, mark this as an argument. If
10965 not, we might be looking at an argument to an inlined function
10966 when we do not have enough information to show inlined frames;
10967 pretend it's a local variable in that case so that the user can
10968 still see it. */
10969 if (context_stack_depth > 0
10970 && context_stack[context_stack_depth - 1].name != NULL)
10971 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 10972 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
10973 if (attr)
10974 {
e7c27a73 10975 var_decode_location (attr, sym, cu);
c906108c 10976 }
e142c38c 10977 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
10978 if (attr)
10979 {
e7c27a73 10980 dwarf2_const_value (attr, sym, cu);
c906108c 10981 }
f346a30d
PM
10982 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10983 if (attr && DW_UNSND (attr))
10984 {
10985 struct type *ref_type;
10986
10987 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10988 SYMBOL_TYPE (sym) = ref_type;
10989 }
10990
e37fd15a 10991 list_to_add = cu->list_in_scope;
c906108c
SS
10992 break;
10993 case DW_TAG_unspecified_parameters:
10994 /* From varargs functions; gdb doesn't seem to have any
10995 interest in this information, so just ignore it for now.
10996 (FIXME?) */
10997 break;
34eaf542
TT
10998 case DW_TAG_template_type_param:
10999 suppress_add = 1;
11000 /* Fall through. */
c906108c 11001 case DW_TAG_class_type:
680b30c7 11002 case DW_TAG_interface_type:
c906108c
SS
11003 case DW_TAG_structure_type:
11004 case DW_TAG_union_type:
72019c9c 11005 case DW_TAG_set_type:
c906108c
SS
11006 case DW_TAG_enumeration_type:
11007 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11008 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 11009
63d06c5c 11010 {
987504bb 11011 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
11012 really ever be static objects: otherwise, if you try
11013 to, say, break of a class's method and you're in a file
11014 which doesn't mention that class, it won't work unless
11015 the check for all static symbols in lookup_symbol_aux
11016 saves you. See the OtherFileClass tests in
11017 gdb.c++/namespace.exp. */
11018
e37fd15a 11019 if (!suppress_add)
34eaf542 11020 {
34eaf542
TT
11021 list_to_add = (cu->list_in_scope == &file_symbols
11022 && (cu->language == language_cplus
11023 || cu->language == language_java)
11024 ? &global_symbols : cu->list_in_scope);
63d06c5c 11025
64382290
TT
11026 /* The semantics of C++ state that "struct foo {
11027 ... }" also defines a typedef for "foo". A Java
11028 class declaration also defines a typedef for the
11029 class. */
11030 if (cu->language == language_cplus
11031 || cu->language == language_java
11032 || cu->language == language_ada)
11033 {
11034 /* The symbol's name is already allocated along
11035 with this objfile, so we don't need to
11036 duplicate it for the type. */
11037 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11038 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11039 }
63d06c5c
DC
11040 }
11041 }
c906108c
SS
11042 break;
11043 case DW_TAG_typedef:
63d06c5c
DC
11044 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11045 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11046 list_to_add = cu->list_in_scope;
63d06c5c 11047 break;
c906108c 11048 case DW_TAG_base_type:
a02abb62 11049 case DW_TAG_subrange_type:
c906108c 11050 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11051 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11052 list_to_add = cu->list_in_scope;
c906108c
SS
11053 break;
11054 case DW_TAG_enumerator:
e142c38c 11055 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11056 if (attr)
11057 {
e7c27a73 11058 dwarf2_const_value (attr, sym, cu);
c906108c 11059 }
63d06c5c
DC
11060 {
11061 /* NOTE: carlton/2003-11-10: See comment above in the
11062 DW_TAG_class_type, etc. block. */
11063
e142c38c 11064 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
11065 && (cu->language == language_cplus
11066 || cu->language == language_java)
e142c38c 11067 ? &global_symbols : cu->list_in_scope);
63d06c5c 11068 }
c906108c 11069 break;
5c4e30ca
DC
11070 case DW_TAG_namespace:
11071 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 11072 list_to_add = &global_symbols;
5c4e30ca 11073 break;
c906108c
SS
11074 default:
11075 /* Not a tag we recognize. Hopefully we aren't processing
11076 trash data, but since we must specifically ignore things
11077 we don't recognize, there is nothing else we should do at
11078 this point. */
e2e0b3e5 11079 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 11080 dwarf_tag_name (die->tag));
c906108c
SS
11081 break;
11082 }
df8a16a1 11083
e37fd15a
SW
11084 if (suppress_add)
11085 {
11086 sym->hash_next = objfile->template_symbols;
11087 objfile->template_symbols = sym;
11088 list_to_add = NULL;
11089 }
11090
11091 if (list_to_add != NULL)
11092 add_symbol_to_list (sym, list_to_add);
11093
df8a16a1
DJ
11094 /* For the benefit of old versions of GCC, check for anonymous
11095 namespaces based on the demangled name. */
11096 if (!processing_has_namespace_info
94af9270 11097 && cu->language == language_cplus)
df8a16a1 11098 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
11099 }
11100 return (sym);
11101}
11102
34eaf542
TT
11103/* A wrapper for new_symbol_full that always allocates a new symbol. */
11104
11105static struct symbol *
11106new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11107{
11108 return new_symbol_full (die, type, cu, NULL);
11109}
11110
98bfdba5
PA
11111/* Given an attr with a DW_FORM_dataN value in host byte order,
11112 zero-extend it as appropriate for the symbol's type. The DWARF
11113 standard (v4) is not entirely clear about the meaning of using
11114 DW_FORM_dataN for a constant with a signed type, where the type is
11115 wider than the data. The conclusion of a discussion on the DWARF
11116 list was that this is unspecified. We choose to always zero-extend
11117 because that is the interpretation long in use by GCC. */
c906108c 11118
98bfdba5
PA
11119static gdb_byte *
11120dwarf2_const_value_data (struct attribute *attr, struct type *type,
11121 const char *name, struct obstack *obstack,
11122 struct dwarf2_cu *cu, long *value, int bits)
c906108c 11123{
e7c27a73 11124 struct objfile *objfile = cu->objfile;
e17a4113
UW
11125 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11126 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
11127 LONGEST l = DW_UNSND (attr);
11128
11129 if (bits < sizeof (*value) * 8)
11130 {
11131 l &= ((LONGEST) 1 << bits) - 1;
11132 *value = l;
11133 }
11134 else if (bits == sizeof (*value) * 8)
11135 *value = l;
11136 else
11137 {
11138 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11139 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11140 return bytes;
11141 }
11142
11143 return NULL;
11144}
11145
11146/* Read a constant value from an attribute. Either set *VALUE, or if
11147 the value does not fit in *VALUE, set *BYTES - either already
11148 allocated on the objfile obstack, or newly allocated on OBSTACK,
11149 or, set *BATON, if we translated the constant to a location
11150 expression. */
11151
11152static void
11153dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11154 const char *name, struct obstack *obstack,
11155 struct dwarf2_cu *cu,
11156 long *value, gdb_byte **bytes,
11157 struct dwarf2_locexpr_baton **baton)
11158{
11159 struct objfile *objfile = cu->objfile;
11160 struct comp_unit_head *cu_header = &cu->header;
c906108c 11161 struct dwarf_block *blk;
98bfdba5
PA
11162 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11163 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11164
11165 *value = 0;
11166 *bytes = NULL;
11167 *baton = NULL;
c906108c
SS
11168
11169 switch (attr->form)
11170 {
11171 case DW_FORM_addr:
ac56253d 11172 {
ac56253d
TT
11173 gdb_byte *data;
11174
98bfdba5
PA
11175 if (TYPE_LENGTH (type) != cu_header->addr_size)
11176 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 11177 cu_header->addr_size,
98bfdba5 11178 TYPE_LENGTH (type));
ac56253d
TT
11179 /* Symbols of this form are reasonably rare, so we just
11180 piggyback on the existing location code rather than writing
11181 a new implementation of symbol_computed_ops. */
98bfdba5
PA
11182 *baton = obstack_alloc (&objfile->objfile_obstack,
11183 sizeof (struct dwarf2_locexpr_baton));
11184 (*baton)->per_cu = cu->per_cu;
11185 gdb_assert ((*baton)->per_cu);
ac56253d 11186
98bfdba5
PA
11187 (*baton)->size = 2 + cu_header->addr_size;
11188 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11189 (*baton)->data = data;
ac56253d
TT
11190
11191 data[0] = DW_OP_addr;
11192 store_unsigned_integer (&data[1], cu_header->addr_size,
11193 byte_order, DW_ADDR (attr));
11194 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 11195 }
c906108c 11196 break;
4ac36638 11197 case DW_FORM_string:
93b5768b 11198 case DW_FORM_strp:
98bfdba5
PA
11199 /* DW_STRING is already allocated on the objfile obstack, point
11200 directly to it. */
11201 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 11202 break;
c906108c
SS
11203 case DW_FORM_block1:
11204 case DW_FORM_block2:
11205 case DW_FORM_block4:
11206 case DW_FORM_block:
2dc7f7b3 11207 case DW_FORM_exprloc:
c906108c 11208 blk = DW_BLOCK (attr);
98bfdba5
PA
11209 if (TYPE_LENGTH (type) != blk->size)
11210 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11211 TYPE_LENGTH (type));
11212 *bytes = blk->data;
c906108c 11213 break;
2df3850c
JM
11214
11215 /* The DW_AT_const_value attributes are supposed to carry the
11216 symbol's value "represented as it would be on the target
11217 architecture." By the time we get here, it's already been
11218 converted to host endianness, so we just need to sign- or
11219 zero-extend it as appropriate. */
11220 case DW_FORM_data1:
3e43a32a
MS
11221 *bytes = dwarf2_const_value_data (attr, type, name,
11222 obstack, cu, value, 8);
2df3850c 11223 break;
c906108c 11224 case DW_FORM_data2:
3e43a32a
MS
11225 *bytes = dwarf2_const_value_data (attr, type, name,
11226 obstack, cu, value, 16);
2df3850c 11227 break;
c906108c 11228 case DW_FORM_data4:
3e43a32a
MS
11229 *bytes = dwarf2_const_value_data (attr, type, name,
11230 obstack, cu, value, 32);
2df3850c 11231 break;
c906108c 11232 case DW_FORM_data8:
3e43a32a
MS
11233 *bytes = dwarf2_const_value_data (attr, type, name,
11234 obstack, cu, value, 64);
2df3850c
JM
11235 break;
11236
c906108c 11237 case DW_FORM_sdata:
98bfdba5 11238 *value = DW_SND (attr);
2df3850c
JM
11239 break;
11240
c906108c 11241 case DW_FORM_udata:
98bfdba5 11242 *value = DW_UNSND (attr);
c906108c 11243 break;
2df3850c 11244
c906108c 11245 default:
4d3c2250 11246 complaint (&symfile_complaints,
e2e0b3e5 11247 _("unsupported const value attribute form: '%s'"),
4d3c2250 11248 dwarf_form_name (attr->form));
98bfdba5 11249 *value = 0;
c906108c
SS
11250 break;
11251 }
11252}
11253
2df3850c 11254
98bfdba5
PA
11255/* Copy constant value from an attribute to a symbol. */
11256
2df3850c 11257static void
98bfdba5
PA
11258dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11259 struct dwarf2_cu *cu)
2df3850c 11260{
98bfdba5
PA
11261 struct objfile *objfile = cu->objfile;
11262 struct comp_unit_head *cu_header = &cu->header;
11263 long value;
11264 gdb_byte *bytes;
11265 struct dwarf2_locexpr_baton *baton;
2df3850c 11266
98bfdba5
PA
11267 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11268 SYMBOL_PRINT_NAME (sym),
11269 &objfile->objfile_obstack, cu,
11270 &value, &bytes, &baton);
2df3850c 11271
98bfdba5
PA
11272 if (baton != NULL)
11273 {
11274 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11275 SYMBOL_LOCATION_BATON (sym) = baton;
11276 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11277 }
11278 else if (bytes != NULL)
11279 {
11280 SYMBOL_VALUE_BYTES (sym) = bytes;
11281 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11282 }
11283 else
11284 {
11285 SYMBOL_VALUE (sym) = value;
11286 SYMBOL_CLASS (sym) = LOC_CONST;
11287 }
2df3850c
JM
11288}
11289
c906108c
SS
11290/* Return the type of the die in question using its DW_AT_type attribute. */
11291
11292static struct type *
e7c27a73 11293die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11294{
c906108c 11295 struct attribute *type_attr;
c906108c 11296
e142c38c 11297 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
11298 if (!type_attr)
11299 {
11300 /* A missing DW_AT_type represents a void type. */
46bf5051 11301 return objfile_type (cu->objfile)->builtin_void;
c906108c 11302 }
348e048f 11303
673bfd45 11304 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11305}
11306
b4ba55a1
JB
11307/* True iff CU's producer generates GNAT Ada auxiliary information
11308 that allows to find parallel types through that information instead
11309 of having to do expensive parallel lookups by type name. */
11310
11311static int
11312need_gnat_info (struct dwarf2_cu *cu)
11313{
11314 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11315 of GNAT produces this auxiliary information, without any indication
11316 that it is produced. Part of enhancing the FSF version of GNAT
11317 to produce that information will be to put in place an indicator
11318 that we can use in order to determine whether the descriptive type
11319 info is available or not. One suggestion that has been made is
11320 to use a new attribute, attached to the CU die. For now, assume
11321 that the descriptive type info is not available. */
11322 return 0;
11323}
11324
b4ba55a1
JB
11325/* Return the auxiliary type of the die in question using its
11326 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11327 attribute is not present. */
11328
11329static struct type *
11330die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11331{
b4ba55a1 11332 struct attribute *type_attr;
b4ba55a1
JB
11333
11334 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11335 if (!type_attr)
11336 return NULL;
11337
673bfd45 11338 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
11339}
11340
11341/* If DIE has a descriptive_type attribute, then set the TYPE's
11342 descriptive type accordingly. */
11343
11344static void
11345set_descriptive_type (struct type *type, struct die_info *die,
11346 struct dwarf2_cu *cu)
11347{
11348 struct type *descriptive_type = die_descriptive_type (die, cu);
11349
11350 if (descriptive_type)
11351 {
11352 ALLOCATE_GNAT_AUX_TYPE (type);
11353 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11354 }
11355}
11356
c906108c
SS
11357/* Return the containing type of the die in question using its
11358 DW_AT_containing_type attribute. */
11359
11360static struct type *
e7c27a73 11361die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11362{
c906108c 11363 struct attribute *type_attr;
c906108c 11364
e142c38c 11365 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
11366 if (!type_attr)
11367 error (_("Dwarf Error: Problem turning containing type into gdb type "
11368 "[in module %s]"), cu->objfile->name);
11369
673bfd45 11370 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11371}
11372
673bfd45
DE
11373/* Look up the type of DIE in CU using its type attribute ATTR.
11374 If there is no type substitute an error marker. */
11375
c906108c 11376static struct type *
673bfd45
DE
11377lookup_die_type (struct die_info *die, struct attribute *attr,
11378 struct dwarf2_cu *cu)
c906108c 11379{
f792889a
DJ
11380 struct type *this_type;
11381
673bfd45
DE
11382 /* First see if we have it cached. */
11383
11384 if (is_ref_attr (attr))
11385 {
11386 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11387
11388 this_type = get_die_type_at_offset (offset, cu->per_cu);
11389 }
11390 else if (attr->form == DW_FORM_sig8)
11391 {
11392 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11393 struct dwarf2_cu *sig_cu;
11394 unsigned int offset;
11395
11396 /* sig_type will be NULL if the signatured type is missing from
11397 the debug info. */
11398 if (sig_type == NULL)
11399 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11400 "at 0x%x [in module %s]"),
11401 die->offset, cu->objfile->name);
11402
11403 gdb_assert (sig_type->per_cu.from_debug_types);
11404 offset = sig_type->offset + sig_type->type_offset;
11405 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11406 }
11407 else
11408 {
11409 dump_die_for_error (die);
11410 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11411 dwarf_attr_name (attr->name), cu->objfile->name);
11412 }
11413
11414 /* If not cached we need to read it in. */
11415
11416 if (this_type == NULL)
11417 {
11418 struct die_info *type_die;
11419 struct dwarf2_cu *type_cu = cu;
11420
11421 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11422 /* If the type is cached, we should have found it above. */
11423 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11424 this_type = read_type_die_1 (type_die, type_cu);
11425 }
11426
11427 /* If we still don't have a type use an error marker. */
11428
11429 if (this_type == NULL)
c906108c 11430 {
b00fdb78
TT
11431 char *message, *saved;
11432
11433 /* read_type_die already issued a complaint. */
11434 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11435 cu->objfile->name,
11436 cu->header.offset,
11437 die->offset);
11438 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11439 message, strlen (message));
11440 xfree (message);
11441
11442 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 11443 }
673bfd45 11444
f792889a 11445 return this_type;
c906108c
SS
11446}
11447
673bfd45
DE
11448/* Return the type in DIE, CU.
11449 Returns NULL for invalid types.
11450
11451 This first does a lookup in the appropriate type_hash table,
11452 and only reads the die in if necessary.
11453
11454 NOTE: This can be called when reading in partial or full symbols. */
11455
f792889a 11456static struct type *
e7c27a73 11457read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11458{
f792889a
DJ
11459 struct type *this_type;
11460
11461 this_type = get_die_type (die, cu);
11462 if (this_type)
11463 return this_type;
11464
673bfd45
DE
11465 return read_type_die_1 (die, cu);
11466}
11467
11468/* Read the type in DIE, CU.
11469 Returns NULL for invalid types. */
11470
11471static struct type *
11472read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11473{
11474 struct type *this_type = NULL;
11475
c906108c
SS
11476 switch (die->tag)
11477 {
11478 case DW_TAG_class_type:
680b30c7 11479 case DW_TAG_interface_type:
c906108c
SS
11480 case DW_TAG_structure_type:
11481 case DW_TAG_union_type:
f792889a 11482 this_type = read_structure_type (die, cu);
c906108c
SS
11483 break;
11484 case DW_TAG_enumeration_type:
f792889a 11485 this_type = read_enumeration_type (die, cu);
c906108c
SS
11486 break;
11487 case DW_TAG_subprogram:
11488 case DW_TAG_subroutine_type:
edb3359d 11489 case DW_TAG_inlined_subroutine:
f792889a 11490 this_type = read_subroutine_type (die, cu);
c906108c
SS
11491 break;
11492 case DW_TAG_array_type:
f792889a 11493 this_type = read_array_type (die, cu);
c906108c 11494 break;
72019c9c 11495 case DW_TAG_set_type:
f792889a 11496 this_type = read_set_type (die, cu);
72019c9c 11497 break;
c906108c 11498 case DW_TAG_pointer_type:
f792889a 11499 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
11500 break;
11501 case DW_TAG_ptr_to_member_type:
f792889a 11502 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
11503 break;
11504 case DW_TAG_reference_type:
f792889a 11505 this_type = read_tag_reference_type (die, cu);
c906108c
SS
11506 break;
11507 case DW_TAG_const_type:
f792889a 11508 this_type = read_tag_const_type (die, cu);
c906108c
SS
11509 break;
11510 case DW_TAG_volatile_type:
f792889a 11511 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
11512 break;
11513 case DW_TAG_string_type:
f792889a 11514 this_type = read_tag_string_type (die, cu);
c906108c
SS
11515 break;
11516 case DW_TAG_typedef:
f792889a 11517 this_type = read_typedef (die, cu);
c906108c 11518 break;
a02abb62 11519 case DW_TAG_subrange_type:
f792889a 11520 this_type = read_subrange_type (die, cu);
a02abb62 11521 break;
c906108c 11522 case DW_TAG_base_type:
f792889a 11523 this_type = read_base_type (die, cu);
c906108c 11524 break;
81a17f79 11525 case DW_TAG_unspecified_type:
f792889a 11526 this_type = read_unspecified_type (die, cu);
81a17f79 11527 break;
0114d602
DJ
11528 case DW_TAG_namespace:
11529 this_type = read_namespace_type (die, cu);
11530 break;
f55ee35c
JK
11531 case DW_TAG_module:
11532 this_type = read_module_type (die, cu);
11533 break;
c906108c 11534 default:
3e43a32a
MS
11535 complaint (&symfile_complaints,
11536 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 11537 dwarf_tag_name (die->tag));
c906108c
SS
11538 break;
11539 }
63d06c5c 11540
f792889a 11541 return this_type;
63d06c5c
DC
11542}
11543
abc72ce4
DE
11544/* See if we can figure out if the class lives in a namespace. We do
11545 this by looking for a member function; its demangled name will
11546 contain namespace info, if there is any.
11547 Return the computed name or NULL.
11548 Space for the result is allocated on the objfile's obstack.
11549 This is the full-die version of guess_partial_die_structure_name.
11550 In this case we know DIE has no useful parent. */
11551
11552static char *
11553guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11554{
11555 struct die_info *spec_die;
11556 struct dwarf2_cu *spec_cu;
11557 struct die_info *child;
11558
11559 spec_cu = cu;
11560 spec_die = die_specification (die, &spec_cu);
11561 if (spec_die != NULL)
11562 {
11563 die = spec_die;
11564 cu = spec_cu;
11565 }
11566
11567 for (child = die->child;
11568 child != NULL;
11569 child = child->sibling)
11570 {
11571 if (child->tag == DW_TAG_subprogram)
11572 {
11573 struct attribute *attr;
11574
11575 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11576 if (attr == NULL)
11577 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11578 if (attr != NULL)
11579 {
11580 char *actual_name
11581 = language_class_name_from_physname (cu->language_defn,
11582 DW_STRING (attr));
11583 char *name = NULL;
11584
11585 if (actual_name != NULL)
11586 {
11587 char *die_name = dwarf2_name (die, cu);
11588
11589 if (die_name != NULL
11590 && strcmp (die_name, actual_name) != 0)
11591 {
11592 /* Strip off the class name from the full name.
11593 We want the prefix. */
11594 int die_name_len = strlen (die_name);
11595 int actual_name_len = strlen (actual_name);
11596
11597 /* Test for '::' as a sanity check. */
11598 if (actual_name_len > die_name_len + 2
3e43a32a
MS
11599 && actual_name[actual_name_len
11600 - die_name_len - 1] == ':')
abc72ce4
DE
11601 name =
11602 obsavestring (actual_name,
11603 actual_name_len - die_name_len - 2,
11604 &cu->objfile->objfile_obstack);
11605 }
11606 }
11607 xfree (actual_name);
11608 return name;
11609 }
11610 }
11611 }
11612
11613 return NULL;
11614}
11615
fdde2d81 11616/* Return the name of the namespace/class that DIE is defined within,
0114d602 11617 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 11618
0114d602
DJ
11619 For example, if we're within the method foo() in the following
11620 code:
11621
11622 namespace N {
11623 class C {
11624 void foo () {
11625 }
11626 };
11627 }
11628
11629 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
11630
11631static char *
e142c38c 11632determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 11633{
0114d602
DJ
11634 struct die_info *parent, *spec_die;
11635 struct dwarf2_cu *spec_cu;
11636 struct type *parent_type;
63d06c5c 11637
f55ee35c
JK
11638 if (cu->language != language_cplus && cu->language != language_java
11639 && cu->language != language_fortran)
0114d602
DJ
11640 return "";
11641
11642 /* We have to be careful in the presence of DW_AT_specification.
11643 For example, with GCC 3.4, given the code
11644
11645 namespace N {
11646 void foo() {
11647 // Definition of N::foo.
11648 }
11649 }
11650
11651 then we'll have a tree of DIEs like this:
11652
11653 1: DW_TAG_compile_unit
11654 2: DW_TAG_namespace // N
11655 3: DW_TAG_subprogram // declaration of N::foo
11656 4: DW_TAG_subprogram // definition of N::foo
11657 DW_AT_specification // refers to die #3
11658
11659 Thus, when processing die #4, we have to pretend that we're in
11660 the context of its DW_AT_specification, namely the contex of die
11661 #3. */
11662 spec_cu = cu;
11663 spec_die = die_specification (die, &spec_cu);
11664 if (spec_die == NULL)
11665 parent = die->parent;
11666 else
63d06c5c 11667 {
0114d602
DJ
11668 parent = spec_die->parent;
11669 cu = spec_cu;
63d06c5c 11670 }
0114d602
DJ
11671
11672 if (parent == NULL)
11673 return "";
98bfdba5
PA
11674 else if (parent->building_fullname)
11675 {
11676 const char *name;
11677 const char *parent_name;
11678
11679 /* It has been seen on RealView 2.2 built binaries,
11680 DW_TAG_template_type_param types actually _defined_ as
11681 children of the parent class:
11682
11683 enum E {};
11684 template class <class Enum> Class{};
11685 Class<enum E> class_e;
11686
11687 1: DW_TAG_class_type (Class)
11688 2: DW_TAG_enumeration_type (E)
11689 3: DW_TAG_enumerator (enum1:0)
11690 3: DW_TAG_enumerator (enum2:1)
11691 ...
11692 2: DW_TAG_template_type_param
11693 DW_AT_type DW_FORM_ref_udata (E)
11694
11695 Besides being broken debug info, it can put GDB into an
11696 infinite loop. Consider:
11697
11698 When we're building the full name for Class<E>, we'll start
11699 at Class, and go look over its template type parameters,
11700 finding E. We'll then try to build the full name of E, and
11701 reach here. We're now trying to build the full name of E,
11702 and look over the parent DIE for containing scope. In the
11703 broken case, if we followed the parent DIE of E, we'd again
11704 find Class, and once again go look at its template type
11705 arguments, etc., etc. Simply don't consider such parent die
11706 as source-level parent of this die (it can't be, the language
11707 doesn't allow it), and break the loop here. */
11708 name = dwarf2_name (die, cu);
11709 parent_name = dwarf2_name (parent, cu);
11710 complaint (&symfile_complaints,
11711 _("template param type '%s' defined within parent '%s'"),
11712 name ? name : "<unknown>",
11713 parent_name ? parent_name : "<unknown>");
11714 return "";
11715 }
63d06c5c 11716 else
0114d602
DJ
11717 switch (parent->tag)
11718 {
63d06c5c 11719 case DW_TAG_namespace:
0114d602 11720 parent_type = read_type_die (parent, cu);
acebe513
UW
11721 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11722 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11723 Work around this problem here. */
11724 if (cu->language == language_cplus
11725 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11726 return "";
0114d602
DJ
11727 /* We give a name to even anonymous namespaces. */
11728 return TYPE_TAG_NAME (parent_type);
63d06c5c 11729 case DW_TAG_class_type:
680b30c7 11730 case DW_TAG_interface_type:
63d06c5c 11731 case DW_TAG_structure_type:
0114d602 11732 case DW_TAG_union_type:
f55ee35c 11733 case DW_TAG_module:
0114d602
DJ
11734 parent_type = read_type_die (parent, cu);
11735 if (TYPE_TAG_NAME (parent_type) != NULL)
11736 return TYPE_TAG_NAME (parent_type);
11737 else
11738 /* An anonymous structure is only allowed non-static data
11739 members; no typedefs, no member functions, et cetera.
11740 So it does not need a prefix. */
11741 return "";
abc72ce4
DE
11742 case DW_TAG_compile_unit:
11743 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11744 if (cu->language == language_cplus
11745 && dwarf2_per_objfile->types.asection != NULL
11746 && die->child != NULL
11747 && (die->tag == DW_TAG_class_type
11748 || die->tag == DW_TAG_structure_type
11749 || die->tag == DW_TAG_union_type))
11750 {
11751 char *name = guess_full_die_structure_name (die, cu);
11752 if (name != NULL)
11753 return name;
11754 }
11755 return "";
63d06c5c 11756 default:
8176b9b8 11757 return determine_prefix (parent, cu);
63d06c5c 11758 }
63d06c5c
DC
11759}
11760
3e43a32a
MS
11761/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11762 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11763 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11764 an obconcat, otherwise allocate storage for the result. The CU argument is
11765 used to determine the language and hence, the appropriate separator. */
987504bb 11766
f55ee35c 11767#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
11768
11769static char *
f55ee35c
JK
11770typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11771 int physname, struct dwarf2_cu *cu)
63d06c5c 11772{
f55ee35c 11773 const char *lead = "";
5c315b68 11774 const char *sep;
63d06c5c 11775
3e43a32a
MS
11776 if (suffix == NULL || suffix[0] == '\0'
11777 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
11778 sep = "";
11779 else if (cu->language == language_java)
11780 sep = ".";
f55ee35c
JK
11781 else if (cu->language == language_fortran && physname)
11782 {
11783 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11784 DW_AT_MIPS_linkage_name is preferred and used instead. */
11785
11786 lead = "__";
11787 sep = "_MOD_";
11788 }
987504bb
JJ
11789 else
11790 sep = "::";
63d06c5c 11791
6dd47d34
DE
11792 if (prefix == NULL)
11793 prefix = "";
11794 if (suffix == NULL)
11795 suffix = "";
11796
987504bb
JJ
11797 if (obs == NULL)
11798 {
3e43a32a
MS
11799 char *retval
11800 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 11801
f55ee35c
JK
11802 strcpy (retval, lead);
11803 strcat (retval, prefix);
6dd47d34
DE
11804 strcat (retval, sep);
11805 strcat (retval, suffix);
63d06c5c
DC
11806 return retval;
11807 }
987504bb
JJ
11808 else
11809 {
11810 /* We have an obstack. */
f55ee35c 11811 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 11812 }
63d06c5c
DC
11813}
11814
c906108c
SS
11815/* Return sibling of die, NULL if no sibling. */
11816
f9aca02d 11817static struct die_info *
fba45db2 11818sibling_die (struct die_info *die)
c906108c 11819{
639d11d3 11820 return die->sibling;
c906108c
SS
11821}
11822
71c25dea
TT
11823/* Get name of a die, return NULL if not found. */
11824
11825static char *
11826dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11827 struct obstack *obstack)
11828{
11829 if (name && cu->language == language_cplus)
11830 {
11831 char *canon_name = cp_canonicalize_string (name);
11832
11833 if (canon_name != NULL)
11834 {
11835 if (strcmp (canon_name, name) != 0)
11836 name = obsavestring (canon_name, strlen (canon_name),
11837 obstack);
11838 xfree (canon_name);
11839 }
11840 }
11841
11842 return name;
c906108c
SS
11843}
11844
9219021c
DC
11845/* Get name of a die, return NULL if not found. */
11846
11847static char *
e142c38c 11848dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
11849{
11850 struct attribute *attr;
11851
e142c38c 11852 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
11853 if (!attr || !DW_STRING (attr))
11854 return NULL;
11855
11856 switch (die->tag)
11857 {
11858 case DW_TAG_compile_unit:
11859 /* Compilation units have a DW_AT_name that is a filename, not
11860 a source language identifier. */
11861 case DW_TAG_enumeration_type:
11862 case DW_TAG_enumerator:
11863 /* These tags always have simple identifiers already; no need
11864 to canonicalize them. */
11865 return DW_STRING (attr);
907af001 11866
418835cc
KS
11867 case DW_TAG_subprogram:
11868 /* Java constructors will all be named "<init>", so return
11869 the class name when we see this special case. */
11870 if (cu->language == language_java
11871 && DW_STRING (attr) != NULL
11872 && strcmp (DW_STRING (attr), "<init>") == 0)
11873 {
11874 struct dwarf2_cu *spec_cu = cu;
11875 struct die_info *spec_die;
11876
11877 /* GCJ will output '<init>' for Java constructor names.
11878 For this special case, return the name of the parent class. */
11879
11880 /* GCJ may output suprogram DIEs with AT_specification set.
11881 If so, use the name of the specified DIE. */
11882 spec_die = die_specification (die, &spec_cu);
11883 if (spec_die != NULL)
11884 return dwarf2_name (spec_die, spec_cu);
11885
11886 do
11887 {
11888 die = die->parent;
11889 if (die->tag == DW_TAG_class_type)
11890 return dwarf2_name (die, cu);
11891 }
11892 while (die->tag != DW_TAG_compile_unit);
11893 }
907af001
UW
11894 break;
11895
11896 case DW_TAG_class_type:
11897 case DW_TAG_interface_type:
11898 case DW_TAG_structure_type:
11899 case DW_TAG_union_type:
11900 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11901 structures or unions. These were of the form "._%d" in GCC 4.1,
11902 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11903 and GCC 4.4. We work around this problem by ignoring these. */
11904 if (strncmp (DW_STRING (attr), "._", 2) == 0
11905 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11906 return NULL;
11907 break;
11908
71c25dea 11909 default:
907af001
UW
11910 break;
11911 }
11912
11913 if (!DW_STRING_IS_CANONICAL (attr))
11914 {
11915 DW_STRING (attr)
11916 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11917 &cu->objfile->objfile_obstack);
11918 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 11919 }
907af001 11920 return DW_STRING (attr);
9219021c
DC
11921}
11922
11923/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
11924 is none. *EXT_CU is the CU containing DIE on input, and the CU
11925 containing the return value on output. */
9219021c
DC
11926
11927static struct die_info *
f2f0e013 11928dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
11929{
11930 struct attribute *attr;
9219021c 11931
f2f0e013 11932 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
11933 if (attr == NULL)
11934 return NULL;
11935
f2f0e013 11936 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
11937}
11938
c906108c
SS
11939/* Convert a DIE tag into its string name. */
11940
11941static char *
aa1ee363 11942dwarf_tag_name (unsigned tag)
c906108c
SS
11943{
11944 switch (tag)
11945 {
11946 case DW_TAG_padding:
11947 return "DW_TAG_padding";
11948 case DW_TAG_array_type:
11949 return "DW_TAG_array_type";
11950 case DW_TAG_class_type:
11951 return "DW_TAG_class_type";
11952 case DW_TAG_entry_point:
11953 return "DW_TAG_entry_point";
11954 case DW_TAG_enumeration_type:
11955 return "DW_TAG_enumeration_type";
11956 case DW_TAG_formal_parameter:
11957 return "DW_TAG_formal_parameter";
11958 case DW_TAG_imported_declaration:
11959 return "DW_TAG_imported_declaration";
11960 case DW_TAG_label:
11961 return "DW_TAG_label";
11962 case DW_TAG_lexical_block:
11963 return "DW_TAG_lexical_block";
11964 case DW_TAG_member:
11965 return "DW_TAG_member";
11966 case DW_TAG_pointer_type:
11967 return "DW_TAG_pointer_type";
11968 case DW_TAG_reference_type:
11969 return "DW_TAG_reference_type";
11970 case DW_TAG_compile_unit:
11971 return "DW_TAG_compile_unit";
11972 case DW_TAG_string_type:
11973 return "DW_TAG_string_type";
11974 case DW_TAG_structure_type:
11975 return "DW_TAG_structure_type";
11976 case DW_TAG_subroutine_type:
11977 return "DW_TAG_subroutine_type";
11978 case DW_TAG_typedef:
11979 return "DW_TAG_typedef";
11980 case DW_TAG_union_type:
11981 return "DW_TAG_union_type";
11982 case DW_TAG_unspecified_parameters:
11983 return "DW_TAG_unspecified_parameters";
11984 case DW_TAG_variant:
11985 return "DW_TAG_variant";
11986 case DW_TAG_common_block:
11987 return "DW_TAG_common_block";
11988 case DW_TAG_common_inclusion:
11989 return "DW_TAG_common_inclusion";
11990 case DW_TAG_inheritance:
11991 return "DW_TAG_inheritance";
11992 case DW_TAG_inlined_subroutine:
11993 return "DW_TAG_inlined_subroutine";
11994 case DW_TAG_module:
11995 return "DW_TAG_module";
11996 case DW_TAG_ptr_to_member_type:
11997 return "DW_TAG_ptr_to_member_type";
11998 case DW_TAG_set_type:
11999 return "DW_TAG_set_type";
12000 case DW_TAG_subrange_type:
12001 return "DW_TAG_subrange_type";
12002 case DW_TAG_with_stmt:
12003 return "DW_TAG_with_stmt";
12004 case DW_TAG_access_declaration:
12005 return "DW_TAG_access_declaration";
12006 case DW_TAG_base_type:
12007 return "DW_TAG_base_type";
12008 case DW_TAG_catch_block:
12009 return "DW_TAG_catch_block";
12010 case DW_TAG_const_type:
12011 return "DW_TAG_const_type";
12012 case DW_TAG_constant:
12013 return "DW_TAG_constant";
12014 case DW_TAG_enumerator:
12015 return "DW_TAG_enumerator";
12016 case DW_TAG_file_type:
12017 return "DW_TAG_file_type";
12018 case DW_TAG_friend:
12019 return "DW_TAG_friend";
12020 case DW_TAG_namelist:
12021 return "DW_TAG_namelist";
12022 case DW_TAG_namelist_item:
12023 return "DW_TAG_namelist_item";
12024 case DW_TAG_packed_type:
12025 return "DW_TAG_packed_type";
12026 case DW_TAG_subprogram:
12027 return "DW_TAG_subprogram";
12028 case DW_TAG_template_type_param:
12029 return "DW_TAG_template_type_param";
12030 case DW_TAG_template_value_param:
12031 return "DW_TAG_template_value_param";
12032 case DW_TAG_thrown_type:
12033 return "DW_TAG_thrown_type";
12034 case DW_TAG_try_block:
12035 return "DW_TAG_try_block";
12036 case DW_TAG_variant_part:
12037 return "DW_TAG_variant_part";
12038 case DW_TAG_variable:
12039 return "DW_TAG_variable";
12040 case DW_TAG_volatile_type:
12041 return "DW_TAG_volatile_type";
d9fa45fe
DC
12042 case DW_TAG_dwarf_procedure:
12043 return "DW_TAG_dwarf_procedure";
12044 case DW_TAG_restrict_type:
12045 return "DW_TAG_restrict_type";
12046 case DW_TAG_interface_type:
12047 return "DW_TAG_interface_type";
12048 case DW_TAG_namespace:
12049 return "DW_TAG_namespace";
12050 case DW_TAG_imported_module:
12051 return "DW_TAG_imported_module";
12052 case DW_TAG_unspecified_type:
12053 return "DW_TAG_unspecified_type";
12054 case DW_TAG_partial_unit:
12055 return "DW_TAG_partial_unit";
12056 case DW_TAG_imported_unit:
12057 return "DW_TAG_imported_unit";
b7619582
GF
12058 case DW_TAG_condition:
12059 return "DW_TAG_condition";
12060 case DW_TAG_shared_type:
12061 return "DW_TAG_shared_type";
348e048f
DE
12062 case DW_TAG_type_unit:
12063 return "DW_TAG_type_unit";
c906108c
SS
12064 case DW_TAG_MIPS_loop:
12065 return "DW_TAG_MIPS_loop";
b7619582
GF
12066 case DW_TAG_HP_array_descriptor:
12067 return "DW_TAG_HP_array_descriptor";
c906108c
SS
12068 case DW_TAG_format_label:
12069 return "DW_TAG_format_label";
12070 case DW_TAG_function_template:
12071 return "DW_TAG_function_template";
12072 case DW_TAG_class_template:
12073 return "DW_TAG_class_template";
b7619582
GF
12074 case DW_TAG_GNU_BINCL:
12075 return "DW_TAG_GNU_BINCL";
12076 case DW_TAG_GNU_EINCL:
12077 return "DW_TAG_GNU_EINCL";
12078 case DW_TAG_upc_shared_type:
12079 return "DW_TAG_upc_shared_type";
12080 case DW_TAG_upc_strict_type:
12081 return "DW_TAG_upc_strict_type";
12082 case DW_TAG_upc_relaxed_type:
12083 return "DW_TAG_upc_relaxed_type";
12084 case DW_TAG_PGI_kanji_type:
12085 return "DW_TAG_PGI_kanji_type";
12086 case DW_TAG_PGI_interface_block:
12087 return "DW_TAG_PGI_interface_block";
c906108c
SS
12088 default:
12089 return "DW_TAG_<unknown>";
12090 }
12091}
12092
12093/* Convert a DWARF attribute code into its string name. */
12094
12095static char *
aa1ee363 12096dwarf_attr_name (unsigned attr)
c906108c
SS
12097{
12098 switch (attr)
12099 {
12100 case DW_AT_sibling:
12101 return "DW_AT_sibling";
12102 case DW_AT_location:
12103 return "DW_AT_location";
12104 case DW_AT_name:
12105 return "DW_AT_name";
12106 case DW_AT_ordering:
12107 return "DW_AT_ordering";
12108 case DW_AT_subscr_data:
12109 return "DW_AT_subscr_data";
12110 case DW_AT_byte_size:
12111 return "DW_AT_byte_size";
12112 case DW_AT_bit_offset:
12113 return "DW_AT_bit_offset";
12114 case DW_AT_bit_size:
12115 return "DW_AT_bit_size";
12116 case DW_AT_element_list:
12117 return "DW_AT_element_list";
12118 case DW_AT_stmt_list:
12119 return "DW_AT_stmt_list";
12120 case DW_AT_low_pc:
12121 return "DW_AT_low_pc";
12122 case DW_AT_high_pc:
12123 return "DW_AT_high_pc";
12124 case DW_AT_language:
12125 return "DW_AT_language";
12126 case DW_AT_member:
12127 return "DW_AT_member";
12128 case DW_AT_discr:
12129 return "DW_AT_discr";
12130 case DW_AT_discr_value:
12131 return "DW_AT_discr_value";
12132 case DW_AT_visibility:
12133 return "DW_AT_visibility";
12134 case DW_AT_import:
12135 return "DW_AT_import";
12136 case DW_AT_string_length:
12137 return "DW_AT_string_length";
12138 case DW_AT_common_reference:
12139 return "DW_AT_common_reference";
12140 case DW_AT_comp_dir:
12141 return "DW_AT_comp_dir";
12142 case DW_AT_const_value:
12143 return "DW_AT_const_value";
12144 case DW_AT_containing_type:
12145 return "DW_AT_containing_type";
12146 case DW_AT_default_value:
12147 return "DW_AT_default_value";
12148 case DW_AT_inline:
12149 return "DW_AT_inline";
12150 case DW_AT_is_optional:
12151 return "DW_AT_is_optional";
12152 case DW_AT_lower_bound:
12153 return "DW_AT_lower_bound";
12154 case DW_AT_producer:
12155 return "DW_AT_producer";
12156 case DW_AT_prototyped:
12157 return "DW_AT_prototyped";
12158 case DW_AT_return_addr:
12159 return "DW_AT_return_addr";
12160 case DW_AT_start_scope:
12161 return "DW_AT_start_scope";
09fa0d7c
JK
12162 case DW_AT_bit_stride:
12163 return "DW_AT_bit_stride";
c906108c
SS
12164 case DW_AT_upper_bound:
12165 return "DW_AT_upper_bound";
12166 case DW_AT_abstract_origin:
12167 return "DW_AT_abstract_origin";
12168 case DW_AT_accessibility:
12169 return "DW_AT_accessibility";
12170 case DW_AT_address_class:
12171 return "DW_AT_address_class";
12172 case DW_AT_artificial:
12173 return "DW_AT_artificial";
12174 case DW_AT_base_types:
12175 return "DW_AT_base_types";
12176 case DW_AT_calling_convention:
12177 return "DW_AT_calling_convention";
12178 case DW_AT_count:
12179 return "DW_AT_count";
12180 case DW_AT_data_member_location:
12181 return "DW_AT_data_member_location";
12182 case DW_AT_decl_column:
12183 return "DW_AT_decl_column";
12184 case DW_AT_decl_file:
12185 return "DW_AT_decl_file";
12186 case DW_AT_decl_line:
12187 return "DW_AT_decl_line";
12188 case DW_AT_declaration:
12189 return "DW_AT_declaration";
12190 case DW_AT_discr_list:
12191 return "DW_AT_discr_list";
12192 case DW_AT_encoding:
12193 return "DW_AT_encoding";
12194 case DW_AT_external:
12195 return "DW_AT_external";
12196 case DW_AT_frame_base:
12197 return "DW_AT_frame_base";
12198 case DW_AT_friend:
12199 return "DW_AT_friend";
12200 case DW_AT_identifier_case:
12201 return "DW_AT_identifier_case";
12202 case DW_AT_macro_info:
12203 return "DW_AT_macro_info";
12204 case DW_AT_namelist_items:
12205 return "DW_AT_namelist_items";
12206 case DW_AT_priority:
12207 return "DW_AT_priority";
12208 case DW_AT_segment:
12209 return "DW_AT_segment";
12210 case DW_AT_specification:
12211 return "DW_AT_specification";
12212 case DW_AT_static_link:
12213 return "DW_AT_static_link";
12214 case DW_AT_type:
12215 return "DW_AT_type";
12216 case DW_AT_use_location:
12217 return "DW_AT_use_location";
12218 case DW_AT_variable_parameter:
12219 return "DW_AT_variable_parameter";
12220 case DW_AT_virtuality:
12221 return "DW_AT_virtuality";
12222 case DW_AT_vtable_elem_location:
12223 return "DW_AT_vtable_elem_location";
b7619582 12224 /* DWARF 3 values. */
d9fa45fe
DC
12225 case DW_AT_allocated:
12226 return "DW_AT_allocated";
12227 case DW_AT_associated:
12228 return "DW_AT_associated";
12229 case DW_AT_data_location:
12230 return "DW_AT_data_location";
09fa0d7c
JK
12231 case DW_AT_byte_stride:
12232 return "DW_AT_byte_stride";
d9fa45fe
DC
12233 case DW_AT_entry_pc:
12234 return "DW_AT_entry_pc";
12235 case DW_AT_use_UTF8:
12236 return "DW_AT_use_UTF8";
12237 case DW_AT_extension:
12238 return "DW_AT_extension";
12239 case DW_AT_ranges:
12240 return "DW_AT_ranges";
12241 case DW_AT_trampoline:
12242 return "DW_AT_trampoline";
12243 case DW_AT_call_column:
12244 return "DW_AT_call_column";
12245 case DW_AT_call_file:
12246 return "DW_AT_call_file";
12247 case DW_AT_call_line:
12248 return "DW_AT_call_line";
b7619582
GF
12249 case DW_AT_description:
12250 return "DW_AT_description";
12251 case DW_AT_binary_scale:
12252 return "DW_AT_binary_scale";
12253 case DW_AT_decimal_scale:
12254 return "DW_AT_decimal_scale";
12255 case DW_AT_small:
12256 return "DW_AT_small";
12257 case DW_AT_decimal_sign:
12258 return "DW_AT_decimal_sign";
12259 case DW_AT_digit_count:
12260 return "DW_AT_digit_count";
12261 case DW_AT_picture_string:
12262 return "DW_AT_picture_string";
12263 case DW_AT_mutable:
12264 return "DW_AT_mutable";
12265 case DW_AT_threads_scaled:
12266 return "DW_AT_threads_scaled";
12267 case DW_AT_explicit:
12268 return "DW_AT_explicit";
12269 case DW_AT_object_pointer:
12270 return "DW_AT_object_pointer";
12271 case DW_AT_endianity:
12272 return "DW_AT_endianity";
12273 case DW_AT_elemental:
12274 return "DW_AT_elemental";
12275 case DW_AT_pure:
12276 return "DW_AT_pure";
12277 case DW_AT_recursive:
12278 return "DW_AT_recursive";
348e048f
DE
12279 /* DWARF 4 values. */
12280 case DW_AT_signature:
12281 return "DW_AT_signature";
31ef98ae
TT
12282 case DW_AT_linkage_name:
12283 return "DW_AT_linkage_name";
b7619582 12284 /* SGI/MIPS extensions. */
c764a876 12285#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
12286 case DW_AT_MIPS_fde:
12287 return "DW_AT_MIPS_fde";
c764a876 12288#endif
c906108c
SS
12289 case DW_AT_MIPS_loop_begin:
12290 return "DW_AT_MIPS_loop_begin";
12291 case DW_AT_MIPS_tail_loop_begin:
12292 return "DW_AT_MIPS_tail_loop_begin";
12293 case DW_AT_MIPS_epilog_begin:
12294 return "DW_AT_MIPS_epilog_begin";
12295 case DW_AT_MIPS_loop_unroll_factor:
12296 return "DW_AT_MIPS_loop_unroll_factor";
12297 case DW_AT_MIPS_software_pipeline_depth:
12298 return "DW_AT_MIPS_software_pipeline_depth";
12299 case DW_AT_MIPS_linkage_name:
12300 return "DW_AT_MIPS_linkage_name";
b7619582
GF
12301 case DW_AT_MIPS_stride:
12302 return "DW_AT_MIPS_stride";
12303 case DW_AT_MIPS_abstract_name:
12304 return "DW_AT_MIPS_abstract_name";
12305 case DW_AT_MIPS_clone_origin:
12306 return "DW_AT_MIPS_clone_origin";
12307 case DW_AT_MIPS_has_inlines:
12308 return "DW_AT_MIPS_has_inlines";
b7619582 12309 /* HP extensions. */
c764a876 12310#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
12311 case DW_AT_HP_block_index:
12312 return "DW_AT_HP_block_index";
c764a876 12313#endif
b7619582
GF
12314 case DW_AT_HP_unmodifiable:
12315 return "DW_AT_HP_unmodifiable";
12316 case DW_AT_HP_actuals_stmt_list:
12317 return "DW_AT_HP_actuals_stmt_list";
12318 case DW_AT_HP_proc_per_section:
12319 return "DW_AT_HP_proc_per_section";
12320 case DW_AT_HP_raw_data_ptr:
12321 return "DW_AT_HP_raw_data_ptr";
12322 case DW_AT_HP_pass_by_reference:
12323 return "DW_AT_HP_pass_by_reference";
12324 case DW_AT_HP_opt_level:
12325 return "DW_AT_HP_opt_level";
12326 case DW_AT_HP_prof_version_id:
12327 return "DW_AT_HP_prof_version_id";
12328 case DW_AT_HP_opt_flags:
12329 return "DW_AT_HP_opt_flags";
12330 case DW_AT_HP_cold_region_low_pc:
12331 return "DW_AT_HP_cold_region_low_pc";
12332 case DW_AT_HP_cold_region_high_pc:
12333 return "DW_AT_HP_cold_region_high_pc";
12334 case DW_AT_HP_all_variables_modifiable:
12335 return "DW_AT_HP_all_variables_modifiable";
12336 case DW_AT_HP_linkage_name:
12337 return "DW_AT_HP_linkage_name";
12338 case DW_AT_HP_prof_flags:
12339 return "DW_AT_HP_prof_flags";
12340 /* GNU extensions. */
c906108c
SS
12341 case DW_AT_sf_names:
12342 return "DW_AT_sf_names";
12343 case DW_AT_src_info:
12344 return "DW_AT_src_info";
12345 case DW_AT_mac_info:
12346 return "DW_AT_mac_info";
12347 case DW_AT_src_coords:
12348 return "DW_AT_src_coords";
12349 case DW_AT_body_begin:
12350 return "DW_AT_body_begin";
12351 case DW_AT_body_end:
12352 return "DW_AT_body_end";
f5f8a009
EZ
12353 case DW_AT_GNU_vector:
12354 return "DW_AT_GNU_vector";
2de00c64
DE
12355 case DW_AT_GNU_odr_signature:
12356 return "DW_AT_GNU_odr_signature";
b7619582
GF
12357 /* VMS extensions. */
12358 case DW_AT_VMS_rtnbeg_pd_address:
12359 return "DW_AT_VMS_rtnbeg_pd_address";
12360 /* UPC extension. */
12361 case DW_AT_upc_threads_scaled:
12362 return "DW_AT_upc_threads_scaled";
12363 /* PGI (STMicroelectronics) extensions. */
12364 case DW_AT_PGI_lbase:
12365 return "DW_AT_PGI_lbase";
12366 case DW_AT_PGI_soffset:
12367 return "DW_AT_PGI_soffset";
12368 case DW_AT_PGI_lstride:
12369 return "DW_AT_PGI_lstride";
c906108c
SS
12370 default:
12371 return "DW_AT_<unknown>";
12372 }
12373}
12374
12375/* Convert a DWARF value form code into its string name. */
12376
12377static char *
aa1ee363 12378dwarf_form_name (unsigned form)
c906108c
SS
12379{
12380 switch (form)
12381 {
12382 case DW_FORM_addr:
12383 return "DW_FORM_addr";
12384 case DW_FORM_block2:
12385 return "DW_FORM_block2";
12386 case DW_FORM_block4:
12387 return "DW_FORM_block4";
12388 case DW_FORM_data2:
12389 return "DW_FORM_data2";
12390 case DW_FORM_data4:
12391 return "DW_FORM_data4";
12392 case DW_FORM_data8:
12393 return "DW_FORM_data8";
12394 case DW_FORM_string:
12395 return "DW_FORM_string";
12396 case DW_FORM_block:
12397 return "DW_FORM_block";
12398 case DW_FORM_block1:
12399 return "DW_FORM_block1";
12400 case DW_FORM_data1:
12401 return "DW_FORM_data1";
12402 case DW_FORM_flag:
12403 return "DW_FORM_flag";
12404 case DW_FORM_sdata:
12405 return "DW_FORM_sdata";
12406 case DW_FORM_strp:
12407 return "DW_FORM_strp";
12408 case DW_FORM_udata:
12409 return "DW_FORM_udata";
12410 case DW_FORM_ref_addr:
12411 return "DW_FORM_ref_addr";
12412 case DW_FORM_ref1:
12413 return "DW_FORM_ref1";
12414 case DW_FORM_ref2:
12415 return "DW_FORM_ref2";
12416 case DW_FORM_ref4:
12417 return "DW_FORM_ref4";
12418 case DW_FORM_ref8:
12419 return "DW_FORM_ref8";
12420 case DW_FORM_ref_udata:
12421 return "DW_FORM_ref_udata";
12422 case DW_FORM_indirect:
12423 return "DW_FORM_indirect";
348e048f
DE
12424 case DW_FORM_sec_offset:
12425 return "DW_FORM_sec_offset";
12426 case DW_FORM_exprloc:
12427 return "DW_FORM_exprloc";
12428 case DW_FORM_flag_present:
12429 return "DW_FORM_flag_present";
12430 case DW_FORM_sig8:
12431 return "DW_FORM_sig8";
c906108c
SS
12432 default:
12433 return "DW_FORM_<unknown>";
12434 }
12435}
12436
12437/* Convert a DWARF stack opcode into its string name. */
12438
9eae7c52
TT
12439const char *
12440dwarf_stack_op_name (unsigned op, int def)
c906108c
SS
12441{
12442 switch (op)
12443 {
12444 case DW_OP_addr:
12445 return "DW_OP_addr";
12446 case DW_OP_deref:
12447 return "DW_OP_deref";
12448 case DW_OP_const1u:
12449 return "DW_OP_const1u";
12450 case DW_OP_const1s:
12451 return "DW_OP_const1s";
12452 case DW_OP_const2u:
12453 return "DW_OP_const2u";
12454 case DW_OP_const2s:
12455 return "DW_OP_const2s";
12456 case DW_OP_const4u:
12457 return "DW_OP_const4u";
12458 case DW_OP_const4s:
12459 return "DW_OP_const4s";
12460 case DW_OP_const8u:
12461 return "DW_OP_const8u";
12462 case DW_OP_const8s:
12463 return "DW_OP_const8s";
12464 case DW_OP_constu:
12465 return "DW_OP_constu";
12466 case DW_OP_consts:
12467 return "DW_OP_consts";
12468 case DW_OP_dup:
12469 return "DW_OP_dup";
12470 case DW_OP_drop:
12471 return "DW_OP_drop";
12472 case DW_OP_over:
12473 return "DW_OP_over";
12474 case DW_OP_pick:
12475 return "DW_OP_pick";
12476 case DW_OP_swap:
12477 return "DW_OP_swap";
12478 case DW_OP_rot:
12479 return "DW_OP_rot";
12480 case DW_OP_xderef:
12481 return "DW_OP_xderef";
12482 case DW_OP_abs:
12483 return "DW_OP_abs";
12484 case DW_OP_and:
12485 return "DW_OP_and";
12486 case DW_OP_div:
12487 return "DW_OP_div";
12488 case DW_OP_minus:
12489 return "DW_OP_minus";
12490 case DW_OP_mod:
12491 return "DW_OP_mod";
12492 case DW_OP_mul:
12493 return "DW_OP_mul";
12494 case DW_OP_neg:
12495 return "DW_OP_neg";
12496 case DW_OP_not:
12497 return "DW_OP_not";
12498 case DW_OP_or:
12499 return "DW_OP_or";
12500 case DW_OP_plus:
12501 return "DW_OP_plus";
12502 case DW_OP_plus_uconst:
12503 return "DW_OP_plus_uconst";
12504 case DW_OP_shl:
12505 return "DW_OP_shl";
12506 case DW_OP_shr:
12507 return "DW_OP_shr";
12508 case DW_OP_shra:
12509 return "DW_OP_shra";
12510 case DW_OP_xor:
12511 return "DW_OP_xor";
12512 case DW_OP_bra:
12513 return "DW_OP_bra";
12514 case DW_OP_eq:
12515 return "DW_OP_eq";
12516 case DW_OP_ge:
12517 return "DW_OP_ge";
12518 case DW_OP_gt:
12519 return "DW_OP_gt";
12520 case DW_OP_le:
12521 return "DW_OP_le";
12522 case DW_OP_lt:
12523 return "DW_OP_lt";
12524 case DW_OP_ne:
12525 return "DW_OP_ne";
12526 case DW_OP_skip:
12527 return "DW_OP_skip";
12528 case DW_OP_lit0:
12529 return "DW_OP_lit0";
12530 case DW_OP_lit1:
12531 return "DW_OP_lit1";
12532 case DW_OP_lit2:
12533 return "DW_OP_lit2";
12534 case DW_OP_lit3:
12535 return "DW_OP_lit3";
12536 case DW_OP_lit4:
12537 return "DW_OP_lit4";
12538 case DW_OP_lit5:
12539 return "DW_OP_lit5";
12540 case DW_OP_lit6:
12541 return "DW_OP_lit6";
12542 case DW_OP_lit7:
12543 return "DW_OP_lit7";
12544 case DW_OP_lit8:
12545 return "DW_OP_lit8";
12546 case DW_OP_lit9:
12547 return "DW_OP_lit9";
12548 case DW_OP_lit10:
12549 return "DW_OP_lit10";
12550 case DW_OP_lit11:
12551 return "DW_OP_lit11";
12552 case DW_OP_lit12:
12553 return "DW_OP_lit12";
12554 case DW_OP_lit13:
12555 return "DW_OP_lit13";
12556 case DW_OP_lit14:
12557 return "DW_OP_lit14";
12558 case DW_OP_lit15:
12559 return "DW_OP_lit15";
12560 case DW_OP_lit16:
12561 return "DW_OP_lit16";
12562 case DW_OP_lit17:
12563 return "DW_OP_lit17";
12564 case DW_OP_lit18:
12565 return "DW_OP_lit18";
12566 case DW_OP_lit19:
12567 return "DW_OP_lit19";
12568 case DW_OP_lit20:
12569 return "DW_OP_lit20";
12570 case DW_OP_lit21:
12571 return "DW_OP_lit21";
12572 case DW_OP_lit22:
12573 return "DW_OP_lit22";
12574 case DW_OP_lit23:
12575 return "DW_OP_lit23";
12576 case DW_OP_lit24:
12577 return "DW_OP_lit24";
12578 case DW_OP_lit25:
12579 return "DW_OP_lit25";
12580 case DW_OP_lit26:
12581 return "DW_OP_lit26";
12582 case DW_OP_lit27:
12583 return "DW_OP_lit27";
12584 case DW_OP_lit28:
12585 return "DW_OP_lit28";
12586 case DW_OP_lit29:
12587 return "DW_OP_lit29";
12588 case DW_OP_lit30:
12589 return "DW_OP_lit30";
12590 case DW_OP_lit31:
12591 return "DW_OP_lit31";
12592 case DW_OP_reg0:
12593 return "DW_OP_reg0";
12594 case DW_OP_reg1:
12595 return "DW_OP_reg1";
12596 case DW_OP_reg2:
12597 return "DW_OP_reg2";
12598 case DW_OP_reg3:
12599 return "DW_OP_reg3";
12600 case DW_OP_reg4:
12601 return "DW_OP_reg4";
12602 case DW_OP_reg5:
12603 return "DW_OP_reg5";
12604 case DW_OP_reg6:
12605 return "DW_OP_reg6";
12606 case DW_OP_reg7:
12607 return "DW_OP_reg7";
12608 case DW_OP_reg8:
12609 return "DW_OP_reg8";
12610 case DW_OP_reg9:
12611 return "DW_OP_reg9";
12612 case DW_OP_reg10:
12613 return "DW_OP_reg10";
12614 case DW_OP_reg11:
12615 return "DW_OP_reg11";
12616 case DW_OP_reg12:
12617 return "DW_OP_reg12";
12618 case DW_OP_reg13:
12619 return "DW_OP_reg13";
12620 case DW_OP_reg14:
12621 return "DW_OP_reg14";
12622 case DW_OP_reg15:
12623 return "DW_OP_reg15";
12624 case DW_OP_reg16:
12625 return "DW_OP_reg16";
12626 case DW_OP_reg17:
12627 return "DW_OP_reg17";
12628 case DW_OP_reg18:
12629 return "DW_OP_reg18";
12630 case DW_OP_reg19:
12631 return "DW_OP_reg19";
12632 case DW_OP_reg20:
12633 return "DW_OP_reg20";
12634 case DW_OP_reg21:
12635 return "DW_OP_reg21";
12636 case DW_OP_reg22:
12637 return "DW_OP_reg22";
12638 case DW_OP_reg23:
12639 return "DW_OP_reg23";
12640 case DW_OP_reg24:
12641 return "DW_OP_reg24";
12642 case DW_OP_reg25:
12643 return "DW_OP_reg25";
12644 case DW_OP_reg26:
12645 return "DW_OP_reg26";
12646 case DW_OP_reg27:
12647 return "DW_OP_reg27";
12648 case DW_OP_reg28:
12649 return "DW_OP_reg28";
12650 case DW_OP_reg29:
12651 return "DW_OP_reg29";
12652 case DW_OP_reg30:
12653 return "DW_OP_reg30";
12654 case DW_OP_reg31:
12655 return "DW_OP_reg31";
12656 case DW_OP_breg0:
12657 return "DW_OP_breg0";
12658 case DW_OP_breg1:
12659 return "DW_OP_breg1";
12660 case DW_OP_breg2:
12661 return "DW_OP_breg2";
12662 case DW_OP_breg3:
12663 return "DW_OP_breg3";
12664 case DW_OP_breg4:
12665 return "DW_OP_breg4";
12666 case DW_OP_breg5:
12667 return "DW_OP_breg5";
12668 case DW_OP_breg6:
12669 return "DW_OP_breg6";
12670 case DW_OP_breg7:
12671 return "DW_OP_breg7";
12672 case DW_OP_breg8:
12673 return "DW_OP_breg8";
12674 case DW_OP_breg9:
12675 return "DW_OP_breg9";
12676 case DW_OP_breg10:
12677 return "DW_OP_breg10";
12678 case DW_OP_breg11:
12679 return "DW_OP_breg11";
12680 case DW_OP_breg12:
12681 return "DW_OP_breg12";
12682 case DW_OP_breg13:
12683 return "DW_OP_breg13";
12684 case DW_OP_breg14:
12685 return "DW_OP_breg14";
12686 case DW_OP_breg15:
12687 return "DW_OP_breg15";
12688 case DW_OP_breg16:
12689 return "DW_OP_breg16";
12690 case DW_OP_breg17:
12691 return "DW_OP_breg17";
12692 case DW_OP_breg18:
12693 return "DW_OP_breg18";
12694 case DW_OP_breg19:
12695 return "DW_OP_breg19";
12696 case DW_OP_breg20:
12697 return "DW_OP_breg20";
12698 case DW_OP_breg21:
12699 return "DW_OP_breg21";
12700 case DW_OP_breg22:
12701 return "DW_OP_breg22";
12702 case DW_OP_breg23:
12703 return "DW_OP_breg23";
12704 case DW_OP_breg24:
12705 return "DW_OP_breg24";
12706 case DW_OP_breg25:
12707 return "DW_OP_breg25";
12708 case DW_OP_breg26:
12709 return "DW_OP_breg26";
12710 case DW_OP_breg27:
12711 return "DW_OP_breg27";
12712 case DW_OP_breg28:
12713 return "DW_OP_breg28";
12714 case DW_OP_breg29:
12715 return "DW_OP_breg29";
12716 case DW_OP_breg30:
12717 return "DW_OP_breg30";
12718 case DW_OP_breg31:
12719 return "DW_OP_breg31";
12720 case DW_OP_regx:
12721 return "DW_OP_regx";
12722 case DW_OP_fbreg:
12723 return "DW_OP_fbreg";
12724 case DW_OP_bregx:
12725 return "DW_OP_bregx";
12726 case DW_OP_piece:
12727 return "DW_OP_piece";
12728 case DW_OP_deref_size:
12729 return "DW_OP_deref_size";
12730 case DW_OP_xderef_size:
12731 return "DW_OP_xderef_size";
12732 case DW_OP_nop:
12733 return "DW_OP_nop";
b7619582 12734 /* DWARF 3 extensions. */
ed348acc
EZ
12735 case DW_OP_push_object_address:
12736 return "DW_OP_push_object_address";
12737 case DW_OP_call2:
12738 return "DW_OP_call2";
12739 case DW_OP_call4:
12740 return "DW_OP_call4";
12741 case DW_OP_call_ref:
12742 return "DW_OP_call_ref";
b7619582
GF
12743 case DW_OP_form_tls_address:
12744 return "DW_OP_form_tls_address";
12745 case DW_OP_call_frame_cfa:
12746 return "DW_OP_call_frame_cfa";
12747 case DW_OP_bit_piece:
12748 return "DW_OP_bit_piece";
9eae7c52
TT
12749 /* DWARF 4 extensions. */
12750 case DW_OP_implicit_value:
12751 return "DW_OP_implicit_value";
12752 case DW_OP_stack_value:
12753 return "DW_OP_stack_value";
12754 /* GNU extensions. */
ed348acc
EZ
12755 case DW_OP_GNU_push_tls_address:
12756 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
12757 case DW_OP_GNU_uninit:
12758 return "DW_OP_GNU_uninit";
8cf6f0b1
TT
12759 case DW_OP_GNU_implicit_pointer:
12760 return "DW_OP_GNU_implicit_pointer";
c906108c 12761 default:
9eae7c52 12762 return def ? "OP_<unknown>" : NULL;
c906108c
SS
12763 }
12764}
12765
12766static char *
fba45db2 12767dwarf_bool_name (unsigned mybool)
c906108c
SS
12768{
12769 if (mybool)
12770 return "TRUE";
12771 else
12772 return "FALSE";
12773}
12774
12775/* Convert a DWARF type code into its string name. */
12776
12777static char *
aa1ee363 12778dwarf_type_encoding_name (unsigned enc)
c906108c
SS
12779{
12780 switch (enc)
12781 {
b7619582
GF
12782 case DW_ATE_void:
12783 return "DW_ATE_void";
c906108c
SS
12784 case DW_ATE_address:
12785 return "DW_ATE_address";
12786 case DW_ATE_boolean:
12787 return "DW_ATE_boolean";
12788 case DW_ATE_complex_float:
12789 return "DW_ATE_complex_float";
12790 case DW_ATE_float:
12791 return "DW_ATE_float";
12792 case DW_ATE_signed:
12793 return "DW_ATE_signed";
12794 case DW_ATE_signed_char:
12795 return "DW_ATE_signed_char";
12796 case DW_ATE_unsigned:
12797 return "DW_ATE_unsigned";
12798 case DW_ATE_unsigned_char:
12799 return "DW_ATE_unsigned_char";
b7619582 12800 /* DWARF 3. */
d9fa45fe
DC
12801 case DW_ATE_imaginary_float:
12802 return "DW_ATE_imaginary_float";
b7619582
GF
12803 case DW_ATE_packed_decimal:
12804 return "DW_ATE_packed_decimal";
12805 case DW_ATE_numeric_string:
12806 return "DW_ATE_numeric_string";
12807 case DW_ATE_edited:
12808 return "DW_ATE_edited";
12809 case DW_ATE_signed_fixed:
12810 return "DW_ATE_signed_fixed";
12811 case DW_ATE_unsigned_fixed:
12812 return "DW_ATE_unsigned_fixed";
12813 case DW_ATE_decimal_float:
12814 return "DW_ATE_decimal_float";
75079b2b
TT
12815 /* DWARF 4. */
12816 case DW_ATE_UTF:
12817 return "DW_ATE_UTF";
b7619582
GF
12818 /* HP extensions. */
12819 case DW_ATE_HP_float80:
12820 return "DW_ATE_HP_float80";
12821 case DW_ATE_HP_complex_float80:
12822 return "DW_ATE_HP_complex_float80";
12823 case DW_ATE_HP_float128:
12824 return "DW_ATE_HP_float128";
12825 case DW_ATE_HP_complex_float128:
12826 return "DW_ATE_HP_complex_float128";
12827 case DW_ATE_HP_floathpintel:
12828 return "DW_ATE_HP_floathpintel";
12829 case DW_ATE_HP_imaginary_float80:
12830 return "DW_ATE_HP_imaginary_float80";
12831 case DW_ATE_HP_imaginary_float128:
12832 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
12833 default:
12834 return "DW_ATE_<unknown>";
12835 }
12836}
12837
12838/* Convert a DWARF call frame info operation to its string name. */
12839
12840#if 0
12841static char *
aa1ee363 12842dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
12843{
12844 switch (cfi_opc)
12845 {
12846 case DW_CFA_advance_loc:
12847 return "DW_CFA_advance_loc";
12848 case DW_CFA_offset:
12849 return "DW_CFA_offset";
12850 case DW_CFA_restore:
12851 return "DW_CFA_restore";
12852 case DW_CFA_nop:
12853 return "DW_CFA_nop";
12854 case DW_CFA_set_loc:
12855 return "DW_CFA_set_loc";
12856 case DW_CFA_advance_loc1:
12857 return "DW_CFA_advance_loc1";
12858 case DW_CFA_advance_loc2:
12859 return "DW_CFA_advance_loc2";
12860 case DW_CFA_advance_loc4:
12861 return "DW_CFA_advance_loc4";
12862 case DW_CFA_offset_extended:
12863 return "DW_CFA_offset_extended";
12864 case DW_CFA_restore_extended:
12865 return "DW_CFA_restore_extended";
12866 case DW_CFA_undefined:
12867 return "DW_CFA_undefined";
12868 case DW_CFA_same_value:
12869 return "DW_CFA_same_value";
12870 case DW_CFA_register:
12871 return "DW_CFA_register";
12872 case DW_CFA_remember_state:
12873 return "DW_CFA_remember_state";
12874 case DW_CFA_restore_state:
12875 return "DW_CFA_restore_state";
12876 case DW_CFA_def_cfa:
12877 return "DW_CFA_def_cfa";
12878 case DW_CFA_def_cfa_register:
12879 return "DW_CFA_def_cfa_register";
12880 case DW_CFA_def_cfa_offset:
12881 return "DW_CFA_def_cfa_offset";
b7619582 12882 /* DWARF 3. */
985cb1a3
JM
12883 case DW_CFA_def_cfa_expression:
12884 return "DW_CFA_def_cfa_expression";
12885 case DW_CFA_expression:
12886 return "DW_CFA_expression";
12887 case DW_CFA_offset_extended_sf:
12888 return "DW_CFA_offset_extended_sf";
12889 case DW_CFA_def_cfa_sf:
12890 return "DW_CFA_def_cfa_sf";
12891 case DW_CFA_def_cfa_offset_sf:
12892 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
12893 case DW_CFA_val_offset:
12894 return "DW_CFA_val_offset";
12895 case DW_CFA_val_offset_sf:
12896 return "DW_CFA_val_offset_sf";
12897 case DW_CFA_val_expression:
12898 return "DW_CFA_val_expression";
12899 /* SGI/MIPS specific. */
c906108c
SS
12900 case DW_CFA_MIPS_advance_loc8:
12901 return "DW_CFA_MIPS_advance_loc8";
b7619582 12902 /* GNU extensions. */
985cb1a3
JM
12903 case DW_CFA_GNU_window_save:
12904 return "DW_CFA_GNU_window_save";
12905 case DW_CFA_GNU_args_size:
12906 return "DW_CFA_GNU_args_size";
12907 case DW_CFA_GNU_negative_offset_extended:
12908 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
12909 default:
12910 return "DW_CFA_<unknown>";
12911 }
12912}
12913#endif
12914
f9aca02d 12915static void
d97bc12b 12916dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
12917{
12918 unsigned int i;
12919
d97bc12b
DE
12920 print_spaces (indent, f);
12921 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 12922 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
12923
12924 if (die->parent != NULL)
12925 {
12926 print_spaces (indent, f);
12927 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12928 die->parent->offset);
12929 }
12930
12931 print_spaces (indent, f);
12932 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 12933 dwarf_bool_name (die->child != NULL));
c906108c 12934
d97bc12b
DE
12935 print_spaces (indent, f);
12936 fprintf_unfiltered (f, " attributes:\n");
12937
c906108c
SS
12938 for (i = 0; i < die->num_attrs; ++i)
12939 {
d97bc12b
DE
12940 print_spaces (indent, f);
12941 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
12942 dwarf_attr_name (die->attrs[i].name),
12943 dwarf_form_name (die->attrs[i].form));
d97bc12b 12944
c906108c
SS
12945 switch (die->attrs[i].form)
12946 {
12947 case DW_FORM_ref_addr:
12948 case DW_FORM_addr:
d97bc12b 12949 fprintf_unfiltered (f, "address: ");
5af949e3 12950 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
12951 break;
12952 case DW_FORM_block2:
12953 case DW_FORM_block4:
12954 case DW_FORM_block:
12955 case DW_FORM_block1:
3e43a32a
MS
12956 fprintf_unfiltered (f, "block: size %d",
12957 DW_BLOCK (&die->attrs[i])->size);
c906108c 12958 break;
2dc7f7b3
TT
12959 case DW_FORM_exprloc:
12960 fprintf_unfiltered (f, "expression: size %u",
12961 DW_BLOCK (&die->attrs[i])->size);
12962 break;
10b3939b
DJ
12963 case DW_FORM_ref1:
12964 case DW_FORM_ref2:
12965 case DW_FORM_ref4:
d97bc12b 12966 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
12967 (long) (DW_ADDR (&die->attrs[i])));
12968 break;
c906108c
SS
12969 case DW_FORM_data1:
12970 case DW_FORM_data2:
12971 case DW_FORM_data4:
ce5d95e1 12972 case DW_FORM_data8:
c906108c
SS
12973 case DW_FORM_udata:
12974 case DW_FORM_sdata:
43bbcdc2
PH
12975 fprintf_unfiltered (f, "constant: %s",
12976 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 12977 break;
2dc7f7b3
TT
12978 case DW_FORM_sec_offset:
12979 fprintf_unfiltered (f, "section offset: %s",
12980 pulongest (DW_UNSND (&die->attrs[i])));
12981 break;
348e048f
DE
12982 case DW_FORM_sig8:
12983 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12984 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12985 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12986 else
12987 fprintf_unfiltered (f, "signatured type, offset: unknown");
12988 break;
c906108c 12989 case DW_FORM_string:
4bdf3d34 12990 case DW_FORM_strp:
8285870a 12991 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 12992 DW_STRING (&die->attrs[i])
8285870a
JK
12993 ? DW_STRING (&die->attrs[i]) : "",
12994 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
12995 break;
12996 case DW_FORM_flag:
12997 if (DW_UNSND (&die->attrs[i]))
d97bc12b 12998 fprintf_unfiltered (f, "flag: TRUE");
c906108c 12999 else
d97bc12b 13000 fprintf_unfiltered (f, "flag: FALSE");
c906108c 13001 break;
2dc7f7b3
TT
13002 case DW_FORM_flag_present:
13003 fprintf_unfiltered (f, "flag: TRUE");
13004 break;
a8329558
KW
13005 case DW_FORM_indirect:
13006 /* the reader will have reduced the indirect form to
13007 the "base form" so this form should not occur */
3e43a32a
MS
13008 fprintf_unfiltered (f,
13009 "unexpected attribute form: DW_FORM_indirect");
a8329558 13010 break;
c906108c 13011 default:
d97bc12b 13012 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 13013 die->attrs[i].form);
d97bc12b 13014 break;
c906108c 13015 }
d97bc12b 13016 fprintf_unfiltered (f, "\n");
c906108c
SS
13017 }
13018}
13019
f9aca02d 13020static void
d97bc12b 13021dump_die_for_error (struct die_info *die)
c906108c 13022{
d97bc12b
DE
13023 dump_die_shallow (gdb_stderr, 0, die);
13024}
13025
13026static void
13027dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13028{
13029 int indent = level * 4;
13030
13031 gdb_assert (die != NULL);
13032
13033 if (level >= max_level)
13034 return;
13035
13036 dump_die_shallow (f, indent, die);
13037
13038 if (die->child != NULL)
c906108c 13039 {
d97bc12b
DE
13040 print_spaces (indent, f);
13041 fprintf_unfiltered (f, " Children:");
13042 if (level + 1 < max_level)
13043 {
13044 fprintf_unfiltered (f, "\n");
13045 dump_die_1 (f, level + 1, max_level, die->child);
13046 }
13047 else
13048 {
3e43a32a
MS
13049 fprintf_unfiltered (f,
13050 " [not printed, max nesting level reached]\n");
d97bc12b
DE
13051 }
13052 }
13053
13054 if (die->sibling != NULL && level > 0)
13055 {
13056 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
13057 }
13058}
13059
d97bc12b
DE
13060/* This is called from the pdie macro in gdbinit.in.
13061 It's not static so gcc will keep a copy callable from gdb. */
13062
13063void
13064dump_die (struct die_info *die, int max_level)
13065{
13066 dump_die_1 (gdb_stdlog, 0, max_level, die);
13067}
13068
f9aca02d 13069static void
51545339 13070store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13071{
51545339 13072 void **slot;
c906108c 13073
51545339
DJ
13074 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13075
13076 *slot = die;
c906108c
SS
13077}
13078
93311388
DE
13079static int
13080is_ref_attr (struct attribute *attr)
c906108c 13081{
c906108c
SS
13082 switch (attr->form)
13083 {
13084 case DW_FORM_ref_addr:
c906108c
SS
13085 case DW_FORM_ref1:
13086 case DW_FORM_ref2:
13087 case DW_FORM_ref4:
613e1657 13088 case DW_FORM_ref8:
c906108c 13089 case DW_FORM_ref_udata:
93311388 13090 return 1;
c906108c 13091 default:
93311388 13092 return 0;
c906108c 13093 }
93311388
DE
13094}
13095
13096static unsigned int
13097dwarf2_get_ref_die_offset (struct attribute *attr)
13098{
13099 if (is_ref_attr (attr))
13100 return DW_ADDR (attr);
13101
13102 complaint (&symfile_complaints,
13103 _("unsupported die ref attribute form: '%s'"),
13104 dwarf_form_name (attr->form));
13105 return 0;
c906108c
SS
13106}
13107
43bbcdc2
PH
13108/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13109 * the value held by the attribute is not constant. */
a02abb62 13110
43bbcdc2 13111static LONGEST
a02abb62
JB
13112dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13113{
13114 if (attr->form == DW_FORM_sdata)
13115 return DW_SND (attr);
13116 else if (attr->form == DW_FORM_udata
13117 || attr->form == DW_FORM_data1
13118 || attr->form == DW_FORM_data2
13119 || attr->form == DW_FORM_data4
13120 || attr->form == DW_FORM_data8)
13121 return DW_UNSND (attr);
13122 else
13123 {
3e43a32a
MS
13124 complaint (&symfile_complaints,
13125 _("Attribute value is not a constant (%s)"),
a02abb62
JB
13126 dwarf_form_name (attr->form));
13127 return default_value;
13128 }
13129}
13130
03dd20cc 13131/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
13132 unit and add it to our queue.
13133 The result is non-zero if PER_CU was queued, otherwise the result is zero
13134 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 13135
348e048f 13136static int
03dd20cc
DJ
13137maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13138 struct dwarf2_per_cu_data *per_cu)
13139{
98bfdba5
PA
13140 /* We may arrive here during partial symbol reading, if we need full
13141 DIEs to process an unusual case (e.g. template arguments). Do
13142 not queue PER_CU, just tell our caller to load its DIEs. */
13143 if (dwarf2_per_objfile->reading_partial_symbols)
13144 {
13145 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13146 return 1;
13147 return 0;
13148 }
13149
03dd20cc
DJ
13150 /* Mark the dependence relation so that we don't flush PER_CU
13151 too early. */
13152 dwarf2_add_dependence (this_cu, per_cu);
13153
13154 /* If it's already on the queue, we have nothing to do. */
13155 if (per_cu->queued)
348e048f 13156 return 0;
03dd20cc
DJ
13157
13158 /* If the compilation unit is already loaded, just mark it as
13159 used. */
13160 if (per_cu->cu != NULL)
13161 {
13162 per_cu->cu->last_used = 0;
348e048f 13163 return 0;
03dd20cc
DJ
13164 }
13165
13166 /* Add it to the queue. */
13167 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
13168
13169 return 1;
13170}
13171
13172/* Follow reference or signature attribute ATTR of SRC_DIE.
13173 On entry *REF_CU is the CU of SRC_DIE.
13174 On exit *REF_CU is the CU of the result. */
13175
13176static struct die_info *
13177follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13178 struct dwarf2_cu **ref_cu)
13179{
13180 struct die_info *die;
13181
13182 if (is_ref_attr (attr))
13183 die = follow_die_ref (src_die, attr, ref_cu);
13184 else if (attr->form == DW_FORM_sig8)
13185 die = follow_die_sig (src_die, attr, ref_cu);
13186 else
13187 {
13188 dump_die_for_error (src_die);
13189 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13190 (*ref_cu)->objfile->name);
13191 }
13192
13193 return die;
03dd20cc
DJ
13194}
13195
5c631832 13196/* Follow reference OFFSET.
673bfd45
DE
13197 On entry *REF_CU is the CU of the source die referencing OFFSET.
13198 On exit *REF_CU is the CU of the result.
13199 Returns NULL if OFFSET is invalid. */
f504f079 13200
f9aca02d 13201static struct die_info *
5c631832 13202follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 13203{
10b3939b 13204 struct die_info temp_die;
f2f0e013 13205 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 13206
348e048f
DE
13207 gdb_assert (cu->per_cu != NULL);
13208
98bfdba5
PA
13209 target_cu = cu;
13210
348e048f
DE
13211 if (cu->per_cu->from_debug_types)
13212 {
13213 /* .debug_types CUs cannot reference anything outside their CU.
13214 If they need to, they have to reference a signatured type via
13215 DW_FORM_sig8. */
13216 if (! offset_in_cu_p (&cu->header, offset))
5c631832 13217 return NULL;
348e048f
DE
13218 }
13219 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
13220 {
13221 struct dwarf2_per_cu_data *per_cu;
9a619af0 13222
45452591 13223 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
13224
13225 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
13226 if (maybe_queue_comp_unit (cu, per_cu))
13227 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 13228
10b3939b
DJ
13229 target_cu = per_cu->cu;
13230 }
98bfdba5
PA
13231 else if (cu->dies == NULL)
13232 {
13233 /* We're loading full DIEs during partial symbol reading. */
13234 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13235 load_full_comp_unit (cu->per_cu, cu->objfile);
13236 }
c906108c 13237
f2f0e013 13238 *ref_cu = target_cu;
51545339 13239 temp_die.offset = offset;
5c631832
JK
13240 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13241}
10b3939b 13242
5c631832
JK
13243/* Follow reference attribute ATTR of SRC_DIE.
13244 On entry *REF_CU is the CU of SRC_DIE.
13245 On exit *REF_CU is the CU of the result. */
13246
13247static struct die_info *
13248follow_die_ref (struct die_info *src_die, struct attribute *attr,
13249 struct dwarf2_cu **ref_cu)
13250{
13251 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13252 struct dwarf2_cu *cu = *ref_cu;
13253 struct die_info *die;
13254
13255 die = follow_die_offset (offset, ref_cu);
13256 if (!die)
13257 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13258 "at 0x%x [in module %s]"),
13259 offset, src_die->offset, cu->objfile->name);
348e048f 13260
5c631832
JK
13261 return die;
13262}
13263
13264/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13265 value is intended for DW_OP_call*. */
13266
13267struct dwarf2_locexpr_baton
13268dwarf2_fetch_die_location_block (unsigned int offset,
8cf6f0b1
TT
13269 struct dwarf2_per_cu_data *per_cu,
13270 CORE_ADDR (*get_frame_pc) (void *baton),
13271 void *baton)
5c631832
JK
13272{
13273 struct dwarf2_cu *cu = per_cu->cu;
13274 struct die_info *die;
13275 struct attribute *attr;
13276 struct dwarf2_locexpr_baton retval;
13277
8cf6f0b1
TT
13278 dw2_setup (per_cu->objfile);
13279
5c631832
JK
13280 die = follow_die_offset (offset, &cu);
13281 if (!die)
13282 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13283 offset, per_cu->cu->objfile->name);
13284
13285 attr = dwarf2_attr (die, DW_AT_location, cu);
13286 if (!attr)
13287 {
13288 /* DWARF: "If there is no such attribute, then there is no effect.". */
13289
13290 retval.data = NULL;
13291 retval.size = 0;
13292 }
8cf6f0b1
TT
13293 else if (attr_form_is_section_offset (attr))
13294 {
13295 struct dwarf2_loclist_baton loclist_baton;
13296 CORE_ADDR pc = (*get_frame_pc) (baton);
13297 size_t size;
13298
13299 fill_in_loclist_baton (cu, &loclist_baton, attr);
13300
13301 retval.data = dwarf2_find_location_expression (&loclist_baton,
13302 &size, pc);
13303 retval.size = size;
13304 }
5c631832
JK
13305 else
13306 {
13307 if (!attr_form_is_block (attr))
13308 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13309 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13310 offset, per_cu->cu->objfile->name);
13311
13312 retval.data = DW_BLOCK (attr)->data;
13313 retval.size = DW_BLOCK (attr)->size;
13314 }
13315 retval.per_cu = cu->per_cu;
13316 return retval;
348e048f
DE
13317}
13318
13319/* Follow the signature attribute ATTR in SRC_DIE.
13320 On entry *REF_CU is the CU of SRC_DIE.
13321 On exit *REF_CU is the CU of the result. */
13322
13323static struct die_info *
13324follow_die_sig (struct die_info *src_die, struct attribute *attr,
13325 struct dwarf2_cu **ref_cu)
13326{
13327 struct objfile *objfile = (*ref_cu)->objfile;
13328 struct die_info temp_die;
13329 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13330 struct dwarf2_cu *sig_cu;
13331 struct die_info *die;
13332
13333 /* sig_type will be NULL if the signatured type is missing from
13334 the debug info. */
13335 if (sig_type == NULL)
13336 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13337 "at 0x%x [in module %s]"),
13338 src_die->offset, objfile->name);
13339
13340 /* If necessary, add it to the queue and load its DIEs. */
13341
13342 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13343 read_signatured_type (objfile, sig_type);
13344
13345 gdb_assert (sig_type->per_cu.cu != NULL);
13346
13347 sig_cu = sig_type->per_cu.cu;
13348 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13349 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13350 if (die)
13351 {
13352 *ref_cu = sig_cu;
13353 return die;
13354 }
13355
3e43a32a
MS
13356 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13357 "from DIE at 0x%x [in module %s]"),
348e048f
DE
13358 sig_type->type_offset, src_die->offset, objfile->name);
13359}
13360
13361/* Given an offset of a signatured type, return its signatured_type. */
13362
13363static struct signatured_type *
13364lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13365{
13366 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13367 unsigned int length, initial_length_size;
13368 unsigned int sig_offset;
13369 struct signatured_type find_entry, *type_sig;
13370
13371 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13372 sig_offset = (initial_length_size
13373 + 2 /*version*/
13374 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13375 + 1 /*address_size*/);
13376 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13377 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13378
13379 /* This is only used to lookup previously recorded types.
13380 If we didn't find it, it's our bug. */
13381 gdb_assert (type_sig != NULL);
13382 gdb_assert (offset == type_sig->offset);
13383
13384 return type_sig;
13385}
13386
13387/* Read in signatured type at OFFSET and build its CU and die(s). */
13388
13389static void
13390read_signatured_type_at_offset (struct objfile *objfile,
13391 unsigned int offset)
13392{
13393 struct signatured_type *type_sig;
13394
be391dca
TT
13395 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13396
348e048f
DE
13397 /* We have the section offset, but we need the signature to do the
13398 hash table lookup. */
13399 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13400
13401 gdb_assert (type_sig->per_cu.cu == NULL);
13402
13403 read_signatured_type (objfile, type_sig);
13404
13405 gdb_assert (type_sig->per_cu.cu != NULL);
13406}
13407
13408/* Read in a signatured type and build its CU and DIEs. */
13409
13410static void
13411read_signatured_type (struct objfile *objfile,
13412 struct signatured_type *type_sig)
13413{
1fd400ff 13414 gdb_byte *types_ptr;
348e048f
DE
13415 struct die_reader_specs reader_specs;
13416 struct dwarf2_cu *cu;
13417 ULONGEST signature;
13418 struct cleanup *back_to, *free_cu_cleanup;
348e048f 13419
1fd400ff
TT
13420 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13421 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13422
348e048f
DE
13423 gdb_assert (type_sig->per_cu.cu == NULL);
13424
9816fde3
JK
13425 cu = xmalloc (sizeof (*cu));
13426 init_one_comp_unit (cu, objfile);
13427
348e048f
DE
13428 type_sig->per_cu.cu = cu;
13429 cu->per_cu = &type_sig->per_cu;
13430
13431 /* If an error occurs while loading, release our storage. */
13432 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13433
13434 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13435 types_ptr, objfile->obfd);
13436 gdb_assert (signature == type_sig->signature);
13437
13438 cu->die_hash
13439 = htab_create_alloc_ex (cu->header.length / 12,
13440 die_hash,
13441 die_eq,
13442 NULL,
13443 &cu->comp_unit_obstack,
13444 hashtab_obstack_allocate,
13445 dummy_obstack_deallocate);
13446
13447 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13448 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13449
13450 init_cu_die_reader (&reader_specs, cu);
13451
13452 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13453 NULL /*parent*/);
13454
13455 /* We try not to read any attributes in this function, because not
13456 all objfiles needed for references have been loaded yet, and symbol
13457 table processing isn't initialized. But we have to set the CU language,
13458 or we won't be able to build types correctly. */
9816fde3 13459 prepare_one_comp_unit (cu, cu->dies);
348e048f
DE
13460
13461 do_cleanups (back_to);
13462
13463 /* We've successfully allocated this compilation unit. Let our caller
13464 clean it up when finished with it. */
13465 discard_cleanups (free_cu_cleanup);
13466
13467 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13468 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
13469}
13470
c906108c
SS
13471/* Decode simple location descriptions.
13472 Given a pointer to a dwarf block that defines a location, compute
13473 the location and return the value.
13474
4cecd739
DJ
13475 NOTE drow/2003-11-18: This function is called in two situations
13476 now: for the address of static or global variables (partial symbols
13477 only) and for offsets into structures which are expected to be
13478 (more or less) constant. The partial symbol case should go away,
13479 and only the constant case should remain. That will let this
13480 function complain more accurately. A few special modes are allowed
13481 without complaint for global variables (for instance, global
13482 register values and thread-local values).
c906108c
SS
13483
13484 A location description containing no operations indicates that the
4cecd739 13485 object is optimized out. The return value is 0 for that case.
6b992462
DJ
13486 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13487 callers will only want a very basic result and this can become a
13488 complaint.
c906108c 13489
d53d4ac5 13490 Note that stack[0] is unused except as a default error return. */
c906108c
SS
13491
13492static CORE_ADDR
e7c27a73 13493decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 13494{
e7c27a73 13495 struct objfile *objfile = cu->objfile;
c906108c
SS
13496 int i;
13497 int size = blk->size;
fe1b8b76 13498 gdb_byte *data = blk->data;
c906108c
SS
13499 CORE_ADDR stack[64];
13500 int stacki;
13501 unsigned int bytes_read, unsnd;
fe1b8b76 13502 gdb_byte op;
c906108c
SS
13503
13504 i = 0;
13505 stacki = 0;
13506 stack[stacki] = 0;
d53d4ac5 13507 stack[++stacki] = 0;
c906108c
SS
13508
13509 while (i < size)
13510 {
c906108c
SS
13511 op = data[i++];
13512 switch (op)
13513 {
f1bea926
JM
13514 case DW_OP_lit0:
13515 case DW_OP_lit1:
13516 case DW_OP_lit2:
13517 case DW_OP_lit3:
13518 case DW_OP_lit4:
13519 case DW_OP_lit5:
13520 case DW_OP_lit6:
13521 case DW_OP_lit7:
13522 case DW_OP_lit8:
13523 case DW_OP_lit9:
13524 case DW_OP_lit10:
13525 case DW_OP_lit11:
13526 case DW_OP_lit12:
13527 case DW_OP_lit13:
13528 case DW_OP_lit14:
13529 case DW_OP_lit15:
13530 case DW_OP_lit16:
13531 case DW_OP_lit17:
13532 case DW_OP_lit18:
13533 case DW_OP_lit19:
13534 case DW_OP_lit20:
13535 case DW_OP_lit21:
13536 case DW_OP_lit22:
13537 case DW_OP_lit23:
13538 case DW_OP_lit24:
13539 case DW_OP_lit25:
13540 case DW_OP_lit26:
13541 case DW_OP_lit27:
13542 case DW_OP_lit28:
13543 case DW_OP_lit29:
13544 case DW_OP_lit30:
13545 case DW_OP_lit31:
13546 stack[++stacki] = op - DW_OP_lit0;
13547 break;
13548
c906108c
SS
13549 case DW_OP_reg0:
13550 case DW_OP_reg1:
13551 case DW_OP_reg2:
13552 case DW_OP_reg3:
13553 case DW_OP_reg4:
13554 case DW_OP_reg5:
13555 case DW_OP_reg6:
13556 case DW_OP_reg7:
13557 case DW_OP_reg8:
13558 case DW_OP_reg9:
13559 case DW_OP_reg10:
13560 case DW_OP_reg11:
13561 case DW_OP_reg12:
13562 case DW_OP_reg13:
13563 case DW_OP_reg14:
13564 case DW_OP_reg15:
13565 case DW_OP_reg16:
13566 case DW_OP_reg17:
13567 case DW_OP_reg18:
13568 case DW_OP_reg19:
13569 case DW_OP_reg20:
13570 case DW_OP_reg21:
13571 case DW_OP_reg22:
13572 case DW_OP_reg23:
13573 case DW_OP_reg24:
13574 case DW_OP_reg25:
13575 case DW_OP_reg26:
13576 case DW_OP_reg27:
13577 case DW_OP_reg28:
13578 case DW_OP_reg29:
13579 case DW_OP_reg30:
13580 case DW_OP_reg31:
c906108c 13581 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
13582 if (i < size)
13583 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13584 break;
13585
13586 case DW_OP_regx:
c906108c
SS
13587 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13588 i += bytes_read;
c906108c 13589 stack[++stacki] = unsnd;
4cecd739
DJ
13590 if (i < size)
13591 dwarf2_complex_location_expr_complaint ();
c906108c
SS
13592 break;
13593
13594 case DW_OP_addr:
107d2387 13595 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 13596 cu, &bytes_read);
107d2387 13597 i += bytes_read;
c906108c
SS
13598 break;
13599
13600 case DW_OP_const1u:
13601 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13602 i += 1;
13603 break;
13604
13605 case DW_OP_const1s:
13606 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13607 i += 1;
13608 break;
13609
13610 case DW_OP_const2u:
13611 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13612 i += 2;
13613 break;
13614
13615 case DW_OP_const2s:
13616 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13617 i += 2;
13618 break;
13619
13620 case DW_OP_const4u:
13621 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13622 i += 4;
13623 break;
13624
13625 case DW_OP_const4s:
13626 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13627 i += 4;
13628 break;
13629
13630 case DW_OP_constu:
13631 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 13632 &bytes_read);
c906108c
SS
13633 i += bytes_read;
13634 break;
13635
13636 case DW_OP_consts:
13637 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13638 i += bytes_read;
13639 break;
13640
f1bea926
JM
13641 case DW_OP_dup:
13642 stack[stacki + 1] = stack[stacki];
13643 stacki++;
13644 break;
13645
c906108c
SS
13646 case DW_OP_plus:
13647 stack[stacki - 1] += stack[stacki];
13648 stacki--;
13649 break;
13650
13651 case DW_OP_plus_uconst:
3e43a32a
MS
13652 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13653 &bytes_read);
c906108c
SS
13654 i += bytes_read;
13655 break;
13656
13657 case DW_OP_minus:
f1bea926 13658 stack[stacki - 1] -= stack[stacki];
c906108c
SS
13659 stacki--;
13660 break;
13661
7a292a7a 13662 case DW_OP_deref:
7a292a7a 13663 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
13664 this using GDB's address_class enum. This is valid for partial
13665 global symbols, although the variable's address will be bogus
13666 in the psymtab. */
7a292a7a 13667 if (i < size)
4d3c2250 13668 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
13669 break;
13670
9d774e44 13671 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
13672 /* The top of the stack has the offset from the beginning
13673 of the thread control block at which the variable is located. */
13674 /* Nothing should follow this operator, so the top of stack would
13675 be returned. */
4cecd739
DJ
13676 /* This is valid for partial global symbols, but the variable's
13677 address will be bogus in the psymtab. */
9d774e44 13678 if (i < size)
4d3c2250 13679 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
13680 break;
13681
42be36b3
CT
13682 case DW_OP_GNU_uninit:
13683 break;
13684
c906108c 13685 default:
e2e0b3e5 13686 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9eae7c52 13687 dwarf_stack_op_name (op, 1));
c906108c
SS
13688 return (stack[stacki]);
13689 }
d53d4ac5
TT
13690
13691 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13692 outside of the allocated space. Also enforce minimum>0. */
13693 if (stacki >= ARRAY_SIZE (stack) - 1)
13694 {
13695 complaint (&symfile_complaints,
13696 _("location description stack overflow"));
13697 return 0;
13698 }
13699
13700 if (stacki <= 0)
13701 {
13702 complaint (&symfile_complaints,
13703 _("location description stack underflow"));
13704 return 0;
13705 }
c906108c
SS
13706 }
13707 return (stack[stacki]);
13708}
13709
13710/* memory allocation interface */
13711
c906108c 13712static struct dwarf_block *
7b5a2f43 13713dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
13714{
13715 struct dwarf_block *blk;
13716
13717 blk = (struct dwarf_block *)
7b5a2f43 13718 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
13719 return (blk);
13720}
13721
13722static struct abbrev_info *
f3dd6933 13723dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
13724{
13725 struct abbrev_info *abbrev;
13726
f3dd6933
DJ
13727 abbrev = (struct abbrev_info *)
13728 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
13729 memset (abbrev, 0, sizeof (struct abbrev_info));
13730 return (abbrev);
13731}
13732
13733static struct die_info *
b60c80d6 13734dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
13735{
13736 struct die_info *die;
b60c80d6
DJ
13737 size_t size = sizeof (struct die_info);
13738
13739 if (num_attrs > 1)
13740 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 13741
b60c80d6 13742 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
13743 memset (die, 0, sizeof (struct die_info));
13744 return (die);
13745}
2e276125
JB
13746
13747\f
13748/* Macro support. */
13749
2e276125
JB
13750/* Return the full name of file number I in *LH's file name table.
13751 Use COMP_DIR as the name of the current directory of the
13752 compilation. The result is allocated using xmalloc; the caller is
13753 responsible for freeing it. */
13754static char *
13755file_full_name (int file, struct line_header *lh, const char *comp_dir)
13756{
6a83a1e6
EZ
13757 /* Is the file number a valid index into the line header's file name
13758 table? Remember that file numbers start with one, not zero. */
13759 if (1 <= file && file <= lh->num_file_names)
13760 {
13761 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 13762
6a83a1e6
EZ
13763 if (IS_ABSOLUTE_PATH (fe->name))
13764 return xstrdup (fe->name);
13765 else
13766 {
13767 const char *dir;
13768 int dir_len;
13769 char *full_name;
13770
13771 if (fe->dir_index)
13772 dir = lh->include_dirs[fe->dir_index - 1];
13773 else
13774 dir = comp_dir;
13775
13776 if (dir)
13777 {
13778 dir_len = strlen (dir);
13779 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13780 strcpy (full_name, dir);
13781 full_name[dir_len] = '/';
13782 strcpy (full_name + dir_len + 1, fe->name);
13783 return full_name;
13784 }
13785 else
13786 return xstrdup (fe->name);
13787 }
13788 }
2e276125
JB
13789 else
13790 {
6a83a1e6
EZ
13791 /* The compiler produced a bogus file number. We can at least
13792 record the macro definitions made in the file, even if we
13793 won't be able to find the file by name. */
13794 char fake_name[80];
9a619af0 13795
6a83a1e6 13796 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 13797
6e70227d 13798 complaint (&symfile_complaints,
6a83a1e6
EZ
13799 _("bad file number in macro information (%d)"),
13800 file);
2e276125 13801
6a83a1e6 13802 return xstrdup (fake_name);
2e276125
JB
13803 }
13804}
13805
13806
13807static struct macro_source_file *
13808macro_start_file (int file, int line,
13809 struct macro_source_file *current_file,
13810 const char *comp_dir,
13811 struct line_header *lh, struct objfile *objfile)
13812{
13813 /* The full name of this source file. */
13814 char *full_name = file_full_name (file, lh, comp_dir);
13815
13816 /* We don't create a macro table for this compilation unit
13817 at all until we actually get a filename. */
13818 if (! pending_macros)
4a146b47 13819 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 13820 objfile->macro_cache);
2e276125
JB
13821
13822 if (! current_file)
13823 /* If we have no current file, then this must be the start_file
13824 directive for the compilation unit's main source file. */
13825 current_file = macro_set_main (pending_macros, full_name);
13826 else
13827 current_file = macro_include (current_file, line, full_name);
13828
13829 xfree (full_name);
6e70227d 13830
2e276125
JB
13831 return current_file;
13832}
13833
13834
13835/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13836 followed by a null byte. */
13837static char *
13838copy_string (const char *buf, int len)
13839{
13840 char *s = xmalloc (len + 1);
9a619af0 13841
2e276125
JB
13842 memcpy (s, buf, len);
13843 s[len] = '\0';
2e276125
JB
13844 return s;
13845}
13846
13847
13848static const char *
13849consume_improper_spaces (const char *p, const char *body)
13850{
13851 if (*p == ' ')
13852 {
4d3c2250 13853 complaint (&symfile_complaints,
3e43a32a
MS
13854 _("macro definition contains spaces "
13855 "in formal argument list:\n`%s'"),
4d3c2250 13856 body);
2e276125
JB
13857
13858 while (*p == ' ')
13859 p++;
13860 }
13861
13862 return p;
13863}
13864
13865
13866static void
13867parse_macro_definition (struct macro_source_file *file, int line,
13868 const char *body)
13869{
13870 const char *p;
13871
13872 /* The body string takes one of two forms. For object-like macro
13873 definitions, it should be:
13874
13875 <macro name> " " <definition>
13876
13877 For function-like macro definitions, it should be:
13878
13879 <macro name> "() " <definition>
13880 or
13881 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13882
13883 Spaces may appear only where explicitly indicated, and in the
13884 <definition>.
13885
13886 The Dwarf 2 spec says that an object-like macro's name is always
13887 followed by a space, but versions of GCC around March 2002 omit
6e70227d 13888 the space when the macro's definition is the empty string.
2e276125
JB
13889
13890 The Dwarf 2 spec says that there should be no spaces between the
13891 formal arguments in a function-like macro's formal argument list,
13892 but versions of GCC around March 2002 include spaces after the
13893 commas. */
13894
13895
13896 /* Find the extent of the macro name. The macro name is terminated
13897 by either a space or null character (for an object-like macro) or
13898 an opening paren (for a function-like macro). */
13899 for (p = body; *p; p++)
13900 if (*p == ' ' || *p == '(')
13901 break;
13902
13903 if (*p == ' ' || *p == '\0')
13904 {
13905 /* It's an object-like macro. */
13906 int name_len = p - body;
13907 char *name = copy_string (body, name_len);
13908 const char *replacement;
13909
13910 if (*p == ' ')
13911 replacement = body + name_len + 1;
13912 else
13913 {
4d3c2250 13914 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13915 replacement = body + name_len;
13916 }
6e70227d 13917
2e276125
JB
13918 macro_define_object (file, line, name, replacement);
13919
13920 xfree (name);
13921 }
13922 else if (*p == '(')
13923 {
13924 /* It's a function-like macro. */
13925 char *name = copy_string (body, p - body);
13926 int argc = 0;
13927 int argv_size = 1;
13928 char **argv = xmalloc (argv_size * sizeof (*argv));
13929
13930 p++;
13931
13932 p = consume_improper_spaces (p, body);
13933
13934 /* Parse the formal argument list. */
13935 while (*p && *p != ')')
13936 {
13937 /* Find the extent of the current argument name. */
13938 const char *arg_start = p;
13939
13940 while (*p && *p != ',' && *p != ')' && *p != ' ')
13941 p++;
13942
13943 if (! *p || p == arg_start)
4d3c2250 13944 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13945 else
13946 {
13947 /* Make sure argv has room for the new argument. */
13948 if (argc >= argv_size)
13949 {
13950 argv_size *= 2;
13951 argv = xrealloc (argv, argv_size * sizeof (*argv));
13952 }
13953
13954 argv[argc++] = copy_string (arg_start, p - arg_start);
13955 }
13956
13957 p = consume_improper_spaces (p, body);
13958
13959 /* Consume the comma, if present. */
13960 if (*p == ',')
13961 {
13962 p++;
13963
13964 p = consume_improper_spaces (p, body);
13965 }
13966 }
13967
13968 if (*p == ')')
13969 {
13970 p++;
13971
13972 if (*p == ' ')
13973 /* Perfectly formed definition, no complaints. */
13974 macro_define_function (file, line, name,
6e70227d 13975 argc, (const char **) argv,
2e276125
JB
13976 p + 1);
13977 else if (*p == '\0')
13978 {
13979 /* Complain, but do define it. */
4d3c2250 13980 dwarf2_macro_malformed_definition_complaint (body);
2e276125 13981 macro_define_function (file, line, name,
6e70227d 13982 argc, (const char **) argv,
2e276125
JB
13983 p);
13984 }
13985 else
13986 /* Just complain. */
4d3c2250 13987 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13988 }
13989 else
13990 /* Just complain. */
4d3c2250 13991 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
13992
13993 xfree (name);
13994 {
13995 int i;
13996
13997 for (i = 0; i < argc; i++)
13998 xfree (argv[i]);
13999 }
14000 xfree (argv);
14001 }
14002 else
4d3c2250 14003 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14004}
14005
14006
14007static void
14008dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14009 char *comp_dir, bfd *abfd,
e7c27a73 14010 struct dwarf2_cu *cu)
2e276125 14011{
fe1b8b76 14012 gdb_byte *mac_ptr, *mac_end;
2e276125 14013 struct macro_source_file *current_file = 0;
757a13d0
JK
14014 enum dwarf_macinfo_record_type macinfo_type;
14015 int at_commandline;
2e276125 14016
be391dca
TT
14017 dwarf2_read_section (dwarf2_per_objfile->objfile,
14018 &dwarf2_per_objfile->macinfo);
dce234bc 14019 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 14020 {
e2e0b3e5 14021 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
14022 return;
14023 }
14024
757a13d0
JK
14025 /* First pass: Find the name of the base filename.
14026 This filename is needed in order to process all macros whose definition
14027 (or undefinition) comes from the command line. These macros are defined
14028 before the first DW_MACINFO_start_file entry, and yet still need to be
14029 associated to the base file.
14030
14031 To determine the base file name, we scan the macro definitions until we
14032 reach the first DW_MACINFO_start_file entry. We then initialize
14033 CURRENT_FILE accordingly so that any macro definition found before the
14034 first DW_MACINFO_start_file can still be associated to the base file. */
14035
dce234bc
PP
14036 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14037 mac_end = dwarf2_per_objfile->macinfo.buffer
14038 + dwarf2_per_objfile->macinfo.size;
2e276125 14039
757a13d0 14040 do
2e276125 14041 {
2e276125
JB
14042 /* Do we at least have room for a macinfo type byte? */
14043 if (mac_ptr >= mac_end)
14044 {
757a13d0 14045 /* Complaint is printed during the second pass as GDB will probably
3e43a32a
MS
14046 stop the first pass earlier upon finding
14047 DW_MACINFO_start_file. */
757a13d0 14048 break;
2e276125
JB
14049 }
14050
14051 macinfo_type = read_1_byte (abfd, mac_ptr);
14052 mac_ptr++;
14053
14054 switch (macinfo_type)
14055 {
14056 /* A zero macinfo type indicates the end of the macro
14057 information. */
14058 case 0:
757a13d0
JK
14059 break;
14060
14061 case DW_MACINFO_define:
14062 case DW_MACINFO_undef:
14063 /* Only skip the data by MAC_PTR. */
14064 {
14065 unsigned int bytes_read;
14066
14067 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14068 mac_ptr += bytes_read;
9b1c24c8 14069 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14070 mac_ptr += bytes_read;
14071 }
14072 break;
14073
14074 case DW_MACINFO_start_file:
14075 {
14076 unsigned int bytes_read;
14077 int line, file;
14078
14079 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14080 mac_ptr += bytes_read;
14081 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14082 mac_ptr += bytes_read;
14083
3e43a32a
MS
14084 current_file = macro_start_file (file, line, current_file,
14085 comp_dir, lh, cu->objfile);
757a13d0
JK
14086 }
14087 break;
14088
14089 case DW_MACINFO_end_file:
14090 /* No data to skip by MAC_PTR. */
14091 break;
14092
14093 case DW_MACINFO_vendor_ext:
14094 /* Only skip the data by MAC_PTR. */
14095 {
14096 unsigned int bytes_read;
14097
14098 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14099 mac_ptr += bytes_read;
9b1c24c8 14100 read_direct_string (abfd, mac_ptr, &bytes_read);
757a13d0
JK
14101 mac_ptr += bytes_read;
14102 }
14103 break;
14104
14105 default:
14106 break;
14107 }
14108 } while (macinfo_type != 0 && current_file == NULL);
14109
14110 /* Second pass: Process all entries.
14111
14112 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14113 command-line macro definitions/undefinitions. This flag is unset when we
14114 reach the first DW_MACINFO_start_file entry. */
14115
dce234bc 14116 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
14117
14118 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14119 GDB is still reading the definitions from command line. First
14120 DW_MACINFO_start_file will need to be ignored as it was already executed
14121 to create CURRENT_FILE for the main source holding also the command line
14122 definitions. On first met DW_MACINFO_start_file this flag is reset to
14123 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14124
14125 at_commandline = 1;
14126
14127 do
14128 {
14129 /* Do we at least have room for a macinfo type byte? */
14130 if (mac_ptr >= mac_end)
14131 {
14132 dwarf2_macros_too_long_complaint ();
14133 break;
14134 }
14135
14136 macinfo_type = read_1_byte (abfd, mac_ptr);
14137 mac_ptr++;
14138
14139 switch (macinfo_type)
14140 {
14141 /* A zero macinfo type indicates the end of the macro
14142 information. */
14143 case 0:
14144 break;
2e276125
JB
14145
14146 case DW_MACINFO_define:
14147 case DW_MACINFO_undef:
14148 {
891d2f0b 14149 unsigned int bytes_read;
2e276125
JB
14150 int line;
14151 char *body;
14152
14153 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14154 mac_ptr += bytes_read;
9b1c24c8 14155 body = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14156 mac_ptr += bytes_read;
14157
14158 if (! current_file)
757a13d0
JK
14159 {
14160 /* DWARF violation as no main source is present. */
14161 complaint (&symfile_complaints,
14162 _("debug info with no main source gives macro %s "
14163 "on line %d: %s"),
6e70227d
DE
14164 macinfo_type == DW_MACINFO_define ?
14165 _("definition") :
905e0470
PM
14166 macinfo_type == DW_MACINFO_undef ?
14167 _("undefinition") :
14168 _("something-or-other"), line, body);
757a13d0
JK
14169 break;
14170 }
3e43a32a
MS
14171 if ((line == 0 && !at_commandline)
14172 || (line != 0 && at_commandline))
4d3c2250 14173 complaint (&symfile_complaints,
757a13d0
JK
14174 _("debug info gives %s macro %s with %s line %d: %s"),
14175 at_commandline ? _("command-line") : _("in-file"),
905e0470 14176 macinfo_type == DW_MACINFO_define ?
6e70227d 14177 _("definition") :
905e0470
PM
14178 macinfo_type == DW_MACINFO_undef ?
14179 _("undefinition") :
14180 _("something-or-other"),
757a13d0
JK
14181 line == 0 ? _("zero") : _("non-zero"), line, body);
14182
14183 if (macinfo_type == DW_MACINFO_define)
14184 parse_macro_definition (current_file, line, body);
14185 else if (macinfo_type == DW_MACINFO_undef)
14186 macro_undef (current_file, line, body);
2e276125
JB
14187 }
14188 break;
14189
14190 case DW_MACINFO_start_file:
14191 {
891d2f0b 14192 unsigned int bytes_read;
2e276125
JB
14193 int line, file;
14194
14195 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14196 mac_ptr += bytes_read;
14197 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14198 mac_ptr += bytes_read;
14199
3e43a32a
MS
14200 if ((line == 0 && !at_commandline)
14201 || (line != 0 && at_commandline))
757a13d0
JK
14202 complaint (&symfile_complaints,
14203 _("debug info gives source %d included "
14204 "from %s at %s line %d"),
14205 file, at_commandline ? _("command-line") : _("file"),
14206 line == 0 ? _("zero") : _("non-zero"), line);
14207
14208 if (at_commandline)
14209 {
14210 /* This DW_MACINFO_start_file was executed in the pass one. */
14211 at_commandline = 0;
14212 }
14213 else
14214 current_file = macro_start_file (file, line,
14215 current_file, comp_dir,
14216 lh, cu->objfile);
2e276125
JB
14217 }
14218 break;
14219
14220 case DW_MACINFO_end_file:
14221 if (! current_file)
4d3c2250 14222 complaint (&symfile_complaints,
3e43a32a
MS
14223 _("macro debug info has an unmatched "
14224 "`close_file' directive"));
2e276125
JB
14225 else
14226 {
14227 current_file = current_file->included_by;
14228 if (! current_file)
14229 {
14230 enum dwarf_macinfo_record_type next_type;
14231
14232 /* GCC circa March 2002 doesn't produce the zero
14233 type byte marking the end of the compilation
14234 unit. Complain if it's not there, but exit no
14235 matter what. */
14236
14237 /* Do we at least have room for a macinfo type byte? */
14238 if (mac_ptr >= mac_end)
14239 {
4d3c2250 14240 dwarf2_macros_too_long_complaint ();
2e276125
JB
14241 return;
14242 }
14243
14244 /* We don't increment mac_ptr here, so this is just
14245 a look-ahead. */
14246 next_type = read_1_byte (abfd, mac_ptr);
14247 if (next_type != 0)
4d3c2250 14248 complaint (&symfile_complaints,
3e43a32a
MS
14249 _("no terminating 0-type entry for "
14250 "macros in `.debug_macinfo' section"));
2e276125
JB
14251
14252 return;
14253 }
14254 }
14255 break;
14256
14257 case DW_MACINFO_vendor_ext:
14258 {
891d2f0b 14259 unsigned int bytes_read;
2e276125
JB
14260 int constant;
14261 char *string;
14262
14263 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14264 mac_ptr += bytes_read;
9b1c24c8 14265 string = read_direct_string (abfd, mac_ptr, &bytes_read);
2e276125
JB
14266 mac_ptr += bytes_read;
14267
14268 /* We don't recognize any vendor extensions. */
14269 }
14270 break;
14271 }
757a13d0 14272 } while (macinfo_type != 0);
2e276125 14273}
8e19ed76
PS
14274
14275/* Check if the attribute's form is a DW_FORM_block*
14276 if so return true else false. */
14277static int
14278attr_form_is_block (struct attribute *attr)
14279{
14280 return (attr == NULL ? 0 :
14281 attr->form == DW_FORM_block1
14282 || attr->form == DW_FORM_block2
14283 || attr->form == DW_FORM_block4
2dc7f7b3
TT
14284 || attr->form == DW_FORM_block
14285 || attr->form == DW_FORM_exprloc);
8e19ed76 14286}
4c2df51b 14287
c6a0999f
JB
14288/* Return non-zero if ATTR's value is a section offset --- classes
14289 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14290 You may use DW_UNSND (attr) to retrieve such offsets.
14291
14292 Section 7.5.4, "Attribute Encodings", explains that no attribute
14293 may have a value that belongs to more than one of these classes; it
14294 would be ambiguous if we did, because we use the same forms for all
14295 of them. */
3690dd37
JB
14296static int
14297attr_form_is_section_offset (struct attribute *attr)
14298{
14299 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
14300 || attr->form == DW_FORM_data8
14301 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
14302}
14303
14304
14305/* Return non-zero if ATTR's value falls in the 'constant' class, or
14306 zero otherwise. When this function returns true, you can apply
14307 dwarf2_get_attr_constant_value to it.
14308
14309 However, note that for some attributes you must check
14310 attr_form_is_section_offset before using this test. DW_FORM_data4
14311 and DW_FORM_data8 are members of both the constant class, and of
14312 the classes that contain offsets into other debug sections
14313 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14314 that, if an attribute's can be either a constant or one of the
14315 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14316 taken as section offsets, not constants. */
14317static int
14318attr_form_is_constant (struct attribute *attr)
14319{
14320 switch (attr->form)
14321 {
14322 case DW_FORM_sdata:
14323 case DW_FORM_udata:
14324 case DW_FORM_data1:
14325 case DW_FORM_data2:
14326 case DW_FORM_data4:
14327 case DW_FORM_data8:
14328 return 1;
14329 default:
14330 return 0;
14331 }
14332}
14333
8cf6f0b1
TT
14334/* A helper function that fills in a dwarf2_loclist_baton. */
14335
14336static void
14337fill_in_loclist_baton (struct dwarf2_cu *cu,
14338 struct dwarf2_loclist_baton *baton,
14339 struct attribute *attr)
14340{
14341 dwarf2_read_section (dwarf2_per_objfile->objfile,
14342 &dwarf2_per_objfile->loc);
14343
14344 baton->per_cu = cu->per_cu;
14345 gdb_assert (baton->per_cu);
14346 /* We don't know how long the location list is, but make sure we
14347 don't run off the edge of the section. */
14348 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14349 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14350 baton->base_address = cu->base_address;
14351}
14352
4c2df51b
DJ
14353static void
14354dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 14355 struct dwarf2_cu *cu)
4c2df51b 14356{
3690dd37 14357 if (attr_form_is_section_offset (attr)
99bcc461
DJ
14358 /* ".debug_loc" may not exist at all, or the offset may be outside
14359 the section. If so, fall through to the complaint in the
14360 other branch. */
dce234bc 14361 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 14362 {
0d53c4c4 14363 struct dwarf2_loclist_baton *baton;
4c2df51b 14364
4a146b47 14365 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14366 sizeof (struct dwarf2_loclist_baton));
4c2df51b 14367
8cf6f0b1 14368 fill_in_loclist_baton (cu, baton, attr);
be391dca 14369
d00adf39 14370 if (cu->base_known == 0)
0d53c4c4 14371 complaint (&symfile_complaints,
3e43a32a
MS
14372 _("Location list used without "
14373 "specifying the CU base address."));
4c2df51b 14374
768a979c 14375 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
14376 SYMBOL_LOCATION_BATON (sym) = baton;
14377 }
14378 else
14379 {
14380 struct dwarf2_locexpr_baton *baton;
14381
4a146b47 14382 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 14383 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
14384 baton->per_cu = cu->per_cu;
14385 gdb_assert (baton->per_cu);
0d53c4c4
DJ
14386
14387 if (attr_form_is_block (attr))
14388 {
14389 /* Note that we're just copying the block's data pointer
14390 here, not the actual data. We're still pointing into the
6502dd73
DJ
14391 info_buffer for SYM's objfile; right now we never release
14392 that buffer, but when we do clean up properly this may
14393 need to change. */
0d53c4c4
DJ
14394 baton->size = DW_BLOCK (attr)->size;
14395 baton->data = DW_BLOCK (attr)->data;
14396 }
14397 else
14398 {
14399 dwarf2_invalid_attrib_class_complaint ("location description",
14400 SYMBOL_NATURAL_NAME (sym));
14401 baton->size = 0;
14402 baton->data = NULL;
14403 }
6e70227d 14404
768a979c 14405 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
14406 SYMBOL_LOCATION_BATON (sym) = baton;
14407 }
4c2df51b 14408}
6502dd73 14409
9aa1f1e3
TT
14410/* Return the OBJFILE associated with the compilation unit CU. If CU
14411 came from a separate debuginfo file, then the master objfile is
14412 returned. */
ae0d2f24
UW
14413
14414struct objfile *
14415dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14416{
9291a0cd 14417 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14418
14419 /* Return the master objfile, so that we can report and look up the
14420 correct file containing this variable. */
14421 if (objfile->separate_debug_objfile_backlink)
14422 objfile = objfile->separate_debug_objfile_backlink;
14423
14424 return objfile;
14425}
14426
14427/* Return the address size given in the compilation unit header for CU. */
14428
14429CORE_ADDR
14430dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14431{
14432 if (per_cu->cu)
14433 return per_cu->cu->header.addr_size;
14434 else
14435 {
14436 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14437 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
14438 struct dwarf2_per_objfile *per_objfile
14439 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 14440 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 14441 struct comp_unit_head cu_header;
9a619af0 14442
ae0d2f24
UW
14443 memset (&cu_header, 0, sizeof cu_header);
14444 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14445 return cu_header.addr_size;
14446 }
14447}
14448
9eae7c52
TT
14449/* Return the offset size given in the compilation unit header for CU. */
14450
14451int
14452dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14453{
14454 if (per_cu->cu)
14455 return per_cu->cu->header.offset_size;
14456 else
14457 {
14458 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 14459 struct objfile *objfile = per_cu->objfile;
9eae7c52
TT
14460 struct dwarf2_per_objfile *per_objfile
14461 = objfile_data (objfile, dwarf2_objfile_data_key);
14462 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14463 struct comp_unit_head cu_header;
14464
14465 memset (&cu_header, 0, sizeof cu_header);
14466 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14467 return cu_header.offset_size;
14468 }
14469}
14470
9aa1f1e3
TT
14471/* Return the text offset of the CU. The returned offset comes from
14472 this CU's objfile. If this objfile came from a separate debuginfo
14473 file, then the offset may be different from the corresponding
14474 offset in the parent objfile. */
14475
14476CORE_ADDR
14477dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14478{
bb3fa9d0 14479 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
14480
14481 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14482}
14483
348e048f
DE
14484/* Locate the .debug_info compilation unit from CU's objfile which contains
14485 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
14486
14487static struct dwarf2_per_cu_data *
c764a876 14488dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
14489 struct objfile *objfile)
14490{
14491 struct dwarf2_per_cu_data *this_cu;
14492 int low, high;
14493
ae038cb0
DJ
14494 low = 0;
14495 high = dwarf2_per_objfile->n_comp_units - 1;
14496 while (high > low)
14497 {
14498 int mid = low + (high - low) / 2;
9a619af0 14499
ae038cb0
DJ
14500 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14501 high = mid;
14502 else
14503 low = mid + 1;
14504 }
14505 gdb_assert (low == high);
14506 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14507 {
10b3939b 14508 if (low == 0)
8a3fe4f8
AC
14509 error (_("Dwarf Error: could not find partial DIE containing "
14510 "offset 0x%lx [in module %s]"),
10b3939b
DJ
14511 (long) offset, bfd_get_filename (objfile->obfd));
14512
ae038cb0
DJ
14513 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14514 return dwarf2_per_objfile->all_comp_units[low-1];
14515 }
14516 else
14517 {
14518 this_cu = dwarf2_per_objfile->all_comp_units[low];
14519 if (low == dwarf2_per_objfile->n_comp_units - 1
14520 && offset >= this_cu->offset + this_cu->length)
c764a876 14521 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
14522 gdb_assert (offset < this_cu->offset + this_cu->length);
14523 return this_cu;
14524 }
14525}
14526
10b3939b
DJ
14527/* Locate the compilation unit from OBJFILE which is located at exactly
14528 OFFSET. Raises an error on failure. */
14529
ae038cb0 14530static struct dwarf2_per_cu_data *
c764a876 14531dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
14532{
14533 struct dwarf2_per_cu_data *this_cu;
9a619af0 14534
ae038cb0
DJ
14535 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14536 if (this_cu->offset != offset)
c764a876 14537 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
14538 return this_cu;
14539}
14540
9816fde3 14541/* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
93311388 14542
9816fde3
JK
14543static void
14544init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
93311388 14545{
9816fde3 14546 memset (cu, 0, sizeof (*cu));
93311388
DE
14547 cu->objfile = objfile;
14548 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
14549}
14550
14551/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14552
14553static void
14554prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14555{
14556 struct attribute *attr;
14557
14558 /* Set the language we're debugging. */
14559 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14560 if (attr)
14561 set_cu_language (DW_UNSND (attr), cu);
14562 else
14563 set_cu_language (language_minimal, cu);
93311388
DE
14564}
14565
ae038cb0
DJ
14566/* Release one cached compilation unit, CU. We unlink it from the tree
14567 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
14568 the caller is responsible for that.
14569 NOTE: DATA is a void * because this function is also used as a
14570 cleanup routine. */
ae038cb0
DJ
14571
14572static void
14573free_one_comp_unit (void *data)
14574{
14575 struct dwarf2_cu *cu = data;
14576
14577 if (cu->per_cu != NULL)
14578 cu->per_cu->cu = NULL;
14579 cu->per_cu = NULL;
14580
14581 obstack_free (&cu->comp_unit_obstack, NULL);
14582
14583 xfree (cu);
14584}
14585
72bf9492 14586/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
14587 when we're finished with it. We can't free the pointer itself, but be
14588 sure to unlink it from the cache. Also release any associated storage
14589 and perform cache maintenance.
72bf9492
DJ
14590
14591 Only used during partial symbol parsing. */
14592
14593static void
14594free_stack_comp_unit (void *data)
14595{
14596 struct dwarf2_cu *cu = data;
14597
14598 obstack_free (&cu->comp_unit_obstack, NULL);
14599 cu->partial_dies = NULL;
ae038cb0
DJ
14600
14601 if (cu->per_cu != NULL)
14602 {
14603 /* This compilation unit is on the stack in our caller, so we
14604 should not xfree it. Just unlink it. */
14605 cu->per_cu->cu = NULL;
14606 cu->per_cu = NULL;
14607
14608 /* If we had a per-cu pointer, then we may have other compilation
14609 units loaded, so age them now. */
14610 age_cached_comp_units ();
14611 }
14612}
14613
14614/* Free all cached compilation units. */
14615
14616static void
14617free_cached_comp_units (void *data)
14618{
14619 struct dwarf2_per_cu_data *per_cu, **last_chain;
14620
14621 per_cu = dwarf2_per_objfile->read_in_chain;
14622 last_chain = &dwarf2_per_objfile->read_in_chain;
14623 while (per_cu != NULL)
14624 {
14625 struct dwarf2_per_cu_data *next_cu;
14626
14627 next_cu = per_cu->cu->read_in_chain;
14628
14629 free_one_comp_unit (per_cu->cu);
14630 *last_chain = next_cu;
14631
14632 per_cu = next_cu;
14633 }
14634}
14635
14636/* Increase the age counter on each cached compilation unit, and free
14637 any that are too old. */
14638
14639static void
14640age_cached_comp_units (void)
14641{
14642 struct dwarf2_per_cu_data *per_cu, **last_chain;
14643
14644 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14645 per_cu = dwarf2_per_objfile->read_in_chain;
14646 while (per_cu != NULL)
14647 {
14648 per_cu->cu->last_used ++;
14649 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14650 dwarf2_mark (per_cu->cu);
14651 per_cu = per_cu->cu->read_in_chain;
14652 }
14653
14654 per_cu = dwarf2_per_objfile->read_in_chain;
14655 last_chain = &dwarf2_per_objfile->read_in_chain;
14656 while (per_cu != NULL)
14657 {
14658 struct dwarf2_per_cu_data *next_cu;
14659
14660 next_cu = per_cu->cu->read_in_chain;
14661
14662 if (!per_cu->cu->mark)
14663 {
14664 free_one_comp_unit (per_cu->cu);
14665 *last_chain = next_cu;
14666 }
14667 else
14668 last_chain = &per_cu->cu->read_in_chain;
14669
14670 per_cu = next_cu;
14671 }
14672}
14673
14674/* Remove a single compilation unit from the cache. */
14675
14676static void
14677free_one_cached_comp_unit (void *target_cu)
14678{
14679 struct dwarf2_per_cu_data *per_cu, **last_chain;
14680
14681 per_cu = dwarf2_per_objfile->read_in_chain;
14682 last_chain = &dwarf2_per_objfile->read_in_chain;
14683 while (per_cu != NULL)
14684 {
14685 struct dwarf2_per_cu_data *next_cu;
14686
14687 next_cu = per_cu->cu->read_in_chain;
14688
14689 if (per_cu->cu == target_cu)
14690 {
14691 free_one_comp_unit (per_cu->cu);
14692 *last_chain = next_cu;
14693 break;
14694 }
14695 else
14696 last_chain = &per_cu->cu->read_in_chain;
14697
14698 per_cu = next_cu;
14699 }
14700}
14701
fe3e1990
DJ
14702/* Release all extra memory associated with OBJFILE. */
14703
14704void
14705dwarf2_free_objfile (struct objfile *objfile)
14706{
14707 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14708
14709 if (dwarf2_per_objfile == NULL)
14710 return;
14711
14712 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14713 free_cached_comp_units (NULL);
14714
7b9f3c50
DE
14715 if (dwarf2_per_objfile->quick_file_names_table)
14716 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 14717
fe3e1990
DJ
14718 /* Everything else should be on the objfile obstack. */
14719}
14720
1c379e20
DJ
14721/* A pair of DIE offset and GDB type pointer. We store these
14722 in a hash table separate from the DIEs, and preserve them
14723 when the DIEs are flushed out of cache. */
14724
14725struct dwarf2_offset_and_type
14726{
14727 unsigned int offset;
14728 struct type *type;
14729};
14730
14731/* Hash function for a dwarf2_offset_and_type. */
14732
14733static hashval_t
14734offset_and_type_hash (const void *item)
14735{
14736 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 14737
1c379e20
DJ
14738 return ofs->offset;
14739}
14740
14741/* Equality function for a dwarf2_offset_and_type. */
14742
14743static int
14744offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14745{
14746 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14747 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 14748
1c379e20
DJ
14749 return ofs_lhs->offset == ofs_rhs->offset;
14750}
14751
14752/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
14753 table if necessary. For convenience, return TYPE.
14754
14755 The DIEs reading must have careful ordering to:
14756 * Not cause infite loops trying to read in DIEs as a prerequisite for
14757 reading current DIE.
14758 * Not trying to dereference contents of still incompletely read in types
14759 while reading in other DIEs.
14760 * Enable referencing still incompletely read in types just by a pointer to
14761 the type without accessing its fields.
14762
14763 Therefore caller should follow these rules:
14764 * Try to fetch any prerequisite types we may need to build this DIE type
14765 before building the type and calling set_die_type.
e71ec853 14766 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
14767 possible before fetching more types to complete the current type.
14768 * Make the type as complete as possible before fetching more types. */
1c379e20 14769
f792889a 14770static struct type *
1c379e20
DJ
14771set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14772{
14773 struct dwarf2_offset_and_type **slot, ofs;
673bfd45
DE
14774 struct objfile *objfile = cu->objfile;
14775 htab_t *type_hash_ptr;
1c379e20 14776
b4ba55a1
JB
14777 /* For Ada types, make sure that the gnat-specific data is always
14778 initialized (if not already set). There are a few types where
14779 we should not be doing so, because the type-specific area is
14780 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14781 where the type-specific area is used to store the floatformat).
14782 But this is not a problem, because the gnat-specific information
14783 is actually not needed for these types. */
14784 if (need_gnat_info (cu)
14785 && TYPE_CODE (type) != TYPE_CODE_FUNC
14786 && TYPE_CODE (type) != TYPE_CODE_FLT
14787 && !HAVE_GNAT_AUX_INFO (type))
14788 INIT_GNAT_SPECIFIC (type);
14789
673bfd45
DE
14790 if (cu->per_cu->from_debug_types)
14791 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14792 else
14793 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14794
14795 if (*type_hash_ptr == NULL)
f792889a 14796 {
673bfd45
DE
14797 *type_hash_ptr
14798 = htab_create_alloc_ex (127,
f792889a
DJ
14799 offset_and_type_hash,
14800 offset_and_type_eq,
14801 NULL,
673bfd45 14802 &objfile->objfile_obstack,
f792889a
DJ
14803 hashtab_obstack_allocate,
14804 dummy_obstack_deallocate);
f792889a 14805 }
1c379e20
DJ
14806
14807 ofs.offset = die->offset;
14808 ofs.type = type;
14809 slot = (struct dwarf2_offset_and_type **)
673bfd45 14810 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
7e314c57
JK
14811 if (*slot)
14812 complaint (&symfile_complaints,
14813 _("A problem internal to GDB: DIE 0x%x has type already set"),
14814 die->offset);
673bfd45 14815 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 14816 **slot = ofs;
f792889a 14817 return type;
1c379e20
DJ
14818}
14819
673bfd45
DE
14820/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14821 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
14822
14823static struct type *
673bfd45
DE
14824get_die_type_at_offset (unsigned int offset,
14825 struct dwarf2_per_cu_data *per_cu)
1c379e20
DJ
14826{
14827 struct dwarf2_offset_and_type *slot, ofs;
673bfd45 14828 htab_t type_hash;
f792889a 14829
673bfd45
DE
14830 if (per_cu->from_debug_types)
14831 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14832 else
14833 type_hash = dwarf2_per_objfile->debug_info_type_hash;
f792889a
DJ
14834 if (type_hash == NULL)
14835 return NULL;
1c379e20 14836
673bfd45 14837 ofs.offset = offset;
1c379e20
DJ
14838 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14839 if (slot)
14840 return slot->type;
14841 else
14842 return NULL;
14843}
14844
673bfd45
DE
14845/* Look up the type for DIE in the appropriate type_hash table,
14846 or return NULL if DIE does not have a saved type. */
14847
14848static struct type *
14849get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14850{
14851 return get_die_type_at_offset (die->offset, cu->per_cu);
14852}
14853
10b3939b
DJ
14854/* Add a dependence relationship from CU to REF_PER_CU. */
14855
14856static void
14857dwarf2_add_dependence (struct dwarf2_cu *cu,
14858 struct dwarf2_per_cu_data *ref_per_cu)
14859{
14860 void **slot;
14861
14862 if (cu->dependencies == NULL)
14863 cu->dependencies
14864 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14865 NULL, &cu->comp_unit_obstack,
14866 hashtab_obstack_allocate,
14867 dummy_obstack_deallocate);
14868
14869 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14870 if (*slot == NULL)
14871 *slot = ref_per_cu;
14872}
1c379e20 14873
f504f079
DE
14874/* Subroutine of dwarf2_mark to pass to htab_traverse.
14875 Set the mark field in every compilation unit in the
ae038cb0
DJ
14876 cache that we must keep because we are keeping CU. */
14877
10b3939b
DJ
14878static int
14879dwarf2_mark_helper (void **slot, void *data)
14880{
14881 struct dwarf2_per_cu_data *per_cu;
14882
14883 per_cu = (struct dwarf2_per_cu_data *) *slot;
14884 if (per_cu->cu->mark)
14885 return 1;
14886 per_cu->cu->mark = 1;
14887
14888 if (per_cu->cu->dependencies != NULL)
14889 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14890
14891 return 1;
14892}
14893
f504f079
DE
14894/* Set the mark field in CU and in every other compilation unit in the
14895 cache that we must keep because we are keeping CU. */
14896
ae038cb0
DJ
14897static void
14898dwarf2_mark (struct dwarf2_cu *cu)
14899{
14900 if (cu->mark)
14901 return;
14902 cu->mark = 1;
10b3939b
DJ
14903 if (cu->dependencies != NULL)
14904 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
14905}
14906
14907static void
14908dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14909{
14910 while (per_cu)
14911 {
14912 per_cu->cu->mark = 0;
14913 per_cu = per_cu->cu->read_in_chain;
14914 }
72bf9492
DJ
14915}
14916
72bf9492
DJ
14917/* Trivial hash function for partial_die_info: the hash value of a DIE
14918 is its offset in .debug_info for this objfile. */
14919
14920static hashval_t
14921partial_die_hash (const void *item)
14922{
14923 const struct partial_die_info *part_die = item;
9a619af0 14924
72bf9492
DJ
14925 return part_die->offset;
14926}
14927
14928/* Trivial comparison function for partial_die_info structures: two DIEs
14929 are equal if they have the same offset. */
14930
14931static int
14932partial_die_eq (const void *item_lhs, const void *item_rhs)
14933{
14934 const struct partial_die_info *part_die_lhs = item_lhs;
14935 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 14936
72bf9492
DJ
14937 return part_die_lhs->offset == part_die_rhs->offset;
14938}
14939
ae038cb0
DJ
14940static struct cmd_list_element *set_dwarf2_cmdlist;
14941static struct cmd_list_element *show_dwarf2_cmdlist;
14942
14943static void
14944set_dwarf2_cmd (char *args, int from_tty)
14945{
14946 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14947}
14948
14949static void
14950show_dwarf2_cmd (char *args, int from_tty)
6e70227d 14951{
ae038cb0
DJ
14952 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14953}
14954
dce234bc
PP
14955/* If section described by INFO was mmapped, munmap it now. */
14956
14957static void
14958munmap_section_buffer (struct dwarf2_section_info *info)
14959{
14960 if (info->was_mmapped)
14961 {
14962#ifdef HAVE_MMAP
14963 intptr_t begin = (intptr_t) info->buffer;
14964 intptr_t map_begin = begin & ~(pagesize - 1);
14965 size_t map_length = info->size + begin - map_begin;
9a619af0 14966
dce234bc
PP
14967 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14968#else
14969 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 14970 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
14971#endif
14972 }
14973}
14974
14975/* munmap debug sections for OBJFILE, if necessary. */
14976
14977static void
c1bd65d0 14978dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
14979{
14980 struct dwarf2_per_objfile *data = d;
9a619af0 14981
16be1145
DE
14982 /* This is sorted according to the order they're defined in to make it easier
14983 to keep in sync. */
dce234bc
PP
14984 munmap_section_buffer (&data->info);
14985 munmap_section_buffer (&data->abbrev);
14986 munmap_section_buffer (&data->line);
16be1145 14987 munmap_section_buffer (&data->loc);
dce234bc 14988 munmap_section_buffer (&data->macinfo);
16be1145 14989 munmap_section_buffer (&data->str);
dce234bc 14990 munmap_section_buffer (&data->ranges);
16be1145 14991 munmap_section_buffer (&data->types);
dce234bc
PP
14992 munmap_section_buffer (&data->frame);
14993 munmap_section_buffer (&data->eh_frame);
9291a0cd
TT
14994 munmap_section_buffer (&data->gdb_index);
14995}
14996
14997\f
ae2de4f8 14998/* The "save gdb-index" command. */
9291a0cd
TT
14999
15000/* The contents of the hash table we create when building the string
15001 table. */
15002struct strtab_entry
15003{
15004 offset_type offset;
15005 const char *str;
15006};
15007
15008/* Hash function for a strtab_entry. */
b89be57b 15009
9291a0cd
TT
15010static hashval_t
15011hash_strtab_entry (const void *e)
15012{
15013 const struct strtab_entry *entry = e;
15014 return mapped_index_string_hash (entry->str);
15015}
15016
15017/* Equality function for a strtab_entry. */
b89be57b 15018
9291a0cd
TT
15019static int
15020eq_strtab_entry (const void *a, const void *b)
15021{
15022 const struct strtab_entry *ea = a;
15023 const struct strtab_entry *eb = b;
15024 return !strcmp (ea->str, eb->str);
15025}
15026
15027/* Create a strtab_entry hash table. */
b89be57b 15028
9291a0cd
TT
15029static htab_t
15030create_strtab (void)
15031{
15032 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15033 xfree, xcalloc, xfree);
15034}
15035
15036/* Add a string to the constant pool. Return the string's offset in
15037 host order. */
b89be57b 15038
9291a0cd
TT
15039static offset_type
15040add_string (htab_t table, struct obstack *cpool, const char *str)
15041{
15042 void **slot;
15043 struct strtab_entry entry;
15044 struct strtab_entry *result;
15045
15046 entry.str = str;
15047 slot = htab_find_slot (table, &entry, INSERT);
15048 if (*slot)
15049 result = *slot;
15050 else
15051 {
15052 result = XNEW (struct strtab_entry);
15053 result->offset = obstack_object_size (cpool);
15054 result->str = str;
15055 obstack_grow_str0 (cpool, str);
15056 *slot = result;
15057 }
15058 return result->offset;
15059}
15060
15061/* An entry in the symbol table. */
15062struct symtab_index_entry
15063{
15064 /* The name of the symbol. */
15065 const char *name;
15066 /* The offset of the name in the constant pool. */
15067 offset_type index_offset;
15068 /* A sorted vector of the indices of all the CUs that hold an object
15069 of this name. */
15070 VEC (offset_type) *cu_indices;
15071};
15072
15073/* The symbol table. This is a power-of-2-sized hash table. */
15074struct mapped_symtab
15075{
15076 offset_type n_elements;
15077 offset_type size;
15078 struct symtab_index_entry **data;
15079};
15080
15081/* Hash function for a symtab_index_entry. */
b89be57b 15082
9291a0cd
TT
15083static hashval_t
15084hash_symtab_entry (const void *e)
15085{
15086 const struct symtab_index_entry *entry = e;
15087 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15088 sizeof (offset_type) * VEC_length (offset_type,
15089 entry->cu_indices),
15090 0);
15091}
15092
15093/* Equality function for a symtab_index_entry. */
b89be57b 15094
9291a0cd
TT
15095static int
15096eq_symtab_entry (const void *a, const void *b)
15097{
15098 const struct symtab_index_entry *ea = a;
15099 const struct symtab_index_entry *eb = b;
15100 int len = VEC_length (offset_type, ea->cu_indices);
15101 if (len != VEC_length (offset_type, eb->cu_indices))
15102 return 0;
15103 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15104 VEC_address (offset_type, eb->cu_indices),
15105 sizeof (offset_type) * len);
15106}
15107
15108/* Destroy a symtab_index_entry. */
b89be57b 15109
9291a0cd
TT
15110static void
15111delete_symtab_entry (void *p)
15112{
15113 struct symtab_index_entry *entry = p;
15114 VEC_free (offset_type, entry->cu_indices);
15115 xfree (entry);
15116}
15117
15118/* Create a hash table holding symtab_index_entry objects. */
b89be57b 15119
9291a0cd 15120static htab_t
3876f04e 15121create_symbol_hash_table (void)
9291a0cd
TT
15122{
15123 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15124 delete_symtab_entry, xcalloc, xfree);
15125}
15126
15127/* Create a new mapped symtab object. */
b89be57b 15128
9291a0cd
TT
15129static struct mapped_symtab *
15130create_mapped_symtab (void)
15131{
15132 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15133 symtab->n_elements = 0;
15134 symtab->size = 1024;
15135 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15136 return symtab;
15137}
15138
15139/* Destroy a mapped_symtab. */
b89be57b 15140
9291a0cd
TT
15141static void
15142cleanup_mapped_symtab (void *p)
15143{
15144 struct mapped_symtab *symtab = p;
15145 /* The contents of the array are freed when the other hash table is
15146 destroyed. */
15147 xfree (symtab->data);
15148 xfree (symtab);
15149}
15150
15151/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15152 the slot. */
b89be57b 15153
9291a0cd
TT
15154static struct symtab_index_entry **
15155find_slot (struct mapped_symtab *symtab, const char *name)
15156{
15157 offset_type index, step, hash = mapped_index_string_hash (name);
15158
15159 index = hash & (symtab->size - 1);
15160 step = ((hash * 17) & (symtab->size - 1)) | 1;
15161
15162 for (;;)
15163 {
15164 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15165 return &symtab->data[index];
15166 index = (index + step) & (symtab->size - 1);
15167 }
15168}
15169
15170/* Expand SYMTAB's hash table. */
b89be57b 15171
9291a0cd
TT
15172static void
15173hash_expand (struct mapped_symtab *symtab)
15174{
15175 offset_type old_size = symtab->size;
15176 offset_type i;
15177 struct symtab_index_entry **old_entries = symtab->data;
15178
15179 symtab->size *= 2;
15180 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15181
15182 for (i = 0; i < old_size; ++i)
15183 {
15184 if (old_entries[i])
15185 {
15186 struct symtab_index_entry **slot = find_slot (symtab,
15187 old_entries[i]->name);
15188 *slot = old_entries[i];
15189 }
15190 }
15191
15192 xfree (old_entries);
15193}
15194
15195/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15196 is the index of the CU in which the symbol appears. */
b89be57b 15197
9291a0cd
TT
15198static void
15199add_index_entry (struct mapped_symtab *symtab, const char *name,
15200 offset_type cu_index)
15201{
15202 struct symtab_index_entry **slot;
15203
15204 ++symtab->n_elements;
15205 if (4 * symtab->n_elements / 3 >= symtab->size)
15206 hash_expand (symtab);
15207
15208 slot = find_slot (symtab, name);
15209 if (!*slot)
15210 {
15211 *slot = XNEW (struct symtab_index_entry);
15212 (*slot)->name = name;
15213 (*slot)->cu_indices = NULL;
15214 }
15215 /* Don't push an index twice. Due to how we add entries we only
15216 have to check the last one. */
15217 if (VEC_empty (offset_type, (*slot)->cu_indices)
15218 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15219 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15220}
15221
15222/* Add a vector of indices to the constant pool. */
b89be57b 15223
9291a0cd 15224static offset_type
3876f04e 15225add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
15226 struct symtab_index_entry *entry)
15227{
15228 void **slot;
15229
3876f04e 15230 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
15231 if (!*slot)
15232 {
15233 offset_type len = VEC_length (offset_type, entry->cu_indices);
15234 offset_type val = MAYBE_SWAP (len);
15235 offset_type iter;
15236 int i;
15237
15238 *slot = entry;
15239 entry->index_offset = obstack_object_size (cpool);
15240
15241 obstack_grow (cpool, &val, sizeof (val));
15242 for (i = 0;
15243 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15244 ++i)
15245 {
15246 val = MAYBE_SWAP (iter);
15247 obstack_grow (cpool, &val, sizeof (val));
15248 }
15249 }
15250 else
15251 {
15252 struct symtab_index_entry *old_entry = *slot;
15253 entry->index_offset = old_entry->index_offset;
15254 entry = old_entry;
15255 }
15256 return entry->index_offset;
15257}
15258
15259/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15260 constant pool entries going into the obstack CPOOL. */
b89be57b 15261
9291a0cd
TT
15262static void
15263write_hash_table (struct mapped_symtab *symtab,
15264 struct obstack *output, struct obstack *cpool)
15265{
15266 offset_type i;
3876f04e 15267 htab_t symbol_hash_table;
9291a0cd
TT
15268 htab_t str_table;
15269
3876f04e 15270 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 15271 str_table = create_strtab ();
3876f04e 15272
9291a0cd
TT
15273 /* We add all the index vectors to the constant pool first, to
15274 ensure alignment is ok. */
15275 for (i = 0; i < symtab->size; ++i)
15276 {
15277 if (symtab->data[i])
3876f04e 15278 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
15279 }
15280
15281 /* Now write out the hash table. */
15282 for (i = 0; i < symtab->size; ++i)
15283 {
15284 offset_type str_off, vec_off;
15285
15286 if (symtab->data[i])
15287 {
15288 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15289 vec_off = symtab->data[i]->index_offset;
15290 }
15291 else
15292 {
15293 /* While 0 is a valid constant pool index, it is not valid
15294 to have 0 for both offsets. */
15295 str_off = 0;
15296 vec_off = 0;
15297 }
15298
15299 str_off = MAYBE_SWAP (str_off);
15300 vec_off = MAYBE_SWAP (vec_off);
15301
15302 obstack_grow (output, &str_off, sizeof (str_off));
15303 obstack_grow (output, &vec_off, sizeof (vec_off));
15304 }
15305
15306 htab_delete (str_table);
3876f04e 15307 htab_delete (symbol_hash_table);
9291a0cd
TT
15308}
15309
0a5429f6
DE
15310/* Struct to map psymtab to CU index in the index file. */
15311struct psymtab_cu_index_map
15312{
15313 struct partial_symtab *psymtab;
15314 unsigned int cu_index;
15315};
15316
15317static hashval_t
15318hash_psymtab_cu_index (const void *item)
15319{
15320 const struct psymtab_cu_index_map *map = item;
15321
15322 return htab_hash_pointer (map->psymtab);
15323}
15324
15325static int
15326eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15327{
15328 const struct psymtab_cu_index_map *lhs = item_lhs;
15329 const struct psymtab_cu_index_map *rhs = item_rhs;
15330
15331 return lhs->psymtab == rhs->psymtab;
15332}
15333
15334/* Helper struct for building the address table. */
15335struct addrmap_index_data
15336{
15337 struct objfile *objfile;
15338 struct obstack *addr_obstack;
15339 htab_t cu_index_htab;
15340
15341 /* Non-zero if the previous_* fields are valid.
15342 We can't write an entry until we see the next entry (since it is only then
15343 that we know the end of the entry). */
15344 int previous_valid;
15345 /* Index of the CU in the table of all CUs in the index file. */
15346 unsigned int previous_cu_index;
15347 /* Start address of the CU. */
15348 CORE_ADDR previous_cu_start;
15349};
15350
15351/* Write an address entry to OBSTACK. */
b89be57b 15352
9291a0cd 15353static void
0a5429f6
DE
15354add_address_entry (struct objfile *objfile, struct obstack *obstack,
15355 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 15356{
0a5429f6 15357 offset_type cu_index_to_write;
9291a0cd
TT
15358 char addr[8];
15359 CORE_ADDR baseaddr;
15360
15361 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15362
0a5429f6
DE
15363 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15364 obstack_grow (obstack, addr, 8);
15365 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15366 obstack_grow (obstack, addr, 8);
15367 cu_index_to_write = MAYBE_SWAP (cu_index);
15368 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15369}
15370
15371/* Worker function for traversing an addrmap to build the address table. */
15372
15373static int
15374add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15375{
15376 struct addrmap_index_data *data = datap;
15377 struct partial_symtab *pst = obj;
15378 offset_type cu_index;
15379 void **slot;
15380
15381 if (data->previous_valid)
15382 add_address_entry (data->objfile, data->addr_obstack,
15383 data->previous_cu_start, start_addr,
15384 data->previous_cu_index);
15385
15386 data->previous_cu_start = start_addr;
15387 if (pst != NULL)
15388 {
15389 struct psymtab_cu_index_map find_map, *map;
15390 find_map.psymtab = pst;
15391 map = htab_find (data->cu_index_htab, &find_map);
15392 gdb_assert (map != NULL);
15393 data->previous_cu_index = map->cu_index;
15394 data->previous_valid = 1;
15395 }
15396 else
15397 data->previous_valid = 0;
15398
15399 return 0;
15400}
15401
15402/* Write OBJFILE's address map to OBSTACK.
15403 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15404 in the index file. */
15405
15406static void
15407write_address_map (struct objfile *objfile, struct obstack *obstack,
15408 htab_t cu_index_htab)
15409{
15410 struct addrmap_index_data addrmap_index_data;
15411
15412 /* When writing the address table, we have to cope with the fact that
15413 the addrmap iterator only provides the start of a region; we have to
15414 wait until the next invocation to get the start of the next region. */
15415
15416 addrmap_index_data.objfile = objfile;
15417 addrmap_index_data.addr_obstack = obstack;
15418 addrmap_index_data.cu_index_htab = cu_index_htab;
15419 addrmap_index_data.previous_valid = 0;
15420
15421 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15422 &addrmap_index_data);
15423
15424 /* It's highly unlikely the last entry (end address = 0xff...ff)
15425 is valid, but we should still handle it.
15426 The end address is recorded as the start of the next region, but that
15427 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15428 anyway. */
15429 if (addrmap_index_data.previous_valid)
15430 add_address_entry (objfile, obstack,
15431 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15432 addrmap_index_data.previous_cu_index);
9291a0cd
TT
15433}
15434
15435/* Add a list of partial symbols to SYMTAB. */
b89be57b 15436
9291a0cd
TT
15437static void
15438write_psymbols (struct mapped_symtab *symtab,
987d643c 15439 htab_t psyms_seen,
9291a0cd
TT
15440 struct partial_symbol **psymp,
15441 int count,
987d643c
TT
15442 offset_type cu_index,
15443 int is_static)
9291a0cd
TT
15444{
15445 for (; count-- > 0; ++psymp)
15446 {
987d643c
TT
15447 void **slot, *lookup;
15448
9291a0cd
TT
15449 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15450 error (_("Ada is not currently supported by the index"));
987d643c
TT
15451
15452 /* We only want to add a given psymbol once. However, we also
15453 want to account for whether it is global or static. So, we
15454 may add it twice, using slightly different values. */
15455 if (is_static)
15456 {
15457 uintptr_t val = 1 | (uintptr_t) *psymp;
15458
15459 lookup = (void *) val;
15460 }
15461 else
15462 lookup = *psymp;
15463
15464 /* Only add a given psymbol once. */
15465 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15466 if (!*slot)
15467 {
15468 *slot = lookup;
15469 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15470 }
9291a0cd
TT
15471 }
15472}
15473
15474/* Write the contents of an ("unfinished") obstack to FILE. Throw an
15475 exception if there is an error. */
b89be57b 15476
9291a0cd
TT
15477static void
15478write_obstack (FILE *file, struct obstack *obstack)
15479{
15480 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15481 file)
15482 != obstack_object_size (obstack))
15483 error (_("couldn't data write to file"));
15484}
15485
15486/* Unlink a file if the argument is not NULL. */
b89be57b 15487
9291a0cd
TT
15488static void
15489unlink_if_set (void *p)
15490{
15491 char **filename = p;
15492 if (*filename)
15493 unlink (*filename);
15494}
15495
1fd400ff
TT
15496/* A helper struct used when iterating over debug_types. */
15497struct signatured_type_index_data
15498{
15499 struct objfile *objfile;
15500 struct mapped_symtab *symtab;
15501 struct obstack *types_list;
987d643c 15502 htab_t psyms_seen;
1fd400ff
TT
15503 int cu_index;
15504};
15505
15506/* A helper function that writes a single signatured_type to an
15507 obstack. */
b89be57b 15508
1fd400ff
TT
15509static int
15510write_one_signatured_type (void **slot, void *d)
15511{
15512 struct signatured_type_index_data *info = d;
15513 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
15514 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15515 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
15516 gdb_byte val[8];
15517
15518 write_psymbols (info->symtab,
987d643c 15519 info->psyms_seen,
3e43a32a
MS
15520 info->objfile->global_psymbols.list
15521 + psymtab->globals_offset,
987d643c
TT
15522 psymtab->n_global_syms, info->cu_index,
15523 0);
1fd400ff 15524 write_psymbols (info->symtab,
987d643c 15525 info->psyms_seen,
3e43a32a
MS
15526 info->objfile->static_psymbols.list
15527 + psymtab->statics_offset,
987d643c
TT
15528 psymtab->n_static_syms, info->cu_index,
15529 1);
1fd400ff
TT
15530
15531 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15532 obstack_grow (info->types_list, val, 8);
15533 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15534 obstack_grow (info->types_list, val, 8);
15535 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15536 obstack_grow (info->types_list, val, 8);
15537
15538 ++info->cu_index;
15539
15540 return 1;
15541}
15542
987d643c
TT
15543/* A cleanup function for an htab_t. */
15544
15545static void
15546cleanup_htab (void *arg)
15547{
15548 htab_delete (arg);
15549}
15550
9291a0cd 15551/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 15552
9291a0cd
TT
15553static void
15554write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15555{
15556 struct cleanup *cleanup;
15557 char *filename, *cleanup_filename;
1fd400ff
TT
15558 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15559 struct obstack cu_list, types_cu_list;
9291a0cd
TT
15560 int i;
15561 FILE *out_file;
15562 struct mapped_symtab *symtab;
15563 offset_type val, size_of_contents, total_len;
15564 struct stat st;
15565 char buf[8];
987d643c 15566 htab_t psyms_seen;
0a5429f6
DE
15567 htab_t cu_index_htab;
15568 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd
TT
15569
15570 if (!objfile->psymtabs)
15571 return;
15572 if (dwarf2_per_objfile->using_index)
15573 error (_("Cannot use an index to create the index"));
15574
15575 if (stat (objfile->name, &st) < 0)
7e17e088 15576 perror_with_name (objfile->name);
9291a0cd
TT
15577
15578 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15579 INDEX_SUFFIX, (char *) NULL);
15580 cleanup = make_cleanup (xfree, filename);
15581
15582 out_file = fopen (filename, "wb");
15583 if (!out_file)
15584 error (_("Can't open `%s' for writing"), filename);
15585
15586 cleanup_filename = filename;
15587 make_cleanup (unlink_if_set, &cleanup_filename);
15588
15589 symtab = create_mapped_symtab ();
15590 make_cleanup (cleanup_mapped_symtab, symtab);
15591
15592 obstack_init (&addr_obstack);
15593 make_cleanup_obstack_free (&addr_obstack);
15594
15595 obstack_init (&cu_list);
15596 make_cleanup_obstack_free (&cu_list);
15597
1fd400ff
TT
15598 obstack_init (&types_cu_list);
15599 make_cleanup_obstack_free (&types_cu_list);
15600
987d643c
TT
15601 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15602 NULL, xcalloc, xfree);
15603 make_cleanup (cleanup_htab, psyms_seen);
15604
0a5429f6
DE
15605 /* While we're scanning CU's create a table that maps a psymtab pointer
15606 (which is what addrmap records) to its index (which is what is recorded
15607 in the index file). This will later be needed to write the address
15608 table. */
15609 cu_index_htab = htab_create_alloc (100,
15610 hash_psymtab_cu_index,
15611 eq_psymtab_cu_index,
15612 NULL, xcalloc, xfree);
15613 make_cleanup (cleanup_htab, cu_index_htab);
15614 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15615 xmalloc (sizeof (struct psymtab_cu_index_map)
15616 * dwarf2_per_objfile->n_comp_units);
15617 make_cleanup (xfree, psymtab_cu_index_map);
15618
15619 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
15620 work here. Also, the debug_types entries do not appear in
15621 all_comp_units, but only in their own hash table. */
9291a0cd
TT
15622 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15623 {
3e43a32a
MS
15624 struct dwarf2_per_cu_data *per_cu
15625 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 15626 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 15627 gdb_byte val[8];
0a5429f6
DE
15628 struct psymtab_cu_index_map *map;
15629 void **slot;
9291a0cd
TT
15630
15631 write_psymbols (symtab,
987d643c 15632 psyms_seen,
9291a0cd 15633 objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
15634 psymtab->n_global_syms, i,
15635 0);
9291a0cd 15636 write_psymbols (symtab,
987d643c 15637 psyms_seen,
9291a0cd 15638 objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
15639 psymtab->n_static_syms, i,
15640 1);
9291a0cd 15641
0a5429f6
DE
15642 map = &psymtab_cu_index_map[i];
15643 map->psymtab = psymtab;
15644 map->cu_index = i;
15645 slot = htab_find_slot (cu_index_htab, map, INSERT);
15646 gdb_assert (slot != NULL);
15647 gdb_assert (*slot == NULL);
15648 *slot = map;
9291a0cd 15649
e254ef6a 15650 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
9291a0cd 15651 obstack_grow (&cu_list, val, 8);
e254ef6a 15652 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
15653 obstack_grow (&cu_list, val, 8);
15654 }
15655
0a5429f6
DE
15656 /* Dump the address map. */
15657 write_address_map (objfile, &addr_obstack, cu_index_htab);
15658
1fd400ff
TT
15659 /* Write out the .debug_type entries, if any. */
15660 if (dwarf2_per_objfile->signatured_types)
15661 {
15662 struct signatured_type_index_data sig_data;
15663
15664 sig_data.objfile = objfile;
15665 sig_data.symtab = symtab;
15666 sig_data.types_list = &types_cu_list;
987d643c 15667 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
15668 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15669 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15670 write_one_signatured_type, &sig_data);
15671 }
15672
9291a0cd
TT
15673 obstack_init (&constant_pool);
15674 make_cleanup_obstack_free (&constant_pool);
15675 obstack_init (&symtab_obstack);
15676 make_cleanup_obstack_free (&symtab_obstack);
15677 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15678
15679 obstack_init (&contents);
15680 make_cleanup_obstack_free (&contents);
1fd400ff 15681 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
15682 total_len = size_of_contents;
15683
15684 /* The version number. */
987d643c 15685 val = MAYBE_SWAP (3);
9291a0cd
TT
15686 obstack_grow (&contents, &val, sizeof (val));
15687
15688 /* The offset of the CU list from the start of the file. */
15689 val = MAYBE_SWAP (total_len);
15690 obstack_grow (&contents, &val, sizeof (val));
15691 total_len += obstack_object_size (&cu_list);
15692
1fd400ff
TT
15693 /* The offset of the types CU list from the start of the file. */
15694 val = MAYBE_SWAP (total_len);
15695 obstack_grow (&contents, &val, sizeof (val));
15696 total_len += obstack_object_size (&types_cu_list);
15697
9291a0cd
TT
15698 /* The offset of the address table from the start of the file. */
15699 val = MAYBE_SWAP (total_len);
15700 obstack_grow (&contents, &val, sizeof (val));
15701 total_len += obstack_object_size (&addr_obstack);
15702
15703 /* The offset of the symbol table from the start of the file. */
15704 val = MAYBE_SWAP (total_len);
15705 obstack_grow (&contents, &val, sizeof (val));
15706 total_len += obstack_object_size (&symtab_obstack);
15707
15708 /* The offset of the constant pool from the start of the file. */
15709 val = MAYBE_SWAP (total_len);
15710 obstack_grow (&contents, &val, sizeof (val));
15711 total_len += obstack_object_size (&constant_pool);
15712
15713 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15714
15715 write_obstack (out_file, &contents);
15716 write_obstack (out_file, &cu_list);
1fd400ff 15717 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
15718 write_obstack (out_file, &addr_obstack);
15719 write_obstack (out_file, &symtab_obstack);
15720 write_obstack (out_file, &constant_pool);
15721
15722 fclose (out_file);
15723
15724 /* We want to keep the file, so we set cleanup_filename to NULL
15725 here. See unlink_if_set. */
15726 cleanup_filename = NULL;
15727
15728 do_cleanups (cleanup);
15729}
15730
15731/* The mapped index file format is designed to be directly mmap()able
15732 on any architecture. In most cases, a datum is represented using a
15733 little-endian 32-bit integer value, called an offset_type. Big
15734 endian machines must byte-swap the values before using them.
15735 Exceptions to this rule are noted. The data is laid out such that
15736 alignment is always respected.
15737
15738 A mapped index consists of several sections.
15739
15740 1. The file header. This is a sequence of values, of offset_type
15741 unless otherwise noted:
987d643c
TT
15742
15743 [0] The version number, currently 3. Versions 1 and 2 are
15744 obsolete.
9291a0cd 15745 [1] The offset, from the start of the file, of the CU list.
987d643c
TT
15746 [2] The offset, from the start of the file, of the types CU list.
15747 Note that this section can be empty, in which case this offset will
15748 be equal to the next offset.
15749 [3] The offset, from the start of the file, of the address section.
15750 [4] The offset, from the start of the file, of the symbol table.
15751 [5] The offset, from the start of the file, of the constant pool.
9291a0cd
TT
15752
15753 2. The CU list. This is a sequence of pairs of 64-bit
1fd400ff
TT
15754 little-endian values, sorted by the CU offset. The first element
15755 in each pair is the offset of a CU in the .debug_info section. The
15756 second element in each pair is the length of that CU. References
15757 to a CU elsewhere in the map are done using a CU index, which is
15758 just the 0-based index into this table. Note that if there are
15759 type CUs, then conceptually CUs and type CUs form a single list for
15760 the purposes of CU indices.
15761
987d643c
TT
15762 3. The types CU list. This is a sequence of triplets of 64-bit
15763 little-endian values. In a triplet, the first value is the CU
15764 offset, the second value is the type offset in the CU, and the
15765 third value is the type signature. The types CU list is not
15766 sorted.
9291a0cd 15767
987d643c 15768 4. The address section. The address section consists of a sequence
9291a0cd
TT
15769 of address entries. Each address entry has three elements.
15770 [0] The low address. This is a 64-bit little-endian value.
15771 [1] The high address. This is a 64-bit little-endian value.
148c11bf 15772 Like DW_AT_high_pc, the value is one byte beyond the end.
9291a0cd
TT
15773 [2] The CU index. This is an offset_type value.
15774
987d643c 15775 5. The symbol table. This is a hash table. The size of the hash
9291a0cd
TT
15776 table is always a power of 2. The initial hash and the step are
15777 currently defined by the `find_slot' function.
15778
15779 Each slot in the hash table consists of a pair of offset_type
15780 values. The first value is the offset of the symbol's name in the
15781 constant pool. The second value is the offset of the CU vector in
15782 the constant pool.
15783
15784 If both values are 0, then this slot in the hash table is empty.
15785 This is ok because while 0 is a valid constant pool index, it
15786 cannot be a valid index for both a string and a CU vector.
15787
15788 A string in the constant pool is stored as a \0-terminated string,
15789 as you'd expect.
15790
15791 A CU vector in the constant pool is a sequence of offset_type
15792 values. The first value is the number of CU indices in the vector.
15793 Each subsequent value is the index of a CU in the CU list. This
15794 element in the hash table is used to indicate which CUs define the
15795 symbol.
15796
987d643c 15797 6. The constant pool. This is simply a bunch of bytes. It is
9291a0cd
TT
15798 organized so that alignment is correct: CU vectors are stored
15799 first, followed by strings. */
11570e71 15800
9291a0cd
TT
15801static void
15802save_gdb_index_command (char *arg, int from_tty)
15803{
15804 struct objfile *objfile;
15805
15806 if (!arg || !*arg)
96d19272 15807 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
15808
15809 ALL_OBJFILES (objfile)
15810 {
15811 struct stat st;
15812
15813 /* If the objfile does not correspond to an actual file, skip it. */
15814 if (stat (objfile->name, &st) < 0)
15815 continue;
15816
15817 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15818 if (dwarf2_per_objfile)
15819 {
15820 volatile struct gdb_exception except;
15821
15822 TRY_CATCH (except, RETURN_MASK_ERROR)
15823 {
15824 write_psymtabs_to_index (objfile, arg);
15825 }
15826 if (except.reason < 0)
15827 exception_fprintf (gdb_stderr, except,
15828 _("Error while writing index for `%s': "),
15829 objfile->name);
15830 }
15831 }
dce234bc
PP
15832}
15833
9291a0cd
TT
15834\f
15835
9eae7c52
TT
15836int dwarf2_always_disassemble;
15837
15838static void
15839show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15840 struct cmd_list_element *c, const char *value)
15841{
3e43a32a
MS
15842 fprintf_filtered (file,
15843 _("Whether to always disassemble "
15844 "DWARF expressions is %s.\n"),
9eae7c52
TT
15845 value);
15846}
15847
6502dd73
DJ
15848void _initialize_dwarf2_read (void);
15849
15850void
15851_initialize_dwarf2_read (void)
15852{
96d19272
JK
15853 struct cmd_list_element *c;
15854
dce234bc 15855 dwarf2_objfile_data_key
c1bd65d0 15856 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 15857
1bedd215
AC
15858 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15859Set DWARF 2 specific variables.\n\
15860Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15861 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15862 0/*allow-unknown*/, &maintenance_set_cmdlist);
15863
1bedd215
AC
15864 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15865Show DWARF 2 specific variables\n\
15866Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
15867 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15868 0/*allow-unknown*/, &maintenance_show_cmdlist);
15869
15870 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
15871 &dwarf2_max_cache_age, _("\
15872Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15873Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15874A higher limit means that cached compilation units will be stored\n\
15875in memory longer, and more total memory will be used. Zero disables\n\
15876caching, which can slow down startup."),
2c5b56ce 15877 NULL,
920d2a44 15878 show_dwarf2_max_cache_age,
2c5b56ce 15879 &set_dwarf2_cmdlist,
ae038cb0 15880 &show_dwarf2_cmdlist);
d97bc12b 15881
9eae7c52
TT
15882 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15883 &dwarf2_always_disassemble, _("\
15884Set whether `info address' always disassembles DWARF expressions."), _("\
15885Show whether `info address' always disassembles DWARF expressions."), _("\
15886When enabled, DWARF expressions are always printed in an assembly-like\n\
15887syntax. When disabled, expressions will be printed in a more\n\
15888conversational style, when possible."),
15889 NULL,
15890 show_dwarf2_always_disassemble,
15891 &set_dwarf2_cmdlist,
15892 &show_dwarf2_cmdlist);
15893
d97bc12b
DE
15894 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15895Set debugging of the dwarf2 DIE reader."), _("\
15896Show debugging of the dwarf2 DIE reader."), _("\
15897When enabled (non-zero), DIEs are dumped after they are read in.\n\
15898The value is the maximum depth to print."),
15899 NULL,
15900 NULL,
15901 &setdebuglist, &showdebuglist);
9291a0cd 15902
96d19272 15903 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 15904 _("\
fc1a9d6e 15905Save a gdb-index file.\n\
11570e71 15906Usage: save gdb-index DIRECTORY"),
96d19272
JK
15907 &save_cmdlist);
15908 set_cmd_completer (c, filename_completer);
6502dd73 15909}