]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/linux-nat.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
CommitLineData
3993f6b1 1/* GNU/Linux native-dependent code common to multiple platforms.
dba24537 2
0fb0cc75 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
e26af52f 4 Free Software Foundation, Inc.
3993f6b1
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
3993f6b1
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
3993f6b1
DJ
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
d6b0e80f 24#include "gdb_string.h"
3993f6b1 25#include "gdb_wait.h"
d6b0e80f
AC
26#include "gdb_assert.h"
27#ifdef HAVE_TKILL_SYSCALL
28#include <unistd.h>
29#include <sys/syscall.h>
30#endif
3993f6b1 31#include <sys/ptrace.h>
0274a8ce 32#include "linux-nat.h"
ac264b3b 33#include "linux-fork.h"
d6b0e80f
AC
34#include "gdbthread.h"
35#include "gdbcmd.h"
36#include "regcache.h"
4f844a66 37#include "regset.h"
10d6c8cd
DJ
38#include "inf-ptrace.h"
39#include "auxv.h"
dba24537
AC
40#include <sys/param.h> /* for MAXPATHLEN */
41#include <sys/procfs.h> /* for elf_gregset etc. */
42#include "elf-bfd.h" /* for elfcore_write_* */
43#include "gregset.h" /* for gregset */
44#include "gdbcore.h" /* for get_exec_file */
45#include <ctype.h> /* for isdigit */
46#include "gdbthread.h" /* for struct thread_info etc. */
47#include "gdb_stat.h" /* for struct stat */
48#include <fcntl.h> /* for O_RDONLY */
b84876c2
PA
49#include "inf-loop.h"
50#include "event-loop.h"
51#include "event-top.h"
07e059b5
VP
52#include <pwd.h>
53#include <sys/types.h>
54#include "gdb_dirent.h"
55#include "xml-support.h"
dba24537 56
10568435
JK
57#ifdef HAVE_PERSONALITY
58# include <sys/personality.h>
59# if !HAVE_DECL_ADDR_NO_RANDOMIZE
60# define ADDR_NO_RANDOMIZE 0x0040000
61# endif
62#endif /* HAVE_PERSONALITY */
63
8a77dff3
VP
64/* This comment documents high-level logic of this file.
65
66Waiting for events in sync mode
67===============================
68
69When waiting for an event in a specific thread, we just use waitpid, passing
70the specific pid, and not passing WNOHANG.
71
72When waiting for an event in all threads, waitpid is not quite good. Prior to
73version 2.4, Linux can either wait for event in main thread, or in secondary
74threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
75miss an event. The solution is to use non-blocking waitpid, together with
76sigsuspend. First, we use non-blocking waitpid to get an event in the main
77process, if any. Second, we use non-blocking waitpid with the __WCLONED
78flag to check for events in cloned processes. If nothing is found, we use
79sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
80happened to a child process -- and SIGCHLD will be delivered both for events
81in main debugged process and in cloned processes. As soon as we know there's
82an event, we get back to calling nonblocking waitpid with and without __WCLONED.
83
84Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
85so that we don't miss a signal. If SIGCHLD arrives in between, when it's
86blocked, the signal becomes pending and sigsuspend immediately
87notices it and returns.
88
89Waiting for events in async mode
90================================
91
92In async mode, GDB should always be ready to handle both user input and target
93events, so neither blocking waitpid nor sigsuspend are viable
94options. Instead, we should notify the GDB main event loop whenever there's
95unprocessed event from the target. The only way to notify this event loop is
96to make it wait on input from a pipe, and write something to the pipe whenever
97there's event. Obviously, if we fail to notify the event loop if there's
98target event, it's bad. If we notify the event loop when there's no event
99from target, linux-nat.c will detect that there's no event, actually, and
100report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
101better avoided.
102
103The main design point is that every time GDB is outside linux-nat.c, we have a
104SIGCHLD handler installed that is called when something happens to the target
105and notifies the GDB event loop. Also, the event is extracted from the target
106using waitpid and stored for future use. Whenever GDB core decides to handle
107the event, and calls into linux-nat.c, we disable SIGCHLD and process things
108as in sync mode, except that before waitpid call we check if there are any
109previously read events.
110
111It could happen that during event processing, we'll try to get more events
112than there are events in the local queue, which will result to waitpid call.
113Those waitpid calls, while blocking, are guarantied to always have
114something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
115waiting for the lwp to stop.
116
117The event loop is notified about new events using a pipe. SIGCHLD handler does
118waitpid and writes the results in to a pipe. GDB event loop has the other end
119of the pipe among the sources. When event loop starts to process the event
120and calls a function in linux-nat.c, all events from the pipe are transferred
121into a local queue and SIGCHLD is blocked. Further processing goes as in sync
122mode. Before we return from linux_nat_wait, we transfer all unprocessed events
123from local queue back to the pipe, so that when we get back to event loop,
124event loop will notice there's something more to do.
125
126SIGCHLD is blocked when we're inside target_wait, so that should we actually
127want to wait for some more events, SIGCHLD handler does not steal them from
128us. Technically, it would be possible to add new events to the local queue but
129it's about the same amount of work as blocking SIGCHLD.
130
131This moving of events from pipe into local queue and back into pipe when we
132enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
133home-grown and incapable to wait on any queue.
134
135Use of signals
136==============
137
138We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
139signal is not entirely significant; we just need for a signal to be delivered,
140so that we can intercept it. SIGSTOP's advantage is that it can not be
141blocked. A disadvantage is that it is not a real-time signal, so it can only
142be queued once; we do not keep track of other sources of SIGSTOP.
143
144Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
145use them, because they have special behavior when the signal is generated -
146not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
147kills the entire thread group.
148
149A delivered SIGSTOP would stop the entire thread group, not just the thread we
150tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
151cancel it (by PTRACE_CONT without passing SIGSTOP).
152
153We could use a real-time signal instead. This would solve those problems; we
154could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
155But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
156generates it, and there are races with trying to find a signal that is not
157blocked. */
a0ef4274 158
dba24537
AC
159#ifndef O_LARGEFILE
160#define O_LARGEFILE 0
161#endif
0274a8ce 162
3993f6b1
DJ
163/* If the system headers did not provide the constants, hard-code the normal
164 values. */
165#ifndef PTRACE_EVENT_FORK
166
167#define PTRACE_SETOPTIONS 0x4200
168#define PTRACE_GETEVENTMSG 0x4201
169
170/* options set using PTRACE_SETOPTIONS */
171#define PTRACE_O_TRACESYSGOOD 0x00000001
172#define PTRACE_O_TRACEFORK 0x00000002
173#define PTRACE_O_TRACEVFORK 0x00000004
174#define PTRACE_O_TRACECLONE 0x00000008
175#define PTRACE_O_TRACEEXEC 0x00000010
9016a515
DJ
176#define PTRACE_O_TRACEVFORKDONE 0x00000020
177#define PTRACE_O_TRACEEXIT 0x00000040
3993f6b1
DJ
178
179/* Wait extended result codes for the above trace options. */
180#define PTRACE_EVENT_FORK 1
181#define PTRACE_EVENT_VFORK 2
182#define PTRACE_EVENT_CLONE 3
183#define PTRACE_EVENT_EXEC 4
c874c7fc 184#define PTRACE_EVENT_VFORK_DONE 5
9016a515 185#define PTRACE_EVENT_EXIT 6
3993f6b1
DJ
186
187#endif /* PTRACE_EVENT_FORK */
188
189/* We can't always assume that this flag is available, but all systems
190 with the ptrace event handlers also have __WALL, so it's safe to use
191 here. */
192#ifndef __WALL
193#define __WALL 0x40000000 /* Wait for any child. */
194#endif
195
02d3ff8c 196#ifndef PTRACE_GETSIGINFO
1ef18d08
PA
197# define PTRACE_GETSIGINFO 0x4202
198# define PTRACE_SETSIGINFO 0x4203
02d3ff8c
UW
199#endif
200
10d6c8cd
DJ
201/* The single-threaded native GNU/Linux target_ops. We save a pointer for
202 the use of the multi-threaded target. */
203static struct target_ops *linux_ops;
f973ed9c 204static struct target_ops linux_ops_saved;
10d6c8cd 205
9f0bdab8
DJ
206/* The method to call, if any, when a new thread is attached. */
207static void (*linux_nat_new_thread) (ptid_t);
208
5b009018
PA
209/* The method to call, if any, when the siginfo object needs to be
210 converted between the layout returned by ptrace, and the layout in
211 the architecture of the inferior. */
212static int (*linux_nat_siginfo_fixup) (struct siginfo *,
213 gdb_byte *,
214 int);
215
ac264b3b
MS
216/* The saved to_xfer_partial method, inherited from inf-ptrace.c.
217 Called by our to_xfer_partial. */
218static LONGEST (*super_xfer_partial) (struct target_ops *,
219 enum target_object,
220 const char *, gdb_byte *,
221 const gdb_byte *,
10d6c8cd
DJ
222 ULONGEST, LONGEST);
223
d6b0e80f 224static int debug_linux_nat;
920d2a44
AC
225static void
226show_debug_linux_nat (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228{
229 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
230 value);
231}
d6b0e80f 232
b84876c2
PA
233static int debug_linux_nat_async = 0;
234static void
235show_debug_linux_nat_async (struct ui_file *file, int from_tty,
236 struct cmd_list_element *c, const char *value)
237{
238 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
239 value);
240}
241
10568435
JK
242static int disable_randomization = 1;
243
244static void
245show_disable_randomization (struct ui_file *file, int from_tty,
246 struct cmd_list_element *c, const char *value)
247{
248#ifdef HAVE_PERSONALITY
249 fprintf_filtered (file, _("\
250Disabling randomization of debuggee's virtual address space is %s.\n"),
251 value);
252#else /* !HAVE_PERSONALITY */
253 fputs_filtered (_("\
254Disabling randomization of debuggee's virtual address space is unsupported on\n\
255this platform.\n"), file);
256#endif /* !HAVE_PERSONALITY */
257}
258
259static void
260set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
261{
262#ifndef HAVE_PERSONALITY
263 error (_("\
264Disabling randomization of debuggee's virtual address space is unsupported on\n\
265this platform."));
266#endif /* !HAVE_PERSONALITY */
267}
268
9016a515
DJ
269static int linux_parent_pid;
270
ae087d01
DJ
271struct simple_pid_list
272{
273 int pid;
3d799a95 274 int status;
ae087d01
DJ
275 struct simple_pid_list *next;
276};
277struct simple_pid_list *stopped_pids;
278
3993f6b1
DJ
279/* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
280 can not be used, 1 if it can. */
281
282static int linux_supports_tracefork_flag = -1;
283
9016a515
DJ
284/* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
285 PTRACE_O_TRACEVFORKDONE. */
286
287static int linux_supports_tracevforkdone_flag = -1;
288
b84876c2
PA
289/* Async mode support */
290
b84876c2
PA
291/* Zero if the async mode, although enabled, is masked, which means
292 linux_nat_wait should behave as if async mode was off. */
293static int linux_nat_async_mask_value = 1;
294
295/* The read/write ends of the pipe registered as waitable file in the
296 event loop. */
297static int linux_nat_event_pipe[2] = { -1, -1 };
298
299/* Number of queued events in the pipe. */
300static volatile int linux_nat_num_queued_events;
301
84e46146 302/* The possible SIGCHLD handling states. */
b84876c2 303
84e46146
PA
304enum sigchld_state
305{
306 /* SIGCHLD disabled, with action set to sigchld_handler, for the
307 sigsuspend in linux_nat_wait. */
308 sigchld_sync,
309 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
310 sigchld_async,
311 /* Set SIGCHLD to default action. Used while creating an
312 inferior. */
313 sigchld_default
314};
315
316/* The current SIGCHLD handling state. */
317static enum sigchld_state linux_nat_async_events_state;
318
319static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
b84876c2
PA
320static void pipe_to_local_event_queue (void);
321static void local_event_queue_to_pipe (void);
322static void linux_nat_event_pipe_push (int pid, int status, int options);
323static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
324static void linux_nat_set_async_mode (int on);
325static void linux_nat_async (void (*callback)
326 (enum inferior_event_type event_type, void *context),
327 void *context);
328static int linux_nat_async_mask (int mask);
a0ef4274 329static int kill_lwp (int lwpid, int signo);
b84876c2 330
4c28f408
PA
331static int stop_callback (struct lwp_info *lp, void *data);
332
b84876c2
PA
333/* Captures the result of a successful waitpid call, along with the
334 options used in that call. */
335struct waitpid_result
336{
337 int pid;
338 int status;
339 int options;
340 struct waitpid_result *next;
341};
342
343/* A singly-linked list of the results of the waitpid calls performed
344 in the async SIGCHLD handler. */
345static struct waitpid_result *waitpid_queue = NULL;
346
252fbfc8
PA
347/* Similarly to `waitpid', but check the local event queue instead of
348 querying the kernel queue. If PEEK, don't remove the event found
349 from the queue. */
350
b84876c2 351static int
252fbfc8 352queued_waitpid_1 (int pid, int *status, int flags, int peek)
b84876c2
PA
353{
354 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
355
356 if (debug_linux_nat_async)
357 fprintf_unfiltered (gdb_stdlog,
358 "\
84e46146
PA
359QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
360 linux_nat_async_events_state,
b84876c2
PA
361 linux_nat_num_queued_events);
362
363 if (flags & __WALL)
364 {
365 for (; msg; prev = msg, msg = msg->next)
366 if (pid == -1 || pid == msg->pid)
367 break;
368 }
369 else if (flags & __WCLONE)
370 {
371 for (; msg; prev = msg, msg = msg->next)
372 if (msg->options & __WCLONE
373 && (pid == -1 || pid == msg->pid))
374 break;
375 }
376 else
377 {
378 for (; msg; prev = msg, msg = msg->next)
379 if ((msg->options & __WCLONE) == 0
380 && (pid == -1 || pid == msg->pid))
381 break;
382 }
383
384 if (msg)
385 {
386 int pid;
387
b84876c2
PA
388 if (status)
389 *status = msg->status;
390 pid = msg->pid;
391
392 if (debug_linux_nat_async)
393 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
394 pid, msg->status);
252fbfc8
PA
395
396 if (!peek)
397 {
398 if (prev)
399 prev->next = msg->next;
400 else
401 waitpid_queue = msg->next;
402
403 msg->next = NULL;
404 xfree (msg);
405 }
b84876c2
PA
406
407 return pid;
408 }
409
410 if (debug_linux_nat_async)
411 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
412
413 if (status)
414 *status = 0;
415 return -1;
416}
417
252fbfc8
PA
418/* Similarly to `waitpid', but check the local event queue. */
419
420static int
421queued_waitpid (int pid, int *status, int flags)
422{
423 return queued_waitpid_1 (pid, status, flags, 0);
424}
425
b84876c2
PA
426static void
427push_waitpid (int pid, int status, int options)
428{
429 struct waitpid_result *event, *new_event;
430
431 new_event = xmalloc (sizeof (*new_event));
432 new_event->pid = pid;
433 new_event->status = status;
434 new_event->options = options;
435 new_event->next = NULL;
436
437 if (waitpid_queue)
438 {
439 for (event = waitpid_queue;
440 event && event->next;
441 event = event->next)
442 ;
443
444 event->next = new_event;
445 }
446 else
447 waitpid_queue = new_event;
448}
449
710151dd 450/* Drain all queued events of PID. If PID is -1, the effect is of
b84876c2
PA
451 draining all events. */
452static void
453drain_queued_events (int pid)
454{
455 while (queued_waitpid (pid, NULL, __WALL) != -1)
456 ;
457}
458
ae087d01
DJ
459\f
460/* Trivial list manipulation functions to keep track of a list of
461 new stopped processes. */
462static void
3d799a95 463add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
ae087d01
DJ
464{
465 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
466 new_pid->pid = pid;
3d799a95 467 new_pid->status = status;
ae087d01
DJ
468 new_pid->next = *listp;
469 *listp = new_pid;
470}
471
472static int
3d799a95 473pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
ae087d01
DJ
474{
475 struct simple_pid_list **p;
476
477 for (p = listp; *p != NULL; p = &(*p)->next)
478 if ((*p)->pid == pid)
479 {
480 struct simple_pid_list *next = (*p)->next;
3d799a95 481 *status = (*p)->status;
ae087d01
DJ
482 xfree (*p);
483 *p = next;
484 return 1;
485 }
486 return 0;
487}
488
3d799a95
DJ
489static void
490linux_record_stopped_pid (int pid, int status)
ae087d01 491{
3d799a95 492 add_to_pid_list (&stopped_pids, pid, status);
ae087d01
DJ
493}
494
3993f6b1
DJ
495\f
496/* A helper function for linux_test_for_tracefork, called after fork (). */
497
498static void
499linux_tracefork_child (void)
500{
501 int ret;
502
503 ptrace (PTRACE_TRACEME, 0, 0, 0);
504 kill (getpid (), SIGSTOP);
505 fork ();
48bb3cce 506 _exit (0);
3993f6b1
DJ
507}
508
b84876c2
PA
509/* Wrapper function for waitpid which handles EINTR, and checks for
510 locally queued events. */
b957e937
DJ
511
512static int
513my_waitpid (int pid, int *status, int flags)
514{
515 int ret;
b84876c2
PA
516
517 /* There should be no concurrent calls to waitpid. */
84e46146 518 gdb_assert (linux_nat_async_events_state == sigchld_sync);
b84876c2
PA
519
520 ret = queued_waitpid (pid, status, flags);
521 if (ret != -1)
522 return ret;
523
b957e937
DJ
524 do
525 {
526 ret = waitpid (pid, status, flags);
527 }
528 while (ret == -1 && errno == EINTR);
529
530 return ret;
531}
532
533/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
534
535 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
536 we know that the feature is not available. This may change the tracing
537 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
538
539 However, if it succeeds, we don't know for sure that the feature is
540 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
3993f6b1 541 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
b957e937
DJ
542 fork tracing, and let it fork. If the process exits, we assume that we
543 can't use TRACEFORK; if we get the fork notification, and we can extract
544 the new child's PID, then we assume that we can. */
3993f6b1
DJ
545
546static void
b957e937 547linux_test_for_tracefork (int original_pid)
3993f6b1
DJ
548{
549 int child_pid, ret, status;
550 long second_pid;
4c28f408
PA
551 enum sigchld_state async_events_original_state;
552
553 async_events_original_state = linux_nat_async_events (sigchld_sync);
3993f6b1 554
b957e937
DJ
555 linux_supports_tracefork_flag = 0;
556 linux_supports_tracevforkdone_flag = 0;
557
558 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
559 if (ret != 0)
560 return;
561
3993f6b1
DJ
562 child_pid = fork ();
563 if (child_pid == -1)
e2e0b3e5 564 perror_with_name (("fork"));
3993f6b1
DJ
565
566 if (child_pid == 0)
567 linux_tracefork_child ();
568
b957e937 569 ret = my_waitpid (child_pid, &status, 0);
3993f6b1 570 if (ret == -1)
e2e0b3e5 571 perror_with_name (("waitpid"));
3993f6b1 572 else if (ret != child_pid)
8a3fe4f8 573 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
3993f6b1 574 if (! WIFSTOPPED (status))
8a3fe4f8 575 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
3993f6b1 576
3993f6b1
DJ
577 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
578 if (ret != 0)
579 {
b957e937
DJ
580 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
581 if (ret != 0)
582 {
8a3fe4f8 583 warning (_("linux_test_for_tracefork: failed to kill child"));
4c28f408 584 linux_nat_async_events (async_events_original_state);
b957e937
DJ
585 return;
586 }
587
588 ret = my_waitpid (child_pid, &status, 0);
589 if (ret != child_pid)
8a3fe4f8 590 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
b957e937 591 else if (!WIFSIGNALED (status))
8a3fe4f8
AC
592 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
593 "killed child"), status);
b957e937 594
4c28f408 595 linux_nat_async_events (async_events_original_state);
3993f6b1
DJ
596 return;
597 }
598
9016a515
DJ
599 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
600 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
601 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
602 linux_supports_tracevforkdone_flag = (ret == 0);
603
b957e937
DJ
604 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
605 if (ret != 0)
8a3fe4f8 606 warning (_("linux_test_for_tracefork: failed to resume child"));
b957e937
DJ
607
608 ret = my_waitpid (child_pid, &status, 0);
609
3993f6b1
DJ
610 if (ret == child_pid && WIFSTOPPED (status)
611 && status >> 16 == PTRACE_EVENT_FORK)
612 {
613 second_pid = 0;
614 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
615 if (ret == 0 && second_pid != 0)
616 {
617 int second_status;
618
619 linux_supports_tracefork_flag = 1;
b957e937
DJ
620 my_waitpid (second_pid, &second_status, 0);
621 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
622 if (ret != 0)
8a3fe4f8 623 warning (_("linux_test_for_tracefork: failed to kill second child"));
97725dc4 624 my_waitpid (second_pid, &status, 0);
3993f6b1
DJ
625 }
626 }
b957e937 627 else
8a3fe4f8
AC
628 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
629 "(%d, status 0x%x)"), ret, status);
3993f6b1 630
b957e937
DJ
631 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
632 if (ret != 0)
8a3fe4f8 633 warning (_("linux_test_for_tracefork: failed to kill child"));
b957e937 634 my_waitpid (child_pid, &status, 0);
4c28f408
PA
635
636 linux_nat_async_events (async_events_original_state);
3993f6b1
DJ
637}
638
639/* Return non-zero iff we have tracefork functionality available.
640 This function also sets linux_supports_tracefork_flag. */
641
642static int
b957e937 643linux_supports_tracefork (int pid)
3993f6b1
DJ
644{
645 if (linux_supports_tracefork_flag == -1)
b957e937 646 linux_test_for_tracefork (pid);
3993f6b1
DJ
647 return linux_supports_tracefork_flag;
648}
649
9016a515 650static int
b957e937 651linux_supports_tracevforkdone (int pid)
9016a515
DJ
652{
653 if (linux_supports_tracefork_flag == -1)
b957e937 654 linux_test_for_tracefork (pid);
9016a515
DJ
655 return linux_supports_tracevforkdone_flag;
656}
657
3993f6b1 658\f
4de4c07c
DJ
659void
660linux_enable_event_reporting (ptid_t ptid)
661{
d3587048 662 int pid = ptid_get_lwp (ptid);
4de4c07c
DJ
663 int options;
664
d3587048
DJ
665 if (pid == 0)
666 pid = ptid_get_pid (ptid);
667
b957e937 668 if (! linux_supports_tracefork (pid))
4de4c07c
DJ
669 return;
670
a2f23071
DJ
671 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
672 | PTRACE_O_TRACECLONE;
b957e937 673 if (linux_supports_tracevforkdone (pid))
9016a515
DJ
674 options |= PTRACE_O_TRACEVFORKDONE;
675
676 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
677 read-only process state. */
4de4c07c
DJ
678
679 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
680}
681
6d8fd2b7
UW
682static void
683linux_child_post_attach (int pid)
4de4c07c
DJ
684{
685 linux_enable_event_reporting (pid_to_ptid (pid));
0ec9a092 686 check_for_thread_db ();
4de4c07c
DJ
687}
688
10d6c8cd 689static void
4de4c07c
DJ
690linux_child_post_startup_inferior (ptid_t ptid)
691{
692 linux_enable_event_reporting (ptid);
0ec9a092 693 check_for_thread_db ();
4de4c07c
DJ
694}
695
6d8fd2b7
UW
696static int
697linux_child_follow_fork (struct target_ops *ops, int follow_child)
3993f6b1 698{
4de4c07c
DJ
699 ptid_t last_ptid;
700 struct target_waitstatus last_status;
9016a515 701 int has_vforked;
4de4c07c
DJ
702 int parent_pid, child_pid;
703
b84876c2
PA
704 if (target_can_async_p ())
705 target_async (NULL, 0);
706
4de4c07c 707 get_last_target_status (&last_ptid, &last_status);
9016a515 708 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
d3587048
DJ
709 parent_pid = ptid_get_lwp (last_ptid);
710 if (parent_pid == 0)
711 parent_pid = ptid_get_pid (last_ptid);
3a3e9ee3 712 child_pid = PIDGET (last_status.value.related_pid);
4de4c07c
DJ
713
714 if (! follow_child)
715 {
716 /* We're already attached to the parent, by default. */
717
718 /* Before detaching from the child, remove all breakpoints from
719 it. (This won't actually modify the breakpoint list, but will
720 physically remove the breakpoints from the child.) */
9016a515
DJ
721 /* If we vforked this will remove the breakpoints from the parent
722 also, but they'll be reinserted below. */
4de4c07c
DJ
723 detach_breakpoints (child_pid);
724
ac264b3b
MS
725 /* Detach new forked process? */
726 if (detach_fork)
f75c00e4 727 {
e85a822c 728 if (info_verbose || debug_linux_nat)
ac264b3b
MS
729 {
730 target_terminal_ours ();
731 fprintf_filtered (gdb_stdlog,
732 "Detaching after fork from child process %d.\n",
733 child_pid);
734 }
4de4c07c 735
ac264b3b
MS
736 ptrace (PTRACE_DETACH, child_pid, 0, 0);
737 }
738 else
739 {
740 struct fork_info *fp;
77435e4c 741 struct inferior *parent_inf, *child_inf;
7f9f62ba
PA
742
743 /* Add process to GDB's tables. */
77435e4c
PA
744 child_inf = add_inferior (child_pid);
745
746 parent_inf = find_inferior_pid (GET_PID (last_ptid));
747 child_inf->attach_flag = parent_inf->attach_flag;
7f9f62ba 748
ac264b3b
MS
749 /* Retain child fork in ptrace (stopped) state. */
750 fp = find_fork_pid (child_pid);
751 if (!fp)
752 fp = add_fork (child_pid);
753 fork_save_infrun_state (fp, 0);
754 }
9016a515
DJ
755
756 if (has_vforked)
757 {
b957e937
DJ
758 gdb_assert (linux_supports_tracefork_flag >= 0);
759 if (linux_supports_tracevforkdone (0))
9016a515
DJ
760 {
761 int status;
762
763 ptrace (PTRACE_CONT, parent_pid, 0, 0);
58aecb61 764 my_waitpid (parent_pid, &status, __WALL);
c874c7fc 765 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
8a3fe4f8
AC
766 warning (_("Unexpected waitpid result %06x when waiting for "
767 "vfork-done"), status);
9016a515
DJ
768 }
769 else
770 {
771 /* We can't insert breakpoints until the child has
772 finished with the shared memory region. We need to
773 wait until that happens. Ideal would be to just
774 call:
775 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
776 - waitpid (parent_pid, &status, __WALL);
777 However, most architectures can't handle a syscall
778 being traced on the way out if it wasn't traced on
779 the way in.
780
781 We might also think to loop, continuing the child
782 until it exits or gets a SIGTRAP. One problem is
783 that the child might call ptrace with PTRACE_TRACEME.
784
785 There's no simple and reliable way to figure out when
786 the vforked child will be done with its copy of the
787 shared memory. We could step it out of the syscall,
788 two instructions, let it go, and then single-step the
789 parent once. When we have hardware single-step, this
790 would work; with software single-step it could still
791 be made to work but we'd have to be able to insert
792 single-step breakpoints in the child, and we'd have
793 to insert -just- the single-step breakpoint in the
794 parent. Very awkward.
795
796 In the end, the best we can do is to make sure it
797 runs for a little while. Hopefully it will be out of
798 range of any breakpoints we reinsert. Usually this
799 is only the single-step breakpoint at vfork's return
800 point. */
801
802 usleep (10000);
803 }
804
805 /* Since we vforked, breakpoints were removed in the parent
806 too. Put them back. */
807 reattach_breakpoints (parent_pid);
808 }
4de4c07c 809 }
3993f6b1 810 else
4de4c07c 811 {
4e1c45ea
PA
812 struct thread_info *last_tp = find_thread_pid (last_ptid);
813 struct thread_info *tp;
4de4c07c 814 char child_pid_spelling[40];
77435e4c 815 struct inferior *parent_inf, *child_inf;
4de4c07c 816
4e1c45ea
PA
817 /* Copy user stepping state to the new inferior thread. */
818 struct breakpoint *step_resume_breakpoint = last_tp->step_resume_breakpoint;
819 CORE_ADDR step_range_start = last_tp->step_range_start;
820 CORE_ADDR step_range_end = last_tp->step_range_end;
821 struct frame_id step_frame_id = last_tp->step_frame_id;
822
823 /* Otherwise, deleting the parent would get rid of this
824 breakpoint. */
825 last_tp->step_resume_breakpoint = NULL;
826
4de4c07c 827 /* Needed to keep the breakpoint lists in sync. */
9016a515
DJ
828 if (! has_vforked)
829 detach_breakpoints (child_pid);
4de4c07c
DJ
830
831 /* Before detaching from the parent, remove all breakpoints from it. */
832 remove_breakpoints ();
833
e85a822c 834 if (info_verbose || debug_linux_nat)
f75c00e4
DJ
835 {
836 target_terminal_ours ();
ac264b3b
MS
837 fprintf_filtered (gdb_stdlog,
838 "Attaching after fork to child process %d.\n",
839 child_pid);
f75c00e4 840 }
4de4c07c 841
7a7d3353
PA
842 /* Add the new inferior first, so that the target_detach below
843 doesn't unpush the target. */
844
77435e4c
PA
845 child_inf = add_inferior (child_pid);
846
847 parent_inf = find_inferior_pid (GET_PID (last_ptid));
848 child_inf->attach_flag = parent_inf->attach_flag;
7a7d3353 849
9016a515
DJ
850 /* If we're vforking, we may want to hold on to the parent until
851 the child exits or execs. At exec time we can remove the old
852 breakpoints from the parent and detach it; at exit time we
853 could do the same (or even, sneakily, resume debugging it - the
854 child's exec has failed, or something similar).
855
856 This doesn't clean up "properly", because we can't call
857 target_detach, but that's OK; if the current target is "child",
858 then it doesn't need any further cleanups, and lin_lwp will
859 generally not encounter vfork (vfork is defined to fork
860 in libpthread.so).
861
862 The holding part is very easy if we have VFORKDONE events;
863 but keeping track of both processes is beyond GDB at the
864 moment. So we don't expose the parent to the rest of GDB.
865 Instead we quietly hold onto it until such time as we can
866 safely resume it. */
867
868 if (has_vforked)
7f9f62ba
PA
869 {
870 linux_parent_pid = parent_pid;
871 detach_inferior (parent_pid);
872 }
ac264b3b
MS
873 else if (!detach_fork)
874 {
875 struct fork_info *fp;
876 /* Retain parent fork in ptrace (stopped) state. */
877 fp = find_fork_pid (parent_pid);
878 if (!fp)
879 fp = add_fork (parent_pid);
880 fork_save_infrun_state (fp, 0);
0d14fc63
PA
881
882 /* Also add an entry for the child fork. */
883 fp = find_fork_pid (child_pid);
884 if (!fp)
885 fp = add_fork (child_pid);
886 fork_save_infrun_state (fp, 0);
ac264b3b 887 }
9016a515 888 else
b84876c2 889 target_detach (NULL, 0);
4de4c07c 890
9f0bdab8 891 inferior_ptid = ptid_build (child_pid, child_pid, 0);
ac264b3b 892
9f0bdab8 893 linux_nat_switch_fork (inferior_ptid);
ef29ce1a 894 check_for_thread_db ();
4de4c07c 895
4e1c45ea
PA
896 tp = inferior_thread ();
897 tp->step_resume_breakpoint = step_resume_breakpoint;
898 tp->step_range_start = step_range_start;
899 tp->step_range_end = step_range_end;
900 tp->step_frame_id = step_frame_id;
901
4de4c07c
DJ
902 /* Reset breakpoints in the child as appropriate. */
903 follow_inferior_reset_breakpoints ();
904 }
905
b84876c2
PA
906 if (target_can_async_p ())
907 target_async (inferior_event_handler, 0);
908
4de4c07c
DJ
909 return 0;
910}
911
4de4c07c 912\f
6d8fd2b7
UW
913static void
914linux_child_insert_fork_catchpoint (int pid)
4de4c07c 915{
b957e937 916 if (! linux_supports_tracefork (pid))
8a3fe4f8 917 error (_("Your system does not support fork catchpoints."));
3993f6b1
DJ
918}
919
6d8fd2b7
UW
920static void
921linux_child_insert_vfork_catchpoint (int pid)
3993f6b1 922{
b957e937 923 if (!linux_supports_tracefork (pid))
8a3fe4f8 924 error (_("Your system does not support vfork catchpoints."));
3993f6b1
DJ
925}
926
6d8fd2b7
UW
927static void
928linux_child_insert_exec_catchpoint (int pid)
3993f6b1 929{
b957e937 930 if (!linux_supports_tracefork (pid))
8a3fe4f8 931 error (_("Your system does not support exec catchpoints."));
3993f6b1
DJ
932}
933
d6b0e80f
AC
934/* On GNU/Linux there are no real LWP's. The closest thing to LWP's
935 are processes sharing the same VM space. A multi-threaded process
936 is basically a group of such processes. However, such a grouping
937 is almost entirely a user-space issue; the kernel doesn't enforce
938 such a grouping at all (this might change in the future). In
939 general, we'll rely on the threads library (i.e. the GNU/Linux
940 Threads library) to provide such a grouping.
941
942 It is perfectly well possible to write a multi-threaded application
943 without the assistance of a threads library, by using the clone
944 system call directly. This module should be able to give some
945 rudimentary support for debugging such applications if developers
946 specify the CLONE_PTRACE flag in the clone system call, and are
947 using the Linux kernel 2.4 or above.
948
949 Note that there are some peculiarities in GNU/Linux that affect
950 this code:
951
952 - In general one should specify the __WCLONE flag to waitpid in
953 order to make it report events for any of the cloned processes
954 (and leave it out for the initial process). However, if a cloned
955 process has exited the exit status is only reported if the
956 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
957 we cannot use it since GDB must work on older systems too.
958
959 - When a traced, cloned process exits and is waited for by the
960 debugger, the kernel reassigns it to the original parent and
961 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
962 library doesn't notice this, which leads to the "zombie problem":
963 When debugged a multi-threaded process that spawns a lot of
964 threads will run out of processes, even if the threads exit,
965 because the "zombies" stay around. */
966
967/* List of known LWPs. */
9f0bdab8 968struct lwp_info *lwp_list;
d6b0e80f
AC
969
970/* Number of LWPs in the list. */
971static int num_lwps;
d6b0e80f
AC
972\f
973
d6b0e80f
AC
974/* Original signal mask. */
975static sigset_t normal_mask;
976
977/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
978 _initialize_linux_nat. */
979static sigset_t suspend_mask;
980
b84876c2
PA
981/* SIGCHLD action for synchronous mode. */
982struct sigaction sync_sigchld_action;
983
984/* SIGCHLD action for asynchronous mode. */
985static struct sigaction async_sigchld_action;
84e46146
PA
986
987/* SIGCHLD default action, to pass to new inferiors. */
988static struct sigaction sigchld_default_action;
d6b0e80f
AC
989\f
990
991/* Prototypes for local functions. */
992static int stop_wait_callback (struct lwp_info *lp, void *data);
993static int linux_nat_thread_alive (ptid_t ptid);
6d8fd2b7 994static char *linux_child_pid_to_exec_file (int pid);
710151dd
PA
995static int cancel_breakpoint (struct lwp_info *lp);
996
d6b0e80f
AC
997\f
998/* Convert wait status STATUS to a string. Used for printing debug
999 messages only. */
1000
1001static char *
1002status_to_str (int status)
1003{
1004 static char buf[64];
1005
1006 if (WIFSTOPPED (status))
1007 snprintf (buf, sizeof (buf), "%s (stopped)",
1008 strsignal (WSTOPSIG (status)));
1009 else if (WIFSIGNALED (status))
1010 snprintf (buf, sizeof (buf), "%s (terminated)",
1011 strsignal (WSTOPSIG (status)));
1012 else
1013 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1014
1015 return buf;
1016}
1017
1018/* Initialize the list of LWPs. Note that this module, contrary to
1019 what GDB's generic threads layer does for its thread list,
1020 re-initializes the LWP lists whenever we mourn or detach (which
1021 doesn't involve mourning) the inferior. */
1022
1023static void
1024init_lwp_list (void)
1025{
1026 struct lwp_info *lp, *lpnext;
1027
1028 for (lp = lwp_list; lp; lp = lpnext)
1029 {
1030 lpnext = lp->next;
1031 xfree (lp);
1032 }
1033
1034 lwp_list = NULL;
1035 num_lwps = 0;
d6b0e80f
AC
1036}
1037
f973ed9c 1038/* Add the LWP specified by PID to the list. Return a pointer to the
9f0bdab8
DJ
1039 structure describing the new LWP. The LWP should already be stopped
1040 (with an exception for the very first LWP). */
d6b0e80f
AC
1041
1042static struct lwp_info *
1043add_lwp (ptid_t ptid)
1044{
1045 struct lwp_info *lp;
1046
1047 gdb_assert (is_lwp (ptid));
1048
1049 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1050
1051 memset (lp, 0, sizeof (struct lwp_info));
1052
1053 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1054
1055 lp->ptid = ptid;
1056
1057 lp->next = lwp_list;
1058 lwp_list = lp;
f973ed9c 1059 ++num_lwps;
d6b0e80f 1060
9f0bdab8
DJ
1061 if (num_lwps > 1 && linux_nat_new_thread != NULL)
1062 linux_nat_new_thread (ptid);
1063
d6b0e80f
AC
1064 return lp;
1065}
1066
1067/* Remove the LWP specified by PID from the list. */
1068
1069static void
1070delete_lwp (ptid_t ptid)
1071{
1072 struct lwp_info *lp, *lpprev;
1073
1074 lpprev = NULL;
1075
1076 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1077 if (ptid_equal (lp->ptid, ptid))
1078 break;
1079
1080 if (!lp)
1081 return;
1082
d6b0e80f
AC
1083 num_lwps--;
1084
1085 if (lpprev)
1086 lpprev->next = lp->next;
1087 else
1088 lwp_list = lp->next;
1089
1090 xfree (lp);
1091}
1092
1093/* Return a pointer to the structure describing the LWP corresponding
1094 to PID. If no corresponding LWP could be found, return NULL. */
1095
1096static struct lwp_info *
1097find_lwp_pid (ptid_t ptid)
1098{
1099 struct lwp_info *lp;
1100 int lwp;
1101
1102 if (is_lwp (ptid))
1103 lwp = GET_LWP (ptid);
1104 else
1105 lwp = GET_PID (ptid);
1106
1107 for (lp = lwp_list; lp; lp = lp->next)
1108 if (lwp == GET_LWP (lp->ptid))
1109 return lp;
1110
1111 return NULL;
1112}
1113
1114/* Call CALLBACK with its second argument set to DATA for every LWP in
1115 the list. If CALLBACK returns 1 for a particular LWP, return a
1116 pointer to the structure describing that LWP immediately.
1117 Otherwise return NULL. */
1118
1119struct lwp_info *
1120iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1121{
1122 struct lwp_info *lp, *lpnext;
1123
1124 for (lp = lwp_list; lp; lp = lpnext)
1125 {
1126 lpnext = lp->next;
1127 if ((*callback) (lp, data))
1128 return lp;
1129 }
1130
1131 return NULL;
1132}
1133
f973ed9c
DJ
1134/* Update our internal state when changing from one fork (checkpoint,
1135 et cetera) to another indicated by NEW_PTID. We can only switch
1136 single-threaded applications, so we only create one new LWP, and
1137 the previous list is discarded. */
1138
1139void
1140linux_nat_switch_fork (ptid_t new_ptid)
1141{
1142 struct lwp_info *lp;
1143
1144 init_lwp_list ();
1145 lp = add_lwp (new_ptid);
1146 lp->stopped = 1;
e26af52f 1147
4f8d22e3
PA
1148 init_thread_list ();
1149 add_thread_silent (new_ptid);
e26af52f
DJ
1150}
1151
e26af52f
DJ
1152/* Handle the exit of a single thread LP. */
1153
1154static void
1155exit_lwp (struct lwp_info *lp)
1156{
063bfe2e
VP
1157 struct thread_info *th = find_thread_pid (lp->ptid);
1158
1159 if (th)
e26af52f 1160 {
17faa917
DJ
1161 if (print_thread_events)
1162 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1163
4f8d22e3 1164 delete_thread (lp->ptid);
e26af52f
DJ
1165 }
1166
1167 delete_lwp (lp->ptid);
1168}
1169
a0ef4274
DJ
1170/* Detect `T (stopped)' in `/proc/PID/status'.
1171 Other states including `T (tracing stop)' are reported as false. */
1172
1173static int
1174pid_is_stopped (pid_t pid)
1175{
1176 FILE *status_file;
1177 char buf[100];
1178 int retval = 0;
1179
1180 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1181 status_file = fopen (buf, "r");
1182 if (status_file != NULL)
1183 {
1184 int have_state = 0;
1185
1186 while (fgets (buf, sizeof (buf), status_file))
1187 {
1188 if (strncmp (buf, "State:", 6) == 0)
1189 {
1190 have_state = 1;
1191 break;
1192 }
1193 }
1194 if (have_state && strstr (buf, "T (stopped)") != NULL)
1195 retval = 1;
1196 fclose (status_file);
1197 }
1198 return retval;
1199}
1200
1201/* Wait for the LWP specified by LP, which we have just attached to.
1202 Returns a wait status for that LWP, to cache. */
1203
1204static int
1205linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1206 int *signalled)
1207{
1208 pid_t new_pid, pid = GET_LWP (ptid);
1209 int status;
1210
1211 if (pid_is_stopped (pid))
1212 {
1213 if (debug_linux_nat)
1214 fprintf_unfiltered (gdb_stdlog,
1215 "LNPAW: Attaching to a stopped process\n");
1216
1217 /* The process is definitely stopped. It is in a job control
1218 stop, unless the kernel predates the TASK_STOPPED /
1219 TASK_TRACED distinction, in which case it might be in a
1220 ptrace stop. Make sure it is in a ptrace stop; from there we
1221 can kill it, signal it, et cetera.
1222
1223 First make sure there is a pending SIGSTOP. Since we are
1224 already attached, the process can not transition from stopped
1225 to running without a PTRACE_CONT; so we know this signal will
1226 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1227 probably already in the queue (unless this kernel is old
1228 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1229 is not an RT signal, it can only be queued once. */
1230 kill_lwp (pid, SIGSTOP);
1231
1232 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1233 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1234 ptrace (PTRACE_CONT, pid, 0, 0);
1235 }
1236
1237 /* Make sure the initial process is stopped. The user-level threads
1238 layer might want to poke around in the inferior, and that won't
1239 work if things haven't stabilized yet. */
1240 new_pid = my_waitpid (pid, &status, 0);
1241 if (new_pid == -1 && errno == ECHILD)
1242 {
1243 if (first)
1244 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1245
1246 /* Try again with __WCLONE to check cloned processes. */
1247 new_pid = my_waitpid (pid, &status, __WCLONE);
1248 *cloned = 1;
1249 }
1250
1251 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1252
1253 if (WSTOPSIG (status) != SIGSTOP)
1254 {
1255 *signalled = 1;
1256 if (debug_linux_nat)
1257 fprintf_unfiltered (gdb_stdlog,
1258 "LNPAW: Received %s after attaching\n",
1259 status_to_str (status));
1260 }
1261
1262 return status;
1263}
1264
1265/* Attach to the LWP specified by PID. Return 0 if successful or -1
1266 if the new LWP could not be attached. */
d6b0e80f 1267
9ee57c33 1268int
93815fbf 1269lin_lwp_attach_lwp (ptid_t ptid)
d6b0e80f 1270{
9ee57c33 1271 struct lwp_info *lp;
84e46146 1272 enum sigchld_state async_events_original_state;
d6b0e80f
AC
1273
1274 gdb_assert (is_lwp (ptid));
1275
84e46146 1276 async_events_original_state = linux_nat_async_events (sigchld_sync);
d6b0e80f 1277
9ee57c33 1278 lp = find_lwp_pid (ptid);
d6b0e80f
AC
1279
1280 /* We assume that we're already attached to any LWP that has an id
1281 equal to the overall process id, and to any LWP that is already
1282 in our list of LWPs. If we're not seeing exit events from threads
1283 and we've had PID wraparound since we last tried to stop all threads,
1284 this assumption might be wrong; fortunately, this is very unlikely
1285 to happen. */
9ee57c33 1286 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
d6b0e80f 1287 {
a0ef4274 1288 int status, cloned = 0, signalled = 0;
d6b0e80f
AC
1289
1290 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
9ee57c33
DJ
1291 {
1292 /* If we fail to attach to the thread, issue a warning,
1293 but continue. One way this can happen is if thread
e9efe249 1294 creation is interrupted; as of Linux kernel 2.6.19, a
9ee57c33
DJ
1295 bug may place threads in the thread list and then fail
1296 to create them. */
1297 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1298 safe_strerror (errno));
1299 return -1;
1300 }
1301
d6b0e80f
AC
1302 if (debug_linux_nat)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1305 target_pid_to_str (ptid));
1306
a0ef4274
DJ
1307 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1308 lp = add_lwp (ptid);
1309 lp->stopped = 1;
1310 lp->cloned = cloned;
1311 lp->signalled = signalled;
1312 if (WSTOPSIG (status) != SIGSTOP)
d6b0e80f 1313 {
a0ef4274
DJ
1314 lp->resumed = 1;
1315 lp->status = status;
d6b0e80f
AC
1316 }
1317
a0ef4274 1318 target_post_attach (GET_LWP (lp->ptid));
d6b0e80f
AC
1319
1320 if (debug_linux_nat)
1321 {
1322 fprintf_unfiltered (gdb_stdlog,
1323 "LLAL: waitpid %s received %s\n",
1324 target_pid_to_str (ptid),
1325 status_to_str (status));
1326 }
1327 }
1328 else
1329 {
1330 /* We assume that the LWP representing the original process is
1331 already stopped. Mark it as stopped in the data structure
155bd5d1
AC
1332 that the GNU/linux ptrace layer uses to keep track of
1333 threads. Note that this won't have already been done since
1334 the main thread will have, we assume, been stopped by an
1335 attach from a different layer. */
9ee57c33
DJ
1336 if (lp == NULL)
1337 lp = add_lwp (ptid);
d6b0e80f
AC
1338 lp->stopped = 1;
1339 }
9ee57c33 1340
84e46146 1341 linux_nat_async_events (async_events_original_state);
9ee57c33 1342 return 0;
d6b0e80f
AC
1343}
1344
b84876c2 1345static void
136d6dae
VP
1346linux_nat_create_inferior (struct target_ops *ops,
1347 char *exec_file, char *allargs, char **env,
b84876c2
PA
1348 int from_tty)
1349{
1350 int saved_async = 0;
10568435
JK
1351#ifdef HAVE_PERSONALITY
1352 int personality_orig = 0, personality_set = 0;
1353#endif /* HAVE_PERSONALITY */
b84876c2
PA
1354
1355 /* The fork_child mechanism is synchronous and calls target_wait, so
1356 we have to mask the async mode. */
1357
1358 if (target_can_async_p ())
84e46146
PA
1359 /* Mask async mode. Creating a child requires a loop calling
1360 wait_for_inferior currently. */
b84876c2
PA
1361 saved_async = linux_nat_async_mask (0);
1362 else
1363 {
1364 /* Restore the original signal mask. */
1365 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1366 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1367 suspend_mask = normal_mask;
1368 sigdelset (&suspend_mask, SIGCHLD);
1369 }
1370
84e46146
PA
1371 /* Set SIGCHLD to the default action, until after execing the child,
1372 since the inferior inherits the superior's signal mask. It will
1373 be blocked again in linux_nat_wait, which is only reached after
1374 the inferior execing. */
1375 linux_nat_async_events (sigchld_default);
1376
10568435
JK
1377#ifdef HAVE_PERSONALITY
1378 if (disable_randomization)
1379 {
1380 errno = 0;
1381 personality_orig = personality (0xffffffff);
1382 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1383 {
1384 personality_set = 1;
1385 personality (personality_orig | ADDR_NO_RANDOMIZE);
1386 }
1387 if (errno != 0 || (personality_set
1388 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1389 warning (_("Error disabling address space randomization: %s"),
1390 safe_strerror (errno));
1391 }
1392#endif /* HAVE_PERSONALITY */
1393
136d6dae 1394 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
b84876c2 1395
10568435
JK
1396#ifdef HAVE_PERSONALITY
1397 if (personality_set)
1398 {
1399 errno = 0;
1400 personality (personality_orig);
1401 if (errno != 0)
1402 warning (_("Error restoring address space randomization: %s"),
1403 safe_strerror (errno));
1404 }
1405#endif /* HAVE_PERSONALITY */
1406
b84876c2
PA
1407 if (saved_async)
1408 linux_nat_async_mask (saved_async);
1409}
1410
d6b0e80f 1411static void
136d6dae 1412linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f
AC
1413{
1414 struct lwp_info *lp;
d6b0e80f 1415 int status;
af990527 1416 ptid_t ptid;
d6b0e80f
AC
1417
1418 /* FIXME: We should probably accept a list of process id's, and
1419 attach all of them. */
136d6dae 1420 linux_ops->to_attach (ops, args, from_tty);
d6b0e80f 1421
b84876c2
PA
1422 if (!target_can_async_p ())
1423 {
1424 /* Restore the original signal mask. */
1425 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1426 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1427 suspend_mask = normal_mask;
1428 sigdelset (&suspend_mask, SIGCHLD);
1429 }
1430
af990527
PA
1431 /* The ptrace base target adds the main thread with (pid,0,0)
1432 format. Decorate it with lwp info. */
1433 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1434 thread_change_ptid (inferior_ptid, ptid);
1435
9f0bdab8 1436 /* Add the initial process as the first LWP to the list. */
af990527 1437 lp = add_lwp (ptid);
a0ef4274
DJ
1438
1439 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1440 &lp->signalled);
1441 lp->stopped = 1;
9f0bdab8 1442
a0ef4274 1443 /* Save the wait status to report later. */
d6b0e80f 1444 lp->resumed = 1;
a0ef4274
DJ
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LNA: waitpid %ld, saving status %s\n",
1448 (long) GET_PID (lp->ptid), status_to_str (status));
710151dd
PA
1449
1450 if (!target_can_async_p ())
a0ef4274 1451 lp->status = status;
710151dd
PA
1452 else
1453 {
1454 /* We already waited for this LWP, so put the wait result on the
1455 pipe. The event loop will wake up and gets us to handling
1456 this event. */
a0ef4274
DJ
1457 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1458 lp->cloned ? __WCLONE : 0);
b84876c2
PA
1459 /* Register in the event loop. */
1460 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1461 }
1462}
1463
a0ef4274
DJ
1464/* Get pending status of LP. */
1465static int
1466get_pending_status (struct lwp_info *lp, int *status)
1467{
1468 struct target_waitstatus last;
1469 ptid_t last_ptid;
1470
1471 get_last_target_status (&last_ptid, &last);
1472
1473 /* If this lwp is the ptid that GDB is processing an event from, the
1474 signal will be in stop_signal. Otherwise, in all-stop + sync
1475 mode, we may cache pending events in lp->status while trying to
1476 stop all threads (see stop_wait_callback). In async mode, the
1477 events are always cached in waitpid_queue. */
1478
1479 *status = 0;
4c28f408
PA
1480
1481 if (non_stop)
a0ef4274 1482 {
4c28f408
PA
1483 enum target_signal signo = TARGET_SIGNAL_0;
1484
1485 if (is_executing (lp->ptid))
1486 {
1487 /* If the core thought this lwp was executing --- e.g., the
1488 executing property hasn't been updated yet, but the
1489 thread has been stopped with a stop_callback /
1490 stop_wait_callback sequence (see linux_nat_detach for
1491 example) --- we can only have pending events in the local
1492 queue. */
1493 if (queued_waitpid (GET_LWP (lp->ptid), status, __WALL) != -1)
1494 {
8b8655b3
TJB
1495 if (WIFSTOPPED (*status))
1496 signo = target_signal_from_host (WSTOPSIG (*status));
4c28f408
PA
1497
1498 /* If not stopped, then the lwp is gone, no use in
1499 resending a signal. */
1500 }
1501 }
1502 else
1503 {
1504 /* If the core knows the thread is not executing, then we
1505 have the last signal recorded in
2020b7ab 1506 thread_info->stop_signal. */
4c28f408 1507
2020b7ab
PA
1508 struct thread_info *tp = find_thread_pid (lp->ptid);
1509 signo = tp->stop_signal;
4c28f408
PA
1510 }
1511
1512 if (signo != TARGET_SIGNAL_0
1513 && !signal_pass_state (signo))
1514 {
1515 if (debug_linux_nat)
1516 fprintf_unfiltered (gdb_stdlog, "\
1517GPT: lwp %s had signal %s, but it is in no pass state\n",
1518 target_pid_to_str (lp->ptid),
1519 target_signal_to_string (signo));
1520 }
1521 else
1522 {
1523 if (signo != TARGET_SIGNAL_0)
1524 *status = W_STOPCODE (target_signal_to_host (signo));
1525
1526 if (debug_linux_nat)
1527 fprintf_unfiltered (gdb_stdlog,
1528 "GPT: lwp %s as pending signal %s\n",
1529 target_pid_to_str (lp->ptid),
1530 target_signal_to_string (signo));
1531 }
a0ef4274 1532 }
a0ef4274 1533 else
4c28f408
PA
1534 {
1535 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1536 {
2020b7ab
PA
1537 struct thread_info *tp = find_thread_pid (lp->ptid);
1538 if (tp->stop_signal != TARGET_SIGNAL_0
1539 && signal_pass_state (tp->stop_signal))
1540 *status = W_STOPCODE (target_signal_to_host (tp->stop_signal));
4c28f408
PA
1541 }
1542 else if (target_can_async_p ())
1543 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1544 else
1545 *status = lp->status;
1546 }
a0ef4274
DJ
1547
1548 return 0;
1549}
1550
d6b0e80f
AC
1551static int
1552detach_callback (struct lwp_info *lp, void *data)
1553{
1554 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1555
1556 if (debug_linux_nat && lp->status)
1557 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1558 strsignal (WSTOPSIG (lp->status)),
1559 target_pid_to_str (lp->ptid));
1560
a0ef4274
DJ
1561 /* If there is a pending SIGSTOP, get rid of it. */
1562 if (lp->signalled)
d6b0e80f 1563 {
d6b0e80f
AC
1564 if (debug_linux_nat)
1565 fprintf_unfiltered (gdb_stdlog,
a0ef4274
DJ
1566 "DC: Sending SIGCONT to %s\n",
1567 target_pid_to_str (lp->ptid));
d6b0e80f 1568
a0ef4274 1569 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
d6b0e80f 1570 lp->signalled = 0;
d6b0e80f
AC
1571 }
1572
1573 /* We don't actually detach from the LWP that has an id equal to the
1574 overall process id just yet. */
1575 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1576 {
a0ef4274
DJ
1577 int status = 0;
1578
1579 /* Pass on any pending signal for this LWP. */
1580 get_pending_status (lp, &status);
1581
d6b0e80f
AC
1582 errno = 0;
1583 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
a0ef4274 1584 WSTOPSIG (status)) < 0)
8a3fe4f8 1585 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
d6b0e80f
AC
1586 safe_strerror (errno));
1587
1588 if (debug_linux_nat)
1589 fprintf_unfiltered (gdb_stdlog,
1590 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1591 target_pid_to_str (lp->ptid),
1592 strsignal (WSTOPSIG (lp->status)));
1593
1594 delete_lwp (lp->ptid);
1595 }
1596
1597 return 0;
1598}
1599
1600static void
136d6dae 1601linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
d6b0e80f 1602{
b84876c2 1603 int pid;
a0ef4274
DJ
1604 int status;
1605 enum target_signal sig;
1606
b84876c2
PA
1607 if (target_can_async_p ())
1608 linux_nat_async (NULL, 0);
1609
4c28f408
PA
1610 /* Stop all threads before detaching. ptrace requires that the
1611 thread is stopped to sucessfully detach. */
1612 iterate_over_lwps (stop_callback, NULL);
1613 /* ... and wait until all of them have reported back that
1614 they're no longer running. */
1615 iterate_over_lwps (stop_wait_callback, NULL);
1616
d6b0e80f
AC
1617 iterate_over_lwps (detach_callback, NULL);
1618
1619 /* Only the initial process should be left right now. */
1620 gdb_assert (num_lwps == 1);
1621
a0ef4274
DJ
1622 /* Pass on any pending signal for the last LWP. */
1623 if ((args == NULL || *args == '\0')
1624 && get_pending_status (lwp_list, &status) != -1
1625 && WIFSTOPPED (status))
1626 {
1627 /* Put the signal number in ARGS so that inf_ptrace_detach will
1628 pass it along with PTRACE_DETACH. */
1629 args = alloca (8);
1630 sprintf (args, "%d", (int) WSTOPSIG (status));
1631 fprintf_unfiltered (gdb_stdlog,
1632 "LND: Sending signal %s to %s\n",
1633 args,
1634 target_pid_to_str (lwp_list->ptid));
1635 }
1636
d6b0e80f
AC
1637 /* Destroy LWP info; it's no longer valid. */
1638 init_lwp_list ();
1639
7a7d3353 1640 pid = ptid_get_pid (inferior_ptid);
b84876c2
PA
1641
1642 if (target_can_async_p ())
1643 drain_queued_events (pid);
7a7d3353
PA
1644
1645 if (forks_exist_p ())
1646 {
1647 /* Multi-fork case. The current inferior_ptid is being detached
1648 from, but there are other viable forks to debug. Detach from
1649 the current fork, and context-switch to the first
1650 available. */
1651 linux_fork_detach (args, from_tty);
1652
1653 if (non_stop && target_can_async_p ())
1654 target_async (inferior_event_handler, 0);
1655 }
1656 else
1657 linux_ops->to_detach (ops, args, from_tty);
d6b0e80f
AC
1658}
1659
1660/* Resume LP. */
1661
1662static int
1663resume_callback (struct lwp_info *lp, void *data)
1664{
1665 if (lp->stopped && lp->status == 0)
1666 {
10d6c8cd
DJ
1667 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
1668 0, TARGET_SIGNAL_0);
d6b0e80f
AC
1669 if (debug_linux_nat)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1672 target_pid_to_str (lp->ptid));
1673 lp->stopped = 0;
1674 lp->step = 0;
9f0bdab8 1675 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
d6b0e80f 1676 }
57380f4e
DJ
1677 else if (lp->stopped && debug_linux_nat)
1678 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1679 target_pid_to_str (lp->ptid));
1680 else if (debug_linux_nat)
1681 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1682 target_pid_to_str (lp->ptid));
d6b0e80f
AC
1683
1684 return 0;
1685}
1686
1687static int
1688resume_clear_callback (struct lwp_info *lp, void *data)
1689{
1690 lp->resumed = 0;
1691 return 0;
1692}
1693
1694static int
1695resume_set_callback (struct lwp_info *lp, void *data)
1696{
1697 lp->resumed = 1;
1698 return 0;
1699}
1700
1701static void
1702linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
1703{
1704 struct lwp_info *lp;
1705 int resume_all;
1706
76f50ad1
DJ
1707 if (debug_linux_nat)
1708 fprintf_unfiltered (gdb_stdlog,
1709 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1710 step ? "step" : "resume",
1711 target_pid_to_str (ptid),
1712 signo ? strsignal (signo) : "0",
1713 target_pid_to_str (inferior_ptid));
1714
b84876c2
PA
1715 if (target_can_async_p ())
1716 /* Block events while we're here. */
84e46146 1717 linux_nat_async_events (sigchld_sync);
b84876c2 1718
d6b0e80f
AC
1719 /* A specific PTID means `step only this process id'. */
1720 resume_all = (PIDGET (ptid) == -1);
1721
4c28f408
PA
1722 if (non_stop && resume_all)
1723 internal_error (__FILE__, __LINE__,
1724 "can't resume all in non-stop mode");
1725
1726 if (!non_stop)
1727 {
1728 if (resume_all)
1729 iterate_over_lwps (resume_set_callback, NULL);
1730 else
1731 iterate_over_lwps (resume_clear_callback, NULL);
1732 }
d6b0e80f
AC
1733
1734 /* If PID is -1, it's the current inferior that should be
1735 handled specially. */
1736 if (PIDGET (ptid) == -1)
1737 ptid = inferior_ptid;
1738
1739 lp = find_lwp_pid (ptid);
9f0bdab8 1740 gdb_assert (lp != NULL);
d6b0e80f 1741
4c28f408 1742 /* Convert to something the lower layer understands. */
9f0bdab8 1743 ptid = pid_to_ptid (GET_LWP (lp->ptid));
d6b0e80f 1744
9f0bdab8
DJ
1745 /* Remember if we're stepping. */
1746 lp->step = step;
d6b0e80f 1747
9f0bdab8
DJ
1748 /* Mark this LWP as resumed. */
1749 lp->resumed = 1;
76f50ad1 1750
9f0bdab8
DJ
1751 /* If we have a pending wait status for this thread, there is no
1752 point in resuming the process. But first make sure that
1753 linux_nat_wait won't preemptively handle the event - we
1754 should never take this short-circuit if we are going to
1755 leave LP running, since we have skipped resuming all the
1756 other threads. This bit of code needs to be synchronized
1757 with linux_nat_wait. */
76f50ad1 1758
710151dd
PA
1759 /* In async mode, we never have pending wait status. */
1760 if (target_can_async_p () && lp->status)
1761 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1762
9f0bdab8
DJ
1763 if (lp->status && WIFSTOPPED (lp->status))
1764 {
d6b48e9c
PA
1765 int saved_signo;
1766 struct inferior *inf;
76f50ad1 1767
d6b48e9c
PA
1768 inf = find_inferior_pid (ptid_get_pid (ptid));
1769 gdb_assert (inf);
1770 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1771
1772 /* Defer to common code if we're gaining control of the
1773 inferior. */
1774 if (inf->stop_soon == NO_STOP_QUIETLY
1775 && signal_stop_state (saved_signo) == 0
9f0bdab8
DJ
1776 && signal_print_state (saved_signo) == 0
1777 && signal_pass_state (saved_signo) == 1)
d6b0e80f 1778 {
9f0bdab8
DJ
1779 if (debug_linux_nat)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "LLR: Not short circuiting for ignored "
1782 "status 0x%x\n", lp->status);
1783
d6b0e80f
AC
1784 /* FIXME: What should we do if we are supposed to continue
1785 this thread with a signal? */
1786 gdb_assert (signo == TARGET_SIGNAL_0);
9f0bdab8
DJ
1787 signo = saved_signo;
1788 lp->status = 0;
1789 }
1790 }
76f50ad1 1791
9f0bdab8
DJ
1792 if (lp->status)
1793 {
1794 /* FIXME: What should we do if we are supposed to continue
1795 this thread with a signal? */
1796 gdb_assert (signo == TARGET_SIGNAL_0);
76f50ad1 1797
9f0bdab8
DJ
1798 if (debug_linux_nat)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "LLR: Short circuiting for status 0x%x\n",
1801 lp->status);
d6b0e80f 1802
9f0bdab8 1803 return;
d6b0e80f
AC
1804 }
1805
9f0bdab8
DJ
1806 /* Mark LWP as not stopped to prevent it from being continued by
1807 resume_callback. */
1808 lp->stopped = 0;
1809
d6b0e80f
AC
1810 if (resume_all)
1811 iterate_over_lwps (resume_callback, NULL);
1812
10d6c8cd 1813 linux_ops->to_resume (ptid, step, signo);
9f0bdab8
DJ
1814 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1815
d6b0e80f
AC
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog,
1818 "LLR: %s %s, %s (resume event thread)\n",
1819 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1820 target_pid_to_str (ptid),
1821 signo ? strsignal (signo) : "0");
b84876c2
PA
1822
1823 if (target_can_async_p ())
8ea051c5 1824 target_async (inferior_event_handler, 0);
d6b0e80f
AC
1825}
1826
1827/* Issue kill to specified lwp. */
1828
1829static int tkill_failed;
1830
1831static int
1832kill_lwp (int lwpid, int signo)
1833{
1834 errno = 0;
1835
1836/* Use tkill, if possible, in case we are using nptl threads. If tkill
1837 fails, then we are not using nptl threads and we should be using kill. */
1838
1839#ifdef HAVE_TKILL_SYSCALL
1840 if (!tkill_failed)
1841 {
1842 int ret = syscall (__NR_tkill, lwpid, signo);
1843 if (errno != ENOSYS)
1844 return ret;
1845 errno = 0;
1846 tkill_failed = 1;
1847 }
1848#endif
1849
1850 return kill (lwpid, signo);
1851}
1852
3d799a95
DJ
1853/* Handle a GNU/Linux extended wait response. If we see a clone
1854 event, we need to add the new LWP to our list (and not report the
1855 trap to higher layers). This function returns non-zero if the
1856 event should be ignored and we should wait again. If STOPPING is
1857 true, the new LWP remains stopped, otherwise it is continued. */
d6b0e80f
AC
1858
1859static int
3d799a95
DJ
1860linux_handle_extended_wait (struct lwp_info *lp, int status,
1861 int stopping)
d6b0e80f 1862{
3d799a95
DJ
1863 int pid = GET_LWP (lp->ptid);
1864 struct target_waitstatus *ourstatus = &lp->waitstatus;
1865 struct lwp_info *new_lp = NULL;
1866 int event = status >> 16;
d6b0e80f 1867
3d799a95
DJ
1868 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1869 || event == PTRACE_EVENT_CLONE)
d6b0e80f 1870 {
3d799a95
DJ
1871 unsigned long new_pid;
1872 int ret;
1873
1874 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
6fc19103 1875
3d799a95
DJ
1876 /* If we haven't already seen the new PID stop, wait for it now. */
1877 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1878 {
1879 /* The new child has a pending SIGSTOP. We can't affect it until it
1880 hits the SIGSTOP, but we're already attached. */
1881 ret = my_waitpid (new_pid, &status,
1882 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1883 if (ret == -1)
1884 perror_with_name (_("waiting for new child"));
1885 else if (ret != new_pid)
1886 internal_error (__FILE__, __LINE__,
1887 _("wait returned unexpected PID %d"), ret);
1888 else if (!WIFSTOPPED (status))
1889 internal_error (__FILE__, __LINE__,
1890 _("wait returned unexpected status 0x%x"), status);
1891 }
1892
3a3e9ee3 1893 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
3d799a95
DJ
1894
1895 if (event == PTRACE_EVENT_FORK)
1896 ourstatus->kind = TARGET_WAITKIND_FORKED;
1897 else if (event == PTRACE_EVENT_VFORK)
1898 ourstatus->kind = TARGET_WAITKIND_VFORKED;
6fc19103 1899 else
3d799a95 1900 {
4c28f408
PA
1901 struct cleanup *old_chain;
1902
3d799a95
DJ
1903 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1904 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1905 new_lp->cloned = 1;
4c28f408 1906 new_lp->stopped = 1;
d6b0e80f 1907
3d799a95
DJ
1908 if (WSTOPSIG (status) != SIGSTOP)
1909 {
1910 /* This can happen if someone starts sending signals to
1911 the new thread before it gets a chance to run, which
1912 have a lower number than SIGSTOP (e.g. SIGUSR1).
1913 This is an unlikely case, and harder to handle for
1914 fork / vfork than for clone, so we do not try - but
1915 we handle it for clone events here. We'll send
1916 the other signal on to the thread below. */
1917
1918 new_lp->signalled = 1;
1919 }
1920 else
1921 status = 0;
d6b0e80f 1922
4c28f408 1923 if (non_stop)
3d799a95 1924 {
4c28f408
PA
1925 /* Add the new thread to GDB's lists as soon as possible
1926 so that:
1927
1928 1) the frontend doesn't have to wait for a stop to
1929 display them, and,
1930
1931 2) we tag it with the correct running state. */
1932
1933 /* If the thread_db layer is active, let it know about
1934 this new thread, and add it to GDB's list. */
1935 if (!thread_db_attach_lwp (new_lp->ptid))
1936 {
1937 /* We're not using thread_db. Add it to GDB's
1938 list. */
1939 target_post_attach (GET_LWP (new_lp->ptid));
1940 add_thread (new_lp->ptid);
1941 }
1942
1943 if (!stopping)
1944 {
1945 set_running (new_lp->ptid, 1);
1946 set_executing (new_lp->ptid, 1);
1947 }
1948 }
1949
1950 if (!stopping)
1951 {
1952 new_lp->stopped = 0;
3d799a95 1953 new_lp->resumed = 1;
4c28f408 1954 ptrace (PTRACE_CONT, new_pid, 0,
3d799a95
DJ
1955 status ? WSTOPSIG (status) : 0);
1956 }
d6b0e80f 1957
3d799a95
DJ
1958 if (debug_linux_nat)
1959 fprintf_unfiltered (gdb_stdlog,
1960 "LHEW: Got clone event from LWP %ld, resuming\n",
1961 GET_LWP (lp->ptid));
1962 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1963
1964 return 1;
1965 }
1966
1967 return 0;
d6b0e80f
AC
1968 }
1969
3d799a95
DJ
1970 if (event == PTRACE_EVENT_EXEC)
1971 {
1972 ourstatus->kind = TARGET_WAITKIND_EXECD;
1973 ourstatus->value.execd_pathname
6d8fd2b7 1974 = xstrdup (linux_child_pid_to_exec_file (pid));
3d799a95
DJ
1975
1976 if (linux_parent_pid)
1977 {
1978 detach_breakpoints (linux_parent_pid);
1979 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1980
1981 linux_parent_pid = 0;
1982 }
1983
25b22b0a
PA
1984 /* At this point, all inserted breakpoints are gone. Doing this
1985 as soon as we detect an exec prevents the badness of deleting
1986 a breakpoint writing the current "shadow contents" to lift
1987 the bp. That shadow is NOT valid after an exec.
1988
1989 Note that we have to do this after the detach_breakpoints
1990 call above, otherwise breakpoints wouldn't be lifted from the
1991 parent on a vfork, because detach_breakpoints would think
1992 that breakpoints are not inserted. */
1993 mark_breakpoints_out ();
3d799a95
DJ
1994 return 0;
1995 }
1996
1997 internal_error (__FILE__, __LINE__,
1998 _("unknown ptrace event %d"), event);
d6b0e80f
AC
1999}
2000
2001/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2002 exited. */
2003
2004static int
2005wait_lwp (struct lwp_info *lp)
2006{
2007 pid_t pid;
2008 int status;
2009 int thread_dead = 0;
2010
2011 gdb_assert (!lp->stopped);
2012 gdb_assert (lp->status == 0);
2013
58aecb61 2014 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
d6b0e80f
AC
2015 if (pid == -1 && errno == ECHILD)
2016 {
58aecb61 2017 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
d6b0e80f
AC
2018 if (pid == -1 && errno == ECHILD)
2019 {
2020 /* The thread has previously exited. We need to delete it
2021 now because, for some vendor 2.4 kernels with NPTL
2022 support backported, there won't be an exit event unless
2023 it is the main thread. 2.6 kernels will report an exit
2024 event for each thread that exits, as expected. */
2025 thread_dead = 1;
2026 if (debug_linux_nat)
2027 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2028 target_pid_to_str (lp->ptid));
2029 }
2030 }
2031
2032 if (!thread_dead)
2033 {
2034 gdb_assert (pid == GET_LWP (lp->ptid));
2035
2036 if (debug_linux_nat)
2037 {
2038 fprintf_unfiltered (gdb_stdlog,
2039 "WL: waitpid %s received %s\n",
2040 target_pid_to_str (lp->ptid),
2041 status_to_str (status));
2042 }
2043 }
2044
2045 /* Check if the thread has exited. */
2046 if (WIFEXITED (status) || WIFSIGNALED (status))
2047 {
2048 thread_dead = 1;
2049 if (debug_linux_nat)
2050 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2051 target_pid_to_str (lp->ptid));
2052 }
2053
2054 if (thread_dead)
2055 {
e26af52f 2056 exit_lwp (lp);
d6b0e80f
AC
2057 return 0;
2058 }
2059
2060 gdb_assert (WIFSTOPPED (status));
2061
2062 /* Handle GNU/Linux's extended waitstatus for trace events. */
2063 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2064 {
2065 if (debug_linux_nat)
2066 fprintf_unfiltered (gdb_stdlog,
2067 "WL: Handling extended status 0x%06x\n",
2068 status);
3d799a95 2069 if (linux_handle_extended_wait (lp, status, 1))
d6b0e80f
AC
2070 return wait_lwp (lp);
2071 }
2072
2073 return status;
2074}
2075
9f0bdab8
DJ
2076/* Save the most recent siginfo for LP. This is currently only called
2077 for SIGTRAP; some ports use the si_addr field for
2078 target_stopped_data_address. In the future, it may also be used to
2079 restore the siginfo of requeued signals. */
2080
2081static void
2082save_siginfo (struct lwp_info *lp)
2083{
2084 errno = 0;
2085 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2086 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2087
2088 if (errno != 0)
2089 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2090}
2091
d6b0e80f
AC
2092/* Send a SIGSTOP to LP. */
2093
2094static int
2095stop_callback (struct lwp_info *lp, void *data)
2096{
2097 if (!lp->stopped && !lp->signalled)
2098 {
2099 int ret;
2100
2101 if (debug_linux_nat)
2102 {
2103 fprintf_unfiltered (gdb_stdlog,
2104 "SC: kill %s **<SIGSTOP>**\n",
2105 target_pid_to_str (lp->ptid));
2106 }
2107 errno = 0;
2108 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2109 if (debug_linux_nat)
2110 {
2111 fprintf_unfiltered (gdb_stdlog,
2112 "SC: lwp kill %d %s\n",
2113 ret,
2114 errno ? safe_strerror (errno) : "ERRNO-OK");
2115 }
2116
2117 lp->signalled = 1;
2118 gdb_assert (lp->status == 0);
2119 }
2120
2121 return 0;
2122}
2123
57380f4e 2124/* Return non-zero if LWP PID has a pending SIGINT. */
d6b0e80f
AC
2125
2126static int
57380f4e
DJ
2127linux_nat_has_pending_sigint (int pid)
2128{
2129 sigset_t pending, blocked, ignored;
2130 int i;
2131
2132 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2133
2134 if (sigismember (&pending, SIGINT)
2135 && !sigismember (&ignored, SIGINT))
2136 return 1;
2137
2138 return 0;
2139}
2140
2141/* Set a flag in LP indicating that we should ignore its next SIGINT. */
2142
2143static int
2144set_ignore_sigint (struct lwp_info *lp, void *data)
d6b0e80f 2145{
57380f4e
DJ
2146 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2147 flag to consume the next one. */
2148 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2149 && WSTOPSIG (lp->status) == SIGINT)
2150 lp->status = 0;
2151 else
2152 lp->ignore_sigint = 1;
2153
2154 return 0;
2155}
2156
2157/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2158 This function is called after we know the LWP has stopped; if the LWP
2159 stopped before the expected SIGINT was delivered, then it will never have
2160 arrived. Also, if the signal was delivered to a shared queue and consumed
2161 by a different thread, it will never be delivered to this LWP. */
d6b0e80f 2162
57380f4e
DJ
2163static void
2164maybe_clear_ignore_sigint (struct lwp_info *lp)
2165{
2166 if (!lp->ignore_sigint)
2167 return;
2168
2169 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2170 {
2171 if (debug_linux_nat)
2172 fprintf_unfiltered (gdb_stdlog,
2173 "MCIS: Clearing bogus flag for %s\n",
2174 target_pid_to_str (lp->ptid));
2175 lp->ignore_sigint = 0;
2176 }
2177}
2178
2179/* Wait until LP is stopped. */
2180
2181static int
2182stop_wait_callback (struct lwp_info *lp, void *data)
2183{
d6b0e80f
AC
2184 if (!lp->stopped)
2185 {
2186 int status;
2187
2188 status = wait_lwp (lp);
2189 if (status == 0)
2190 return 0;
2191
57380f4e
DJ
2192 if (lp->ignore_sigint && WIFSTOPPED (status)
2193 && WSTOPSIG (status) == SIGINT)
d6b0e80f 2194 {
57380f4e 2195 lp->ignore_sigint = 0;
d6b0e80f
AC
2196
2197 errno = 0;
2198 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2199 if (debug_linux_nat)
2200 fprintf_unfiltered (gdb_stdlog,
57380f4e 2201 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
d6b0e80f
AC
2202 target_pid_to_str (lp->ptid),
2203 errno ? safe_strerror (errno) : "OK");
2204
57380f4e 2205 return stop_wait_callback (lp, NULL);
d6b0e80f
AC
2206 }
2207
57380f4e
DJ
2208 maybe_clear_ignore_sigint (lp);
2209
d6b0e80f
AC
2210 if (WSTOPSIG (status) != SIGSTOP)
2211 {
2212 if (WSTOPSIG (status) == SIGTRAP)
2213 {
2214 /* If a LWP other than the LWP that we're reporting an
2215 event for has hit a GDB breakpoint (as opposed to
2216 some random trap signal), then just arrange for it to
2217 hit it again later. We don't keep the SIGTRAP status
2218 and don't forward the SIGTRAP signal to the LWP. We
2219 will handle the current event, eventually we will
2220 resume all LWPs, and this one will get its breakpoint
2221 trap again.
2222
2223 If we do not do this, then we run the risk that the
2224 user will delete or disable the breakpoint, but the
2225 thread will have already tripped on it. */
2226
9f0bdab8
DJ
2227 /* Save the trap's siginfo in case we need it later. */
2228 save_siginfo (lp);
2229
d6b0e80f
AC
2230 /* Now resume this LWP and get the SIGSTOP event. */
2231 errno = 0;
2232 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2233 if (debug_linux_nat)
2234 {
2235 fprintf_unfiltered (gdb_stdlog,
2236 "PTRACE_CONT %s, 0, 0 (%s)\n",
2237 target_pid_to_str (lp->ptid),
2238 errno ? safe_strerror (errno) : "OK");
2239
2240 fprintf_unfiltered (gdb_stdlog,
2241 "SWC: Candidate SIGTRAP event in %s\n",
2242 target_pid_to_str (lp->ptid));
2243 }
710151dd
PA
2244 /* Hold this event/waitstatus while we check to see if
2245 there are any more (we still want to get that SIGSTOP). */
57380f4e 2246 stop_wait_callback (lp, NULL);
710151dd
PA
2247
2248 if (target_can_async_p ())
d6b0e80f 2249 {
710151dd
PA
2250 /* Don't leave a pending wait status in async mode.
2251 Retrigger the breakpoint. */
2252 if (!cancel_breakpoint (lp))
d6b0e80f 2253 {
710151dd
PA
2254 /* There was no gdb breakpoint set at pc. Put
2255 the event back in the queue. */
2256 if (debug_linux_nat)
252fbfc8
PA
2257 fprintf_unfiltered (gdb_stdlog, "\
2258SWC: leaving SIGTRAP in local queue of %s\n", target_pid_to_str (lp->ptid));
2259 push_waitpid (GET_LWP (lp->ptid),
2260 W_STOPCODE (SIGTRAP),
2261 lp->cloned ? __WCLONE : 0);
710151dd
PA
2262 }
2263 }
2264 else
2265 {
2266 /* Hold the SIGTRAP for handling by
2267 linux_nat_wait. */
2268 /* If there's another event, throw it back into the
2269 queue. */
2270 if (lp->status)
2271 {
2272 if (debug_linux_nat)
2273 fprintf_unfiltered (gdb_stdlog,
2274 "SWC: kill %s, %s\n",
2275 target_pid_to_str (lp->ptid),
2276 status_to_str ((int) status));
2277 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
d6b0e80f 2278 }
710151dd
PA
2279 /* Save the sigtrap event. */
2280 lp->status = status;
d6b0e80f 2281 }
d6b0e80f
AC
2282 return 0;
2283 }
2284 else
2285 {
2286 /* The thread was stopped with a signal other than
2287 SIGSTOP, and didn't accidentally trip a breakpoint. */
2288
2289 if (debug_linux_nat)
2290 {
2291 fprintf_unfiltered (gdb_stdlog,
2292 "SWC: Pending event %s in %s\n",
2293 status_to_str ((int) status),
2294 target_pid_to_str (lp->ptid));
2295 }
2296 /* Now resume this LWP and get the SIGSTOP event. */
2297 errno = 0;
2298 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2299 if (debug_linux_nat)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2302 target_pid_to_str (lp->ptid),
2303 errno ? safe_strerror (errno) : "OK");
2304
2305 /* Hold this event/waitstatus while we check to see if
2306 there are any more (we still want to get that SIGSTOP). */
57380f4e 2307 stop_wait_callback (lp, NULL);
710151dd
PA
2308
2309 /* If the lp->status field is still empty, use it to
2310 hold this event. If not, then this event must be
2311 returned to the event queue of the LWP. */
2312 if (lp->status || target_can_async_p ())
d6b0e80f
AC
2313 {
2314 if (debug_linux_nat)
2315 {
2316 fprintf_unfiltered (gdb_stdlog,
2317 "SWC: kill %s, %s\n",
2318 target_pid_to_str (lp->ptid),
2319 status_to_str ((int) status));
2320 }
2321 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2322 }
710151dd
PA
2323 else
2324 lp->status = status;
d6b0e80f
AC
2325 return 0;
2326 }
2327 }
2328 else
2329 {
2330 /* We caught the SIGSTOP that we intended to catch, so
2331 there's no SIGSTOP pending. */
2332 lp->stopped = 1;
2333 lp->signalled = 0;
2334 }
2335 }
2336
2337 return 0;
2338}
2339
d6b0e80f
AC
2340/* Return non-zero if LP has a wait status pending. */
2341
2342static int
2343status_callback (struct lwp_info *lp, void *data)
2344{
2345 /* Only report a pending wait status if we pretend that this has
2346 indeed been resumed. */
2347 return (lp->status != 0 && lp->resumed);
2348}
2349
2350/* Return non-zero if LP isn't stopped. */
2351
2352static int
2353running_callback (struct lwp_info *lp, void *data)
2354{
2355 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2356}
2357
2358/* Count the LWP's that have had events. */
2359
2360static int
2361count_events_callback (struct lwp_info *lp, void *data)
2362{
2363 int *count = data;
2364
2365 gdb_assert (count != NULL);
2366
e09490f1
DJ
2367 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2368 if (lp->status != 0 && lp->resumed
d6b0e80f
AC
2369 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2370 (*count)++;
2371
2372 return 0;
2373}
2374
2375/* Select the LWP (if any) that is currently being single-stepped. */
2376
2377static int
2378select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2379{
2380 if (lp->step && lp->status != 0)
2381 return 1;
2382 else
2383 return 0;
2384}
2385
2386/* Select the Nth LWP that has had a SIGTRAP event. */
2387
2388static int
2389select_event_lwp_callback (struct lwp_info *lp, void *data)
2390{
2391 int *selector = data;
2392
2393 gdb_assert (selector != NULL);
2394
e09490f1
DJ
2395 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2396 if (lp->status != 0 && lp->resumed
d6b0e80f
AC
2397 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2398 if ((*selector)-- == 0)
2399 return 1;
2400
2401 return 0;
2402}
2403
710151dd
PA
2404static int
2405cancel_breakpoint (struct lwp_info *lp)
2406{
2407 /* Arrange for a breakpoint to be hit again later. We don't keep
2408 the SIGTRAP status and don't forward the SIGTRAP signal to the
2409 LWP. We will handle the current event, eventually we will resume
2410 this LWP, and this breakpoint will trap again.
2411
2412 If we do not do this, then we run the risk that the user will
2413 delete or disable the breakpoint, but the LWP will have already
2414 tripped on it. */
2415
515630c5
UW
2416 struct regcache *regcache = get_thread_regcache (lp->ptid);
2417 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2418 CORE_ADDR pc;
2419
2420 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2421 if (breakpoint_inserted_here_p (pc))
710151dd
PA
2422 {
2423 if (debug_linux_nat)
2424 fprintf_unfiltered (gdb_stdlog,
2425 "CB: Push back breakpoint for %s\n",
2426 target_pid_to_str (lp->ptid));
2427
2428 /* Back up the PC if necessary. */
515630c5
UW
2429 if (gdbarch_decr_pc_after_break (gdbarch))
2430 regcache_write_pc (regcache, pc);
2431
710151dd
PA
2432 return 1;
2433 }
2434 return 0;
2435}
2436
d6b0e80f
AC
2437static int
2438cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2439{
2440 struct lwp_info *event_lp = data;
2441
2442 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2443 if (lp == event_lp)
2444 return 0;
2445
2446 /* If a LWP other than the LWP that we're reporting an event for has
2447 hit a GDB breakpoint (as opposed to some random trap signal),
2448 then just arrange for it to hit it again later. We don't keep
2449 the SIGTRAP status and don't forward the SIGTRAP signal to the
2450 LWP. We will handle the current event, eventually we will resume
2451 all LWPs, and this one will get its breakpoint trap again.
2452
2453 If we do not do this, then we run the risk that the user will
2454 delete or disable the breakpoint, but the LWP will have already
2455 tripped on it. */
2456
2457 if (lp->status != 0
2458 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
710151dd
PA
2459 && cancel_breakpoint (lp))
2460 /* Throw away the SIGTRAP. */
2461 lp->status = 0;
d6b0e80f
AC
2462
2463 return 0;
2464}
2465
2466/* Select one LWP out of those that have events pending. */
2467
2468static void
2469select_event_lwp (struct lwp_info **orig_lp, int *status)
2470{
2471 int num_events = 0;
2472 int random_selector;
2473 struct lwp_info *event_lp;
2474
ac264b3b 2475 /* Record the wait status for the original LWP. */
d6b0e80f
AC
2476 (*orig_lp)->status = *status;
2477
2478 /* Give preference to any LWP that is being single-stepped. */
2479 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2480 if (event_lp != NULL)
2481 {
2482 if (debug_linux_nat)
2483 fprintf_unfiltered (gdb_stdlog,
2484 "SEL: Select single-step %s\n",
2485 target_pid_to_str (event_lp->ptid));
2486 }
2487 else
2488 {
2489 /* No single-stepping LWP. Select one at random, out of those
2490 which have had SIGTRAP events. */
2491
2492 /* First see how many SIGTRAP events we have. */
2493 iterate_over_lwps (count_events_callback, &num_events);
2494
2495 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2496 random_selector = (int)
2497 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2498
2499 if (debug_linux_nat && num_events > 1)
2500 fprintf_unfiltered (gdb_stdlog,
2501 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2502 num_events, random_selector);
2503
2504 event_lp = iterate_over_lwps (select_event_lwp_callback,
2505 &random_selector);
2506 }
2507
2508 if (event_lp != NULL)
2509 {
2510 /* Switch the event LWP. */
2511 *orig_lp = event_lp;
2512 *status = event_lp->status;
2513 }
2514
2515 /* Flush the wait status for the event LWP. */
2516 (*orig_lp)->status = 0;
2517}
2518
2519/* Return non-zero if LP has been resumed. */
2520
2521static int
2522resumed_callback (struct lwp_info *lp, void *data)
2523{
2524 return lp->resumed;
2525}
2526
d6b0e80f
AC
2527/* Stop an active thread, verify it still exists, then resume it. */
2528
2529static int
2530stop_and_resume_callback (struct lwp_info *lp, void *data)
2531{
2532 struct lwp_info *ptr;
2533
2534 if (!lp->stopped && !lp->signalled)
2535 {
2536 stop_callback (lp, NULL);
2537 stop_wait_callback (lp, NULL);
2538 /* Resume if the lwp still exists. */
2539 for (ptr = lwp_list; ptr; ptr = ptr->next)
2540 if (lp == ptr)
2541 {
2542 resume_callback (lp, NULL);
2543 resume_set_callback (lp, NULL);
2544 }
2545 }
2546 return 0;
2547}
2548
02f3fc28 2549/* Check if we should go on and pass this event to common code.
fa2c6a57 2550 Return the affected lwp if we are, or NULL otherwise. */
02f3fc28
PA
2551static struct lwp_info *
2552linux_nat_filter_event (int lwpid, int status, int options)
2553{
2554 struct lwp_info *lp;
2555
2556 lp = find_lwp_pid (pid_to_ptid (lwpid));
2557
2558 /* Check for stop events reported by a process we didn't already
2559 know about - anything not already in our LWP list.
2560
2561 If we're expecting to receive stopped processes after
2562 fork, vfork, and clone events, then we'll just add the
2563 new one to our list and go back to waiting for the event
2564 to be reported - the stopped process might be returned
2565 from waitpid before or after the event is. */
2566 if (WIFSTOPPED (status) && !lp)
2567 {
2568 linux_record_stopped_pid (lwpid, status);
2569 return NULL;
2570 }
2571
2572 /* Make sure we don't report an event for the exit of an LWP not in
2573 our list, i.e. not part of the current process. This can happen
2574 if we detach from a program we original forked and then it
2575 exits. */
2576 if (!WIFSTOPPED (status) && !lp)
2577 return NULL;
2578
2579 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2580 CLONE_PTRACE processes which do not use the thread library -
2581 otherwise we wouldn't find the new LWP this way. That doesn't
2582 currently work, and the following code is currently unreachable
2583 due to the two blocks above. If it's fixed some day, this code
2584 should be broken out into a function so that we can also pick up
2585 LWPs from the new interface. */
2586 if (!lp)
2587 {
2588 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2589 if (options & __WCLONE)
2590 lp->cloned = 1;
2591
2592 gdb_assert (WIFSTOPPED (status)
2593 && WSTOPSIG (status) == SIGSTOP);
2594 lp->signalled = 1;
2595
2596 if (!in_thread_list (inferior_ptid))
2597 {
2598 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2599 GET_PID (inferior_ptid));
2600 add_thread (inferior_ptid);
2601 }
2602
2603 add_thread (lp->ptid);
2604 }
2605
2606 /* Save the trap's siginfo in case we need it later. */
2607 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2608 save_siginfo (lp);
2609
2610 /* Handle GNU/Linux's extended waitstatus for trace events. */
2611 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2612 {
2613 if (debug_linux_nat)
2614 fprintf_unfiltered (gdb_stdlog,
2615 "LLW: Handling extended status 0x%06x\n",
2616 status);
2617 if (linux_handle_extended_wait (lp, status, 0))
2618 return NULL;
2619 }
2620
2621 /* Check if the thread has exited. */
2622 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2623 {
2624 /* If this is the main thread, we must stop all threads and
2625 verify if they are still alive. This is because in the nptl
2626 thread model, there is no signal issued for exiting LWPs
2627 other than the main thread. We only get the main thread exit
2628 signal once all child threads have already exited. If we
2629 stop all the threads and use the stop_wait_callback to check
2630 if they have exited we can determine whether this signal
2631 should be ignored or whether it means the end of the debugged
2632 application, regardless of which threading model is being
2633 used. */
2634 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2635 {
2636 lp->stopped = 1;
2637 iterate_over_lwps (stop_and_resume_callback, NULL);
2638 }
2639
2640 if (debug_linux_nat)
2641 fprintf_unfiltered (gdb_stdlog,
2642 "LLW: %s exited.\n",
2643 target_pid_to_str (lp->ptid));
2644
2645 exit_lwp (lp);
2646
2647 /* If there is at least one more LWP, then the exit signal was
2648 not the end of the debugged application and should be
2649 ignored. */
2650 if (num_lwps > 0)
4c28f408 2651 return NULL;
02f3fc28
PA
2652 }
2653
2654 /* Check if the current LWP has previously exited. In the nptl
2655 thread model, LWPs other than the main thread do not issue
2656 signals when they exit so we must check whenever the thread has
2657 stopped. A similar check is made in stop_wait_callback(). */
2658 if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
2659 {
2660 if (debug_linux_nat)
2661 fprintf_unfiltered (gdb_stdlog,
2662 "LLW: %s exited.\n",
2663 target_pid_to_str (lp->ptid));
2664
2665 exit_lwp (lp);
2666
2667 /* Make sure there is at least one thread running. */
2668 gdb_assert (iterate_over_lwps (running_callback, NULL));
2669
2670 /* Discard the event. */
2671 return NULL;
2672 }
2673
2674 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2675 an attempt to stop an LWP. */
2676 if (lp->signalled
2677 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2678 {
2679 if (debug_linux_nat)
2680 fprintf_unfiltered (gdb_stdlog,
2681 "LLW: Delayed SIGSTOP caught for %s.\n",
2682 target_pid_to_str (lp->ptid));
2683
2684 /* This is a delayed SIGSTOP. */
2685 lp->signalled = 0;
2686
2687 registers_changed ();
2688
2689 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2690 lp->step, TARGET_SIGNAL_0);
2691 if (debug_linux_nat)
2692 fprintf_unfiltered (gdb_stdlog,
2693 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2694 lp->step ?
2695 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2696 target_pid_to_str (lp->ptid));
2697
2698 lp->stopped = 0;
2699 gdb_assert (lp->resumed);
2700
2701 /* Discard the event. */
2702 return NULL;
2703 }
2704
57380f4e
DJ
2705 /* Make sure we don't report a SIGINT that we have already displayed
2706 for another thread. */
2707 if (lp->ignore_sigint
2708 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2709 {
2710 if (debug_linux_nat)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "LLW: Delayed SIGINT caught for %s.\n",
2713 target_pid_to_str (lp->ptid));
2714
2715 /* This is a delayed SIGINT. */
2716 lp->ignore_sigint = 0;
2717
2718 registers_changed ();
2719 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2720 lp->step, TARGET_SIGNAL_0);
2721 if (debug_linux_nat)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2724 lp->step ?
2725 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2726 target_pid_to_str (lp->ptid));
2727
2728 lp->stopped = 0;
2729 gdb_assert (lp->resumed);
2730
2731 /* Discard the event. */
2732 return NULL;
2733 }
2734
02f3fc28
PA
2735 /* An interesting event. */
2736 gdb_assert (lp);
2737 return lp;
2738}
2739
b84876c2
PA
2740/* Get the events stored in the pipe into the local queue, so they are
2741 accessible to queued_waitpid. We need to do this, since it is not
2742 always the case that the event at the head of the pipe is the event
2743 we want. */
2744
2745static void
2746pipe_to_local_event_queue (void)
2747{
2748 if (debug_linux_nat_async)
2749 fprintf_unfiltered (gdb_stdlog,
2750 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2751 linux_nat_num_queued_events);
2752 while (linux_nat_num_queued_events)
2753 {
2754 int lwpid, status, options;
b84876c2 2755 lwpid = linux_nat_event_pipe_pop (&status, &options);
b84876c2
PA
2756 gdb_assert (lwpid > 0);
2757 push_waitpid (lwpid, status, options);
2758 }
2759}
2760
2761/* Get the unprocessed events stored in the local queue back into the
2762 pipe, so the event loop realizes there's something else to
2763 process. */
2764
2765static void
2766local_event_queue_to_pipe (void)
2767{
2768 struct waitpid_result *w = waitpid_queue;
2769 while (w)
2770 {
2771 struct waitpid_result *next = w->next;
2772 linux_nat_event_pipe_push (w->pid,
2773 w->status,
2774 w->options);
2775 xfree (w);
2776 w = next;
2777 }
2778 waitpid_queue = NULL;
2779
2780 if (debug_linux_nat_async)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "LEQTP: linux_nat_num_queued_events(%d)\n",
2783 linux_nat_num_queued_events);
2784}
2785
d6b0e80f 2786static ptid_t
117de6a9
PA
2787linux_nat_wait (struct target_ops *ops,
2788 ptid_t ptid, struct target_waitstatus *ourstatus)
d6b0e80f
AC
2789{
2790 struct lwp_info *lp = NULL;
2791 int options = 0;
2792 int status = 0;
2793 pid_t pid = PIDGET (ptid);
d6b0e80f 2794
b84876c2
PA
2795 if (debug_linux_nat_async)
2796 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2797
f973ed9c
DJ
2798 /* The first time we get here after starting a new inferior, we may
2799 not have added it to the LWP list yet - this is the earliest
2800 moment at which we know its PID. */
2801 if (num_lwps == 0)
2802 {
2803 gdb_assert (!is_lwp (inferior_ptid));
2804
27c9d204
PA
2805 /* Upgrade the main thread's ptid. */
2806 thread_change_ptid (inferior_ptid,
2807 BUILD_LWP (GET_PID (inferior_ptid),
2808 GET_PID (inferior_ptid)));
2809
f973ed9c
DJ
2810 lp = add_lwp (inferior_ptid);
2811 lp->resumed = 1;
2812 }
2813
84e46146
PA
2814 /* Block events while we're here. */
2815 linux_nat_async_events (sigchld_sync);
d6b0e80f
AC
2816
2817retry:
2818
f973ed9c
DJ
2819 /* Make sure there is at least one LWP that has been resumed. */
2820 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
d6b0e80f
AC
2821
2822 /* First check if there is a LWP with a wait status pending. */
2823 if (pid == -1)
2824 {
2825 /* Any LWP that's been resumed will do. */
2826 lp = iterate_over_lwps (status_callback, NULL);
2827 if (lp)
2828 {
710151dd
PA
2829 if (target_can_async_p ())
2830 internal_error (__FILE__, __LINE__,
2831 "Found an LWP with a pending status in async mode.");
2832
d6b0e80f
AC
2833 status = lp->status;
2834 lp->status = 0;
2835
2836 if (debug_linux_nat && status)
2837 fprintf_unfiltered (gdb_stdlog,
2838 "LLW: Using pending wait status %s for %s.\n",
2839 status_to_str (status),
2840 target_pid_to_str (lp->ptid));
2841 }
2842
b84876c2 2843 /* But if we don't find one, we'll have to wait, and check both
d6b0e80f
AC
2844 cloned and uncloned processes. We start with the cloned
2845 processes. */
2846 options = __WCLONE | WNOHANG;
2847 }
2848 else if (is_lwp (ptid))
2849 {
2850 if (debug_linux_nat)
2851 fprintf_unfiltered (gdb_stdlog,
2852 "LLW: Waiting for specific LWP %s.\n",
2853 target_pid_to_str (ptid));
2854
2855 /* We have a specific LWP to check. */
2856 lp = find_lwp_pid (ptid);
2857 gdb_assert (lp);
2858 status = lp->status;
2859 lp->status = 0;
2860
2861 if (debug_linux_nat && status)
2862 fprintf_unfiltered (gdb_stdlog,
2863 "LLW: Using pending wait status %s for %s.\n",
2864 status_to_str (status),
2865 target_pid_to_str (lp->ptid));
2866
2867 /* If we have to wait, take into account whether PID is a cloned
2868 process or not. And we have to convert it to something that
2869 the layer beneath us can understand. */
2870 options = lp->cloned ? __WCLONE : 0;
2871 pid = GET_LWP (ptid);
2872 }
2873
2874 if (status && lp->signalled)
2875 {
2876 /* A pending SIGSTOP may interfere with the normal stream of
2877 events. In a typical case where interference is a problem,
2878 we have a SIGSTOP signal pending for LWP A while
2879 single-stepping it, encounter an event in LWP B, and take the
2880 pending SIGSTOP while trying to stop LWP A. After processing
2881 the event in LWP B, LWP A is continued, and we'll never see
2882 the SIGTRAP associated with the last time we were
2883 single-stepping LWP A. */
2884
2885 /* Resume the thread. It should halt immediately returning the
2886 pending SIGSTOP. */
2887 registers_changed ();
10d6c8cd
DJ
2888 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2889 lp->step, TARGET_SIGNAL_0);
d6b0e80f
AC
2890 if (debug_linux_nat)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2893 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2894 target_pid_to_str (lp->ptid));
2895 lp->stopped = 0;
2896 gdb_assert (lp->resumed);
2897
2898 /* This should catch the pending SIGSTOP. */
2899 stop_wait_callback (lp, NULL);
2900 }
2901
b84876c2
PA
2902 if (!target_can_async_p ())
2903 {
2904 /* Causes SIGINT to be passed on to the attached process. */
2905 set_sigint_trap ();
b84876c2 2906 }
d6b0e80f
AC
2907
2908 while (status == 0)
2909 {
2910 pid_t lwpid;
2911
b84876c2
PA
2912 if (target_can_async_p ())
2913 /* In async mode, don't ever block. Only look at the locally
2914 queued events. */
2915 lwpid = queued_waitpid (pid, &status, options);
2916 else
2917 lwpid = my_waitpid (pid, &status, options);
2918
d6b0e80f
AC
2919 if (lwpid > 0)
2920 {
2921 gdb_assert (pid == -1 || lwpid == pid);
2922
2923 if (debug_linux_nat)
2924 {
2925 fprintf_unfiltered (gdb_stdlog,
2926 "LLW: waitpid %ld received %s\n",
2927 (long) lwpid, status_to_str (status));
2928 }
2929
02f3fc28 2930 lp = linux_nat_filter_event (lwpid, status, options);
d6b0e80f
AC
2931 if (!lp)
2932 {
02f3fc28 2933 /* A discarded event. */
d6b0e80f
AC
2934 status = 0;
2935 continue;
2936 }
2937
2938 break;
2939 }
2940
2941 if (pid == -1)
2942 {
2943 /* Alternate between checking cloned and uncloned processes. */
2944 options ^= __WCLONE;
2945
b84876c2
PA
2946 /* And every time we have checked both:
2947 In async mode, return to event loop;
2948 In sync mode, suspend waiting for a SIGCHLD signal. */
d6b0e80f 2949 if (options & __WCLONE)
b84876c2
PA
2950 {
2951 if (target_can_async_p ())
2952 {
2953 /* No interesting event. */
2954 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2955
2956 /* Get ready for the next event. */
2957 target_async (inferior_event_handler, 0);
2958
2959 if (debug_linux_nat_async)
2960 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2961
2962 return minus_one_ptid;
2963 }
2964
2965 sigsuspend (&suspend_mask);
2966 }
d6b0e80f
AC
2967 }
2968
2969 /* We shouldn't end up here unless we want to try again. */
2970 gdb_assert (status == 0);
2971 }
2972
b84876c2 2973 if (!target_can_async_p ())
d26b5354 2974 clear_sigint_trap ();
d6b0e80f
AC
2975
2976 gdb_assert (lp);
2977
2978 /* Don't report signals that GDB isn't interested in, such as
2979 signals that are neither printed nor stopped upon. Stopping all
2980 threads can be a bit time-consuming so if we want decent
2981 performance with heavily multi-threaded programs, especially when
2982 they're using a high frequency timer, we'd better avoid it if we
2983 can. */
2984
2985 if (WIFSTOPPED (status))
2986 {
2987 int signo = target_signal_from_host (WSTOPSIG (status));
d6b48e9c
PA
2988 struct inferior *inf;
2989
2990 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2991 gdb_assert (inf);
d6b0e80f 2992
d6b48e9c
PA
2993 /* Defer to common code if we get a signal while
2994 single-stepping, since that may need special care, e.g. to
2995 skip the signal handler, or, if we're gaining control of the
2996 inferior. */
d539ed7e 2997 if (!lp->step
d6b48e9c 2998 && inf->stop_soon == NO_STOP_QUIETLY
d539ed7e 2999 && signal_stop_state (signo) == 0
d6b0e80f
AC
3000 && signal_print_state (signo) == 0
3001 && signal_pass_state (signo) == 1)
3002 {
3003 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3004 here? It is not clear we should. GDB may not expect
3005 other threads to run. On the other hand, not resuming
3006 newly attached threads may cause an unwanted delay in
3007 getting them running. */
3008 registers_changed ();
10d6c8cd
DJ
3009 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
3010 lp->step, signo);
d6b0e80f
AC
3011 if (debug_linux_nat)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "LLW: %s %s, %s (preempt 'handle')\n",
3014 lp->step ?
3015 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3016 target_pid_to_str (lp->ptid),
3017 signo ? strsignal (signo) : "0");
3018 lp->stopped = 0;
3019 status = 0;
3020 goto retry;
3021 }
3022
1ad15515 3023 if (!non_stop)
d6b0e80f 3024 {
1ad15515
PA
3025 /* Only do the below in all-stop, as we currently use SIGINT
3026 to implement target_stop (see linux_nat_stop) in
3027 non-stop. */
3028 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3029 {
3030 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3031 forwarded to the entire process group, that is, all LWPs
3032 will receive it - unless they're using CLONE_THREAD to
3033 share signals. Since we only want to report it once, we
3034 mark it as ignored for all LWPs except this one. */
3035 iterate_over_lwps (set_ignore_sigint, NULL);
3036 lp->ignore_sigint = 0;
3037 }
3038 else
3039 maybe_clear_ignore_sigint (lp);
d6b0e80f
AC
3040 }
3041 }
3042
3043 /* This LWP is stopped now. */
3044 lp->stopped = 1;
3045
3046 if (debug_linux_nat)
3047 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3048 status_to_str (status), target_pid_to_str (lp->ptid));
3049
4c28f408
PA
3050 if (!non_stop)
3051 {
3052 /* Now stop all other LWP's ... */
3053 iterate_over_lwps (stop_callback, NULL);
3054
3055 /* ... and wait until all of them have reported back that
3056 they're no longer running. */
57380f4e 3057 iterate_over_lwps (stop_wait_callback, NULL);
4c28f408
PA
3058
3059 /* If we're not waiting for a specific LWP, choose an event LWP
3060 from among those that have had events. Giving equal priority
3061 to all LWPs that have had events helps prevent
3062 starvation. */
3063 if (pid == -1)
3064 select_event_lwp (&lp, &status);
3065 }
d6b0e80f
AC
3066
3067 /* Now that we've selected our final event LWP, cancel any
3068 breakpoints in other LWPs that have hit a GDB breakpoint. See
3069 the comment in cancel_breakpoints_callback to find out why. */
3070 iterate_over_lwps (cancel_breakpoints_callback, lp);
3071
d6b0e80f
AC
3072 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3073 {
d6b0e80f
AC
3074 if (debug_linux_nat)
3075 fprintf_unfiltered (gdb_stdlog,
4fdebdd0
PA
3076 "LLW: trap ptid is %s.\n",
3077 target_pid_to_str (lp->ptid));
d6b0e80f 3078 }
d6b0e80f
AC
3079
3080 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3081 {
3082 *ourstatus = lp->waitstatus;
3083 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3084 }
3085 else
3086 store_waitstatus (ourstatus, status);
3087
b84876c2
PA
3088 /* Get ready for the next event. */
3089 if (target_can_async_p ())
3090 target_async (inferior_event_handler, 0);
3091
3092 if (debug_linux_nat_async)
3093 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3094
f973ed9c 3095 return lp->ptid;
d6b0e80f
AC
3096}
3097
3098static int
3099kill_callback (struct lwp_info *lp, void *data)
3100{
3101 errno = 0;
3102 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3103 if (debug_linux_nat)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3106 target_pid_to_str (lp->ptid),
3107 errno ? safe_strerror (errno) : "OK");
3108
3109 return 0;
3110}
3111
3112static int
3113kill_wait_callback (struct lwp_info *lp, void *data)
3114{
3115 pid_t pid;
3116
3117 /* We must make sure that there are no pending events (delayed
3118 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3119 program doesn't interfere with any following debugging session. */
3120
3121 /* For cloned processes we must check both with __WCLONE and
3122 without, since the exit status of a cloned process isn't reported
3123 with __WCLONE. */
3124 if (lp->cloned)
3125 {
3126 do
3127 {
58aecb61 3128 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
e85a822c 3129 if (pid != (pid_t) -1)
d6b0e80f 3130 {
e85a822c
DJ
3131 if (debug_linux_nat)
3132 fprintf_unfiltered (gdb_stdlog,
3133 "KWC: wait %s received unknown.\n",
3134 target_pid_to_str (lp->ptid));
3135 /* The Linux kernel sometimes fails to kill a thread
3136 completely after PTRACE_KILL; that goes from the stop
3137 point in do_fork out to the one in
3138 get_signal_to_deliever and waits again. So kill it
3139 again. */
3140 kill_callback (lp, NULL);
d6b0e80f
AC
3141 }
3142 }
3143 while (pid == GET_LWP (lp->ptid));
3144
3145 gdb_assert (pid == -1 && errno == ECHILD);
3146 }
3147
3148 do
3149 {
58aecb61 3150 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
e85a822c 3151 if (pid != (pid_t) -1)
d6b0e80f 3152 {
e85a822c
DJ
3153 if (debug_linux_nat)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "KWC: wait %s received unk.\n",
3156 target_pid_to_str (lp->ptid));
3157 /* See the call to kill_callback above. */
3158 kill_callback (lp, NULL);
d6b0e80f
AC
3159 }
3160 }
3161 while (pid == GET_LWP (lp->ptid));
3162
3163 gdb_assert (pid == -1 && errno == ECHILD);
3164 return 0;
3165}
3166
3167static void
3168linux_nat_kill (void)
3169{
f973ed9c
DJ
3170 struct target_waitstatus last;
3171 ptid_t last_ptid;
3172 int status;
d6b0e80f 3173
b84876c2
PA
3174 if (target_can_async_p ())
3175 target_async (NULL, 0);
3176
f973ed9c
DJ
3177 /* If we're stopped while forking and we haven't followed yet,
3178 kill the other task. We need to do this first because the
3179 parent will be sleeping if this is a vfork. */
d6b0e80f 3180
f973ed9c 3181 get_last_target_status (&last_ptid, &last);
d6b0e80f 3182
f973ed9c
DJ
3183 if (last.kind == TARGET_WAITKIND_FORKED
3184 || last.kind == TARGET_WAITKIND_VFORKED)
3185 {
3a3e9ee3 3186 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
f973ed9c
DJ
3187 wait (&status);
3188 }
3189
3190 if (forks_exist_p ())
b84876c2
PA
3191 {
3192 linux_fork_killall ();
3193 drain_queued_events (-1);
3194 }
f973ed9c
DJ
3195 else
3196 {
4c28f408
PA
3197 /* Stop all threads before killing them, since ptrace requires
3198 that the thread is stopped to sucessfully PTRACE_KILL. */
3199 iterate_over_lwps (stop_callback, NULL);
3200 /* ... and wait until all of them have reported back that
3201 they're no longer running. */
3202 iterate_over_lwps (stop_wait_callback, NULL);
3203
f973ed9c
DJ
3204 /* Kill all LWP's ... */
3205 iterate_over_lwps (kill_callback, NULL);
3206
3207 /* ... and wait until we've flushed all events. */
3208 iterate_over_lwps (kill_wait_callback, NULL);
3209 }
3210
3211 target_mourn_inferior ();
d6b0e80f
AC
3212}
3213
3214static void
136d6dae 3215linux_nat_mourn_inferior (struct target_ops *ops)
d6b0e80f 3216{
d6b0e80f
AC
3217 /* Destroy LWP info; it's no longer valid. */
3218 init_lwp_list ();
3219
f973ed9c 3220 if (! forks_exist_p ())
b84876c2
PA
3221 {
3222 /* Normal case, no other forks available. */
3223 if (target_can_async_p ())
3224 linux_nat_async (NULL, 0);
136d6dae 3225 linux_ops->to_mourn_inferior (ops);
b84876c2 3226 }
f973ed9c
DJ
3227 else
3228 /* Multi-fork case. The current inferior_ptid has exited, but
3229 there are other viable forks to debug. Delete the exiting
3230 one and context-switch to the first available. */
3231 linux_fork_mourn_inferior ();
d6b0e80f
AC
3232}
3233
5b009018
PA
3234/* Convert a native/host siginfo object, into/from the siginfo in the
3235 layout of the inferiors' architecture. */
3236
3237static void
3238siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3239{
3240 int done = 0;
3241
3242 if (linux_nat_siginfo_fixup != NULL)
3243 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3244
3245 /* If there was no callback, or the callback didn't do anything,
3246 then just do a straight memcpy. */
3247 if (!done)
3248 {
3249 if (direction == 1)
3250 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3251 else
3252 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3253 }
3254}
3255
4aa995e1
PA
3256static LONGEST
3257linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3258 const char *annex, gdb_byte *readbuf,
3259 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3260{
3261 struct lwp_info *lp;
3262 LONGEST n;
3263 int pid;
3264 struct siginfo siginfo;
5b009018 3265 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4aa995e1
PA
3266
3267 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3268 gdb_assert (readbuf || writebuf);
3269
3270 pid = GET_LWP (inferior_ptid);
3271 if (pid == 0)
3272 pid = GET_PID (inferior_ptid);
3273
3274 if (offset > sizeof (siginfo))
3275 return -1;
3276
3277 errno = 0;
3278 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3279 if (errno != 0)
3280 return -1;
3281
5b009018
PA
3282 /* When GDB is built as a 64-bit application, ptrace writes into
3283 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3284 inferior with a 64-bit GDB should look the same as debugging it
3285 with a 32-bit GDB, we need to convert it. GDB core always sees
3286 the converted layout, so any read/write will have to be done
3287 post-conversion. */
3288 siginfo_fixup (&siginfo, inf_siginfo, 0);
3289
4aa995e1
PA
3290 if (offset + len > sizeof (siginfo))
3291 len = sizeof (siginfo) - offset;
3292
3293 if (readbuf != NULL)
5b009018 3294 memcpy (readbuf, inf_siginfo + offset, len);
4aa995e1
PA
3295 else
3296 {
5b009018
PA
3297 memcpy (inf_siginfo + offset, writebuf, len);
3298
3299 /* Convert back to ptrace layout before flushing it out. */
3300 siginfo_fixup (&siginfo, inf_siginfo, 1);
3301
4aa995e1
PA
3302 errno = 0;
3303 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3304 if (errno != 0)
3305 return -1;
3306 }
3307
3308 return len;
3309}
3310
10d6c8cd
DJ
3311static LONGEST
3312linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3313 const char *annex, gdb_byte *readbuf,
3314 const gdb_byte *writebuf,
3315 ULONGEST offset, LONGEST len)
d6b0e80f 3316{
4aa995e1 3317 struct cleanup *old_chain;
10d6c8cd 3318 LONGEST xfer;
d6b0e80f 3319
4aa995e1
PA
3320 if (object == TARGET_OBJECT_SIGNAL_INFO)
3321 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3322 offset, len);
3323
3324 old_chain = save_inferior_ptid ();
3325
d6b0e80f
AC
3326 if (is_lwp (inferior_ptid))
3327 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3328
10d6c8cd
DJ
3329 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3330 offset, len);
d6b0e80f
AC
3331
3332 do_cleanups (old_chain);
3333 return xfer;
3334}
3335
3336static int
3337linux_nat_thread_alive (ptid_t ptid)
3338{
4c28f408
PA
3339 int err;
3340
d6b0e80f
AC
3341 gdb_assert (is_lwp (ptid));
3342
4c28f408
PA
3343 /* Send signal 0 instead of anything ptrace, because ptracing a
3344 running thread errors out claiming that the thread doesn't
3345 exist. */
3346 err = kill_lwp (GET_LWP (ptid), 0);
3347
d6b0e80f
AC
3348 if (debug_linux_nat)
3349 fprintf_unfiltered (gdb_stdlog,
4c28f408 3350 "LLTA: KILL(SIG0) %s (%s)\n",
d6b0e80f 3351 target_pid_to_str (ptid),
4c28f408 3352 err ? safe_strerror (err) : "OK");
9c0dd46b 3353
4c28f408 3354 if (err != 0)
d6b0e80f
AC
3355 return 0;
3356
3357 return 1;
3358}
3359
3360static char *
117de6a9 3361linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
d6b0e80f
AC
3362{
3363 static char buf[64];
3364
a0ef4274
DJ
3365 if (is_lwp (ptid)
3366 && ((lwp_list && lwp_list->next)
3367 || GET_PID (ptid) != GET_LWP (ptid)))
d6b0e80f
AC
3368 {
3369 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3370 return buf;
3371 }
3372
3373 return normal_pid_to_str (ptid);
3374}
3375
d6b0e80f
AC
3376static void
3377sigchld_handler (int signo)
3378{
c6ebd6cf 3379 if (target_async_permitted
84e46146 3380 && linux_nat_async_events_state != sigchld_sync
b84876c2
PA
3381 && signo == SIGCHLD)
3382 /* It is *always* a bug to hit this. */
3383 internal_error (__FILE__, __LINE__,
3384 "sigchld_handler called when async events are enabled");
3385
d6b0e80f
AC
3386 /* Do nothing. The only reason for this handler is that it allows
3387 us to use sigsuspend in linux_nat_wait above to wait for the
3388 arrival of a SIGCHLD. */
3389}
3390
dba24537
AC
3391/* Accepts an integer PID; Returns a string representing a file that
3392 can be opened to get the symbols for the child process. */
3393
6d8fd2b7
UW
3394static char *
3395linux_child_pid_to_exec_file (int pid)
dba24537
AC
3396{
3397 char *name1, *name2;
3398
3399 name1 = xmalloc (MAXPATHLEN);
3400 name2 = xmalloc (MAXPATHLEN);
3401 make_cleanup (xfree, name1);
3402 make_cleanup (xfree, name2);
3403 memset (name2, 0, MAXPATHLEN);
3404
3405 sprintf (name1, "/proc/%d/exe", pid);
3406 if (readlink (name1, name2, MAXPATHLEN) > 0)
3407 return name2;
3408 else
3409 return name1;
3410}
3411
3412/* Service function for corefiles and info proc. */
3413
3414static int
3415read_mapping (FILE *mapfile,
3416 long long *addr,
3417 long long *endaddr,
3418 char *permissions,
3419 long long *offset,
3420 char *device, long long *inode, char *filename)
3421{
3422 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3423 addr, endaddr, permissions, offset, device, inode);
3424
2e14c2ea
MS
3425 filename[0] = '\0';
3426 if (ret > 0 && ret != EOF)
dba24537
AC
3427 {
3428 /* Eat everything up to EOL for the filename. This will prevent
3429 weird filenames (such as one with embedded whitespace) from
3430 confusing this code. It also makes this code more robust in
3431 respect to annotations the kernel may add after the filename.
3432
3433 Note the filename is used for informational purposes
3434 only. */
3435 ret += fscanf (mapfile, "%[^\n]\n", filename);
3436 }
2e14c2ea 3437
dba24537
AC
3438 return (ret != 0 && ret != EOF);
3439}
3440
3441/* Fills the "to_find_memory_regions" target vector. Lists the memory
3442 regions in the inferior for a corefile. */
3443
3444static int
3445linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3446 unsigned long,
3447 int, int, int, void *), void *obfd)
3448{
3449 long long pid = PIDGET (inferior_ptid);
3450 char mapsfilename[MAXPATHLEN];
3451 FILE *mapsfile;
3452 long long addr, endaddr, size, offset, inode;
3453 char permissions[8], device[8], filename[MAXPATHLEN];
3454 int read, write, exec;
3455 int ret;
7c8a8b04 3456 struct cleanup *cleanup;
dba24537
AC
3457
3458 /* Compose the filename for the /proc memory map, and open it. */
3459 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3460 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
8a3fe4f8 3461 error (_("Could not open %s."), mapsfilename);
7c8a8b04 3462 cleanup = make_cleanup_fclose (mapsfile);
dba24537
AC
3463
3464 if (info_verbose)
3465 fprintf_filtered (gdb_stdout,
3466 "Reading memory regions from %s\n", mapsfilename);
3467
3468 /* Now iterate until end-of-file. */
3469 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3470 &offset, &device[0], &inode, &filename[0]))
3471 {
3472 size = endaddr - addr;
3473
3474 /* Get the segment's permissions. */
3475 read = (strchr (permissions, 'r') != 0);
3476 write = (strchr (permissions, 'w') != 0);
3477 exec = (strchr (permissions, 'x') != 0);
3478
3479 if (info_verbose)
3480 {
3481 fprintf_filtered (gdb_stdout,
3482 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3483 size, paddr_nz (addr),
3484 read ? 'r' : ' ',
3485 write ? 'w' : ' ', exec ? 'x' : ' ');
b260b6c1 3486 if (filename[0])
dba24537
AC
3487 fprintf_filtered (gdb_stdout, " for %s", filename);
3488 fprintf_filtered (gdb_stdout, "\n");
3489 }
3490
3491 /* Invoke the callback function to create the corefile
3492 segment. */
3493 func (addr, size, read, write, exec, obfd);
3494 }
7c8a8b04 3495 do_cleanups (cleanup);
dba24537
AC
3496 return 0;
3497}
3498
2020b7ab
PA
3499static int
3500find_signalled_thread (struct thread_info *info, void *data)
3501{
3502 if (info->stop_signal != TARGET_SIGNAL_0
3503 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3504 return 1;
3505
3506 return 0;
3507}
3508
3509static enum target_signal
3510find_stop_signal (void)
3511{
3512 struct thread_info *info =
3513 iterate_over_threads (find_signalled_thread, NULL);
3514
3515 if (info)
3516 return info->stop_signal;
3517 else
3518 return TARGET_SIGNAL_0;
3519}
3520
dba24537
AC
3521/* Records the thread's register state for the corefile note
3522 section. */
3523
3524static char *
3525linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
2020b7ab
PA
3526 char *note_data, int *note_size,
3527 enum target_signal stop_signal)
dba24537
AC
3528{
3529 gdb_gregset_t gregs;
3530 gdb_fpregset_t fpregs;
dba24537 3531 unsigned long lwp = ptid_get_lwp (ptid);
594f7785
UW
3532 struct regcache *regcache = get_thread_regcache (ptid);
3533 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4f844a66 3534 const struct regset *regset;
55e969c1 3535 int core_regset_p;
594f7785 3536 struct cleanup *old_chain;
17ea7499
CES
3537 struct core_regset_section *sect_list;
3538 char *gdb_regset;
594f7785
UW
3539
3540 old_chain = save_inferior_ptid ();
3541 inferior_ptid = ptid;
3542 target_fetch_registers (regcache, -1);
3543 do_cleanups (old_chain);
4f844a66
DM
3544
3545 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
17ea7499
CES
3546 sect_list = gdbarch_core_regset_sections (gdbarch);
3547
55e969c1
DM
3548 if (core_regset_p
3549 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3550 sizeof (gregs))) != NULL
3551 && regset->collect_regset != NULL)
594f7785 3552 regset->collect_regset (regset, regcache, -1,
55e969c1 3553 &gregs, sizeof (gregs));
4f844a66 3554 else
594f7785 3555 fill_gregset (regcache, &gregs, -1);
4f844a66 3556
55e969c1
DM
3557 note_data = (char *) elfcore_write_prstatus (obfd,
3558 note_data,
3559 note_size,
3560 lwp,
3561 stop_signal, &gregs);
3562
17ea7499
CES
3563 /* The loop below uses the new struct core_regset_section, which stores
3564 the supported section names and sizes for the core file. Note that
3565 note PRSTATUS needs to be treated specially. But the other notes are
3566 structurally the same, so they can benefit from the new struct. */
3567 if (core_regset_p && sect_list != NULL)
3568 while (sect_list->sect_name != NULL)
3569 {
3570 /* .reg was already handled above. */
3571 if (strcmp (sect_list->sect_name, ".reg") == 0)
3572 {
3573 sect_list++;
3574 continue;
3575 }
3576 regset = gdbarch_regset_from_core_section (gdbarch,
3577 sect_list->sect_name,
3578 sect_list->size);
3579 gdb_assert (regset && regset->collect_regset);
3580 gdb_regset = xmalloc (sect_list->size);
3581 regset->collect_regset (regset, regcache, -1,
3582 gdb_regset, sect_list->size);
3583 note_data = (char *) elfcore_write_register_note (obfd,
3584 note_data,
3585 note_size,
3586 sect_list->sect_name,
3587 gdb_regset,
3588 sect_list->size);
3589 xfree (gdb_regset);
3590 sect_list++;
3591 }
dba24537 3592
17ea7499
CES
3593 /* For architectures that does not have the struct core_regset_section
3594 implemented, we use the old method. When all the architectures have
3595 the new support, the code below should be deleted. */
4f844a66 3596 else
17ea7499
CES
3597 {
3598 if (core_regset_p
3599 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3600 sizeof (fpregs))) != NULL
3601 && regset->collect_regset != NULL)
3602 regset->collect_regset (regset, regcache, -1,
3603 &fpregs, sizeof (fpregs));
3604 else
3605 fill_fpregset (regcache, &fpregs, -1);
3606
3607 note_data = (char *) elfcore_write_prfpreg (obfd,
3608 note_data,
3609 note_size,
3610 &fpregs, sizeof (fpregs));
3611 }
4f844a66 3612
dba24537
AC
3613 return note_data;
3614}
3615
3616struct linux_nat_corefile_thread_data
3617{
3618 bfd *obfd;
3619 char *note_data;
3620 int *note_size;
3621 int num_notes;
2020b7ab 3622 enum target_signal stop_signal;
dba24537
AC
3623};
3624
3625/* Called by gdbthread.c once per thread. Records the thread's
3626 register state for the corefile note section. */
3627
3628static int
3629linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3630{
3631 struct linux_nat_corefile_thread_data *args = data;
dba24537 3632
dba24537
AC
3633 args->note_data = linux_nat_do_thread_registers (args->obfd,
3634 ti->ptid,
3635 args->note_data,
2020b7ab
PA
3636 args->note_size,
3637 args->stop_signal);
dba24537 3638 args->num_notes++;
56be3814 3639
dba24537
AC
3640 return 0;
3641}
3642
dba24537
AC
3643/* Fills the "to_make_corefile_note" target vector. Builds the note
3644 section for a corefile, and returns it in a malloc buffer. */
3645
3646static char *
3647linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3648{
3649 struct linux_nat_corefile_thread_data thread_args;
3650 struct cleanup *old_chain;
d99148ef 3651 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
dba24537 3652 char fname[16] = { '\0' };
d99148ef 3653 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
dba24537
AC
3654 char psargs[80] = { '\0' };
3655 char *note_data = NULL;
3656 ptid_t current_ptid = inferior_ptid;
c6826062 3657 gdb_byte *auxv;
dba24537
AC
3658 int auxv_len;
3659
3660 if (get_exec_file (0))
3661 {
3662 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3663 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3664 if (get_inferior_args ())
3665 {
d99148ef
JK
3666 char *string_end;
3667 char *psargs_end = psargs + sizeof (psargs);
3668
3669 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3670 strings fine. */
3671 string_end = memchr (psargs, 0, sizeof (psargs));
3672 if (string_end != NULL)
3673 {
3674 *string_end++ = ' ';
3675 strncpy (string_end, get_inferior_args (),
3676 psargs_end - string_end);
3677 }
dba24537
AC
3678 }
3679 note_data = (char *) elfcore_write_prpsinfo (obfd,
3680 note_data,
3681 note_size, fname, psargs);
3682 }
3683
3684 /* Dump information for threads. */
3685 thread_args.obfd = obfd;
3686 thread_args.note_data = note_data;
3687 thread_args.note_size = note_size;
3688 thread_args.num_notes = 0;
2020b7ab 3689 thread_args.stop_signal = find_stop_signal ();
dba24537 3690 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
2020b7ab
PA
3691 gdb_assert (thread_args.num_notes != 0);
3692 note_data = thread_args.note_data;
dba24537 3693
13547ab6
DJ
3694 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3695 NULL, &auxv);
dba24537
AC
3696 if (auxv_len > 0)
3697 {
3698 note_data = elfcore_write_note (obfd, note_data, note_size,
3699 "CORE", NT_AUXV, auxv, auxv_len);
3700 xfree (auxv);
3701 }
3702
3703 make_cleanup (xfree, note_data);
3704 return note_data;
3705}
3706
3707/* Implement the "info proc" command. */
3708
3709static void
3710linux_nat_info_proc_cmd (char *args, int from_tty)
3711{
3712 long long pid = PIDGET (inferior_ptid);
3713 FILE *procfile;
3714 char **argv = NULL;
3715 char buffer[MAXPATHLEN];
3716 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3717 int cmdline_f = 1;
3718 int cwd_f = 1;
3719 int exe_f = 1;
3720 int mappings_f = 0;
3721 int environ_f = 0;
3722 int status_f = 0;
3723 int stat_f = 0;
3724 int all = 0;
3725 struct stat dummy;
3726
3727 if (args)
3728 {
3729 /* Break up 'args' into an argv array. */
d1a41061
PP
3730 argv = gdb_buildargv (args);
3731 make_cleanup_freeargv (argv);
dba24537
AC
3732 }
3733 while (argv != NULL && *argv != NULL)
3734 {
3735 if (isdigit (argv[0][0]))
3736 {
3737 pid = strtoul (argv[0], NULL, 10);
3738 }
3739 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3740 {
3741 mappings_f = 1;
3742 }
3743 else if (strcmp (argv[0], "status") == 0)
3744 {
3745 status_f = 1;
3746 }
3747 else if (strcmp (argv[0], "stat") == 0)
3748 {
3749 stat_f = 1;
3750 }
3751 else if (strcmp (argv[0], "cmd") == 0)
3752 {
3753 cmdline_f = 1;
3754 }
3755 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3756 {
3757 exe_f = 1;
3758 }
3759 else if (strcmp (argv[0], "cwd") == 0)
3760 {
3761 cwd_f = 1;
3762 }
3763 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3764 {
3765 all = 1;
3766 }
3767 else
3768 {
3769 /* [...] (future options here) */
3770 }
3771 argv++;
3772 }
3773 if (pid == 0)
8a3fe4f8 3774 error (_("No current process: you must name one."));
dba24537
AC
3775
3776 sprintf (fname1, "/proc/%lld", pid);
3777 if (stat (fname1, &dummy) != 0)
8a3fe4f8 3778 error (_("No /proc directory: '%s'"), fname1);
dba24537 3779
a3f17187 3780 printf_filtered (_("process %lld\n"), pid);
dba24537
AC
3781 if (cmdline_f || all)
3782 {
3783 sprintf (fname1, "/proc/%lld/cmdline", pid);
d5d6fca5 3784 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 3785 {
7c8a8b04 3786 struct cleanup *cleanup = make_cleanup_fclose (procfile);
bf1d7d9c
JB
3787 if (fgets (buffer, sizeof (buffer), procfile))
3788 printf_filtered ("cmdline = '%s'\n", buffer);
3789 else
3790 warning (_("unable to read '%s'"), fname1);
7c8a8b04 3791 do_cleanups (cleanup);
dba24537
AC
3792 }
3793 else
8a3fe4f8 3794 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3795 }
3796 if (cwd_f || all)
3797 {
3798 sprintf (fname1, "/proc/%lld/cwd", pid);
3799 memset (fname2, 0, sizeof (fname2));
3800 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3801 printf_filtered ("cwd = '%s'\n", fname2);
3802 else
8a3fe4f8 3803 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
3804 }
3805 if (exe_f || all)
3806 {
3807 sprintf (fname1, "/proc/%lld/exe", pid);
3808 memset (fname2, 0, sizeof (fname2));
3809 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3810 printf_filtered ("exe = '%s'\n", fname2);
3811 else
8a3fe4f8 3812 warning (_("unable to read link '%s'"), fname1);
dba24537
AC
3813 }
3814 if (mappings_f || all)
3815 {
3816 sprintf (fname1, "/proc/%lld/maps", pid);
d5d6fca5 3817 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3818 {
3819 long long addr, endaddr, size, offset, inode;
3820 char permissions[8], device[8], filename[MAXPATHLEN];
7c8a8b04 3821 struct cleanup *cleanup;
dba24537 3822
7c8a8b04 3823 cleanup = make_cleanup_fclose (procfile);
a3f17187 3824 printf_filtered (_("Mapped address spaces:\n\n"));
17a912b6 3825 if (gdbarch_addr_bit (current_gdbarch) == 32)
dba24537
AC
3826 {
3827 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3828 "Start Addr",
3829 " End Addr",
3830 " Size", " Offset", "objfile");
3831 }
3832 else
3833 {
3834 printf_filtered (" %18s %18s %10s %10s %7s\n",
3835 "Start Addr",
3836 " End Addr",
3837 " Size", " Offset", "objfile");
3838 }
3839
3840 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3841 &offset, &device[0], &inode, &filename[0]))
3842 {
3843 size = endaddr - addr;
3844
3845 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3846 calls here (and possibly above) should be abstracted
3847 out into their own functions? Andrew suggests using
3848 a generic local_address_string instead to print out
3849 the addresses; that makes sense to me, too. */
3850
17a912b6 3851 if (gdbarch_addr_bit (current_gdbarch) == 32)
dba24537
AC
3852 {
3853 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3854 (unsigned long) addr, /* FIXME: pr_addr */
3855 (unsigned long) endaddr,
3856 (int) size,
3857 (unsigned int) offset,
3858 filename[0] ? filename : "");
3859 }
3860 else
3861 {
3862 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3863 (unsigned long) addr, /* FIXME: pr_addr */
3864 (unsigned long) endaddr,
3865 (int) size,
3866 (unsigned int) offset,
3867 filename[0] ? filename : "");
3868 }
3869 }
3870
7c8a8b04 3871 do_cleanups (cleanup);
dba24537
AC
3872 }
3873 else
8a3fe4f8 3874 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3875 }
3876 if (status_f || all)
3877 {
3878 sprintf (fname1, "/proc/%lld/status", pid);
d5d6fca5 3879 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537 3880 {
7c8a8b04 3881 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
3882 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3883 puts_filtered (buffer);
7c8a8b04 3884 do_cleanups (cleanup);
dba24537
AC
3885 }
3886 else
8a3fe4f8 3887 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3888 }
3889 if (stat_f || all)
3890 {
3891 sprintf (fname1, "/proc/%lld/stat", pid);
d5d6fca5 3892 if ((procfile = fopen (fname1, "r")) != NULL)
dba24537
AC
3893 {
3894 int itmp;
3895 char ctmp;
a25694b4 3896 long ltmp;
7c8a8b04 3897 struct cleanup *cleanup = make_cleanup_fclose (procfile);
dba24537
AC
3898
3899 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3900 printf_filtered (_("Process: %d\n"), itmp);
a25694b4 3901 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
a3f17187 3902 printf_filtered (_("Exec file: %s\n"), buffer);
dba24537 3903 if (fscanf (procfile, "%c ", &ctmp) > 0)
a3f17187 3904 printf_filtered (_("State: %c\n"), ctmp);
dba24537 3905 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3906 printf_filtered (_("Parent process: %d\n"), itmp);
dba24537 3907 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3908 printf_filtered (_("Process group: %d\n"), itmp);
dba24537 3909 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3910 printf_filtered (_("Session id: %d\n"), itmp);
dba24537 3911 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3912 printf_filtered (_("TTY: %d\n"), itmp);
dba24537 3913 if (fscanf (procfile, "%d ", &itmp) > 0)
a3f17187 3914 printf_filtered (_("TTY owner process group: %d\n"), itmp);
a25694b4
AS
3915 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3916 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3917 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3918 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3919 (unsigned long) ltmp);
3920 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3921 printf_filtered (_("Minor faults, children: %lu\n"),
3922 (unsigned long) ltmp);
3923 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3924 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3925 (unsigned long) ltmp);
3926 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3927 printf_filtered (_("Major faults, children: %lu\n"),
3928 (unsigned long) ltmp);
3929 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3930 printf_filtered (_("utime: %ld\n"), ltmp);
3931 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3932 printf_filtered (_("stime: %ld\n"), ltmp);
3933 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3934 printf_filtered (_("utime, children: %ld\n"), ltmp);
3935 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3936 printf_filtered (_("stime, children: %ld\n"), ltmp);
3937 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3938 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3939 ltmp);
3940 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3941 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3942 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3943 printf_filtered (_("jiffies until next timeout: %lu\n"),
3944 (unsigned long) ltmp);
3945 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3946 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3947 (unsigned long) ltmp);
3948 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3949 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3950 ltmp);
3951 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3952 printf_filtered (_("Virtual memory size: %lu\n"),
3953 (unsigned long) ltmp);
3954 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3955 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3956 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3957 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3958 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3959 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3960 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3961 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3962 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3963 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
dba24537
AC
3964#if 0 /* Don't know how architecture-dependent the rest is...
3965 Anyway the signal bitmap info is available from "status". */
a25694b4
AS
3966 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3967 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3968 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3969 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3970 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3971 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3972 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3973 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3974 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3975 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3976 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3977 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3978 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3979 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
dba24537 3980#endif
7c8a8b04 3981 do_cleanups (cleanup);
dba24537
AC
3982 }
3983 else
8a3fe4f8 3984 warning (_("unable to open /proc file '%s'"), fname1);
dba24537
AC
3985 }
3986}
3987
10d6c8cd
DJ
3988/* Implement the to_xfer_partial interface for memory reads using the /proc
3989 filesystem. Because we can use a single read() call for /proc, this
3990 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3991 but it doesn't support writes. */
3992
3993static LONGEST
3994linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3995 const char *annex, gdb_byte *readbuf,
3996 const gdb_byte *writebuf,
3997 ULONGEST offset, LONGEST len)
dba24537 3998{
10d6c8cd
DJ
3999 LONGEST ret;
4000 int fd;
dba24537
AC
4001 char filename[64];
4002
10d6c8cd 4003 if (object != TARGET_OBJECT_MEMORY || !readbuf)
dba24537
AC
4004 return 0;
4005
4006 /* Don't bother for one word. */
4007 if (len < 3 * sizeof (long))
4008 return 0;
4009
4010 /* We could keep this file open and cache it - possibly one per
4011 thread. That requires some juggling, but is even faster. */
4012 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4013 fd = open (filename, O_RDONLY | O_LARGEFILE);
4014 if (fd == -1)
4015 return 0;
4016
4017 /* If pread64 is available, use it. It's faster if the kernel
4018 supports it (only one syscall), and it's 64-bit safe even on
4019 32-bit platforms (for instance, SPARC debugging a SPARC64
4020 application). */
4021#ifdef HAVE_PREAD64
10d6c8cd 4022 if (pread64 (fd, readbuf, len, offset) != len)
dba24537 4023#else
10d6c8cd 4024 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
dba24537
AC
4025#endif
4026 ret = 0;
4027 else
4028 ret = len;
4029
4030 close (fd);
4031 return ret;
4032}
4033
4034/* Parse LINE as a signal set and add its set bits to SIGS. */
4035
4036static void
4037add_line_to_sigset (const char *line, sigset_t *sigs)
4038{
4039 int len = strlen (line) - 1;
4040 const char *p;
4041 int signum;
4042
4043 if (line[len] != '\n')
8a3fe4f8 4044 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4045
4046 p = line;
4047 signum = len * 4;
4048 while (len-- > 0)
4049 {
4050 int digit;
4051
4052 if (*p >= '0' && *p <= '9')
4053 digit = *p - '0';
4054 else if (*p >= 'a' && *p <= 'f')
4055 digit = *p - 'a' + 10;
4056 else
8a3fe4f8 4057 error (_("Could not parse signal set: %s"), line);
dba24537
AC
4058
4059 signum -= 4;
4060
4061 if (digit & 1)
4062 sigaddset (sigs, signum + 1);
4063 if (digit & 2)
4064 sigaddset (sigs, signum + 2);
4065 if (digit & 4)
4066 sigaddset (sigs, signum + 3);
4067 if (digit & 8)
4068 sigaddset (sigs, signum + 4);
4069
4070 p++;
4071 }
4072}
4073
4074/* Find process PID's pending signals from /proc/pid/status and set
4075 SIGS to match. */
4076
4077void
4078linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4079{
4080 FILE *procfile;
4081 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4082 int signum;
7c8a8b04 4083 struct cleanup *cleanup;
dba24537
AC
4084
4085 sigemptyset (pending);
4086 sigemptyset (blocked);
4087 sigemptyset (ignored);
4088 sprintf (fname, "/proc/%d/status", pid);
4089 procfile = fopen (fname, "r");
4090 if (procfile == NULL)
8a3fe4f8 4091 error (_("Could not open %s"), fname);
7c8a8b04 4092 cleanup = make_cleanup_fclose (procfile);
dba24537
AC
4093
4094 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4095 {
4096 /* Normal queued signals are on the SigPnd line in the status
4097 file. However, 2.6 kernels also have a "shared" pending
4098 queue for delivering signals to a thread group, so check for
4099 a ShdPnd line also.
4100
4101 Unfortunately some Red Hat kernels include the shared pending
4102 queue but not the ShdPnd status field. */
4103
4104 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4105 add_line_to_sigset (buffer + 8, pending);
4106 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4107 add_line_to_sigset (buffer + 8, pending);
4108 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4109 add_line_to_sigset (buffer + 8, blocked);
4110 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4111 add_line_to_sigset (buffer + 8, ignored);
4112 }
4113
7c8a8b04 4114 do_cleanups (cleanup);
dba24537
AC
4115}
4116
07e059b5
VP
4117static LONGEST
4118linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4119 const char *annex, gdb_byte *readbuf,
4120 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4121{
4122 /* We make the process list snapshot when the object starts to be
4123 read. */
4124 static const char *buf;
4125 static LONGEST len_avail = -1;
4126 static struct obstack obstack;
4127
4128 DIR *dirp;
4129
4130 gdb_assert (object == TARGET_OBJECT_OSDATA);
4131
4132 if (strcmp (annex, "processes") != 0)
4133 return 0;
4134
4135 gdb_assert (readbuf && !writebuf);
4136
4137 if (offset == 0)
4138 {
4139 if (len_avail != -1 && len_avail != 0)
4140 obstack_free (&obstack, NULL);
4141 len_avail = 0;
4142 buf = NULL;
4143 obstack_init (&obstack);
4144 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4145
4146 dirp = opendir ("/proc");
4147 if (dirp)
4148 {
4149 struct dirent *dp;
4150 while ((dp = readdir (dirp)) != NULL)
4151 {
4152 struct stat statbuf;
4153 char procentry[sizeof ("/proc/4294967295")];
4154
4155 if (!isdigit (dp->d_name[0])
4156 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
4157 continue;
4158
4159 sprintf (procentry, "/proc/%s", dp->d_name);
4160 if (stat (procentry, &statbuf) == 0
4161 && S_ISDIR (statbuf.st_mode))
4162 {
4163 char *pathname;
4164 FILE *f;
4165 char cmd[MAXPATHLEN + 1];
4166 struct passwd *entry;
4167
4168 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4169 entry = getpwuid (statbuf.st_uid);
4170
4171 if ((f = fopen (pathname, "r")) != NULL)
4172 {
4173 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4174 if (len > 0)
4175 {
4176 int i;
4177 for (i = 0; i < len; i++)
4178 if (cmd[i] == '\0')
4179 cmd[i] = ' ';
4180 cmd[len] = '\0';
4181
4182 obstack_xml_printf (
4183 &obstack,
4184 "<item>"
4185 "<column name=\"pid\">%s</column>"
4186 "<column name=\"user\">%s</column>"
4187 "<column name=\"command\">%s</column>"
4188 "</item>",
4189 dp->d_name,
4190 entry ? entry->pw_name : "?",
4191 cmd);
4192 }
4193 fclose (f);
4194 }
4195
4196 xfree (pathname);
4197 }
4198 }
4199
4200 closedir (dirp);
4201 }
4202
4203 obstack_grow_str0 (&obstack, "</osdata>\n");
4204 buf = obstack_finish (&obstack);
4205 len_avail = strlen (buf);
4206 }
4207
4208 if (offset >= len_avail)
4209 {
4210 /* Done. Get rid of the obstack. */
4211 obstack_free (&obstack, NULL);
4212 buf = NULL;
4213 len_avail = 0;
4214 return 0;
4215 }
4216
4217 if (len > len_avail - offset)
4218 len = len_avail - offset;
4219 memcpy (readbuf, buf + offset, len);
4220
4221 return len;
4222}
4223
10d6c8cd
DJ
4224static LONGEST
4225linux_xfer_partial (struct target_ops *ops, enum target_object object,
4226 const char *annex, gdb_byte *readbuf,
4227 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4228{
4229 LONGEST xfer;
4230
4231 if (object == TARGET_OBJECT_AUXV)
4232 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4233 offset, len);
4234
07e059b5
VP
4235 if (object == TARGET_OBJECT_OSDATA)
4236 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4237 offset, len);
4238
10d6c8cd
DJ
4239 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4240 offset, len);
4241 if (xfer != 0)
4242 return xfer;
4243
4244 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4245 offset, len);
4246}
4247
e9efe249 4248/* Create a prototype generic GNU/Linux target. The client can override
10d6c8cd
DJ
4249 it with local methods. */
4250
910122bf
UW
4251static void
4252linux_target_install_ops (struct target_ops *t)
10d6c8cd 4253{
6d8fd2b7
UW
4254 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4255 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4256 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4257 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
10d6c8cd 4258 t->to_post_startup_inferior = linux_child_post_startup_inferior;
6d8fd2b7
UW
4259 t->to_post_attach = linux_child_post_attach;
4260 t->to_follow_fork = linux_child_follow_fork;
10d6c8cd
DJ
4261 t->to_find_memory_regions = linux_nat_find_memory_regions;
4262 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4263
4264 super_xfer_partial = t->to_xfer_partial;
4265 t->to_xfer_partial = linux_xfer_partial;
910122bf
UW
4266}
4267
4268struct target_ops *
4269linux_target (void)
4270{
4271 struct target_ops *t;
4272
4273 t = inf_ptrace_target ();
4274 linux_target_install_ops (t);
4275
4276 return t;
4277}
4278
4279struct target_ops *
7714d83a 4280linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
910122bf
UW
4281{
4282 struct target_ops *t;
4283
4284 t = inf_ptrace_trad_target (register_u_offset);
4285 linux_target_install_ops (t);
10d6c8cd 4286
10d6c8cd
DJ
4287 return t;
4288}
4289
b84876c2
PA
4290/* target_is_async_p implementation. */
4291
4292static int
4293linux_nat_is_async_p (void)
4294{
4295 /* NOTE: palves 2008-03-21: We're only async when the user requests
c6ebd6cf 4296 it explicitly with the "maintenance set target-async" command.
b84876c2 4297 Someday, linux will always be async. */
c6ebd6cf 4298 if (!target_async_permitted)
b84876c2
PA
4299 return 0;
4300
4301 return 1;
4302}
4303
4304/* target_can_async_p implementation. */
4305
4306static int
4307linux_nat_can_async_p (void)
4308{
4309 /* NOTE: palves 2008-03-21: We're only async when the user requests
c6ebd6cf 4310 it explicitly with the "maintenance set target-async" command.
b84876c2 4311 Someday, linux will always be async. */
c6ebd6cf 4312 if (!target_async_permitted)
b84876c2
PA
4313 return 0;
4314
4315 /* See target.h/target_async_mask. */
4316 return linux_nat_async_mask_value;
4317}
4318
9908b566
VP
4319static int
4320linux_nat_supports_non_stop (void)
4321{
4322 return 1;
4323}
4324
b84876c2
PA
4325/* target_async_mask implementation. */
4326
4327static int
4328linux_nat_async_mask (int mask)
4329{
4330 int current_state;
4331 current_state = linux_nat_async_mask_value;
4332
4333 if (current_state != mask)
4334 {
4335 if (mask == 0)
4336 {
4337 linux_nat_async (NULL, 0);
4338 linux_nat_async_mask_value = mask;
b84876c2
PA
4339 }
4340 else
4341 {
b84876c2
PA
4342 linux_nat_async_mask_value = mask;
4343 linux_nat_async (inferior_event_handler, 0);
4344 }
4345 }
4346
4347 return current_state;
4348}
4349
4350/* Pop an event from the event pipe. */
4351
4352static int
4353linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
4354{
4355 struct waitpid_result event = {0};
4356 int ret;
4357
4358 do
4359 {
4360 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
4361 }
4362 while (ret == -1 && errno == EINTR);
4363
4364 gdb_assert (ret == sizeof (event));
4365
4366 *ptr_status = event.status;
4367 *ptr_options = event.options;
4368
4369 linux_nat_num_queued_events--;
4370
4371 return event.pid;
4372}
4373
4374/* Push an event into the event pipe. */
4375
4376static void
4377linux_nat_event_pipe_push (int pid, int status, int options)
4378{
4379 int ret;
4380 struct waitpid_result event = {0};
4381 event.pid = pid;
4382 event.status = status;
4383 event.options = options;
4384
4385 do
4386 {
4387 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
4388 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
4389 } while (ret == -1 && errno == EINTR);
4390
4391 linux_nat_num_queued_events++;
4392}
4393
4394static void
4395get_pending_events (void)
4396{
4397 int status, options, pid;
4398
c6ebd6cf 4399 if (!target_async_permitted
84e46146 4400 || linux_nat_async_events_state != sigchld_async)
b84876c2
PA
4401 internal_error (__FILE__, __LINE__,
4402 "get_pending_events called with async masked");
4403
4404 while (1)
4405 {
4406 status = 0;
4407 options = __WCLONE | WNOHANG;
4408
4409 do
4410 {
4411 pid = waitpid (-1, &status, options);
4412 }
4413 while (pid == -1 && errno == EINTR);
4414
4415 if (pid <= 0)
4416 {
4417 options = WNOHANG;
4418 do
4419 {
4420 pid = waitpid (-1, &status, options);
4421 }
4422 while (pid == -1 && errno == EINTR);
4423 }
4424
4425 if (pid <= 0)
4426 /* No more children reporting events. */
4427 break;
4428
4429 if (debug_linux_nat_async)
4430 fprintf_unfiltered (gdb_stdlog, "\
4431get_pending_events: pid(%d), status(%x), options (%x)\n",
4432 pid, status, options);
4433
4434 linux_nat_event_pipe_push (pid, status, options);
4435 }
4436
4437 if (debug_linux_nat_async)
4438 fprintf_unfiltered (gdb_stdlog, "\
4439get_pending_events: linux_nat_num_queued_events(%d)\n",
4440 linux_nat_num_queued_events);
4441}
4442
4443/* SIGCHLD handler for async mode. */
4444
4445static void
4446async_sigchld_handler (int signo)
4447{
4448 if (debug_linux_nat_async)
4449 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4450
4451 get_pending_events ();
4452}
4453
84e46146 4454/* Set SIGCHLD handling state to STATE. Returns previous state. */
b84876c2 4455
84e46146
PA
4456static enum sigchld_state
4457linux_nat_async_events (enum sigchld_state state)
b84876c2 4458{
84e46146 4459 enum sigchld_state current_state = linux_nat_async_events_state;
b84876c2
PA
4460
4461 if (debug_linux_nat_async)
4462 fprintf_unfiltered (gdb_stdlog,
84e46146 4463 "LNAE: state(%d): linux_nat_async_events_state(%d), "
b84876c2 4464 "linux_nat_num_queued_events(%d)\n",
84e46146 4465 state, linux_nat_async_events_state,
b84876c2
PA
4466 linux_nat_num_queued_events);
4467
84e46146 4468 if (current_state != state)
b84876c2
PA
4469 {
4470 sigset_t mask;
4471 sigemptyset (&mask);
4472 sigaddset (&mask, SIGCHLD);
84e46146
PA
4473
4474 /* Always block before changing state. */
4475 sigprocmask (SIG_BLOCK, &mask, NULL);
4476
4477 /* Set new state. */
4478 linux_nat_async_events_state = state;
4479
4480 switch (state)
b84876c2 4481 {
84e46146
PA
4482 case sigchld_sync:
4483 {
4484 /* Block target events. */
4485 sigprocmask (SIG_BLOCK, &mask, NULL);
4486 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4487 /* Get events out of queue, and make them available to
4488 queued_waitpid / my_waitpid. */
4489 pipe_to_local_event_queue ();
4490 }
4491 break;
4492 case sigchld_async:
4493 {
4494 /* Unblock target events for async mode. */
4495
4496 sigprocmask (SIG_BLOCK, &mask, NULL);
4497
4498 /* Put events we already waited on, in the pipe first, so
4499 events are FIFO. */
4500 local_event_queue_to_pipe ();
4501 /* While in masked async, we may have not collected all
4502 the pending events. Get them out now. */
4503 get_pending_events ();
4504
4505 /* Let'em come. */
4506 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4507 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4508 }
4509 break;
4510 case sigchld_default:
4511 {
4512 /* SIGCHLD default mode. */
4513 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4514
4515 /* Get events out of queue, and make them available to
4516 queued_waitpid / my_waitpid. */
4517 pipe_to_local_event_queue ();
4518
4519 /* Unblock SIGCHLD. */
4520 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4521 }
4522 break;
b84876c2
PA
4523 }
4524 }
4525
4526 return current_state;
4527}
4528
4529static int async_terminal_is_ours = 1;
4530
4531/* target_terminal_inferior implementation. */
4532
4533static void
4534linux_nat_terminal_inferior (void)
4535{
4536 if (!target_is_async_p ())
4537 {
4538 /* Async mode is disabled. */
4539 terminal_inferior ();
4540 return;
4541 }
4542
4543 /* GDB should never give the terminal to the inferior, if the
4544 inferior is running in the background (run&, continue&, etc.).
4545 This check can be removed when the common code is fixed. */
4546 if (!sync_execution)
4547 return;
4548
4549 terminal_inferior ();
4550
4551 if (!async_terminal_is_ours)
4552 return;
4553
4554 delete_file_handler (input_fd);
4555 async_terminal_is_ours = 0;
4556 set_sigint_trap ();
4557}
4558
4559/* target_terminal_ours implementation. */
4560
2c0b251b 4561static void
b84876c2
PA
4562linux_nat_terminal_ours (void)
4563{
4564 if (!target_is_async_p ())
4565 {
4566 /* Async mode is disabled. */
4567 terminal_ours ();
4568 return;
4569 }
4570
4571 /* GDB should never give the terminal to the inferior if the
4572 inferior is running in the background (run&, continue&, etc.),
4573 but claiming it sure should. */
4574 terminal_ours ();
4575
4576 if (!sync_execution)
4577 return;
4578
4579 if (async_terminal_is_ours)
4580 return;
4581
4582 clear_sigint_trap ();
4583 add_file_handler (input_fd, stdin_event_handler, 0);
4584 async_terminal_is_ours = 1;
4585}
4586
4587static void (*async_client_callback) (enum inferior_event_type event_type,
4588 void *context);
4589static void *async_client_context;
4590
4591static void
4592linux_nat_async_file_handler (int error, gdb_client_data client_data)
4593{
4594 async_client_callback (INF_REG_EVENT, async_client_context);
4595}
4596
4597/* target_async implementation. */
4598
4599static void
4600linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4601 void *context), void *context)
4602{
c6ebd6cf 4603 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
b84876c2
PA
4604 internal_error (__FILE__, __LINE__,
4605 "Calling target_async when async is masked");
4606
4607 if (callback != NULL)
4608 {
4609 async_client_callback = callback;
4610 async_client_context = context;
4611 add_file_handler (linux_nat_event_pipe[0],
4612 linux_nat_async_file_handler, NULL);
4613
84e46146 4614 linux_nat_async_events (sigchld_async);
b84876c2
PA
4615 }
4616 else
4617 {
4618 async_client_callback = callback;
4619 async_client_context = context;
4620
84e46146 4621 linux_nat_async_events (sigchld_sync);
b84876c2
PA
4622 delete_file_handler (linux_nat_event_pipe[0]);
4623 }
4624 return;
4625}
4626
252fbfc8
PA
4627/* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
4628 event came out. */
4629
4c28f408 4630static int
252fbfc8 4631linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4c28f408 4632{
252fbfc8
PA
4633 ptid_t ptid = * (ptid_t *) data;
4634
4635 if (ptid_equal (lwp->ptid, ptid)
4636 || ptid_equal (minus_one_ptid, ptid)
4637 || (ptid_is_pid (ptid)
4638 && ptid_get_pid (ptid) == ptid_get_pid (lwp->ptid)))
4639 {
4640 if (!lwp->stopped)
4641 {
4642 int pid, status;
4643
4644 if (debug_linux_nat)
4645 fprintf_unfiltered (gdb_stdlog,
4646 "LNSL: running -> suspending %s\n",
4647 target_pid_to_str (lwp->ptid));
4648
4649 /* Peek once, to check if we've already waited for this
4650 LWP. */
4651 pid = queued_waitpid_1 (ptid_get_lwp (lwp->ptid), &status,
4652 lwp->cloned ? __WCLONE : 0, 1 /* peek */);
4653
4654 if (pid == -1)
4655 {
4656 ptid_t ptid = lwp->ptid;
4657
4658 stop_callback (lwp, NULL);
4659 stop_wait_callback (lwp, NULL);
4660
4661 /* If the lwp exits while we try to stop it, there's
4662 nothing else to do. */
4663 lwp = find_lwp_pid (ptid);
4664 if (lwp == NULL)
4665 return 0;
4666
4667 pid = queued_waitpid_1 (ptid_get_lwp (lwp->ptid), &status,
4668 lwp->cloned ? __WCLONE : 0,
4669 1 /* peek */);
4670 }
4671
4672 /* If we didn't collect any signal other than SIGSTOP while
4673 stopping the LWP, push a SIGNAL_0 event. In either case,
4674 the event-loop will end up calling target_wait which will
4675 collect these. */
4676 if (pid == -1)
4677 push_waitpid (ptid_get_lwp (lwp->ptid), W_STOPCODE (0),
4678 lwp->cloned ? __WCLONE : 0);
4679 }
4680 else
4681 {
4682 /* Already known to be stopped; do nothing. */
4683
4684 if (debug_linux_nat)
4685 {
4686 if (find_thread_pid (lwp->ptid)->stop_requested)
4687 fprintf_unfiltered (gdb_stdlog, "\
4688LNSL: already stopped/stop_requested %s\n",
4689 target_pid_to_str (lwp->ptid));
4690 else
4691 fprintf_unfiltered (gdb_stdlog, "\
4692LNSL: already stopped/no stop_requested yet %s\n",
4693 target_pid_to_str (lwp->ptid));
4694 }
4695 }
4696 }
4c28f408
PA
4697 return 0;
4698}
4699
4700static void
4701linux_nat_stop (ptid_t ptid)
4702{
4703 if (non_stop)
4704 {
252fbfc8
PA
4705 linux_nat_async_events (sigchld_sync);
4706 iterate_over_lwps (linux_nat_stop_lwp, &ptid);
4707 target_async (inferior_event_handler, 0);
4c28f408
PA
4708 }
4709 else
4710 linux_ops->to_stop (ptid);
4711}
4712
f973ed9c
DJ
4713void
4714linux_nat_add_target (struct target_ops *t)
4715{
f973ed9c
DJ
4716 /* Save the provided single-threaded target. We save this in a separate
4717 variable because another target we've inherited from (e.g. inf-ptrace)
4718 may have saved a pointer to T; we want to use it for the final
4719 process stratum target. */
4720 linux_ops_saved = *t;
4721 linux_ops = &linux_ops_saved;
4722
4723 /* Override some methods for multithreading. */
b84876c2 4724 t->to_create_inferior = linux_nat_create_inferior;
f973ed9c
DJ
4725 t->to_attach = linux_nat_attach;
4726 t->to_detach = linux_nat_detach;
4727 t->to_resume = linux_nat_resume;
4728 t->to_wait = linux_nat_wait;
4729 t->to_xfer_partial = linux_nat_xfer_partial;
4730 t->to_kill = linux_nat_kill;
4731 t->to_mourn_inferior = linux_nat_mourn_inferior;
4732 t->to_thread_alive = linux_nat_thread_alive;
4733 t->to_pid_to_str = linux_nat_pid_to_str;
4734 t->to_has_thread_control = tc_schedlock;
4735
b84876c2
PA
4736 t->to_can_async_p = linux_nat_can_async_p;
4737 t->to_is_async_p = linux_nat_is_async_p;
9908b566 4738 t->to_supports_non_stop = linux_nat_supports_non_stop;
b84876c2
PA
4739 t->to_async = linux_nat_async;
4740 t->to_async_mask = linux_nat_async_mask;
4741 t->to_terminal_inferior = linux_nat_terminal_inferior;
4742 t->to_terminal_ours = linux_nat_terminal_ours;
4743
4c28f408
PA
4744 /* Methods for non-stop support. */
4745 t->to_stop = linux_nat_stop;
4746
f973ed9c
DJ
4747 /* We don't change the stratum; this target will sit at
4748 process_stratum and thread_db will set at thread_stratum. This
4749 is a little strange, since this is a multi-threaded-capable
4750 target, but we want to be on the stack below thread_db, and we
4751 also want to be used for single-threaded processes. */
4752
4753 add_target (t);
f973ed9c
DJ
4754}
4755
9f0bdab8
DJ
4756/* Register a method to call whenever a new thread is attached. */
4757void
4758linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4759{
4760 /* Save the pointer. We only support a single registered instance
4761 of the GNU/Linux native target, so we do not need to map this to
4762 T. */
4763 linux_nat_new_thread = new_thread;
4764}
4765
5b009018
PA
4766/* Register a method that converts a siginfo object between the layout
4767 that ptrace returns, and the layout in the architecture of the
4768 inferior. */
4769void
4770linux_nat_set_siginfo_fixup (struct target_ops *t,
4771 int (*siginfo_fixup) (struct siginfo *,
4772 gdb_byte *,
4773 int))
4774{
4775 /* Save the pointer. */
4776 linux_nat_siginfo_fixup = siginfo_fixup;
4777}
4778
9f0bdab8
DJ
4779/* Return the saved siginfo associated with PTID. */
4780struct siginfo *
4781linux_nat_get_siginfo (ptid_t ptid)
4782{
4783 struct lwp_info *lp = find_lwp_pid (ptid);
4784
4785 gdb_assert (lp != NULL);
4786
4787 return &lp->siginfo;
4788}
4789
c6ebd6cf
VP
4790/* Enable/Disable async mode. */
4791
4792static void
4793linux_nat_setup_async (void)
4794{
4795 if (pipe (linux_nat_event_pipe) == -1)
4796 internal_error (__FILE__, __LINE__,
4797 "creating event pipe failed.");
4798 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4799 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4800}
4801
2c0b251b
PA
4802/* Provide a prototype to silence -Wmissing-prototypes. */
4803extern initialize_file_ftype _initialize_linux_nat;
4804
d6b0e80f
AC
4805void
4806_initialize_linux_nat (void)
4807{
b84876c2 4808 sigset_t mask;
dba24537 4809
1bedd215
AC
4810 add_info ("proc", linux_nat_info_proc_cmd, _("\
4811Show /proc process information about any running process.\n\
dba24537
AC
4812Specify any process id, or use the program being debugged by default.\n\
4813Specify any of the following keywords for detailed info:\n\
4814 mappings -- list of mapped memory regions.\n\
4815 stat -- list a bunch of random process info.\n\
4816 status -- list a different bunch of random process info.\n\
1bedd215 4817 all -- list all available /proc info."));
d6b0e80f 4818
b84876c2
PA
4819 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4820 &debug_linux_nat, _("\
4821Set debugging of GNU/Linux lwp module."), _("\
4822Show debugging of GNU/Linux lwp module."), _("\
4823Enables printf debugging output."),
4824 NULL,
4825 show_debug_linux_nat,
4826 &setdebuglist, &showdebuglist);
4827
4828 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4829 &debug_linux_nat_async, _("\
4830Set debugging of GNU/Linux async lwp module."), _("\
4831Show debugging of GNU/Linux async lwp module."), _("\
4832Enables printf debugging output."),
4833 NULL,
4834 show_debug_linux_nat_async,
4835 &setdebuglist, &showdebuglist);
4836
84e46146
PA
4837 /* Get the default SIGCHLD action. Used while forking an inferior
4838 (see linux_nat_create_inferior/linux_nat_async_events). */
4839 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4840
b84876c2
PA
4841 /* Block SIGCHLD by default. Doing this early prevents it getting
4842 unblocked if an exception is thrown due to an error while the
4843 inferior is starting (sigsetjmp/siglongjmp). */
4844 sigemptyset (&mask);
4845 sigaddset (&mask, SIGCHLD);
4846 sigprocmask (SIG_BLOCK, &mask, NULL);
4847
4848 /* Save this mask as the default. */
d6b0e80f
AC
4849 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4850
b84876c2
PA
4851 /* The synchronous SIGCHLD handler. */
4852 sync_sigchld_action.sa_handler = sigchld_handler;
4853 sigemptyset (&sync_sigchld_action.sa_mask);
4854 sync_sigchld_action.sa_flags = SA_RESTART;
4855
4856 /* Make it the default. */
4857 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
d6b0e80f
AC
4858
4859 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4860 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4861 sigdelset (&suspend_mask, SIGCHLD);
4862
b84876c2
PA
4863 /* SIGCHLD handler for async mode. */
4864 async_sigchld_action.sa_handler = async_sigchld_handler;
4865 sigemptyset (&async_sigchld_action.sa_mask);
4866 async_sigchld_action.sa_flags = SA_RESTART;
d6b0e80f 4867
c6ebd6cf 4868 linux_nat_setup_async ();
10568435
JK
4869
4870 add_setshow_boolean_cmd ("disable-randomization", class_support,
4871 &disable_randomization, _("\
4872Set disabling of debuggee's virtual address space randomization."), _("\
4873Show disabling of debuggee's virtual address space randomization."), _("\
4874When this mode is on (which is the default), randomization of the virtual\n\
4875address space is disabled. Standalone programs run with the randomization\n\
4876enabled by default on some platforms."),
4877 &set_disable_randomization,
4878 &show_disable_randomization,
4879 &setlist, &showlist);
d6b0e80f
AC
4880}
4881\f
4882
4883/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4884 the GNU/Linux Threads library and therefore doesn't really belong
4885 here. */
4886
4887/* Read variable NAME in the target and return its value if found.
4888 Otherwise return zero. It is assumed that the type of the variable
4889 is `int'. */
4890
4891static int
4892get_signo (const char *name)
4893{
4894 struct minimal_symbol *ms;
4895 int signo;
4896
4897 ms = lookup_minimal_symbol (name, NULL, NULL);
4898 if (ms == NULL)
4899 return 0;
4900
8e70166d 4901 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
d6b0e80f
AC
4902 sizeof (signo)) != 0)
4903 return 0;
4904
4905 return signo;
4906}
4907
4908/* Return the set of signals used by the threads library in *SET. */
4909
4910void
4911lin_thread_get_thread_signals (sigset_t *set)
4912{
4913 struct sigaction action;
4914 int restart, cancel;
b84876c2 4915 sigset_t blocked_mask;
d6b0e80f 4916
b84876c2 4917 sigemptyset (&blocked_mask);
d6b0e80f
AC
4918 sigemptyset (set);
4919
4920 restart = get_signo ("__pthread_sig_restart");
17fbb0bd
DJ
4921 cancel = get_signo ("__pthread_sig_cancel");
4922
4923 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4924 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4925 not provide any way for the debugger to query the signal numbers -
4926 fortunately they don't change! */
4927
d6b0e80f 4928 if (restart == 0)
17fbb0bd 4929 restart = __SIGRTMIN;
d6b0e80f 4930
d6b0e80f 4931 if (cancel == 0)
17fbb0bd 4932 cancel = __SIGRTMIN + 1;
d6b0e80f
AC
4933
4934 sigaddset (set, restart);
4935 sigaddset (set, cancel);
4936
4937 /* The GNU/Linux Threads library makes terminating threads send a
4938 special "cancel" signal instead of SIGCHLD. Make sure we catch
4939 those (to prevent them from terminating GDB itself, which is
4940 likely to be their default action) and treat them the same way as
4941 SIGCHLD. */
4942
4943 action.sa_handler = sigchld_handler;
4944 sigemptyset (&action.sa_mask);
58aecb61 4945 action.sa_flags = SA_RESTART;
d6b0e80f
AC
4946 sigaction (cancel, &action, NULL);
4947
4948 /* We block the "cancel" signal throughout this code ... */
4949 sigaddset (&blocked_mask, cancel);
4950 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4951
4952 /* ... except during a sigsuspend. */
4953 sigdelset (&suspend_mask, cancel);
4954}