]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
Add target_description_changed_p and target_get_tdep_info methods
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
e2882c85 5# Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 363
f9e9243a
UW
364# The ABI default bit-size and format for "half", "float", "double", and
365# "long double". These bit/format pairs should eventually be combined
366# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
367# Each format describes both the big and little endian layouts (if
368# useful).
456fcf94 369
ea480a30
SM
370v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 378
53375380
PA
379# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380# starting with C++11.
ea480a30 381v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 382# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 383v;int;wchar_signed;;;1;-1;1
53375380 384
9b790ce7
UW
385# Returns the floating-point format to be used for values of length LENGTH.
386# NAME, if non-NULL, is the type name, which may be used to distinguish
387# different target formats of the same length.
ea480a30 388m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 389
52204a0b
DT
390# For most targets, a pointer on the target and its representation as an
391# address in GDB have the same size and "look the same". For such a
17a912b6 392# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
393# / addr_bit will be set from it.
394#
17a912b6 395# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
396# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397# gdbarch_address_to_pointer as well.
52204a0b
DT
398#
399# ptr_bit is the size of a pointer on the target
ea480a30 400v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 401# addr_bit is the size of a target address as represented in gdb
ea480a30 402v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 403#
8da614df
CV
404# dwarf2_addr_size is the target address size as used in the Dwarf debug
405# info. For .debug_frame FDEs, this is supposed to be the target address
406# size from the associated CU header, and which is equivalent to the
407# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408# Unfortunately there is no good way to determine this value. Therefore
409# dwarf2_addr_size simply defaults to the target pointer size.
410#
411# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412# defined using the target's pointer size so far.
413#
414# Note that dwarf2_addr_size only needs to be redefined by a target if the
415# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416# and if Dwarf versions < 4 need to be supported.
ea480a30 417v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 418#
4e409299 419# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 420v;int;char_signed;;;1;-1;1
4e409299 421#
c113ed0c 422F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 423F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
424# Function for getting target's idea of a frame pointer. FIXME: GDB's
425# whole scheme for dealing with "frames" and "frame pointers" needs a
426# serious shakedown.
ea480a30 427m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 428#
849d0ba8 429M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
430# Read a register into a new struct value. If the register is wholly
431# or partly unavailable, this should call mark_value_bytes_unavailable
432# as appropriate. If this is defined, then pseudo_register_read will
433# never be called.
849d0ba8 434M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 435M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 436#
ea480a30 437v;int;num_regs;;;0;-1
0aba1244
EZ
438# This macro gives the number of pseudo-registers that live in the
439# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
440# These pseudo-registers may be aliases for other registers,
441# combinations of other registers, or they may be computed by GDB.
ea480a30 442v;int;num_pseudo_regs;;;0;0;;0
c2169756 443
175ff332
HZ
444# Assemble agent expression bytecode to collect pseudo-register REG.
445# Return -1 if something goes wrong, 0 otherwise.
ea480a30 446M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
447
448# Assemble agent expression bytecode to push the value of pseudo-register
449# REG on the interpreter stack.
450# Return -1 if something goes wrong, 0 otherwise.
ea480a30 451M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 452
012b3a21
WT
453# Some targets/architectures can do extra processing/display of
454# segmentation faults. E.g., Intel MPX boundary faults.
455# Call the architecture dependent function to handle the fault.
456# UIOUT is the output stream where the handler will place information.
ea480a30 457M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 458
c2169756
AC
459# GDB's standard (or well known) register numbers. These can map onto
460# a real register or a pseudo (computed) register or not be defined at
1200cd6e 461# all (-1).
3e8c568d 462# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
463v;int;sp_regnum;;;-1;-1;;0
464v;int;pc_regnum;;;-1;-1;;0
465v;int;ps_regnum;;;-1;-1;;0
466v;int;fp0_regnum;;;0;-1;;0
88c72b7d 467# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 468m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 469# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 470m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 471# Convert from an sdb register number to an internal gdb register number.
ea480a30 472m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 473# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 474# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
475m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476m;const char *;register_name;int regnr;regnr;;0
9c04cab7 477
7b9ee6a8
DJ
478# Return the type of a register specified by the architecture. Only
479# the register cache should call this function directly; others should
480# use "register_type".
ea480a30 481M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 482
ea480a30 483M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
669fac23 484# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 485# deprecated_fp_regnum.
ea480a30 486v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 487
ea480a30
SM
488M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
489v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
490M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 491
7eb89530 492# Return true if the code of FRAME is writable.
ea480a30 493m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 494
ea480a30
SM
495m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
496m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
497M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
498# MAP a GDB RAW register number onto a simulator register number. See
499# also include/...-sim.h.
ea480a30
SM
500m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
501m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
502m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
503
504# Determine the address where a longjmp will land and save this address
505# in PC. Return nonzero on success.
506#
507# FRAME corresponds to the longjmp frame.
ea480a30 508F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 509
104c1213 510#
ea480a30 511v;int;believe_pcc_promotion;;;;;;;
104c1213 512#
ea480a30
SM
513m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
514f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
515f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 516# Construct a value representing the contents of register REGNUM in
2ed3c037 517# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
518# allocate and return a struct value with all value attributes
519# (but not the value contents) filled in.
ea480a30 520m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 521#
ea480a30
SM
522m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
523m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
524M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 525
6a3a010b
MR
526# Return the return-value convention that will be used by FUNCTION
527# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
528# case the return convention is computed based only on VALTYPE.
529#
530# If READBUF is not NULL, extract the return value and save it in this buffer.
531#
532# If WRITEBUF is not NULL, it contains a return value which will be
533# stored into the appropriate register. This can be used when we want
534# to force the value returned by a function (see the "return" command
535# for instance).
ea480a30 536M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 537
18648a37
YQ
538# Return true if the return value of function is stored in the first hidden
539# parameter. In theory, this feature should be language-dependent, specified
540# by language and its ABI, such as C++. Unfortunately, compiler may
541# implement it to a target-dependent feature. So that we need such hook here
542# to be aware of this in GDB.
ea480a30 543m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 544
ea480a30
SM
545m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
546M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
547# On some platforms, a single function may provide multiple entry points,
548# e.g. one that is used for function-pointer calls and a different one
549# that is used for direct function calls.
550# In order to ensure that breakpoints set on the function will trigger
551# no matter via which entry point the function is entered, a platform
552# may provide the skip_entrypoint callback. It is called with IP set
553# to the main entry point of a function (as determined by the symbol table),
554# and should return the address of the innermost entry point, where the
555# actual breakpoint needs to be set. Note that skip_entrypoint is used
556# by GDB common code even when debugging optimized code, where skip_prologue
557# is not used.
ea480a30 558M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 559
ea480a30
SM
560f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
561m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
562
563# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 564m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
565
566# Return the software breakpoint from KIND. KIND can have target
567# specific meaning like the Z0 kind parameter.
568# SIZE is set to the software breakpoint's length in memory.
ea480a30 569m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 570
833b7ab5
YQ
571# Return the breakpoint kind for this target based on the current
572# processor state (e.g. the current instruction mode on ARM) and the
573# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 574m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 575
ea480a30
SM
576M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
577m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
578m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
579v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
580
581# A function can be addressed by either it's "pointer" (possibly a
582# descriptor address) or "entry point" (first executable instruction).
583# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 584# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
585# a simplified subset of that functionality - the function's address
586# corresponds to the "function pointer" and the function's start
587# corresponds to the "function entry point" - and hence is redundant.
588
ea480a30 589v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 590
123dc839
DJ
591# Return the remote protocol register number associated with this
592# register. Normally the identity mapping.
ea480a30 593m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 594
b2756930 595# Fetch the target specific address used to represent a load module.
ea480a30 596F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
104c1213 597#
ea480a30
SM
598v;CORE_ADDR;frame_args_skip;;;0;;;0
599M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
600M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
42efa47a
AC
601# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602# frame-base. Enable frame-base before frame-unwind.
ea480a30 603F;int;frame_num_args;struct frame_info *frame;frame
104c1213 604#
ea480a30
SM
605M;CORE_ADDR;frame_align;CORE_ADDR address;address
606m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
607v;int;frame_red_zone_size
f0d4cc9e 608#
ea480a30 609m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
610# On some machines there are bits in addresses which are not really
611# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 612# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
613# we get a "real" address such as one would find in a symbol table.
614# This is used only for addresses of instructions, and even then I'm
615# not sure it's used in all contexts. It exists to deal with there
616# being a few stray bits in the PC which would mislead us, not as some
617# sort of generic thing to handle alignment or segmentation (it's
618# possible it should be in TARGET_READ_PC instead).
ea480a30 619m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 620
a738ea1d
YQ
621# On some machines, not all bits of an address word are significant.
622# For example, on AArch64, the top bits of an address known as the "tag"
623# are ignored by the kernel, the hardware, etc. and can be regarded as
624# additional data associated with the address.
5969f0db 625v;int;significant_addr_bit;;;;;;0
a738ea1d 626
e6590a1b
UW
627# FIXME/cagney/2001-01-18: This should be split in two. A target method that
628# indicates if the target needs software single step. An ISA method to
629# implement it.
630#
e6590a1b
UW
631# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
632# target can single step. If not, then implement single step using breakpoints.
64c4637f 633#
93f9a11f
YQ
634# Return a vector of addresses on which the software single step
635# breakpoints should be inserted. NULL means software single step is
636# not used.
637# Multiple breakpoints may be inserted for some instructions such as
638# conditional branch. However, each implementation must always evaluate
639# the condition and only put the breakpoint at the branch destination if
640# the condition is true, so that we ensure forward progress when stepping
641# past a conditional branch to self.
a0ff9e1a 642F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 643
3352ef37
AC
644# Return non-zero if the processor is executing a delay slot and a
645# further single-step is needed before the instruction finishes.
ea480a30 646M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 647# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 648# disassembler. Perhaps objdump can handle it?
39503f82 649f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 650f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
651
652
cfd8ab24 653# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
654# evaluates non-zero, this is the address where the debugger will place
655# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 656m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 657# Some systems also have trampoline code for returning from shared libs.
ea480a30 658m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 659
1d509aa6
MM
660# Return true if PC lies inside an indirect branch thunk.
661m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
662
c12260ac
CV
663# A target might have problems with watchpoints as soon as the stack
664# frame of the current function has been destroyed. This mostly happens
c9cf6e20 665# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
666# is defined to return a non-zero value if either the given addr is one
667# instruction after the stack destroying instruction up to the trailing
668# return instruction or if we can figure out that the stack frame has
669# already been invalidated regardless of the value of addr. Targets
670# which don't suffer from that problem could just let this functionality
671# untouched.
ea480a30 672m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
673# Process an ELF symbol in the minimal symbol table in a backend-specific
674# way. Normally this hook is supposed to do nothing, however if required,
675# then this hook can be used to apply tranformations to symbols that are
676# considered special in some way. For example the MIPS backend uses it
677# to interpret \`st_other' information to mark compressed code symbols so
678# that they can be treated in the appropriate manner in the processing of
679# the main symbol table and DWARF-2 records.
ea480a30
SM
680F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
682# Process a symbol in the main symbol table in a backend-specific way.
683# Normally this hook is supposed to do nothing, however if required,
684# then this hook can be used to apply tranformations to symbols that
685# are considered special in some way. This is currently used by the
686# MIPS backend to make sure compressed code symbols have the ISA bit
687# set. This in turn is needed for symbol values seen in GDB to match
688# the values used at the runtime by the program itself, for function
689# and label references.
ea480a30 690f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
691# Adjust the address retrieved from a DWARF-2 record other than a line
692# entry in a backend-specific way. Normally this hook is supposed to
693# return the address passed unchanged, however if that is incorrect for
694# any reason, then this hook can be used to fix the address up in the
695# required manner. This is currently used by the MIPS backend to make
696# sure addresses in FDE, range records, etc. referring to compressed
697# code have the ISA bit set, matching line information and the symbol
698# table.
ea480a30 699f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
700# Adjust the address updated by a line entry in a backend-specific way.
701# Normally this hook is supposed to return the address passed unchanged,
702# however in the case of inconsistencies in these records, this hook can
703# be used to fix them up in the required manner. This is currently used
704# by the MIPS backend to make sure all line addresses in compressed code
705# are presented with the ISA bit set, which is not always the case. This
706# in turn ensures breakpoint addresses are correctly matched against the
707# stop PC.
ea480a30
SM
708f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
710# See comment in target.h about continuable, steppable and
711# non-steppable watchpoints.
ea480a30
SM
712v;int;have_nonsteppable_watchpoint;;;0;0;;0
713F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
714M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
715# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
716# FS are passed from the generic execute_cfa_program function.
ea480a30 717m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
718
719# Return the appropriate type_flags for the supplied address class.
720# This function should return 1 if the address class was recognized and
721# type_flags was set, zero otherwise.
ea480a30 722M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 723# Is a register in a group
ea480a30 724m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 725# Fetch the pointer to the ith function argument.
ea480a30 726F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 727
5aa82d05
AA
728# Iterate over all supported register notes in a core file. For each
729# supported register note section, the iterator must call CB and pass
730# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
731# the supported register note sections based on the current register
732# values. Otherwise it should enumerate all supported register note
733# sections.
ea480a30 734M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 735
6432734d 736# Create core file notes
ea480a30 737M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 738
35c2fab7 739# Find core file memory regions
ea480a30 740M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 741
de584861 742# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
743# core file into buffer READBUF with length LEN. Return the number of bytes read
744# (zero indicates failure).
745# failed, otherwise, return the red length of READBUF.
ea480a30 746M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 747
356a5233
JB
748# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
749# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 750# Return the number of bytes read (zero indicates failure).
ea480a30 751M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 752
c0edd9ed 753# How the core target converts a PTID from a core file to a string.
ea480a30 754M;const char *;core_pid_to_str;ptid_t ptid;ptid
28439f5e 755
4dfc5dbc 756# How the core target extracts the name of a thread from a core file.
ea480a30 757M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 758
382b69bb
JB
759# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
760# from core file into buffer READBUF with length LEN. Return the number
761# of bytes read (zero indicates EOF, a negative value indicates failure).
762M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
763
a78c2d62 764# BFD target to use when generating a core file.
ea480a30 765V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 766
0d5de010
DJ
767# If the elements of C++ vtables are in-place function descriptors rather
768# than normal function pointers (which may point to code or a descriptor),
769# set this to one.
ea480a30 770v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
771
772# Set if the least significant bit of the delta is used instead of the least
773# significant bit of the pfn for pointers to virtual member functions.
ea480a30 774v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
775
776# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 777f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 778
1668ae25 779# The maximum length of an instruction on this architecture in bytes.
ea480a30 780V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
781
782# Copy the instruction at FROM to TO, and make any adjustments
783# necessary to single-step it at that address.
784#
785# REGS holds the state the thread's registers will have before
786# executing the copied instruction; the PC in REGS will refer to FROM,
787# not the copy at TO. The caller should update it to point at TO later.
788#
789# Return a pointer to data of the architecture's choice to be passed
790# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
791# the instruction's effects have been completely simulated, with the
792# resulting state written back to REGS.
793#
794# For a general explanation of displaced stepping and how GDB uses it,
795# see the comments in infrun.c.
796#
797# The TO area is only guaranteed to have space for
798# gdbarch_max_insn_length (arch) bytes, so this function must not
799# write more bytes than that to that area.
800#
801# If you do not provide this function, GDB assumes that the
802# architecture does not support displaced stepping.
803#
7f03bd92
PA
804# If the instruction cannot execute out of line, return NULL. The
805# core falls back to stepping past the instruction in-line instead in
806# that case.
ea480a30 807M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 808
99e40580
UW
809# Return true if GDB should use hardware single-stepping to execute
810# the displaced instruction identified by CLOSURE. If false,
811# GDB will simply restart execution at the displaced instruction
812# location, and it is up to the target to ensure GDB will receive
813# control again (e.g. by placing a software breakpoint instruction
814# into the displaced instruction buffer).
815#
816# The default implementation returns false on all targets that
817# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 818m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 819
237fc4c9
PA
820# Fix up the state resulting from successfully single-stepping a
821# displaced instruction, to give the result we would have gotten from
822# stepping the instruction in its original location.
823#
824# REGS is the register state resulting from single-stepping the
825# displaced instruction.
826#
827# CLOSURE is the result from the matching call to
828# gdbarch_displaced_step_copy_insn.
829#
830# If you provide gdbarch_displaced_step_copy_insn.but not this
831# function, then GDB assumes that no fixup is needed after
832# single-stepping the instruction.
833#
834# For a general explanation of displaced stepping and how GDB uses it,
835# see the comments in infrun.c.
ea480a30 836M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 837
237fc4c9
PA
838# Return the address of an appropriate place to put displaced
839# instructions while we step over them. There need only be one such
840# place, since we're only stepping one thread over a breakpoint at a
841# time.
842#
843# For a general explanation of displaced stepping and how GDB uses it,
844# see the comments in infrun.c.
ea480a30 845m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 846
dde08ee1
PA
847# Relocate an instruction to execute at a different address. OLDLOC
848# is the address in the inferior memory where the instruction to
849# relocate is currently at. On input, TO points to the destination
850# where we want the instruction to be copied (and possibly adjusted)
851# to. On output, it points to one past the end of the resulting
852# instruction(s). The effect of executing the instruction at TO shall
853# be the same as if executing it at FROM. For example, call
854# instructions that implicitly push the return address on the stack
855# should be adjusted to return to the instruction after OLDLOC;
856# relative branches, and other PC-relative instructions need the
857# offset adjusted; etc.
ea480a30 858M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 859
1c772458 860# Refresh overlay mapped state for section OSECT.
ea480a30 861F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 862
ea480a30 863M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
864
865# Handle special encoding of static variables in stabs debug info.
ea480a30 866F;const char *;static_transform_name;const char *name;name
203c3895 867# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 868v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 869
0508c3ec
HZ
870# Parse the instruction at ADDR storing in the record execution log
871# the registers REGCACHE and memory ranges that will be affected when
872# the instruction executes, along with their current values.
873# Return -1 if something goes wrong, 0 otherwise.
ea480a30 874M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 875
3846b520
HZ
876# Save process state after a signal.
877# Return -1 if something goes wrong, 0 otherwise.
ea480a30 878M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 879
22203bbf 880# Signal translation: translate inferior's signal (target's) number
86b49880
PA
881# into GDB's representation. The implementation of this method must
882# be host independent. IOW, don't rely on symbols of the NAT_FILE
883# header (the nm-*.h files), the host <signal.h> header, or similar
884# headers. This is mainly used when cross-debugging core files ---
885# "Live" targets hide the translation behind the target interface
1f8cf220 886# (target_wait, target_resume, etc.).
ea480a30 887M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 888
eb14d406
SDJ
889# Signal translation: translate the GDB's internal signal number into
890# the inferior's signal (target's) representation. The implementation
891# of this method must be host independent. IOW, don't rely on symbols
892# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
893# header, or similar headers.
894# Return the target signal number if found, or -1 if the GDB internal
895# signal number is invalid.
ea480a30 896M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 897
4aa995e1
PA
898# Extra signal info inspection.
899#
900# Return a type suitable to inspect extra signal information.
ea480a30 901M;struct type *;get_siginfo_type;void;
4aa995e1 902
60c5725c 903# Record architecture-specific information from the symbol table.
ea480a30 904M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 905
a96d9b2e
SDJ
906# Function for the 'catch syscall' feature.
907
908# Get architecture-specific system calls information from registers.
00431a78 909M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 910
458c8db8 911# The filename of the XML syscall for this architecture.
ea480a30 912v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
913
914# Information about system calls from this architecture
ea480a30 915v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 916
55aa24fb
SDJ
917# SystemTap related fields and functions.
918
05c0465e
SDJ
919# A NULL-terminated array of prefixes used to mark an integer constant
920# on the architecture's assembly.
55aa24fb
SDJ
921# For example, on x86 integer constants are written as:
922#
923# \$10 ;; integer constant 10
924#
925# in this case, this prefix would be the character \`\$\'.
ea480a30 926v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 927
05c0465e
SDJ
928# A NULL-terminated array of suffixes used to mark an integer constant
929# on the architecture's assembly.
ea480a30 930v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 931
05c0465e
SDJ
932# A NULL-terminated array of prefixes used to mark a register name on
933# the architecture's assembly.
55aa24fb
SDJ
934# For example, on x86 the register name is written as:
935#
936# \%eax ;; register eax
937#
938# in this case, this prefix would be the character \`\%\'.
ea480a30 939v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 940
05c0465e
SDJ
941# A NULL-terminated array of suffixes used to mark a register name on
942# the architecture's assembly.
ea480a30 943v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 944
05c0465e
SDJ
945# A NULL-terminated array of prefixes used to mark a register
946# indirection on the architecture's assembly.
55aa24fb
SDJ
947# For example, on x86 the register indirection is written as:
948#
949# \(\%eax\) ;; indirecting eax
950#
951# in this case, this prefix would be the charater \`\(\'.
952#
953# Please note that we use the indirection prefix also for register
954# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 955v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 956
05c0465e
SDJ
957# A NULL-terminated array of suffixes used to mark a register
958# indirection on the architecture's assembly.
55aa24fb
SDJ
959# For example, on x86 the register indirection is written as:
960#
961# \(\%eax\) ;; indirecting eax
962#
963# in this case, this prefix would be the charater \`\)\'.
964#
965# Please note that we use the indirection suffix also for register
966# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 967v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 968
05c0465e 969# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
970#
971# For example, on PPC a register is represented by a number in the assembly
972# language (e.g., \`10\' is the 10th general-purpose register). However,
973# inside GDB this same register has an \`r\' appended to its name, so the 10th
974# register would be represented as \`r10\' internally.
ea480a30 975v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
976
977# Suffix used to name a register using GDB's nomenclature.
ea480a30 978v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
979
980# Check if S is a single operand.
981#
982# Single operands can be:
983# \- Literal integers, e.g. \`\$10\' on x86
984# \- Register access, e.g. \`\%eax\' on x86
985# \- Register indirection, e.g. \`\(\%eax\)\' on x86
986# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
987#
988# This function should check for these patterns on the string
989# and return 1 if some were found, or zero otherwise. Please try to match
990# as much info as you can from the string, i.e., if you have to match
991# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 992M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
993
994# Function used to handle a "special case" in the parser.
995#
996# A "special case" is considered to be an unknown token, i.e., a token
997# that the parser does not know how to parse. A good example of special
998# case would be ARM's register displacement syntax:
999#
1000# [R0, #4] ;; displacing R0 by 4
1001#
1002# Since the parser assumes that a register displacement is of the form:
1003#
1004# <number> <indirection_prefix> <register_name> <indirection_suffix>
1005#
1006# it means that it will not be able to recognize and parse this odd syntax.
1007# Therefore, we should add a special case function that will handle this token.
1008#
1009# This function should generate the proper expression form of the expression
1010# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1011# and so on). It should also return 1 if the parsing was successful, or zero
1012# if the token was not recognized as a special token (in this case, returning
1013# zero means that the special parser is deferring the parsing to the generic
1014# parser), and should advance the buffer pointer (p->arg).
ea480a30 1015M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1016
8b367e17
JM
1017# DTrace related functions.
1018
1019# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1020# NARG must be >= 0.
ea480a30 1021M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
8b367e17
JM
1022
1023# True if the given ADDR does not contain the instruction sequence
1024# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1025M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1026
1027# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1028M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1029
1030# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1031M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1032
50c71eaf
PA
1033# True if the list of shared libraries is one and only for all
1034# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1035# This usually means that all processes, although may or may not share
1036# an address space, will see the same set of symbols at the same
1037# addresses.
ea480a30 1038v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1039
1040# On some targets, even though each inferior has its own private
1041# address space, the debug interface takes care of making breakpoints
1042# visible to all address spaces automatically. For such cases,
1043# this property should be set to true.
ea480a30 1044v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1045
1046# True if inferiors share an address space (e.g., uClinux).
ea480a30 1047m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1048
1049# True if a fast tracepoint can be set at an address.
281d762b 1050m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1051
5f034a78
MK
1052# Guess register state based on tracepoint location. Used for tracepoints
1053# where no registers have been collected, but there's only one location,
1054# allowing us to guess the PC value, and perhaps some other registers.
1055# On entry, regcache has all registers marked as unavailable.
ea480a30 1056m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1057
f870a310 1058# Return the "auto" target charset.
ea480a30 1059f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1060# Return the "auto" target wide charset.
ea480a30 1061f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1062
1063# If non-empty, this is a file extension that will be opened in place
1064# of the file extension reported by the shared library list.
1065#
1066# This is most useful for toolchains that use a post-linker tool,
1067# where the names of the files run on the target differ in extension
1068# compared to the names of the files GDB should load for debug info.
ea480a30 1069v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1070
1071# If true, the target OS has DOS-based file system semantics. That
1072# is, absolute paths include a drive name, and the backslash is
1073# considered a directory separator.
ea480a30 1074v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1075
1076# Generate bytecodes to collect the return address in a frame.
1077# Since the bytecodes run on the target, possibly with GDB not even
1078# connected, the full unwinding machinery is not available, and
1079# typically this function will issue bytecodes for one or more likely
1080# places that the return address may be found.
ea480a30 1081m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1082
3030c96e 1083# Implement the "info proc" command.
ea480a30 1084M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1085
451b7c33
TT
1086# Implement the "info proc" command for core files. Noe that there
1087# are two "info_proc"-like methods on gdbarch -- one for core files,
1088# one for live targets.
ea480a30 1089M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1090
19630284
JB
1091# Iterate over all objfiles in the order that makes the most sense
1092# for the architecture to make global symbol searches.
1093#
1094# CB is a callback function where OBJFILE is the objfile to be searched,
1095# and CB_DATA a pointer to user-defined data (the same data that is passed
1096# when calling this gdbarch method). The iteration stops if this function
1097# returns nonzero.
1098#
1099# CB_DATA is a pointer to some user-defined data to be passed to
1100# the callback.
1101#
1102# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1103# inspected when the symbol search was requested.
ea480a30 1104m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1105
7e35103a 1106# Ravenscar arch-dependent ops.
ea480a30 1107v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1108
1109# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1110m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1111
1112# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1113m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1114
1115# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1116m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1117
1118# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1119# Return 0 if *READPTR is already at the end of the buffer.
1120# Return -1 if there is insufficient buffer for a whole entry.
1121# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1122M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1123
2faa3447
JB
1124# Print the description of a single auxv entry described by TYPE and VAL
1125# to FILE.
ea480a30 1126m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1127
3437254d
PA
1128# Find the address range of the current inferior's vsyscall/vDSO, and
1129# write it to *RANGE. If the vsyscall's length can't be determined, a
1130# range with zero length is returned. Returns true if the vsyscall is
1131# found, false otherwise.
ea480a30 1132m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1133
1134# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1135# PROT has GDB_MMAP_PROT_* bitmask format.
1136# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1137f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1138
7f361056
JK
1139# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1140# Print a warning if it is not possible.
ea480a30 1141f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1142
f208eee0
JK
1143# Return string (caller has to use xfree for it) with options for GCC
1144# to produce code for this target, typically "-m64", "-m32" or "-m31".
1145# These options are put before CU's DW_AT_producer compilation options so that
1146# they can override it. Method may also return NULL.
ea480a30 1147m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1148
1149# Return a regular expression that matches names used by this
1150# architecture in GNU configury triplets. The result is statically
1151# allocated and must not be freed. The default implementation simply
1152# returns the BFD architecture name, which is correct in nearly every
1153# case.
ea480a30 1154m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1155
1156# Return the size in 8-bit bytes of an addressable memory unit on this
1157# architecture. This corresponds to the number of 8-bit bytes associated to
1158# each address in memory.
ea480a30 1159m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1160
65b48a81 1161# Functions for allowing a target to modify its disassembler options.
471b9d15 1162v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1163v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1164v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1165
2b4424c3
TT
1166# Type alignment.
1167m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1168
03345b33
AH
1169# Given a list of register values (in a VEC of reg_info_t structures) received
1170# from the inferior, check if the current target descriptor is no longer valid
1171# for the inferior (for example, register sizes have changed), and if so return
1172# true. The default implementation will always return false.
1173m;bool;target_description_changed_p;ptid_t ptid, VEC (cached_reg_t) *registers;ptid, registers;;default_target_description_changed_p;;0
1174
1175# Given a list of registers, return a tdep info which then can be used when
1176# creating/finding a valid target descriptor for that inferior. The default
1177# implementation will always return null.
1178f;union gdbarch_target_info;target_get_tdep_info;VEC (cached_reg_t) *registers;registers;;default_target_get_tdep_info;;0
1179
104c1213 1180EOF
104c1213
JM
1181}
1182
0b8f9e4d
AC
1183#
1184# The .log file
1185#
1186exec > new-gdbarch.log
34620563 1187function_list | while do_read
0b8f9e4d
AC
1188do
1189 cat <<EOF
2f9b146e 1190${class} ${returntype} ${function} ($formal)
104c1213 1191EOF
3d9a5942
AC
1192 for r in ${read}
1193 do
1194 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1195 done
f0d4cc9e 1196 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1197 then
66d659b1 1198 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1199 kill $$
1200 exit 1
1201 fi
72e74a21 1202 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1203 then
1204 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1205 kill $$
1206 exit 1
1207 fi
a72293e2
AC
1208 if class_is_multiarch_p
1209 then
1210 if class_is_predicate_p ; then :
1211 elif test "x${predefault}" = "x"
1212 then
2f9b146e 1213 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1214 kill $$
1215 exit 1
1216 fi
1217 fi
3d9a5942 1218 echo ""
0b8f9e4d
AC
1219done
1220
1221exec 1>&2
1222compare_new gdbarch.log
1223
104c1213
JM
1224
1225copyright ()
1226{
1227cat <<EOF
c4bfde41
JK
1228/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1229/* vi:set ro: */
59233f88 1230
104c1213 1231/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1232
e2882c85 1233 Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
1234
1235 This file is part of GDB.
1236
1237 This program is free software; you can redistribute it and/or modify
1238 it under the terms of the GNU General Public License as published by
50efebf8 1239 the Free Software Foundation; either version 3 of the License, or
104c1213 1240 (at your option) any later version.
618f726f 1241
104c1213
JM
1242 This program is distributed in the hope that it will be useful,
1243 but WITHOUT ANY WARRANTY; without even the implied warranty of
1244 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1245 GNU General Public License for more details.
618f726f 1246
104c1213 1247 You should have received a copy of the GNU General Public License
50efebf8 1248 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1249
104c1213
JM
1250/* This file was created with the aid of \`\`gdbarch.sh''.
1251
52204a0b 1252 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1253 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1254 against the existing \`\`gdbarch.[hc]''. Any differences found
1255 being reported.
1256
1257 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1258 changes into that script. Conversely, when making sweeping changes
104c1213 1259 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1260 easier. */
104c1213
JM
1261
1262EOF
1263}
1264
1265#
1266# The .h file
1267#
1268
1269exec > new-gdbarch.h
1270copyright
1271cat <<EOF
1272#ifndef GDBARCH_H
1273#define GDBARCH_H
1274
a0ff9e1a 1275#include <vector>
eb7a547a 1276#include "frame.h"
65b48a81 1277#include "dis-asm.h"
284a0e3c 1278#include "gdb_obstack.h"
eb7a547a 1279
da3331ec
AC
1280struct floatformat;
1281struct ui_file;
104c1213 1282struct value;
b6af0555 1283struct objfile;
1c772458 1284struct obj_section;
a2cf933a 1285struct minimal_symbol;
049ee0e4 1286struct regcache;
b59ff9d5 1287struct reggroup;
6ce6d90f 1288struct regset;
a89aa300 1289struct disassemble_info;
e2d0e7eb 1290struct target_ops;
030f20e1 1291struct obstack;
8181d85f 1292struct bp_target_info;
424163ea 1293struct target_desc;
3e29f34a 1294struct symbol;
237fc4c9 1295struct displaced_step_closure;
a96d9b2e 1296struct syscall;
175ff332 1297struct agent_expr;
6710bf39 1298struct axs_value;
55aa24fb 1299struct stap_parse_info;
8b367e17 1300struct parser_state;
7e35103a 1301struct ravenscar_arch_ops;
3437254d 1302struct mem_range;
458c8db8 1303struct syscalls_info;
4dfc5dbc 1304struct thread_info;
012b3a21 1305struct ui_out;
104c1213 1306
8a526fa6
PA
1307#include "regcache.h"
1308
6ecd4729
PA
1309/* The architecture associated with the inferior through the
1310 connection to the target.
1311
1312 The architecture vector provides some information that is really a
1313 property of the inferior, accessed through a particular target:
1314 ptrace operations; the layout of certain RSP packets; the solib_ops
1315 vector; etc. To differentiate architecture accesses to
1316 per-inferior/target properties from
1317 per-thread/per-frame/per-objfile properties, accesses to
1318 per-inferior/target properties should be made through this
1319 gdbarch. */
1320
1321/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1322extern struct gdbarch *target_gdbarch (void);
6ecd4729 1323
19630284
JB
1324/* Callback type for the 'iterate_over_objfiles_in_search_order'
1325 gdbarch method. */
1326
1327typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1328 (struct objfile *objfile, void *cb_data);
5aa82d05 1329
1528345d
AA
1330/* Callback type for regset section iterators. The callback usually
1331 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1332 pass a buffer - for collects this buffer will need to be created using
1333 COLLECT_SIZE, for supply the existing buffer being read from should
1334 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1335 is used for diagnostic messages. CB_DATA should have been passed
1336 unchanged through the iterator. */
1528345d 1337
5aa82d05 1338typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1339 (const char *sect_name, int supply_size, int collect_size,
1340 const struct regset *regset, const char *human_name, void *cb_data);
7df31403
AH
1341
1342/* Different targets need different indentification data for gdbarch_info. */
1343union gdbarch_target_info
1344{
1345 /* Architecture-specific information. The generic form for targets
1346 that have extra requirements. */
1347 struct gdbarch_tdep_info *tdep_info;
1348
1349 /* Architecture-specific target description data. Numerous targets
1350 need only this, so give them an easy way to hold it. */
1351 struct tdesc_arch_data *tdesc_data;
1352
1353 /* SPU file system ID. This is a single integer, so using the
1354 generic form would only complicate code. Other targets may
1355 reuse this member if suitable. */
1356 int *id;
1357};
1358
104c1213
JM
1359EOF
1360
1361# function typedef's
3d9a5942
AC
1362printf "\n"
1363printf "\n"
0963b4bd 1364printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1365function_list | while do_read
104c1213 1366do
2ada493a
AC
1367 if class_is_info_p
1368 then
3d9a5942
AC
1369 printf "\n"
1370 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1371 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1372 fi
104c1213
JM
1373done
1374
1375# function typedef's
3d9a5942
AC
1376printf "\n"
1377printf "\n"
0963b4bd 1378printf "/* The following are initialized by the target dependent code. */\n"
34620563 1379function_list | while do_read
104c1213 1380do
72e74a21 1381 if [ -n "${comment}" ]
34620563
AC
1382 then
1383 echo "${comment}" | sed \
1384 -e '2 s,#,/*,' \
1385 -e '3,$ s,#, ,' \
1386 -e '$ s,$, */,'
1387 fi
412d5987
AC
1388
1389 if class_is_predicate_p
2ada493a 1390 then
412d5987
AC
1391 printf "\n"
1392 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1393 fi
2ada493a
AC
1394 if class_is_variable_p
1395 then
3d9a5942
AC
1396 printf "\n"
1397 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1398 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1399 fi
1400 if class_is_function_p
1401 then
3d9a5942 1402 printf "\n"
72e74a21 1403 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1404 then
1405 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1406 elif class_is_multiarch_p
1407 then
1408 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1409 else
1410 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1411 fi
72e74a21 1412 if [ "x${formal}" = "xvoid" ]
104c1213 1413 then
3d9a5942 1414 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1415 else
3d9a5942 1416 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1417 fi
3d9a5942 1418 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1419 fi
104c1213
JM
1420done
1421
1422# close it off
1423cat <<EOF
1424
a96d9b2e
SDJ
1425/* Definition for an unknown syscall, used basically in error-cases. */
1426#define UNKNOWN_SYSCALL (-1)
1427
104c1213
JM
1428extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1429
1430
1431/* Mechanism for co-ordinating the selection of a specific
1432 architecture.
1433
1434 GDB targets (*-tdep.c) can register an interest in a specific
1435 architecture. Other GDB components can register a need to maintain
1436 per-architecture data.
1437
1438 The mechanisms below ensures that there is only a loose connection
1439 between the set-architecture command and the various GDB
0fa6923a 1440 components. Each component can independently register their need
104c1213
JM
1441 to maintain architecture specific data with gdbarch.
1442
1443 Pragmatics:
1444
1445 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1446 didn't scale.
1447
1448 The more traditional mega-struct containing architecture specific
1449 data for all the various GDB components was also considered. Since
0fa6923a 1450 GDB is built from a variable number of (fairly independent)
104c1213 1451 components it was determined that the global aproach was not
0963b4bd 1452 applicable. */
104c1213
JM
1453
1454
1455/* Register a new architectural family with GDB.
1456
1457 Register support for the specified ARCHITECTURE with GDB. When
1458 gdbarch determines that the specified architecture has been
1459 selected, the corresponding INIT function is called.
1460
1461 --
1462
1463 The INIT function takes two parameters: INFO which contains the
1464 information available to gdbarch about the (possibly new)
1465 architecture; ARCHES which is a list of the previously created
1466 \`\`struct gdbarch'' for this architecture.
1467
0f79675b 1468 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1469 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1470
1471 The ARCHES parameter is a linked list (sorted most recently used)
1472 of all the previously created architures for this architecture
1473 family. The (possibly NULL) ARCHES->gdbarch can used to access
1474 values from the previously selected architecture for this
59837fe0 1475 architecture family.
104c1213
JM
1476
1477 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1478 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1479 gdbarch'' from the ARCHES list - indicating that the new
1480 architecture is just a synonym for an earlier architecture (see
1481 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1482 - that describes the selected architecture (see gdbarch_alloc()).
1483
1484 The DUMP_TDEP function shall print out all target specific values.
1485 Care should be taken to ensure that the function works in both the
0963b4bd 1486 multi-arch and non- multi-arch cases. */
104c1213
JM
1487
1488struct gdbarch_list
1489{
1490 struct gdbarch *gdbarch;
1491 struct gdbarch_list *next;
1492};
1493
1494struct gdbarch_info
1495{
0963b4bd 1496 /* Use default: NULL (ZERO). */
104c1213
JM
1497 const struct bfd_arch_info *bfd_arch_info;
1498
428721aa 1499 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1500 enum bfd_endian byte_order;
104c1213 1501
94123b4f 1502 enum bfd_endian byte_order_for_code;
9d4fde75 1503
0963b4bd 1504 /* Use default: NULL (ZERO). */
104c1213
JM
1505 bfd *abfd;
1506
0963b4bd 1507 /* Use default: NULL (ZERO). */
7df31403 1508 union gdbarch_target_info target_info;
4be87837
DJ
1509
1510 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1511 enum gdb_osabi osabi;
424163ea
DJ
1512
1513 /* Use default: NULL (ZERO). */
1514 const struct target_desc *target_desc;
104c1213
JM
1515};
1516
1517typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1518typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1519
4b9b3959 1520/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1521extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1522
4b9b3959
AC
1523extern void gdbarch_register (enum bfd_architecture architecture,
1524 gdbarch_init_ftype *,
1525 gdbarch_dump_tdep_ftype *);
1526
104c1213 1527
b4a20239
AC
1528/* Return a freshly allocated, NULL terminated, array of the valid
1529 architecture names. Since architectures are registered during the
1530 _initialize phase this function only returns useful information
0963b4bd 1531 once initialization has been completed. */
b4a20239
AC
1532
1533extern const char **gdbarch_printable_names (void);
1534
1535
104c1213 1536/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1537 matches the information provided by INFO. */
104c1213 1538
424163ea 1539extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1540
1541
1542/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1543 basic initialization using values obtained from the INFO and TDEP
104c1213 1544 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1545 initialization of the object. */
104c1213
JM
1546
1547extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1548
1549
4b9b3959
AC
1550/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1551 It is assumed that the caller freeds the \`\`struct
0963b4bd 1552 gdbarch_tdep''. */
4b9b3959 1553
058f20d5
JB
1554extern void gdbarch_free (struct gdbarch *);
1555
284a0e3c
SM
1556/* Get the obstack owned by ARCH. */
1557
1558extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1559
aebd7893
AC
1560/* Helper function. Allocate memory from the \`\`struct gdbarch''
1561 obstack. The memory is freed when the corresponding architecture
1562 is also freed. */
1563
284a0e3c
SM
1564#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1565 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1566
1567#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1568 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1569
6c214e7c
PP
1570/* Duplicate STRING, returning an equivalent string that's allocated on the
1571 obstack associated with GDBARCH. The string is freed when the corresponding
1572 architecture is also freed. */
1573
1574extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1575
0963b4bd 1576/* Helper function. Force an update of the current architecture.
104c1213 1577
b732d07d
AC
1578 The actual architecture selected is determined by INFO, \`\`(gdb) set
1579 architecture'' et.al., the existing architecture and BFD's default
1580 architecture. INFO should be initialized to zero and then selected
1581 fields should be updated.
104c1213 1582
0963b4bd 1583 Returns non-zero if the update succeeds. */
16f33e29
AC
1584
1585extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1586
1587
ebdba546
AC
1588/* Helper function. Find an architecture matching info.
1589
1590 INFO should be initialized using gdbarch_info_init, relevant fields
1591 set, and then finished using gdbarch_info_fill.
1592
1593 Returns the corresponding architecture, or NULL if no matching
59837fe0 1594 architecture was found. */
ebdba546
AC
1595
1596extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1597
1598
aff68abb 1599/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1600
aff68abb 1601extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1602
104c1213
JM
1603
1604/* Register per-architecture data-pointer.
1605
1606 Reserve space for a per-architecture data-pointer. An identifier
1607 for the reserved data-pointer is returned. That identifer should
95160752 1608 be saved in a local static variable.
104c1213 1609
fcc1c85c
AC
1610 Memory for the per-architecture data shall be allocated using
1611 gdbarch_obstack_zalloc. That memory will be deleted when the
1612 corresponding architecture object is deleted.
104c1213 1613
95160752
AC
1614 When a previously created architecture is re-selected, the
1615 per-architecture data-pointer for that previous architecture is
76860b5f 1616 restored. INIT() is not re-called.
104c1213
JM
1617
1618 Multiple registrarants for any architecture are allowed (and
1619 strongly encouraged). */
1620
95160752 1621struct gdbarch_data;
104c1213 1622
030f20e1
AC
1623typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1624extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1625typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1626extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1627extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1628 struct gdbarch_data *data,
1629 void *pointer);
104c1213 1630
451fbdda 1631extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1632
1633
0fa6923a 1634/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1635 byte-order, ...) using information found in the BFD. */
104c1213
JM
1636
1637extern void set_gdbarch_from_file (bfd *);
1638
1639
e514a9d6
JM
1640/* Initialize the current architecture to the "first" one we find on
1641 our list. */
1642
1643extern void initialize_current_architecture (void);
1644
104c1213 1645/* gdbarch trace variable */
ccce17b0 1646extern unsigned int gdbarch_debug;
104c1213 1647
4b9b3959 1648extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1649
f6efe3f8
SM
1650/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1651
1652static inline int
1653gdbarch_num_cooked_regs (gdbarch *arch)
1654{
1655 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1656}
1657
104c1213
JM
1658#endif
1659EOF
1660exec 1>&2
1661#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1662compare_new gdbarch.h
104c1213
JM
1663
1664
1665#
1666# C file
1667#
1668
1669exec > new-gdbarch.c
1670copyright
1671cat <<EOF
1672
1673#include "defs.h"
7355ddba 1674#include "arch-utils.h"
104c1213 1675
104c1213 1676#include "gdbcmd.h"
faaf634c 1677#include "inferior.h"
104c1213
JM
1678#include "symcat.h"
1679
f0d4cc9e 1680#include "floatformat.h"
b59ff9d5 1681#include "reggroups.h"
4be87837 1682#include "osabi.h"
aebd7893 1683#include "gdb_obstack.h"
0bee6dd4 1684#include "observable.h"
a3ecef73 1685#include "regcache.h"
19630284 1686#include "objfiles.h"
2faa3447 1687#include "auxv.h"
95160752 1688
104c1213
JM
1689/* Static function declarations */
1690
b3cc3077 1691static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1692
104c1213
JM
1693/* Non-zero if we want to trace architecture code. */
1694
1695#ifndef GDBARCH_DEBUG
1696#define GDBARCH_DEBUG 0
1697#endif
ccce17b0 1698unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1699static void
1700show_gdbarch_debug (struct ui_file *file, int from_tty,
1701 struct cmd_list_element *c, const char *value)
1702{
1703 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1704}
104c1213 1705
456fcf94 1706static const char *
8da61cc4 1707pformat (const struct floatformat **format)
456fcf94
AC
1708{
1709 if (format == NULL)
1710 return "(null)";
1711 else
8da61cc4
DJ
1712 /* Just print out one of them - this is only for diagnostics. */
1713 return format[0]->name;
456fcf94
AC
1714}
1715
08105857
PA
1716static const char *
1717pstring (const char *string)
1718{
1719 if (string == NULL)
1720 return "(null)";
1721 return string;
05c0465e
SDJ
1722}
1723
a121b7c1 1724static const char *
f7bb4e3a
PB
1725pstring_ptr (char **string)
1726{
1727 if (string == NULL || *string == NULL)
1728 return "(null)";
1729 return *string;
1730}
1731
05c0465e
SDJ
1732/* Helper function to print a list of strings, represented as "const
1733 char *const *". The list is printed comma-separated. */
1734
a121b7c1 1735static const char *
05c0465e
SDJ
1736pstring_list (const char *const *list)
1737{
1738 static char ret[100];
1739 const char *const *p;
1740 size_t offset = 0;
1741
1742 if (list == NULL)
1743 return "(null)";
1744
1745 ret[0] = '\0';
1746 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1747 {
1748 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1749 offset += 2 + s;
1750 }
1751
1752 if (offset > 0)
1753 {
1754 gdb_assert (offset - 2 < sizeof (ret));
1755 ret[offset - 2] = '\0';
1756 }
1757
1758 return ret;
08105857
PA
1759}
1760
104c1213
JM
1761EOF
1762
1763# gdbarch open the gdbarch object
3d9a5942 1764printf "\n"
0963b4bd 1765printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1766printf "\n"
1767printf "struct gdbarch\n"
1768printf "{\n"
76860b5f
AC
1769printf " /* Has this architecture been fully initialized? */\n"
1770printf " int initialized_p;\n"
aebd7893
AC
1771printf "\n"
1772printf " /* An obstack bound to the lifetime of the architecture. */\n"
1773printf " struct obstack *obstack;\n"
1774printf "\n"
0963b4bd 1775printf " /* basic architectural information. */\n"
34620563 1776function_list | while do_read
104c1213 1777do
2ada493a
AC
1778 if class_is_info_p
1779 then
3d9a5942 1780 printf " ${returntype} ${function};\n"
2ada493a 1781 fi
104c1213 1782done
3d9a5942 1783printf "\n"
0963b4bd 1784printf " /* target specific vector. */\n"
3d9a5942
AC
1785printf " struct gdbarch_tdep *tdep;\n"
1786printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1787printf "\n"
0963b4bd 1788printf " /* per-architecture data-pointers. */\n"
95160752 1789printf " unsigned nr_data;\n"
3d9a5942
AC
1790printf " void **data;\n"
1791printf "\n"
104c1213
JM
1792cat <<EOF
1793 /* Multi-arch values.
1794
1795 When extending this structure you must:
1796
1797 Add the field below.
1798
1799 Declare set/get functions and define the corresponding
1800 macro in gdbarch.h.
1801
1802 gdbarch_alloc(): If zero/NULL is not a suitable default,
1803 initialize the new field.
1804
1805 verify_gdbarch(): Confirm that the target updated the field
1806 correctly.
1807
7e73cedf 1808 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1809 field is dumped out
1810
104c1213
JM
1811 get_gdbarch(): Implement the set/get functions (probably using
1812 the macro's as shortcuts).
1813
1814 */
1815
1816EOF
34620563 1817function_list | while do_read
104c1213 1818do
2ada493a
AC
1819 if class_is_variable_p
1820 then
3d9a5942 1821 printf " ${returntype} ${function};\n"
2ada493a
AC
1822 elif class_is_function_p
1823 then
2f9b146e 1824 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1825 fi
104c1213 1826done
3d9a5942 1827printf "};\n"
104c1213 1828
104c1213 1829# Create a new gdbarch struct
104c1213 1830cat <<EOF
7de2341d 1831
66b43ecb 1832/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1833 \`\`struct gdbarch_info''. */
104c1213 1834EOF
3d9a5942 1835printf "\n"
104c1213
JM
1836cat <<EOF
1837struct gdbarch *
1838gdbarch_alloc (const struct gdbarch_info *info,
1839 struct gdbarch_tdep *tdep)
1840{
be7811ad 1841 struct gdbarch *gdbarch;
aebd7893
AC
1842
1843 /* Create an obstack for allocating all the per-architecture memory,
1844 then use that to allocate the architecture vector. */
70ba0933 1845 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1846 obstack_init (obstack);
8d749320 1847 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1848 memset (gdbarch, 0, sizeof (*gdbarch));
1849 gdbarch->obstack = obstack;
85de9627 1850
be7811ad 1851 alloc_gdbarch_data (gdbarch);
85de9627 1852
be7811ad 1853 gdbarch->tdep = tdep;
104c1213 1854EOF
3d9a5942 1855printf "\n"
34620563 1856function_list | while do_read
104c1213 1857do
2ada493a
AC
1858 if class_is_info_p
1859 then
be7811ad 1860 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1861 fi
104c1213 1862done
3d9a5942 1863printf "\n"
0963b4bd 1864printf " /* Force the explicit initialization of these. */\n"
34620563 1865function_list | while do_read
104c1213 1866do
2ada493a
AC
1867 if class_is_function_p || class_is_variable_p
1868 then
72e74a21 1869 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1870 then
be7811ad 1871 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1872 fi
2ada493a 1873 fi
104c1213
JM
1874done
1875cat <<EOF
1876 /* gdbarch_alloc() */
1877
be7811ad 1878 return gdbarch;
104c1213
JM
1879}
1880EOF
1881
058f20d5 1882# Free a gdbarch struct.
3d9a5942
AC
1883printf "\n"
1884printf "\n"
058f20d5 1885cat <<EOF
aebd7893 1886
284a0e3c 1887obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1888{
284a0e3c 1889 return arch->obstack;
aebd7893
AC
1890}
1891
6c214e7c
PP
1892/* See gdbarch.h. */
1893
1894char *
1895gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1896{
1897 return obstack_strdup (arch->obstack, string);
1898}
1899
aebd7893 1900
058f20d5
JB
1901/* Free a gdbarch struct. This should never happen in normal
1902 operation --- once you've created a gdbarch, you keep it around.
1903 However, if an architecture's init function encounters an error
1904 building the structure, it may need to clean up a partially
1905 constructed gdbarch. */
4b9b3959 1906
058f20d5
JB
1907void
1908gdbarch_free (struct gdbarch *arch)
1909{
aebd7893 1910 struct obstack *obstack;
05c547f6 1911
95160752 1912 gdb_assert (arch != NULL);
aebd7893
AC
1913 gdb_assert (!arch->initialized_p);
1914 obstack = arch->obstack;
1915 obstack_free (obstack, 0); /* Includes the ARCH. */
1916 xfree (obstack);
058f20d5
JB
1917}
1918EOF
1919
104c1213 1920# verify a new architecture
104c1213 1921cat <<EOF
db446970
AC
1922
1923
1924/* Ensure that all values in a GDBARCH are reasonable. */
1925
104c1213 1926static void
be7811ad 1927verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1928{
d7e74731 1929 string_file log;
05c547f6 1930
104c1213 1931 /* fundamental */
be7811ad 1932 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1933 log.puts ("\n\tbyte-order");
be7811ad 1934 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1935 log.puts ("\n\tbfd_arch_info");
0963b4bd 1936 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1937EOF
34620563 1938function_list | while do_read
104c1213 1939do
2ada493a
AC
1940 if class_is_function_p || class_is_variable_p
1941 then
72e74a21 1942 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1943 then
3d9a5942 1944 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1945 elif class_is_predicate_p
1946 then
0963b4bd 1947 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1948 # FIXME: See do_read for potential simplification
72e74a21 1949 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1950 then
3d9a5942 1951 printf " if (${invalid_p})\n"
be7811ad 1952 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1953 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1954 then
be7811ad
MD
1955 printf " if (gdbarch->${function} == ${predefault})\n"
1956 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1957 elif [ -n "${postdefault}" ]
f0d4cc9e 1958 then
be7811ad
MD
1959 printf " if (gdbarch->${function} == 0)\n"
1960 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1961 elif [ -n "${invalid_p}" ]
104c1213 1962 then
4d60522e 1963 printf " if (${invalid_p})\n"
d7e74731 1964 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1965 elif [ -n "${predefault}" ]
104c1213 1966 then
be7811ad 1967 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1968 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1969 fi
2ada493a 1970 fi
104c1213
JM
1971done
1972cat <<EOF
d7e74731 1973 if (!log.empty ())
f16a1923 1974 internal_error (__FILE__, __LINE__,
85c07804 1975 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1976 log.c_str ());
104c1213
JM
1977}
1978EOF
1979
1980# dump the structure
3d9a5942
AC
1981printf "\n"
1982printf "\n"
104c1213 1983cat <<EOF
0963b4bd 1984/* Print out the details of the current architecture. */
4b9b3959 1985
104c1213 1986void
be7811ad 1987gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1988{
b78960be 1989 const char *gdb_nm_file = "<not-defined>";
05c547f6 1990
b78960be
AC
1991#if defined (GDB_NM_FILE)
1992 gdb_nm_file = GDB_NM_FILE;
1993#endif
1994 fprintf_unfiltered (file,
1995 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1996 gdb_nm_file);
104c1213 1997EOF
ea480a30 1998function_list | sort '-t;' -k 3 | while do_read
104c1213 1999do
1e9f55d0
AC
2000 # First the predicate
2001 if class_is_predicate_p
2002 then
7996bcec 2003 printf " fprintf_unfiltered (file,\n"
48f7351b 2004 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 2005 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 2006 fi
48f7351b 2007 # Print the corresponding value.
283354d8 2008 if class_is_function_p
4b9b3959 2009 then
7996bcec 2010 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
2011 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2012 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 2013 else
48f7351b 2014 # It is a variable
2f9b146e
AC
2015 case "${print}:${returntype}" in
2016 :CORE_ADDR )
0b1553bc
UW
2017 fmt="%s"
2018 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2019 ;;
2f9b146e 2020 :* )
48f7351b 2021 fmt="%s"
623d3eb1 2022 print="plongest (gdbarch->${function})"
48f7351b
AC
2023 ;;
2024 * )
2f9b146e 2025 fmt="%s"
48f7351b
AC
2026 ;;
2027 esac
3d9a5942 2028 printf " fprintf_unfiltered (file,\n"
48f7351b 2029 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2030 printf " ${print});\n"
2ada493a 2031 fi
104c1213 2032done
381323f4 2033cat <<EOF
be7811ad
MD
2034 if (gdbarch->dump_tdep != NULL)
2035 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2036}
2037EOF
104c1213
JM
2038
2039
2040# GET/SET
3d9a5942 2041printf "\n"
104c1213
JM
2042cat <<EOF
2043struct gdbarch_tdep *
2044gdbarch_tdep (struct gdbarch *gdbarch)
2045{
2046 if (gdbarch_debug >= 2)
3d9a5942 2047 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2048 return gdbarch->tdep;
2049}
2050EOF
3d9a5942 2051printf "\n"
34620563 2052function_list | while do_read
104c1213 2053do
2ada493a
AC
2054 if class_is_predicate_p
2055 then
3d9a5942
AC
2056 printf "\n"
2057 printf "int\n"
2058 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2059 printf "{\n"
8de9bdc4 2060 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2061 printf " return ${predicate};\n"
3d9a5942 2062 printf "}\n"
2ada493a
AC
2063 fi
2064 if class_is_function_p
2065 then
3d9a5942
AC
2066 printf "\n"
2067 printf "${returntype}\n"
72e74a21 2068 if [ "x${formal}" = "xvoid" ]
104c1213 2069 then
3d9a5942 2070 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2071 else
3d9a5942 2072 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2073 fi
3d9a5942 2074 printf "{\n"
8de9bdc4 2075 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2076 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2077 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2078 then
2079 # Allow a call to a function with a predicate.
956ac328 2080 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2081 fi
3d9a5942
AC
2082 printf " if (gdbarch_debug >= 2)\n"
2083 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2084 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2085 then
2086 if class_is_multiarch_p
2087 then
2088 params="gdbarch"
2089 else
2090 params=""
2091 fi
2092 else
2093 if class_is_multiarch_p
2094 then
2095 params="gdbarch, ${actual}"
2096 else
2097 params="${actual}"
2098 fi
2099 fi
72e74a21 2100 if [ "x${returntype}" = "xvoid" ]
104c1213 2101 then
4a5c6a1d 2102 printf " gdbarch->${function} (${params});\n"
104c1213 2103 else
4a5c6a1d 2104 printf " return gdbarch->${function} (${params});\n"
104c1213 2105 fi
3d9a5942
AC
2106 printf "}\n"
2107 printf "\n"
2108 printf "void\n"
2109 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2110 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2111 printf "{\n"
2112 printf " gdbarch->${function} = ${function};\n"
2113 printf "}\n"
2ada493a
AC
2114 elif class_is_variable_p
2115 then
3d9a5942
AC
2116 printf "\n"
2117 printf "${returntype}\n"
2118 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2119 printf "{\n"
8de9bdc4 2120 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2121 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2122 then
3d9a5942 2123 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2124 elif [ -n "${invalid_p}" ]
104c1213 2125 then
956ac328
AC
2126 printf " /* Check variable is valid. */\n"
2127 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2128 elif [ -n "${predefault}" ]
104c1213 2129 then
956ac328
AC
2130 printf " /* Check variable changed from pre-default. */\n"
2131 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2132 fi
3d9a5942
AC
2133 printf " if (gdbarch_debug >= 2)\n"
2134 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2135 printf " return gdbarch->${function};\n"
2136 printf "}\n"
2137 printf "\n"
2138 printf "void\n"
2139 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2140 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2141 printf "{\n"
2142 printf " gdbarch->${function} = ${function};\n"
2143 printf "}\n"
2ada493a
AC
2144 elif class_is_info_p
2145 then
3d9a5942
AC
2146 printf "\n"
2147 printf "${returntype}\n"
2148 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2149 printf "{\n"
8de9bdc4 2150 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2151 printf " if (gdbarch_debug >= 2)\n"
2152 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2153 printf " return gdbarch->${function};\n"
2154 printf "}\n"
2ada493a 2155 fi
104c1213
JM
2156done
2157
2158# All the trailing guff
2159cat <<EOF
2160
2161
f44c642f 2162/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2163 modules. */
104c1213
JM
2164
2165struct gdbarch_data
2166{
95160752 2167 unsigned index;
76860b5f 2168 int init_p;
030f20e1
AC
2169 gdbarch_data_pre_init_ftype *pre_init;
2170 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2171};
2172
2173struct gdbarch_data_registration
2174{
104c1213
JM
2175 struct gdbarch_data *data;
2176 struct gdbarch_data_registration *next;
2177};
2178
f44c642f 2179struct gdbarch_data_registry
104c1213 2180{
95160752 2181 unsigned nr;
104c1213
JM
2182 struct gdbarch_data_registration *registrations;
2183};
2184
f44c642f 2185struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2186{
2187 0, NULL,
2188};
2189
030f20e1
AC
2190static struct gdbarch_data *
2191gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2192 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2193{
2194 struct gdbarch_data_registration **curr;
05c547f6
MS
2195
2196 /* Append the new registration. */
f44c642f 2197 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2198 (*curr) != NULL;
2199 curr = &(*curr)->next);
70ba0933 2200 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2201 (*curr)->next = NULL;
70ba0933 2202 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2203 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2204 (*curr)->data->pre_init = pre_init;
2205 (*curr)->data->post_init = post_init;
76860b5f 2206 (*curr)->data->init_p = 1;
104c1213
JM
2207 return (*curr)->data;
2208}
2209
030f20e1
AC
2210struct gdbarch_data *
2211gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2212{
2213 return gdbarch_data_register (pre_init, NULL);
2214}
2215
2216struct gdbarch_data *
2217gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2218{
2219 return gdbarch_data_register (NULL, post_init);
2220}
104c1213 2221
0963b4bd 2222/* Create/delete the gdbarch data vector. */
95160752
AC
2223
2224static void
b3cc3077 2225alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2226{
b3cc3077
JB
2227 gdb_assert (gdbarch->data == NULL);
2228 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2229 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2230}
3c875b6f 2231
76860b5f 2232/* Initialize the current value of the specified per-architecture
0963b4bd 2233 data-pointer. */
b3cc3077 2234
95160752 2235void
030f20e1
AC
2236deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2237 struct gdbarch_data *data,
2238 void *pointer)
95160752
AC
2239{
2240 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2241 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2242 gdb_assert (data->pre_init == NULL);
95160752
AC
2243 gdbarch->data[data->index] = pointer;
2244}
2245
104c1213 2246/* Return the current value of the specified per-architecture
0963b4bd 2247 data-pointer. */
104c1213
JM
2248
2249void *
451fbdda 2250gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2251{
451fbdda 2252 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2253 if (gdbarch->data[data->index] == NULL)
76860b5f 2254 {
030f20e1
AC
2255 /* The data-pointer isn't initialized, call init() to get a
2256 value. */
2257 if (data->pre_init != NULL)
2258 /* Mid architecture creation: pass just the obstack, and not
2259 the entire architecture, as that way it isn't possible for
2260 pre-init code to refer to undefined architecture
2261 fields. */
2262 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2263 else if (gdbarch->initialized_p
2264 && data->post_init != NULL)
2265 /* Post architecture creation: pass the entire architecture
2266 (as all fields are valid), but be careful to also detect
2267 recursive references. */
2268 {
2269 gdb_assert (data->init_p);
2270 data->init_p = 0;
2271 gdbarch->data[data->index] = data->post_init (gdbarch);
2272 data->init_p = 1;
2273 }
2274 else
2275 /* The architecture initialization hasn't completed - punt -
2276 hope that the caller knows what they are doing. Once
2277 deprecated_set_gdbarch_data has been initialized, this can be
2278 changed to an internal error. */
2279 return NULL;
76860b5f
AC
2280 gdb_assert (gdbarch->data[data->index] != NULL);
2281 }
451fbdda 2282 return gdbarch->data[data->index];
104c1213
JM
2283}
2284
2285
0963b4bd 2286/* Keep a registry of the architectures known by GDB. */
104c1213 2287
4b9b3959 2288struct gdbarch_registration
104c1213
JM
2289{
2290 enum bfd_architecture bfd_architecture;
2291 gdbarch_init_ftype *init;
4b9b3959 2292 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2293 struct gdbarch_list *arches;
4b9b3959 2294 struct gdbarch_registration *next;
104c1213
JM
2295};
2296
f44c642f 2297static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2298
b4a20239
AC
2299static void
2300append_name (const char ***buf, int *nr, const char *name)
2301{
1dc7a623 2302 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2303 (*buf)[*nr] = name;
2304 *nr += 1;
2305}
2306
2307const char **
2308gdbarch_printable_names (void)
2309{
7996bcec 2310 /* Accumulate a list of names based on the registed list of
0963b4bd 2311 architectures. */
7996bcec
AC
2312 int nr_arches = 0;
2313 const char **arches = NULL;
2314 struct gdbarch_registration *rego;
05c547f6 2315
7996bcec
AC
2316 for (rego = gdbarch_registry;
2317 rego != NULL;
2318 rego = rego->next)
b4a20239 2319 {
7996bcec
AC
2320 const struct bfd_arch_info *ap;
2321 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2322 if (ap == NULL)
2323 internal_error (__FILE__, __LINE__,
85c07804 2324 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2325 do
2326 {
2327 append_name (&arches, &nr_arches, ap->printable_name);
2328 ap = ap->next;
2329 }
2330 while (ap != NULL);
b4a20239 2331 }
7996bcec
AC
2332 append_name (&arches, &nr_arches, NULL);
2333 return arches;
b4a20239
AC
2334}
2335
2336
104c1213 2337void
4b9b3959
AC
2338gdbarch_register (enum bfd_architecture bfd_architecture,
2339 gdbarch_init_ftype *init,
2340 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2341{
4b9b3959 2342 struct gdbarch_registration **curr;
104c1213 2343 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2344
ec3d358c 2345 /* Check that BFD recognizes this architecture */
104c1213
JM
2346 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2347 if (bfd_arch_info == NULL)
2348 {
8e65ff28 2349 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2350 _("gdbarch: Attempt to register "
2351 "unknown architecture (%d)"),
8e65ff28 2352 bfd_architecture);
104c1213 2353 }
0963b4bd 2354 /* Check that we haven't seen this architecture before. */
f44c642f 2355 for (curr = &gdbarch_registry;
104c1213
JM
2356 (*curr) != NULL;
2357 curr = &(*curr)->next)
2358 {
2359 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2360 internal_error (__FILE__, __LINE__,
64b9b334 2361 _("gdbarch: Duplicate registration "
0963b4bd 2362 "of architecture (%s)"),
8e65ff28 2363 bfd_arch_info->printable_name);
104c1213
JM
2364 }
2365 /* log it */
2366 if (gdbarch_debug)
30737ed9 2367 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2368 bfd_arch_info->printable_name,
30737ed9 2369 host_address_to_string (init));
104c1213 2370 /* Append it */
70ba0933 2371 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2372 (*curr)->bfd_architecture = bfd_architecture;
2373 (*curr)->init = init;
4b9b3959 2374 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2375 (*curr)->arches = NULL;
2376 (*curr)->next = NULL;
4b9b3959
AC
2377}
2378
2379void
2380register_gdbarch_init (enum bfd_architecture bfd_architecture,
2381 gdbarch_init_ftype *init)
2382{
2383 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2384}
104c1213
JM
2385
2386
424163ea 2387/* Look for an architecture using gdbarch_info. */
104c1213
JM
2388
2389struct gdbarch_list *
2390gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2391 const struct gdbarch_info *info)
2392{
2393 for (; arches != NULL; arches = arches->next)
2394 {
2395 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2396 continue;
2397 if (info->byte_order != arches->gdbarch->byte_order)
2398 continue;
4be87837
DJ
2399 if (info->osabi != arches->gdbarch->osabi)
2400 continue;
424163ea
DJ
2401 if (info->target_desc != arches->gdbarch->target_desc)
2402 continue;
104c1213
JM
2403 return arches;
2404 }
2405 return NULL;
2406}
2407
2408
ebdba546 2409/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2410 architecture if needed. Return that new architecture. */
104c1213 2411
59837fe0
UW
2412struct gdbarch *
2413gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2414{
2415 struct gdbarch *new_gdbarch;
4b9b3959 2416 struct gdbarch_registration *rego;
104c1213 2417
b732d07d 2418 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2419 sources: "set ..."; INFOabfd supplied; and the global
2420 defaults. */
2421 gdbarch_info_fill (&info);
4be87837 2422
0963b4bd 2423 /* Must have found some sort of architecture. */
b732d07d 2424 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2425
2426 if (gdbarch_debug)
2427 {
2428 fprintf_unfiltered (gdb_stdlog,
59837fe0 2429 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2430 (info.bfd_arch_info != NULL
2431 ? info.bfd_arch_info->printable_name
2432 : "(null)"));
2433 fprintf_unfiltered (gdb_stdlog,
59837fe0 2434 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2435 info.byte_order,
d7449b42 2436 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2437 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2438 : "default"));
4be87837 2439 fprintf_unfiltered (gdb_stdlog,
59837fe0 2440 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2441 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2442 fprintf_unfiltered (gdb_stdlog,
59837fe0 2443 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2444 host_address_to_string (info.abfd));
104c1213 2445 fprintf_unfiltered (gdb_stdlog,
7df31403
AH
2446 "gdbarch_find_by_info: info.target_info.tdep_info %s\n",
2447 host_address_to_string (info.target_info.tdep_info));
104c1213
JM
2448 }
2449
ebdba546 2450 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2451 for (rego = gdbarch_registry;
2452 rego != NULL;
2453 rego = rego->next)
2454 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2455 break;
2456 if (rego == NULL)
2457 {
2458 if (gdbarch_debug)
59837fe0 2459 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2460 "No matching architecture\n");
b732d07d
AC
2461 return 0;
2462 }
2463
ebdba546 2464 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2465 new_gdbarch = rego->init (info, rego->arches);
2466
ebdba546
AC
2467 /* Did the tdep code like it? No. Reject the change and revert to
2468 the old architecture. */
104c1213
JM
2469 if (new_gdbarch == NULL)
2470 {
2471 if (gdbarch_debug)
59837fe0 2472 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2473 "Target rejected architecture\n");
2474 return NULL;
104c1213
JM
2475 }
2476
ebdba546
AC
2477 /* Is this a pre-existing architecture (as determined by already
2478 being initialized)? Move it to the front of the architecture
2479 list (keeping the list sorted Most Recently Used). */
2480 if (new_gdbarch->initialized_p)
104c1213 2481 {
ebdba546 2482 struct gdbarch_list **list;
fe978cb0 2483 struct gdbarch_list *self;
104c1213 2484 if (gdbarch_debug)
59837fe0 2485 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2486 "Previous architecture %s (%s) selected\n",
2487 host_address_to_string (new_gdbarch),
104c1213 2488 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2489 /* Find the existing arch in the list. */
2490 for (list = &rego->arches;
2491 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2492 list = &(*list)->next);
2493 /* It had better be in the list of architectures. */
2494 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2495 /* Unlink SELF. */
2496 self = (*list);
2497 (*list) = self->next;
2498 /* Insert SELF at the front. */
2499 self->next = rego->arches;
2500 rego->arches = self;
ebdba546
AC
2501 /* Return it. */
2502 return new_gdbarch;
104c1213
JM
2503 }
2504
ebdba546
AC
2505 /* It's a new architecture. */
2506 if (gdbarch_debug)
59837fe0 2507 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2508 "New architecture %s (%s) selected\n",
2509 host_address_to_string (new_gdbarch),
ebdba546
AC
2510 new_gdbarch->bfd_arch_info->printable_name);
2511
2512 /* Insert the new architecture into the front of the architecture
2513 list (keep the list sorted Most Recently Used). */
0f79675b 2514 {
fe978cb0
PA
2515 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2516 self->next = rego->arches;
2517 self->gdbarch = new_gdbarch;
2518 rego->arches = self;
0f79675b 2519 }
104c1213 2520
4b9b3959
AC
2521 /* Check that the newly installed architecture is valid. Plug in
2522 any post init values. */
2523 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2524 verify_gdbarch (new_gdbarch);
ebdba546 2525 new_gdbarch->initialized_p = 1;
104c1213 2526
4b9b3959 2527 if (gdbarch_debug)
ebdba546
AC
2528 gdbarch_dump (new_gdbarch, gdb_stdlog);
2529
2530 return new_gdbarch;
2531}
2532
e487cc15 2533/* Make the specified architecture current. */
ebdba546
AC
2534
2535void
aff68abb 2536set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2537{
2538 gdb_assert (new_gdbarch != NULL);
ebdba546 2539 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2540 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2541 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2542 registers_changed ();
ebdba546 2543}
104c1213 2544
f5656ead 2545/* Return the current inferior's arch. */
6ecd4729
PA
2546
2547struct gdbarch *
f5656ead 2548target_gdbarch (void)
6ecd4729
PA
2549{
2550 return current_inferior ()->gdbarch;
2551}
2552
104c1213 2553void
34620563 2554_initialize_gdbarch (void)
104c1213 2555{
ccce17b0 2556 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2557Set architecture debugging."), _("\\
2558Show architecture debugging."), _("\\
2559When non-zero, architecture debugging is enabled."),
2560 NULL,
920d2a44 2561 show_gdbarch_debug,
85c07804 2562 &setdebuglist, &showdebuglist);
104c1213
JM
2563}
2564EOF
2565
2566# close things off
2567exec 1>&2
2568#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2569compare_new gdbarch.c