]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/solib-svr4.c
Convert struct target_ops to C++
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
13437d4b
KB
54/* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
bc043ef3 62static const char * const solib_break_names[] =
13437d4b
KB
63{
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
4c7dcb84 68 "__dl_rtld_db_dlactivity",
1f72e589 69 "_rtld_debug_state",
4c0122c8 70
13437d4b
KB
71 NULL
72};
13437d4b 73
bc043ef3 74static const char * const bkpt_names[] =
13437d4b 75{
13437d4b 76 "_start",
ad3dcc5c 77 "__start",
13437d4b
KB
78 "main",
79 NULL
80};
13437d4b 81
bc043ef3 82static const char * const main_name_list[] =
13437d4b
KB
83{
84 "main_$main",
85 NULL
86};
87
f9e14852
GB
88/* What to do when a probe stop occurs. */
89
90enum probe_action
91{
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107};
108
109/* A probe's name and its associated action. */
110
111struct probe_info
112{
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118};
119
120/* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124static const struct probe_info probe_info[] =
125{
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133};
134
135#define NUM_PROBES ARRAY_SIZE (probe_info)
136
4d7b2d5b
JB
137/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140static int
141svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142{
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163}
164
165static int
166svr4_same (struct so_list *gdb, struct so_list *inferior)
167{
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169}
170
a7961323 171static std::unique_ptr<lm_info_svr4>
3957565a 172lm_info_read (CORE_ADDR lm_addr)
13437d4b 173{
4b188b9f 174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 175 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 176
a7961323 177 gdb::byte_vector lm (lmo->link_map_size);
3957565a 178
a7961323
TT
179 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
180 warning (_("Error reading shared library list entry at %s"),
181 paddress (target_gdbarch (), lm_addr));
3957565a
JK
182 else
183 {
f5656ead 184 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 185
a7961323 186 lm_info.reset (new lm_info_svr4);
3957565a
JK
187 lm_info->lm_addr = lm_addr;
188
189 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
190 ptr_type);
191 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
192 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
193 ptr_type);
194 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
195 ptr_type);
196 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
197 ptr_type);
198 }
199
3957565a 200 return lm_info;
13437d4b
KB
201}
202
cc10cae3 203static int
b23518f0 204has_lm_dynamic_from_link_map (void)
cc10cae3
AO
205{
206 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
207
cfaefc65 208 return lmo->l_ld_offset >= 0;
cc10cae3
AO
209}
210
cc10cae3 211static CORE_ADDR
f65ce5fb 212lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 213{
d0e449a1
SM
214 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
215
216 if (!li->l_addr_p)
cc10cae3
AO
217 {
218 struct bfd_section *dyninfo_sect;
28f34a8f 219 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 220
d0e449a1 221 l_addr = li->l_addr_inferior;
cc10cae3 222
b23518f0 223 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
224 goto set_addr;
225
d0e449a1 226 l_dynaddr = li->l_ld;
cc10cae3
AO
227
228 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
229 if (dyninfo_sect == NULL)
230 goto set_addr;
231
232 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
233
234 if (dynaddr + l_addr != l_dynaddr)
235 {
28f34a8f 236 CORE_ADDR align = 0x1000;
4e1fc9c9 237 CORE_ADDR minpagesize = align;
28f34a8f 238
cc10cae3
AO
239 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
240 {
241 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
242 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
243 int i;
244
245 align = 1;
246
247 for (i = 0; i < ehdr->e_phnum; i++)
248 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
249 align = phdr[i].p_align;
4e1fc9c9
JK
250
251 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
252 }
253
254 /* Turn it into a mask. */
255 align--;
256
257 /* If the changes match the alignment requirements, we
258 assume we're using a core file that was generated by the
259 same binary, just prelinked with a different base offset.
260 If it doesn't match, we may have a different binary, the
261 same binary with the dynamic table loaded at an unrelated
262 location, or anything, really. To avoid regressions,
263 don't adjust the base offset in the latter case, although
264 odds are that, if things really changed, debugging won't
5c0d192f
JK
265 quite work.
266
267 One could expect more the condition
268 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
269 but the one below is relaxed for PPC. The PPC kernel supports
270 either 4k or 64k page sizes. To be prepared for 64k pages,
271 PPC ELF files are built using an alignment requirement of 64k.
272 However, when running on a kernel supporting 4k pages, the memory
273 mapping of the library may not actually happen on a 64k boundary!
274
275 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
276 equivalent to the possibly expected check above.)
277
278 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 279
02835898
JK
280 l_addr = l_dynaddr - dynaddr;
281
4e1fc9c9
JK
282 if ((l_addr & (minpagesize - 1)) == 0
283 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 284 {
701ed6dc 285 if (info_verbose)
ccf26247
JK
286 printf_unfiltered (_("Using PIC (Position Independent Code) "
287 "prelink displacement %s for \"%s\".\n"),
f5656ead 288 paddress (target_gdbarch (), l_addr),
ccf26247 289 so->so_name);
cc10cae3 290 }
79d4c408 291 else
02835898
JK
292 {
293 /* There is no way to verify the library file matches. prelink
294 can during prelinking of an unprelinked file (or unprelinking
295 of a prelinked file) shift the DYNAMIC segment by arbitrary
296 offset without any page size alignment. There is no way to
297 find out the ELF header and/or Program Headers for a limited
298 verification if it they match. One could do a verification
299 of the DYNAMIC segment. Still the found address is the best
300 one GDB could find. */
301
302 warning (_(".dynamic section for \"%s\" "
303 "is not at the expected address "
304 "(wrong library or version mismatch?)"), so->so_name);
305 }
cc10cae3
AO
306 }
307
308 set_addr:
d0e449a1
SM
309 li->l_addr = l_addr;
310 li->l_addr_p = 1;
cc10cae3
AO
311 }
312
d0e449a1 313 return li->l_addr;
cc10cae3
AO
314}
315
6c95b8df 316/* Per pspace SVR4 specific data. */
13437d4b 317
1a816a87
PA
318struct svr4_info
319{
c378eb4e 320 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
321
322 /* Validity flag for debug_loader_offset. */
323 int debug_loader_offset_p;
324
325 /* Load address for the dynamic linker, inferred. */
326 CORE_ADDR debug_loader_offset;
327
328 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
329 char *debug_loader_name;
330
331 /* Load map address for the main executable. */
332 CORE_ADDR main_lm_addr;
1a816a87 333
6c95b8df
PA
334 CORE_ADDR interp_text_sect_low;
335 CORE_ADDR interp_text_sect_high;
336 CORE_ADDR interp_plt_sect_low;
337 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
338
339 /* Nonzero if the list of objects was last obtained from the target
340 via qXfer:libraries-svr4:read. */
341 int using_xfer;
342
343 /* Table of struct probe_and_action instances, used by the
344 probes-based interface to map breakpoint addresses to probes
345 and their associated actions. Lookup is performed using
935676c9 346 probe_and_action->prob->address. */
f9e14852
GB
347 htab_t probes_table;
348
349 /* List of objects loaded into the inferior, used by the probes-
350 based interface. */
351 struct so_list *solib_list;
6c95b8df 352};
1a816a87 353
6c95b8df
PA
354/* Per-program-space data key. */
355static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 356
f9e14852
GB
357/* Free the probes table. */
358
359static void
360free_probes_table (struct svr4_info *info)
361{
362 if (info->probes_table == NULL)
363 return;
364
365 htab_delete (info->probes_table);
366 info->probes_table = NULL;
367}
368
369/* Free the solib list. */
370
371static void
372free_solib_list (struct svr4_info *info)
373{
374 svr4_free_library_list (&info->solib_list);
375 info->solib_list = NULL;
376}
377
6c95b8df
PA
378static void
379svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 380{
19ba03f4 381 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
382
383 free_probes_table (info);
384 free_solib_list (info);
385
6c95b8df 386 xfree (info);
1a816a87
PA
387}
388
6c95b8df
PA
389/* Get the current svr4 data. If none is found yet, add it now. This
390 function always returns a valid object. */
34439770 391
6c95b8df
PA
392static struct svr4_info *
393get_svr4_info (void)
1a816a87 394{
6c95b8df 395 struct svr4_info *info;
1a816a87 396
19ba03f4
SM
397 info = (struct svr4_info *) program_space_data (current_program_space,
398 solib_svr4_pspace_data);
6c95b8df
PA
399 if (info != NULL)
400 return info;
34439770 401
41bf6aca 402 info = XCNEW (struct svr4_info);
6c95b8df
PA
403 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
404 return info;
1a816a87 405}
93a57060 406
13437d4b
KB
407/* Local function prototypes */
408
bc043ef3 409static int match_main (const char *);
13437d4b 410
97ec2c2f
UW
411/* Read program header TYPE from inferior memory. The header is found
412 by scanning the OS auxillary vector.
413
09919ac2
JK
414 If TYPE == -1, return the program headers instead of the contents of
415 one program header.
416
97ec2c2f
UW
417 Return a pointer to allocated memory holding the program header contents,
418 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
419 size of those contents is returned to P_SECT_SIZE. Likewise, the target
a738da3a
MF
420 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
421 the base address of the section is returned in BASE_ADDR. */
97ec2c2f
UW
422
423static gdb_byte *
a738da3a
MF
424read_program_header (int type, int *p_sect_size, int *p_arch_size,
425 CORE_ADDR *base_addr)
97ec2c2f 426{
f5656ead 427 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 428 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
429 int arch_size, sect_size;
430 CORE_ADDR sect_addr;
431 gdb_byte *buf;
43136979 432 int pt_phdr_p = 0;
97ec2c2f
UW
433
434 /* Get required auxv elements from target. */
f6ac5f3d 435 if (target_auxv_search (target_stack, AT_PHDR, &at_phdr) <= 0)
97ec2c2f 436 return 0;
f6ac5f3d 437 if (target_auxv_search (target_stack, AT_PHENT, &at_phent) <= 0)
97ec2c2f 438 return 0;
f6ac5f3d 439 if (target_auxv_search (target_stack, AT_PHNUM, &at_phnum) <= 0)
97ec2c2f
UW
440 return 0;
441 if (!at_phdr || !at_phnum)
442 return 0;
443
444 /* Determine ELF architecture type. */
445 if (at_phent == sizeof (Elf32_External_Phdr))
446 arch_size = 32;
447 else if (at_phent == sizeof (Elf64_External_Phdr))
448 arch_size = 64;
449 else
450 return 0;
451
09919ac2
JK
452 /* Find the requested segment. */
453 if (type == -1)
454 {
455 sect_addr = at_phdr;
456 sect_size = at_phent * at_phnum;
457 }
458 else if (arch_size == 32)
97ec2c2f
UW
459 {
460 Elf32_External_Phdr phdr;
461 int i;
462
463 /* Search for requested PHDR. */
464 for (i = 0; i < at_phnum; i++)
465 {
43136979
AR
466 int p_type;
467
97ec2c2f
UW
468 if (target_read_memory (at_phdr + i * sizeof (phdr),
469 (gdb_byte *)&phdr, sizeof (phdr)))
470 return 0;
471
43136979
AR
472 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
473 4, byte_order);
474
475 if (p_type == PT_PHDR)
476 {
477 pt_phdr_p = 1;
478 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
479 4, byte_order);
480 }
481
482 if (p_type == type)
97ec2c2f
UW
483 break;
484 }
485
486 if (i == at_phnum)
487 return 0;
488
489 /* Retrieve address and size. */
e17a4113
UW
490 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
491 4, byte_order);
492 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
493 4, byte_order);
97ec2c2f
UW
494 }
495 else
496 {
497 Elf64_External_Phdr phdr;
498 int i;
499
500 /* Search for requested PHDR. */
501 for (i = 0; i < at_phnum; i++)
502 {
43136979
AR
503 int p_type;
504
97ec2c2f
UW
505 if (target_read_memory (at_phdr + i * sizeof (phdr),
506 (gdb_byte *)&phdr, sizeof (phdr)))
507 return 0;
508
43136979
AR
509 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
510 4, byte_order);
511
512 if (p_type == PT_PHDR)
513 {
514 pt_phdr_p = 1;
515 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
516 8, byte_order);
517 }
518
519 if (p_type == type)
97ec2c2f
UW
520 break;
521 }
522
523 if (i == at_phnum)
524 return 0;
525
526 /* Retrieve address and size. */
e17a4113
UW
527 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
528 8, byte_order);
529 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
530 8, byte_order);
97ec2c2f
UW
531 }
532
43136979
AR
533 /* PT_PHDR is optional, but we really need it
534 for PIE to make this work in general. */
535
536 if (pt_phdr_p)
537 {
538 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
539 Relocation offset is the difference between the two. */
540 sect_addr = sect_addr + (at_phdr - pt_phdr);
541 }
542
97ec2c2f 543 /* Read in requested program header. */
224c3ddb 544 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
545 if (target_read_memory (sect_addr, buf, sect_size))
546 {
547 xfree (buf);
548 return NULL;
549 }
550
551 if (p_arch_size)
552 *p_arch_size = arch_size;
553 if (p_sect_size)
554 *p_sect_size = sect_size;
a738da3a
MF
555 if (base_addr)
556 *base_addr = sect_addr;
97ec2c2f
UW
557
558 return buf;
559}
560
561
562/* Return program interpreter string. */
001f13d8 563static char *
97ec2c2f
UW
564find_program_interpreter (void)
565{
566 gdb_byte *buf = NULL;
567
568 /* If we have an exec_bfd, use its section table. */
569 if (exec_bfd
570 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
571 {
572 struct bfd_section *interp_sect;
573
574 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
575 if (interp_sect != NULL)
576 {
97ec2c2f
UW
577 int sect_size = bfd_section_size (exec_bfd, interp_sect);
578
224c3ddb 579 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
580 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
581 }
582 }
583
584 /* If we didn't find it, use the target auxillary vector. */
585 if (!buf)
a738da3a 586 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
97ec2c2f 587
001f13d8 588 return (char *) buf;
97ec2c2f
UW
589}
590
591
b6d7a4bf
SM
592/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
593 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
594
595static int
a738da3a
MF
596scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
597 CORE_ADDR *ptr_addr)
3a40aaa0
UW
598{
599 int arch_size, step, sect_size;
b6d7a4bf 600 long current_dyntag;
b381ea14 601 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 602 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
603 Elf32_External_Dyn *x_dynp_32;
604 Elf64_External_Dyn *x_dynp_64;
605 struct bfd_section *sect;
61f0d762 606 struct target_section *target_section;
3a40aaa0
UW
607
608 if (abfd == NULL)
609 return 0;
0763ab81
PA
610
611 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
612 return 0;
613
3a40aaa0
UW
614 arch_size = bfd_get_arch_size (abfd);
615 if (arch_size == -1)
0763ab81 616 return 0;
3a40aaa0
UW
617
618 /* Find the start address of the .dynamic section. */
619 sect = bfd_get_section_by_name (abfd, ".dynamic");
620 if (sect == NULL)
621 return 0;
61f0d762
JK
622
623 for (target_section = current_target_sections->sections;
624 target_section < current_target_sections->sections_end;
625 target_section++)
626 if (sect == target_section->the_bfd_section)
627 break;
b381ea14
JK
628 if (target_section < current_target_sections->sections_end)
629 dyn_addr = target_section->addr;
630 else
631 {
632 /* ABFD may come from OBJFILE acting only as a symbol file without being
633 loaded into the target (see add_symbol_file_command). This case is
634 such fallback to the file VMA address without the possibility of
635 having the section relocated to its actual in-memory address. */
636
637 dyn_addr = bfd_section_vma (abfd, sect);
638 }
3a40aaa0 639
65728c26
DJ
640 /* Read in .dynamic from the BFD. We will get the actual value
641 from memory later. */
3a40aaa0 642 sect_size = bfd_section_size (abfd, sect);
224c3ddb 643 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
644 if (!bfd_get_section_contents (abfd, sect,
645 buf, 0, sect_size))
646 return 0;
3a40aaa0
UW
647
648 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
649 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
650 : sizeof (Elf64_External_Dyn);
651 for (bufend = buf + sect_size;
652 buf < bufend;
653 buf += step)
654 {
655 if (arch_size == 32)
656 {
657 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 658 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
659 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
660 }
65728c26 661 else
3a40aaa0
UW
662 {
663 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 664 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
665 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
666 }
b6d7a4bf 667 if (current_dyntag == DT_NULL)
3a40aaa0 668 return 0;
b6d7a4bf 669 if (current_dyntag == desired_dyntag)
3a40aaa0 670 {
65728c26
DJ
671 /* If requested, try to read the runtime value of this .dynamic
672 entry. */
3a40aaa0 673 if (ptr)
65728c26 674 {
b6da22b0 675 struct type *ptr_type;
65728c26 676 gdb_byte ptr_buf[8];
a738da3a 677 CORE_ADDR ptr_addr_1;
65728c26 678
f5656ead 679 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
680 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
681 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 682 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 683 *ptr = dyn_ptr;
a738da3a
MF
684 if (ptr_addr)
685 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
686 }
687 return 1;
3a40aaa0
UW
688 }
689 }
690
691 return 0;
692}
693
b6d7a4bf
SM
694/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
695 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
696 is returned and the corresponding PTR is set. */
97ec2c2f
UW
697
698static int
a738da3a
MF
699scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
700 CORE_ADDR *ptr_addr)
97ec2c2f 701{
f5656ead 702 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 703 int sect_size, arch_size, step;
b6d7a4bf 704 long current_dyntag;
97ec2c2f 705 CORE_ADDR dyn_ptr;
a738da3a 706 CORE_ADDR base_addr;
97ec2c2f
UW
707 gdb_byte *bufend, *bufstart, *buf;
708
709 /* Read in .dynamic section. */
a738da3a
MF
710 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
711 &base_addr);
97ec2c2f
UW
712 if (!buf)
713 return 0;
714
715 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
716 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
717 : sizeof (Elf64_External_Dyn);
718 for (bufend = buf + sect_size;
719 buf < bufend;
720 buf += step)
721 {
722 if (arch_size == 32)
723 {
724 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 725
b6d7a4bf 726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
727 4, byte_order);
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 4, byte_order);
97ec2c2f
UW
730 }
731 else
732 {
733 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 734
b6d7a4bf 735 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
736 8, byte_order);
737 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
738 8, byte_order);
97ec2c2f 739 }
b6d7a4bf 740 if (current_dyntag == DT_NULL)
97ec2c2f
UW
741 break;
742
b6d7a4bf 743 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
744 {
745 if (ptr)
746 *ptr = dyn_ptr;
747
a738da3a
MF
748 if (ptr_addr)
749 *ptr_addr = base_addr + buf - bufstart;
750
97ec2c2f
UW
751 xfree (bufstart);
752 return 1;
753 }
754 }
755
756 xfree (bufstart);
757 return 0;
758}
759
7f86f058
PA
760/* Locate the base address of dynamic linker structs for SVR4 elf
761 targets.
13437d4b
KB
762
763 For SVR4 elf targets the address of the dynamic linker's runtime
764 structure is contained within the dynamic info section in the
765 executable file. The dynamic section is also mapped into the
766 inferior address space. Because the runtime loader fills in the
767 real address before starting the inferior, we have to read in the
768 dynamic info section from the inferior address space.
769 If there are any errors while trying to find the address, we
7f86f058 770 silently return 0, otherwise the found address is returned. */
13437d4b
KB
771
772static CORE_ADDR
773elf_locate_base (void)
774{
3b7344d5 775 struct bound_minimal_symbol msymbol;
a738da3a 776 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 777
65728c26
DJ
778 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
779 instead of DT_DEBUG, although they sometimes contain an unused
780 DT_DEBUG. */
a738da3a
MF
781 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
782 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 783 {
f5656ead 784 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 785 gdb_byte *pbuf;
b6da22b0 786 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 787
224c3ddb 788 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
789 /* DT_MIPS_RLD_MAP contains a pointer to the address
790 of the dynamic link structure. */
791 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 792 return 0;
b6da22b0 793 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
794 }
795
a738da3a
MF
796 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
797 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
798 in non-PIE. */
799 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
800 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
801 {
802 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
803 gdb_byte *pbuf;
804 int pbuf_size = TYPE_LENGTH (ptr_type);
805
224c3ddb 806 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
807 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
808 DT slot to the address of the dynamic link structure. */
809 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
810 return 0;
811 return extract_typed_address (pbuf, ptr_type);
812 }
813
65728c26 814 /* Find DT_DEBUG. */
a738da3a
MF
815 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
816 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
817 return dyn_ptr;
818
3a40aaa0
UW
819 /* This may be a static executable. Look for the symbol
820 conventionally named _r_debug, as a last resort. */
821 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 822 if (msymbol.minsym != NULL)
77e371c0 823 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
824
825 /* DT_DEBUG entry not found. */
826 return 0;
827}
828
7f86f058 829/* Locate the base address of dynamic linker structs.
13437d4b
KB
830
831 For both the SunOS and SVR4 shared library implementations, if the
832 inferior executable has been linked dynamically, there is a single
833 address somewhere in the inferior's data space which is the key to
834 locating all of the dynamic linker's runtime structures. This
835 address is the value of the debug base symbol. The job of this
836 function is to find and return that address, or to return 0 if there
837 is no such address (the executable is statically linked for example).
838
839 For SunOS, the job is almost trivial, since the dynamic linker and
840 all of it's structures are statically linked to the executable at
841 link time. Thus the symbol for the address we are looking for has
842 already been added to the minimal symbol table for the executable's
843 objfile at the time the symbol file's symbols were read, and all we
844 have to do is look it up there. Note that we explicitly do NOT want
845 to find the copies in the shared library.
846
847 The SVR4 version is a bit more complicated because the address
848 is contained somewhere in the dynamic info section. We have to go
849 to a lot more work to discover the address of the debug base symbol.
850 Because of this complexity, we cache the value we find and return that
851 value on subsequent invocations. Note there is no copy in the
7f86f058 852 executable symbol tables. */
13437d4b
KB
853
854static CORE_ADDR
1a816a87 855locate_base (struct svr4_info *info)
13437d4b 856{
13437d4b
KB
857 /* Check to see if we have a currently valid address, and if so, avoid
858 doing all this work again and just return the cached address. If
859 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
860 section for ELF executables. There's no point in doing any of this
861 though if we don't have some link map offsets to work with. */
13437d4b 862
1a816a87 863 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 864 info->debug_base = elf_locate_base ();
1a816a87 865 return info->debug_base;
13437d4b
KB
866}
867
e4cd0d6a 868/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
869 return its address in the inferior. Return zero if the address
870 could not be determined.
13437d4b 871
e4cd0d6a
MK
872 FIXME: Perhaps we should validate the info somehow, perhaps by
873 checking r_version for a known version number, or r_state for
874 RT_CONSISTENT. */
13437d4b
KB
875
876static CORE_ADDR
1a816a87 877solib_svr4_r_map (struct svr4_info *info)
13437d4b 878{
4b188b9f 879 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 880 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 881 CORE_ADDR addr = 0;
13437d4b 882
492d29ea 883 TRY
08597104
JB
884 {
885 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
886 ptr_type);
887 }
492d29ea
PA
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 exception_print (gdb_stderr, ex);
891 }
892 END_CATCH
893
08597104 894 return addr;
e4cd0d6a 895}
13437d4b 896
7cd25cfc
DJ
897/* Find r_brk from the inferior's debug base. */
898
899static CORE_ADDR
1a816a87 900solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
901{
902 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 903 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 904
1a816a87
PA
905 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
906 ptr_type);
7cd25cfc
DJ
907}
908
e4cd0d6a
MK
909/* Find the link map for the dynamic linker (if it is not in the
910 normal list of loaded shared objects). */
13437d4b 911
e4cd0d6a 912static CORE_ADDR
1a816a87 913solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
914{
915 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
916 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
917 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
918 ULONGEST version = 0;
919
920 TRY
921 {
922 /* Check version, and return zero if `struct r_debug' doesn't have
923 the r_ldsomap member. */
924 version
925 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
926 lmo->r_version_size, byte_order);
927 }
928 CATCH (ex, RETURN_MASK_ERROR)
929 {
930 exception_print (gdb_stderr, ex);
931 }
932 END_CATCH
13437d4b 933
e4cd0d6a
MK
934 if (version < 2 || lmo->r_ldsomap_offset == -1)
935 return 0;
13437d4b 936
1a816a87 937 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 938 ptr_type);
13437d4b
KB
939}
940
de18c1d8
JM
941/* On Solaris systems with some versions of the dynamic linker,
942 ld.so's l_name pointer points to the SONAME in the string table
943 rather than into writable memory. So that GDB can find shared
944 libraries when loading a core file generated by gcore, ensure that
945 memory areas containing the l_name string are saved in the core
946 file. */
947
948static int
949svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
950{
951 struct svr4_info *info;
952 CORE_ADDR ldsomap;
74de0234 953 CORE_ADDR name_lm;
de18c1d8
JM
954
955 info = get_svr4_info ();
956
957 info->debug_base = 0;
958 locate_base (info);
959 if (!info->debug_base)
960 return 0;
961
962 ldsomap = solib_svr4_r_ldsomap (info);
963 if (!ldsomap)
964 return 0;
965
a7961323 966 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 967 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 968
74de0234 969 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
970}
971
bf469271 972/* See solist.h. */
13437d4b
KB
973
974static int
bf469271 975open_symbol_file_object (int from_tty)
13437d4b
KB
976{
977 CORE_ADDR lm, l_name;
e83e4e24 978 gdb::unique_xmalloc_ptr<char> filename;
13437d4b 979 int errcode;
4b188b9f 980 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 981 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 982 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 983 gdb::byte_vector l_name_buf (l_name_size);
6c95b8df 984 struct svr4_info *info = get_svr4_info ();
ecf45d2c
SL
985 symfile_add_flags add_flags = 0;
986
987 if (from_tty)
988 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
989
990 if (symfile_objfile)
9e2f0ad4 991 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 992 return 0;
13437d4b 993
7cd25cfc 994 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
995 info->debug_base = 0;
996 if (locate_base (info) == 0)
a7961323 997 return 0; /* failed somehow... */
13437d4b
KB
998
999 /* First link map member should be the executable. */
1a816a87 1000 lm = solib_svr4_r_map (info);
e4cd0d6a 1001 if (lm == 0)
a7961323 1002 return 0; /* failed somehow... */
13437d4b
KB
1003
1004 /* Read address of name from target memory to GDB. */
a7961323 1005 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 1006
cfaefc65 1007 /* Convert the address to host format. */
a7961323 1008 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 1009
13437d4b 1010 if (l_name == 0)
a7961323 1011 return 0; /* No filename. */
13437d4b
KB
1012
1013 /* Now fetch the filename from target memory. */
1014 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1015
1016 if (errcode)
1017 {
8a3fe4f8 1018 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1019 safe_strerror (errcode));
1020 return 0;
1021 }
1022
13437d4b 1023 /* Have a pathname: read the symbol file. */
e83e4e24 1024 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1025
1026 return 1;
1027}
13437d4b 1028
2268b414
JK
1029/* Data exchange structure for the XML parser as returned by
1030 svr4_current_sos_via_xfer_libraries. */
1031
1032struct svr4_library_list
1033{
1034 struct so_list *head, **tailp;
1035
1036 /* Inferior address of struct link_map used for the main executable. It is
1037 NULL if not known. */
1038 CORE_ADDR main_lm;
1039};
1040
93f2a35e
JK
1041/* Implementation for target_so_ops.free_so. */
1042
1043static void
1044svr4_free_so (struct so_list *so)
1045{
76e75227
SM
1046 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1047
1048 delete li;
93f2a35e
JK
1049}
1050
0892cb63
DE
1051/* Implement target_so_ops.clear_so. */
1052
1053static void
1054svr4_clear_so (struct so_list *so)
1055{
d0e449a1
SM
1056 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1057
1058 if (li != NULL)
1059 li->l_addr_p = 0;
0892cb63
DE
1060}
1061
93f2a35e
JK
1062/* Free so_list built so far (called via cleanup). */
1063
1064static void
1065svr4_free_library_list (void *p_list)
1066{
1067 struct so_list *list = *(struct so_list **) p_list;
1068
1069 while (list != NULL)
1070 {
1071 struct so_list *next = list->next;
1072
3756ef7e 1073 free_so (list);
93f2a35e
JK
1074 list = next;
1075 }
1076}
1077
f9e14852
GB
1078/* Copy library list. */
1079
1080static struct so_list *
1081svr4_copy_library_list (struct so_list *src)
1082{
1083 struct so_list *dst = NULL;
1084 struct so_list **link = &dst;
1085
1086 while (src != NULL)
1087 {
fe978cb0 1088 struct so_list *newobj;
f9e14852 1089
8d749320 1090 newobj = XNEW (struct so_list);
fe978cb0 1091 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1092
76e75227
SM
1093 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1094 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1095
fe978cb0
PA
1096 newobj->next = NULL;
1097 *link = newobj;
1098 link = &newobj->next;
f9e14852
GB
1099
1100 src = src->next;
1101 }
1102
1103 return dst;
1104}
1105
2268b414
JK
1106#ifdef HAVE_LIBEXPAT
1107
1108#include "xml-support.h"
1109
1110/* Handle the start of a <library> element. Note: new elements are added
1111 at the tail of the list, keeping the list in order. */
1112
1113static void
1114library_list_start_library (struct gdb_xml_parser *parser,
1115 const struct gdb_xml_element *element,
4d0fdd9b
SM
1116 void *user_data,
1117 std::vector<gdb_xml_value> &attributes)
2268b414 1118{
19ba03f4
SM
1119 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1120 const char *name
4d0fdd9b 1121 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1122 ULONGEST *lmp
4d0fdd9b 1123 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1124 ULONGEST *l_addrp
4d0fdd9b 1125 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1126 ULONGEST *l_ldp
4d0fdd9b 1127 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1128 struct so_list *new_elem;
1129
41bf6aca 1130 new_elem = XCNEW (struct so_list);
76e75227 1131 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1132 new_elem->lm_info = li;
1133 li->lm_addr = *lmp;
1134 li->l_addr_inferior = *l_addrp;
1135 li->l_ld = *l_ldp;
2268b414
JK
1136
1137 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1138 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1139 strcpy (new_elem->so_original_name, new_elem->so_name);
1140
1141 *list->tailp = new_elem;
1142 list->tailp = &new_elem->next;
1143}
1144
1145/* Handle the start of a <library-list-svr4> element. */
1146
1147static void
1148svr4_library_list_start_list (struct gdb_xml_parser *parser,
1149 const struct gdb_xml_element *element,
4d0fdd9b
SM
1150 void *user_data,
1151 std::vector<gdb_xml_value> &attributes)
2268b414 1152{
19ba03f4
SM
1153 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1154 const char *version
4d0fdd9b 1155 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1156 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1157
1158 if (strcmp (version, "1.0") != 0)
1159 gdb_xml_error (parser,
1160 _("SVR4 Library list has unsupported version \"%s\""),
1161 version);
1162
1163 if (main_lm)
4d0fdd9b 1164 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1165}
1166
1167/* The allowed elements and attributes for an XML library list.
1168 The root element is a <library-list>. */
1169
1170static const struct gdb_xml_attribute svr4_library_attributes[] =
1171{
1172 { "name", GDB_XML_AF_NONE, NULL, NULL },
1173 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1174 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1175 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1176 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1177};
1178
1179static const struct gdb_xml_element svr4_library_list_children[] =
1180{
1181 {
1182 "library", svr4_library_attributes, NULL,
1183 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1184 library_list_start_library, NULL
1185 },
1186 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1187};
1188
1189static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1190{
1191 { "version", GDB_XML_AF_NONE, NULL, NULL },
1192 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1193 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1194};
1195
1196static const struct gdb_xml_element svr4_library_list_elements[] =
1197{
1198 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1199 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1200 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1201};
1202
2268b414
JK
1203/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1204
1205 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1206 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1207 empty, caller is responsible for freeing all its entries. */
1208
1209static int
1210svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1211{
1212 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1213 &list->head);
1214
1215 memset (list, 0, sizeof (*list));
1216 list->tailp = &list->head;
2eca4a8d 1217 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1218 svr4_library_list_elements, document, list) == 0)
1219 {
1220 /* Parsed successfully, keep the result. */
1221 discard_cleanups (back_to);
1222 return 1;
1223 }
1224
1225 do_cleanups (back_to);
1226 return 0;
1227}
1228
f9e14852 1229/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1230
1231 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1232 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1233 empty, caller is responsible for freeing all its entries.
1234
1235 Note that ANNEX must be NULL if the remote does not explicitly allow
1236 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1237 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1238
1239static int
f9e14852
GB
1240svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1241 const char *annex)
2268b414 1242{
f9e14852
GB
1243 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1244
2268b414 1245 /* Fetch the list of shared libraries. */
9018be22 1246 gdb::optional<gdb::char_vector> svr4_library_document
f6ac5f3d 1247 = target_read_stralloc (target_stack, TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1248 annex);
9018be22 1249 if (!svr4_library_document)
2268b414
JK
1250 return 0;
1251
9018be22 1252 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1253}
1254
1255#else
1256
1257static int
f9e14852
GB
1258svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1259 const char *annex)
2268b414
JK
1260{
1261 return 0;
1262}
1263
1264#endif
1265
34439770
DJ
1266/* If no shared library information is available from the dynamic
1267 linker, build a fallback list from other sources. */
1268
1269static struct so_list *
1270svr4_default_sos (void)
1271{
6c95b8df 1272 struct svr4_info *info = get_svr4_info ();
fe978cb0 1273 struct so_list *newobj;
1a816a87 1274
8e5c319d
JK
1275 if (!info->debug_loader_offset_p)
1276 return NULL;
34439770 1277
fe978cb0 1278 newobj = XCNEW (struct so_list);
76e75227 1279 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1280 newobj->lm_info = li;
34439770 1281
3957565a 1282 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1283 li->l_addr = info->debug_loader_offset;
1284 li->l_addr_p = 1;
34439770 1285
fe978cb0
PA
1286 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1287 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1288 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1289
fe978cb0 1290 return newobj;
34439770
DJ
1291}
1292
f9e14852
GB
1293/* Read the whole inferior libraries chain starting at address LM.
1294 Expect the first entry in the chain's previous entry to be PREV_LM.
1295 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1296 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1297 to it. Returns nonzero upon success. If zero is returned the
1298 entries stored to LINK_PTR_PTR are still valid although they may
1299 represent only part of the inferior library list. */
13437d4b 1300
f9e14852
GB
1301static int
1302svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1303 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1304{
c725e7b6 1305 CORE_ADDR first_l_name = 0;
f9e14852 1306 CORE_ADDR next_lm;
13437d4b 1307
cb08cc53 1308 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1309 {
cb08cc53 1310 int errcode;
e83e4e24 1311 gdb::unique_xmalloc_ptr<char> buffer;
13437d4b 1312
b3bc8453 1313 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1314
a7961323 1315 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1316 newobj->lm_info = li;
1317 if (li == NULL)
b3bc8453 1318 return 0;
13437d4b 1319
d0e449a1 1320 next_lm = li->l_next;
492928e4 1321
d0e449a1 1322 if (li->l_prev != prev_lm)
492928e4 1323 {
2268b414 1324 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1325 paddress (target_gdbarch (), prev_lm),
d0e449a1 1326 paddress (target_gdbarch (), li->l_prev));
f9e14852 1327 return 0;
492928e4 1328 }
13437d4b
KB
1329
1330 /* For SVR4 versions, the first entry in the link map is for the
1331 inferior executable, so we must ignore it. For some versions of
1332 SVR4, it has no name. For others (Solaris 2.3 for example), it
1333 does have a name, so we can no longer use a missing name to
c378eb4e 1334 decide when to ignore it. */
d0e449a1 1335 if (ignore_first && li->l_prev == 0)
93a57060 1336 {
cb08cc53
JK
1337 struct svr4_info *info = get_svr4_info ();
1338
d0e449a1
SM
1339 first_l_name = li->l_name;
1340 info->main_lm_addr = li->lm_addr;
cb08cc53 1341 continue;
93a57060 1342 }
13437d4b 1343
cb08cc53 1344 /* Extract this shared object's name. */
d0e449a1
SM
1345 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1346 &errcode);
cb08cc53
JK
1347 if (errcode != 0)
1348 {
7d760051
UW
1349 /* If this entry's l_name address matches that of the
1350 inferior executable, then this is not a normal shared
1351 object, but (most likely) a vDSO. In this case, silently
1352 skip it; otherwise emit a warning. */
d0e449a1 1353 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1354 warning (_("Can't read pathname for load map: %s."),
1355 safe_strerror (errcode));
cb08cc53 1356 continue;
13437d4b
KB
1357 }
1358
e83e4e24 1359 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1360 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1361 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1362
cb08cc53
JK
1363 /* If this entry has no name, or its name matches the name
1364 for the main executable, don't include it in the list. */
fe978cb0 1365 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1366 continue;
e4cd0d6a 1367
fe978cb0 1368 newobj->next = 0;
b3bc8453
TT
1369 /* Don't free it now. */
1370 **link_ptr_ptr = newobj.release ();
1371 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1372 }
f9e14852
GB
1373
1374 return 1;
cb08cc53
JK
1375}
1376
f9e14852
GB
1377/* Read the full list of currently loaded shared objects directly
1378 from the inferior, without referring to any libraries read and
1379 stored by the probes interface. Handle special cases relating
1380 to the first elements of the list. */
cb08cc53
JK
1381
1382static struct so_list *
f9e14852 1383svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1384{
1385 CORE_ADDR lm;
1386 struct so_list *head = NULL;
1387 struct so_list **link_ptr = &head;
cb08cc53
JK
1388 struct cleanup *back_to;
1389 int ignore_first;
2268b414
JK
1390 struct svr4_library_list library_list;
1391
0c5bf5a9
JK
1392 /* Fall back to manual examination of the target if the packet is not
1393 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1394 tests a case where gdbserver cannot find the shared libraries list while
1395 GDB itself is able to find it via SYMFILE_OBJFILE.
1396
1397 Unfortunately statically linked inferiors will also fall back through this
1398 suboptimal code path. */
1399
f9e14852
GB
1400 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1401 NULL);
1402 if (info->using_xfer)
2268b414
JK
1403 {
1404 if (library_list.main_lm)
f9e14852 1405 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1406
1407 return library_list.head ? library_list.head : svr4_default_sos ();
1408 }
cb08cc53 1409
cb08cc53
JK
1410 /* Always locate the debug struct, in case it has moved. */
1411 info->debug_base = 0;
1412 locate_base (info);
1413
1414 /* If we can't find the dynamic linker's base structure, this
1415 must not be a dynamically linked executable. Hmm. */
1416 if (! info->debug_base)
1417 return svr4_default_sos ();
1418
1419 /* Assume that everything is a library if the dynamic loader was loaded
1420 late by a static executable. */
1421 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1422 ignore_first = 0;
1423 else
1424 ignore_first = 1;
1425
1426 back_to = make_cleanup (svr4_free_library_list, &head);
1427
1428 /* Walk the inferior's link map list, and build our list of
1429 `struct so_list' nodes. */
1430 lm = solib_svr4_r_map (info);
1431 if (lm)
f9e14852 1432 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1433
1434 /* On Solaris, the dynamic linker is not in the normal list of
1435 shared objects, so make sure we pick it up too. Having
1436 symbol information for the dynamic linker is quite crucial
1437 for skipping dynamic linker resolver code. */
1438 lm = solib_svr4_r_ldsomap (info);
1439 if (lm)
f9e14852 1440 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1441
1442 discard_cleanups (back_to);
13437d4b 1443
34439770
DJ
1444 if (head == NULL)
1445 return svr4_default_sos ();
1446
13437d4b
KB
1447 return head;
1448}
1449
8b9a549d
PA
1450/* Implement the main part of the "current_sos" target_so_ops
1451 method. */
f9e14852
GB
1452
1453static struct so_list *
8b9a549d 1454svr4_current_sos_1 (void)
f9e14852
GB
1455{
1456 struct svr4_info *info = get_svr4_info ();
1457
1458 /* If the solib list has been read and stored by the probes
1459 interface then we return a copy of the stored list. */
1460 if (info->solib_list != NULL)
1461 return svr4_copy_library_list (info->solib_list);
1462
1463 /* Otherwise obtain the solib list directly from the inferior. */
1464 return svr4_current_sos_direct (info);
1465}
1466
8b9a549d
PA
1467/* Implement the "current_sos" target_so_ops method. */
1468
1469static struct so_list *
1470svr4_current_sos (void)
1471{
1472 struct so_list *so_head = svr4_current_sos_1 ();
1473 struct mem_range vsyscall_range;
1474
1475 /* Filter out the vDSO module, if present. Its symbol file would
1476 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1477 managed by symfile-mem.c:add_vsyscall_page. */
1478 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1479 && vsyscall_range.length != 0)
1480 {
1481 struct so_list **sop;
1482
1483 sop = &so_head;
1484 while (*sop != NULL)
1485 {
1486 struct so_list *so = *sop;
1487
1488 /* We can't simply match the vDSO by starting address alone,
1489 because lm_info->l_addr_inferior (and also l_addr) do not
1490 necessarily represent the real starting address of the
1491 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1492 field (the ".dynamic" section of the shared object)
1493 always points at the absolute/resolved address though.
1494 So check whether that address is inside the vDSO's
1495 mapping instead.
1496
1497 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1498 0-based ELF, and we see:
1499
1500 (gdb) info auxv
1501 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1502 (gdb) p/x *_r_debug.r_map.l_next
1503 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1504
1505 And on Linux 2.6.32 (x86_64) we see:
1506
1507 (gdb) info auxv
1508 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1509 (gdb) p/x *_r_debug.r_map.l_next
1510 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1511
1512 Dumping that vDSO shows:
1513
1514 (gdb) info proc mappings
1515 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1516 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1517 # readelf -Wa vdso.bin
1518 [...]
1519 Entry point address: 0xffffffffff700700
1520 [...]
1521 Section Headers:
1522 [Nr] Name Type Address Off Size
1523 [ 0] NULL 0000000000000000 000000 000000
1524 [ 1] .hash HASH ffffffffff700120 000120 000038
1525 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1526 [...]
1527 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1528 */
d0e449a1
SM
1529
1530 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1531
1532 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1533 {
1534 *sop = so->next;
1535 free_so (so);
1536 break;
1537 }
1538
1539 sop = &so->next;
1540 }
1541 }
1542
1543 return so_head;
1544}
1545
93a57060 1546/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1547
1548CORE_ADDR
1549svr4_fetch_objfile_link_map (struct objfile *objfile)
1550{
93a57060 1551 struct so_list *so;
6c95b8df 1552 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1553
93a57060 1554 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1555 if (info->main_lm_addr == 0)
e696b3ad 1556 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1557
93a57060
DJ
1558 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1559 if (objfile == symfile_objfile)
1a816a87 1560 return info->main_lm_addr;
93a57060
DJ
1561
1562 /* The other link map addresses may be found by examining the list
1563 of shared libraries. */
1564 for (so = master_so_list (); so; so = so->next)
1565 if (so->objfile == objfile)
d0e449a1
SM
1566 {
1567 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1568
1569 return li->lm_addr;
1570 }
93a57060
DJ
1571
1572 /* Not found! */
bc4a16ae
EZ
1573 return 0;
1574}
13437d4b
KB
1575
1576/* On some systems, the only way to recognize the link map entry for
1577 the main executable file is by looking at its name. Return
1578 non-zero iff SONAME matches one of the known main executable names. */
1579
1580static int
bc043ef3 1581match_main (const char *soname)
13437d4b 1582{
bc043ef3 1583 const char * const *mainp;
13437d4b
KB
1584
1585 for (mainp = main_name_list; *mainp != NULL; mainp++)
1586 {
1587 if (strcmp (soname, *mainp) == 0)
1588 return (1);
1589 }
1590
1591 return (0);
1592}
1593
13437d4b
KB
1594/* Return 1 if PC lies in the dynamic symbol resolution code of the
1595 SVR4 run time loader. */
13437d4b 1596
7d522c90 1597int
d7fa2ae2 1598svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1599{
6c95b8df
PA
1600 struct svr4_info *info = get_svr4_info ();
1601
1602 return ((pc >= info->interp_text_sect_low
1603 && pc < info->interp_text_sect_high)
1604 || (pc >= info->interp_plt_sect_low
1605 && pc < info->interp_plt_sect_high)
3e5d3a5a 1606 || in_plt_section (pc)
0875794a 1607 || in_gnu_ifunc_stub (pc));
13437d4b 1608}
13437d4b 1609
2f4950cd
AC
1610/* Given an executable's ABFD and target, compute the entry-point
1611 address. */
1612
1613static CORE_ADDR
1614exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1615{
8c2b9656
YQ
1616 CORE_ADDR addr;
1617
2f4950cd
AC
1618 /* KevinB wrote ... for most targets, the address returned by
1619 bfd_get_start_address() is the entry point for the start
1620 function. But, for some targets, bfd_get_start_address() returns
1621 the address of a function descriptor from which the entry point
1622 address may be extracted. This address is extracted by
1623 gdbarch_convert_from_func_ptr_addr(). The method
1624 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1625 function for targets which don't use function descriptors. */
8c2b9656 1626 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1627 bfd_get_start_address (abfd),
1628 targ);
8c2b9656 1629 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1630}
13437d4b 1631
f9e14852
GB
1632/* A probe and its associated action. */
1633
1634struct probe_and_action
1635{
1636 /* The probe. */
935676c9 1637 probe *prob;
f9e14852 1638
729662a5
TT
1639 /* The relocated address of the probe. */
1640 CORE_ADDR address;
1641
f9e14852
GB
1642 /* The action. */
1643 enum probe_action action;
1644};
1645
1646/* Returns a hash code for the probe_and_action referenced by p. */
1647
1648static hashval_t
1649hash_probe_and_action (const void *p)
1650{
19ba03f4 1651 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1652
729662a5 1653 return (hashval_t) pa->address;
f9e14852
GB
1654}
1655
1656/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1657 are equal. */
1658
1659static int
1660equal_probe_and_action (const void *p1, const void *p2)
1661{
19ba03f4
SM
1662 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1663 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1664
729662a5 1665 return pa1->address == pa2->address;
f9e14852
GB
1666}
1667
1668/* Register a solib event probe and its associated action in the
1669 probes table. */
1670
1671static void
935676c9 1672register_solib_event_probe (probe *prob, CORE_ADDR address,
729662a5 1673 enum probe_action action)
f9e14852
GB
1674{
1675 struct svr4_info *info = get_svr4_info ();
1676 struct probe_and_action lookup, *pa;
1677 void **slot;
1678
1679 /* Create the probes table, if necessary. */
1680 if (info->probes_table == NULL)
1681 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1682 equal_probe_and_action,
1683 xfree, xcalloc, xfree);
1684
935676c9 1685 lookup.prob = prob;
729662a5 1686 lookup.address = address;
f9e14852
GB
1687 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1688 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1689
1690 pa = XCNEW (struct probe_and_action);
935676c9 1691 pa->prob = prob;
729662a5 1692 pa->address = address;
f9e14852
GB
1693 pa->action = action;
1694
1695 *slot = pa;
1696}
1697
1698/* Get the solib event probe at the specified location, and the
1699 action associated with it. Returns NULL if no solib event probe
1700 was found. */
1701
1702static struct probe_and_action *
1703solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1704{
f9e14852
GB
1705 struct probe_and_action lookup;
1706 void **slot;
1707
729662a5 1708 lookup.address = address;
f9e14852
GB
1709 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1710
1711 if (slot == NULL)
1712 return NULL;
1713
1714 return (struct probe_and_action *) *slot;
1715}
1716
1717/* Decide what action to take when the specified solib event probe is
1718 hit. */
1719
1720static enum probe_action
1721solib_event_probe_action (struct probe_and_action *pa)
1722{
1723 enum probe_action action;
73c6b475 1724 unsigned probe_argc = 0;
08a6411c 1725 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1726
1727 action = pa->action;
1728 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1729 return action;
1730
1731 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1732
1733 /* Check that an appropriate number of arguments has been supplied.
1734 We expect:
1735 arg0: Lmid_t lmid (mandatory)
1736 arg1: struct r_debug *debug_base (mandatory)
1737 arg2: struct link_map *new (optional, for incremental updates) */
3bd7e5b7
SDJ
1738 TRY
1739 {
935676c9 1740 probe_argc = pa->prob->get_argument_count (frame);
3bd7e5b7
SDJ
1741 }
1742 CATCH (ex, RETURN_MASK_ERROR)
1743 {
1744 exception_print (gdb_stderr, ex);
1745 probe_argc = 0;
1746 }
1747 END_CATCH
1748
935676c9
SDJ
1749 /* If get_argument_count throws an exception, probe_argc will be set
1750 to zero. However, if pa->prob does not have arguments, then
1751 get_argument_count will succeed but probe_argc will also be zero.
1752 Both cases happen because of different things, but they are
1753 treated equally here: action will be set to
3bd7e5b7 1754 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1755 if (probe_argc == 2)
1756 action = FULL_RELOAD;
1757 else if (probe_argc < 2)
1758 action = PROBES_INTERFACE_FAILED;
1759
1760 return action;
1761}
1762
1763/* Populate the shared object list by reading the entire list of
1764 shared objects from the inferior. Handle special cases relating
1765 to the first elements of the list. Returns nonzero on success. */
1766
1767static int
1768solist_update_full (struct svr4_info *info)
1769{
1770 free_solib_list (info);
1771 info->solib_list = svr4_current_sos_direct (info);
1772
1773 return 1;
1774}
1775
1776/* Update the shared object list starting from the link-map entry
1777 passed by the linker in the probe's third argument. Returns
1778 nonzero if the list was successfully updated, or zero to indicate
1779 failure. */
1780
1781static int
1782solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1783{
1784 struct so_list *tail;
1785 CORE_ADDR prev_lm;
1786
1787 /* svr4_current_sos_direct contains logic to handle a number of
1788 special cases relating to the first elements of the list. To
1789 avoid duplicating this logic we defer to solist_update_full
1790 if the list is empty. */
1791 if (info->solib_list == NULL)
1792 return 0;
1793
1794 /* Fall back to a full update if we are using a remote target
1795 that does not support incremental transfers. */
1796 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1797 return 0;
1798
1799 /* Walk to the end of the list. */
1800 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1801 /* Nothing. */;
d0e449a1
SM
1802
1803 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1804 prev_lm = li->lm_addr;
f9e14852
GB
1805
1806 /* Read the new objects. */
1807 if (info->using_xfer)
1808 {
1809 struct svr4_library_list library_list;
1810 char annex[64];
1811
1812 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1813 phex_nz (lm, sizeof (lm)),
1814 phex_nz (prev_lm, sizeof (prev_lm)));
1815 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1816 return 0;
1817
1818 tail->next = library_list.head;
1819 }
1820 else
1821 {
1822 struct so_list **link = &tail->next;
1823
1824 /* IGNORE_FIRST may safely be set to zero here because the
1825 above check and deferral to solist_update_full ensures
1826 that this call to svr4_read_so_list will never see the
1827 first element. */
1828 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1829 return 0;
1830 }
1831
1832 return 1;
1833}
1834
1835/* Disable the probes-based linker interface and revert to the
1836 original interface. We don't reset the breakpoints as the
1837 ones set up for the probes-based interface are adequate. */
1838
1839static void
1840disable_probes_interface_cleanup (void *arg)
1841{
1842 struct svr4_info *info = get_svr4_info ();
1843
1844 warning (_("Probes-based dynamic linker interface failed.\n"
1845 "Reverting to original interface.\n"));
1846
1847 free_probes_table (info);
1848 free_solib_list (info);
1849}
1850
1851/* Update the solib list as appropriate when using the
1852 probes-based linker interface. Do nothing if using the
1853 standard interface. */
1854
1855static void
1856svr4_handle_solib_event (void)
1857{
1858 struct svr4_info *info = get_svr4_info ();
1859 struct probe_and_action *pa;
1860 enum probe_action action;
1861 struct cleanup *old_chain, *usm_chain;
ad1c917a 1862 struct value *val = NULL;
f9e14852 1863 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1864 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1865
1866 /* Do nothing if not using the probes interface. */
1867 if (info->probes_table == NULL)
1868 return;
1869
1870 /* If anything goes wrong we revert to the original linker
1871 interface. */
1872 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1873
1874 pc = regcache_read_pc (get_current_regcache ());
1875 pa = solib_event_probe_at (info, pc);
1876 if (pa == NULL)
1877 {
1878 do_cleanups (old_chain);
1879 return;
1880 }
1881
1882 action = solib_event_probe_action (pa);
1883 if (action == PROBES_INTERFACE_FAILED)
1884 {
1885 do_cleanups (old_chain);
1886 return;
1887 }
1888
1889 if (action == DO_NOTHING)
1890 {
1891 discard_cleanups (old_chain);
1892 return;
1893 }
1894
935676c9 1895 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1896 using find_pc_section. find_pc_section is accelerated by a cache
1897 called the section map. The section map is invalidated every
1898 time a shared library is loaded or unloaded, and if the inferior
1899 is generating a lot of shared library events then the section map
1900 will be updated every time svr4_handle_solib_event is called.
1901 We called find_pc_section in svr4_create_solib_event_breakpoints,
1902 so we can guarantee that the dynamic linker's sections are in the
1903 section map. We can therefore inhibit section map updates across
935676c9 1904 these calls to evaluate_argument and save a lot of time. */
f9e14852
GB
1905 inhibit_section_map_updates (current_program_space);
1906 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1907 current_program_space);
1908
3bd7e5b7
SDJ
1909 TRY
1910 {
935676c9 1911 val = pa->prob->evaluate_argument (1, frame);
3bd7e5b7
SDJ
1912 }
1913 CATCH (ex, RETURN_MASK_ERROR)
1914 {
1915 exception_print (gdb_stderr, ex);
1916 val = NULL;
1917 }
1918 END_CATCH
1919
f9e14852
GB
1920 if (val == NULL)
1921 {
1922 do_cleanups (old_chain);
1923 return;
1924 }
1925
1926 debug_base = value_as_address (val);
1927 if (debug_base == 0)
1928 {
1929 do_cleanups (old_chain);
1930 return;
1931 }
1932
1933 /* Always locate the debug struct, in case it moved. */
1934 info->debug_base = 0;
1935 if (locate_base (info) == 0)
1936 {
1937 do_cleanups (old_chain);
1938 return;
1939 }
1940
1941 /* GDB does not currently support libraries loaded via dlmopen
1942 into namespaces other than the initial one. We must ignore
1943 any namespace other than the initial namespace here until
1944 support for this is added to GDB. */
1945 if (debug_base != info->debug_base)
1946 action = DO_NOTHING;
1947
1948 if (action == UPDATE_OR_RELOAD)
1949 {
3bd7e5b7
SDJ
1950 TRY
1951 {
935676c9 1952 val = pa->prob->evaluate_argument (2, frame);
3bd7e5b7
SDJ
1953 }
1954 CATCH (ex, RETURN_MASK_ERROR)
1955 {
1956 exception_print (gdb_stderr, ex);
1957 do_cleanups (old_chain);
1958 return;
1959 }
1960 END_CATCH
1961
f9e14852
GB
1962 if (val != NULL)
1963 lm = value_as_address (val);
1964
1965 if (lm == 0)
1966 action = FULL_RELOAD;
1967 }
1968
1969 /* Resume section map updates. */
1970 do_cleanups (usm_chain);
1971
1972 if (action == UPDATE_OR_RELOAD)
1973 {
1974 if (!solist_update_incremental (info, lm))
1975 action = FULL_RELOAD;
1976 }
1977
1978 if (action == FULL_RELOAD)
1979 {
1980 if (!solist_update_full (info))
1981 {
1982 do_cleanups (old_chain);
1983 return;
1984 }
1985 }
1986
1987 discard_cleanups (old_chain);
1988}
1989
1990/* Helper function for svr4_update_solib_event_breakpoints. */
1991
1992static int
1993svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1994{
1995 struct bp_location *loc;
1996
1997 if (b->type != bp_shlib_event)
1998 {
1999 /* Continue iterating. */
2000 return 0;
2001 }
2002
2003 for (loc = b->loc; loc != NULL; loc = loc->next)
2004 {
2005 struct svr4_info *info;
2006 struct probe_and_action *pa;
2007
19ba03f4
SM
2008 info = ((struct svr4_info *)
2009 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
2010 if (info == NULL || info->probes_table == NULL)
2011 continue;
2012
2013 pa = solib_event_probe_at (info, loc->address);
2014 if (pa == NULL)
2015 continue;
2016
2017 if (pa->action == DO_NOTHING)
2018 {
2019 if (b->enable_state == bp_disabled && stop_on_solib_events)
2020 enable_breakpoint (b);
2021 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2022 disable_breakpoint (b);
2023 }
2024
2025 break;
2026 }
2027
2028 /* Continue iterating. */
2029 return 0;
2030}
2031
2032/* Enable or disable optional solib event breakpoints as appropriate.
2033 Called whenever stop_on_solib_events is changed. */
2034
2035static void
2036svr4_update_solib_event_breakpoints (void)
2037{
2038 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2039}
2040
2041/* Create and register solib event breakpoints. PROBES is an array
2042 of NUM_PROBES elements, each of which is vector of probes. A
2043 solib event breakpoint will be created and registered for each
2044 probe. */
2045
2046static void
2047svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
45461e0d 2048 const std::vector<probe *> *probes,
729662a5 2049 struct objfile *objfile)
f9e14852 2050{
45461e0d 2051 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2052 {
2053 enum probe_action action = probe_info[i].action;
f9e14852 2054
45461e0d 2055 for (probe *p : probes[i])
f9e14852 2056 {
935676c9 2057 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2058
2059 create_solib_event_breakpoint (gdbarch, address);
45461e0d 2060 register_solib_event_probe (p, address, action);
f9e14852
GB
2061 }
2062 }
2063
2064 svr4_update_solib_event_breakpoints ();
2065}
2066
2067/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2068 before and after mapping and unmapping shared libraries. The sole
2069 purpose of this method is to allow debuggers to set a breakpoint so
2070 they can track these changes.
2071
2072 Some versions of the glibc dynamic linker contain named probes
2073 to allow more fine grained stopping. Given the address of the
2074 original marker function, this function attempts to find these
2075 probes, and if found, sets breakpoints on those instead. If the
2076 probes aren't found, a single breakpoint is set on the original
2077 marker function. */
2078
2079static void
2080svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2081 CORE_ADDR address)
2082{
2083 struct obj_section *os;
2084
2085 os = find_pc_section (address);
2086 if (os != NULL)
2087 {
2088 int with_prefix;
2089
2090 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2091 {
45461e0d 2092 std::vector<probe *> probes[NUM_PROBES];
f9e14852 2093 int all_probes_found = 1;
25f9533e 2094 int checked_can_use_probe_arguments = 0;
f9e14852 2095
45461e0d 2096 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2097 {
2098 const char *name = probe_info[i].name;
935676c9 2099 probe *p;
f9e14852
GB
2100 char buf[32];
2101
2102 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2103 shipped with an early version of the probes code in
2104 which the probes' names were prefixed with "rtld_"
2105 and the "map_failed" probe did not exist. The
2106 locations of the probes are otherwise the same, so
2107 we check for probes with prefixed names if probes
2108 with unprefixed names are not present. */
2109 if (with_prefix)
2110 {
2111 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2112 name = buf;
2113 }
2114
2115 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2116
2117 /* The "map_failed" probe did not exist in early
2118 versions of the probes code in which the probes'
2119 names were prefixed with "rtld_". */
2120 if (strcmp (name, "rtld_map_failed") == 0)
2121 continue;
2122
45461e0d 2123 if (probes[i].empty ())
f9e14852
GB
2124 {
2125 all_probes_found = 0;
2126 break;
2127 }
25f9533e
SDJ
2128
2129 /* Ensure probe arguments can be evaluated. */
2130 if (!checked_can_use_probe_arguments)
2131 {
45461e0d 2132 p = probes[i][0];
935676c9 2133 if (!p->can_evaluate_arguments ())
25f9533e
SDJ
2134 {
2135 all_probes_found = 0;
2136 break;
2137 }
2138 checked_can_use_probe_arguments = 1;
2139 }
f9e14852
GB
2140 }
2141
2142 if (all_probes_found)
729662a5 2143 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852 2144
f9e14852
GB
2145 if (all_probes_found)
2146 return;
2147 }
2148 }
2149
2150 create_solib_event_breakpoint (gdbarch, address);
2151}
2152
cb457ae2
YQ
2153/* Helper function for gdb_bfd_lookup_symbol. */
2154
2155static int
3953f15c 2156cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2157{
2158 return (strcmp (sym->name, (const char *) data) == 0
2159 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2160}
7f86f058 2161/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2162
2163 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2164 debugger interface, support for arranging for the inferior to hit
2165 a breakpoint after mapping in the shared libraries. This function
2166 enables that breakpoint.
2167
2168 For SunOS, there is a special flag location (in_debugger) which we
2169 set to 1. When the dynamic linker sees this flag set, it will set
2170 a breakpoint at a location known only to itself, after saving the
2171 original contents of that place and the breakpoint address itself,
2172 in it's own internal structures. When we resume the inferior, it
2173 will eventually take a SIGTRAP when it runs into the breakpoint.
2174 We handle this (in a different place) by restoring the contents of
2175 the breakpointed location (which is only known after it stops),
2176 chasing around to locate the shared libraries that have been
2177 loaded, then resuming.
2178
2179 For SVR4, the debugger interface structure contains a member (r_brk)
2180 which is statically initialized at the time the shared library is
2181 built, to the offset of a function (_r_debug_state) which is guaran-
2182 teed to be called once before mapping in a library, and again when
2183 the mapping is complete. At the time we are examining this member,
2184 it contains only the unrelocated offset of the function, so we have
2185 to do our own relocation. Later, when the dynamic linker actually
2186 runs, it relocates r_brk to be the actual address of _r_debug_state().
2187
2188 The debugger interface structure also contains an enumeration which
2189 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2190 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2191 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2192
2193static int
268a4a75 2194enable_break (struct svr4_info *info, int from_tty)
13437d4b 2195{
3b7344d5 2196 struct bound_minimal_symbol msymbol;
bc043ef3 2197 const char * const *bkpt_namep;
13437d4b 2198 asection *interp_sect;
001f13d8 2199 char *interp_name;
7cd25cfc 2200 CORE_ADDR sym_addr;
13437d4b 2201
6c95b8df
PA
2202 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2203 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2204
7cd25cfc
DJ
2205 /* If we already have a shared library list in the target, and
2206 r_debug contains r_brk, set the breakpoint there - this should
2207 mean r_brk has already been relocated. Assume the dynamic linker
2208 is the object containing r_brk. */
2209
e696b3ad 2210 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2211 sym_addr = 0;
1a816a87
PA
2212 if (info->debug_base && solib_svr4_r_map (info) != 0)
2213 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2214
2215 if (sym_addr != 0)
2216 {
2217 struct obj_section *os;
2218
b36ec657 2219 sym_addr = gdbarch_addr_bits_remove
f5656ead 2220 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a 2221 sym_addr,
f6ac5f3d 2222 target_stack));
b36ec657 2223
48379de6
DE
2224 /* On at least some versions of Solaris there's a dynamic relocation
2225 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2226 we get control before the dynamic linker has self-relocated.
2227 Check if SYM_ADDR is in a known section, if it is assume we can
2228 trust its value. This is just a heuristic though, it could go away
2229 or be replaced if it's getting in the way.
2230
2231 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2232 however it's spelled in your particular system) is ARM or Thumb.
2233 That knowledge is encoded in the address, if it's Thumb the low bit
2234 is 1. However, we've stripped that info above and it's not clear
2235 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2236 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2237 find_pc_section verifies we know about the address and have some
2238 hope of computing the right kind of breakpoint to use (via
2239 symbol info). It does mean that GDB needs to be pointed at a
2240 non-stripped version of the dynamic linker in order to obtain
2241 information it already knows about. Sigh. */
2242
7cd25cfc
DJ
2243 os = find_pc_section (sym_addr);
2244 if (os != NULL)
2245 {
2246 /* Record the relocated start and end address of the dynamic linker
2247 text and plt section for svr4_in_dynsym_resolve_code. */
2248 bfd *tmp_bfd;
2249 CORE_ADDR load_addr;
2250
2251 tmp_bfd = os->objfile->obfd;
2252 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2253 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2254
2255 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2256 if (interp_sect)
2257 {
6c95b8df 2258 info->interp_text_sect_low =
7cd25cfc 2259 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2260 info->interp_text_sect_high =
2261 info->interp_text_sect_low
2262 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2263 }
2264 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2265 if (interp_sect)
2266 {
6c95b8df 2267 info->interp_plt_sect_low =
7cd25cfc 2268 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2269 info->interp_plt_sect_high =
2270 info->interp_plt_sect_low
2271 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2272 }
2273
f9e14852 2274 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2275 return 1;
2276 }
2277 }
2278
97ec2c2f 2279 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2280 into the old breakpoint at symbol code. */
97ec2c2f
UW
2281 interp_name = find_program_interpreter ();
2282 if (interp_name)
13437d4b 2283 {
8ad2fcde
KB
2284 CORE_ADDR load_addr = 0;
2285 int load_addr_found = 0;
2ec9a4f8 2286 int loader_found_in_list = 0;
f8766ec1 2287 struct so_list *so;
2f4950cd 2288 struct target_ops *tmp_bfd_target;
13437d4b 2289
7cd25cfc 2290 sym_addr = 0;
13437d4b
KB
2291
2292 /* Now we need to figure out where the dynamic linker was
2293 loaded so that we can load its symbols and place a breakpoint
2294 in the dynamic linker itself.
2295
2296 This address is stored on the stack. However, I've been unable
2297 to find any magic formula to find it for Solaris (appears to
2298 be trivial on GNU/Linux). Therefore, we have to try an alternate
2299 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2300
192b62ce 2301 gdb_bfd_ref_ptr tmp_bfd;
492d29ea 2302 TRY
f1838a98 2303 {
97ec2c2f 2304 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2305 }
492d29ea
PA
2306 CATCH (ex, RETURN_MASK_ALL)
2307 {
2308 }
2309 END_CATCH
2310
13437d4b
KB
2311 if (tmp_bfd == NULL)
2312 goto bkpt_at_symbol;
2313
2f4950cd 2314 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2315 well as BFD operations can be used. target_bfd_reopen
2316 acquires its own reference. */
2317 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2318
f8766ec1
KB
2319 /* On a running target, we can get the dynamic linker's base
2320 address from the shared library table. */
f8766ec1
KB
2321 so = master_so_list ();
2322 while (so)
8ad2fcde 2323 {
97ec2c2f 2324 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2325 {
2326 load_addr_found = 1;
2ec9a4f8 2327 loader_found_in_list = 1;
192b62ce 2328 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2329 break;
2330 }
f8766ec1 2331 so = so->next;
8ad2fcde
KB
2332 }
2333
8d4e36ba
JB
2334 /* If we were not able to find the base address of the loader
2335 from our so_list, then try using the AT_BASE auxilliary entry. */
2336 if (!load_addr_found)
f6ac5f3d 2337 if (target_auxv_search (target_stack, AT_BASE, &load_addr) > 0)
ad3a0e5b 2338 {
f5656ead 2339 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2340
2341 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2342 that `+ load_addr' will overflow CORE_ADDR width not creating
2343 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2344 GDB. */
2345
d182d057 2346 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2347 {
d182d057 2348 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2349 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2350 tmp_bfd_target);
2351
2352 gdb_assert (load_addr < space_size);
2353
2354 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2355 64bit ld.so with 32bit executable, it should not happen. */
2356
2357 if (tmp_entry_point < space_size
2358 && tmp_entry_point + load_addr >= space_size)
2359 load_addr -= space_size;
2360 }
2361
2362 load_addr_found = 1;
2363 }
8d4e36ba 2364
8ad2fcde
KB
2365 /* Otherwise we find the dynamic linker's base address by examining
2366 the current pc (which should point at the entry point for the
8d4e36ba
JB
2367 dynamic linker) and subtracting the offset of the entry point.
2368
2369 This is more fragile than the previous approaches, but is a good
2370 fallback method because it has actually been working well in
2371 most cases. */
8ad2fcde 2372 if (!load_addr_found)
fb14de7b 2373 {
c2250ad1 2374 struct regcache *regcache
f5656ead 2375 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2376
fb14de7b 2377 load_addr = (regcache_read_pc (regcache)
192b62ce 2378 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2379 }
2ec9a4f8
DJ
2380
2381 if (!loader_found_in_list)
34439770 2382 {
1a816a87
PA
2383 info->debug_loader_name = xstrdup (interp_name);
2384 info->debug_loader_offset_p = 1;
2385 info->debug_loader_offset = load_addr;
e696b3ad 2386 solib_add (NULL, from_tty, auto_solib_add);
34439770 2387 }
13437d4b
KB
2388
2389 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2390 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2391 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2392 if (interp_sect)
2393 {
6c95b8df 2394 info->interp_text_sect_low =
192b62ce 2395 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2396 info->interp_text_sect_high =
2397 info->interp_text_sect_low
192b62ce 2398 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b 2399 }
192b62ce 2400 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2401 if (interp_sect)
2402 {
6c95b8df 2403 info->interp_plt_sect_low =
192b62ce 2404 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2405 info->interp_plt_sect_high =
2406 info->interp_plt_sect_low
192b62ce 2407 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b
KB
2408 }
2409
2410 /* Now try to set a breakpoint in the dynamic linker. */
2411 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2412 {
192b62ce
TT
2413 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2414 cmp_name_and_sec_flags,
3953f15c 2415 *bkpt_namep);
13437d4b
KB
2416 if (sym_addr != 0)
2417 break;
2418 }
2419
2bbe3cc1
DJ
2420 if (sym_addr != 0)
2421 /* Convert 'sym_addr' from a function pointer to an address.
2422 Because we pass tmp_bfd_target instead of the current
2423 target, this will always produce an unrelocated value. */
f5656ead 2424 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2425 sym_addr,
2426 tmp_bfd_target);
2427
695c3173
TT
2428 /* We're done with both the temporary bfd and target. Closing
2429 the target closes the underlying bfd, because it holds the
2430 only remaining reference. */
460014f5 2431 target_close (tmp_bfd_target);
13437d4b
KB
2432
2433 if (sym_addr != 0)
2434 {
f9e14852
GB
2435 svr4_create_solib_event_breakpoints (target_gdbarch (),
2436 load_addr + sym_addr);
97ec2c2f 2437 xfree (interp_name);
13437d4b
KB
2438 return 1;
2439 }
2440
2441 /* For whatever reason we couldn't set a breakpoint in the dynamic
2442 linker. Warn and drop into the old code. */
2443 bkpt_at_symbol:
97ec2c2f 2444 xfree (interp_name);
82d03102
PG
2445 warning (_("Unable to find dynamic linker breakpoint function.\n"
2446 "GDB will be unable to debug shared library initializers\n"
2447 "and track explicitly loaded dynamic code."));
13437d4b 2448 }
13437d4b 2449
e499d0f1
DJ
2450 /* Scan through the lists of symbols, trying to look up the symbol and
2451 set a breakpoint there. Terminate loop when we/if we succeed. */
2452
2453 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2454 {
2455 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2456 if ((msymbol.minsym != NULL)
77e371c0 2457 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2458 {
77e371c0 2459 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2460 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2461 sym_addr,
f6ac5f3d 2462 target_stack);
f9e14852 2463 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2464 return 1;
2465 }
2466 }
13437d4b 2467
fb139f32 2468 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2469 {
c6490bf2 2470 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2471 {
c6490bf2 2472 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2473 if ((msymbol.minsym != NULL)
77e371c0 2474 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2475 {
77e371c0 2476 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2477 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2478 sym_addr,
f6ac5f3d 2479 target_stack);
f9e14852 2480 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2481 return 1;
2482 }
13437d4b
KB
2483 }
2484 }
542c95c2 2485 return 0;
13437d4b
KB
2486}
2487
09919ac2
JK
2488/* Read the ELF program headers from ABFD. Return the contents and
2489 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2490
09919ac2
JK
2491static gdb_byte *
2492read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2493{
09919ac2
JK
2494 Elf_Internal_Ehdr *ehdr;
2495 gdb_byte *buf;
e2a44558 2496
09919ac2 2497 ehdr = elf_elfheader (abfd);
b8040f19 2498
09919ac2
JK
2499 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2500 if (*phdrs_size == 0)
2501 return NULL;
2502
224c3ddb 2503 buf = (gdb_byte *) xmalloc (*phdrs_size);
09919ac2
JK
2504 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2505 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2506 {
2507 xfree (buf);
2508 return NULL;
2509 }
2510
2511 return buf;
b8040f19
JK
2512}
2513
01c30d6e
JK
2514/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2515 exec_bfd. Otherwise return 0.
2516
2517 We relocate all of the sections by the same amount. This
c378eb4e 2518 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2519 According to the System V Application Binary Interface,
2520 Edition 4.1, page 5-5:
2521
2522 ... Though the system chooses virtual addresses for
2523 individual processes, it maintains the segments' relative
2524 positions. Because position-independent code uses relative
2525 addressesing between segments, the difference between
2526 virtual addresses in memory must match the difference
2527 between virtual addresses in the file. The difference
2528 between the virtual address of any segment in memory and
2529 the corresponding virtual address in the file is thus a
2530 single constant value for any one executable or shared
2531 object in a given process. This difference is the base
2532 address. One use of the base address is to relocate the
2533 memory image of the program during dynamic linking.
2534
2535 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2536 ABI and is left unspecified in some of the earlier editions.
2537
2538 Decide if the objfile needs to be relocated. As indicated above, we will
2539 only be here when execution is stopped. But during attachment PC can be at
2540 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2541 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2542 regcache_read_pc would point to the interpreter and not the main executable.
2543
2544 So, to summarize, relocations are necessary when the start address obtained
2545 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2546
09919ac2
JK
2547 [ The astute reader will note that we also test to make sure that
2548 the executable in question has the DYNAMIC flag set. It is my
2549 opinion that this test is unnecessary (undesirable even). It
2550 was added to avoid inadvertent relocation of an executable
2551 whose e_type member in the ELF header is not ET_DYN. There may
2552 be a time in the future when it is desirable to do relocations
2553 on other types of files as well in which case this condition
2554 should either be removed or modified to accomodate the new file
2555 type. - Kevin, Nov 2000. ] */
b8040f19 2556
01c30d6e
JK
2557static int
2558svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2559{
41752192
JK
2560 /* ENTRY_POINT is a possible function descriptor - before
2561 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2562 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2563
2564 if (exec_bfd == NULL)
2565 return 0;
2566
09919ac2
JK
2567 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2568 being executed themselves and PIE (Position Independent Executable)
2569 executables are ET_DYN. */
2570
2571 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2572 return 0;
2573
f6ac5f3d 2574 if (target_auxv_search (target_stack, AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2575 return 0;
2576
8f61baf8 2577 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2578
8f61baf8 2579 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2580 alignment. It is cheaper than the program headers comparison below. */
2581
2582 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2583 {
2584 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2585
2586 /* p_align of PT_LOAD segments does not specify any alignment but
2587 only congruency of addresses:
2588 p_offset % p_align == p_vaddr % p_align
2589 Kernel is free to load the executable with lower alignment. */
2590
8f61baf8 2591 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2592 return 0;
2593 }
2594
2595 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2596 comparing their program headers. If the program headers in the auxilliary
2597 vector do not match the program headers in the executable, then we are
2598 looking at a different file than the one used by the kernel - for
2599 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2600
2601 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2602 {
2603 /* Be optimistic and clear OK only if GDB was able to verify the headers
2604 really do not match. */
2605 int phdrs_size, phdrs2_size, ok = 1;
2606 gdb_byte *buf, *buf2;
0a1e94c7 2607 int arch_size;
09919ac2 2608
a738da3a 2609 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
09919ac2 2610 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2611 if (buf != NULL && buf2 != NULL)
2612 {
f5656ead 2613 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2614
2615 /* We are dealing with three different addresses. EXEC_BFD
2616 represents current address in on-disk file. target memory content
2617 may be different from EXEC_BFD as the file may have been prelinked
2618 to a different address after the executable has been loaded.
2619 Moreover the address of placement in target memory can be
3e43a32a
MS
2620 different from what the program headers in target memory say -
2621 this is the goal of PIE.
0a1e94c7
JK
2622
2623 Detected DISPLACEMENT covers both the offsets of PIE placement and
2624 possible new prelink performed after start of the program. Here
2625 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2626 content offset for the verification purpose. */
2627
2628 if (phdrs_size != phdrs2_size
2629 || bfd_get_arch_size (exec_bfd) != arch_size)
2630 ok = 0;
3e43a32a
MS
2631 else if (arch_size == 32
2632 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2633 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2634 {
2635 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2636 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2637 CORE_ADDR displacement = 0;
2638 int i;
2639
2640 /* DISPLACEMENT could be found more easily by the difference of
2641 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2642 already have enough information to compute that displacement
2643 with what we've read. */
2644
2645 for (i = 0; i < ehdr2->e_phnum; i++)
2646 if (phdr2[i].p_type == PT_LOAD)
2647 {
2648 Elf32_External_Phdr *phdrp;
2649 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2650 CORE_ADDR vaddr, paddr;
2651 CORE_ADDR displacement_vaddr = 0;
2652 CORE_ADDR displacement_paddr = 0;
2653
2654 phdrp = &((Elf32_External_Phdr *) buf)[i];
2655 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2656 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2657
2658 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2659 byte_order);
2660 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2661
2662 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2663 byte_order);
2664 displacement_paddr = paddr - phdr2[i].p_paddr;
2665
2666 if (displacement_vaddr == displacement_paddr)
2667 displacement = displacement_vaddr;
2668
2669 break;
2670 }
2671
2672 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2673
2674 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2675 {
2676 Elf32_External_Phdr *phdrp;
2677 Elf32_External_Phdr *phdr2p;
2678 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2679 CORE_ADDR vaddr, paddr;
43b8e241 2680 asection *plt2_asect;
0a1e94c7
JK
2681
2682 phdrp = &((Elf32_External_Phdr *) buf)[i];
2683 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2684 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2685 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2686
2687 /* PT_GNU_STACK is an exception by being never relocated by
2688 prelink as its addresses are always zero. */
2689
2690 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2691 continue;
2692
2693 /* Check also other adjustment combinations - PR 11786. */
2694
3e43a32a
MS
2695 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2696 byte_order);
0a1e94c7
JK
2697 vaddr -= displacement;
2698 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2699
3e43a32a
MS
2700 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2701 byte_order);
0a1e94c7
JK
2702 paddr -= displacement;
2703 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2704
2705 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2706 continue;
2707
204b5331
DE
2708 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2709 CentOS-5 has problems with filesz, memsz as well.
2710 See PR 11786. */
2711 if (phdr2[i].p_type == PT_GNU_RELRO)
2712 {
2713 Elf32_External_Phdr tmp_phdr = *phdrp;
2714 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2715
2716 memset (tmp_phdr.p_filesz, 0, 4);
2717 memset (tmp_phdr.p_memsz, 0, 4);
2718 memset (tmp_phdr.p_flags, 0, 4);
2719 memset (tmp_phdr.p_align, 0, 4);
2720 memset (tmp_phdr2.p_filesz, 0, 4);
2721 memset (tmp_phdr2.p_memsz, 0, 4);
2722 memset (tmp_phdr2.p_flags, 0, 4);
2723 memset (tmp_phdr2.p_align, 0, 4);
2724
2725 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2726 == 0)
2727 continue;
2728 }
2729
43b8e241
JK
2730 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2731 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2732 if (plt2_asect)
2733 {
2734 int content2;
2735 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2736 CORE_ADDR filesz;
2737
2738 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2739 & SEC_HAS_CONTENTS) != 0;
2740
2741 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2742 byte_order);
2743
2744 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2745 FILESZ is from the in-memory image. */
2746 if (content2)
2747 filesz += bfd_get_section_size (plt2_asect);
2748 else
2749 filesz -= bfd_get_section_size (plt2_asect);
2750
2751 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2752 filesz);
2753
2754 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2755 continue;
2756 }
2757
0a1e94c7
JK
2758 ok = 0;
2759 break;
2760 }
2761 }
3e43a32a
MS
2762 else if (arch_size == 64
2763 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2764 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2765 {
2766 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2767 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2768 CORE_ADDR displacement = 0;
2769 int i;
2770
2771 /* DISPLACEMENT could be found more easily by the difference of
2772 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2773 already have enough information to compute that displacement
2774 with what we've read. */
2775
2776 for (i = 0; i < ehdr2->e_phnum; i++)
2777 if (phdr2[i].p_type == PT_LOAD)
2778 {
2779 Elf64_External_Phdr *phdrp;
2780 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2781 CORE_ADDR vaddr, paddr;
2782 CORE_ADDR displacement_vaddr = 0;
2783 CORE_ADDR displacement_paddr = 0;
2784
2785 phdrp = &((Elf64_External_Phdr *) buf)[i];
2786 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2787 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2788
2789 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2790 byte_order);
2791 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2792
2793 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2794 byte_order);
2795 displacement_paddr = paddr - phdr2[i].p_paddr;
2796
2797 if (displacement_vaddr == displacement_paddr)
2798 displacement = displacement_vaddr;
2799
2800 break;
2801 }
2802
2803 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2804
2805 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2806 {
2807 Elf64_External_Phdr *phdrp;
2808 Elf64_External_Phdr *phdr2p;
2809 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2810 CORE_ADDR vaddr, paddr;
43b8e241 2811 asection *plt2_asect;
0a1e94c7
JK
2812
2813 phdrp = &((Elf64_External_Phdr *) buf)[i];
2814 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2815 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2816 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2817
2818 /* PT_GNU_STACK is an exception by being never relocated by
2819 prelink as its addresses are always zero. */
2820
2821 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2822 continue;
2823
2824 /* Check also other adjustment combinations - PR 11786. */
2825
3e43a32a
MS
2826 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2827 byte_order);
0a1e94c7
JK
2828 vaddr -= displacement;
2829 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2830
3e43a32a
MS
2831 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2832 byte_order);
0a1e94c7
JK
2833 paddr -= displacement;
2834 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2835
2836 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2837 continue;
2838
204b5331
DE
2839 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2840 CentOS-5 has problems with filesz, memsz as well.
2841 See PR 11786. */
2842 if (phdr2[i].p_type == PT_GNU_RELRO)
2843 {
2844 Elf64_External_Phdr tmp_phdr = *phdrp;
2845 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2846
2847 memset (tmp_phdr.p_filesz, 0, 8);
2848 memset (tmp_phdr.p_memsz, 0, 8);
2849 memset (tmp_phdr.p_flags, 0, 4);
2850 memset (tmp_phdr.p_align, 0, 8);
2851 memset (tmp_phdr2.p_filesz, 0, 8);
2852 memset (tmp_phdr2.p_memsz, 0, 8);
2853 memset (tmp_phdr2.p_flags, 0, 4);
2854 memset (tmp_phdr2.p_align, 0, 8);
2855
2856 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2857 == 0)
2858 continue;
2859 }
2860
43b8e241
JK
2861 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2862 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2863 if (plt2_asect)
2864 {
2865 int content2;
2866 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2867 CORE_ADDR filesz;
2868
2869 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2870 & SEC_HAS_CONTENTS) != 0;
2871
2872 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2873 byte_order);
2874
2875 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2876 FILESZ is from the in-memory image. */
2877 if (content2)
2878 filesz += bfd_get_section_size (plt2_asect);
2879 else
2880 filesz -= bfd_get_section_size (plt2_asect);
2881
2882 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2883 filesz);
2884
2885 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2886 continue;
2887 }
2888
0a1e94c7
JK
2889 ok = 0;
2890 break;
2891 }
2892 }
2893 else
2894 ok = 0;
2895 }
09919ac2
JK
2896
2897 xfree (buf);
2898 xfree (buf2);
2899
2900 if (!ok)
2901 return 0;
2902 }
b8040f19 2903
ccf26247
JK
2904 if (info_verbose)
2905 {
2906 /* It can be printed repeatedly as there is no easy way to check
2907 the executable symbols/file has been already relocated to
2908 displacement. */
2909
2910 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2911 "displacement %s for \"%s\".\n"),
8f61baf8 2912 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2913 bfd_get_filename (exec_bfd));
2914 }
2915
8f61baf8 2916 *displacementp = exec_displacement;
01c30d6e 2917 return 1;
b8040f19
JK
2918}
2919
2920/* Relocate the main executable. This function should be called upon
c378eb4e 2921 stopping the inferior process at the entry point to the program.
b8040f19
JK
2922 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2923 different, the main executable is relocated by the proper amount. */
2924
2925static void
2926svr4_relocate_main_executable (void)
2927{
01c30d6e
JK
2928 CORE_ADDR displacement;
2929
4e5799b6
JK
2930 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2931 probably contains the offsets computed using the PIE displacement
2932 from the previous run, which of course are irrelevant for this run.
2933 So we need to determine the new PIE displacement and recompute the
2934 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2935 already contains pre-computed offsets.
01c30d6e 2936
4e5799b6 2937 If we cannot compute the PIE displacement, either:
01c30d6e 2938
4e5799b6
JK
2939 - The executable is not PIE.
2940
2941 - SYMFILE_OBJFILE does not match the executable started in the target.
2942 This can happen for main executable symbols loaded at the host while
2943 `ld.so --ld-args main-executable' is loaded in the target.
2944
2945 Then we leave the section offsets untouched and use them as is for
2946 this run. Either:
2947
2948 - These section offsets were properly reset earlier, and thus
2949 already contain the correct values. This can happen for instance
2950 when reconnecting via the remote protocol to a target that supports
2951 the `qOffsets' packet.
2952
2953 - The section offsets were not reset earlier, and the best we can
c378eb4e 2954 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2955
2956 if (! svr4_exec_displacement (&displacement))
2957 return;
b8040f19 2958
01c30d6e
JK
2959 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2960 addresses. */
b8040f19
JK
2961
2962 if (symfile_objfile)
e2a44558 2963 {
e2a44558 2964 struct section_offsets *new_offsets;
b8040f19 2965 int i;
e2a44558 2966
224c3ddb
SM
2967 new_offsets = XALLOCAVEC (struct section_offsets,
2968 symfile_objfile->num_sections);
e2a44558 2969
b8040f19
JK
2970 for (i = 0; i < symfile_objfile->num_sections; i++)
2971 new_offsets->offsets[i] = displacement;
e2a44558 2972
b8040f19 2973 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2974 }
51bee8e9
JK
2975 else if (exec_bfd)
2976 {
2977 asection *asect;
2978
2979 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2980 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2981 (bfd_section_vma (exec_bfd, asect)
2982 + displacement));
2983 }
e2a44558
KB
2984}
2985
7f86f058 2986/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2987
2988 For SVR4 executables, this first instruction is either the first
2989 instruction in the dynamic linker (for dynamically linked
2990 executables) or the instruction at "start" for statically linked
2991 executables. For dynamically linked executables, the system
2992 first exec's /lib/libc.so.N, which contains the dynamic linker,
2993 and starts it running. The dynamic linker maps in any needed
2994 shared libraries, maps in the actual user executable, and then
2995 jumps to "start" in the user executable.
2996
7f86f058
PA
2997 We can arrange to cooperate with the dynamic linker to discover the
2998 names of shared libraries that are dynamically linked, and the base
2999 addresses to which they are linked.
13437d4b
KB
3000
3001 This function is responsible for discovering those names and
3002 addresses, and saving sufficient information about them to allow
d2e5c99a 3003 their symbols to be read at a later time. */
13437d4b 3004
e2a44558 3005static void
268a4a75 3006svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3007{
1a816a87
PA
3008 struct svr4_info *info;
3009
6c95b8df 3010 info = get_svr4_info ();
2020b7ab 3011
f9e14852
GB
3012 /* Clear the probes-based interface's state. */
3013 free_probes_table (info);
3014 free_solib_list (info);
3015
e2a44558 3016 /* Relocate the main executable if necessary. */
86e4bafc 3017 svr4_relocate_main_executable ();
e2a44558 3018
c91c8c16
PA
3019 /* No point setting a breakpoint in the dynamic linker if we can't
3020 hit it (e.g., a core file, or a trace file). */
3021 if (!target_has_execution)
3022 return;
3023
d5a921c9 3024 if (!svr4_have_link_map_offsets ())
513f5903 3025 return;
d5a921c9 3026
268a4a75 3027 if (!enable_break (info, from_tty))
542c95c2 3028 return;
13437d4b
KB
3029}
3030
3031static void
3032svr4_clear_solib (void)
3033{
6c95b8df
PA
3034 struct svr4_info *info;
3035
3036 info = get_svr4_info ();
3037 info->debug_base = 0;
3038 info->debug_loader_offset_p = 0;
3039 info->debug_loader_offset = 0;
3040 xfree (info->debug_loader_name);
3041 info->debug_loader_name = NULL;
13437d4b
KB
3042}
3043
6bb7be43
JB
3044/* Clear any bits of ADDR that wouldn't fit in a target-format
3045 data pointer. "Data pointer" here refers to whatever sort of
3046 address the dynamic linker uses to manage its sections. At the
3047 moment, we don't support shared libraries on any processors where
3048 code and data pointers are different sizes.
3049
3050 This isn't really the right solution. What we really need here is
3051 a way to do arithmetic on CORE_ADDR values that respects the
3052 natural pointer/address correspondence. (For example, on the MIPS,
3053 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3054 sign-extend the value. There, simply truncating the bits above
819844ad 3055 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3056 be a new gdbarch method or something. */
3057static CORE_ADDR
3058svr4_truncate_ptr (CORE_ADDR addr)
3059{
f5656ead 3060 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3061 /* We don't need to truncate anything, and the bit twiddling below
3062 will fail due to overflow problems. */
3063 return addr;
3064 else
f5656ead 3065 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3066}
3067
3068
749499cb
KB
3069static void
3070svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3071 struct target_section *sec)
749499cb 3072{
2b2848e2
DE
3073 bfd *abfd = sec->the_bfd_section->owner;
3074
3075 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3076 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3077}
4b188b9f 3078\f
749499cb 3079
4b188b9f 3080/* Architecture-specific operations. */
6bb7be43 3081
4b188b9f
MK
3082/* Per-architecture data key. */
3083static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3084
4b188b9f 3085struct solib_svr4_ops
e5e2b9ff 3086{
4b188b9f
MK
3087 /* Return a description of the layout of `struct link_map'. */
3088 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3089};
e5e2b9ff 3090
4b188b9f 3091/* Return a default for the architecture-specific operations. */
e5e2b9ff 3092
4b188b9f
MK
3093static void *
3094solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3095{
4b188b9f 3096 struct solib_svr4_ops *ops;
e5e2b9ff 3097
4b188b9f 3098 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3099 ops->fetch_link_map_offsets = NULL;
4b188b9f 3100 return ops;
e5e2b9ff
KB
3101}
3102
4b188b9f 3103/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3104 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3105
21479ded 3106void
e5e2b9ff
KB
3107set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3108 struct link_map_offsets *(*flmo) (void))
21479ded 3109{
19ba03f4
SM
3110 struct solib_svr4_ops *ops
3111 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3112
3113 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3114
3115 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3116}
3117
4b188b9f
MK
3118/* Fetch a link_map_offsets structure using the architecture-specific
3119 `struct link_map_offsets' fetcher. */
1c4dcb57 3120
4b188b9f
MK
3121static struct link_map_offsets *
3122svr4_fetch_link_map_offsets (void)
21479ded 3123{
19ba03f4
SM
3124 struct solib_svr4_ops *ops
3125 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3126 solib_svr4_data);
4b188b9f
MK
3127
3128 gdb_assert (ops->fetch_link_map_offsets);
3129 return ops->fetch_link_map_offsets ();
21479ded
KB
3130}
3131
4b188b9f
MK
3132/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3133
3134static int
3135svr4_have_link_map_offsets (void)
3136{
19ba03f4
SM
3137 struct solib_svr4_ops *ops
3138 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3139 solib_svr4_data);
433759f7 3140
4b188b9f
MK
3141 return (ops->fetch_link_map_offsets != NULL);
3142}
3143\f
3144
e4bbbda8
MK
3145/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3146 `struct r_debug' and a `struct link_map' that are binary compatible
3147 with the origional SVR4 implementation. */
3148
3149/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3150 for an ILP32 SVR4 system. */
d989b283 3151
e4bbbda8
MK
3152struct link_map_offsets *
3153svr4_ilp32_fetch_link_map_offsets (void)
3154{
3155 static struct link_map_offsets lmo;
3156 static struct link_map_offsets *lmp = NULL;
3157
3158 if (lmp == NULL)
3159 {
3160 lmp = &lmo;
3161
e4cd0d6a
MK
3162 lmo.r_version_offset = 0;
3163 lmo.r_version_size = 4;
e4bbbda8 3164 lmo.r_map_offset = 4;
7cd25cfc 3165 lmo.r_brk_offset = 8;
e4cd0d6a 3166 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3167
3168 /* Everything we need is in the first 20 bytes. */
3169 lmo.link_map_size = 20;
3170 lmo.l_addr_offset = 0;
e4bbbda8 3171 lmo.l_name_offset = 4;
cc10cae3 3172 lmo.l_ld_offset = 8;
e4bbbda8 3173 lmo.l_next_offset = 12;
e4bbbda8 3174 lmo.l_prev_offset = 16;
e4bbbda8
MK
3175 }
3176
3177 return lmp;
3178}
3179
3180/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3181 for an LP64 SVR4 system. */
d989b283 3182
e4bbbda8
MK
3183struct link_map_offsets *
3184svr4_lp64_fetch_link_map_offsets (void)
3185{
3186 static struct link_map_offsets lmo;
3187 static struct link_map_offsets *lmp = NULL;
3188
3189 if (lmp == NULL)
3190 {
3191 lmp = &lmo;
3192
e4cd0d6a
MK
3193 lmo.r_version_offset = 0;
3194 lmo.r_version_size = 4;
e4bbbda8 3195 lmo.r_map_offset = 8;
7cd25cfc 3196 lmo.r_brk_offset = 16;
e4cd0d6a 3197 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3198
3199 /* Everything we need is in the first 40 bytes. */
3200 lmo.link_map_size = 40;
3201 lmo.l_addr_offset = 0;
e4bbbda8 3202 lmo.l_name_offset = 8;
cc10cae3 3203 lmo.l_ld_offset = 16;
e4bbbda8 3204 lmo.l_next_offset = 24;
e4bbbda8 3205 lmo.l_prev_offset = 32;
e4bbbda8
MK
3206 }
3207
3208 return lmp;
3209}
3210\f
3211
7d522c90 3212struct target_so_ops svr4_so_ops;
13437d4b 3213
c378eb4e 3214/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3215 different rule for symbol lookup. The lookup begins here in the DSO, not in
3216 the main executable. */
3217
d12307c1 3218static struct block_symbol
efad9b6a 3219elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3220 const char *name,
21b556f4 3221 const domain_enum domain)
3a40aaa0 3222{
61f0d762
JK
3223 bfd *abfd;
3224
3225 if (objfile == symfile_objfile)
3226 abfd = exec_bfd;
3227 else
3228 {
3229 /* OBJFILE should have been passed as the non-debug one. */
3230 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3231
3232 abfd = objfile->obfd;
3233 }
3234
a738da3a 3235 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
d12307c1 3236 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3237
94af9270 3238 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3239}
3240
13437d4b
KB
3241void
3242_initialize_svr4_solib (void)
3243{
4b188b9f 3244 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3245 solib_svr4_pspace_data
8e260fc0 3246 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3247
749499cb 3248 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3249 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3250 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3251 svr4_so_ops.clear_solib = svr4_clear_solib;
3252 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3253 svr4_so_ops.current_sos = svr4_current_sos;
3254 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3255 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3256 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3257 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3258 svr4_so_ops.same = svr4_same;
de18c1d8 3259 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3260 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3261 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3262}