]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
Drop 'regset_from_core_section' gdbarch method
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 653
5aa82d05
AA
654# Iterate over all supported register notes in a core file. For each
655# supported register note section, the iterator must call CB and pass
656# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
657# the supported register note sections based on the current register
658# values. Otherwise it should enumerate all supported register note
659# sections.
660M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 661
6432734d
UW
662# Create core file notes
663M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
664
b3ac9c77
SDJ
665# The elfcore writer hook to use to write Linux prpsinfo notes to core
666# files. Most Linux architectures use the same prpsinfo32 or
667# prpsinfo64 layouts, and so won't need to provide this hook, as we
668# call the Linux generic routines in bfd to write prpsinfo notes by
669# default.
670F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
671
35c2fab7
UW
672# Find core file memory regions
673M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
674
de584861 675# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
676# core file into buffer READBUF with length LEN. Return the number of bytes read
677# (zero indicates failure).
678# failed, otherwise, return the red length of READBUF.
679M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 680
356a5233
JB
681# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
682# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
683# Return the number of bytes read (zero indicates failure).
684M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 685
c0edd9ed 686# How the core target converts a PTID from a core file to a string.
28439f5e
PA
687M:char *:core_pid_to_str:ptid_t ptid:ptid
688
a78c2d62 689# BFD target to use when generating a core file.
86ba1042 690V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 691
0d5de010
DJ
692# If the elements of C++ vtables are in-place function descriptors rather
693# than normal function pointers (which may point to code or a descriptor),
694# set this to one.
97030eea 695v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
696
697# Set if the least significant bit of the delta is used instead of the least
698# significant bit of the pfn for pointers to virtual member functions.
97030eea 699v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
700
701# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 702F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 703
1668ae25 704# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
705V:ULONGEST:max_insn_length:::0:0
706
707# Copy the instruction at FROM to TO, and make any adjustments
708# necessary to single-step it at that address.
709#
710# REGS holds the state the thread's registers will have before
711# executing the copied instruction; the PC in REGS will refer to FROM,
712# not the copy at TO. The caller should update it to point at TO later.
713#
714# Return a pointer to data of the architecture's choice to be passed
715# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
716# the instruction's effects have been completely simulated, with the
717# resulting state written back to REGS.
718#
719# For a general explanation of displaced stepping and how GDB uses it,
720# see the comments in infrun.c.
721#
722# The TO area is only guaranteed to have space for
723# gdbarch_max_insn_length (arch) bytes, so this function must not
724# write more bytes than that to that area.
725#
726# If you do not provide this function, GDB assumes that the
727# architecture does not support displaced stepping.
728#
729# If your architecture doesn't need to adjust instructions before
730# single-stepping them, consider using simple_displaced_step_copy_insn
731# here.
732M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
733
99e40580
UW
734# Return true if GDB should use hardware single-stepping to execute
735# the displaced instruction identified by CLOSURE. If false,
736# GDB will simply restart execution at the displaced instruction
737# location, and it is up to the target to ensure GDB will receive
738# control again (e.g. by placing a software breakpoint instruction
739# into the displaced instruction buffer).
740#
741# The default implementation returns false on all targets that
742# provide a gdbarch_software_single_step routine, and true otherwise.
743m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
744
237fc4c9
PA
745# Fix up the state resulting from successfully single-stepping a
746# displaced instruction, to give the result we would have gotten from
747# stepping the instruction in its original location.
748#
749# REGS is the register state resulting from single-stepping the
750# displaced instruction.
751#
752# CLOSURE is the result from the matching call to
753# gdbarch_displaced_step_copy_insn.
754#
755# If you provide gdbarch_displaced_step_copy_insn.but not this
756# function, then GDB assumes that no fixup is needed after
757# single-stepping the instruction.
758#
759# For a general explanation of displaced stepping and how GDB uses it,
760# see the comments in infrun.c.
761M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
762
763# Free a closure returned by gdbarch_displaced_step_copy_insn.
764#
765# If you provide gdbarch_displaced_step_copy_insn, you must provide
766# this function as well.
767#
768# If your architecture uses closures that don't need to be freed, then
769# you can use simple_displaced_step_free_closure here.
770#
771# For a general explanation of displaced stepping and how GDB uses it,
772# see the comments in infrun.c.
773m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
774
775# Return the address of an appropriate place to put displaced
776# instructions while we step over them. There need only be one such
777# place, since we're only stepping one thread over a breakpoint at a
778# time.
779#
780# For a general explanation of displaced stepping and how GDB uses it,
781# see the comments in infrun.c.
782m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
783
dde08ee1
PA
784# Relocate an instruction to execute at a different address. OLDLOC
785# is the address in the inferior memory where the instruction to
786# relocate is currently at. On input, TO points to the destination
787# where we want the instruction to be copied (and possibly adjusted)
788# to. On output, it points to one past the end of the resulting
789# instruction(s). The effect of executing the instruction at TO shall
790# be the same as if executing it at FROM. For example, call
791# instructions that implicitly push the return address on the stack
792# should be adjusted to return to the instruction after OLDLOC;
793# relative branches, and other PC-relative instructions need the
794# offset adjusted; etc.
795M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
796
1c772458 797# Refresh overlay mapped state for section OSECT.
97030eea 798F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 799
97030eea 800M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
801
802# Handle special encoding of static variables in stabs debug info.
0d5cff50 803F:const char *:static_transform_name:const char *name:name
203c3895 804# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 805v:int:sofun_address_maybe_missing:::0:0::0
1cded358 806
0508c3ec
HZ
807# Parse the instruction at ADDR storing in the record execution log
808# the registers REGCACHE and memory ranges that will be affected when
809# the instruction executes, along with their current values.
810# Return -1 if something goes wrong, 0 otherwise.
811M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
812
3846b520
HZ
813# Save process state after a signal.
814# Return -1 if something goes wrong, 0 otherwise.
2ea28649 815M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 816
22203bbf 817# Signal translation: translate inferior's signal (target's) number
86b49880
PA
818# into GDB's representation. The implementation of this method must
819# be host independent. IOW, don't rely on symbols of the NAT_FILE
820# header (the nm-*.h files), the host <signal.h> header, or similar
821# headers. This is mainly used when cross-debugging core files ---
822# "Live" targets hide the translation behind the target interface
1f8cf220
PA
823# (target_wait, target_resume, etc.).
824M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 825
eb14d406
SDJ
826# Signal translation: translate the GDB's internal signal number into
827# the inferior's signal (target's) representation. The implementation
828# of this method must be host independent. IOW, don't rely on symbols
829# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
830# header, or similar headers.
831# Return the target signal number if found, or -1 if the GDB internal
832# signal number is invalid.
833M:int:gdb_signal_to_target:enum gdb_signal signal:signal
834
4aa995e1
PA
835# Extra signal info inspection.
836#
837# Return a type suitable to inspect extra signal information.
838M:struct type *:get_siginfo_type:void:
839
60c5725c
DJ
840# Record architecture-specific information from the symbol table.
841M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 842
a96d9b2e
SDJ
843# Function for the 'catch syscall' feature.
844
845# Get architecture-specific system calls information from registers.
846M:LONGEST:get_syscall_number:ptid_t ptid:ptid
847
55aa24fb
SDJ
848# SystemTap related fields and functions.
849
05c0465e
SDJ
850# A NULL-terminated array of prefixes used to mark an integer constant
851# on the architecture's assembly.
55aa24fb
SDJ
852# For example, on x86 integer constants are written as:
853#
854# \$10 ;; integer constant 10
855#
856# in this case, this prefix would be the character \`\$\'.
05c0465e 857v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 858
05c0465e
SDJ
859# A NULL-terminated array of suffixes used to mark an integer constant
860# on the architecture's assembly.
861v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 862
05c0465e
SDJ
863# A NULL-terminated array of prefixes used to mark a register name on
864# the architecture's assembly.
55aa24fb
SDJ
865# For example, on x86 the register name is written as:
866#
867# \%eax ;; register eax
868#
869# in this case, this prefix would be the character \`\%\'.
05c0465e 870v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 871
05c0465e
SDJ
872# A NULL-terminated array of suffixes used to mark a register name on
873# the architecture's assembly.
874v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 875
05c0465e
SDJ
876# A NULL-terminated array of prefixes used to mark a register
877# indirection on the architecture's assembly.
55aa24fb
SDJ
878# For example, on x86 the register indirection is written as:
879#
880# \(\%eax\) ;; indirecting eax
881#
882# in this case, this prefix would be the charater \`\(\'.
883#
884# Please note that we use the indirection prefix also for register
885# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 886v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 887
05c0465e
SDJ
888# A NULL-terminated array of suffixes used to mark a register
889# indirection on the architecture's assembly.
55aa24fb
SDJ
890# For example, on x86 the register indirection is written as:
891#
892# \(\%eax\) ;; indirecting eax
893#
894# in this case, this prefix would be the charater \`\)\'.
895#
896# Please note that we use the indirection suffix also for register
897# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 898v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 899
05c0465e 900# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
901#
902# For example, on PPC a register is represented by a number in the assembly
903# language (e.g., \`10\' is the 10th general-purpose register). However,
904# inside GDB this same register has an \`r\' appended to its name, so the 10th
905# register would be represented as \`r10\' internally.
08af7a40 906v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
907
908# Suffix used to name a register using GDB's nomenclature.
08af7a40 909v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
910
911# Check if S is a single operand.
912#
913# Single operands can be:
914# \- Literal integers, e.g. \`\$10\' on x86
915# \- Register access, e.g. \`\%eax\' on x86
916# \- Register indirection, e.g. \`\(\%eax\)\' on x86
917# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
918#
919# This function should check for these patterns on the string
920# and return 1 if some were found, or zero otherwise. Please try to match
921# as much info as you can from the string, i.e., if you have to match
922# something like \`\(\%\', do not match just the \`\(\'.
923M:int:stap_is_single_operand:const char *s:s
924
925# Function used to handle a "special case" in the parser.
926#
927# A "special case" is considered to be an unknown token, i.e., a token
928# that the parser does not know how to parse. A good example of special
929# case would be ARM's register displacement syntax:
930#
931# [R0, #4] ;; displacing R0 by 4
932#
933# Since the parser assumes that a register displacement is of the form:
934#
935# <number> <indirection_prefix> <register_name> <indirection_suffix>
936#
937# it means that it will not be able to recognize and parse this odd syntax.
938# Therefore, we should add a special case function that will handle this token.
939#
940# This function should generate the proper expression form of the expression
941# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
942# and so on). It should also return 1 if the parsing was successful, or zero
943# if the token was not recognized as a special token (in this case, returning
944# zero means that the special parser is deferring the parsing to the generic
945# parser), and should advance the buffer pointer (p->arg).
946M:int:stap_parse_special_token:struct stap_parse_info *p:p
947
948
50c71eaf
PA
949# True if the list of shared libraries is one and only for all
950# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
951# This usually means that all processes, although may or may not share
952# an address space, will see the same set of symbols at the same
953# addresses.
50c71eaf 954v:int:has_global_solist:::0:0::0
2567c7d9
PA
955
956# On some targets, even though each inferior has its own private
957# address space, the debug interface takes care of making breakpoints
958# visible to all address spaces automatically. For such cases,
959# this property should be set to true.
960v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
961
962# True if inferiors share an address space (e.g., uClinux).
963m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
964
965# True if a fast tracepoint can be set at an address.
966m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 967
f870a310
TT
968# Return the "auto" target charset.
969f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
970# Return the "auto" target wide charset.
971f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
972
973# If non-empty, this is a file extension that will be opened in place
974# of the file extension reported by the shared library list.
975#
976# This is most useful for toolchains that use a post-linker tool,
977# where the names of the files run on the target differ in extension
978# compared to the names of the files GDB should load for debug info.
979v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
980
981# If true, the target OS has DOS-based file system semantics. That
982# is, absolute paths include a drive name, and the backslash is
983# considered a directory separator.
984v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
985
986# Generate bytecodes to collect the return address in a frame.
987# Since the bytecodes run on the target, possibly with GDB not even
988# connected, the full unwinding machinery is not available, and
989# typically this function will issue bytecodes for one or more likely
990# places that the return address may be found.
991m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
992
3030c96e 993# Implement the "info proc" command.
7bc112c1 994M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 995
451b7c33
TT
996# Implement the "info proc" command for core files. Noe that there
997# are two "info_proc"-like methods on gdbarch -- one for core files,
998# one for live targets.
7bc112c1 999M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1000
19630284
JB
1001# Iterate over all objfiles in the order that makes the most sense
1002# for the architecture to make global symbol searches.
1003#
1004# CB is a callback function where OBJFILE is the objfile to be searched,
1005# and CB_DATA a pointer to user-defined data (the same data that is passed
1006# when calling this gdbarch method). The iteration stops if this function
1007# returns nonzero.
1008#
1009# CB_DATA is a pointer to some user-defined data to be passed to
1010# the callback.
1011#
1012# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1013# inspected when the symbol search was requested.
1014m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1015
7e35103a
JB
1016# Ravenscar arch-dependent ops.
1017v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1018
1019# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1020m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1021
1022# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1023m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1024
1025# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1026m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1027
1028# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1029# Return 0 if *READPTR is already at the end of the buffer.
1030# Return -1 if there is insufficient buffer for a whole entry.
1031# Return 1 if an entry was read into *TYPEP and *VALP.
1032M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
104c1213 1033EOF
104c1213
JM
1034}
1035
0b8f9e4d
AC
1036#
1037# The .log file
1038#
1039exec > new-gdbarch.log
34620563 1040function_list | while do_read
0b8f9e4d
AC
1041do
1042 cat <<EOF
2f9b146e 1043${class} ${returntype} ${function} ($formal)
104c1213 1044EOF
3d9a5942
AC
1045 for r in ${read}
1046 do
1047 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1048 done
f0d4cc9e 1049 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1050 then
66d659b1 1051 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1052 kill $$
1053 exit 1
1054 fi
72e74a21 1055 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1056 then
1057 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1058 kill $$
1059 exit 1
1060 fi
a72293e2
AC
1061 if class_is_multiarch_p
1062 then
1063 if class_is_predicate_p ; then :
1064 elif test "x${predefault}" = "x"
1065 then
2f9b146e 1066 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1067 kill $$
1068 exit 1
1069 fi
1070 fi
3d9a5942 1071 echo ""
0b8f9e4d
AC
1072done
1073
1074exec 1>&2
1075compare_new gdbarch.log
1076
104c1213
JM
1077
1078copyright ()
1079{
1080cat <<EOF
c4bfde41
JK
1081/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1082/* vi:set ro: */
59233f88 1083
104c1213 1084/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1085
ecd75fc8 1086 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1087
1088 This file is part of GDB.
1089
1090 This program is free software; you can redistribute it and/or modify
1091 it under the terms of the GNU General Public License as published by
50efebf8 1092 the Free Software Foundation; either version 3 of the License, or
104c1213 1093 (at your option) any later version.
50efebf8 1094
104c1213
JM
1095 This program is distributed in the hope that it will be useful,
1096 but WITHOUT ANY WARRANTY; without even the implied warranty of
1097 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1098 GNU General Public License for more details.
50efebf8 1099
104c1213 1100 You should have received a copy of the GNU General Public License
50efebf8 1101 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1102
104c1213
JM
1103/* This file was created with the aid of \`\`gdbarch.sh''.
1104
52204a0b 1105 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1106 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1107 against the existing \`\`gdbarch.[hc]''. Any differences found
1108 being reported.
1109
1110 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1111 changes into that script. Conversely, when making sweeping changes
104c1213 1112 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1113 easier. */
104c1213
JM
1114
1115EOF
1116}
1117
1118#
1119# The .h file
1120#
1121
1122exec > new-gdbarch.h
1123copyright
1124cat <<EOF
1125#ifndef GDBARCH_H
1126#define GDBARCH_H
1127
eb7a547a
JB
1128#include "frame.h"
1129
da3331ec
AC
1130struct floatformat;
1131struct ui_file;
104c1213 1132struct value;
b6af0555 1133struct objfile;
1c772458 1134struct obj_section;
a2cf933a 1135struct minimal_symbol;
049ee0e4 1136struct regcache;
b59ff9d5 1137struct reggroup;
6ce6d90f 1138struct regset;
a89aa300 1139struct disassemble_info;
e2d0e7eb 1140struct target_ops;
030f20e1 1141struct obstack;
8181d85f 1142struct bp_target_info;
424163ea 1143struct target_desc;
237fc4c9 1144struct displaced_step_closure;
17ea7499 1145struct core_regset_section;
a96d9b2e 1146struct syscall;
175ff332 1147struct agent_expr;
6710bf39 1148struct axs_value;
55aa24fb 1149struct stap_parse_info;
7e35103a 1150struct ravenscar_arch_ops;
b3ac9c77 1151struct elf_internal_linux_prpsinfo;
104c1213 1152
6ecd4729
PA
1153/* The architecture associated with the inferior through the
1154 connection to the target.
1155
1156 The architecture vector provides some information that is really a
1157 property of the inferior, accessed through a particular target:
1158 ptrace operations; the layout of certain RSP packets; the solib_ops
1159 vector; etc. To differentiate architecture accesses to
1160 per-inferior/target properties from
1161 per-thread/per-frame/per-objfile properties, accesses to
1162 per-inferior/target properties should be made through this
1163 gdbarch. */
1164
1165/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1166extern struct gdbarch *target_gdbarch (void);
6ecd4729 1167
19630284
JB
1168/* Callback type for the 'iterate_over_objfiles_in_search_order'
1169 gdbarch method. */
1170
1171typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1172 (struct objfile *objfile, void *cb_data);
5aa82d05
AA
1173
1174typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1175 (const char *sect_name, int size, const struct regset *regset,
1176 const char *human_name, void *cb_data);
104c1213
JM
1177EOF
1178
1179# function typedef's
3d9a5942
AC
1180printf "\n"
1181printf "\n"
0963b4bd 1182printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1183function_list | while do_read
104c1213 1184do
2ada493a
AC
1185 if class_is_info_p
1186 then
3d9a5942
AC
1187 printf "\n"
1188 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1189 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1190 fi
104c1213
JM
1191done
1192
1193# function typedef's
3d9a5942
AC
1194printf "\n"
1195printf "\n"
0963b4bd 1196printf "/* The following are initialized by the target dependent code. */\n"
34620563 1197function_list | while do_read
104c1213 1198do
72e74a21 1199 if [ -n "${comment}" ]
34620563
AC
1200 then
1201 echo "${comment}" | sed \
1202 -e '2 s,#,/*,' \
1203 -e '3,$ s,#, ,' \
1204 -e '$ s,$, */,'
1205 fi
412d5987
AC
1206
1207 if class_is_predicate_p
2ada493a 1208 then
412d5987
AC
1209 printf "\n"
1210 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1211 fi
2ada493a
AC
1212 if class_is_variable_p
1213 then
3d9a5942
AC
1214 printf "\n"
1215 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1216 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1217 fi
1218 if class_is_function_p
1219 then
3d9a5942 1220 printf "\n"
72e74a21 1221 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1222 then
1223 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1224 elif class_is_multiarch_p
1225 then
1226 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1227 else
1228 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1229 fi
72e74a21 1230 if [ "x${formal}" = "xvoid" ]
104c1213 1231 then
3d9a5942 1232 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1233 else
3d9a5942 1234 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1235 fi
3d9a5942 1236 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1237 fi
104c1213
JM
1238done
1239
1240# close it off
1241cat <<EOF
1242
a96d9b2e
SDJ
1243/* Definition for an unknown syscall, used basically in error-cases. */
1244#define UNKNOWN_SYSCALL (-1)
1245
104c1213
JM
1246extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1247
1248
1249/* Mechanism for co-ordinating the selection of a specific
1250 architecture.
1251
1252 GDB targets (*-tdep.c) can register an interest in a specific
1253 architecture. Other GDB components can register a need to maintain
1254 per-architecture data.
1255
1256 The mechanisms below ensures that there is only a loose connection
1257 between the set-architecture command and the various GDB
0fa6923a 1258 components. Each component can independently register their need
104c1213
JM
1259 to maintain architecture specific data with gdbarch.
1260
1261 Pragmatics:
1262
1263 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1264 didn't scale.
1265
1266 The more traditional mega-struct containing architecture specific
1267 data for all the various GDB components was also considered. Since
0fa6923a 1268 GDB is built from a variable number of (fairly independent)
104c1213 1269 components it was determined that the global aproach was not
0963b4bd 1270 applicable. */
104c1213
JM
1271
1272
1273/* Register a new architectural family with GDB.
1274
1275 Register support for the specified ARCHITECTURE with GDB. When
1276 gdbarch determines that the specified architecture has been
1277 selected, the corresponding INIT function is called.
1278
1279 --
1280
1281 The INIT function takes two parameters: INFO which contains the
1282 information available to gdbarch about the (possibly new)
1283 architecture; ARCHES which is a list of the previously created
1284 \`\`struct gdbarch'' for this architecture.
1285
0f79675b 1286 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1287 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1288
1289 The ARCHES parameter is a linked list (sorted most recently used)
1290 of all the previously created architures for this architecture
1291 family. The (possibly NULL) ARCHES->gdbarch can used to access
1292 values from the previously selected architecture for this
59837fe0 1293 architecture family.
104c1213
JM
1294
1295 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1296 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1297 gdbarch'' from the ARCHES list - indicating that the new
1298 architecture is just a synonym for an earlier architecture (see
1299 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1300 - that describes the selected architecture (see gdbarch_alloc()).
1301
1302 The DUMP_TDEP function shall print out all target specific values.
1303 Care should be taken to ensure that the function works in both the
0963b4bd 1304 multi-arch and non- multi-arch cases. */
104c1213
JM
1305
1306struct gdbarch_list
1307{
1308 struct gdbarch *gdbarch;
1309 struct gdbarch_list *next;
1310};
1311
1312struct gdbarch_info
1313{
0963b4bd 1314 /* Use default: NULL (ZERO). */
104c1213
JM
1315 const struct bfd_arch_info *bfd_arch_info;
1316
428721aa 1317 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1318 enum bfd_endian byte_order;
104c1213 1319
94123b4f 1320 enum bfd_endian byte_order_for_code;
9d4fde75 1321
0963b4bd 1322 /* Use default: NULL (ZERO). */
104c1213
JM
1323 bfd *abfd;
1324
0963b4bd 1325 /* Use default: NULL (ZERO). */
104c1213 1326 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1327
1328 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1329 enum gdb_osabi osabi;
424163ea
DJ
1330
1331 /* Use default: NULL (ZERO). */
1332 const struct target_desc *target_desc;
104c1213
JM
1333};
1334
1335typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1336typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1337
4b9b3959 1338/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1339extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1340
4b9b3959
AC
1341extern void gdbarch_register (enum bfd_architecture architecture,
1342 gdbarch_init_ftype *,
1343 gdbarch_dump_tdep_ftype *);
1344
104c1213 1345
b4a20239
AC
1346/* Return a freshly allocated, NULL terminated, array of the valid
1347 architecture names. Since architectures are registered during the
1348 _initialize phase this function only returns useful information
0963b4bd 1349 once initialization has been completed. */
b4a20239
AC
1350
1351extern const char **gdbarch_printable_names (void);
1352
1353
104c1213 1354/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1355 matches the information provided by INFO. */
104c1213 1356
424163ea 1357extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1358
1359
1360/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1361 basic initialization using values obtained from the INFO and TDEP
104c1213 1362 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1363 initialization of the object. */
104c1213
JM
1364
1365extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1366
1367
4b9b3959
AC
1368/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1369 It is assumed that the caller freeds the \`\`struct
0963b4bd 1370 gdbarch_tdep''. */
4b9b3959 1371
058f20d5
JB
1372extern void gdbarch_free (struct gdbarch *);
1373
1374
aebd7893
AC
1375/* Helper function. Allocate memory from the \`\`struct gdbarch''
1376 obstack. The memory is freed when the corresponding architecture
1377 is also freed. */
1378
1379extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1380#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1381#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1382
1383
0963b4bd 1384/* Helper function. Force an update of the current architecture.
104c1213 1385
b732d07d
AC
1386 The actual architecture selected is determined by INFO, \`\`(gdb) set
1387 architecture'' et.al., the existing architecture and BFD's default
1388 architecture. INFO should be initialized to zero and then selected
1389 fields should be updated.
104c1213 1390
0963b4bd 1391 Returns non-zero if the update succeeds. */
16f33e29
AC
1392
1393extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1394
1395
ebdba546
AC
1396/* Helper function. Find an architecture matching info.
1397
1398 INFO should be initialized using gdbarch_info_init, relevant fields
1399 set, and then finished using gdbarch_info_fill.
1400
1401 Returns the corresponding architecture, or NULL if no matching
59837fe0 1402 architecture was found. */
ebdba546
AC
1403
1404extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1405
1406
aff68abb 1407/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1408
aff68abb 1409extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1410
104c1213
JM
1411
1412/* Register per-architecture data-pointer.
1413
1414 Reserve space for a per-architecture data-pointer. An identifier
1415 for the reserved data-pointer is returned. That identifer should
95160752 1416 be saved in a local static variable.
104c1213 1417
fcc1c85c
AC
1418 Memory for the per-architecture data shall be allocated using
1419 gdbarch_obstack_zalloc. That memory will be deleted when the
1420 corresponding architecture object is deleted.
104c1213 1421
95160752
AC
1422 When a previously created architecture is re-selected, the
1423 per-architecture data-pointer for that previous architecture is
76860b5f 1424 restored. INIT() is not re-called.
104c1213
JM
1425
1426 Multiple registrarants for any architecture are allowed (and
1427 strongly encouraged). */
1428
95160752 1429struct gdbarch_data;
104c1213 1430
030f20e1
AC
1431typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1432extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1433typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1434extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1435extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1436 struct gdbarch_data *data,
1437 void *pointer);
104c1213 1438
451fbdda 1439extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1440
1441
0fa6923a 1442/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1443 byte-order, ...) using information found in the BFD. */
104c1213
JM
1444
1445extern void set_gdbarch_from_file (bfd *);
1446
1447
e514a9d6
JM
1448/* Initialize the current architecture to the "first" one we find on
1449 our list. */
1450
1451extern void initialize_current_architecture (void);
1452
104c1213 1453/* gdbarch trace variable */
ccce17b0 1454extern unsigned int gdbarch_debug;
104c1213 1455
4b9b3959 1456extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1457
1458#endif
1459EOF
1460exec 1>&2
1461#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1462compare_new gdbarch.h
104c1213
JM
1463
1464
1465#
1466# C file
1467#
1468
1469exec > new-gdbarch.c
1470copyright
1471cat <<EOF
1472
1473#include "defs.h"
7355ddba 1474#include "arch-utils.h"
104c1213 1475
104c1213 1476#include "gdbcmd.h"
faaf634c 1477#include "inferior.h"
104c1213
JM
1478#include "symcat.h"
1479
f0d4cc9e 1480#include "floatformat.h"
b59ff9d5 1481#include "reggroups.h"
4be87837 1482#include "osabi.h"
aebd7893 1483#include "gdb_obstack.h"
383f836e 1484#include "observer.h"
a3ecef73 1485#include "regcache.h"
19630284 1486#include "objfiles.h"
95160752 1487
104c1213
JM
1488/* Static function declarations */
1489
b3cc3077 1490static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1491
104c1213
JM
1492/* Non-zero if we want to trace architecture code. */
1493
1494#ifndef GDBARCH_DEBUG
1495#define GDBARCH_DEBUG 0
1496#endif
ccce17b0 1497unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1498static void
1499show_gdbarch_debug (struct ui_file *file, int from_tty,
1500 struct cmd_list_element *c, const char *value)
1501{
1502 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1503}
104c1213 1504
456fcf94 1505static const char *
8da61cc4 1506pformat (const struct floatformat **format)
456fcf94
AC
1507{
1508 if (format == NULL)
1509 return "(null)";
1510 else
8da61cc4
DJ
1511 /* Just print out one of them - this is only for diagnostics. */
1512 return format[0]->name;
456fcf94
AC
1513}
1514
08105857
PA
1515static const char *
1516pstring (const char *string)
1517{
1518 if (string == NULL)
1519 return "(null)";
1520 return string;
05c0465e
SDJ
1521}
1522
1523/* Helper function to print a list of strings, represented as "const
1524 char *const *". The list is printed comma-separated. */
1525
1526static char *
1527pstring_list (const char *const *list)
1528{
1529 static char ret[100];
1530 const char *const *p;
1531 size_t offset = 0;
1532
1533 if (list == NULL)
1534 return "(null)";
1535
1536 ret[0] = '\0';
1537 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1538 {
1539 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1540 offset += 2 + s;
1541 }
1542
1543 if (offset > 0)
1544 {
1545 gdb_assert (offset - 2 < sizeof (ret));
1546 ret[offset - 2] = '\0';
1547 }
1548
1549 return ret;
08105857
PA
1550}
1551
104c1213
JM
1552EOF
1553
1554# gdbarch open the gdbarch object
3d9a5942 1555printf "\n"
0963b4bd 1556printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1557printf "\n"
1558printf "struct gdbarch\n"
1559printf "{\n"
76860b5f
AC
1560printf " /* Has this architecture been fully initialized? */\n"
1561printf " int initialized_p;\n"
aebd7893
AC
1562printf "\n"
1563printf " /* An obstack bound to the lifetime of the architecture. */\n"
1564printf " struct obstack *obstack;\n"
1565printf "\n"
0963b4bd 1566printf " /* basic architectural information. */\n"
34620563 1567function_list | while do_read
104c1213 1568do
2ada493a
AC
1569 if class_is_info_p
1570 then
3d9a5942 1571 printf " ${returntype} ${function};\n"
2ada493a 1572 fi
104c1213 1573done
3d9a5942 1574printf "\n"
0963b4bd 1575printf " /* target specific vector. */\n"
3d9a5942
AC
1576printf " struct gdbarch_tdep *tdep;\n"
1577printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1578printf "\n"
0963b4bd 1579printf " /* per-architecture data-pointers. */\n"
95160752 1580printf " unsigned nr_data;\n"
3d9a5942
AC
1581printf " void **data;\n"
1582printf "\n"
104c1213
JM
1583cat <<EOF
1584 /* Multi-arch values.
1585
1586 When extending this structure you must:
1587
1588 Add the field below.
1589
1590 Declare set/get functions and define the corresponding
1591 macro in gdbarch.h.
1592
1593 gdbarch_alloc(): If zero/NULL is not a suitable default,
1594 initialize the new field.
1595
1596 verify_gdbarch(): Confirm that the target updated the field
1597 correctly.
1598
7e73cedf 1599 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1600 field is dumped out
1601
104c1213
JM
1602 get_gdbarch(): Implement the set/get functions (probably using
1603 the macro's as shortcuts).
1604
1605 */
1606
1607EOF
34620563 1608function_list | while do_read
104c1213 1609do
2ada493a
AC
1610 if class_is_variable_p
1611 then
3d9a5942 1612 printf " ${returntype} ${function};\n"
2ada493a
AC
1613 elif class_is_function_p
1614 then
2f9b146e 1615 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1616 fi
104c1213 1617done
3d9a5942 1618printf "};\n"
104c1213 1619
104c1213 1620# Create a new gdbarch struct
104c1213 1621cat <<EOF
7de2341d 1622
66b43ecb 1623/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1624 \`\`struct gdbarch_info''. */
104c1213 1625EOF
3d9a5942 1626printf "\n"
104c1213
JM
1627cat <<EOF
1628struct gdbarch *
1629gdbarch_alloc (const struct gdbarch_info *info,
1630 struct gdbarch_tdep *tdep)
1631{
be7811ad 1632 struct gdbarch *gdbarch;
aebd7893
AC
1633
1634 /* Create an obstack for allocating all the per-architecture memory,
1635 then use that to allocate the architecture vector. */
70ba0933 1636 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1637 obstack_init (obstack);
be7811ad
MD
1638 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1639 memset (gdbarch, 0, sizeof (*gdbarch));
1640 gdbarch->obstack = obstack;
85de9627 1641
be7811ad 1642 alloc_gdbarch_data (gdbarch);
85de9627 1643
be7811ad 1644 gdbarch->tdep = tdep;
104c1213 1645EOF
3d9a5942 1646printf "\n"
34620563 1647function_list | while do_read
104c1213 1648do
2ada493a
AC
1649 if class_is_info_p
1650 then
be7811ad 1651 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1652 fi
104c1213 1653done
3d9a5942 1654printf "\n"
0963b4bd 1655printf " /* Force the explicit initialization of these. */\n"
34620563 1656function_list | while do_read
104c1213 1657do
2ada493a
AC
1658 if class_is_function_p || class_is_variable_p
1659 then
72e74a21 1660 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1661 then
be7811ad 1662 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1663 fi
2ada493a 1664 fi
104c1213
JM
1665done
1666cat <<EOF
1667 /* gdbarch_alloc() */
1668
be7811ad 1669 return gdbarch;
104c1213
JM
1670}
1671EOF
1672
058f20d5 1673# Free a gdbarch struct.
3d9a5942
AC
1674printf "\n"
1675printf "\n"
058f20d5 1676cat <<EOF
aebd7893
AC
1677/* Allocate extra space using the per-architecture obstack. */
1678
1679void *
1680gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1681{
1682 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1683
aebd7893
AC
1684 memset (data, 0, size);
1685 return data;
1686}
1687
1688
058f20d5
JB
1689/* Free a gdbarch struct. This should never happen in normal
1690 operation --- once you've created a gdbarch, you keep it around.
1691 However, if an architecture's init function encounters an error
1692 building the structure, it may need to clean up a partially
1693 constructed gdbarch. */
4b9b3959 1694
058f20d5
JB
1695void
1696gdbarch_free (struct gdbarch *arch)
1697{
aebd7893 1698 struct obstack *obstack;
05c547f6 1699
95160752 1700 gdb_assert (arch != NULL);
aebd7893
AC
1701 gdb_assert (!arch->initialized_p);
1702 obstack = arch->obstack;
1703 obstack_free (obstack, 0); /* Includes the ARCH. */
1704 xfree (obstack);
058f20d5
JB
1705}
1706EOF
1707
104c1213 1708# verify a new architecture
104c1213 1709cat <<EOF
db446970
AC
1710
1711
1712/* Ensure that all values in a GDBARCH are reasonable. */
1713
104c1213 1714static void
be7811ad 1715verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1716{
f16a1923
AC
1717 struct ui_file *log;
1718 struct cleanup *cleanups;
759ef836 1719 long length;
f16a1923 1720 char *buf;
05c547f6 1721
f16a1923
AC
1722 log = mem_fileopen ();
1723 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1724 /* fundamental */
be7811ad 1725 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1726 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1727 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1728 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1729 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1730EOF
34620563 1731function_list | while do_read
104c1213 1732do
2ada493a
AC
1733 if class_is_function_p || class_is_variable_p
1734 then
72e74a21 1735 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1736 then
3d9a5942 1737 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1738 elif class_is_predicate_p
1739 then
0963b4bd 1740 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1741 # FIXME: See do_read for potential simplification
72e74a21 1742 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1743 then
3d9a5942 1744 printf " if (${invalid_p})\n"
be7811ad 1745 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1746 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1747 then
be7811ad
MD
1748 printf " if (gdbarch->${function} == ${predefault})\n"
1749 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1750 elif [ -n "${postdefault}" ]
f0d4cc9e 1751 then
be7811ad
MD
1752 printf " if (gdbarch->${function} == 0)\n"
1753 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1754 elif [ -n "${invalid_p}" ]
104c1213 1755 then
4d60522e 1756 printf " if (${invalid_p})\n"
f16a1923 1757 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1758 elif [ -n "${predefault}" ]
104c1213 1759 then
be7811ad 1760 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1761 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1762 fi
2ada493a 1763 fi
104c1213
JM
1764done
1765cat <<EOF
759ef836 1766 buf = ui_file_xstrdup (log, &length);
f16a1923 1767 make_cleanup (xfree, buf);
759ef836 1768 if (length > 0)
f16a1923 1769 internal_error (__FILE__, __LINE__,
85c07804 1770 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1771 buf);
1772 do_cleanups (cleanups);
104c1213
JM
1773}
1774EOF
1775
1776# dump the structure
3d9a5942
AC
1777printf "\n"
1778printf "\n"
104c1213 1779cat <<EOF
0963b4bd 1780/* Print out the details of the current architecture. */
4b9b3959 1781
104c1213 1782void
be7811ad 1783gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1784{
b78960be 1785 const char *gdb_nm_file = "<not-defined>";
05c547f6 1786
b78960be
AC
1787#if defined (GDB_NM_FILE)
1788 gdb_nm_file = GDB_NM_FILE;
1789#endif
1790 fprintf_unfiltered (file,
1791 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1792 gdb_nm_file);
104c1213 1793EOF
97030eea 1794function_list | sort -t: -k 3 | while do_read
104c1213 1795do
1e9f55d0
AC
1796 # First the predicate
1797 if class_is_predicate_p
1798 then
7996bcec 1799 printf " fprintf_unfiltered (file,\n"
48f7351b 1800 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1801 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1802 fi
48f7351b 1803 # Print the corresponding value.
283354d8 1804 if class_is_function_p
4b9b3959 1805 then
7996bcec 1806 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1807 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1808 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1809 else
48f7351b 1810 # It is a variable
2f9b146e
AC
1811 case "${print}:${returntype}" in
1812 :CORE_ADDR )
0b1553bc
UW
1813 fmt="%s"
1814 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1815 ;;
2f9b146e 1816 :* )
48f7351b 1817 fmt="%s"
623d3eb1 1818 print="plongest (gdbarch->${function})"
48f7351b
AC
1819 ;;
1820 * )
2f9b146e 1821 fmt="%s"
48f7351b
AC
1822 ;;
1823 esac
3d9a5942 1824 printf " fprintf_unfiltered (file,\n"
48f7351b 1825 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1826 printf " ${print});\n"
2ada493a 1827 fi
104c1213 1828done
381323f4 1829cat <<EOF
be7811ad
MD
1830 if (gdbarch->dump_tdep != NULL)
1831 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1832}
1833EOF
104c1213
JM
1834
1835
1836# GET/SET
3d9a5942 1837printf "\n"
104c1213
JM
1838cat <<EOF
1839struct gdbarch_tdep *
1840gdbarch_tdep (struct gdbarch *gdbarch)
1841{
1842 if (gdbarch_debug >= 2)
3d9a5942 1843 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1844 return gdbarch->tdep;
1845}
1846EOF
3d9a5942 1847printf "\n"
34620563 1848function_list | while do_read
104c1213 1849do
2ada493a
AC
1850 if class_is_predicate_p
1851 then
3d9a5942
AC
1852 printf "\n"
1853 printf "int\n"
1854 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1855 printf "{\n"
8de9bdc4 1856 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1857 printf " return ${predicate};\n"
3d9a5942 1858 printf "}\n"
2ada493a
AC
1859 fi
1860 if class_is_function_p
1861 then
3d9a5942
AC
1862 printf "\n"
1863 printf "${returntype}\n"
72e74a21 1864 if [ "x${formal}" = "xvoid" ]
104c1213 1865 then
3d9a5942 1866 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1867 else
3d9a5942 1868 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1869 fi
3d9a5942 1870 printf "{\n"
8de9bdc4 1871 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1872 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1873 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1874 then
1875 # Allow a call to a function with a predicate.
956ac328 1876 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1877 fi
3d9a5942
AC
1878 printf " if (gdbarch_debug >= 2)\n"
1879 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1880 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1881 then
1882 if class_is_multiarch_p
1883 then
1884 params="gdbarch"
1885 else
1886 params=""
1887 fi
1888 else
1889 if class_is_multiarch_p
1890 then
1891 params="gdbarch, ${actual}"
1892 else
1893 params="${actual}"
1894 fi
1895 fi
72e74a21 1896 if [ "x${returntype}" = "xvoid" ]
104c1213 1897 then
4a5c6a1d 1898 printf " gdbarch->${function} (${params});\n"
104c1213 1899 else
4a5c6a1d 1900 printf " return gdbarch->${function} (${params});\n"
104c1213 1901 fi
3d9a5942
AC
1902 printf "}\n"
1903 printf "\n"
1904 printf "void\n"
1905 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1906 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1907 printf "{\n"
1908 printf " gdbarch->${function} = ${function};\n"
1909 printf "}\n"
2ada493a
AC
1910 elif class_is_variable_p
1911 then
3d9a5942
AC
1912 printf "\n"
1913 printf "${returntype}\n"
1914 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1915 printf "{\n"
8de9bdc4 1916 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1917 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1918 then
3d9a5942 1919 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1920 elif [ -n "${invalid_p}" ]
104c1213 1921 then
956ac328
AC
1922 printf " /* Check variable is valid. */\n"
1923 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1924 elif [ -n "${predefault}" ]
104c1213 1925 then
956ac328
AC
1926 printf " /* Check variable changed from pre-default. */\n"
1927 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1928 fi
3d9a5942
AC
1929 printf " if (gdbarch_debug >= 2)\n"
1930 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1931 printf " return gdbarch->${function};\n"
1932 printf "}\n"
1933 printf "\n"
1934 printf "void\n"
1935 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1936 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1937 printf "{\n"
1938 printf " gdbarch->${function} = ${function};\n"
1939 printf "}\n"
2ada493a
AC
1940 elif class_is_info_p
1941 then
3d9a5942
AC
1942 printf "\n"
1943 printf "${returntype}\n"
1944 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1945 printf "{\n"
8de9bdc4 1946 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1947 printf " if (gdbarch_debug >= 2)\n"
1948 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1949 printf " return gdbarch->${function};\n"
1950 printf "}\n"
2ada493a 1951 fi
104c1213
JM
1952done
1953
1954# All the trailing guff
1955cat <<EOF
1956
1957
f44c642f 1958/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1959 modules. */
104c1213
JM
1960
1961struct gdbarch_data
1962{
95160752 1963 unsigned index;
76860b5f 1964 int init_p;
030f20e1
AC
1965 gdbarch_data_pre_init_ftype *pre_init;
1966 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1967};
1968
1969struct gdbarch_data_registration
1970{
104c1213
JM
1971 struct gdbarch_data *data;
1972 struct gdbarch_data_registration *next;
1973};
1974
f44c642f 1975struct gdbarch_data_registry
104c1213 1976{
95160752 1977 unsigned nr;
104c1213
JM
1978 struct gdbarch_data_registration *registrations;
1979};
1980
f44c642f 1981struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1982{
1983 0, NULL,
1984};
1985
030f20e1
AC
1986static struct gdbarch_data *
1987gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1988 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1989{
1990 struct gdbarch_data_registration **curr;
05c547f6
MS
1991
1992 /* Append the new registration. */
f44c642f 1993 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1994 (*curr) != NULL;
1995 curr = &(*curr)->next);
70ba0933 1996 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 1997 (*curr)->next = NULL;
70ba0933 1998 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 1999 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2000 (*curr)->data->pre_init = pre_init;
2001 (*curr)->data->post_init = post_init;
76860b5f 2002 (*curr)->data->init_p = 1;
104c1213
JM
2003 return (*curr)->data;
2004}
2005
030f20e1
AC
2006struct gdbarch_data *
2007gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2008{
2009 return gdbarch_data_register (pre_init, NULL);
2010}
2011
2012struct gdbarch_data *
2013gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2014{
2015 return gdbarch_data_register (NULL, post_init);
2016}
104c1213 2017
0963b4bd 2018/* Create/delete the gdbarch data vector. */
95160752
AC
2019
2020static void
b3cc3077 2021alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2022{
b3cc3077
JB
2023 gdb_assert (gdbarch->data == NULL);
2024 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2025 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2026}
3c875b6f 2027
76860b5f 2028/* Initialize the current value of the specified per-architecture
0963b4bd 2029 data-pointer. */
b3cc3077 2030
95160752 2031void
030f20e1
AC
2032deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2033 struct gdbarch_data *data,
2034 void *pointer)
95160752
AC
2035{
2036 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2037 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2038 gdb_assert (data->pre_init == NULL);
95160752
AC
2039 gdbarch->data[data->index] = pointer;
2040}
2041
104c1213 2042/* Return the current value of the specified per-architecture
0963b4bd 2043 data-pointer. */
104c1213
JM
2044
2045void *
451fbdda 2046gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2047{
451fbdda 2048 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2049 if (gdbarch->data[data->index] == NULL)
76860b5f 2050 {
030f20e1
AC
2051 /* The data-pointer isn't initialized, call init() to get a
2052 value. */
2053 if (data->pre_init != NULL)
2054 /* Mid architecture creation: pass just the obstack, and not
2055 the entire architecture, as that way it isn't possible for
2056 pre-init code to refer to undefined architecture
2057 fields. */
2058 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2059 else if (gdbarch->initialized_p
2060 && data->post_init != NULL)
2061 /* Post architecture creation: pass the entire architecture
2062 (as all fields are valid), but be careful to also detect
2063 recursive references. */
2064 {
2065 gdb_assert (data->init_p);
2066 data->init_p = 0;
2067 gdbarch->data[data->index] = data->post_init (gdbarch);
2068 data->init_p = 1;
2069 }
2070 else
2071 /* The architecture initialization hasn't completed - punt -
2072 hope that the caller knows what they are doing. Once
2073 deprecated_set_gdbarch_data has been initialized, this can be
2074 changed to an internal error. */
2075 return NULL;
76860b5f
AC
2076 gdb_assert (gdbarch->data[data->index] != NULL);
2077 }
451fbdda 2078 return gdbarch->data[data->index];
104c1213
JM
2079}
2080
2081
0963b4bd 2082/* Keep a registry of the architectures known by GDB. */
104c1213 2083
4b9b3959 2084struct gdbarch_registration
104c1213
JM
2085{
2086 enum bfd_architecture bfd_architecture;
2087 gdbarch_init_ftype *init;
4b9b3959 2088 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2089 struct gdbarch_list *arches;
4b9b3959 2090 struct gdbarch_registration *next;
104c1213
JM
2091};
2092
f44c642f 2093static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2094
b4a20239
AC
2095static void
2096append_name (const char ***buf, int *nr, const char *name)
2097{
2098 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2099 (*buf)[*nr] = name;
2100 *nr += 1;
2101}
2102
2103const char **
2104gdbarch_printable_names (void)
2105{
7996bcec 2106 /* Accumulate a list of names based on the registed list of
0963b4bd 2107 architectures. */
7996bcec
AC
2108 int nr_arches = 0;
2109 const char **arches = NULL;
2110 struct gdbarch_registration *rego;
05c547f6 2111
7996bcec
AC
2112 for (rego = gdbarch_registry;
2113 rego != NULL;
2114 rego = rego->next)
b4a20239 2115 {
7996bcec
AC
2116 const struct bfd_arch_info *ap;
2117 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2118 if (ap == NULL)
2119 internal_error (__FILE__, __LINE__,
85c07804 2120 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2121 do
2122 {
2123 append_name (&arches, &nr_arches, ap->printable_name);
2124 ap = ap->next;
2125 }
2126 while (ap != NULL);
b4a20239 2127 }
7996bcec
AC
2128 append_name (&arches, &nr_arches, NULL);
2129 return arches;
b4a20239
AC
2130}
2131
2132
104c1213 2133void
4b9b3959
AC
2134gdbarch_register (enum bfd_architecture bfd_architecture,
2135 gdbarch_init_ftype *init,
2136 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2137{
4b9b3959 2138 struct gdbarch_registration **curr;
104c1213 2139 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2140
ec3d358c 2141 /* Check that BFD recognizes this architecture */
104c1213
JM
2142 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2143 if (bfd_arch_info == NULL)
2144 {
8e65ff28 2145 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2146 _("gdbarch: Attempt to register "
2147 "unknown architecture (%d)"),
8e65ff28 2148 bfd_architecture);
104c1213 2149 }
0963b4bd 2150 /* Check that we haven't seen this architecture before. */
f44c642f 2151 for (curr = &gdbarch_registry;
104c1213
JM
2152 (*curr) != NULL;
2153 curr = &(*curr)->next)
2154 {
2155 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2156 internal_error (__FILE__, __LINE__,
64b9b334 2157 _("gdbarch: Duplicate registration "
0963b4bd 2158 "of architecture (%s)"),
8e65ff28 2159 bfd_arch_info->printable_name);
104c1213
JM
2160 }
2161 /* log it */
2162 if (gdbarch_debug)
30737ed9 2163 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2164 bfd_arch_info->printable_name,
30737ed9 2165 host_address_to_string (init));
104c1213 2166 /* Append it */
70ba0933 2167 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2168 (*curr)->bfd_architecture = bfd_architecture;
2169 (*curr)->init = init;
4b9b3959 2170 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2171 (*curr)->arches = NULL;
2172 (*curr)->next = NULL;
4b9b3959
AC
2173}
2174
2175void
2176register_gdbarch_init (enum bfd_architecture bfd_architecture,
2177 gdbarch_init_ftype *init)
2178{
2179 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2180}
104c1213
JM
2181
2182
424163ea 2183/* Look for an architecture using gdbarch_info. */
104c1213
JM
2184
2185struct gdbarch_list *
2186gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2187 const struct gdbarch_info *info)
2188{
2189 for (; arches != NULL; arches = arches->next)
2190 {
2191 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2192 continue;
2193 if (info->byte_order != arches->gdbarch->byte_order)
2194 continue;
4be87837
DJ
2195 if (info->osabi != arches->gdbarch->osabi)
2196 continue;
424163ea
DJ
2197 if (info->target_desc != arches->gdbarch->target_desc)
2198 continue;
104c1213
JM
2199 return arches;
2200 }
2201 return NULL;
2202}
2203
2204
ebdba546 2205/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2206 architecture if needed. Return that new architecture. */
104c1213 2207
59837fe0
UW
2208struct gdbarch *
2209gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2210{
2211 struct gdbarch *new_gdbarch;
4b9b3959 2212 struct gdbarch_registration *rego;
104c1213 2213
b732d07d 2214 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2215 sources: "set ..."; INFOabfd supplied; and the global
2216 defaults. */
2217 gdbarch_info_fill (&info);
4be87837 2218
0963b4bd 2219 /* Must have found some sort of architecture. */
b732d07d 2220 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2221
2222 if (gdbarch_debug)
2223 {
2224 fprintf_unfiltered (gdb_stdlog,
59837fe0 2225 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2226 (info.bfd_arch_info != NULL
2227 ? info.bfd_arch_info->printable_name
2228 : "(null)"));
2229 fprintf_unfiltered (gdb_stdlog,
59837fe0 2230 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2231 info.byte_order,
d7449b42 2232 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2233 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2234 : "default"));
4be87837 2235 fprintf_unfiltered (gdb_stdlog,
59837fe0 2236 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2237 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2238 fprintf_unfiltered (gdb_stdlog,
59837fe0 2239 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2240 host_address_to_string (info.abfd));
104c1213 2241 fprintf_unfiltered (gdb_stdlog,
59837fe0 2242 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2243 host_address_to_string (info.tdep_info));
104c1213
JM
2244 }
2245
ebdba546 2246 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2247 for (rego = gdbarch_registry;
2248 rego != NULL;
2249 rego = rego->next)
2250 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2251 break;
2252 if (rego == NULL)
2253 {
2254 if (gdbarch_debug)
59837fe0 2255 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2256 "No matching architecture\n");
b732d07d
AC
2257 return 0;
2258 }
2259
ebdba546 2260 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2261 new_gdbarch = rego->init (info, rego->arches);
2262
ebdba546
AC
2263 /* Did the tdep code like it? No. Reject the change and revert to
2264 the old architecture. */
104c1213
JM
2265 if (new_gdbarch == NULL)
2266 {
2267 if (gdbarch_debug)
59837fe0 2268 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2269 "Target rejected architecture\n");
2270 return NULL;
104c1213
JM
2271 }
2272
ebdba546
AC
2273 /* Is this a pre-existing architecture (as determined by already
2274 being initialized)? Move it to the front of the architecture
2275 list (keeping the list sorted Most Recently Used). */
2276 if (new_gdbarch->initialized_p)
104c1213 2277 {
ebdba546
AC
2278 struct gdbarch_list **list;
2279 struct gdbarch_list *this;
104c1213 2280 if (gdbarch_debug)
59837fe0 2281 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2282 "Previous architecture %s (%s) selected\n",
2283 host_address_to_string (new_gdbarch),
104c1213 2284 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2285 /* Find the existing arch in the list. */
2286 for (list = &rego->arches;
2287 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2288 list = &(*list)->next);
2289 /* It had better be in the list of architectures. */
2290 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2291 /* Unlink THIS. */
2292 this = (*list);
2293 (*list) = this->next;
2294 /* Insert THIS at the front. */
2295 this->next = rego->arches;
2296 rego->arches = this;
2297 /* Return it. */
2298 return new_gdbarch;
104c1213
JM
2299 }
2300
ebdba546
AC
2301 /* It's a new architecture. */
2302 if (gdbarch_debug)
59837fe0 2303 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2304 "New architecture %s (%s) selected\n",
2305 host_address_to_string (new_gdbarch),
ebdba546
AC
2306 new_gdbarch->bfd_arch_info->printable_name);
2307
2308 /* Insert the new architecture into the front of the architecture
2309 list (keep the list sorted Most Recently Used). */
0f79675b 2310 {
70ba0933 2311 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2312 this->next = rego->arches;
2313 this->gdbarch = new_gdbarch;
2314 rego->arches = this;
2315 }
104c1213 2316
4b9b3959
AC
2317 /* Check that the newly installed architecture is valid. Plug in
2318 any post init values. */
2319 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2320 verify_gdbarch (new_gdbarch);
ebdba546 2321 new_gdbarch->initialized_p = 1;
104c1213 2322
4b9b3959 2323 if (gdbarch_debug)
ebdba546
AC
2324 gdbarch_dump (new_gdbarch, gdb_stdlog);
2325
2326 return new_gdbarch;
2327}
2328
e487cc15 2329/* Make the specified architecture current. */
ebdba546
AC
2330
2331void
aff68abb 2332set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2333{
2334 gdb_assert (new_gdbarch != NULL);
ebdba546 2335 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2336 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2337 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2338 registers_changed ();
ebdba546 2339}
104c1213 2340
f5656ead 2341/* Return the current inferior's arch. */
6ecd4729
PA
2342
2343struct gdbarch *
f5656ead 2344target_gdbarch (void)
6ecd4729
PA
2345{
2346 return current_inferior ()->gdbarch;
2347}
2348
104c1213 2349extern void _initialize_gdbarch (void);
b4a20239 2350
104c1213 2351void
34620563 2352_initialize_gdbarch (void)
104c1213 2353{
ccce17b0 2354 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2355Set architecture debugging."), _("\\
2356Show architecture debugging."), _("\\
2357When non-zero, architecture debugging is enabled."),
2358 NULL,
920d2a44 2359 show_gdbarch_debug,
85c07804 2360 &setdebuglist, &showdebuglist);
104c1213
JM
2361}
2362EOF
2363
2364# close things off
2365exec 1>&2
2366#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2367compare_new gdbarch.c