]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
ChangeLog for previous commit. Sorry for the screw-up.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
c906108c
SS
47
48/* Prototypes for local functions */
49
96baa820 50static void signals_info (char *, int);
c906108c 51
96baa820 52static void handle_command (char *, int);
c906108c 53
96baa820 54static void sig_print_info (enum target_signal);
c906108c 55
96baa820 56static void sig_print_header (void);
c906108c 57
74b7792f 58static void resume_cleanups (void *);
c906108c 59
96baa820 60static int hook_stop_stub (void *);
c906108c 61
96baa820 62static void delete_breakpoint_current_contents (void *);
c906108c 63
96baa820
JM
64static int restore_selected_frame (void *);
65
66static void build_infrun (void);
67
4ef3f3be 68static int follow_fork (void);
96baa820
JM
69
70static void set_schedlock_func (char *args, int from_tty,
488f131b 71 struct cmd_list_element *c);
96baa820 72
96baa820
JM
73struct execution_control_state;
74
75static int currently_stepping (struct execution_control_state *ecs);
76
77static void xdb_handle_command (char *args, int from_tty);
78
ea67f13b
DJ
79static int prepare_to_proceed (void);
80
96baa820 81void _initialize_infrun (void);
43ff13b4 82
c906108c
SS
83int inferior_ignoring_startup_exec_events = 0;
84int inferior_ignoring_leading_exec_events = 0;
85
5fbbeb29
CF
86/* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89int step_stop_if_no_debug = 0;
90
43ff13b4 91/* In asynchronous mode, but simulating synchronous execution. */
96baa820 92
43ff13b4
JM
93int sync_execution = 0;
94
c906108c
SS
95/* wait_for_inferior and normal_stop use this to notify the user
96 when the inferior stopped in a different thread than it had been
96baa820
JM
97 running in. */
98
39f77062 99static ptid_t previous_inferior_ptid;
7a292a7a
SS
100
101/* This is true for configurations that may follow through execl() and
102 similar functions. At present this is only true for HP-UX native. */
103
104#ifndef MAY_FOLLOW_EXEC
105#define MAY_FOLLOW_EXEC (0)
c906108c
SS
106#endif
107
7a292a7a
SS
108static int may_follow_exec = MAY_FOLLOW_EXEC;
109
d4f3574e
SS
110/* If the program uses ELF-style shared libraries, then calls to
111 functions in shared libraries go through stubs, which live in a
112 table called the PLT (Procedure Linkage Table). The first time the
113 function is called, the stub sends control to the dynamic linker,
114 which looks up the function's real address, patches the stub so
115 that future calls will go directly to the function, and then passes
116 control to the function.
117
118 If we are stepping at the source level, we don't want to see any of
119 this --- we just want to skip over the stub and the dynamic linker.
120 The simple approach is to single-step until control leaves the
121 dynamic linker.
122
ca557f44
AC
123 However, on some systems (e.g., Red Hat's 5.2 distribution) the
124 dynamic linker calls functions in the shared C library, so you
125 can't tell from the PC alone whether the dynamic linker is still
126 running. In this case, we use a step-resume breakpoint to get us
127 past the dynamic linker, as if we were using "next" to step over a
128 function call.
d4f3574e
SS
129
130 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
131 linker code or not. Normally, this means we single-step. However,
132 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
133 address where we can place a step-resume breakpoint to get past the
134 linker's symbol resolution function.
135
136 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
137 pretty portable way, by comparing the PC against the address ranges
138 of the dynamic linker's sections.
139
140 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
141 it depends on internal details of the dynamic linker. It's usually
142 not too hard to figure out where to put a breakpoint, but it
143 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
144 sanity checking. If it can't figure things out, returning zero and
145 getting the (possibly confusing) stepping behavior is better than
146 signalling an error, which will obscure the change in the
147 inferior's state. */
c906108c
SS
148
149#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
150#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
151#endif
152
c906108c
SS
153/* This function returns TRUE if pc is the address of an instruction
154 that lies within the dynamic linker (such as the event hook, or the
155 dld itself).
156
157 This function must be used only when a dynamic linker event has
158 been caught, and the inferior is being stepped out of the hook, or
159 undefined results are guaranteed. */
160
161#ifndef SOLIB_IN_DYNAMIC_LINKER
162#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
163#endif
164
165/* On MIPS16, a function that returns a floating point value may call
166 a library helper function to copy the return value to a floating point
167 register. The IGNORE_HELPER_CALL macro returns non-zero if we
168 should ignore (i.e. step over) this function call. */
169#ifndef IGNORE_HELPER_CALL
170#define IGNORE_HELPER_CALL(pc) 0
171#endif
172
173/* On some systems, the PC may be left pointing at an instruction that won't
174 actually be executed. This is usually indicated by a bit in the PSW. If
175 we find ourselves in such a state, then we step the target beyond the
176 nullified instruction before returning control to the user so as to avoid
177 confusion. */
178
179#ifndef INSTRUCTION_NULLIFIED
180#define INSTRUCTION_NULLIFIED 0
181#endif
182
c2c6d25f
JM
183/* We can't step off a permanent breakpoint in the ordinary way, because we
184 can't remove it. Instead, we have to advance the PC to the next
185 instruction. This macro should expand to a pointer to a function that
186 does that, or zero if we have no such function. If we don't have a
187 definition for it, we have to report an error. */
488f131b 188#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
189#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
190static void
c2d11a7d 191default_skip_permanent_breakpoint (void)
c2c6d25f 192{
255e7dbf 193 error ("\
c2c6d25f
JM
194The program is stopped at a permanent breakpoint, but GDB does not know\n\
195how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 196a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
197}
198#endif
488f131b 199
c2c6d25f 200
7a292a7a
SS
201/* Convert the #defines into values. This is temporary until wfi control
202 flow is completely sorted out. */
203
204#ifndef HAVE_STEPPABLE_WATCHPOINT
205#define HAVE_STEPPABLE_WATCHPOINT 0
206#else
207#undef HAVE_STEPPABLE_WATCHPOINT
208#define HAVE_STEPPABLE_WATCHPOINT 1
209#endif
210
692590c1
MS
211#ifndef CANNOT_STEP_HW_WATCHPOINTS
212#define CANNOT_STEP_HW_WATCHPOINTS 0
213#else
214#undef CANNOT_STEP_HW_WATCHPOINTS
215#define CANNOT_STEP_HW_WATCHPOINTS 1
216#endif
217
c906108c
SS
218/* Tables of how to react to signals; the user sets them. */
219
220static unsigned char *signal_stop;
221static unsigned char *signal_print;
222static unsigned char *signal_program;
223
224#define SET_SIGS(nsigs,sigs,flags) \
225 do { \
226 int signum = (nsigs); \
227 while (signum-- > 0) \
228 if ((sigs)[signum]) \
229 (flags)[signum] = 1; \
230 } while (0)
231
232#define UNSET_SIGS(nsigs,sigs,flags) \
233 do { \
234 int signum = (nsigs); \
235 while (signum-- > 0) \
236 if ((sigs)[signum]) \
237 (flags)[signum] = 0; \
238 } while (0)
239
39f77062
KB
240/* Value to pass to target_resume() to cause all threads to resume */
241
242#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
243
244/* Command list pointer for the "stop" placeholder. */
245
246static struct cmd_list_element *stop_command;
247
248/* Nonzero if breakpoints are now inserted in the inferior. */
249
250static int breakpoints_inserted;
251
252/* Function inferior was in as of last step command. */
253
254static struct symbol *step_start_function;
255
256/* Nonzero if we are expecting a trace trap and should proceed from it. */
257
258static int trap_expected;
259
260#ifdef SOLIB_ADD
261/* Nonzero if we want to give control to the user when we're notified
262 of shared library events by the dynamic linker. */
263static int stop_on_solib_events;
264#endif
265
266#ifdef HP_OS_BUG
267/* Nonzero if the next time we try to continue the inferior, it will
268 step one instruction and generate a spurious trace trap.
269 This is used to compensate for a bug in HP-UX. */
270
271static int trap_expected_after_continue;
272#endif
273
274/* Nonzero means expecting a trace trap
275 and should stop the inferior and return silently when it happens. */
276
277int stop_after_trap;
278
279/* Nonzero means expecting a trap and caller will handle it themselves.
280 It is used after attach, due to attaching to a process;
281 when running in the shell before the child program has been exec'd;
282 and when running some kinds of remote stuff (FIXME?). */
283
c0236d92 284enum stop_kind stop_soon;
c906108c
SS
285
286/* Nonzero if proceed is being used for a "finish" command or a similar
287 situation when stop_registers should be saved. */
288
289int proceed_to_finish;
290
291/* Save register contents here when about to pop a stack dummy frame,
292 if-and-only-if proceed_to_finish is set.
293 Thus this contains the return value from the called function (assuming
294 values are returned in a register). */
295
72cec141 296struct regcache *stop_registers;
c906108c
SS
297
298/* Nonzero if program stopped due to error trying to insert breakpoints. */
299
300static int breakpoints_failed;
301
302/* Nonzero after stop if current stack frame should be printed. */
303
304static int stop_print_frame;
305
306static struct breakpoint *step_resume_breakpoint = NULL;
307static struct breakpoint *through_sigtramp_breakpoint = NULL;
308
309/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
310 interactions with an inferior that is running a kernel function
311 (aka, a system call or "syscall"). wait_for_inferior therefore
312 may have a need to know when the inferior is in a syscall. This
313 is a count of the number of inferior threads which are known to
314 currently be running in a syscall. */
315static int number_of_threads_in_syscalls;
316
e02bc4cc
DS
317/* This is a cached copy of the pid/waitstatus of the last event
318 returned by target_wait()/target_wait_hook(). This information is
319 returned by get_last_target_status(). */
39f77062 320static ptid_t target_last_wait_ptid;
e02bc4cc
DS
321static struct target_waitstatus target_last_waitstatus;
322
c906108c
SS
323/* This is used to remember when a fork, vfork or exec event
324 was caught by a catchpoint, and thus the event is to be
325 followed at the next resume of the inferior, and not
326 immediately. */
327static struct
488f131b
JB
328{
329 enum target_waitkind kind;
330 struct
c906108c 331 {
488f131b 332 int parent_pid;
488f131b 333 int child_pid;
c906108c 334 }
488f131b
JB
335 fork_event;
336 char *execd_pathname;
337}
c906108c
SS
338pending_follow;
339
53904c9e
AC
340static const char follow_fork_mode_child[] = "child";
341static const char follow_fork_mode_parent[] = "parent";
342
488f131b 343static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
344 follow_fork_mode_child,
345 follow_fork_mode_parent,
346 NULL
ef346e04 347};
c906108c 348
53904c9e 349static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
350\f
351
6604731b 352static int
4ef3f3be 353follow_fork (void)
c906108c 354{
ea1dd7bc 355 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 356
6604731b 357 return target_follow_fork (follow_child);
c906108c
SS
358}
359
6604731b
DJ
360void
361follow_inferior_reset_breakpoints (void)
c906108c 362{
6604731b
DJ
363 /* Was there a step_resume breakpoint? (There was if the user
364 did a "next" at the fork() call.) If so, explicitly reset its
365 thread number.
366
367 step_resumes are a form of bp that are made to be per-thread.
368 Since we created the step_resume bp when the parent process
369 was being debugged, and now are switching to the child process,
370 from the breakpoint package's viewpoint, that's a switch of
371 "threads". We must update the bp's notion of which thread
372 it is for, or it'll be ignored when it triggers. */
373
374 if (step_resume_breakpoint)
375 breakpoint_re_set_thread (step_resume_breakpoint);
376
377 /* Reinsert all breakpoints in the child. The user may have set
378 breakpoints after catching the fork, in which case those
379 were never set in the child, but only in the parent. This makes
380 sure the inserted breakpoints match the breakpoint list. */
381
382 breakpoint_re_set ();
383 insert_breakpoints ();
c906108c 384}
c906108c 385
1adeb98a
FN
386/* EXECD_PATHNAME is assumed to be non-NULL. */
387
c906108c 388static void
96baa820 389follow_exec (int pid, char *execd_pathname)
c906108c 390{
c906108c 391 int saved_pid = pid;
7a292a7a
SS
392 struct target_ops *tgt;
393
394 if (!may_follow_exec)
395 return;
c906108c 396
c906108c
SS
397 /* This is an exec event that we actually wish to pay attention to.
398 Refresh our symbol table to the newly exec'd program, remove any
399 momentary bp's, etc.
400
401 If there are breakpoints, they aren't really inserted now,
402 since the exec() transformed our inferior into a fresh set
403 of instructions.
404
405 We want to preserve symbolic breakpoints on the list, since
406 we have hopes that they can be reset after the new a.out's
407 symbol table is read.
408
409 However, any "raw" breakpoints must be removed from the list
410 (e.g., the solib bp's), since their address is probably invalid
411 now.
412
413 And, we DON'T want to call delete_breakpoints() here, since
414 that may write the bp's "shadow contents" (the instruction
415 value that was overwritten witha TRAP instruction). Since
416 we now have a new a.out, those shadow contents aren't valid. */
417 update_breakpoints_after_exec ();
418
419 /* If there was one, it's gone now. We cannot truly step-to-next
420 statement through an exec(). */
421 step_resume_breakpoint = NULL;
422 step_range_start = 0;
423 step_range_end = 0;
424
425 /* If there was one, it's gone now. */
426 through_sigtramp_breakpoint = NULL;
427
428 /* What is this a.out's name? */
429 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
430
431 /* We've followed the inferior through an exec. Therefore, the
432 inferior has essentially been killed & reborn. */
7a292a7a
SS
433
434 /* First collect the run target in effect. */
435 tgt = find_run_target ();
436 /* If we can't find one, things are in a very strange state... */
437 if (tgt == NULL)
438 error ("Could find run target to save before following exec");
439
c906108c
SS
440 gdb_flush (gdb_stdout);
441 target_mourn_inferior ();
39f77062 442 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 443 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 444 push_target (tgt);
c906108c
SS
445
446 /* That a.out is now the one to use. */
447 exec_file_attach (execd_pathname, 0);
448
449 /* And also is where symbols can be found. */
1adeb98a 450 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
451
452 /* Reset the shared library package. This ensures that we get
453 a shlib event when the child reaches "_start", at which point
454 the dld will have had a chance to initialize the child. */
7a292a7a 455#if defined(SOLIB_RESTART)
c906108c 456 SOLIB_RESTART ();
7a292a7a
SS
457#endif
458#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 459 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 460#endif
c906108c
SS
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
c906108c
SS
471}
472
473/* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476static int singlestep_breakpoints_inserted_p = 0;
477\f
478
479/* Things to clean up if we QUIT out of resume (). */
c906108c 480static void
74b7792f 481resume_cleanups (void *ignore)
c906108c
SS
482{
483 normal_stop ();
484}
485
53904c9e
AC
486static const char schedlock_off[] = "off";
487static const char schedlock_on[] = "on";
488static const char schedlock_step[] = "step";
489static const char *scheduler_mode = schedlock_off;
488f131b 490static const char *scheduler_enums[] = {
ef346e04
AC
491 schedlock_off,
492 schedlock_on,
493 schedlock_step,
494 NULL
495};
c906108c
SS
496
497static void
96baa820 498set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 499{
1868c04e
AC
500 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
501 the set command passed as a parameter. The clone operation will
502 include (BUG?) any ``set'' command callback, if present.
503 Commands like ``info set'' call all the ``show'' command
ce2826aa 504 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
505 ``set'', this includes callbacks belonging to ``set'' commands.
506 Making this worse, this only occures if add_show_from_set() is
507 called after add_cmd_sfunc() (BUG?). */
508 if (cmd_type (c) == set_cmd)
c906108c
SS
509 if (!target_can_lock_scheduler)
510 {
511 scheduler_mode = schedlock_off;
488f131b 512 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
513 }
514}
515
516
517/* Resume the inferior, but allow a QUIT. This is useful if the user
518 wants to interrupt some lengthy single-stepping operation
519 (for child processes, the SIGINT goes to the inferior, and so
520 we get a SIGINT random_signal, but for remote debugging and perhaps
521 other targets, that's not true).
522
523 STEP nonzero if we should step (zero to continue instead).
524 SIG is the signal to give the inferior (zero for none). */
525void
96baa820 526resume (int step, enum target_signal sig)
c906108c
SS
527{
528 int should_resume = 1;
74b7792f 529 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
530 QUIT;
531
ef5cf84e
MS
532 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
533
c906108c 534
692590c1
MS
535 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
536 over an instruction that causes a page fault without triggering
537 a hardware watchpoint. The kernel properly notices that it shouldn't
538 stop, because the hardware watchpoint is not triggered, but it forgets
539 the step request and continues the program normally.
540 Work around the problem by removing hardware watchpoints if a step is
541 requested, GDB will check for a hardware watchpoint trigger after the
542 step anyway. */
543 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
544 remove_hw_watchpoints ();
488f131b 545
692590c1 546
c2c6d25f
JM
547 /* Normally, by the time we reach `resume', the breakpoints are either
548 removed or inserted, as appropriate. The exception is if we're sitting
549 at a permanent breakpoint; we need to step over it, but permanent
550 breakpoints can't be removed. So we have to test for it here. */
551 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
552 SKIP_PERMANENT_BREAKPOINT ();
553
b0ed3589 554 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
555 {
556 /* Do it the hard way, w/temp breakpoints */
c5aa993b 557 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
558 /* ...and don't ask hardware to do it. */
559 step = 0;
560 /* and do not pull these breakpoints until after a `wait' in
561 `wait_for_inferior' */
562 singlestep_breakpoints_inserted_p = 1;
563 }
564
565 /* Handle any optimized stores to the inferior NOW... */
566#ifdef DO_DEFERRED_STORES
567 DO_DEFERRED_STORES;
568#endif
569
c906108c 570 /* If there were any forks/vforks/execs that were caught and are
6604731b 571 now to be followed, then do so. */
c906108c
SS
572 switch (pending_follow.kind)
573 {
6604731b
DJ
574 case TARGET_WAITKIND_FORKED:
575 case TARGET_WAITKIND_VFORKED:
c906108c 576 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
577 if (follow_fork ())
578 should_resume = 0;
c906108c
SS
579 break;
580
6604731b 581 case TARGET_WAITKIND_EXECD:
c906108c 582 /* follow_exec is called as soon as the exec event is seen. */
6604731b 583 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
584 break;
585
586 default:
587 break;
588 }
c906108c
SS
589
590 /* Install inferior's terminal modes. */
591 target_terminal_inferior ();
592
593 if (should_resume)
594 {
39f77062 595 ptid_t resume_ptid;
dfcd3bfb 596
488f131b 597 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
598
599 if ((step || singlestep_breakpoints_inserted_p) &&
600 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
c906108c 601 {
ef5cf84e
MS
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
c906108c 606
ef5cf84e 607 resume_ptid = inferior_ptid;
c906108c 608 }
ef5cf84e
MS
609
610 if ((scheduler_mode == schedlock_on) ||
488f131b 611 (scheduler_mode == schedlock_step &&
ef5cf84e 612 (step || singlestep_breakpoints_inserted_p)))
c906108c 613 {
ef5cf84e 614 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 615 resume_ptid = inferior_ptid;
c906108c 616 }
ef5cf84e 617
c4ed33b9
AC
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
39f77062 626 target_resume (resume_ptid, step, sig);
c906108c
SS
627 }
628
629 discard_cleanups (old_cleanups);
630}
631\f
632
633/* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636void
96baa820 637clear_proceed_status (void)
c906108c
SS
638{
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
aa0cd9c1 642 step_frame_id = null_frame_id;
5fbbeb29 643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 644 stop_after_trap = 0;
c0236d92 645 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651}
652
ea67f13b
DJ
653/* This should be suitable for any targets that support threads. */
654
655static int
656prepare_to_proceed (void)
657{
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701}
e4846b08
JJ
702
703/* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706static CORE_ADDR prev_pc;
707
c906108c
SS
708/* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 712 or -1 for act according to how it stopped.
c906108c 713 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
c906108c
SS
717
718 You should call clear_proceed_status before calling proceed. */
719
720void
96baa820 721proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
722{
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
2acceee2 730 if (addr == (CORE_ADDR) -1)
c906108c
SS
731 {
732 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
c906108c
SS
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740#ifndef STEP_SKIPS_DELAY
741#define STEP_SKIPS_DELAY(pc) (0)
742#define STEP_SKIPS_DELAY_P (0)
743#endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
c906108c
SS
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
c906108c
SS
755 }
756
c906108c
SS
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
ea67f13b 765 prepare_to_proceed checks the current thread against the thread
c906108c
SS
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
c906108c
SS
770
771#ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
c906108c
SS
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781#endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
81d0cc19
GS
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
c906108c
SS
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
e4846b08
JJ
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
c906108c
SS
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
6426a772 839 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
c906108c 844}
c906108c
SS
845\f
846
847/* Start remote-debugging of a machine over a serial link. */
96baa820 848
c906108c 849void
96baa820 850start_remote (void)
c906108c
SS
851{
852 init_thread_list ();
853 init_wait_for_inferior ();
c0236d92 854 stop_soon = STOP_QUIETLY;
c906108c 855 trap_expected = 0;
43ff13b4 856
6426a772
JM
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 859 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
c906108c
SS
873}
874
875/* Initialize static vars when a new inferior begins. */
876
877void
96baa820 878init_wait_for_inferior (void)
c906108c
SS
879{
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
c906108c
SS
882
883#ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885#endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
899}
900
901static void
96baa820 902delete_breakpoint_current_contents (void *arg)
c906108c
SS
903{
904 struct breakpoint **breakpointp = (struct breakpoint **) arg;
905 if (*breakpointp != NULL)
906 {
907 delete_breakpoint (*breakpointp);
908 *breakpointp = NULL;
909 }
910}
911\f
b83266a0
SS
912/* This enum encodes possible reasons for doing a target_wait, so that
913 wfi can call target_wait in one place. (Ultimately the call will be
914 moved out of the infinite loop entirely.) */
915
c5aa993b
JM
916enum infwait_states
917{
cd0fc7c3
SS
918 infwait_normal_state,
919 infwait_thread_hop_state,
920 infwait_nullified_state,
921 infwait_nonstep_watch_state
b83266a0
SS
922};
923
11cf8741
JM
924/* Why did the inferior stop? Used to print the appropriate messages
925 to the interface from within handle_inferior_event(). */
926enum inferior_stop_reason
927{
928 /* We don't know why. */
929 STOP_UNKNOWN,
930 /* Step, next, nexti, stepi finished. */
931 END_STEPPING_RANGE,
932 /* Found breakpoint. */
933 BREAKPOINT_HIT,
934 /* Inferior terminated by signal. */
935 SIGNAL_EXITED,
936 /* Inferior exited. */
937 EXITED,
938 /* Inferior received signal, and user asked to be notified. */
939 SIGNAL_RECEIVED
940};
941
cd0fc7c3
SS
942/* This structure contains what used to be local variables in
943 wait_for_inferior. Probably many of them can return to being
944 locals in handle_inferior_event. */
945
c5aa993b 946struct execution_control_state
488f131b
JB
947{
948 struct target_waitstatus ws;
949 struct target_waitstatus *wp;
950 int another_trap;
951 int random_signal;
952 CORE_ADDR stop_func_start;
953 CORE_ADDR stop_func_end;
954 char *stop_func_name;
955 struct symtab_and_line sal;
956 int remove_breakpoints_on_following_step;
957 int current_line;
958 struct symtab *current_symtab;
959 int handling_longjmp; /* FIXME */
960 ptid_t ptid;
961 ptid_t saved_inferior_ptid;
962 int update_step_sp;
963 int stepping_through_solib_after_catch;
964 bpstat stepping_through_solib_catchpoints;
965 int enable_hw_watchpoints_after_wait;
966 int stepping_through_sigtramp;
967 int new_thread_event;
968 struct target_waitstatus tmpstatus;
969 enum infwait_states infwait_state;
970 ptid_t waiton_ptid;
971 int wait_some_more;
972};
973
974void init_execution_control_state (struct execution_control_state *ecs);
975
1af510a8 976static void handle_step_into_function (struct execution_control_state *ecs);
488f131b 977void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 978
104c1213 979static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 980static void step_into_function (struct execution_control_state *ecs);
d4f3574e 981static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
982static void stop_stepping (struct execution_control_state *ecs);
983static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 984static void keep_going (struct execution_control_state *ecs);
488f131b
JB
985static void print_stop_reason (enum inferior_stop_reason stop_reason,
986 int stop_info);
104c1213 987
cd0fc7c3
SS
988/* Wait for control to return from inferior to debugger.
989 If inferior gets a signal, we may decide to start it up again
990 instead of returning. That is why there is a loop in this function.
991 When this function actually returns it means the inferior
992 should be left stopped and GDB should read more commands. */
993
994void
96baa820 995wait_for_inferior (void)
cd0fc7c3
SS
996{
997 struct cleanup *old_cleanups;
998 struct execution_control_state ecss;
999 struct execution_control_state *ecs;
c906108c 1000
8601f500 1001 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
1002 &step_resume_breakpoint);
1003 make_cleanup (delete_breakpoint_current_contents,
1004 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1005
1006 /* wfi still stays in a loop, so it's OK just to take the address of
1007 a local to get the ecs pointer. */
1008 ecs = &ecss;
1009
1010 /* Fill in with reasonable starting values. */
1011 init_execution_control_state (ecs);
1012
c906108c 1013 /* We'll update this if & when we switch to a new thread. */
39f77062 1014 previous_inferior_ptid = inferior_ptid;
c906108c 1015
cd0fc7c3
SS
1016 overlay_cache_invalid = 1;
1017
1018 /* We have to invalidate the registers BEFORE calling target_wait
1019 because they can be loaded from the target while in target_wait.
1020 This makes remote debugging a bit more efficient for those
1021 targets that provide critical registers as part of their normal
1022 status mechanism. */
1023
1024 registers_changed ();
b83266a0 1025
c906108c
SS
1026 while (1)
1027 {
cd0fc7c3 1028 if (target_wait_hook)
39f77062 1029 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1030 else
39f77062 1031 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1032
cd0fc7c3
SS
1033 /* Now figure out what to do with the result of the result. */
1034 handle_inferior_event (ecs);
c906108c 1035
cd0fc7c3
SS
1036 if (!ecs->wait_some_more)
1037 break;
1038 }
1039 do_cleanups (old_cleanups);
1040}
c906108c 1041
43ff13b4
JM
1042/* Asynchronous version of wait_for_inferior. It is called by the
1043 event loop whenever a change of state is detected on the file
1044 descriptor corresponding to the target. It can be called more than
1045 once to complete a single execution command. In such cases we need
1046 to keep the state in a global variable ASYNC_ECSS. If it is the
1047 last time that this function is called for a single execution
1048 command, then report to the user that the inferior has stopped, and
1049 do the necessary cleanups. */
1050
1051struct execution_control_state async_ecss;
1052struct execution_control_state *async_ecs;
1053
1054void
fba45db2 1055fetch_inferior_event (void *client_data)
43ff13b4
JM
1056{
1057 static struct cleanup *old_cleanups;
1058
c5aa993b 1059 async_ecs = &async_ecss;
43ff13b4
JM
1060
1061 if (!async_ecs->wait_some_more)
1062 {
488f131b 1063 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1064 &step_resume_breakpoint);
43ff13b4 1065 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1066 &through_sigtramp_breakpoint);
43ff13b4
JM
1067
1068 /* Fill in with reasonable starting values. */
1069 init_execution_control_state (async_ecs);
1070
43ff13b4 1071 /* We'll update this if & when we switch to a new thread. */
39f77062 1072 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1073
1074 overlay_cache_invalid = 1;
1075
1076 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1077 because they can be loaded from the target while in target_wait.
1078 This makes remote debugging a bit more efficient for those
1079 targets that provide critical registers as part of their normal
1080 status mechanism. */
43ff13b4
JM
1081
1082 registers_changed ();
1083 }
1084
1085 if (target_wait_hook)
488f131b
JB
1086 async_ecs->ptid =
1087 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1088 else
39f77062 1089 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1090
1091 /* Now figure out what to do with the result of the result. */
1092 handle_inferior_event (async_ecs);
1093
1094 if (!async_ecs->wait_some_more)
1095 {
adf40b2e 1096 /* Do only the cleanups that have been added by this
488f131b
JB
1097 function. Let the continuations for the commands do the rest,
1098 if there are any. */
43ff13b4
JM
1099 do_exec_cleanups (old_cleanups);
1100 normal_stop ();
c2d11a7d
JM
1101 if (step_multi && stop_step)
1102 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1103 else
1104 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1105 }
1106}
1107
cd0fc7c3
SS
1108/* Prepare an execution control state for looping through a
1109 wait_for_inferior-type loop. */
1110
1111void
96baa820 1112init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1113{
c2d11a7d 1114 /* ecs->another_trap? */
cd0fc7c3
SS
1115 ecs->random_signal = 0;
1116 ecs->remove_breakpoints_on_following_step = 0;
1117 ecs->handling_longjmp = 0; /* FIXME */
1118 ecs->update_step_sp = 0;
1119 ecs->stepping_through_solib_after_catch = 0;
1120 ecs->stepping_through_solib_catchpoints = NULL;
1121 ecs->enable_hw_watchpoints_after_wait = 0;
1122 ecs->stepping_through_sigtramp = 0;
1123 ecs->sal = find_pc_line (prev_pc, 0);
1124 ecs->current_line = ecs->sal.line;
1125 ecs->current_symtab = ecs->sal.symtab;
1126 ecs->infwait_state = infwait_normal_state;
39f77062 1127 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1128 ecs->wp = &(ecs->ws);
1129}
1130
a0b3c4fd 1131/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1132 sanity check. There should never be more than one step-resume
1133 breakpoint per thread, so we should never be setting a new
1134 step_resume_breakpoint when one is already active. */
a0b3c4fd 1135static void
96baa820 1136check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1137{
1138 if (step_resume_breakpoint)
488f131b
JB
1139 warning
1140 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1141}
1142
e02bc4cc
DS
1143/* Return the cached copy of the last pid/waitstatus returned by
1144 target_wait()/target_wait_hook(). The data is actually cached by
1145 handle_inferior_event(), which gets called immediately after
1146 target_wait()/target_wait_hook(). */
1147
1148void
488f131b 1149get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1150{
39f77062 1151 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1152 *status = target_last_waitstatus;
1153}
1154
dd80620e
MS
1155/* Switch thread contexts, maintaining "infrun state". */
1156
1157static void
1158context_switch (struct execution_control_state *ecs)
1159{
1160 /* Caution: it may happen that the new thread (or the old one!)
1161 is not in the thread list. In this case we must not attempt
1162 to "switch context", or we run the risk that our context may
1163 be lost. This may happen as a result of the target module
1164 mishandling thread creation. */
1165
1166 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1167 { /* Perform infrun state context switch: */
dd80620e 1168 /* Save infrun state for the old thread. */
0ce3d317 1169 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1170 trap_expected, step_resume_breakpoint,
488f131b 1171 through_sigtramp_breakpoint, step_range_start,
aa0cd9c1 1172 step_range_end, &step_frame_id,
dd80620e
MS
1173 ecs->handling_longjmp, ecs->another_trap,
1174 ecs->stepping_through_solib_after_catch,
1175 ecs->stepping_through_solib_catchpoints,
1176 ecs->stepping_through_sigtramp,
488f131b 1177 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1178
1179 /* Load infrun state for the new thread. */
0ce3d317 1180 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1181 &trap_expected, &step_resume_breakpoint,
488f131b 1182 &through_sigtramp_breakpoint, &step_range_start,
aa0cd9c1 1183 &step_range_end, &step_frame_id,
dd80620e
MS
1184 &ecs->handling_longjmp, &ecs->another_trap,
1185 &ecs->stepping_through_solib_after_catch,
1186 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1187 &ecs->stepping_through_sigtramp,
1188 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1189 }
1190 inferior_ptid = ecs->ptid;
1191}
1192
0ce3d317
AC
1193/* Wrapper for PC_IN_SIGTRAMP that takes care of the need to find the
1194 function's name.
1195
1196 In a classic example of "left hand VS right hand", "infrun.c" was
1197 trying to improve GDB's performance by caching the result of calls
1198 to calls to find_pc_partial_funtion, while at the same time
1199 find_pc_partial_function was also trying to ramp up performance by
1200 caching its most recent return value. The below makes the the
1201 function find_pc_partial_function solely responsibile for
1202 performance issues (the local cache that relied on a global
1203 variable - arrrggg - deleted).
1204
1205 Using the testsuite and gcov, it was found that dropping the local
1206 "infrun.c" cache and instead relying on find_pc_partial_function
1207 increased the number of calls to 12000 (from 10000), but the number
1208 of times find_pc_partial_function's cache missed (this is what
1209 matters) was only increased by only 4 (to 3569). (A quick back of
1210 envelope caculation suggests that the extra 2000 function calls
1211 @1000 extra instructions per call make the 1 MIP VAX testsuite run
1212 take two extra seconds, oops :-)
1213
1214 Long term, this function can be eliminated, replaced by the code:
1215 get_frame_type(current_frame()) == SIGTRAMP_FRAME (for new
1216 architectures this is very cheap). */
1217
1218static int
1219pc_in_sigtramp (CORE_ADDR pc)
1220{
1221 char *name;
1222 find_pc_partial_function (pc, &name, NULL, NULL);
1223 return PC_IN_SIGTRAMP (pc, name);
1224}
1225
1af510a8
JB
1226/* Handle the inferior event in the cases when we just stepped
1227 into a function. */
1228
1229static void
1230handle_step_into_function (struct execution_control_state *ecs)
1231{
1232 CORE_ADDR real_stop_pc;
1233
1234 if ((step_over_calls == STEP_OVER_NONE)
1235 || ((step_range_end == 1)
1236 && in_prologue (prev_pc, ecs->stop_func_start)))
1237 {
1238 /* I presume that step_over_calls is only 0 when we're
1239 supposed to be stepping at the assembly language level
1240 ("stepi"). Just stop. */
1241 /* Also, maybe we just did a "nexti" inside a prolog,
1242 so we thought it was a subroutine call but it was not.
1243 Stop as well. FENN */
1244 stop_step = 1;
1245 print_stop_reason (END_STEPPING_RANGE, 0);
1246 stop_stepping (ecs);
1247 return;
1248 }
1249
1250 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1251 {
1252 /* We're doing a "next". */
1253
1254 if (pc_in_sigtramp (stop_pc)
1255 && frame_id_inner (step_frame_id,
1256 frame_id_build (read_sp (), 0)))
1257 /* We stepped out of a signal handler, and into its
1258 calling trampoline. This is misdetected as a
1259 subroutine call, but stepping over the signal
1260 trampoline isn't such a bad idea. In order to do that,
1261 we have to ignore the value in step_frame_id, since
1262 that doesn't represent the frame that'll reach when we
1263 return from the signal trampoline. Otherwise we'll
1264 probably continue to the end of the program. */
1265 step_frame_id = null_frame_id;
1266
1267 step_over_function (ecs);
1268 keep_going (ecs);
1269 return;
1270 }
1271
1272 /* If we are in a function call trampoline (a stub between
1273 the calling routine and the real function), locate the real
1274 function. That's what tells us (a) whether we want to step
1275 into it at all, and (b) what prologue we want to run to
1276 the end of, if we do step into it. */
1277 real_stop_pc = skip_language_trampoline (stop_pc);
1278 if (real_stop_pc == 0)
1279 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1280 if (real_stop_pc != 0)
1281 ecs->stop_func_start = real_stop_pc;
1282
1283 /* If we have line number information for the function we
1284 are thinking of stepping into, step into it.
1285
1286 If there are several symtabs at that PC (e.g. with include
1287 files), just want to know whether *any* of them have line
1288 numbers. find_pc_line handles this. */
1289 {
1290 struct symtab_and_line tmp_sal;
1291
1292 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1293 if (tmp_sal.line != 0)
1294 {
1295 step_into_function (ecs);
1296 return;
1297 }
1298 }
1299
1300 /* If we have no line number and the step-stop-if-no-debug
1301 is set, we stop the step so that the user has a chance to
1302 switch in assembly mode. */
1303 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1304 {
1305 stop_step = 1;
1306 print_stop_reason (END_STEPPING_RANGE, 0);
1307 stop_stepping (ecs);
1308 return;
1309 }
1310
1311 step_over_function (ecs);
1312 keep_going (ecs);
1313 return;
1314}
dd80620e 1315
4fa8626c
DJ
1316static void
1317adjust_pc_after_break (struct execution_control_state *ecs)
1318{
1319 CORE_ADDR stop_pc;
1320
1321 /* If this target does not decrement the PC after breakpoints, then
1322 we have nothing to do. */
1323 if (DECR_PC_AFTER_BREAK == 0)
1324 return;
1325
1326 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1327 we aren't, just return.
9709f61c
DJ
1328
1329 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1330 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1331 by software breakpoints should be handled through the normal breakpoint
1332 layer.
4fa8626c
DJ
1333
1334 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1335 different signals (SIGILL or SIGEMT for instance), but it is less
1336 clear where the PC is pointing afterwards. It may not match
1337 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1338 these signals at breakpoints (the code has been in GDB since at least
1339 1992) so I can not guess how to handle them here.
1340
1341 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1342 would have the PC after hitting a watchpoint affected by
1343 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1344 in GDB history, and it seems unlikely to be correct, so
1345 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1346
1347 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1348 return;
1349
1350 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1351 return;
1352
1353 /* Find the location where (if we've hit a breakpoint) the breakpoint would
1354 be. */
1355 stop_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1356
1357 /* If we're software-single-stepping, then assume this is a breakpoint.
1358 NOTE drow/2004-01-17: This doesn't check that the PC matches, or that
1359 we're even in the right thread. The software-single-step code needs
1360 some modernization.
1361
1362 If we're not software-single-stepping, then we first check that there
1363 is an enabled software breakpoint at this address. If there is, and
1364 we weren't using hardware-single-step, then we've hit the breakpoint.
1365
1366 If we were using hardware-single-step, we check prev_pc; if we just
1367 stepped over an inserted software breakpoint, then we should decrement
1368 the PC and eventually report hitting the breakpoint. The prev_pc check
1369 prevents us from decrementing the PC if we just stepped over a jump
1370 instruction and landed on the instruction after a breakpoint.
1371
1372 The last bit checks that we didn't hit a breakpoint in a signal handler
1373 without an intervening stop in sigtramp, which is detected by a new
1374 stack pointer value below any usual function calling stack adjustments.
1375
1376 NOTE drow/2004-01-17: I'm not sure that this is necessary. The check
1377 predates checking for software single step at the same time. Also,
1378 if we've moved into a signal handler we should have seen the
1379 signal. */
1380
1381 if ((SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1382 || (software_breakpoint_inserted_here_p (stop_pc)
1383 && !(currently_stepping (ecs)
1384 && prev_pc != stop_pc
1385 && !(step_range_end && INNER_THAN (read_sp (), (step_sp - 16))))))
1386 write_pc_pid (stop_pc, ecs->ptid);
1387}
1388
cd0fc7c3
SS
1389/* Given an execution control state that has been freshly filled in
1390 by an event from the inferior, figure out what it means and take
1391 appropriate action. */
c906108c 1392
cd0fc7c3 1393void
96baa820 1394handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1395{
65e82032
AC
1396 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1397 thinking that the variable stepped_after_stopped_by_watchpoint
1398 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1399 defined in the file "config/pa/nm-hppah.h", accesses the variable
1400 indirectly. Mutter something rude about the HP merge. */
cd0fc7c3 1401 int stepped_after_stopped_by_watchpoint;
c8edd8b4 1402 int sw_single_step_trap_p = 0;
cd0fc7c3 1403
e02bc4cc 1404 /* Cache the last pid/waitstatus. */
39f77062 1405 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1406 target_last_waitstatus = *ecs->wp;
1407
4fa8626c
DJ
1408 adjust_pc_after_break (ecs);
1409
488f131b
JB
1410 switch (ecs->infwait_state)
1411 {
1412 case infwait_thread_hop_state:
1413 /* Cancel the waiton_ptid. */
1414 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1415 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1416 is serviced in this loop, below. */
1417 if (ecs->enable_hw_watchpoints_after_wait)
1418 {
1419 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1420 ecs->enable_hw_watchpoints_after_wait = 0;
1421 }
1422 stepped_after_stopped_by_watchpoint = 0;
1423 break;
b83266a0 1424
488f131b
JB
1425 case infwait_normal_state:
1426 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1427 is serviced in this loop, below. */
1428 if (ecs->enable_hw_watchpoints_after_wait)
1429 {
1430 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1431 ecs->enable_hw_watchpoints_after_wait = 0;
1432 }
1433 stepped_after_stopped_by_watchpoint = 0;
1434 break;
b83266a0 1435
488f131b 1436 case infwait_nullified_state:
65e82032 1437 stepped_after_stopped_by_watchpoint = 0;
488f131b 1438 break;
b83266a0 1439
488f131b
JB
1440 case infwait_nonstep_watch_state:
1441 insert_breakpoints ();
c906108c 1442
488f131b
JB
1443 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1444 handle things like signals arriving and other things happening
1445 in combination correctly? */
1446 stepped_after_stopped_by_watchpoint = 1;
1447 break;
65e82032
AC
1448
1449 default:
1450 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1451 }
1452 ecs->infwait_state = infwait_normal_state;
c906108c 1453
488f131b 1454 flush_cached_frames ();
c906108c 1455
488f131b 1456 /* If it's a new process, add it to the thread database */
c906108c 1457
488f131b
JB
1458 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1459 && !in_thread_list (ecs->ptid));
1460
1461 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1462 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1463 {
1464 add_thread (ecs->ptid);
c906108c 1465
488f131b
JB
1466 ui_out_text (uiout, "[New ");
1467 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1468 ui_out_text (uiout, "]\n");
c906108c
SS
1469
1470#if 0
488f131b
JB
1471 /* NOTE: This block is ONLY meant to be invoked in case of a
1472 "thread creation event"! If it is invoked for any other
1473 sort of event (such as a new thread landing on a breakpoint),
1474 the event will be discarded, which is almost certainly
1475 a bad thing!
1476
1477 To avoid this, the low-level module (eg. target_wait)
1478 should call in_thread_list and add_thread, so that the
1479 new thread is known by the time we get here. */
1480
1481 /* We may want to consider not doing a resume here in order
1482 to give the user a chance to play with the new thread.
1483 It might be good to make that a user-settable option. */
1484
1485 /* At this point, all threads are stopped (happens
1486 automatically in either the OS or the native code).
1487 Therefore we need to continue all threads in order to
1488 make progress. */
1489
1490 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1491 prepare_to_wait (ecs);
1492 return;
c906108c 1493#endif
488f131b 1494 }
c906108c 1495
488f131b
JB
1496 switch (ecs->ws.kind)
1497 {
1498 case TARGET_WAITKIND_LOADED:
1499 /* Ignore gracefully during startup of the inferior, as it
1500 might be the shell which has just loaded some objects,
1501 otherwise add the symbols for the newly loaded objects. */
c906108c 1502#ifdef SOLIB_ADD
c0236d92 1503 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1504 {
1505 /* Remove breakpoints, SOLIB_ADD might adjust
1506 breakpoint addresses via breakpoint_re_set. */
1507 if (breakpoints_inserted)
1508 remove_breakpoints ();
c906108c 1509
488f131b
JB
1510 /* Check for any newly added shared libraries if we're
1511 supposed to be adding them automatically. Switch
1512 terminal for any messages produced by
1513 breakpoint_re_set. */
1514 target_terminal_ours_for_output ();
aff6338a
AC
1515 /* NOTE: cagney/2003-11-25: Make certain that the target
1516 stack's section table is kept up-to-date. Architectures,
1517 (e.g., PPC64), use the section table to perform
1518 operations such as address => section name and hence
1519 require the table to contain all sections (including
1520 those found in shared libraries). */
1521 /* NOTE: cagney/2003-11-25: Pass current_target and not
1522 exec_ops to SOLIB_ADD. This is because current GDB is
1523 only tooled to propagate section_table changes out from
1524 the "current_target" (see target_resize_to_sections), and
1525 not up from the exec stratum. This, of course, isn't
1526 right. "infrun.c" should only interact with the
1527 exec/process stratum, instead relying on the target stack
1528 to propagate relevant changes (stop, section table
1529 changed, ...) up to other layers. */
1530 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1531 target_terminal_inferior ();
1532
1533 /* Reinsert breakpoints and continue. */
1534 if (breakpoints_inserted)
1535 insert_breakpoints ();
1536 }
c906108c 1537#endif
488f131b
JB
1538 resume (0, TARGET_SIGNAL_0);
1539 prepare_to_wait (ecs);
1540 return;
c5aa993b 1541
488f131b
JB
1542 case TARGET_WAITKIND_SPURIOUS:
1543 resume (0, TARGET_SIGNAL_0);
1544 prepare_to_wait (ecs);
1545 return;
c5aa993b 1546
488f131b
JB
1547 case TARGET_WAITKIND_EXITED:
1548 target_terminal_ours (); /* Must do this before mourn anyway */
1549 print_stop_reason (EXITED, ecs->ws.value.integer);
1550
1551 /* Record the exit code in the convenience variable $_exitcode, so
1552 that the user can inspect this again later. */
1553 set_internalvar (lookup_internalvar ("_exitcode"),
1554 value_from_longest (builtin_type_int,
1555 (LONGEST) ecs->ws.value.integer));
1556 gdb_flush (gdb_stdout);
1557 target_mourn_inferior ();
1558 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1559 stop_print_frame = 0;
1560 stop_stepping (ecs);
1561 return;
c5aa993b 1562
488f131b
JB
1563 case TARGET_WAITKIND_SIGNALLED:
1564 stop_print_frame = 0;
1565 stop_signal = ecs->ws.value.sig;
1566 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1567
488f131b
JB
1568 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1569 reach here unless the inferior is dead. However, for years
1570 target_kill() was called here, which hints that fatal signals aren't
1571 really fatal on some systems. If that's true, then some changes
1572 may be needed. */
1573 target_mourn_inferior ();
c906108c 1574
488f131b
JB
1575 print_stop_reason (SIGNAL_EXITED, stop_signal);
1576 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1577 stop_stepping (ecs);
1578 return;
c906108c 1579
488f131b
JB
1580 /* The following are the only cases in which we keep going;
1581 the above cases end in a continue or goto. */
1582 case TARGET_WAITKIND_FORKED:
deb3b17b 1583 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1584 stop_signal = TARGET_SIGNAL_TRAP;
1585 pending_follow.kind = ecs->ws.kind;
1586
8e7d2c16
DJ
1587 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1588 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1589
488f131b 1590 stop_pc = read_pc ();
675bf4cb 1591
fa5281d0 1592 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1593
488f131b 1594 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1595
1596 /* If no catchpoint triggered for this, then keep going. */
1597 if (ecs->random_signal)
1598 {
1599 stop_signal = TARGET_SIGNAL_0;
1600 keep_going (ecs);
1601 return;
1602 }
488f131b
JB
1603 goto process_event_stop_test;
1604
1605 case TARGET_WAITKIND_EXECD:
1606 stop_signal = TARGET_SIGNAL_TRAP;
1607
7d2830a3
DJ
1608 /* NOTE drow/2002-12-05: This code should be pushed down into the
1609 target_wait function. Until then following vfork on HP/UX 10.20
1610 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1611 /* Is this a target which reports multiple exec events per actual
1612 call to exec()? (HP-UX using ptrace does, for example.) If so,
1613 ignore all but the last one. Just resume the exec'r, and wait
1614 for the next exec event. */
1615 if (inferior_ignoring_leading_exec_events)
1616 {
1617 inferior_ignoring_leading_exec_events--;
1618 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1619 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1620 parent_pid);
1621 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1622 prepare_to_wait (ecs);
1623 return;
1624 }
1625 inferior_ignoring_leading_exec_events =
1626 target_reported_exec_events_per_exec_call () - 1;
1627
1628 pending_follow.execd_pathname =
1629 savestring (ecs->ws.value.execd_pathname,
1630 strlen (ecs->ws.value.execd_pathname));
1631
488f131b
JB
1632 /* This causes the eventpoints and symbol table to be reset. Must
1633 do this now, before trying to determine whether to stop. */
1634 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1635 xfree (pending_follow.execd_pathname);
c906108c 1636
488f131b
JB
1637 stop_pc = read_pc_pid (ecs->ptid);
1638 ecs->saved_inferior_ptid = inferior_ptid;
1639 inferior_ptid = ecs->ptid;
675bf4cb 1640
fa5281d0 1641 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1642
488f131b
JB
1643 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1644 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1645
1646 /* If no catchpoint triggered for this, then keep going. */
1647 if (ecs->random_signal)
1648 {
1649 stop_signal = TARGET_SIGNAL_0;
1650 keep_going (ecs);
1651 return;
1652 }
488f131b
JB
1653 goto process_event_stop_test;
1654
1655 /* These syscall events are returned on HP-UX, as part of its
1656 implementation of page-protection-based "hardware" watchpoints.
1657 HP-UX has unfortunate interactions between page-protections and
1658 some system calls. Our solution is to disable hardware watches
1659 when a system call is entered, and reenable them when the syscall
1660 completes. The downside of this is that we may miss the precise
1661 point at which a watched piece of memory is modified. "Oh well."
1662
1663 Note that we may have multiple threads running, which may each
1664 enter syscalls at roughly the same time. Since we don't have a
1665 good notion currently of whether a watched piece of memory is
1666 thread-private, we'd best not have any page-protections active
1667 when any thread is in a syscall. Thus, we only want to reenable
1668 hardware watches when no threads are in a syscall.
1669
1670 Also, be careful not to try to gather much state about a thread
1671 that's in a syscall. It's frequently a losing proposition. */
1672 case TARGET_WAITKIND_SYSCALL_ENTRY:
1673 number_of_threads_in_syscalls++;
1674 if (number_of_threads_in_syscalls == 1)
1675 {
1676 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1677 }
1678 resume (0, TARGET_SIGNAL_0);
1679 prepare_to_wait (ecs);
1680 return;
c906108c 1681
488f131b
JB
1682 /* Before examining the threads further, step this thread to
1683 get it entirely out of the syscall. (We get notice of the
1684 event when the thread is just on the verge of exiting a
1685 syscall. Stepping one instruction seems to get it back
1686 into user code.)
c906108c 1687
488f131b
JB
1688 Note that although the logical place to reenable h/w watches
1689 is here, we cannot. We cannot reenable them before stepping
1690 the thread (this causes the next wait on the thread to hang).
c4093a6a 1691
488f131b
JB
1692 Nor can we enable them after stepping until we've done a wait.
1693 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1694 here, which will be serviced immediately after the target
1695 is waited on. */
1696 case TARGET_WAITKIND_SYSCALL_RETURN:
1697 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1698
1699 if (number_of_threads_in_syscalls > 0)
1700 {
1701 number_of_threads_in_syscalls--;
1702 ecs->enable_hw_watchpoints_after_wait =
1703 (number_of_threads_in_syscalls == 0);
1704 }
1705 prepare_to_wait (ecs);
1706 return;
c906108c 1707
488f131b
JB
1708 case TARGET_WAITKIND_STOPPED:
1709 stop_signal = ecs->ws.value.sig;
1710 break;
c906108c 1711
488f131b
JB
1712 /* We had an event in the inferior, but we are not interested
1713 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1714 done what needs to be done, if anything.
1715
1716 One of the possible circumstances for this is when the
1717 inferior produces output for the console. The inferior has
1718 not stopped, and we are ignoring the event. Another possible
1719 circumstance is any event which the lower level knows will be
1720 reported multiple times without an intervening resume. */
488f131b 1721 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1722 prepare_to_wait (ecs);
488f131b
JB
1723 return;
1724 }
c906108c 1725
488f131b
JB
1726 /* We may want to consider not doing a resume here in order to give
1727 the user a chance to play with the new thread. It might be good
1728 to make that a user-settable option. */
c906108c 1729
488f131b
JB
1730 /* At this point, all threads are stopped (happens automatically in
1731 either the OS or the native code). Therefore we need to continue
1732 all threads in order to make progress. */
1733 if (ecs->new_thread_event)
1734 {
1735 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1736 prepare_to_wait (ecs);
1737 return;
1738 }
c906108c 1739
488f131b
JB
1740 stop_pc = read_pc_pid (ecs->ptid);
1741
1742 /* See if a thread hit a thread-specific breakpoint that was meant for
1743 another thread. If so, then step that thread past the breakpoint,
1744 and continue it. */
1745
1746 if (stop_signal == TARGET_SIGNAL_TRAP)
1747 {
f8d40ec8
JB
1748 /* Check if a regular breakpoint has been hit before checking
1749 for a potential single step breakpoint. Otherwise, GDB will
1750 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1751 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1752 {
c5aa993b 1753 ecs->random_signal = 0;
4fa8626c 1754 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
488f131b
JB
1755 {
1756 int remove_status;
1757
1758 /* Saw a breakpoint, but it was hit by the wrong thread.
1759 Just continue. */
488f131b
JB
1760
1761 remove_status = remove_breakpoints ();
1762 /* Did we fail to remove breakpoints? If so, try
1763 to set the PC past the bp. (There's at least
1764 one situation in which we can fail to remove
1765 the bp's: On HP-UX's that use ttrace, we can't
1766 change the address space of a vforking child
1767 process until the child exits (well, okay, not
1768 then either :-) or execs. */
1769 if (remove_status != 0)
1770 {
1771 /* FIXME! This is obviously non-portable! */
4fa8626c 1772 write_pc_pid (stop_pc + 4, ecs->ptid);
488f131b
JB
1773 /* We need to restart all the threads now,
1774 * unles we're running in scheduler-locked mode.
1775 * Use currently_stepping to determine whether to
1776 * step or continue.
1777 */
1778 /* FIXME MVS: is there any reason not to call resume()? */
1779 if (scheduler_mode == schedlock_on)
1780 target_resume (ecs->ptid,
1781 currently_stepping (ecs), TARGET_SIGNAL_0);
1782 else
1783 target_resume (RESUME_ALL,
1784 currently_stepping (ecs), TARGET_SIGNAL_0);
1785 prepare_to_wait (ecs);
1786 return;
1787 }
1788 else
1789 { /* Single step */
1790 breakpoints_inserted = 0;
1791 if (!ptid_equal (inferior_ptid, ecs->ptid))
1792 context_switch (ecs);
1793 ecs->waiton_ptid = ecs->ptid;
1794 ecs->wp = &(ecs->ws);
1795 ecs->another_trap = 1;
1796
1797 ecs->infwait_state = infwait_thread_hop_state;
1798 keep_going (ecs);
1799 registers_changed ();
1800 return;
1801 }
1802 }
1803 }
f8d40ec8
JB
1804 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1805 {
c8edd8b4 1806 sw_single_step_trap_p = 1;
f8d40ec8
JB
1807 ecs->random_signal = 0;
1808 }
488f131b
JB
1809 }
1810 else
1811 ecs->random_signal = 1;
c906108c 1812
488f131b
JB
1813 /* See if something interesting happened to the non-current thread. If
1814 so, then switch to that thread, and eventually give control back to
1815 the user.
1816
1817 Note that if there's any kind of pending follow (i.e., of a fork,
1818 vfork or exec), we don't want to do this now. Rather, we'll let
1819 the next resume handle it. */
1820 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1821 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1822 {
1823 int printed = 0;
1824
1825 /* If it's a random signal for a non-current thread, notify user
1826 if he's expressed an interest. */
1827 if (ecs->random_signal && signal_print[stop_signal])
1828 {
c906108c
SS
1829/* ??rehrauer: I don't understand the rationale for this code. If the
1830 inferior will stop as a result of this signal, then the act of handling
1831 the stop ought to print a message that's couches the stoppage in user
1832 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1833 won't stop as a result of the signal -- i.e., if the signal is merely
1834 a side-effect of something GDB's doing "under the covers" for the
1835 user, such as stepping threads over a breakpoint they shouldn't stop
1836 for -- then the message seems to be a serious annoyance at best.
1837
1838 For now, remove the message altogether. */
1839#if 0
488f131b
JB
1840 printed = 1;
1841 target_terminal_ours_for_output ();
1842 printf_filtered ("\nProgram received signal %s, %s.\n",
1843 target_signal_to_name (stop_signal),
1844 target_signal_to_string (stop_signal));
1845 gdb_flush (gdb_stdout);
c906108c 1846#endif
488f131b 1847 }
c906108c 1848
488f131b
JB
1849 /* If it's not SIGTRAP and not a signal we want to stop for, then
1850 continue the thread. */
c906108c 1851
488f131b
JB
1852 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1853 {
1854 if (printed)
1855 target_terminal_inferior ();
c906108c 1856
488f131b
JB
1857 /* Clear the signal if it should not be passed. */
1858 if (signal_program[stop_signal] == 0)
1859 stop_signal = TARGET_SIGNAL_0;
c906108c 1860
488f131b
JB
1861 target_resume (ecs->ptid, 0, stop_signal);
1862 prepare_to_wait (ecs);
1863 return;
1864 }
c906108c 1865
488f131b
JB
1866 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1867 and fall into the rest of wait_for_inferior(). */
c5aa993b 1868
488f131b 1869 context_switch (ecs);
c5aa993b 1870
488f131b
JB
1871 if (context_hook)
1872 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1873
488f131b
JB
1874 flush_cached_frames ();
1875 }
c906108c 1876
488f131b
JB
1877 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1878 {
1879 /* Pull the single step breakpoints out of the target. */
1880 SOFTWARE_SINGLE_STEP (0, 0);
1881 singlestep_breakpoints_inserted_p = 0;
1882 }
c906108c 1883
488f131b
JB
1884 /* If PC is pointing at a nullified instruction, then step beyond
1885 it so that the user won't be confused when GDB appears to be ready
1886 to execute it. */
c906108c 1887
488f131b
JB
1888 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1889 if (INSTRUCTION_NULLIFIED)
1890 {
1891 registers_changed ();
1892 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1893
488f131b
JB
1894 /* We may have received a signal that we want to pass to
1895 the inferior; therefore, we must not clobber the waitstatus
1896 in WS. */
c906108c 1897
488f131b
JB
1898 ecs->infwait_state = infwait_nullified_state;
1899 ecs->waiton_ptid = ecs->ptid;
1900 ecs->wp = &(ecs->tmpstatus);
1901 prepare_to_wait (ecs);
1902 return;
1903 }
c906108c 1904
488f131b
JB
1905 /* It may not be necessary to disable the watchpoint to stop over
1906 it. For example, the PA can (with some kernel cooperation)
1907 single step over a watchpoint without disabling the watchpoint. */
1908 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1909 {
1910 resume (1, 0);
1911 prepare_to_wait (ecs);
1912 return;
1913 }
c906108c 1914
488f131b
JB
1915 /* It is far more common to need to disable a watchpoint to step
1916 the inferior over it. FIXME. What else might a debug
1917 register or page protection watchpoint scheme need here? */
1918 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1919 {
1920 /* At this point, we are stopped at an instruction which has
1921 attempted to write to a piece of memory under control of
1922 a watchpoint. The instruction hasn't actually executed
1923 yet. If we were to evaluate the watchpoint expression
1924 now, we would get the old value, and therefore no change
1925 would seem to have occurred.
1926
1927 In order to make watchpoints work `right', we really need
1928 to complete the memory write, and then evaluate the
1929 watchpoint expression. The following code does that by
1930 removing the watchpoint (actually, all watchpoints and
1931 breakpoints), single-stepping the target, re-inserting
1932 watchpoints, and then falling through to let normal
1933 single-step processing handle proceed. Since this
1934 includes evaluating watchpoints, things will come to a
1935 stop in the correct manner. */
1936
488f131b
JB
1937 remove_breakpoints ();
1938 registers_changed ();
1939 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1940
488f131b
JB
1941 ecs->waiton_ptid = ecs->ptid;
1942 ecs->wp = &(ecs->ws);
1943 ecs->infwait_state = infwait_nonstep_watch_state;
1944 prepare_to_wait (ecs);
1945 return;
1946 }
1947
1948 /* It may be possible to simply continue after a watchpoint. */
1949 if (HAVE_CONTINUABLE_WATCHPOINT)
1950 STOPPED_BY_WATCHPOINT (ecs->ws);
1951
1952 ecs->stop_func_start = 0;
1953 ecs->stop_func_end = 0;
1954 ecs->stop_func_name = 0;
1955 /* Don't care about return value; stop_func_start and stop_func_name
1956 will both be 0 if it doesn't work. */
1957 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1958 &ecs->stop_func_start, &ecs->stop_func_end);
1959 ecs->stop_func_start += FUNCTION_START_OFFSET;
1960 ecs->another_trap = 0;
1961 bpstat_clear (&stop_bpstat);
1962 stop_step = 0;
1963 stop_stack_dummy = 0;
1964 stop_print_frame = 1;
1965 ecs->random_signal = 0;
1966 stopped_by_random_signal = 0;
1967 breakpoints_failed = 0;
1968
1969 /* Look at the cause of the stop, and decide what to do.
1970 The alternatives are:
1971 1) break; to really stop and return to the debugger,
1972 2) drop through to start up again
1973 (set ecs->another_trap to 1 to single step once)
1974 3) set ecs->random_signal to 1, and the decision between 1 and 2
1975 will be made according to the signal handling tables. */
1976
1977 /* First, distinguish signals caused by the debugger from signals
1978 that have to do with the program's own actions.
1979 Note that breakpoint insns may cause SIGTRAP or SIGILL
1980 or SIGEMT, depending on the operating system version.
1981 Here we detect when a SIGILL or SIGEMT is really a breakpoint
1982 and change it to SIGTRAP. */
1983
1984 if (stop_signal == TARGET_SIGNAL_TRAP
1985 || (breakpoints_inserted &&
1986 (stop_signal == TARGET_SIGNAL_ILL
c54cfec8 1987 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1988 || stop_soon == STOP_QUIETLY
1989 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1990 {
1991 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1992 {
1993 stop_print_frame = 0;
1994 stop_stepping (ecs);
1995 return;
1996 }
c54cfec8
EZ
1997
1998 /* This is originated from start_remote(), start_inferior() and
1999 shared libraries hook functions. */
c0236d92 2000 if (stop_soon == STOP_QUIETLY)
488f131b
JB
2001 {
2002 stop_stepping (ecs);
2003 return;
2004 }
2005
c54cfec8
EZ
2006 /* This originates from attach_command(). We need to overwrite
2007 the stop_signal here, because some kernels don't ignore a
2008 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
2009 See more comments in inferior.h. */
c0236d92 2010 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
2011 {
2012 stop_stepping (ecs);
2013 if (stop_signal == TARGET_SIGNAL_STOP)
2014 stop_signal = TARGET_SIGNAL_0;
2015 return;
2016 }
2017
488f131b
JB
2018 /* Don't even think about breakpoints
2019 if just proceeded over a breakpoint.
2020
2021 However, if we are trying to proceed over a breakpoint
2022 and end up in sigtramp, then through_sigtramp_breakpoint
2023 will be set and we should check whether we've hit the
2024 step breakpoint. */
2025 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2026 && through_sigtramp_breakpoint == NULL)
2027 bpstat_clear (&stop_bpstat);
2028 else
2029 {
2030 /* See if there is a breakpoint at the current PC. */
fa5281d0 2031 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
488f131b 2032
488f131b
JB
2033 /* Following in case break condition called a
2034 function. */
2035 stop_print_frame = 1;
2036 }
2037
73dd234f
AC
2038 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2039 at one stage in the past included checks for an inferior
2040 function call's call dummy's return breakpoint. The original
2041 comment, that went with the test, read:
2042
2043 ``End of a stack dummy. Some systems (e.g. Sony news) give
2044 another signal besides SIGTRAP, so check here as well as
2045 above.''
2046
2047 If someone ever tries to get get call dummys on a
2048 non-executable stack to work (where the target would stop
2049 with something like a SIGSEG), then those tests might need to
2050 be re-instated. Given, however, that the tests were only
2051 enabled when momentary breakpoints were not being used, I
2052 suspect that it won't be the case. */
2053
488f131b
JB
2054 if (stop_signal == TARGET_SIGNAL_TRAP)
2055 ecs->random_signal
2056 = !(bpstat_explains_signal (stop_bpstat)
2057 || trap_expected
488f131b 2058 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2059 else
2060 {
73dd234f 2061 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2062 if (!ecs->random_signal)
2063 stop_signal = TARGET_SIGNAL_TRAP;
2064 }
2065 }
2066
2067 /* When we reach this point, we've pretty much decided
2068 that the reason for stopping must've been a random
2069 (unexpected) signal. */
2070
2071 else
2072 ecs->random_signal = 1;
488f131b 2073
04e68871 2074process_event_stop_test:
488f131b
JB
2075 /* For the program's own signals, act according to
2076 the signal handling tables. */
2077
2078 if (ecs->random_signal)
2079 {
2080 /* Signal not for debugging purposes. */
2081 int printed = 0;
2082
2083 stopped_by_random_signal = 1;
2084
2085 if (signal_print[stop_signal])
2086 {
2087 printed = 1;
2088 target_terminal_ours_for_output ();
2089 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2090 }
2091 if (signal_stop[stop_signal])
2092 {
2093 stop_stepping (ecs);
2094 return;
2095 }
2096 /* If not going to stop, give terminal back
2097 if we took it away. */
2098 else if (printed)
2099 target_terminal_inferior ();
2100
2101 /* Clear the signal if it should not be passed. */
2102 if (signal_program[stop_signal] == 0)
2103 stop_signal = TARGET_SIGNAL_0;
2104
2105 /* I'm not sure whether this needs to be check_sigtramp2 or
2106 whether it could/should be keep_going.
2107
2108 This used to jump to step_over_function if we are stepping,
2109 which is wrong.
2110
2111 Suppose the user does a `next' over a function call, and while
2112 that call is in progress, the inferior receives a signal for
2113 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2114 that case, when we reach this point, there is already a
2115 step-resume breakpoint established, right where it should be:
2116 immediately after the function call the user is "next"-ing
2117 over. If we call step_over_function now, two bad things
2118 happen:
2119
2120 - we'll create a new breakpoint, at wherever the current
2121 frame's return address happens to be. That could be
2122 anywhere, depending on what function call happens to be on
2123 the top of the stack at that point. Point is, it's probably
2124 not where we need it.
2125
2126 - the existing step-resume breakpoint (which is at the correct
2127 address) will get orphaned: step_resume_breakpoint will point
2128 to the new breakpoint, and the old step-resume breakpoint
2129 will never be cleaned up.
2130
2131 The old behavior was meant to help HP-UX single-step out of
2132 sigtramps. It would place the new breakpoint at prev_pc, which
2133 was certainly wrong. I don't know the details there, so fixing
2134 this probably breaks that. As with anything else, it's up to
2135 the HP-UX maintainer to furnish a fix that doesn't break other
2136 platforms. --JimB, 20 May 1999 */
2137 check_sigtramp2 (ecs);
2138 keep_going (ecs);
2139 return;
2140 }
2141
2142 /* Handle cases caused by hitting a breakpoint. */
2143 {
2144 CORE_ADDR jmp_buf_pc;
2145 struct bpstat_what what;
2146
2147 what = bpstat_what (stop_bpstat);
2148
2149 if (what.call_dummy)
2150 {
2151 stop_stack_dummy = 1;
2152#ifdef HP_OS_BUG
2153 trap_expected_after_continue = 1;
2154#endif
c5aa993b 2155 }
c906108c 2156
488f131b 2157 switch (what.main_action)
c5aa993b 2158 {
488f131b
JB
2159 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2160 /* If we hit the breakpoint at longjmp, disable it for the
2161 duration of this command. Then, install a temporary
2162 breakpoint at the target of the jmp_buf. */
2163 disable_longjmp_breakpoint ();
2164 remove_breakpoints ();
2165 breakpoints_inserted = 0;
2166 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2167 {
488f131b 2168 keep_going (ecs);
104c1213 2169 return;
c5aa993b 2170 }
488f131b
JB
2171
2172 /* Need to blow away step-resume breakpoint, as it
2173 interferes with us */
2174 if (step_resume_breakpoint != NULL)
104c1213 2175 {
488f131b 2176 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2177 }
488f131b
JB
2178 /* Not sure whether we need to blow this away too, but probably
2179 it is like the step-resume breakpoint. */
2180 if (through_sigtramp_breakpoint != NULL)
c5aa993b 2181 {
488f131b
JB
2182 delete_breakpoint (through_sigtramp_breakpoint);
2183 through_sigtramp_breakpoint = NULL;
c5aa993b 2184 }
c906108c 2185
488f131b
JB
2186#if 0
2187 /* FIXME - Need to implement nested temporary breakpoints */
2188 if (step_over_calls > 0)
2189 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2190 else
488f131b 2191#endif /* 0 */
818dd999 2192 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2193 ecs->handling_longjmp = 1; /* FIXME */
2194 keep_going (ecs);
2195 return;
c906108c 2196
488f131b
JB
2197 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2198 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2199 remove_breakpoints ();
2200 breakpoints_inserted = 0;
2201#if 0
2202 /* FIXME - Need to implement nested temporary breakpoints */
2203 if (step_over_calls
aa0cd9c1
AC
2204 && (frame_id_inner (get_frame_id (get_current_frame ()),
2205 step_frame_id)))
c5aa993b 2206 {
488f131b 2207 ecs->another_trap = 1;
d4f3574e
SS
2208 keep_going (ecs);
2209 return;
c5aa993b 2210 }
488f131b
JB
2211#endif /* 0 */
2212 disable_longjmp_breakpoint ();
2213 ecs->handling_longjmp = 0; /* FIXME */
2214 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2215 break;
2216 /* else fallthrough */
2217
2218 case BPSTAT_WHAT_SINGLE:
2219 if (breakpoints_inserted)
c5aa993b 2220 {
488f131b 2221 remove_breakpoints ();
c5aa993b 2222 }
488f131b
JB
2223 breakpoints_inserted = 0;
2224 ecs->another_trap = 1;
2225 /* Still need to check other stuff, at least the case
2226 where we are stepping and step out of the right range. */
2227 break;
c906108c 2228
488f131b
JB
2229 case BPSTAT_WHAT_STOP_NOISY:
2230 stop_print_frame = 1;
c906108c 2231
488f131b
JB
2232 /* We are about to nuke the step_resume_breakpoint and
2233 through_sigtramp_breakpoint via the cleanup chain, so
2234 no need to worry about it here. */
c5aa993b 2235
488f131b
JB
2236 stop_stepping (ecs);
2237 return;
c5aa993b 2238
488f131b
JB
2239 case BPSTAT_WHAT_STOP_SILENT:
2240 stop_print_frame = 0;
c5aa993b 2241
488f131b
JB
2242 /* We are about to nuke the step_resume_breakpoint and
2243 through_sigtramp_breakpoint via the cleanup chain, so
2244 no need to worry about it here. */
c5aa993b 2245
488f131b 2246 stop_stepping (ecs);
e441088d 2247 return;
c5aa993b 2248
488f131b
JB
2249 case BPSTAT_WHAT_STEP_RESUME:
2250 /* This proably demands a more elegant solution, but, yeah
2251 right...
c5aa993b 2252
488f131b
JB
2253 This function's use of the simple variable
2254 step_resume_breakpoint doesn't seem to accomodate
2255 simultaneously active step-resume bp's, although the
2256 breakpoint list certainly can.
c5aa993b 2257
488f131b
JB
2258 If we reach here and step_resume_breakpoint is already
2259 NULL, then apparently we have multiple active
2260 step-resume bp's. We'll just delete the breakpoint we
2261 stopped at, and carry on.
2262
2263 Correction: what the code currently does is delete a
2264 step-resume bp, but it makes no effort to ensure that
2265 the one deleted is the one currently stopped at. MVS */
c5aa993b 2266
488f131b
JB
2267 if (step_resume_breakpoint == NULL)
2268 {
2269 step_resume_breakpoint =
2270 bpstat_find_step_resume_breakpoint (stop_bpstat);
2271 }
2272 delete_step_resume_breakpoint (&step_resume_breakpoint);
2273 break;
2274
2275 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2276 if (through_sigtramp_breakpoint)
2277 delete_breakpoint (through_sigtramp_breakpoint);
2278 through_sigtramp_breakpoint = NULL;
2279
2280 /* If were waiting for a trap, hitting the step_resume_break
2281 doesn't count as getting it. */
2282 if (trap_expected)
2283 ecs->another_trap = 1;
2284 break;
2285
2286 case BPSTAT_WHAT_CHECK_SHLIBS:
2287 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2288#ifdef SOLIB_ADD
c906108c 2289 {
488f131b
JB
2290 /* Remove breakpoints, we eventually want to step over the
2291 shlib event breakpoint, and SOLIB_ADD might adjust
2292 breakpoint addresses via breakpoint_re_set. */
2293 if (breakpoints_inserted)
2294 remove_breakpoints ();
c5aa993b 2295 breakpoints_inserted = 0;
488f131b
JB
2296
2297 /* Check for any newly added shared libraries if we're
2298 supposed to be adding them automatically. Switch
2299 terminal for any messages produced by
2300 breakpoint_re_set. */
2301 target_terminal_ours_for_output ();
aff6338a
AC
2302 /* NOTE: cagney/2003-11-25: Make certain that the target
2303 stack's section table is kept up-to-date. Architectures,
2304 (e.g., PPC64), use the section table to perform
2305 operations such as address => section name and hence
2306 require the table to contain all sections (including
2307 those found in shared libraries). */
2308 /* NOTE: cagney/2003-11-25: Pass current_target and not
2309 exec_ops to SOLIB_ADD. This is because current GDB is
2310 only tooled to propagate section_table changes out from
2311 the "current_target" (see target_resize_to_sections), and
2312 not up from the exec stratum. This, of course, isn't
2313 right. "infrun.c" should only interact with the
2314 exec/process stratum, instead relying on the target stack
2315 to propagate relevant changes (stop, section table
2316 changed, ...) up to other layers. */
2317 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2318 target_terminal_inferior ();
2319
2320 /* Try to reenable shared library breakpoints, additional
2321 code segments in shared libraries might be mapped in now. */
2322 re_enable_breakpoints_in_shlibs ();
2323
2324 /* If requested, stop when the dynamic linker notifies
2325 gdb of events. This allows the user to get control
2326 and place breakpoints in initializer routines for
2327 dynamically loaded objects (among other things). */
877522db 2328 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2329 {
488f131b 2330 stop_stepping (ecs);
d4f3574e
SS
2331 return;
2332 }
c5aa993b 2333
488f131b
JB
2334 /* If we stopped due to an explicit catchpoint, then the
2335 (see above) call to SOLIB_ADD pulled in any symbols
2336 from a newly-loaded library, if appropriate.
2337
2338 We do want the inferior to stop, but not where it is
2339 now, which is in the dynamic linker callback. Rather,
2340 we would like it stop in the user's program, just after
2341 the call that caused this catchpoint to trigger. That
2342 gives the user a more useful vantage from which to
2343 examine their program's state. */
2344 else if (what.main_action ==
2345 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2346 {
488f131b
JB
2347 /* ??rehrauer: If I could figure out how to get the
2348 right return PC from here, we could just set a temp
2349 breakpoint and resume. I'm not sure we can without
2350 cracking open the dld's shared libraries and sniffing
2351 their unwind tables and text/data ranges, and that's
2352 not a terribly portable notion.
2353
2354 Until that time, we must step the inferior out of the
2355 dld callback, and also out of the dld itself (and any
2356 code or stubs in libdld.sl, such as "shl_load" and
2357 friends) until we reach non-dld code. At that point,
2358 we can stop stepping. */
2359 bpstat_get_triggered_catchpoints (stop_bpstat,
2360 &ecs->
2361 stepping_through_solib_catchpoints);
2362 ecs->stepping_through_solib_after_catch = 1;
2363
2364 /* Be sure to lift all breakpoints, so the inferior does
2365 actually step past this point... */
2366 ecs->another_trap = 1;
2367 break;
c906108c 2368 }
c5aa993b 2369 else
c5aa993b 2370 {
488f131b 2371 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2372 ecs->another_trap = 1;
488f131b 2373 break;
c5aa993b 2374 }
488f131b
JB
2375 }
2376#endif
2377 break;
c906108c 2378
488f131b
JB
2379 case BPSTAT_WHAT_LAST:
2380 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2381
488f131b
JB
2382 case BPSTAT_WHAT_KEEP_CHECKING:
2383 break;
2384 }
2385 }
c906108c 2386
488f131b
JB
2387 /* We come here if we hit a breakpoint but should not
2388 stop for it. Possibly we also were stepping
2389 and should stop for that. So fall through and
2390 test for stepping. But, if not stepping,
2391 do not stop. */
c906108c 2392
488f131b
JB
2393 /* Are we stepping to get the inferior out of the dynamic
2394 linker's hook (and possibly the dld itself) after catching
2395 a shlib event? */
2396 if (ecs->stepping_through_solib_after_catch)
2397 {
2398#if defined(SOLIB_ADD)
2399 /* Have we reached our destination? If not, keep going. */
2400 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2401 {
2402 ecs->another_trap = 1;
2403 keep_going (ecs);
104c1213 2404 return;
488f131b
JB
2405 }
2406#endif
2407 /* Else, stop and report the catchpoint(s) whose triggering
2408 caused us to begin stepping. */
2409 ecs->stepping_through_solib_after_catch = 0;
2410 bpstat_clear (&stop_bpstat);
2411 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2412 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2413 stop_print_frame = 1;
2414 stop_stepping (ecs);
2415 return;
2416 }
c906108c 2417
488f131b
JB
2418 if (step_resume_breakpoint)
2419 {
2420 /* Having a step-resume breakpoint overrides anything
2421 else having to do with stepping commands until
2422 that breakpoint is reached. */
2423 /* I'm not sure whether this needs to be check_sigtramp2 or
2424 whether it could/should be keep_going. */
2425 check_sigtramp2 (ecs);
2426 keep_going (ecs);
2427 return;
2428 }
c5aa993b 2429
488f131b
JB
2430 if (step_range_end == 0)
2431 {
2432 /* Likewise if we aren't even stepping. */
2433 /* I'm not sure whether this needs to be check_sigtramp2 or
2434 whether it could/should be keep_going. */
2435 check_sigtramp2 (ecs);
2436 keep_going (ecs);
2437 return;
2438 }
c5aa993b 2439
488f131b 2440 /* If stepping through a line, keep going if still within it.
c906108c 2441
488f131b
JB
2442 Note that step_range_end is the address of the first instruction
2443 beyond the step range, and NOT the address of the last instruction
2444 within it! */
2445 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2446 {
2447 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2448 So definately need to check for sigtramp here. */
2449 check_sigtramp2 (ecs);
2450 keep_going (ecs);
2451 return;
2452 }
c5aa993b 2453
488f131b 2454 /* We stepped out of the stepping range. */
c906108c 2455
488f131b
JB
2456 /* If we are stepping at the source level and entered the runtime
2457 loader dynamic symbol resolution code, we keep on single stepping
2458 until we exit the run time loader code and reach the callee's
2459 address. */
2460 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2461 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2462 {
4c8c40e6
MK
2463 CORE_ADDR pc_after_resolver =
2464 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2465
488f131b
JB
2466 if (pc_after_resolver)
2467 {
2468 /* Set up a step-resume breakpoint at the address
2469 indicated by SKIP_SOLIB_RESOLVER. */
2470 struct symtab_and_line sr_sal;
fe39c653 2471 init_sal (&sr_sal);
488f131b
JB
2472 sr_sal.pc = pc_after_resolver;
2473
2474 check_for_old_step_resume_breakpoint ();
2475 step_resume_breakpoint =
818dd999 2476 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2477 if (breakpoints_inserted)
2478 insert_breakpoints ();
c5aa993b 2479 }
c906108c 2480
488f131b
JB
2481 keep_going (ecs);
2482 return;
2483 }
c906108c 2484
488f131b
JB
2485 /* We can't update step_sp every time through the loop, because
2486 reading the stack pointer would slow down stepping too much.
2487 But we can update it every time we leave the step range. */
2488 ecs->update_step_sp = 1;
c906108c 2489
488f131b 2490 /* Did we just take a signal? */
0ce3d317
AC
2491 if (pc_in_sigtramp (stop_pc)
2492 && !pc_in_sigtramp (prev_pc)
488f131b
JB
2493 && INNER_THAN (read_sp (), step_sp))
2494 {
2495 /* We've just taken a signal; go until we are back to
2496 the point where we took it and one more. */
c906108c 2497
488f131b
JB
2498 /* Note: The test above succeeds not only when we stepped
2499 into a signal handler, but also when we step past the last
2500 statement of a signal handler and end up in the return stub
2501 of the signal handler trampoline. To distinguish between
2502 these two cases, check that the frame is INNER_THAN the
2503 previous one below. pai/1997-09-11 */
c5aa993b 2504
c5aa993b 2505
c5aa993b 2506 {
aa0cd9c1 2507 struct frame_id current_frame = get_frame_id (get_current_frame ());
c906108c 2508
aa0cd9c1 2509 if (frame_id_inner (current_frame, step_frame_id))
488f131b
JB
2510 {
2511 /* We have just taken a signal; go until we are back to
2512 the point where we took it and one more. */
c906108c 2513
488f131b
JB
2514 /* This code is needed at least in the following case:
2515 The user types "next" and then a signal arrives (before
2516 the "next" is done). */
d4f3574e 2517
488f131b
JB
2518 /* Note that if we are stopped at a breakpoint, then we need
2519 the step_resume breakpoint to override any breakpoints at
2520 the same location, so that we will still step over the
2521 breakpoint even though the signal happened. */
d4f3574e 2522 struct symtab_and_line sr_sal;
d4f3574e 2523
fe39c653 2524 init_sal (&sr_sal);
488f131b
JB
2525 sr_sal.symtab = NULL;
2526 sr_sal.line = 0;
2527 sr_sal.pc = prev_pc;
2528 /* We could probably be setting the frame to
aa0cd9c1 2529 step_frame_id; I don't think anyone thought to try it. */
d4f3574e
SS
2530 check_for_old_step_resume_breakpoint ();
2531 step_resume_breakpoint =
818dd999 2532 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
d4f3574e
SS
2533 if (breakpoints_inserted)
2534 insert_breakpoints ();
2535 }
488f131b
JB
2536 else
2537 {
2538 /* We just stepped out of a signal handler and into
2539 its calling trampoline.
2540
2541 Normally, we'd call step_over_function from
2542 here, but for some reason GDB can't unwind the
2543 stack correctly to find the real PC for the point
2544 user code where the signal trampoline will return
2545 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2546 But signal trampolines are pretty small stubs of
2547 code, anyway, so it's OK instead to just
2548 single-step out. Note: assuming such trampolines
2549 don't exhibit recursion on any platform... */
2550 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2551 &ecs->stop_func_start,
2552 &ecs->stop_func_end);
2553 /* Readjust stepping range */
2554 step_range_start = ecs->stop_func_start;
2555 step_range_end = ecs->stop_func_end;
2556 ecs->stepping_through_sigtramp = 1;
2557 }
d4f3574e 2558 }
c906108c 2559
c906108c 2560
488f131b
JB
2561 /* If this is stepi or nexti, make sure that the stepping range
2562 gets us past that instruction. */
2563 if (step_range_end == 1)
2564 /* FIXME: Does this run afoul of the code below which, if
2565 we step into the middle of a line, resets the stepping
2566 range? */
2567 step_range_end = (step_range_start = prev_pc) + 1;
2568
2569 ecs->remove_breakpoints_on_following_step = 1;
2570 keep_going (ecs);
2571 return;
2572 }
c906108c 2573
9407de8e
DJ
2574 if (((stop_pc == ecs->stop_func_start /* Quick test */
2575 || in_prologue (stop_pc, ecs->stop_func_start))
2576 && !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
488f131b
JB
2577 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2578 || ecs->stop_func_name == 0)
2579 {
2580 /* It's a subroutine call. */
1af510a8 2581 handle_step_into_function (ecs);
488f131b 2582 return;
488f131b 2583 }
c906108c 2584
488f131b 2585 /* We've wandered out of the step range. */
c906108c 2586
488f131b 2587 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2588
488f131b
JB
2589 if (step_range_end == 1)
2590 {
2591 /* It is stepi or nexti. We always want to stop stepping after
2592 one instruction. */
2593 stop_step = 1;
2594 print_stop_reason (END_STEPPING_RANGE, 0);
2595 stop_stepping (ecs);
2596 return;
2597 }
c906108c 2598
488f131b
JB
2599 /* If we're in the return path from a shared library trampoline,
2600 we want to proceed through the trampoline when stepping. */
2601 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2602 {
488f131b 2603 /* Determine where this trampoline returns. */
5cf4d23a 2604 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2605
488f131b 2606 /* Only proceed through if we know where it's going. */
d764a824 2607 if (real_stop_pc)
488f131b
JB
2608 {
2609 /* And put the step-breakpoint there and go until there. */
2610 struct symtab_and_line sr_sal;
2611
fe39c653 2612 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2613 sr_sal.pc = real_stop_pc;
488f131b
JB
2614 sr_sal.section = find_pc_overlay (sr_sal.pc);
2615 /* Do not specify what the fp should be when we stop
2616 since on some machines the prologue
2617 is where the new fp value is established. */
2618 check_for_old_step_resume_breakpoint ();
2619 step_resume_breakpoint =
818dd999 2620 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2621 if (breakpoints_inserted)
2622 insert_breakpoints ();
c906108c 2623
488f131b
JB
2624 /* Restart without fiddling with the step ranges or
2625 other state. */
2626 keep_going (ecs);
2627 return;
2628 }
2629 }
c906108c 2630
488f131b
JB
2631 if (ecs->sal.line == 0)
2632 {
2633 /* We have no line number information. That means to stop
2634 stepping (does this always happen right after one instruction,
2635 when we do "s" in a function with no line numbers,
2636 or can this happen as a result of a return or longjmp?). */
2637 stop_step = 1;
2638 print_stop_reason (END_STEPPING_RANGE, 0);
2639 stop_stepping (ecs);
2640 return;
2641 }
c906108c 2642
488f131b
JB
2643 if ((stop_pc == ecs->sal.pc)
2644 && (ecs->current_line != ecs->sal.line
2645 || ecs->current_symtab != ecs->sal.symtab))
2646 {
2647 /* We are at the start of a different line. So stop. Note that
2648 we don't stop if we step into the middle of a different line.
2649 That is said to make things like for (;;) statements work
2650 better. */
2651 stop_step = 1;
2652 print_stop_reason (END_STEPPING_RANGE, 0);
2653 stop_stepping (ecs);
2654 return;
2655 }
c906108c 2656
488f131b 2657 /* We aren't done stepping.
c906108c 2658
488f131b
JB
2659 Optimize by setting the stepping range to the line.
2660 (We might not be in the original line, but if we entered a
2661 new line in mid-statement, we continue stepping. This makes
2662 things like for(;;) statements work better.) */
c906108c 2663
488f131b 2664 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2665 {
488f131b
JB
2666 /* If this is the last line of the function, don't keep stepping
2667 (it would probably step us out of the function).
2668 This is particularly necessary for a one-line function,
2669 in which after skipping the prologue we better stop even though
2670 we will be in mid-line. */
2671 stop_step = 1;
2672 print_stop_reason (END_STEPPING_RANGE, 0);
2673 stop_stepping (ecs);
2674 return;
c5aa993b 2675 }
488f131b
JB
2676 step_range_start = ecs->sal.pc;
2677 step_range_end = ecs->sal.end;
aa0cd9c1 2678 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2679 ecs->current_line = ecs->sal.line;
2680 ecs->current_symtab = ecs->sal.symtab;
2681
aa0cd9c1
AC
2682 /* In the case where we just stepped out of a function into the
2683 middle of a line of the caller, continue stepping, but
2684 step_frame_id must be modified to current frame */
65815ea1
AC
2685#if 0
2686 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2687 generous. It will trigger on things like a step into a frameless
2688 stackless leaf function. I think the logic should instead look
2689 at the unwound frame ID has that should give a more robust
2690 indication of what happened. */
2691 if (step-ID == current-ID)
2692 still stepping in same function;
2693 else if (step-ID == unwind (current-ID))
2694 stepped into a function;
2695 else
2696 stepped out of a function;
2697 /* Of course this assumes that the frame ID unwind code is robust
2698 and we're willing to introduce frame unwind logic into this
ce2826aa 2699 function. Fortunately, those days are nearly upon us. */
65815ea1 2700#endif
488f131b 2701 {
aa0cd9c1
AC
2702 struct frame_id current_frame = get_frame_id (get_current_frame ());
2703 if (!(frame_id_inner (current_frame, step_frame_id)))
2704 step_frame_id = current_frame;
488f131b 2705 }
c906108c 2706
488f131b 2707 keep_going (ecs);
104c1213
JM
2708}
2709
2710/* Are we in the middle of stepping? */
2711
2712static int
2713currently_stepping (struct execution_control_state *ecs)
2714{
2715 return ((through_sigtramp_breakpoint == NULL
2716 && !ecs->handling_longjmp
2717 && ((step_range_end && step_resume_breakpoint == NULL)
2718 || trap_expected))
2719 || ecs->stepping_through_solib_after_catch
2720 || bpstat_should_step ());
2721}
c906108c 2722
104c1213
JM
2723static void
2724check_sigtramp2 (struct execution_control_state *ecs)
2725{
2726 if (trap_expected
0ce3d317
AC
2727 && pc_in_sigtramp (stop_pc)
2728 && !pc_in_sigtramp (prev_pc)
104c1213
JM
2729 && INNER_THAN (read_sp (), step_sp))
2730 {
2731 /* What has happened here is that we have just stepped the
488f131b
JB
2732 inferior with a signal (because it is a signal which
2733 shouldn't make us stop), thus stepping into sigtramp.
104c1213 2734
488f131b
JB
2735 So we need to set a step_resume_break_address breakpoint and
2736 continue until we hit it, and then step. FIXME: This should
2737 be more enduring than a step_resume breakpoint; we should
2738 know that we will later need to keep going rather than
2739 re-hitting the breakpoint here (see the testsuite,
2740 gdb.base/signals.exp where it says "exceedingly difficult"). */
104c1213
JM
2741
2742 struct symtab_and_line sr_sal;
2743
fe39c653 2744 init_sal (&sr_sal); /* initialize to zeroes */
104c1213
JM
2745 sr_sal.pc = prev_pc;
2746 sr_sal.section = find_pc_overlay (sr_sal.pc);
2747 /* We perhaps could set the frame if we kept track of what the
488f131b 2748 frame corresponding to prev_pc was. But we don't, so don't. */
104c1213 2749 through_sigtramp_breakpoint =
818dd999 2750 set_momentary_breakpoint (sr_sal, null_frame_id, bp_through_sigtramp);
104c1213
JM
2751 if (breakpoints_inserted)
2752 insert_breakpoints ();
cd0fc7c3 2753
104c1213
JM
2754 ecs->remove_breakpoints_on_following_step = 1;
2755 ecs->another_trap = 1;
2756 }
2757}
2758
c2c6d25f
JM
2759/* Subroutine call with source code we should not step over. Do step
2760 to the first line of code in it. */
2761
2762static void
2763step_into_function (struct execution_control_state *ecs)
2764{
2765 struct symtab *s;
2766 struct symtab_and_line sr_sal;
2767
2768 s = find_pc_symtab (stop_pc);
2769 if (s && s->language != language_asm)
2770 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2771
2772 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2773 /* Use the step_resume_break to step until the end of the prologue,
2774 even if that involves jumps (as it seems to on the vax under
2775 4.2). */
2776 /* If the prologue ends in the middle of a source line, continue to
2777 the end of that source line (if it is still within the function).
2778 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2779 if (ecs->sal.end
2780 && ecs->sal.pc != ecs->stop_func_start
2781 && ecs->sal.end < ecs->stop_func_end)
2782 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2783
2dbd5e30
KB
2784 /* Architectures which require breakpoint adjustment might not be able
2785 to place a breakpoint at the computed address. If so, the test
2786 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2787 ecs->stop_func_start to an address at which a breakpoint may be
2788 legitimately placed.
2789
2790 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2791 made, GDB will enter an infinite loop when stepping through
2792 optimized code consisting of VLIW instructions which contain
2793 subinstructions corresponding to different source lines. On
2794 FR-V, it's not permitted to place a breakpoint on any but the
2795 first subinstruction of a VLIW instruction. When a breakpoint is
2796 set, GDB will adjust the breakpoint address to the beginning of
2797 the VLIW instruction. Thus, we need to make the corresponding
2798 adjustment here when computing the stop address. */
2799
2800 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2801 {
2802 ecs->stop_func_start
2803 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2804 ecs->stop_func_start);
2805 }
2806
c2c6d25f
JM
2807 if (ecs->stop_func_start == stop_pc)
2808 {
2809 /* We are already there: stop now. */
2810 stop_step = 1;
488f131b 2811 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2812 stop_stepping (ecs);
2813 return;
2814 }
2815 else
2816 {
2817 /* Put the step-breakpoint there and go until there. */
fe39c653 2818 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2819 sr_sal.pc = ecs->stop_func_start;
2820 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2821 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2822 some machines the prologue is where the new fp value is
2823 established. */
c2c6d25f
JM
2824 check_for_old_step_resume_breakpoint ();
2825 step_resume_breakpoint =
818dd999 2826 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2827 if (breakpoints_inserted)
2828 insert_breakpoints ();
2829
2830 /* And make sure stepping stops right away then. */
2831 step_range_end = step_range_start;
2832 }
2833 keep_going (ecs);
2834}
d4f3574e
SS
2835
2836/* We've just entered a callee, and we wish to resume until it returns
2837 to the caller. Setting a step_resume breakpoint on the return
2838 address will catch a return from the callee.
2839
2840 However, if the callee is recursing, we want to be careful not to
2841 catch returns of those recursive calls, but only of THIS instance
2842 of the call.
2843
2844 To do this, we set the step_resume bp's frame to our current
aa0cd9c1 2845 caller's frame (step_frame_id, which is set by the "next" or
d4f3574e
SS
2846 "until" command, before execution begins). */
2847
2848static void
2849step_over_function (struct execution_control_state *ecs)
2850{
2851 struct symtab_and_line sr_sal;
2852
fe39c653 2853 init_sal (&sr_sal); /* initialize to zeros */
4443bd83
AC
2854
2855 /* NOTE: cagney/2003-04-06:
2856
2857 At this point the equality get_frame_pc() == get_frame_func()
2858 should hold. This may make it possible for this code to tell the
2859 frame where it's function is, instead of the reverse. This would
2860 avoid the need to search for the frame's function, which can get
2861 very messy when there is no debug info available (look at the
2862 heuristic find pc start code found in targets like the MIPS). */
2863
6913c89a 2864 /* NOTE: cagney/2003-04-06:
4443bd83 2865
6913c89a 2866 The intent of DEPRECATED_SAVED_PC_AFTER_CALL was to:
4443bd83
AC
2867
2868 - provide a very light weight equivalent to frame_unwind_pc()
2869 (nee FRAME_SAVED_PC) that avoids the prologue analyzer
2870
2871 - avoid handling the case where the PC hasn't been saved in the
2872 prologue analyzer
2873
ce2826aa 2874 Unfortunately, not five lines further down, is a call to
4443bd83
AC
2875 get_frame_id() and that is guarenteed to trigger the prologue
2876 analyzer.
2877
2878 The `correct fix' is for the prologe analyzer to handle the case
2879 where the prologue is incomplete (PC in prologue) and,
2880 consequently, the return pc has not yet been saved. It should be
2881 noted that the prologue analyzer needs to handle this case
2882 anyway: frameless leaf functions that don't save the return PC;
2883 single stepping through a prologue.
2884
2885 The d10v handles all this by bailing out of the prologue analsis
2886 when it reaches the current instruction. */
2887
6913c89a
AC
2888 if (DEPRECATED_SAVED_PC_AFTER_CALL_P ())
2889 sr_sal.pc = ADDR_BITS_REMOVE (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ()));
4443bd83
AC
2890 else
2891 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (get_current_frame ()));
d4f3574e
SS
2892 sr_sal.section = find_pc_overlay (sr_sal.pc);
2893
2894 check_for_old_step_resume_breakpoint ();
2895 step_resume_breakpoint =
818dd999
AC
2896 set_momentary_breakpoint (sr_sal, get_frame_id (get_current_frame ()),
2897 bp_step_resume);
d4f3574e 2898
aa0cd9c1
AC
2899 if (frame_id_p (step_frame_id)
2900 && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
818dd999 2901 step_resume_breakpoint->frame_id = step_frame_id;
d4f3574e
SS
2902
2903 if (breakpoints_inserted)
2904 insert_breakpoints ();
2905}
2906
104c1213
JM
2907static void
2908stop_stepping (struct execution_control_state *ecs)
2909{
cd0fc7c3
SS
2910 /* Let callers know we don't want to wait for the inferior anymore. */
2911 ecs->wait_some_more = 0;
2912}
2913
d4f3574e
SS
2914/* This function handles various cases where we need to continue
2915 waiting for the inferior. */
2916/* (Used to be the keep_going: label in the old wait_for_inferior) */
2917
2918static void
2919keep_going (struct execution_control_state *ecs)
2920{
d4f3574e 2921 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2922 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
2923
2924 if (ecs->update_step_sp)
2925 step_sp = read_sp ();
2926 ecs->update_step_sp = 0;
2927
2928 /* If we did not do break;, it means we should keep running the
2929 inferior and not return to debugger. */
2930
2931 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2932 {
2933 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2934 the inferior, else we'd have done a break above) and we
2935 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2936 resume (currently_stepping (ecs), stop_signal);
2937 }
2938 else
2939 {
2940 /* Either the trap was not expected, but we are continuing
488f131b
JB
2941 anyway (the user asked that this signal be passed to the
2942 child)
2943 -- or --
2944 The signal was SIGTRAP, e.g. it was our signal, but we
2945 decided we should resume from it.
d4f3574e 2946
488f131b 2947 We're going to run this baby now!
d4f3574e 2948
488f131b
JB
2949 Insert breakpoints now, unless we are trying to one-proceed
2950 past a breakpoint. */
d4f3574e 2951 /* If we've just finished a special step resume and we don't
488f131b 2952 want to hit a breakpoint, pull em out. */
d4f3574e
SS
2953 if (step_resume_breakpoint == NULL
2954 && through_sigtramp_breakpoint == NULL
2955 && ecs->remove_breakpoints_on_following_step)
2956 {
2957 ecs->remove_breakpoints_on_following_step = 0;
2958 remove_breakpoints ();
2959 breakpoints_inserted = 0;
2960 }
2961 else if (!breakpoints_inserted &&
2962 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
2963 {
2964 breakpoints_failed = insert_breakpoints ();
2965 if (breakpoints_failed)
2966 {
2967 stop_stepping (ecs);
2968 return;
2969 }
2970 breakpoints_inserted = 1;
2971 }
2972
2973 trap_expected = ecs->another_trap;
2974
2975 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2976 specifies that such a signal should be delivered to the
2977 target program).
2978
2979 Typically, this would occure when a user is debugging a
2980 target monitor on a simulator: the target monitor sets a
2981 breakpoint; the simulator encounters this break-point and
2982 halts the simulation handing control to GDB; GDB, noteing
2983 that the break-point isn't valid, returns control back to the
2984 simulator; the simulator then delivers the hardware
2985 equivalent of a SIGNAL_TRAP to the program being debugged. */
2986
2987 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2988 stop_signal = TARGET_SIGNAL_0;
2989
d4f3574e
SS
2990
2991 resume (currently_stepping (ecs), stop_signal);
2992 }
2993
488f131b 2994 prepare_to_wait (ecs);
d4f3574e
SS
2995}
2996
104c1213
JM
2997/* This function normally comes after a resume, before
2998 handle_inferior_event exits. It takes care of any last bits of
2999 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3000
104c1213
JM
3001static void
3002prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3003{
104c1213
JM
3004 if (ecs->infwait_state == infwait_normal_state)
3005 {
3006 overlay_cache_invalid = 1;
3007
3008 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3009 target_wait because they can be loaded from the target while
3010 in target_wait. This makes remote debugging a bit more
3011 efficient for those targets that provide critical registers
3012 as part of their normal status mechanism. */
104c1213
JM
3013
3014 registers_changed ();
39f77062 3015 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3016 ecs->wp = &(ecs->ws);
3017 }
3018 /* This is the old end of the while loop. Let everybody know we
3019 want to wait for the inferior some more and get called again
3020 soon. */
3021 ecs->wait_some_more = 1;
c906108c 3022}
11cf8741
JM
3023
3024/* Print why the inferior has stopped. We always print something when
3025 the inferior exits, or receives a signal. The rest of the cases are
3026 dealt with later on in normal_stop() and print_it_typical(). Ideally
3027 there should be a call to this function from handle_inferior_event()
3028 each time stop_stepping() is called.*/
3029static void
3030print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3031{
3032 switch (stop_reason)
3033 {
3034 case STOP_UNKNOWN:
3035 /* We don't deal with these cases from handle_inferior_event()
3036 yet. */
3037 break;
3038 case END_STEPPING_RANGE:
3039 /* We are done with a step/next/si/ni command. */
3040 /* For now print nothing. */
fb40c209 3041 /* Print a message only if not in the middle of doing a "step n"
488f131b 3042 operation for n > 1 */
fb40c209 3043 if (!step_multi || !stop_step)
9dc5e2a9 3044 if (ui_out_is_mi_like_p (uiout))
fb40c209 3045 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
3046 break;
3047 case BREAKPOINT_HIT:
3048 /* We found a breakpoint. */
3049 /* For now print nothing. */
3050 break;
3051 case SIGNAL_EXITED:
3052 /* The inferior was terminated by a signal. */
8b93c638 3053 annotate_signalled ();
9dc5e2a9 3054 if (ui_out_is_mi_like_p (uiout))
fb40c209 3055 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
3056 ui_out_text (uiout, "\nProgram terminated with signal ");
3057 annotate_signal_name ();
488f131b
JB
3058 ui_out_field_string (uiout, "signal-name",
3059 target_signal_to_name (stop_info));
8b93c638
JM
3060 annotate_signal_name_end ();
3061 ui_out_text (uiout, ", ");
3062 annotate_signal_string ();
488f131b
JB
3063 ui_out_field_string (uiout, "signal-meaning",
3064 target_signal_to_string (stop_info));
8b93c638
JM
3065 annotate_signal_string_end ();
3066 ui_out_text (uiout, ".\n");
3067 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3068 break;
3069 case EXITED:
3070 /* The inferior program is finished. */
8b93c638
JM
3071 annotate_exited (stop_info);
3072 if (stop_info)
3073 {
9dc5e2a9 3074 if (ui_out_is_mi_like_p (uiout))
fb40c209 3075 ui_out_field_string (uiout, "reason", "exited");
8b93c638 3076 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3077 ui_out_field_fmt (uiout, "exit-code", "0%o",
3078 (unsigned int) stop_info);
8b93c638
JM
3079 ui_out_text (uiout, ".\n");
3080 }
3081 else
3082 {
9dc5e2a9 3083 if (ui_out_is_mi_like_p (uiout))
fb40c209 3084 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3085 ui_out_text (uiout, "\nProgram exited normally.\n");
3086 }
11cf8741
JM
3087 break;
3088 case SIGNAL_RECEIVED:
3089 /* Signal received. The signal table tells us to print about
3090 it. */
8b93c638
JM
3091 annotate_signal ();
3092 ui_out_text (uiout, "\nProgram received signal ");
3093 annotate_signal_name ();
84c6c83c
KS
3094 if (ui_out_is_mi_like_p (uiout))
3095 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
3096 ui_out_field_string (uiout, "signal-name",
3097 target_signal_to_name (stop_info));
8b93c638
JM
3098 annotate_signal_name_end ();
3099 ui_out_text (uiout, ", ");
3100 annotate_signal_string ();
488f131b
JB
3101 ui_out_field_string (uiout, "signal-meaning",
3102 target_signal_to_string (stop_info));
8b93c638
JM
3103 annotate_signal_string_end ();
3104 ui_out_text (uiout, ".\n");
11cf8741
JM
3105 break;
3106 default:
8e65ff28
AC
3107 internal_error (__FILE__, __LINE__,
3108 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3109 break;
3110 }
3111}
c906108c 3112\f
43ff13b4 3113
c906108c
SS
3114/* Here to return control to GDB when the inferior stops for real.
3115 Print appropriate messages, remove breakpoints, give terminal our modes.
3116
3117 STOP_PRINT_FRAME nonzero means print the executing frame
3118 (pc, function, args, file, line number and line text).
3119 BREAKPOINTS_FAILED nonzero means stop was due to error
3120 attempting to insert breakpoints. */
3121
3122void
96baa820 3123normal_stop (void)
c906108c 3124{
73b65bb0
DJ
3125 struct target_waitstatus last;
3126 ptid_t last_ptid;
3127
3128 get_last_target_status (&last_ptid, &last);
3129
c906108c
SS
3130 /* As with the notification of thread events, we want to delay
3131 notifying the user that we've switched thread context until
3132 the inferior actually stops.
3133
73b65bb0
DJ
3134 There's no point in saying anything if the inferior has exited.
3135 Note that SIGNALLED here means "exited with a signal", not
3136 "received a signal". */
488f131b 3137 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3138 && target_has_execution
3139 && last.kind != TARGET_WAITKIND_SIGNALLED
3140 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3141 {
3142 target_terminal_ours_for_output ();
c3f6f71d 3143 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3144 target_pid_or_tid_to_str (inferior_ptid));
3145 previous_inferior_ptid = inferior_ptid;
c906108c 3146 }
c906108c 3147
4fa8626c 3148 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3149 /* Make sure that the current_frame's pc is correct. This
3150 is a correction for setting up the frame info before doing
3151 DECR_PC_AFTER_BREAK */
b87efeee
AC
3152 if (target_has_execution)
3153 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3154 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3155 frame code to check for this and sort out any resultant mess.
3156 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3157 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3158
c906108c
SS
3159 if (target_has_execution && breakpoints_inserted)
3160 {
3161 if (remove_breakpoints ())
3162 {
3163 target_terminal_ours_for_output ();
3164 printf_filtered ("Cannot remove breakpoints because ");
3165 printf_filtered ("program is no longer writable.\n");
3166 printf_filtered ("It might be running in another process.\n");
3167 printf_filtered ("Further execution is probably impossible.\n");
3168 }
3169 }
3170 breakpoints_inserted = 0;
3171
3172 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3173 Delete any breakpoint that is to be deleted at the next stop. */
3174
3175 breakpoint_auto_delete (stop_bpstat);
3176
3177 /* If an auto-display called a function and that got a signal,
3178 delete that auto-display to avoid an infinite recursion. */
3179
3180 if (stopped_by_random_signal)
3181 disable_current_display ();
3182
3183 /* Don't print a message if in the middle of doing a "step n"
3184 operation for n > 1 */
3185 if (step_multi && stop_step)
3186 goto done;
3187
3188 target_terminal_ours ();
3189
5913bcb0
AC
3190 /* Look up the hook_stop and run it (CLI internally handles problem
3191 of stop_command's pre-hook not existing). */
3192 if (stop_command)
3193 catch_errors (hook_stop_stub, stop_command,
3194 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3195
3196 if (!target_has_stack)
3197 {
3198
3199 goto done;
3200 }
3201
3202 /* Select innermost stack frame - i.e., current frame is frame 0,
3203 and current location is based on that.
3204 Don't do this on return from a stack dummy routine,
3205 or if the program has exited. */
3206
3207 if (!stop_stack_dummy)
3208 {
0f7d239c 3209 select_frame (get_current_frame ());
c906108c
SS
3210
3211 /* Print current location without a level number, if
c5aa993b
JM
3212 we have changed functions or hit a breakpoint.
3213 Print source line if we have one.
3214 bpstat_print() contains the logic deciding in detail
3215 what to print, based on the event(s) that just occurred. */
c906108c 3216
6e7f8b9c 3217 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3218 {
3219 int bpstat_ret;
3220 int source_flag;
917317f4 3221 int do_frame_printing = 1;
c906108c
SS
3222
3223 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3224 switch (bpstat_ret)
3225 {
3226 case PRINT_UNKNOWN:
aa0cd9c1
AC
3227 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3228 (or should) carry around the function and does (or
3229 should) use that when doing a frame comparison. */
917317f4 3230 if (stop_step
aa0cd9c1
AC
3231 && frame_id_eq (step_frame_id,
3232 get_frame_id (get_current_frame ()))
917317f4 3233 && step_start_function == find_pc_function (stop_pc))
488f131b 3234 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3235 else
488f131b 3236 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3237 break;
3238 case PRINT_SRC_AND_LOC:
488f131b 3239 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3240 break;
3241 case PRINT_SRC_ONLY:
c5394b80 3242 source_flag = SRC_LINE;
917317f4
JM
3243 break;
3244 case PRINT_NOTHING:
488f131b 3245 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3246 do_frame_printing = 0;
3247 break;
3248 default:
488f131b 3249 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3250 }
fb40c209 3251 /* For mi, have the same behavior every time we stop:
488f131b 3252 print everything but the source line. */
9dc5e2a9 3253 if (ui_out_is_mi_like_p (uiout))
fb40c209 3254 source_flag = LOC_AND_ADDRESS;
c906108c 3255
9dc5e2a9 3256 if (ui_out_is_mi_like_p (uiout))
39f77062 3257 ui_out_field_int (uiout, "thread-id",
488f131b 3258 pid_to_thread_id (inferior_ptid));
c906108c
SS
3259 /* The behavior of this routine with respect to the source
3260 flag is:
c5394b80
JM
3261 SRC_LINE: Print only source line
3262 LOCATION: Print only location
3263 SRC_AND_LOC: Print location and source line */
917317f4 3264 if (do_frame_printing)
7789c6f5 3265 print_stack_frame (deprecated_selected_frame, -1, source_flag);
c906108c
SS
3266
3267 /* Display the auto-display expressions. */
3268 do_displays ();
3269 }
3270 }
3271
3272 /* Save the function value return registers, if we care.
3273 We might be about to restore their previous contents. */
3274 if (proceed_to_finish)
72cec141
AC
3275 /* NB: The copy goes through to the target picking up the value of
3276 all the registers. */
3277 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3278
3279 if (stop_stack_dummy)
3280 {
dbe9fe58
AC
3281 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3282 ends with a setting of the current frame, so we can use that
3283 next. */
3284 frame_pop (get_current_frame ());
c906108c 3285 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3286 Can't rely on restore_inferior_status because that only gets
3287 called if we don't stop in the called function. */
c906108c 3288 stop_pc = read_pc ();
0f7d239c 3289 select_frame (get_current_frame ());
c906108c
SS
3290 }
3291
c906108c
SS
3292done:
3293 annotate_stopped ();
06600e06 3294 observer_notify_normal_stop ();
c906108c
SS
3295}
3296
3297static int
96baa820 3298hook_stop_stub (void *cmd)
c906108c 3299{
5913bcb0 3300 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3301 return (0);
3302}
3303\f
c5aa993b 3304int
96baa820 3305signal_stop_state (int signo)
c906108c
SS
3306{
3307 return signal_stop[signo];
3308}
3309
c5aa993b 3310int
96baa820 3311signal_print_state (int signo)
c906108c
SS
3312{
3313 return signal_print[signo];
3314}
3315
c5aa993b 3316int
96baa820 3317signal_pass_state (int signo)
c906108c
SS
3318{
3319 return signal_program[signo];
3320}
3321
488f131b 3322int
7bda5e4a 3323signal_stop_update (int signo, int state)
d4f3574e
SS
3324{
3325 int ret = signal_stop[signo];
3326 signal_stop[signo] = state;
3327 return ret;
3328}
3329
488f131b 3330int
7bda5e4a 3331signal_print_update (int signo, int state)
d4f3574e
SS
3332{
3333 int ret = signal_print[signo];
3334 signal_print[signo] = state;
3335 return ret;
3336}
3337
488f131b 3338int
7bda5e4a 3339signal_pass_update (int signo, int state)
d4f3574e
SS
3340{
3341 int ret = signal_program[signo];
3342 signal_program[signo] = state;
3343 return ret;
3344}
3345
c906108c 3346static void
96baa820 3347sig_print_header (void)
c906108c
SS
3348{
3349 printf_filtered ("\
3350Signal Stop\tPrint\tPass to program\tDescription\n");
3351}
3352
3353static void
96baa820 3354sig_print_info (enum target_signal oursig)
c906108c
SS
3355{
3356 char *name = target_signal_to_name (oursig);
3357 int name_padding = 13 - strlen (name);
96baa820 3358
c906108c
SS
3359 if (name_padding <= 0)
3360 name_padding = 0;
3361
3362 printf_filtered ("%s", name);
488f131b 3363 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3364 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3365 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3366 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3367 printf_filtered ("%s\n", target_signal_to_string (oursig));
3368}
3369
3370/* Specify how various signals in the inferior should be handled. */
3371
3372static void
96baa820 3373handle_command (char *args, int from_tty)
c906108c
SS
3374{
3375 char **argv;
3376 int digits, wordlen;
3377 int sigfirst, signum, siglast;
3378 enum target_signal oursig;
3379 int allsigs;
3380 int nsigs;
3381 unsigned char *sigs;
3382 struct cleanup *old_chain;
3383
3384 if (args == NULL)
3385 {
3386 error_no_arg ("signal to handle");
3387 }
3388
3389 /* Allocate and zero an array of flags for which signals to handle. */
3390
3391 nsigs = (int) TARGET_SIGNAL_LAST;
3392 sigs = (unsigned char *) alloca (nsigs);
3393 memset (sigs, 0, nsigs);
3394
3395 /* Break the command line up into args. */
3396
3397 argv = buildargv (args);
3398 if (argv == NULL)
3399 {
3400 nomem (0);
3401 }
7a292a7a 3402 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3403
3404 /* Walk through the args, looking for signal oursigs, signal names, and
3405 actions. Signal numbers and signal names may be interspersed with
3406 actions, with the actions being performed for all signals cumulatively
3407 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3408
3409 while (*argv != NULL)
3410 {
3411 wordlen = strlen (*argv);
3412 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3413 {;
3414 }
3415 allsigs = 0;
3416 sigfirst = siglast = -1;
3417
3418 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3419 {
3420 /* Apply action to all signals except those used by the
3421 debugger. Silently skip those. */
3422 allsigs = 1;
3423 sigfirst = 0;
3424 siglast = nsigs - 1;
3425 }
3426 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3427 {
3428 SET_SIGS (nsigs, sigs, signal_stop);
3429 SET_SIGS (nsigs, sigs, signal_print);
3430 }
3431 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3432 {
3433 UNSET_SIGS (nsigs, sigs, signal_program);
3434 }
3435 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3436 {
3437 SET_SIGS (nsigs, sigs, signal_print);
3438 }
3439 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3440 {
3441 SET_SIGS (nsigs, sigs, signal_program);
3442 }
3443 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3444 {
3445 UNSET_SIGS (nsigs, sigs, signal_stop);
3446 }
3447 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3448 {
3449 SET_SIGS (nsigs, sigs, signal_program);
3450 }
3451 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3452 {
3453 UNSET_SIGS (nsigs, sigs, signal_print);
3454 UNSET_SIGS (nsigs, sigs, signal_stop);
3455 }
3456 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3457 {
3458 UNSET_SIGS (nsigs, sigs, signal_program);
3459 }
3460 else if (digits > 0)
3461 {
3462 /* It is numeric. The numeric signal refers to our own
3463 internal signal numbering from target.h, not to host/target
3464 signal number. This is a feature; users really should be
3465 using symbolic names anyway, and the common ones like
3466 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3467
3468 sigfirst = siglast = (int)
3469 target_signal_from_command (atoi (*argv));
3470 if ((*argv)[digits] == '-')
3471 {
3472 siglast = (int)
3473 target_signal_from_command (atoi ((*argv) + digits + 1));
3474 }
3475 if (sigfirst > siglast)
3476 {
3477 /* Bet he didn't figure we'd think of this case... */
3478 signum = sigfirst;
3479 sigfirst = siglast;
3480 siglast = signum;
3481 }
3482 }
3483 else
3484 {
3485 oursig = target_signal_from_name (*argv);
3486 if (oursig != TARGET_SIGNAL_UNKNOWN)
3487 {
3488 sigfirst = siglast = (int) oursig;
3489 }
3490 else
3491 {
3492 /* Not a number and not a recognized flag word => complain. */
3493 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3494 }
3495 }
3496
3497 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3498 which signals to apply actions to. */
c906108c
SS
3499
3500 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3501 {
3502 switch ((enum target_signal) signum)
3503 {
3504 case TARGET_SIGNAL_TRAP:
3505 case TARGET_SIGNAL_INT:
3506 if (!allsigs && !sigs[signum])
3507 {
3508 if (query ("%s is used by the debugger.\n\
488f131b 3509Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3510 {
3511 sigs[signum] = 1;
3512 }
3513 else
3514 {
3515 printf_unfiltered ("Not confirmed, unchanged.\n");
3516 gdb_flush (gdb_stdout);
3517 }
3518 }
3519 break;
3520 case TARGET_SIGNAL_0:
3521 case TARGET_SIGNAL_DEFAULT:
3522 case TARGET_SIGNAL_UNKNOWN:
3523 /* Make sure that "all" doesn't print these. */
3524 break;
3525 default:
3526 sigs[signum] = 1;
3527 break;
3528 }
3529 }
3530
3531 argv++;
3532 }
3533
39f77062 3534 target_notice_signals (inferior_ptid);
c906108c
SS
3535
3536 if (from_tty)
3537 {
3538 /* Show the results. */
3539 sig_print_header ();
3540 for (signum = 0; signum < nsigs; signum++)
3541 {
3542 if (sigs[signum])
3543 {
3544 sig_print_info (signum);
3545 }
3546 }
3547 }
3548
3549 do_cleanups (old_chain);
3550}
3551
3552static void
96baa820 3553xdb_handle_command (char *args, int from_tty)
c906108c
SS
3554{
3555 char **argv;
3556 struct cleanup *old_chain;
3557
3558 /* Break the command line up into args. */
3559
3560 argv = buildargv (args);
3561 if (argv == NULL)
3562 {
3563 nomem (0);
3564 }
7a292a7a 3565 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3566 if (argv[1] != (char *) NULL)
3567 {
3568 char *argBuf;
3569 int bufLen;
3570
3571 bufLen = strlen (argv[0]) + 20;
3572 argBuf = (char *) xmalloc (bufLen);
3573 if (argBuf)
3574 {
3575 int validFlag = 1;
3576 enum target_signal oursig;
3577
3578 oursig = target_signal_from_name (argv[0]);
3579 memset (argBuf, 0, bufLen);
3580 if (strcmp (argv[1], "Q") == 0)
3581 sprintf (argBuf, "%s %s", argv[0], "noprint");
3582 else
3583 {
3584 if (strcmp (argv[1], "s") == 0)
3585 {
3586 if (!signal_stop[oursig])
3587 sprintf (argBuf, "%s %s", argv[0], "stop");
3588 else
3589 sprintf (argBuf, "%s %s", argv[0], "nostop");
3590 }
3591 else if (strcmp (argv[1], "i") == 0)
3592 {
3593 if (!signal_program[oursig])
3594 sprintf (argBuf, "%s %s", argv[0], "pass");
3595 else
3596 sprintf (argBuf, "%s %s", argv[0], "nopass");
3597 }
3598 else if (strcmp (argv[1], "r") == 0)
3599 {
3600 if (!signal_print[oursig])
3601 sprintf (argBuf, "%s %s", argv[0], "print");
3602 else
3603 sprintf (argBuf, "%s %s", argv[0], "noprint");
3604 }
3605 else
3606 validFlag = 0;
3607 }
3608 if (validFlag)
3609 handle_command (argBuf, from_tty);
3610 else
3611 printf_filtered ("Invalid signal handling flag.\n");
3612 if (argBuf)
b8c9b27d 3613 xfree (argBuf);
c906108c
SS
3614 }
3615 }
3616 do_cleanups (old_chain);
3617}
3618
3619/* Print current contents of the tables set by the handle command.
3620 It is possible we should just be printing signals actually used
3621 by the current target (but for things to work right when switching
3622 targets, all signals should be in the signal tables). */
3623
3624static void
96baa820 3625signals_info (char *signum_exp, int from_tty)
c906108c
SS
3626{
3627 enum target_signal oursig;
3628 sig_print_header ();
3629
3630 if (signum_exp)
3631 {
3632 /* First see if this is a symbol name. */
3633 oursig = target_signal_from_name (signum_exp);
3634 if (oursig == TARGET_SIGNAL_UNKNOWN)
3635 {
3636 /* No, try numeric. */
3637 oursig =
bb518678 3638 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3639 }
3640 sig_print_info (oursig);
3641 return;
3642 }
3643
3644 printf_filtered ("\n");
3645 /* These ugly casts brought to you by the native VAX compiler. */
3646 for (oursig = TARGET_SIGNAL_FIRST;
3647 (int) oursig < (int) TARGET_SIGNAL_LAST;
3648 oursig = (enum target_signal) ((int) oursig + 1))
3649 {
3650 QUIT;
3651
3652 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3653 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3654 sig_print_info (oursig);
3655 }
3656
3657 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3658}
3659\f
7a292a7a
SS
3660struct inferior_status
3661{
3662 enum target_signal stop_signal;
3663 CORE_ADDR stop_pc;
3664 bpstat stop_bpstat;
3665 int stop_step;
3666 int stop_stack_dummy;
3667 int stopped_by_random_signal;
3668 int trap_expected;
3669 CORE_ADDR step_range_start;
3670 CORE_ADDR step_range_end;
aa0cd9c1 3671 struct frame_id step_frame_id;
5fbbeb29 3672 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3673 CORE_ADDR step_resume_break_address;
3674 int stop_after_trap;
c0236d92 3675 int stop_soon;
72cec141 3676 struct regcache *stop_registers;
7a292a7a
SS
3677
3678 /* These are here because if call_function_by_hand has written some
3679 registers and then decides to call error(), we better not have changed
3680 any registers. */
72cec141 3681 struct regcache *registers;
7a292a7a 3682
101dcfbe
AC
3683 /* A frame unique identifier. */
3684 struct frame_id selected_frame_id;
3685
7a292a7a
SS
3686 int breakpoint_proceeded;
3687 int restore_stack_info;
3688 int proceed_to_finish;
3689};
3690
7a292a7a 3691void
96baa820
JM
3692write_inferior_status_register (struct inferior_status *inf_status, int regno,
3693 LONGEST val)
7a292a7a 3694{
12c266ea 3695 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3696 void *buf = alloca (size);
3697 store_signed_integer (buf, size, val);
0818c12a 3698 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3699}
3700
c906108c
SS
3701/* Save all of the information associated with the inferior<==>gdb
3702 connection. INF_STATUS is a pointer to a "struct inferior_status"
3703 (defined in inferior.h). */
3704
7a292a7a 3705struct inferior_status *
96baa820 3706save_inferior_status (int restore_stack_info)
c906108c 3707{
72cec141 3708 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3709
c906108c
SS
3710 inf_status->stop_signal = stop_signal;
3711 inf_status->stop_pc = stop_pc;
3712 inf_status->stop_step = stop_step;
3713 inf_status->stop_stack_dummy = stop_stack_dummy;
3714 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3715 inf_status->trap_expected = trap_expected;
3716 inf_status->step_range_start = step_range_start;
3717 inf_status->step_range_end = step_range_end;
aa0cd9c1 3718 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3719 inf_status->step_over_calls = step_over_calls;
3720 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3721 inf_status->stop_soon = stop_soon;
c906108c
SS
3722 /* Save original bpstat chain here; replace it with copy of chain.
3723 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3724 hand them back the original chain when restore_inferior_status is
3725 called. */
c906108c
SS
3726 inf_status->stop_bpstat = stop_bpstat;
3727 stop_bpstat = bpstat_copy (stop_bpstat);
3728 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3729 inf_status->restore_stack_info = restore_stack_info;
3730 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3731
72cec141 3732 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3733
72cec141 3734 inf_status->registers = regcache_dup (current_regcache);
c906108c 3735
7a424e99 3736 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3737 return inf_status;
c906108c
SS
3738}
3739
c906108c 3740static int
96baa820 3741restore_selected_frame (void *args)
c906108c 3742{
488f131b 3743 struct frame_id *fid = (struct frame_id *) args;
c906108c 3744 struct frame_info *frame;
c906108c 3745
101dcfbe 3746 frame = frame_find_by_id (*fid);
c906108c 3747
aa0cd9c1
AC
3748 /* If inf_status->selected_frame_id is NULL, there was no previously
3749 selected frame. */
101dcfbe 3750 if (frame == NULL)
c906108c
SS
3751 {
3752 warning ("Unable to restore previously selected frame.\n");
3753 return 0;
3754 }
3755
0f7d239c 3756 select_frame (frame);
c906108c
SS
3757
3758 return (1);
3759}
3760
3761void
96baa820 3762restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3763{
3764 stop_signal = inf_status->stop_signal;
3765 stop_pc = inf_status->stop_pc;
3766 stop_step = inf_status->stop_step;
3767 stop_stack_dummy = inf_status->stop_stack_dummy;
3768 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3769 trap_expected = inf_status->trap_expected;
3770 step_range_start = inf_status->step_range_start;
3771 step_range_end = inf_status->step_range_end;
aa0cd9c1 3772 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3773 step_over_calls = inf_status->step_over_calls;
3774 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3775 stop_soon = inf_status->stop_soon;
c906108c
SS
3776 bpstat_clear (&stop_bpstat);
3777 stop_bpstat = inf_status->stop_bpstat;
3778 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3779 proceed_to_finish = inf_status->proceed_to_finish;
3780
72cec141
AC
3781 /* FIXME: Is the restore of stop_registers always needed. */
3782 regcache_xfree (stop_registers);
3783 stop_registers = inf_status->stop_registers;
c906108c
SS
3784
3785 /* The inferior can be gone if the user types "print exit(0)"
3786 (and perhaps other times). */
3787 if (target_has_execution)
72cec141
AC
3788 /* NB: The register write goes through to the target. */
3789 regcache_cpy (current_regcache, inf_status->registers);
3790 regcache_xfree (inf_status->registers);
c906108c 3791
c906108c
SS
3792 /* FIXME: If we are being called after stopping in a function which
3793 is called from gdb, we should not be trying to restore the
3794 selected frame; it just prints a spurious error message (The
3795 message is useful, however, in detecting bugs in gdb (like if gdb
3796 clobbers the stack)). In fact, should we be restoring the
3797 inferior status at all in that case? . */
3798
3799 if (target_has_stack && inf_status->restore_stack_info)
3800 {
c906108c 3801 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3802 walking the stack might encounter a garbage pointer and
3803 error() trying to dereference it. */
488f131b
JB
3804 if (catch_errors
3805 (restore_selected_frame, &inf_status->selected_frame_id,
3806 "Unable to restore previously selected frame:\n",
3807 RETURN_MASK_ERROR) == 0)
c906108c
SS
3808 /* Error in restoring the selected frame. Select the innermost
3809 frame. */
0f7d239c 3810 select_frame (get_current_frame ());
c906108c
SS
3811
3812 }
c906108c 3813
72cec141 3814 xfree (inf_status);
7a292a7a 3815}
c906108c 3816
74b7792f
AC
3817static void
3818do_restore_inferior_status_cleanup (void *sts)
3819{
3820 restore_inferior_status (sts);
3821}
3822
3823struct cleanup *
3824make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3825{
3826 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3827}
3828
c906108c 3829void
96baa820 3830discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3831{
3832 /* See save_inferior_status for info on stop_bpstat. */
3833 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3834 regcache_xfree (inf_status->registers);
3835 regcache_xfree (inf_status->stop_registers);
3836 xfree (inf_status);
7a292a7a
SS
3837}
3838
47932f85
DJ
3839int
3840inferior_has_forked (int pid, int *child_pid)
3841{
3842 struct target_waitstatus last;
3843 ptid_t last_ptid;
3844
3845 get_last_target_status (&last_ptid, &last);
3846
3847 if (last.kind != TARGET_WAITKIND_FORKED)
3848 return 0;
3849
3850 if (ptid_get_pid (last_ptid) != pid)
3851 return 0;
3852
3853 *child_pid = last.value.related_pid;
3854 return 1;
3855}
3856
3857int
3858inferior_has_vforked (int pid, int *child_pid)
3859{
3860 struct target_waitstatus last;
3861 ptid_t last_ptid;
3862
3863 get_last_target_status (&last_ptid, &last);
3864
3865 if (last.kind != TARGET_WAITKIND_VFORKED)
3866 return 0;
3867
3868 if (ptid_get_pid (last_ptid) != pid)
3869 return 0;
3870
3871 *child_pid = last.value.related_pid;
3872 return 1;
3873}
3874
3875int
3876inferior_has_execd (int pid, char **execd_pathname)
3877{
3878 struct target_waitstatus last;
3879 ptid_t last_ptid;
3880
3881 get_last_target_status (&last_ptid, &last);
3882
3883 if (last.kind != TARGET_WAITKIND_EXECD)
3884 return 0;
3885
3886 if (ptid_get_pid (last_ptid) != pid)
3887 return 0;
3888
3889 *execd_pathname = xstrdup (last.value.execd_pathname);
3890 return 1;
3891}
3892
ca6724c1
KB
3893/* Oft used ptids */
3894ptid_t null_ptid;
3895ptid_t minus_one_ptid;
3896
3897/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3898
ca6724c1
KB
3899ptid_t
3900ptid_build (int pid, long lwp, long tid)
3901{
3902 ptid_t ptid;
3903
3904 ptid.pid = pid;
3905 ptid.lwp = lwp;
3906 ptid.tid = tid;
3907 return ptid;
3908}
3909
3910/* Create a ptid from just a pid. */
3911
3912ptid_t
3913pid_to_ptid (int pid)
3914{
3915 return ptid_build (pid, 0, 0);
3916}
3917
3918/* Fetch the pid (process id) component from a ptid. */
3919
3920int
3921ptid_get_pid (ptid_t ptid)
3922{
3923 return ptid.pid;
3924}
3925
3926/* Fetch the lwp (lightweight process) component from a ptid. */
3927
3928long
3929ptid_get_lwp (ptid_t ptid)
3930{
3931 return ptid.lwp;
3932}
3933
3934/* Fetch the tid (thread id) component from a ptid. */
3935
3936long
3937ptid_get_tid (ptid_t ptid)
3938{
3939 return ptid.tid;
3940}
3941
3942/* ptid_equal() is used to test equality of two ptids. */
3943
3944int
3945ptid_equal (ptid_t ptid1, ptid_t ptid2)
3946{
3947 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3948 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3949}
3950
3951/* restore_inferior_ptid() will be used by the cleanup machinery
3952 to restore the inferior_ptid value saved in a call to
3953 save_inferior_ptid(). */
ce696e05
KB
3954
3955static void
3956restore_inferior_ptid (void *arg)
3957{
3958 ptid_t *saved_ptid_ptr = arg;
3959 inferior_ptid = *saved_ptid_ptr;
3960 xfree (arg);
3961}
3962
3963/* Save the value of inferior_ptid so that it may be restored by a
3964 later call to do_cleanups(). Returns the struct cleanup pointer
3965 needed for later doing the cleanup. */
3966
3967struct cleanup *
3968save_inferior_ptid (void)
3969{
3970 ptid_t *saved_ptid_ptr;
3971
3972 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3973 *saved_ptid_ptr = inferior_ptid;
3974 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3975}
c5aa993b 3976\f
488f131b 3977
7a292a7a 3978static void
96baa820 3979build_infrun (void)
7a292a7a 3980{
72cec141 3981 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3982}
c906108c 3983
c906108c 3984void
96baa820 3985_initialize_infrun (void)
c906108c 3986{
52f0bd74
AC
3987 int i;
3988 int numsigs;
c906108c
SS
3989 struct cmd_list_element *c;
3990
0f71a2f6
JM
3991 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
3992 register_gdbarch_swap (NULL, 0, build_infrun);
3993
c906108c
SS
3994 add_info ("signals", signals_info,
3995 "What debugger does when program gets various signals.\n\
3996Specify a signal as argument to print info on that signal only.");
3997 add_info_alias ("handle", "signals", 0);
3998
3999 add_com ("handle", class_run, handle_command,
4000 concat ("Specify how to handle a signal.\n\
4001Args are signals and actions to apply to those signals.\n\
4002Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4003from 1-15 are allowed for compatibility with old versions of GDB.\n\
4004Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4005The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 4006used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4007\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4008Stop means reenter debugger if this signal happens (implies print).\n\
4009Print means print a message if this signal happens.\n\
4010Pass means let program see this signal; otherwise program doesn't know.\n\
4011Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4012Pass and Stop may be combined.", NULL));
4013 if (xdb_commands)
4014 {
4015 add_com ("lz", class_info, signals_info,
4016 "What debugger does when program gets various signals.\n\
4017Specify a signal as argument to print info on that signal only.");
4018 add_com ("z", class_run, xdb_handle_command,
4019 concat ("Specify how to handle a signal.\n\
4020Args are signals and actions to apply to those signals.\n\
4021Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4022from 1-15 are allowed for compatibility with old versions of GDB.\n\
4023Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4024The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 4025used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4026\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4027nopass), \"Q\" (noprint)\n\
4028Stop means reenter debugger if this signal happens (implies print).\n\
4029Print means print a message if this signal happens.\n\
4030Pass means let program see this signal; otherwise program doesn't know.\n\
4031Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4032Pass and Stop may be combined.", NULL));
4033 }
4034
4035 if (!dbx_commands)
488f131b
JB
4036 stop_command =
4037 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
4038This allows you to set a list of commands to be run each time execution\n\
4039of the program stops.", &cmdlist);
4040
4041 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4042 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4043 signal_print = (unsigned char *)
4044 xmalloc (sizeof (signal_print[0]) * numsigs);
4045 signal_program = (unsigned char *)
4046 xmalloc (sizeof (signal_program[0]) * numsigs);
4047 for (i = 0; i < numsigs; i++)
4048 {
4049 signal_stop[i] = 1;
4050 signal_print[i] = 1;
4051 signal_program[i] = 1;
4052 }
4053
4054 /* Signals caused by debugger's own actions
4055 should not be given to the program afterwards. */
4056 signal_program[TARGET_SIGNAL_TRAP] = 0;
4057 signal_program[TARGET_SIGNAL_INT] = 0;
4058
4059 /* Signals that are not errors should not normally enter the debugger. */
4060 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4061 signal_print[TARGET_SIGNAL_ALRM] = 0;
4062 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4063 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4064 signal_stop[TARGET_SIGNAL_PROF] = 0;
4065 signal_print[TARGET_SIGNAL_PROF] = 0;
4066 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4067 signal_print[TARGET_SIGNAL_CHLD] = 0;
4068 signal_stop[TARGET_SIGNAL_IO] = 0;
4069 signal_print[TARGET_SIGNAL_IO] = 0;
4070 signal_stop[TARGET_SIGNAL_POLL] = 0;
4071 signal_print[TARGET_SIGNAL_POLL] = 0;
4072 signal_stop[TARGET_SIGNAL_URG] = 0;
4073 signal_print[TARGET_SIGNAL_URG] = 0;
4074 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4075 signal_print[TARGET_SIGNAL_WINCH] = 0;
4076
cd0fc7c3
SS
4077 /* These signals are used internally by user-level thread
4078 implementations. (See signal(5) on Solaris.) Like the above
4079 signals, a healthy program receives and handles them as part of
4080 its normal operation. */
4081 signal_stop[TARGET_SIGNAL_LWP] = 0;
4082 signal_print[TARGET_SIGNAL_LWP] = 0;
4083 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4084 signal_print[TARGET_SIGNAL_WAITING] = 0;
4085 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4086 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4087
c906108c
SS
4088#ifdef SOLIB_ADD
4089 add_show_from_set
4090 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4091 (char *) &stop_on_solib_events,
4092 "Set stopping for shared library events.\n\
4093If nonzero, gdb will give control to the user when the dynamic linker\n\
4094notifies gdb of shared library events. The most common event of interest\n\
488f131b 4095to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
4096#endif
4097
4098 c = add_set_enum_cmd ("follow-fork-mode",
4099 class_run,
488f131b 4100 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
4101 "Set debugger response to a program call of fork \
4102or vfork.\n\
4103A fork or vfork creates a new process. follow-fork-mode can be:\n\
4104 parent - the original process is debugged after a fork\n\
4105 child - the new process is debugged after a fork\n\
ea1dd7bc 4106The unfollowed process will continue to run.\n\
488f131b 4107By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
4108 add_show_from_set (c, &showlist);
4109
488f131b 4110 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4111 &scheduler_mode, /* current mode */
c906108c
SS
4112 "Set mode for locking scheduler during execution.\n\
4113off == no locking (threads may preempt at any time)\n\
4114on == full locking (no thread except the current thread may run)\n\
4115step == scheduler locked during every single-step operation.\n\
4116 In this mode, no other thread may run during a step command.\n\
488f131b 4117 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4118
9f60d481 4119 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 4120 add_show_from_set (c, &showlist);
5fbbeb29
CF
4121
4122 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4123 var_boolean, (char *) &step_stop_if_no_debug,
4124 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4125function without debug line information will stop at the first\n\
4126instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4127the step command stops at a different source line.", &setlist);
5fbbeb29 4128 add_show_from_set (c, &showlist);
ca6724c1
KB
4129
4130 /* ptid initializations */
4131 null_ptid = ptid_build (0, 0, 0);
4132 minus_one_ptid = ptid_build (-1, 0, 0);
4133 inferior_ptid = null_ptid;
4134 target_last_wait_ptid = minus_one_ptid;
c906108c 4135}