]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/progspace.h
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / progspace.h
CommitLineData
6c95b8df
PA
1/* Program and address space management, for GDB, the GNU debugger.
2
213516ef 3 Copyright (C) 2009-2023 Free Software Foundation, Inc.
6c95b8df
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21#ifndef PROGSPACE_H
22#define PROGSPACE_H
23
24#include "target.h"
06333fea 25#include "gdb_bfd.h"
268a13a5 26#include "gdbsupport/gdb_vecs.h"
8e260fc0 27#include "registry.h"
9be25986 28#include "solist.h"
268a13a5
TT
29#include "gdbsupport/next-iterator.h"
30#include "gdbsupport/safe-iterator.h"
d0801dd8 31#include <list>
94c93c35 32#include <vector>
6c95b8df
PA
33
34struct target_ops;
35struct bfd;
36struct objfile;
37struct inferior;
38struct exec;
39struct address_space;
08b8a139 40struct program_space;
a1fd1ac9 41struct so_list;
6c95b8df 42
e2904e1f 43typedef std::list<std::unique_ptr<objfile>> objfile_list;
7d7167ce 44
e2904e1f 45/* An iterator that wraps an iterator over std::unique_ptr<objfile>,
7d7167ce
TT
46 and dereferences the returned object. This is useful for iterating
47 over a list of shared pointers and returning raw pointers -- which
48 helped avoid touching a lot of code when changing how objfiles are
49 managed. */
50
51class unwrapping_objfile_iterator
52{
53public:
54
55 typedef unwrapping_objfile_iterator self_type;
56 typedef typename ::objfile *value_type;
57 typedef typename ::objfile &reference;
58 typedef typename ::objfile **pointer;
59 typedef typename objfile_list::iterator::iterator_category iterator_category;
60 typedef typename objfile_list::iterator::difference_type difference_type;
61
9be25986
SM
62 unwrapping_objfile_iterator (objfile_list::iterator iter)
63 : m_iter (std::move (iter))
7d7167ce
TT
64 {
65 }
66
67 objfile *operator* () const
68 {
69 return m_iter->get ();
70 }
71
72 unwrapping_objfile_iterator operator++ ()
73 {
74 ++m_iter;
75 return *this;
76 }
77
78 bool operator!= (const unwrapping_objfile_iterator &other) const
79 {
80 return m_iter != other.m_iter;
81 }
82
83private:
84
85 /* The underlying iterator. */
86 objfile_list::iterator m_iter;
87};
88
89
90/* A range that returns unwrapping_objfile_iterators. */
91
9be25986 92using unwrapping_objfile_range = iterator_range<unwrapping_objfile_iterator>;
7d7167ce 93
6c95b8df
PA
94/* A program space represents a symbolic view of an address space.
95 Roughly speaking, it holds all the data associated with a
96 non-running-yet program (main executable, main symbols), and when
97 an inferior is running and is bound to it, includes the list of its
98 mapped in shared libraries.
99
100 In the traditional debugging scenario, there's a 1-1 correspondence
101 among program spaces, inferiors and address spaces, like so:
102
103 pspace1 (prog1) <--> inf1(pid1) <--> aspace1
104
105 In the case of debugging more than one traditional unix process or
106 program, we still have:
107
108 |-----------------+------------+---------|
109 | pspace1 (prog1) | inf1(pid1) | aspace1 |
110 |----------------------------------------|
111 | pspace2 (prog1) | no inf yet | aspace2 |
112 |-----------------+------------+---------|
113 | pspace3 (prog2) | inf2(pid2) | aspace3 |
114 |-----------------+------------+---------|
115
116 In the former example, if inf1 forks (and GDB stays attached to
117 both processes), the new child will have its own program and
118 address spaces. Like so:
119
120 |-----------------+------------+---------|
121 | pspace1 (prog1) | inf1(pid1) | aspace1 |
122 |-----------------+------------+---------|
123 | pspace2 (prog1) | inf2(pid2) | aspace2 |
124 |-----------------+------------+---------|
125
126 However, had inf1 from the latter case vforked instead, it would
127 share the program and address spaces with its parent, until it
128 execs or exits, like so:
129
130 |-----------------+------------+---------|
131 | pspace1 (prog1) | inf1(pid1) | aspace1 |
132 | | inf2(pid2) | |
133 |-----------------+------------+---------|
134
135 When the vfork child execs, it is finally given new program and
136 address spaces.
137
138 |-----------------+------------+---------|
139 | pspace1 (prog1) | inf1(pid1) | aspace1 |
140 |-----------------+------------+---------|
141 | pspace2 (prog1) | inf2(pid2) | aspace2 |
142 |-----------------+------------+---------|
143
144 There are targets where the OS (if any) doesn't provide memory
145 management or VM protection, where all inferiors share the same
146 address space --- e.g. uClinux. GDB models this by having all
147 inferiors share the same address space, but, giving each its own
148 program space, like so:
149
150 |-----------------+------------+---------|
151 | pspace1 (prog1) | inf1(pid1) | |
152 |-----------------+------------+ |
153 | pspace2 (prog1) | inf2(pid2) | aspace1 |
154 |-----------------+------------+ |
155 | pspace3 (prog2) | inf3(pid3) | |
156 |-----------------+------------+---------|
157
158 The address space sharing matters for run control and breakpoints
159 management. E.g., did we just hit a known breakpoint that we need
160 to step over? Is this breakpoint a duplicate of this other one, or
161 do I need to insert a trap?
162
163 Then, there are targets where all symbols look the same for all
164 inferiors, although each has its own address space, as e.g.,
165 Ericsson DICOS. In such case, the model is:
166
167 |---------+------------+---------|
168 | | inf1(pid1) | aspace1 |
169 | +------------+---------|
170 | pspace | inf2(pid2) | aspace2 |
171 | +------------+---------|
172 | | inf3(pid3) | aspace3 |
173 |---------+------------+---------|
174
175 Note however, that the DICOS debug API takes care of making GDB
176 believe that breakpoints are "global". That is, although each
177 process does have its own private copy of data symbols (just like a
178 bunch of forks), to the breakpoints module, all processes share a
179 single address space, so all breakpoints set at the same address
180 are duplicates of each other, even breakpoints set in the data
181 space (e.g., call dummy breakpoints placed on stack). This allows
182 a simplification in the spaces implementation: we avoid caring for
183 a many-many links between address and program spaces. Either
184 there's a single address space bound to the program space
185 (traditional unix/uClinux), or, in the DICOS case, the address
186 space bound to the program space is mostly ignored. */
187
188/* The program space structure. */
189
190struct program_space
564b1e3f 191{
381ce63f
PA
192 /* Constructs a new empty program space, binds it to ASPACE, and
193 adds it to the program space list. */
194 explicit program_space (address_space *aspace);
195
196 /* Releases a program space, and all its contents (shared libraries,
197 objfiles, and any other references to the program space in other
198 modules). It is an internal error to call this when the program
199 space is the current program space, since there should always be
200 a program space. */
564b1e3f
SM
201 ~program_space ();
202
9be25986 203 using objfiles_range = unwrapping_objfile_range;
2030c079 204
30baf67b 205 /* Return an iterable object that can be used to iterate over all
2030c079
TT
206 objfiles. The basic use is in a foreach, like:
207
208 for (objfile *objf : pspace->objfiles ()) { ... } */
7d7167ce 209 objfiles_range objfiles ()
2030c079 210 {
9be25986
SM
211 return objfiles_range
212 (unwrapping_objfile_iterator (objfiles_list.begin ()),
213 unwrapping_objfile_iterator (objfiles_list.end ()));
2030c079
TT
214 }
215
9be25986 216 using objfiles_safe_range = basic_safe_range<objfiles_range>;
7e955d83
TT
217
218 /* An iterable object that can be used to iterate over all objfiles.
219 The basic use is in a foreach, like:
220
221 for (objfile *objf : pspace->objfiles_safe ()) { ... }
222
223 This variant uses a basic_safe_iterator so that objfiles can be
224 deleted during iteration. */
225 objfiles_safe_range objfiles_safe ()
226 {
9be25986
SM
227 return objfiles_safe_range
228 (objfiles_range
229 (unwrapping_objfile_iterator (objfiles_list.begin ()),
230 unwrapping_objfile_iterator (objfiles_list.end ())));
7e955d83
TT
231 }
232
7cac64af
TT
233 /* Add OBJFILE to the list of objfiles, putting it just before
234 BEFORE. If BEFORE is nullptr, it will go at the end of the
235 list. */
e2904e1f 236 void add_objfile (std::unique_ptr<objfile> &&objfile,
7d7167ce 237 struct objfile *before);
7cac64af 238
23452926
TT
239 /* Remove OBJFILE from the list of objfiles. */
240 void remove_objfile (struct objfile *objfile);
7cac64af 241
deeafabb
TT
242 /* Return true if there is more than one object file loaded; false
243 otherwise. */
d0801dd8
TT
244 bool multi_objfile_p () const
245 {
246 return objfiles_list.size () > 1;
247 }
deeafabb 248
343cc952
TT
249 /* Free all the objfiles associated with this program space. */
250 void free_all_objfiles ();
251
a1fd1ac9
TT
252 /* Return a range adapter for iterating over all the solibs in this
253 program space. Use it like:
254
255 for (so_list *so : pspace->solibs ()) { ... } */
9be25986
SM
256 so_list_range solibs () const
257 { return so_list_range (this->so_list); }
a1fd1ac9 258
8a4f1402
TT
259 /* Close and clear exec_bfd. If we end up with no target sections
260 to read memory from, this unpushes the exec_ops target. */
261 void exec_close ();
deeafabb 262
7e10abd1
TT
263 /* Return the exec BFD for this program space. */
264 bfd *exec_bfd () const
265 {
19f6550e 266 return ebfd.get ();
7e10abd1
TT
267 }
268
269 /* Set the exec BFD for this program space to ABFD. */
19f6550e 270 void set_exec_bfd (gdb_bfd_ref_ptr &&abfd)
7e10abd1 271 {
19f6550e 272 ebfd = std::move (abfd);
7e10abd1
TT
273 }
274
e39fb971
TT
275 /* Reset saved solib data at the start of an solib event. This lets
276 us properly collect the data when calling solib_add, so it can then
277 later be printed. */
278 void clear_solib_cache ();
279
004eecfd
TT
280 /* Returns true iff there's no inferior bound to this program
281 space. */
282 bool empty ();
283
2a3f84af
TT
284 /* Remove all target sections owned by OWNER. */
285 void remove_target_sections (void *owner);
286
3769e227
TT
287 /* Add the sections array defined by SECTIONS to the
288 current set of target sections. */
289 void add_target_sections (void *owner,
290 const target_section_table &sections);
291
d9eebde0
TT
292 /* Add the sections of OBJFILE to the current set of target
293 sections. They are given OBJFILE as the "owner". */
294 void add_target_sections (struct objfile *objfile);
295
02f7d26b
AB
296 /* Clear all target sections from M_TARGET_SECTIONS table. */
297 void clear_target_sections ()
298 {
299 m_target_sections.clear ();
300 }
301
302 /* Return a reference to the M_TARGET_SECTIONS table. */
303 target_section_table &target_sections ()
304 {
305 return m_target_sections;
306 }
307
564b1e3f
SM
308 /* Unique ID number. */
309 int num = 0;
310
311 /* The main executable loaded into this program space. This is
312 managed by the exec target. */
313
314 /* The BFD handle for the main executable. */
19f6550e 315 gdb_bfd_ref_ptr ebfd;
564b1e3f
SM
316 /* The last-modified time, from when the exec was brought in. */
317 long ebfd_mtime = 0;
318 /* Similar to bfd_get_filename (exec_bfd) but in original form given
c20cb686
TT
319 by user, without symbolic links and pathname resolved. It is not
320 NULL iff EBFD is not NULL. */
321 gdb::unique_xmalloc_ptr<char> exec_filename;
564b1e3f 322
e540a5a2 323 /* Binary file diddling handle for the core file. */
06333fea 324 gdb_bfd_ref_ptr cbfd;
e540a5a2 325
564b1e3f
SM
326 /* The address space attached to this program space. More than one
327 program space may be bound to the same address space. In the
328 traditional unix-like debugging scenario, this will usually
329 match the address space bound to the inferior, and is mostly
330 used by the breakpoints module for address matches. If the
331 target shares a program space for all inferiors and breakpoints
332 are global, then this field is ignored (we don't currently
333 support inferiors sharing a program space if the target doesn't
334 make breakpoints global). */
335 struct address_space *aspace = NULL;
336
337 /* True if this program space's section offsets don't yet represent
338 the final offsets of the "live" address space (that is, the
339 section addresses still require the relocation offsets to be
340 applied, and hence we can't trust the section addresses for
341 anything that pokes at live memory). E.g., for qOffsets
342 targets, or for PIE executables, until we connect and ask the
343 target for the final relocation offsets, the symbols we've used
344 to set breakpoints point at the wrong addresses. */
345 int executing_startup = 0;
346
347 /* True if no breakpoints should be inserted in this program
348 space. */
349 int breakpoints_not_allowed = 0;
350
351 /* The object file that the main symbol table was loaded from
352 (e.g. the argument to the "symbol-file" or "file" command). */
353 struct objfile *symfile_object_file = NULL;
354
d0801dd8 355 /* All known objfiles are kept in a linked list. */
e2904e1f 356 std::list<std::unique_ptr<objfile>> objfiles_list;
564b1e3f 357
564b1e3f
SM
358 /* List of shared objects mapped into this space. Managed by
359 solib.c. */
360 struct so_list *so_list = NULL;
361
362 /* Number of calls to solib_add. */
363 unsigned int solib_add_generation = 0;
364
365 /* When an solib is added, it is also added to this vector. This
366 is so we can properly report solib changes to the user. */
bcb430e4 367 std::vector<struct so_list *> added_solibs;
564b1e3f
SM
368
369 /* When an solib is removed, its name is added to this vector.
370 This is so we can properly report solib changes to the user. */
6fb16ce6 371 std::vector<std::string> deleted_solibs;
564b1e3f
SM
372
373 /* Per pspace data-pointers required by other GDB modules. */
08b8a139 374 registry<program_space> registry_fields;
02f7d26b
AB
375
376private:
377 /* The set of target sections matching the sections mapped into
378 this program space. Managed by both exec_ops and solib.c. */
379 target_section_table m_target_sections;
564b1e3f 380};
6c95b8df 381
55b11ddf
PA
382/* An address space. It is used for comparing if
383 pspaces/inferior/threads see the same address space and for
384 associating caches to each address space. */
385struct address_space
386{
b382c166
TT
387 /* Create a new address space object, and add it to the list. */
388 address_space ();
b382c166
TT
389 DISABLE_COPY_AND_ASSIGN (address_space);
390
391 /* Returns the integer address space id of this address space. */
392 int num () const
393 {
394 return m_num;
395 }
55b11ddf
PA
396
397 /* Per aspace data-pointers required by other GDB modules. */
08b8a139 398 registry<address_space> registry_fields;
b382c166
TT
399
400private:
401 int m_num;
55b11ddf
PA
402};
403
6c95b8df 404/* The list of all program spaces. There's always at least one. */
94c93c35 405extern std::vector<struct program_space *>program_spaces;
6c95b8df
PA
406
407/* The current program space. This is always non-null. */
408extern struct program_space *current_program_space;
409
6c95b8df
PA
410/* Copies program space SRC to DEST. Copies the main executable file,
411 and the main symbol file. Returns DEST. */
412extern struct program_space *clone_program_space (struct program_space *dest,
413 struct program_space *src);
414
6c95b8df
PA
415/* Sets PSPACE as the current program space. This is usually used
416 instead of set_current_space_and_thread when the current
417 thread/inferior is not important for the operations that follow.
418 E.g., when accessing the raw symbol tables. If memory access is
419 required, then you should use switch_to_program_space_and_thread.
420 Otherwise, it is the caller's responsibility to make sure that the
421 currently selected inferior/thread matches the selected program
422 space. */
423extern void set_current_program_space (struct program_space *pspace);
424
5ed8105e
PA
425/* Save/restore the current program space. */
426
427class scoped_restore_current_program_space
428{
429public:
430 scoped_restore_current_program_space ()
431 : m_saved_pspace (current_program_space)
432 {}
433
434 ~scoped_restore_current_program_space ()
435 { set_current_program_space (m_saved_pspace); }
436
d6541620 437 DISABLE_COPY_AND_ASSIGN (scoped_restore_current_program_space);
6c95b8df 438
5ed8105e
PA
439private:
440 program_space *m_saved_pspace;
441};
6c95b8df 442
6c95b8df
PA
443/* Maybe create a new address space object, and add it to the list, or
444 return a pointer to an existing address space, in case inferiors
445 share an address space. */
446extern struct address_space *maybe_new_address_space (void);
447
448/* Update all program spaces matching to address spaces. The user may
449 have created several program spaces, and loaded executables into
450 them before connecting to the target interface that will create the
451 inferiors. All that happens before GDB has a chance to know if the
452 inferiors will share an address space or not. Call this after
453 having connected to the target interface and having fetched the
454 target description, to fixup the program/address spaces
455 mappings. */
456extern void update_address_spaces (void);
457
6c95b8df 458#endif