]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/frv-tdep.c
gdb, gdbserver, gdbsupport: remove includes of early headers
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
1d506c26 3 Copyright (C) 2002-2024 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d 19
4de283e4
TT
20#include "inferior.h"
21#include "gdbcore.h"
456f8b9d 22#include "arch-utils.h"
4de283e4
TT
23#include "regcache.h"
24#include "frame.h"
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "trad-frame.h"
dcc6aaff 28#include "dis-asm.h"
4de283e4 29#include "sim-regno.h"
d026e67e 30#include "sim/sim-frv.h"
4de283e4 31#include "symtab.h"
7e295833
KB
32#include "elf-bfd.h"
33#include "elf/frv.h"
d55e5aa6 34#include "osabi.h"
4de283e4 35#include "infcall.h"
d55e5aa6 36#include "solib.h"
4de283e4
TT
37#include "frv-tdep.h"
38#include "objfiles.h"
76eb8ef1 39#include "gdbarch.h"
456f8b9d 40
883d90a0
TV
41/* Make cgen names unique to prevent ODR conflicts with other targets. */
42#define GDB_CGEN_REMAP_PREFIX frv
43#include "cgen-remap.h"
ef0f16cc 44#include "opcodes/frv-desc.h"
883d90a0 45
1cb761c7 46struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 47 {
1cb761c7
KB
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
456f8b9d 51
1cb761c7
KB
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
8baa6f92
KB
54
55 /* Table indicating the location of each and every register. */
098caef4 56 trad_frame_saved_reg *saved_regs;
456f8b9d
DB
57 };
58
456f8b9d
DB
59/* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
ab25d9bb 74struct frv_gdbarch_tdep : gdbarch_tdep_base
456f8b9d 75{
7e295833 76 /* Which ABI is in use? */
345bd07c 77 enum frv_abi frv_abi {};
7e295833 78
456f8b9d 79 /* How many general-purpose registers does this variant have? */
345bd07c 80 int num_gprs = 0;
456f8b9d
DB
81
82 /* How many floating-point registers does this variant have? */
345bd07c 83 int num_fprs = 0;
456f8b9d
DB
84
85 /* How many hardware watchpoints can it support? */
345bd07c 86 int num_hw_watchpoints = 0;
456f8b9d
DB
87
88 /* How many hardware breakpoints can it support? */
345bd07c 89 int num_hw_breakpoints = 0;
456f8b9d
DB
90
91 /* Register names. */
345bd07c 92 const char **register_names = nullptr;
456f8b9d
DB
93};
94
2b16913c
SM
95using frv_gdbarch_tdep_up = std::unique_ptr<frv_gdbarch_tdep>;
96
7e295833
KB
97/* Return the FR-V ABI associated with GDBARCH. */
98enum frv_abi
99frv_abi (struct gdbarch *gdbarch)
100{
08106042 101 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
345bd07c 102 return tdep->frv_abi;
7e295833
KB
103}
104
105/* Fetch the interpreter and executable loadmap addresses (for shared
106 library support) for the FDPIC ABI. Return 0 if successful, -1 if
107 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
108int
109frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
dda83cd7 110 CORE_ADDR *exec_addr)
7e295833
KB
111{
112 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
113 return -1;
114 else
115 {
9c742269 116 regcache *regcache = get_thread_regcache (inferior_thread ());
594f7785 117
7e295833
KB
118 if (interp_addr != NULL)
119 {
120 ULONGEST val;
594f7785 121 regcache_cooked_read_unsigned (regcache,
7e295833
KB
122 fdpic_loadmap_interp_regnum, &val);
123 *interp_addr = val;
124 }
125 if (exec_addr != NULL)
126 {
127 ULONGEST val;
594f7785 128 regcache_cooked_read_unsigned (regcache,
7e295833
KB
129 fdpic_loadmap_exec_regnum, &val);
130 *exec_addr = val;
131 }
132 return 0;
133 }
134}
456f8b9d
DB
135
136/* Allocate a new variant structure, and set up default values for all
137 the fields. */
2b16913c
SM
138static frv_gdbarch_tdep_up
139new_variant ()
456f8b9d 140{
456f8b9d 141 int r;
456f8b9d 142
2b16913c 143 frv_gdbarch_tdep_up var (new frv_gdbarch_tdep);
8d749320 144
7e295833 145 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
146 var->num_gprs = 64;
147 var->num_fprs = 64;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
150
151 /* By default, don't supply any general-purpose or floating-point
152 register names. */
6a748db6 153 var->register_names
a121b7c1
PA
154 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
155 * sizeof (const char *));
6a748db6 156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
157 var->register_names[r] = "";
158
526eef89 159 /* Do, however, supply default names for the known special-purpose
456f8b9d 160 registers. */
456f8b9d
DB
161
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
165
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
170
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
177
526eef89
KB
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 181 var->register_names[iacc0_regnum] = "iacc0";
526eef89 182
8b67aa36
KB
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
185
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
189 elsewhere. */
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
8579fd13
AB
191 var->register_names[r]
192 = xstrprintf ("acc%d", r - acc0_regnum).release ();
8b67aa36
KB
193
194 /* accg0 - accg7: These are one byte registers. The remote protocol
195 provides the raw values packed four into a slot. accg0123 and
196 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
197 We don't provide names for accg0123 and accg4567 since the user will
198 likely not want to see these raw values. */
199
200 for (r = accg0_regnum; r <= accg7_regnum; r++)
8579fd13
AB
201 var->register_names[r]
202 = xstrprintf ("accg%d", r - accg0_regnum).release ();
8b67aa36
KB
203
204 /* msr0 and msr1. */
205
206 var->register_names[msr0_regnum] = "msr0";
207 var->register_names[msr1_regnum] = "msr1";
208
209 /* gner and fner registers. */
210 var->register_names[gner0_regnum] = "gner0";
211 var->register_names[gner1_regnum] = "gner1";
212 var->register_names[fner0_regnum] = "fner0";
213 var->register_names[fner1_regnum] = "fner1";
214
456f8b9d
DB
215 return var;
216}
217
218
219/* Indicate that the variant VAR has NUM_GPRS general-purpose
220 registers, and fill in the names array appropriately. */
221static void
345bd07c 222set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs)
456f8b9d
DB
223{
224 int r;
225
226 var->num_gprs = num_gprs;
227
228 for (r = 0; r < num_gprs; ++r)
229 {
230 char buf[20];
231
08850b56 232 xsnprintf (buf, sizeof (buf), "gr%d", r);
456f8b9d
DB
233 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
234 }
235}
236
237
238/* Indicate that the variant VAR has NUM_FPRS floating-point
239 registers, and fill in the names array appropriately. */
240static void
345bd07c 241set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs)
456f8b9d
DB
242{
243 int r;
244
245 var->num_fprs = num_fprs;
246
247 for (r = 0; r < num_fprs; ++r)
248 {
249 char buf[20];
250
08850b56 251 xsnprintf (buf, sizeof (buf), "fr%d", r);
456f8b9d
DB
252 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
253 }
254}
255
7e295833 256static void
345bd07c 257set_variant_abi_fdpic (frv_gdbarch_tdep *var)
7e295833
KB
258{
259 var->frv_abi = FRV_ABI_FDPIC;
260 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
0963b4bd
MS
261 var->register_names[fdpic_loadmap_interp_regnum]
262 = xstrdup ("loadmap_interp");
7e295833 263}
456f8b9d 264
b2d6d697 265static void
345bd07c 266set_variant_scratch_registers (frv_gdbarch_tdep *var)
b2d6d697
KB
267{
268 var->register_names[scr0_regnum] = xstrdup ("scr0");
269 var->register_names[scr1_regnum] = xstrdup ("scr1");
270 var->register_names[scr2_regnum] = xstrdup ("scr2");
271 var->register_names[scr3_regnum] = xstrdup ("scr3");
272}
273
456f8b9d 274static const char *
d93859e2 275frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d 276{
08106042 277 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
345bd07c 278 return tdep->register_names[reg];
456f8b9d
DB
279}
280
526eef89 281
456f8b9d 282static struct type *
7f398216 283frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 284{
526eef89 285 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 286 return builtin_type (gdbarch)->builtin_float;
6a748db6 287 else if (reg == iacc0_regnum)
df4df182 288 return builtin_type (gdbarch)->builtin_int64;
456f8b9d 289 else
df4df182 290 return builtin_type (gdbarch)->builtin_int32;
456f8b9d
DB
291}
292
05d1431c 293static enum register_status
849d0ba8 294frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
dda83cd7 295 int reg, gdb_byte *buffer)
6a748db6 296{
05d1431c
PA
297 enum register_status status;
298
6a748db6
KB
299 if (reg == iacc0_regnum)
300 {
03f50fc8 301 status = regcache->raw_read (iacc0h_regnum, buffer);
05d1431c 302 if (status == REG_VALID)
03f50fc8 303 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 304 }
8b67aa36
KB
305 else if (accg0_regnum <= reg && reg <= accg7_regnum)
306 {
307 /* The accg raw registers have four values in each slot with the
dda83cd7 308 lowest register number occupying the first byte. */
8b67aa36
KB
309
310 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
311 int byte_num = (reg - accg0_regnum) % 4;
05d1431c 312 gdb_byte buf[4];
8b67aa36 313
03f50fc8 314 status = regcache->raw_read (raw_regnum, buf);
05d1431c
PA
315 if (status == REG_VALID)
316 {
317 memset (buffer, 0, 4);
318 /* FR-V is big endian, so put the requested byte in the
319 first byte of the buffer allocated to hold the
320 pseudo-register. */
321 buffer[0] = buf[byte_num];
322 }
8b67aa36 323 }
05d1431c
PA
324 else
325 gdb_assert_not_reached ("invalid pseudo register number");
326
327 return status;
6a748db6
KB
328}
329
330static void
331frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
dda83cd7 332 int reg, const gdb_byte *buffer)
6a748db6
KB
333{
334 if (reg == iacc0_regnum)
335 {
10eaee5f
SM
336 regcache->raw_write (iacc0h_regnum, buffer);
337 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 338 }
8b67aa36
KB
339 else if (accg0_regnum <= reg && reg <= accg7_regnum)
340 {
341 /* The accg raw registers have four values in each slot with the
dda83cd7 342 lowest register number occupying the first byte. */
8b67aa36
KB
343
344 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
345 int byte_num = (reg - accg0_regnum) % 4;
e362b510 346 gdb_byte buf[4];
8b67aa36 347
0b883586 348 regcache->raw_read (raw_regnum, buf);
8b67aa36 349 buf[byte_num] = ((bfd_byte *) buffer)[0];
10eaee5f 350 regcache->raw_write (raw_regnum, buf);
8b67aa36 351 }
6a748db6
KB
352}
353
526eef89 354static int
e7faf938 355frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
356{
357 static const int spr_map[] =
358 {
359 H_SPR_PSR, /* psr_regnum */
360 H_SPR_CCR, /* ccr_regnum */
361 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
362 -1, /* fdpic_loadmap_exec_regnum */
363 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
364 -1, /* 134 */
365 H_SPR_TBR, /* tbr_regnum */
366 H_SPR_BRR, /* brr_regnum */
367 H_SPR_DBAR0, /* dbar0_regnum */
368 H_SPR_DBAR1, /* dbar1_regnum */
369 H_SPR_DBAR2, /* dbar2_regnum */
370 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
371 H_SPR_SCR0, /* scr0_regnum */
372 H_SPR_SCR1, /* scr1_regnum */
373 H_SPR_SCR2, /* scr2_regnum */
374 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
375 H_SPR_LR, /* lr_regnum */
376 H_SPR_LCR, /* lcr_regnum */
377 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
378 H_SPR_IACC0L, /* iacc0l_regnum */
379 H_SPR_FSR0, /* fsr0_regnum */
380 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
381 -1, /* acc0_regnum */
382 -1, /* acc1_regnum */
383 -1, /* acc2_regnum */
384 -1, /* acc3_regnum */
385 -1, /* acc4_regnum */
386 -1, /* acc5_regnum */
387 -1, /* acc6_regnum */
388 -1, /* acc7_regnum */
389 -1, /* acc0123_regnum */
390 -1, /* acc4567_regnum */
391 H_SPR_MSR0, /* msr0_regnum */
392 H_SPR_MSR1, /* msr1_regnum */
393 H_SPR_GNER0, /* gner0_regnum */
394 H_SPR_GNER1, /* gner1_regnum */
395 H_SPR_FNER0, /* fner0_regnum */
396 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
397 };
398
e7faf938 399 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
400
401 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
402 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
403 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
404 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
405 else if (pc_regnum == reg)
406 return SIM_FRV_PC_REGNUM;
407 else if (reg >= first_spr_regnum
dda83cd7 408 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
526eef89
KB
409 {
410 int spr_reg_offset = spr_map[reg - first_spr_regnum];
411
412 if (spr_reg_offset < 0)
413 return SIM_REGNO_DOES_NOT_EXIST;
414 else
415 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
416 }
417
f34652de 418 internal_error (_("Bad register number %d"), reg);
526eef89
KB
419}
420
04180708 421constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
598cc9dc 422
04180708 423typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
456f8b9d 424
46a16dba
KB
425/* Define the maximum number of instructions which may be packed into a
426 bundle (VLIW instruction). */
427static const int max_instrs_per_bundle = 8;
428
429/* Define the size (in bytes) of an FR-V instruction. */
430static const int frv_instr_size = 4;
431
432/* Adjust a breakpoint's address to account for the FR-V architecture's
433 constraint that a break instruction must not appear as any but the
434 first instruction in the bundle. */
435static CORE_ADDR
1208538e 436frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
437{
438 int count = max_instrs_per_bundle;
439 CORE_ADDR addr = bpaddr - frv_instr_size;
440 CORE_ADDR func_start = get_pc_function_start (bpaddr);
441
442 /* Find the end of the previous packing sequence. This will be indicated
443 by either attempting to access some inaccessible memory or by finding
0963b4bd 444 an instruction word whose packing bit is set to one. */
46a16dba
KB
445 while (count-- > 0 && addr >= func_start)
446 {
948f8e3d 447 gdb_byte instr[frv_instr_size];
46a16dba
KB
448 int status;
449
8defab1a 450 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
451
452 if (status != 0)
453 break;
454
455 /* This is a big endian architecture, so byte zero will have most
dda83cd7
SM
456 significant byte. The most significant bit of this byte is the
457 packing bit. */
46a16dba
KB
458 if (instr[0] & 0x80)
459 break;
460
461 addr -= frv_instr_size;
462 }
463
464 if (count > 0)
465 bpaddr = addr + frv_instr_size;
466
467 return bpaddr;
468}
469
456f8b9d
DB
470
471/* Return true if REG is a caller-saves ("scratch") register,
472 false otherwise. */
473static int
474is_caller_saves_reg (int reg)
475{
476 return ((4 <= reg && reg <= 7)
dda83cd7
SM
477 || (14 <= reg && reg <= 15)
478 || (32 <= reg && reg <= 47));
456f8b9d
DB
479}
480
481
482/* Return true if REG is a callee-saves register, false otherwise. */
483static int
484is_callee_saves_reg (int reg)
485{
486 return ((16 <= reg && reg <= 31)
dda83cd7 487 || (48 <= reg && reg <= 63));
456f8b9d
DB
488}
489
490
491/* Return true if REG is an argument register, false otherwise. */
492static int
493is_argument_reg (int reg)
494{
495 return (8 <= reg && reg <= 13);
496}
497
456f8b9d
DB
498/* Scan an FR-V prologue, starting at PC, until frame->PC.
499 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
500 We assume FRAME's saved_regs array has already been allocated and cleared.
501 Return the first PC value after the prologue.
502
503 Note that, for unoptimized code, we almost don't need this function
504 at all; all arguments and locals live on the stack, so we just need
505 the FP to find everything. The catch: structures passed by value
506 have their addresses living in registers; they're never spilled to
507 the stack. So if you ever want to be able to get to these
508 arguments in any frame but the top, you'll need to do this serious
509 prologue analysis. */
510static CORE_ADDR
d80b854b 511frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
8480a37e 512 const frame_info_ptr &this_frame,
dda83cd7 513 struct frv_unwind_cache *info)
456f8b9d 514{
e17a4113
UW
515 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
516
456f8b9d
DB
517 /* When writing out instruction bitpatterns, we use the following
518 letters to label instruction fields:
519 P - The parallel bit. We don't use this.
520 J - The register number of GRj in the instruction description.
521 K - The register number of GRk in the instruction description.
522 I - The register number of GRi.
85102364 523 S - a signed immediate offset.
456f8b9d
DB
524 U - an unsigned immediate offset.
525
526 The dots below the numbers indicate where hex digit boundaries
527 fall, to make it easier to check the numbers. */
528
529 /* Non-zero iff we've seen the instruction that initializes the
530 frame pointer for this function's frame. */
531 int fp_set = 0;
532
533 /* If fp_set is non_zero, then this is the distance from
534 the stack pointer to frame pointer: fp = sp + fp_offset. */
535 int fp_offset = 0;
536
0963b4bd 537 /* Total size of frame prior to any alloca operations. */
456f8b9d
DB
538 int framesize = 0;
539
1cb761c7
KB
540 /* Flag indicating if lr has been saved on the stack. */
541 int lr_saved_on_stack = 0;
542
456f8b9d
DB
543 /* The number of the general-purpose register we saved the return
544 address ("link register") in, or -1 if we haven't moved it yet. */
545 int lr_save_reg = -1;
546
1cb761c7
KB
547 /* Offset (from sp) at which lr has been saved on the stack. */
548
549 int lr_sp_offset = 0;
456f8b9d
DB
550
551 /* If gr_saved[i] is non-zero, then we've noticed that general
552 register i has been saved at gr_sp_offset[i] from the stack
553 pointer. */
554 char gr_saved[64];
555 int gr_sp_offset[64];
556
d40fcd7b
KB
557 /* The address of the most recently scanned prologue instruction. */
558 CORE_ADDR last_prologue_pc;
559
0963b4bd 560 /* The address of the next instruction. */
d40fcd7b
KB
561 CORE_ADDR next_pc;
562
563 /* The upper bound to of the pc values to scan. */
564 CORE_ADDR lim_pc;
565
456f8b9d
DB
566 memset (gr_saved, 0, sizeof (gr_saved));
567
d40fcd7b
KB
568 last_prologue_pc = pc;
569
570 /* Try to compute an upper limit (on how far to scan) based on the
571 line number info. */
d80b854b 572 lim_pc = skip_prologue_using_sal (gdbarch, pc);
d40fcd7b
KB
573 /* If there's no line number info, lim_pc will be 0. In that case,
574 set the limit to be 100 instructions away from pc. Hopefully, this
575 will be far enough away to account for the entire prologue. Don't
576 worry about overshooting the end of the function. The scan loop
577 below contains some checks to avoid scanning unreasonably far. */
578 if (lim_pc == 0)
579 lim_pc = pc + 400;
580
581 /* If we have a frame, we don't want to scan past the frame's pc. This
582 will catch those cases where the pc is in the prologue. */
94afd7a6 583 if (this_frame)
d40fcd7b 584 {
94afd7a6 585 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
586 if (frame_pc < lim_pc)
587 lim_pc = frame_pc;
588 }
589
590 /* Scan the prologue. */
591 while (pc < lim_pc)
456f8b9d 592 {
e362b510 593 gdb_byte buf[frv_instr_size];
1ccda5e9
KB
594 LONGEST op;
595
596 if (target_read_memory (pc, buf, sizeof buf) != 0)
597 break;
2a50938a 598 op = extract_signed_integer (buf, byte_order);
1ccda5e9 599
d40fcd7b 600 next_pc = pc + 4;
456f8b9d
DB
601
602 /* The tests in this chain of ifs should be in order of
603 decreasing selectivity, so that more particular patterns get
604 to fire before less particular patterns. */
605
d40fcd7b
KB
606 /* Some sort of control transfer instruction: stop scanning prologue.
607 Integer Conditional Branch:
608 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
609 Floating-point / media Conditional Branch:
610 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
611 LCR Conditional Branch to LR
612 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
613 Integer conditional Branches to LR
614 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
615 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
616 Floating-point/Media Branches to LR
617 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
618 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
619 Jump and Link
620 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
621 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
622 Call
623 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
624 Return from Trap
625 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
626 Integer Conditional Trap
627 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
628 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
629 Floating-point /media Conditional Trap
630 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
631 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
632 Break
633 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
634 Media Trap
635 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
636 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
dda83cd7 637 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
d40fcd7b
KB
638 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
639 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
640 {
641 /* Stop scanning; not in prologue any longer. */
642 break;
643 }
644
645 /* Loading something from memory into fp probably means that
dda83cd7
SM
646 we're in the epilogue. Stop scanning the prologue.
647 ld @(GRi, GRk), fp
d40fcd7b
KB
648 X 000010 0000010 XXXXXX 000100 XXXXXX
649 ldi @(GRi, d12), fp
650 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
651 else if ((op & 0x7ffc0fc0) == 0x04080100
dda83cd7 652 || (op & 0x7ffc0000) == 0x04c80000)
d40fcd7b
KB
653 {
654 break;
655 }
656
456f8b9d
DB
657 /* Setting the FP from the SP:
658 ori sp, 0, fp
659 P 000010 0100010 000001 000000000000 = 0x04881000
660 0 111111 1111111 111111 111111111111 = 0x7fffffff
dda83cd7 661 . . . . . . . .
456f8b9d 662 We treat this as part of the prologue. */
d40fcd7b 663 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
664 {
665 fp_set = 1;
666 fp_offset = 0;
d40fcd7b 667 last_prologue_pc = next_pc;
456f8b9d
DB
668 }
669
670 /* Move the link register to the scratch register grJ, before saving:
dda83cd7
SM
671 movsg lr, grJ
672 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
673 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
674 . . . . . . . .
456f8b9d
DB
675 We treat this as part of the prologue. */
676 else if ((op & 0x7fffffc0) == 0x080d01c0)
dda83cd7
SM
677 {
678 int gr_j = op & 0x3f;
456f8b9d 679
dda83cd7
SM
680 /* If we're moving it to a scratch register, that's fine. */
681 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
682 {
683 lr_save_reg = gr_j;
684 last_prologue_pc = next_pc;
685 }
dda83cd7 686 }
456f8b9d
DB
687
688 /* To save multiple callee-saves registers on the stack, at
dda83cd7 689 offset zero:
456f8b9d
DB
690
691 std grK,@(sp,gr0)
692 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
693 0 000000 1111111 111111 111111 111111 = 0x01ffffff
694
695 stq grK,@(sp,gr0)
696 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
697 0 000000 1111111 111111 111111 111111 = 0x01ffffff
dda83cd7
SM
698 . . . . . . . .
699 We treat this as part of the prologue, and record the register's
456f8b9d
DB
700 saved address in the frame structure. */
701 else if ((op & 0x01ffffff) == 0x000c10c0
dda83cd7 702 || (op & 0x01ffffff) == 0x000c1100)
456f8b9d
DB
703 {
704 int gr_k = ((op >> 25) & 0x3f);
705 int ope = ((op >> 6) & 0x3f);
dda83cd7 706 int count;
456f8b9d
DB
707 int i;
708
dda83cd7
SM
709 /* Is it an std or an stq? */
710 if (ope == 0x03)
711 count = 2;
712 else
713 count = 4;
456f8b9d
DB
714
715 /* Is it really a callee-saves register? */
716 if (is_callee_saves_reg (gr_k))
717 {
718 for (i = 0; i < count; i++)
dda83cd7 719 {
456f8b9d
DB
720 gr_saved[gr_k + i] = 1;
721 gr_sp_offset[gr_k + i] = 4 * i;
722 }
d40fcd7b 723 last_prologue_pc = next_pc;
456f8b9d 724 }
456f8b9d
DB
725 }
726
727 /* Adjusting the stack pointer. (The stack pointer is GR1.)
728 addi sp, S, sp
dda83cd7
SM
729 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
730 0 111111 1111111 111111 000000000000 = 0x7ffff000
731 . . . . . . . .
456f8b9d
DB
732 We treat this as part of the prologue. */
733 else if ((op & 0x7ffff000) == 0x02401000)
dda83cd7 734 {
d40fcd7b
KB
735 if (framesize == 0)
736 {
737 /* Sign-extend the twelve-bit field.
738 (Isn't there a better way to do this?) */
739 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 740
d40fcd7b
KB
741 framesize -= s;
742 last_prologue_pc = pc;
743 }
744 else
745 {
746 /* If the prologue is being adjusted again, we've
dda83cd7 747 likely gone too far; i.e. we're probably in the
d40fcd7b
KB
748 epilogue. */
749 break;
750 }
456f8b9d
DB
751 }
752
753 /* Setting the FP to a constant distance from the SP:
754 addi sp, S, fp
dda83cd7
SM
755 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
756 0 111111 1111111 111111 000000000000 = 0x7ffff000
757 . . . . . . . .
456f8b9d
DB
758 We treat this as part of the prologue. */
759 else if ((op & 0x7ffff000) == 0x04401000)
760 {
761 /* Sign-extend the twelve-bit field.
762 (Isn't there a better way to do this?) */
763 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
764 fp_set = 1;
765 fp_offset = s;
d40fcd7b 766 last_prologue_pc = pc;
456f8b9d
DB
767 }
768
769 /* To spill an argument register to a scratch register:
770 ori GRi, 0, GRk
771 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
772 0 000000 1111111 000000 111111111111 = 0x01fc0fff
773 . . . . . . . .
774 For the time being, we treat this as a prologue instruction,
775 assuming that GRi is an argument register. This one's kind
776 of suspicious, because it seems like it could be part of a
777 legitimate body instruction. But we only come here when the
778 source info wasn't helpful, so we have to do the best we can.
779 Hopefully once GCC and GDB agree on how to emit line number
780 info for prologues, then this code will never come into play. */
781 else if ((op & 0x01fc0fff) == 0x00880000)
782 {
783 int gr_i = ((op >> 12) & 0x3f);
784
dda83cd7 785 /* Make sure that the source is an arg register; if it is, we'll
d40fcd7b
KB
786 treat it as a prologue instruction. */
787 if (is_argument_reg (gr_i))
788 last_prologue_pc = next_pc;
456f8b9d
DB
789 }
790
791 /* To spill 16-bit values to the stack:
792 sthi GRk, @(fp, s)
793 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
794 0 000000 1111111 111111 000000000000 = 0x01fff000
dda83cd7
SM
795 . . . . . . . .
796 And for 8-bit values, we use STB instructions.
456f8b9d
DB
797 stbi GRk, @(fp, s)
798 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
799 0 000000 1111111 111111 000000000000 = 0x01fff000
800 . . . . . . . .
dda83cd7
SM
801 We check that GRk is really an argument register, and treat
802 all such as part of the prologue. */
456f8b9d
DB
803 else if ( (op & 0x01fff000) == 0x01442000
804 || (op & 0x01fff000) == 0x01402000)
805 {
806 int gr_k = ((op >> 25) & 0x3f);
807
dda83cd7 808 /* Make sure that GRk is really an argument register; treat
d40fcd7b
KB
809 it as a prologue instruction if so. */
810 if (is_argument_reg (gr_k))
811 last_prologue_pc = next_pc;
456f8b9d
DB
812 }
813
814 /* To save multiple callee-saves register on the stack, at a
dda83cd7 815 non-zero offset:
456f8b9d
DB
816
817 stdi GRk, @(sp, s)
818 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
819 0 000000 1111111 111111 000000000000 = 0x01fff000
dda83cd7 820 . . . . . . . .
456f8b9d
DB
821 stqi GRk, @(sp, s)
822 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
823 0 000000 1111111 111111 000000000000 = 0x01fff000
824 . . . . . . . .
dda83cd7 825 We treat this as part of the prologue, and record the register's
456f8b9d
DB
826 saved address in the frame structure. */
827 else if ((op & 0x01fff000) == 0x014c1000
dda83cd7 828 || (op & 0x01fff000) == 0x01501000)
456f8b9d
DB
829 {
830 int gr_k = ((op >> 25) & 0x3f);
dda83cd7 831 int count;
456f8b9d
DB
832 int i;
833
dda83cd7
SM
834 /* Is it a stdi or a stqi? */
835 if ((op & 0x01fff000) == 0x014c1000)
836 count = 2;
837 else
838 count = 4;
456f8b9d
DB
839
840 /* Is it really a callee-saves register? */
841 if (is_callee_saves_reg (gr_k))
842 {
843 /* Sign-extend the twelve-bit field.
844 (Isn't there a better way to do this?) */
845 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
846
847 for (i = 0; i < count; i++)
848 {
849 gr_saved[gr_k + i] = 1;
850 gr_sp_offset[gr_k + i] = s + (4 * i);
851 }
d40fcd7b 852 last_prologue_pc = next_pc;
456f8b9d 853 }
456f8b9d
DB
854 }
855
856 /* Storing any kind of integer register at any constant offset
dda83cd7 857 from any other register.
456f8b9d
DB
858
859 st GRk, @(GRi, gr0)
dda83cd7
SM
860 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
861 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
862 . . . . . . . .
456f8b9d
DB
863 sti GRk, @(GRi, d12)
864 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
865 0 000000 1111111 000000 000000000000 = 0x01fc0000
dda83cd7
SM
866 . . . . . . . .
867 These could be almost anything, but a lot of prologue
868 instructions fall into this pattern, so let's decode the
869 instruction once, and then work at a higher level. */
456f8b9d 870 else if (((op & 0x01fc0fff) == 0x000c0080)
dda83cd7
SM
871 || ((op & 0x01fc0000) == 0x01480000))
872 {
873 int gr_k = ((op >> 25) & 0x3f);
874 int gr_i = ((op >> 12) & 0x3f);
875 int offset;
876
877 /* Are we storing with gr0 as an offset, or using an
878 immediate value? */
879 if ((op & 0x01fc0fff) == 0x000c0080)
880 offset = 0;
881 else
882 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
883
884 /* If the address isn't relative to the SP or FP, it's not a
885 prologue instruction. */
886 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
887 {
888 /* Do nothing; not a prologue instruction. */
889 }
456f8b9d 890
dda83cd7
SM
891 /* Saving the old FP in the new frame (relative to the SP). */
892 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
893 {
894 gr_saved[fp_regnum] = 1;
dda83cd7 895 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 896 last_prologue_pc = next_pc;
1cb761c7 897 }
456f8b9d 898
dda83cd7
SM
899 /* Saving callee-saves register(s) on the stack, relative to
900 the SP. */
901 else if (gr_i == sp_regnum
902 && is_callee_saves_reg (gr_k))
903 {
904 gr_saved[gr_k] = 1;
1cb761c7
KB
905 if (gr_i == sp_regnum)
906 gr_sp_offset[gr_k] = offset;
907 else
908 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 909 last_prologue_pc = next_pc;
dda83cd7 910 }
456f8b9d 911
dda83cd7
SM
912 /* Saving the scratch register holding the return address. */
913 else if (lr_save_reg != -1
914 && gr_k == lr_save_reg)
1cb761c7
KB
915 {
916 lr_saved_on_stack = 1;
917 if (gr_i == sp_regnum)
918 lr_sp_offset = offset;
919 else
dda83cd7 920 lr_sp_offset = offset + fp_offset;
d40fcd7b 921 last_prologue_pc = next_pc;
1cb761c7 922 }
456f8b9d 923
dda83cd7
SM
924 /* Spilling int-sized arguments to the stack. */
925 else if (is_argument_reg (gr_k))
d40fcd7b 926 last_prologue_pc = next_pc;
dda83cd7 927 }
d40fcd7b 928 pc = next_pc;
456f8b9d
DB
929 }
930
94afd7a6 931 if (this_frame && info)
456f8b9d 932 {
1cb761c7
KB
933 int i;
934 ULONGEST this_base;
456f8b9d
DB
935
936 /* If we know the relationship between the stack and frame
dda83cd7
SM
937 pointers, record the addresses of the registers we noticed.
938 Note that we have to do this as a separate step at the end,
939 because instructions may save relative to the SP, but we need
940 their addresses relative to the FP. */
456f8b9d 941 if (fp_set)
94afd7a6 942 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 943 else
94afd7a6 944 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 945
1cb761c7
KB
946 for (i = 0; i < 64; i++)
947 if (gr_saved[i])
098caef4
LM
948 info->saved_regs[i].set_addr (this_base - fp_offset
949 + gr_sp_offset[i]);
456f8b9d 950
1cb761c7
KB
951 info->prev_sp = this_base - fp_offset + framesize;
952 info->base = this_base;
953
954 /* If LR was saved on the stack, record its location. */
955 if (lr_saved_on_stack)
098caef4
LM
956 info->saved_regs[lr_regnum].set_addr (this_base - fp_offset
957 + lr_sp_offset);
1cb761c7
KB
958
959 /* The call instruction moves the caller's PC in the callee's LR.
960 Since this is an unwind, do the reverse. Copy the location of LR
961 into PC (the address / regnum) so that a request for PC will be
962 converted into a request for the LR. */
963 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
964
965 /* Save the previous frame's computed SP value. */
a9a87d35 966 info->saved_regs[sp_regnum].set_value (info->prev_sp);
456f8b9d
DB
967 }
968
d40fcd7b 969 return last_prologue_pc;
456f8b9d
DB
970}
971
972
973static CORE_ADDR
6093d2eb 974frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
975{
976 CORE_ADDR func_addr, func_end, new_pc;
977
978 new_pc = pc;
979
980 /* If the line table has entry for a line *within* the function
981 (i.e., not in the prologue, and not past the end), then that's
982 our location. */
983 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
984 {
985 struct symtab_and_line sal;
986
987 sal = find_pc_line (func_addr, 0);
988
989 if (sal.line != 0 && sal.end < func_end)
990 {
991 new_pc = sal.end;
992 }
993 }
994
995 /* The FR-V prologue is at least five instructions long (twenty bytes).
996 If we didn't find a real source location past that, then
997 do a full analysis of the prologue. */
998 if (new_pc < pc + 20)
d80b854b 999 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
456f8b9d
DB
1000
1001 return new_pc;
1002}
1003
1cb761c7 1004
9bc7b6c6
KB
1005/* Examine the instruction pointed to by PC. If it corresponds to
1006 a call to __main, return the address of the next instruction.
1007 Otherwise, return PC. */
1008
1009static CORE_ADDR
1010frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1011{
e17a4113 1012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9bc7b6c6
KB
1013 gdb_byte buf[4];
1014 unsigned long op;
1015 CORE_ADDR orig_pc = pc;
1016
1017 if (target_read_memory (pc, buf, 4))
1018 return pc;
e17a4113 1019 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1020
1021 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1022 to the call instruction.
1023
1024 Skip over this instruction if present. It won't be present in
0963b4bd 1025 non-PIC code, and even in PIC code, it might not be present.
9bc7b6c6
KB
1026 (This is due to the fact that GR15, the FDPIC register, already
1027 contains the correct value.)
1028
1029 The general form of the LDI is given first, followed by the
1030 specific instruction with the GRi and GRk filled in as FP and
1031 GR15.
1032
1033 ldi @(GRi, d12), GRk
1034 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1035 0 000000 1111111 000000 000000000000 = 0x01fc0000
1036 . . . . . . . .
1037 ldi @(FP, d12), GR15
1038 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1039 0 001111 1111111 000010 000000000000 = 0x7ffff000
1040 . . . . . . . . */
1041
1042 if ((op & 0x7ffff000) == 0x1ec82000)
1043 {
1044 pc += 4;
1045 if (target_read_memory (pc, buf, 4))
1046 return orig_pc;
e17a4113 1047 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1048 }
1049
1050 /* The format of an FRV CALL instruction is as follows:
1051
1052 call label24
1053 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1054 0 000000 1111111 000000000000000000 = 0x01fc0000
dda83cd7 1055 . . . . . . . .
9bc7b6c6
KB
1056
1057 where label24 is constructed by concatenating the H bits with the
1058 L bits. The call target is PC + (4 * sign_ext(label24)). */
1059
1060 if ((op & 0x01fc0000) == 0x003c0000)
1061 {
1062 LONGEST displ;
1063 CORE_ADDR call_dest;
7cbd4a93 1064 struct bound_minimal_symbol s;
9bc7b6c6
KB
1065
1066 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1067 if ((displ & 0x00800000) != 0)
1068 displ |= ~((LONGEST) 0x00ffffff);
1069
1070 call_dest = pc + 4 * displ;
1071 s = lookup_minimal_symbol_by_pc (call_dest);
1072
7cbd4a93 1073 if (s.minsym != NULL
dda83cd7 1074 && s.minsym->linkage_name () != NULL
c9d95fa3 1075 && strcmp (s.minsym->linkage_name (), "__main") == 0)
9bc7b6c6
KB
1076 {
1077 pc += 4;
1078 return pc;
1079 }
1080 }
1081 return orig_pc;
1082}
1083
1084
1cb761c7 1085static struct frv_unwind_cache *
8480a37e 1086frv_frame_unwind_cache (const frame_info_ptr &this_frame,
1cb761c7 1087 void **this_prologue_cache)
456f8b9d 1088{
94afd7a6 1089 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1090 struct frv_unwind_cache *info;
8baa6f92 1091
1cb761c7 1092 if ((*this_prologue_cache))
9a3c8263 1093 return (struct frv_unwind_cache *) (*this_prologue_cache);
456f8b9d 1094
1cb761c7
KB
1095 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1096 (*this_prologue_cache) = info;
94afd7a6 1097 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1098
1cb761c7 1099 /* Prologue analysis does the rest... */
d80b854b
UW
1100 frv_analyze_prologue (gdbarch,
1101 get_frame_func (this_frame), this_frame, info);
456f8b9d 1102
1cb761c7 1103 return info;
456f8b9d
DB
1104}
1105
456f8b9d 1106static void
cd31fb03 1107frv_extract_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1108 gdb_byte *valbuf)
456f8b9d 1109{
ac7936df 1110 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
df86565b 1112 int len = type->length ();
cd31fb03
KB
1113
1114 if (len <= 4)
1115 {
1116 ULONGEST gpr8_val;
1117 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
e17a4113 1118 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
cd31fb03
KB
1119 }
1120 else if (len == 8)
1121 {
1122 ULONGEST regval;
0963b4bd 1123
cd31fb03 1124 regcache_cooked_read_unsigned (regcache, 8, &regval);
e17a4113 1125 store_unsigned_integer (valbuf, 4, byte_order, regval);
cd31fb03 1126 regcache_cooked_read_unsigned (regcache, 9, &regval);
e17a4113 1127 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
cd31fb03
KB
1128 }
1129 else
f34652de 1130 internal_error (_("Illegal return value length: %d"), len);
456f8b9d
DB
1131}
1132
1cb761c7
KB
1133static CORE_ADDR
1134frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1135{
1cb761c7 1136 /* Require dword alignment. */
5b03f266 1137 return align_down (sp, 8);
456f8b9d
DB
1138}
1139
c4d10515
KB
1140static CORE_ADDR
1141find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1142{
e17a4113 1143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515 1144 CORE_ADDR descr;
948f8e3d 1145 gdb_byte valbuf[4];
35e08e03
KB
1146 CORE_ADDR start_addr;
1147
1148 /* If we can't find the function in the symbol table, then we assume
1149 that the function address is already in descriptor form. */
1150 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1151 || entry_point != start_addr)
1152 return entry_point;
c4d10515
KB
1153
1154 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1155
1156 if (descr != 0)
1157 return descr;
1158
1159 /* Construct a non-canonical descriptor from space allocated on
1160 the stack. */
1161
1162 descr = value_as_long (value_allocate_space_in_inferior (8));
e17a4113 1163 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
c4d10515 1164 write_memory (descr, valbuf, 4);
e17a4113 1165 store_unsigned_integer (valbuf, 4, byte_order,
dda83cd7 1166 frv_fdpic_find_global_pointer (entry_point));
c4d10515
KB
1167 write_memory (descr + 4, valbuf, 4);
1168 return descr;
1169}
1170
1171static CORE_ADDR
1172frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
dda83cd7 1173 struct target_ops *targ)
c4d10515 1174{
e17a4113 1175 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515
KB
1176 CORE_ADDR entry_point;
1177 CORE_ADDR got_address;
1178
e17a4113
UW
1179 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1180 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
c4d10515
KB
1181
1182 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1183 return entry_point;
1184 else
1185 return addr;
1186}
1187
456f8b9d 1188static CORE_ADDR
7d9b040b 1189frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
dda83cd7
SM
1190 struct regcache *regcache, CORE_ADDR bp_addr,
1191 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1192 function_call_return_method return_method,
1193 CORE_ADDR struct_addr)
456f8b9d 1194{
e17a4113 1195 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456f8b9d
DB
1196 int argreg;
1197 int argnum;
948f8e3d
PA
1198 const gdb_byte *val;
1199 gdb_byte valbuf[4];
456f8b9d
DB
1200 struct value *arg;
1201 struct type *arg_type;
1202 int len;
1203 enum type_code typecode;
1204 CORE_ADDR regval;
1205 int stack_space;
1206 int stack_offset;
c4d10515 1207 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1208 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1209
1210#if 0
1211 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1212 nargs, (int) sp, struct_return, struct_addr);
1213#endif
1214
1215 stack_space = 0;
1216 for (argnum = 0; argnum < nargs; ++argnum)
d0c97917 1217 stack_space += align_up (args[argnum]->type ()->length (), 4);
456f8b9d
DB
1218
1219 stack_space -= (6 * 4);
1220 if (stack_space > 0)
1221 sp -= stack_space;
1222
0963b4bd 1223 /* Make sure stack is dword aligned. */
5b03f266 1224 sp = align_down (sp, 8);
456f8b9d
DB
1225
1226 stack_offset = 0;
1227
1228 argreg = 8;
1229
cf84fa6b 1230 if (return_method == return_method_struct)
1cb761c7 1231 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
dda83cd7 1232 struct_addr);
456f8b9d
DB
1233
1234 for (argnum = 0; argnum < nargs; ++argnum)
1235 {
1236 arg = args[argnum];
d0c97917 1237 arg_type = check_typedef (arg->type ());
df86565b 1238 len = arg_type->length ();
78134374 1239 typecode = arg_type->code ();
456f8b9d
DB
1240
1241 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1242 {
e17a4113 1243 store_unsigned_integer (valbuf, 4, byte_order,
9feb2d07 1244 arg->address ());
456f8b9d
DB
1245 typecode = TYPE_CODE_PTR;
1246 len = 4;
1247 val = valbuf;
1248 }
c4d10515
KB
1249 else if (abi == FRV_ABI_FDPIC
1250 && len == 4
dda83cd7 1251 && typecode == TYPE_CODE_PTR
27710edb 1252 && arg_type->target_type ()->code () == TYPE_CODE_FUNC)
c4d10515
KB
1253 {
1254 /* The FDPIC ABI requires function descriptors to be passed instead
1255 of entry points. */
e17a4113 1256 CORE_ADDR addr = extract_unsigned_integer
efaf1ae0 1257 (arg->contents ().data (), 4, byte_order);
e17a4113
UW
1258 addr = find_func_descr (gdbarch, addr);
1259 store_unsigned_integer (valbuf, 4, byte_order, addr);
c4d10515
KB
1260 typecode = TYPE_CODE_PTR;
1261 len = 4;
1262 val = valbuf;
1263 }
456f8b9d
DB
1264 else
1265 {
efaf1ae0 1266 val = arg->contents ().data ();
456f8b9d
DB
1267 }
1268
1269 while (len > 0)
1270 {
1271 int partial_len = (len < 4 ? len : 4);
1272
1273 if (argreg < 14)
1274 {
e17a4113 1275 regval = extract_unsigned_integer (val, partial_len, byte_order);
456f8b9d
DB
1276#if 0
1277 printf(" Argnum %d data %x -> reg %d\n",
1278 argnum, (int) regval, argreg);
1279#endif
1cb761c7 1280 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1281 ++argreg;
1282 }
1283 else
1284 {
1285#if 0
1286 printf(" Argnum %d data %x -> offset %d (%x)\n",
0963b4bd
MS
1287 argnum, *((int *)val), stack_offset,
1288 (int) (sp + stack_offset));
456f8b9d
DB
1289#endif
1290 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1291 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1292 }
1293 len -= partial_len;
1294 val += partial_len;
1295 }
1296 }
456f8b9d 1297
1cb761c7
KB
1298 /* Set the return address. For the frv, the return breakpoint is
1299 always at BP_ADDR. */
1300 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1301
c4d10515
KB
1302 if (abi == FRV_ABI_FDPIC)
1303 {
1304 /* Set the GOT register for the FDPIC ABI. */
1305 regcache_cooked_write_unsigned
1306 (regcache, first_gpr_regnum + 15,
dda83cd7 1307 frv_fdpic_find_global_pointer (func_addr));
c4d10515
KB
1308 }
1309
1cb761c7
KB
1310 /* Finally, update the SP register. */
1311 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1312
456f8b9d
DB
1313 return sp;
1314}
1315
1316static void
cd31fb03 1317frv_store_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1318 const gdb_byte *valbuf)
456f8b9d 1319{
df86565b 1320 int len = type->length ();
cd31fb03
KB
1321
1322 if (len <= 4)
1323 {
1324 bfd_byte val[4];
1325 memset (val, 0, sizeof (val));
1326 memcpy (val + (4 - len), valbuf, len);
b66f5587 1327 regcache->cooked_write (8, val);
cd31fb03
KB
1328 }
1329 else if (len == 8)
1330 {
b66f5587
SM
1331 regcache->cooked_write (8, valbuf);
1332 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
cd31fb03 1333 }
456f8b9d 1334 else
f34652de 1335 internal_error (_("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1336}
1337
63807e1d 1338static enum return_value_convention
6a3a010b 1339frv_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1340 struct type *valtype, struct regcache *regcache,
1341 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 1342{
78134374
SM
1343 int struct_return = valtype->code () == TYPE_CODE_STRUCT
1344 || valtype->code () == TYPE_CODE_UNION
1345 || valtype->code () == TYPE_CODE_ARRAY;
4c8b6ae0
UW
1346
1347 if (writebuf != NULL)
1348 {
1349 gdb_assert (!struct_return);
1350 frv_store_return_value (valtype, regcache, writebuf);
1351 }
1352
1353 if (readbuf != NULL)
1354 {
1355 gdb_assert (!struct_return);
1356 frv_extract_return_value (valtype, regcache, readbuf);
1357 }
1358
1359 if (struct_return)
1360 return RETURN_VALUE_STRUCT_CONVENTION;
1361 else
1362 return RETURN_VALUE_REGISTER_CONVENTION;
456f8b9d
DB
1363}
1364
1cb761c7
KB
1365/* Given a GDB frame, determine the address of the calling function's
1366 frame. This will be used to create a new GDB frame struct. */
1367
1368static void
8480a37e 1369frv_frame_this_id (const frame_info_ptr &this_frame,
1cb761c7
KB
1370 void **this_prologue_cache, struct frame_id *this_id)
1371{
1372 struct frv_unwind_cache *info
94afd7a6 1373 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1374 CORE_ADDR base;
1375 CORE_ADDR func;
3b7344d5 1376 struct bound_minimal_symbol msym_stack;
1cb761c7
KB
1377 struct frame_id id;
1378
1379 /* The FUNC is easy. */
94afd7a6 1380 func = get_frame_func (this_frame);
1cb761c7 1381
1cb761c7
KB
1382 /* Check if the stack is empty. */
1383 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
4aeddc50 1384 if (msym_stack.minsym && info->base == msym_stack.value_address ())
1cb761c7
KB
1385 return;
1386
1387 /* Hopefully the prologue analysis either correctly determined the
1388 frame's base (which is the SP from the previous frame), or set
1389 that base to "NULL". */
1390 base = info->prev_sp;
1391 if (base == 0)
1392 return;
1393
1394 id = frame_id_build (base, func);
1cb761c7
KB
1395 (*this_id) = id;
1396}
1397
94afd7a6 1398static struct value *
8480a37e 1399frv_frame_prev_register (const frame_info_ptr &this_frame,
94afd7a6 1400 void **this_prologue_cache, int regnum)
1cb761c7
KB
1401{
1402 struct frv_unwind_cache *info
94afd7a6
UW
1403 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1404 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1405}
1406
1407static const struct frame_unwind frv_frame_unwind = {
a154d838 1408 "frv prologue",
1cb761c7 1409 NORMAL_FRAME,
8fbca658 1410 default_frame_unwind_stop_reason,
1cb761c7 1411 frv_frame_this_id,
94afd7a6
UW
1412 frv_frame_prev_register,
1413 NULL,
1414 default_frame_sniffer
1cb761c7
KB
1415};
1416
1cb761c7 1417static CORE_ADDR
8480a37e 1418frv_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
1cb761c7
KB
1419{
1420 struct frv_unwind_cache *info
94afd7a6 1421 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1422 return info->base;
1423}
1424
1425static const struct frame_base frv_frame_base = {
1426 &frv_frame_unwind,
1427 frv_frame_base_address,
1428 frv_frame_base_address,
1429 frv_frame_base_address
1430};
1431
456f8b9d
DB
1432static struct gdbarch *
1433frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1434{
7e295833 1435 int elf_flags = 0;
456f8b9d
DB
1436
1437 /* Check to see if we've already built an appropriate architecture
1438 object for this executable. */
1439 arches = gdbarch_list_lookup_by_info (arches, &info);
1440 if (arches)
1441 return arches->gdbarch;
1442
1443 /* Select the right tdep structure for this variant. */
2b16913c
SM
1444 gdbarch *gdbarch = gdbarch_alloc (&info, new_variant ());
1445 frv_gdbarch_tdep *var = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
1446
456f8b9d
DB
1447 switch (info.bfd_arch_info->mach)
1448 {
1449 case bfd_mach_frv:
1450 case bfd_mach_frvsimple:
087ccc6a 1451 case bfd_mach_fr300:
456f8b9d
DB
1452 case bfd_mach_fr500:
1453 case bfd_mach_frvtomcat:
251a3ae3 1454 case bfd_mach_fr550:
456f8b9d
DB
1455 set_variant_num_gprs (var, 64);
1456 set_variant_num_fprs (var, 64);
1457 break;
1458
1459 case bfd_mach_fr400:
b2d6d697 1460 case bfd_mach_fr450:
456f8b9d
DB
1461 set_variant_num_gprs (var, 32);
1462 set_variant_num_fprs (var, 32);
1463 break;
1464
1465 default:
1466 /* Never heard of this variant. */
1467 return 0;
1468 }
7e295833
KB
1469
1470 /* Extract the ELF flags, if available. */
1471 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1472 elf_flags = elf_elfheader (info.abfd)->e_flags;
1473
1474 if (elf_flags & EF_FRV_FDPIC)
1475 set_variant_abi_fdpic (var);
1476
b2d6d697
KB
1477 if (elf_flags & EF_FRV_CPU_FR450)
1478 set_variant_scratch_registers (var);
1479
456f8b9d
DB
1480 set_gdbarch_short_bit (gdbarch, 16);
1481 set_gdbarch_int_bit (gdbarch, 32);
1482 set_gdbarch_long_bit (gdbarch, 32);
1483 set_gdbarch_long_long_bit (gdbarch, 64);
1484 set_gdbarch_float_bit (gdbarch, 32);
1485 set_gdbarch_double_bit (gdbarch, 64);
1486 set_gdbarch_long_double_bit (gdbarch, 64);
1487 set_gdbarch_ptr_bit (gdbarch, 32);
1488
1489 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1490 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1491
456f8b9d 1492 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1493 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1494 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1495
1496 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1497 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1498 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1499
6a748db6 1500 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
7f0f3b0f
SM
1501 set_gdbarch_deprecated_pseudo_register_write (gdbarch,
1502 frv_pseudo_register_write);
6a748db6 1503
456f8b9d 1504 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1505 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
04180708
YQ
1506 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1507 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1208538e
MK
1508 set_gdbarch_adjust_breakpoint_address
1509 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1510
4c8b6ae0 1511 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1512
1cb761c7 1513 /* Frame stuff. */
1cb761c7 1514 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1515 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1516 /* We set the sniffer lower down after the OSABI hooks have been
1517 established. */
456f8b9d 1518
1cb761c7
KB
1519 /* Settings for calling functions in the inferior. */
1520 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
456f8b9d
DB
1521
1522 /* Settings that should be unnecessary. */
1523 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1524
456f8b9d
DB
1525 /* Hardware watchpoint / breakpoint support. */
1526 switch (info.bfd_arch_info->mach)
1527 {
1528 case bfd_mach_frv:
1529 case bfd_mach_frvsimple:
087ccc6a 1530 case bfd_mach_fr300:
456f8b9d
DB
1531 case bfd_mach_fr500:
1532 case bfd_mach_frvtomcat:
1533 /* fr500-style hardware debugging support. */
1534 var->num_hw_watchpoints = 4;
1535 var->num_hw_breakpoints = 4;
1536 break;
1537
1538 case bfd_mach_fr400:
b2d6d697 1539 case bfd_mach_fr450:
456f8b9d
DB
1540 /* fr400-style hardware debugging support. */
1541 var->num_hw_watchpoints = 2;
1542 var->num_hw_breakpoints = 4;
1543 break;
1544
1545 default:
1546 /* Otherwise, assume we don't have hardware debugging support. */
1547 var->num_hw_watchpoints = 0;
1548 var->num_hw_breakpoints = 0;
1549 break;
1550 }
1551
c4d10515
KB
1552 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1553 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1554 frv_convert_from_func_ptr_addr);
36482093 1555
9e468e95 1556 set_gdbarch_so_ops (gdbarch, &frv_so_ops);
917630e4 1557
5ecb7103
KB
1558 /* Hook in ABI-specific overrides, if they have been registered. */
1559 gdbarch_init_osabi (info, gdbarch);
1560
5ecb7103 1561 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1562 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1563
186993b4
KB
1564 /* Enable TLS support. */
1565 set_gdbarch_fetch_tls_load_module_address (gdbarch,
dda83cd7 1566 frv_fetch_objfile_link_map);
186993b4 1567
456f8b9d
DB
1568 return gdbarch;
1569}
1570
6c265988 1571void _initialize_frv_tdep ();
456f8b9d 1572void
6c265988 1573_initialize_frv_tdep ()
456f8b9d 1574{
ec29a63c 1575 gdbarch_register (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1576}