]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/spu-tdep.c
Change return type of gdbarch_software_single_step to vector<CORE_ADDR>
[thirdparty/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
61baf725 2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
771b4502
UW
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
e47ad6c0 36#include "disasm.h"
771b4502
UW
37#include "objfiles.h"
38#include "language.h"
39#include "regcache.h"
40#include "reggroups.h"
41#include "floatformat.h"
3285f3fe 42#include "block.h"
dcf52cd8 43#include "observer.h"
ff1a52c6 44#include "infcall.h"
54fcddd0 45#include "dwarf2.h"
7ce16bd4
UW
46#include "dwarf2-frame.h"
47#include "ax.h"
771b4502 48#include "spu-tdep.h"
f00aae0f 49#include "location.h"
794ac428 50
3285f3fe
UW
51/* The list of available "set spu " and "show spu " commands. */
52static struct cmd_list_element *setspucmdlist = NULL;
53static struct cmd_list_element *showspucmdlist = NULL;
54
55/* Whether to stop for new SPE contexts. */
56static int spu_stop_on_load_p = 0;
ff1a52c6
UW
57/* Whether to automatically flush the SW-managed cache. */
58static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
59
60
794ac428
UW
61/* The tdep structure. */
62struct gdbarch_tdep
63{
85e747d2
UW
64 /* The spufs ID identifying our address space. */
65 int id;
66
794ac428
UW
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69};
70
71
f2d43c2c 72/* SPU-specific vector type. */
794ac428
UW
73static struct type *
74spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75{
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
df4df182 80 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
81 struct type *t;
82
e9bb382b
UW
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 85 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 86 append_composite_type_field (t, "v2_int64",
df4df182 87 init_vector_type (bt->builtin_int64, 2));
794ac428 88 append_composite_type_field (t, "v4_int32",
df4df182 89 init_vector_type (bt->builtin_int32, 4));
794ac428 90 append_composite_type_field (t, "v8_int16",
df4df182 91 init_vector_type (bt->builtin_int16, 8));
794ac428 92 append_composite_type_field (t, "v16_int8",
df4df182 93 init_vector_type (bt->builtin_int8, 16));
794ac428 94 append_composite_type_field (t, "v2_double",
df4df182 95 init_vector_type (bt->builtin_double, 2));
794ac428 96 append_composite_type_field (t, "v4_float",
df4df182 97 init_vector_type (bt->builtin_float, 4));
794ac428 98
876cecd0 99 TYPE_VECTOR (t) = 1;
794ac428
UW
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106}
107
771b4502 108
23d964e7
UW
109/* The list of available "info spu " commands. */
110static struct cmd_list_element *infospucmdlist = NULL;
111
771b4502
UW
112/* Registers. */
113
114static const char *
d93859e2 115spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502 116{
a121b7c1 117 static const char *register_names[] =
771b4502
UW
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144}
145
146static struct type *
147spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148{
149 if (reg_nr < SPU_NUM_GPRS)
794ac428 150 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
df4df182 155 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
156
157 case SPU_PC_REGNUM:
0dfff4cb 158 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
159
160 case SPU_SP_REGNUM:
0dfff4cb 161 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 162
23d964e7 163 case SPU_FPSCR_REGNUM:
df4df182 164 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
165
166 case SPU_SRR0_REGNUM:
df4df182 167 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
168
169 case SPU_LSLR_REGNUM:
df4df182 170 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
171
172 case SPU_DECR_REGNUM:
df4df182 173 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
174
175 case SPU_DECR_STATUS_REGNUM:
df4df182 176 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 177
771b4502 178 default:
a73c6dcd 179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
180 }
181}
182
183/* Pseudo registers for preferred slots - stack pointer. */
184
05d1431c 185static enum register_status
23d964e7
UW
186spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188{
e17a4113
UW
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 191 enum register_status status;
23d964e7
UW
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
001f13d8 195 ULONGEST ul;
23d964e7 196
05d1431c
PA
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
23d964e7
UW
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
001f13d8
PA
205 ul = strtoulst ((char *) reg, NULL, 16);
206 store_unsigned_integer (buf, 4, byte_order, ul);
05d1431c 207 return REG_VALID;
23d964e7
UW
208}
209
05d1431c 210static enum register_status
771b4502
UW
211spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
212 int regnum, gdb_byte *buf)
213{
214 gdb_byte reg[16];
23d964e7
UW
215 char annex[32];
216 ULONGEST id;
05d1431c 217 enum register_status status;
771b4502
UW
218
219 switch (regnum)
220 {
221 case SPU_SP_REGNUM:
05d1431c
PA
222 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
223 if (status != REG_VALID)
224 return status;
771b4502 225 memcpy (buf, reg, 4);
05d1431c 226 return status;
771b4502 227
23d964e7 228 case SPU_FPSCR_REGNUM:
05d1431c
PA
229 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
230 if (status != REG_VALID)
231 return status;
23d964e7
UW
232 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
233 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 234 return status;
23d964e7
UW
235
236 case SPU_SRR0_REGNUM:
05d1431c 237 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
238
239 case SPU_LSLR_REGNUM:
05d1431c 240 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
241
242 case SPU_DECR_REGNUM:
05d1431c 243 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
244
245 case SPU_DECR_STATUS_REGNUM:
05d1431c 246 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 247
771b4502
UW
248 default:
249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
250 }
251}
252
23d964e7
UW
253static void
254spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 const gdb_byte *buf)
256{
e17a4113
UW
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
001f13d8 259 char reg[32];
23d964e7
UW
260 char annex[32];
261 ULONGEST id;
262
263 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
264 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
265 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 266 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7 267 target_write (&current_target, TARGET_OBJECT_SPU, annex,
001f13d8 268 (gdb_byte *) reg, 0, strlen (reg));
23d964e7
UW
269}
270
771b4502
UW
271static void
272spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
273 int regnum, const gdb_byte *buf)
274{
275 gdb_byte reg[16];
23d964e7
UW
276 char annex[32];
277 ULONGEST id;
771b4502
UW
278
279 switch (regnum)
280 {
281 case SPU_SP_REGNUM:
282 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
283 memcpy (reg, buf, 4);
284 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 break;
286
23d964e7
UW
287 case SPU_FPSCR_REGNUM:
288 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
289 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
290 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 break;
292
293 case SPU_SRR0_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 break;
296
297 case SPU_LSLR_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 break;
300
301 case SPU_DECR_REGNUM:
302 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 break;
304
305 case SPU_DECR_STATUS_REGNUM:
306 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
307 break;
308
771b4502
UW
309 default:
310 internal_error (__FILE__, __LINE__, _("invalid regnum"));
311 }
312}
313
7ce16bd4
UW
314static int
315spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
316 struct agent_expr *ax, int regnum)
317{
318 switch (regnum)
319 {
320 case SPU_SP_REGNUM:
321 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
322 return 0;
323
324 case SPU_FPSCR_REGNUM:
325 case SPU_SRR0_REGNUM:
326 case SPU_LSLR_REGNUM:
327 case SPU_DECR_REGNUM:
328 case SPU_DECR_STATUS_REGNUM:
329 return -1;
330
331 default:
332 internal_error (__FILE__, __LINE__, _("invalid regnum"));
333 }
334}
335
336static int
337spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
338 struct agent_expr *ax, int regnum)
339{
340 switch (regnum)
341 {
342 case SPU_SP_REGNUM:
343 ax_reg (ax, SPU_RAW_SP_REGNUM);
344 return 0;
345
346 case SPU_FPSCR_REGNUM:
347 case SPU_SRR0_REGNUM:
348 case SPU_LSLR_REGNUM:
349 case SPU_DECR_REGNUM:
350 case SPU_DECR_STATUS_REGNUM:
351 return -1;
352
353 default:
354 internal_error (__FILE__, __LINE__, _("invalid regnum"));
355 }
356}
357
358
771b4502
UW
359/* Value conversion -- access scalar values at the preferred slot. */
360
9acbedc0 361static struct value *
2ed3c037
UW
362spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
363 int regnum, struct frame_id frame_id)
771b4502 364{
2ed3c037
UW
365 struct value *value = default_value_from_register (gdbarch, type,
366 regnum, frame_id);
6b850546 367 LONGEST len = TYPE_LENGTH (type);
771b4502 368
bad43aa5 369 if (regnum < SPU_NUM_GPRS && len < 16)
9acbedc0 370 {
bad43aa5 371 int preferred_slot = len < 4 ? 4 - len : 0;
9acbedc0
UW
372 set_value_offset (value, preferred_slot);
373 }
771b4502 374
9acbedc0 375 return value;
771b4502
UW
376}
377
378/* Register groups. */
379
380static int
381spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
382 struct reggroup *group)
383{
384 /* Registers displayed via 'info regs'. */
385 if (group == general_reggroup)
386 return 1;
387
388 /* Registers displayed via 'info float'. */
389 if (group == float_reggroup)
390 return 0;
391
392 /* Registers that need to be saved/restored in order to
393 push or pop frames. */
394 if (group == save_reggroup || group == restore_reggroup)
395 return 1;
396
397 return default_register_reggroup_p (gdbarch, regnum, group);
398}
399
7ce16bd4
UW
400/* DWARF-2 register numbers. */
401
402static int
403spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
404{
405 /* Use cooked instead of raw SP. */
406 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
407}
408
ff1a52c6
UW
409
410/* Address handling. */
36acd84e 411
85e747d2
UW
412static int
413spu_gdbarch_id (struct gdbarch *gdbarch)
414{
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int id = tdep->id;
417
418 /* The objfile architecture of a standalone SPU executable does not
b021a221 419 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
420 address range in this special case. */
421 if (id == -1
422 && symfile_objfile && symfile_objfile->obfd
423 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
424 && symfile_objfile->sections != symfile_objfile->sections_end)
425 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
426
427 return id;
428}
429
ff1a52c6
UW
430static int
431spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
432{
433 if (dwarf2_addr_class == 1)
434 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
435 else
436 return 0;
437}
438
439static const char *
440spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
441{
442 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
443 return "__ea";
444 else
445 return NULL;
446}
447
448static int
449spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
450 const char *name, int *type_flags_ptr)
451{
452 if (strcmp (name, "__ea") == 0)
453 {
454 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
455 return 1;
456 }
457 else
458 return 0;
459}
460
85e747d2
UW
461static void
462spu_address_to_pointer (struct gdbarch *gdbarch,
463 struct type *type, gdb_byte *buf, CORE_ADDR addr)
464{
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
467 SPUADDR_ADDR (addr));
468}
469
36acd84e 470static CORE_ADDR
9898f801
UW
471spu_pointer_to_address (struct gdbarch *gdbarch,
472 struct type *type, const gdb_byte *buf)
36acd84e 473{
85e747d2 474 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476 ULONGEST addr
477 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 478
ff1a52c6
UW
479 /* Do not convert __ea pointers. */
480 if (TYPE_ADDRESS_CLASS_1 (type))
481 return addr;
482
d2ed6730 483 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
484}
485
486static CORE_ADDR
487spu_integer_to_address (struct gdbarch *gdbarch,
488 struct type *type, const gdb_byte *buf)
489{
85e747d2 490 int id = spu_gdbarch_id (gdbarch);
36acd84e 491 ULONGEST addr = unpack_long (type, buf);
36acd84e 492
d2ed6730 493 return SPUADDR (id, addr);
36acd84e
UW
494}
495
771b4502
UW
496
497/* Decoding SPU instructions. */
498
499enum
500 {
501 op_lqd = 0x34,
502 op_lqx = 0x3c4,
503 op_lqa = 0x61,
504 op_lqr = 0x67,
505 op_stqd = 0x24,
506 op_stqx = 0x144,
507 op_stqa = 0x41,
508 op_stqr = 0x47,
509
510 op_il = 0x081,
511 op_ila = 0x21,
512 op_a = 0x0c0,
513 op_ai = 0x1c,
514
a536c6d7 515 op_selb = 0x8,
771b4502
UW
516
517 op_br = 0x64,
518 op_bra = 0x60,
519 op_brsl = 0x66,
520 op_brasl = 0x62,
521 op_brnz = 0x42,
522 op_brz = 0x40,
523 op_brhnz = 0x46,
524 op_brhz = 0x44,
525 op_bi = 0x1a8,
526 op_bisl = 0x1a9,
527 op_biz = 0x128,
528 op_binz = 0x129,
529 op_bihz = 0x12a,
530 op_bihnz = 0x12b,
531 };
532
533static int
534is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
535{
536 if ((insn >> 21) == op)
537 {
538 *rt = insn & 127;
539 *ra = (insn >> 7) & 127;
540 *rb = (insn >> 14) & 127;
541 return 1;
542 }
543
544 return 0;
545}
546
547static int
548is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
549{
550 if ((insn >> 28) == op)
551 {
552 *rt = (insn >> 21) & 127;
553 *ra = (insn >> 7) & 127;
554 *rb = (insn >> 14) & 127;
555 *rc = insn & 127;
556 return 1;
557 }
558
559 return 0;
560}
561
562static int
563is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
564{
565 if ((insn >> 21) == op)
566 {
567 *rt = insn & 127;
568 *ra = (insn >> 7) & 127;
569 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
570 return 1;
571 }
572
573 return 0;
574}
575
576static int
577is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
578{
579 if ((insn >> 24) == op)
580 {
581 *rt = insn & 127;
582 *ra = (insn >> 7) & 127;
583 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
584 return 1;
585 }
586
587 return 0;
588}
589
590static int
591is_ri16 (unsigned int insn, int op, int *rt, int *i16)
592{
593 if ((insn >> 23) == op)
594 {
595 *rt = insn & 127;
596 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
597 return 1;
598 }
599
600 return 0;
601}
602
603static int
604is_ri18 (unsigned int insn, int op, int *rt, int *i18)
605{
606 if ((insn >> 25) == op)
607 {
608 *rt = insn & 127;
609 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
610 return 1;
611 }
612
613 return 0;
614}
615
616static int
617is_branch (unsigned int insn, int *offset, int *reg)
618{
619 int rt, i7, i16;
620
621 if (is_ri16 (insn, op_br, &rt, &i16)
622 || is_ri16 (insn, op_brsl, &rt, &i16)
623 || is_ri16 (insn, op_brnz, &rt, &i16)
624 || is_ri16 (insn, op_brz, &rt, &i16)
625 || is_ri16 (insn, op_brhnz, &rt, &i16)
626 || is_ri16 (insn, op_brhz, &rt, &i16))
627 {
628 *reg = SPU_PC_REGNUM;
629 *offset = i16 << 2;
630 return 1;
631 }
632
633 if (is_ri16 (insn, op_bra, &rt, &i16)
634 || is_ri16 (insn, op_brasl, &rt, &i16))
635 {
636 *reg = -1;
637 *offset = i16 << 2;
638 return 1;
639 }
640
641 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
642 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
643 || is_ri7 (insn, op_biz, &rt, reg, &i7)
644 || is_ri7 (insn, op_binz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
646 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
647 {
648 *offset = 0;
649 return 1;
650 }
651
652 return 0;
653}
654
655
656/* Prolog parsing. */
657
658struct spu_prologue_data
659 {
660 /* Stack frame size. -1 if analysis was unsuccessful. */
661 int size;
662
663 /* How to find the CFA. The CFA is equal to SP at function entry. */
664 int cfa_reg;
665 int cfa_offset;
666
667 /* Offset relative to CFA where a register is saved. -1 if invalid. */
668 int reg_offset[SPU_NUM_GPRS];
669 };
670
671static CORE_ADDR
e17a4113
UW
672spu_analyze_prologue (struct gdbarch *gdbarch,
673 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
674 struct spu_prologue_data *data)
675{
e17a4113 676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
677 int found_sp = 0;
678 int found_fp = 0;
679 int found_lr = 0;
ce50d78b 680 int found_bc = 0;
771b4502
UW
681 int reg_immed[SPU_NUM_GPRS];
682 gdb_byte buf[16];
683 CORE_ADDR prolog_pc = start_pc;
684 CORE_ADDR pc;
685 int i;
686
687
688 /* Initialize DATA to default values. */
689 data->size = -1;
690
691 data->cfa_reg = SPU_RAW_SP_REGNUM;
692 data->cfa_offset = 0;
693
694 for (i = 0; i < SPU_NUM_GPRS; i++)
695 data->reg_offset[i] = -1;
696
697 /* Set up REG_IMMED array. This is non-zero for a register if we know its
698 preferred slot currently holds this immediate value. */
699 for (i = 0; i < SPU_NUM_GPRS; i++)
700 reg_immed[i] = 0;
701
702 /* Scan instructions until the first branch.
703
704 The following instructions are important prolog components:
705
706 - The first instruction to set up the stack pointer.
707 - The first instruction to set up the frame pointer.
708 - The first instruction to save the link register.
ce50d78b 709 - The first instruction to save the backchain.
771b4502 710
ce50d78b 711 We return the instruction after the latest of these four,
771b4502
UW
712 or the incoming PC if none is found. The first instruction
713 to set up the stack pointer also defines the frame size.
714
715 Note that instructions saving incoming arguments to their stack
716 slots are not counted as important, because they are hard to
717 identify with certainty. This should not matter much, because
718 arguments are relevant only in code compiled with debug data,
719 and in such code the GDB core will advance until the first source
720 line anyway, using SAL data.
721
722 For purposes of stack unwinding, we analyze the following types
723 of instructions in addition:
724
725 - Any instruction adding to the current frame pointer.
726 - Any instruction loading an immediate constant into a register.
727 - Any instruction storing a register onto the stack.
728
729 These are used to compute the CFA and REG_OFFSET output. */
730
731 for (pc = start_pc; pc < end_pc; pc += 4)
732 {
733 unsigned int insn;
734 int rt, ra, rb, rc, immed;
735
736 if (target_read_memory (pc, buf, 4))
737 break;
e17a4113 738 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
739
740 /* AI is the typical instruction to set up a stack frame.
741 It is also used to initialize the frame pointer. */
742 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
743 {
744 if (rt == data->cfa_reg && ra == data->cfa_reg)
745 data->cfa_offset -= immed;
746
747 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
748 && !found_sp)
749 {
750 found_sp = 1;
751 prolog_pc = pc + 4;
752
753 data->size = -immed;
754 }
755 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
756 && !found_fp)
757 {
758 found_fp = 1;
759 prolog_pc = pc + 4;
760
761 data->cfa_reg = SPU_FP_REGNUM;
762 data->cfa_offset -= immed;
763 }
764 }
765
766 /* A is used to set up stack frames of size >= 512 bytes.
767 If we have tracked the contents of the addend register,
768 we can handle this as well. */
769 else if (is_rr (insn, op_a, &rt, &ra, &rb))
770 {
771 if (rt == data->cfa_reg && ra == data->cfa_reg)
772 {
773 if (reg_immed[rb] != 0)
774 data->cfa_offset -= reg_immed[rb];
775 else
776 data->cfa_reg = -1; /* We don't know the CFA any more. */
777 }
778
779 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
780 && !found_sp)
781 {
782 found_sp = 1;
783 prolog_pc = pc + 4;
784
785 if (reg_immed[rb] != 0)
786 data->size = -reg_immed[rb];
787 }
788 }
789
790 /* We need to track IL and ILA used to load immediate constants
791 in case they are later used as input to an A instruction. */
792 else if (is_ri16 (insn, op_il, &rt, &immed))
793 {
794 reg_immed[rt] = immed;
12102450
UW
795
796 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
797 found_sp = 1;
771b4502
UW
798 }
799
800 else if (is_ri18 (insn, op_ila, &rt, &immed))
801 {
802 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
803
804 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
805 found_sp = 1;
771b4502
UW
806 }
807
808 /* STQD is used to save registers to the stack. */
809 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
810 {
811 if (ra == data->cfa_reg)
812 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
813
814 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
815 && !found_lr)
816 {
817 found_lr = 1;
818 prolog_pc = pc + 4;
819 }
ce50d78b
UW
820
821 if (ra == SPU_RAW_SP_REGNUM
822 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
823 && !found_bc)
824 {
825 found_bc = 1;
826 prolog_pc = pc + 4;
827 }
771b4502
UW
828 }
829
830 /* _start uses SELB to set up the stack pointer. */
831 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
832 {
833 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
834 found_sp = 1;
835 }
836
837 /* We terminate if we find a branch. */
838 else if (is_branch (insn, &immed, &ra))
839 break;
840 }
841
842
843 /* If we successfully parsed until here, and didn't find any instruction
844 modifying SP, we assume we have a frameless function. */
845 if (!found_sp)
846 data->size = 0;
847
848 /* Return cooked instead of raw SP. */
849 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
850 data->cfa_reg = SPU_SP_REGNUM;
851
852 return prolog_pc;
853}
854
855/* Return the first instruction after the prologue starting at PC. */
856static CORE_ADDR
6093d2eb 857spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
858{
859 struct spu_prologue_data data;
e17a4113 860 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
861}
862
863/* Return the frame pointer in use at address PC. */
864static void
a54fba4c
MD
865spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
866 int *reg, LONGEST *offset)
771b4502
UW
867{
868 struct spu_prologue_data data;
e17a4113 869 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
870
871 if (data.size != -1 && data.cfa_reg != -1)
872 {
873 /* The 'frame pointer' address is CFA minus frame size. */
874 *reg = data.cfa_reg;
875 *offset = data.cfa_offset - data.size;
876 }
877 else
878 {
c378eb4e 879 /* ??? We don't really know ... */
771b4502
UW
880 *reg = SPU_SP_REGNUM;
881 *offset = 0;
882 }
883}
884
c9cf6e20 885/* Implement the stack_frame_destroyed_p gdbarch method.
fe5febed
UW
886
887 1) scan forward from the point of execution:
888 a) If you find an instruction that modifies the stack pointer
889 or transfers control (except a return), execution is not in
890 an epilogue, return.
891 b) Stop scanning if you find a return instruction or reach the
892 end of the function or reach the hard limit for the size of
893 an epilogue.
894 2) scan backward from the point of execution:
895 a) If you find an instruction that modifies the stack pointer,
896 execution *is* in an epilogue, return.
897 b) Stop scanning if you reach an instruction that transfers
898 control or the beginning of the function or reach the hard
899 limit for the size of an epilogue. */
900
901static int
c9cf6e20 902spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
fe5febed 903{
e17a4113 904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
905 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
906 bfd_byte buf[4];
907 unsigned int insn;
22e048c9 908 int rt, ra, rb, immed;
fe5febed
UW
909
910 /* Find the search limits based on function boundaries and hard limit.
911 We assume the epilogue can be up to 64 instructions long. */
912
913 const int spu_max_epilogue_size = 64 * 4;
914
915 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
916 return 0;
917
918 if (pc - func_start < spu_max_epilogue_size)
919 epilogue_start = func_start;
920 else
921 epilogue_start = pc - spu_max_epilogue_size;
922
923 if (func_end - pc < spu_max_epilogue_size)
924 epilogue_end = func_end;
925 else
926 epilogue_end = pc + spu_max_epilogue_size;
927
928 /* Scan forward until next 'bi $0'. */
929
930 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
931 {
932 if (target_read_memory (scan_pc, buf, 4))
933 return 0;
e17a4113 934 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
935
936 if (is_branch (insn, &immed, &ra))
937 {
938 if (immed == 0 && ra == SPU_LR_REGNUM)
939 break;
940
941 return 0;
942 }
943
944 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
945 || is_rr (insn, op_a, &rt, &ra, &rb)
946 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
947 {
948 if (rt == SPU_RAW_SP_REGNUM)
949 return 0;
950 }
951 }
952
953 if (scan_pc >= epilogue_end)
954 return 0;
955
956 /* Scan backward until adjustment to stack pointer (R1). */
957
958 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
959 {
960 if (target_read_memory (scan_pc, buf, 4))
961 return 0;
e17a4113 962 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
963
964 if (is_branch (insn, &immed, &ra))
965 return 0;
966
967 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
968 || is_rr (insn, op_a, &rt, &ra, &rb)
969 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
970 {
971 if (rt == SPU_RAW_SP_REGNUM)
972 return 1;
973 }
974 }
975
976 return 0;
977}
978
979
771b4502
UW
980/* Normal stack frames. */
981
982struct spu_unwind_cache
983{
984 CORE_ADDR func;
985 CORE_ADDR frame_base;
986 CORE_ADDR local_base;
987
988 struct trad_frame_saved_reg *saved_regs;
989};
990
991static struct spu_unwind_cache *
8d998b8f 992spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
993 void **this_prologue_cache)
994{
e17a4113 995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
998 struct spu_unwind_cache *info;
999 struct spu_prologue_data data;
85e747d2 1000 CORE_ADDR id = tdep->id;
dcf52cd8 1001 gdb_byte buf[16];
771b4502
UW
1002
1003 if (*this_prologue_cache)
19ba03f4 1004 return (struct spu_unwind_cache *) *this_prologue_cache;
771b4502
UW
1005
1006 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1007 *this_prologue_cache = info;
8d998b8f 1008 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
1009 info->frame_base = 0;
1010 info->local_base = 0;
1011
1012 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 1013 info->func = get_frame_func (this_frame);
771b4502
UW
1014 if (info->func == 0)
1015 {
1016 /* Fall back to using the current PC as frame ID. */
8d998b8f 1017 info->func = get_frame_pc (this_frame);
771b4502
UW
1018 data.size = -1;
1019 }
1020 else
e17a4113
UW
1021 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1022 &data);
771b4502
UW
1023
1024 /* If successful, use prologue analysis data. */
1025 if (data.size != -1 && data.cfa_reg != -1)
1026 {
1027 CORE_ADDR cfa;
1028 int i;
771b4502
UW
1029
1030 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 1031 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 1032 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 1033 cfa = SPUADDR (id, cfa);
771b4502
UW
1034
1035 /* Call-saved register slots. */
1036 for (i = 0; i < SPU_NUM_GPRS; i++)
1037 if (i == SPU_LR_REGNUM
1038 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1039 if (data.reg_offset[i] != -1)
1040 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1041
771b4502
UW
1042 /* Frame bases. */
1043 info->frame_base = cfa;
1044 info->local_base = cfa - data.size;
1045 }
1046
1047 /* Otherwise, fall back to reading the backchain link. */
1048 else
1049 {
cdc9523a
UW
1050 CORE_ADDR reg;
1051 LONGEST backchain;
13def385 1052 ULONGEST lslr;
cdc9523a 1053 int status;
771b4502 1054
13def385
UW
1055 /* Get local store limit. */
1056 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1057 if (!lslr)
1058 lslr = (ULONGEST) -1;
1059
771b4502 1060 /* Get the backchain. */
8d998b8f 1061 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1062 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1063 &backchain);
771b4502
UW
1064
1065 /* A zero backchain terminates the frame chain. Also, sanity
1066 check against the local store size limit. */
13def385 1067 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1068 {
1069 /* Assume the link register is saved into its slot. */
13def385 1070 if (backchain + 16 <= lslr)
c378eb4e
MS
1071 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1072 backchain + 16);
771b4502 1073
771b4502 1074 /* Frame bases. */
85e747d2
UW
1075 info->frame_base = SPUADDR (id, backchain);
1076 info->local_base = SPUADDR (id, reg);
771b4502
UW
1077 }
1078 }
dcf52cd8 1079
c4891da7
UW
1080 /* If we didn't find a frame, we cannot determine SP / return address. */
1081 if (info->frame_base == 0)
1082 return info;
1083
dcf52cd8 1084 /* The previous SP is equal to the CFA. */
85e747d2
UW
1085 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1086 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1087
0a44cb36
UW
1088 /* Read full contents of the unwound link register in order to
1089 be able to determine the return address. */
dcf52cd8
UW
1090 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1091 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1092 else
8d998b8f 1093 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1094
0a44cb36
UW
1095 /* Normally, the return address is contained in the slot 0 of the
1096 link register, and slots 1-3 are zero. For an overlay return,
1097 slot 0 contains the address of the overlay manager return stub,
1098 slot 1 contains the partition number of the overlay section to
1099 be returned to, and slot 2 contains the return address within
1100 that section. Return the latter address in that case. */
e17a4113 1101 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1102 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1103 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1104 else
1105 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1106 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1107
1108 return info;
1109}
1110
1111static void
8d998b8f 1112spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1113 void **this_prologue_cache, struct frame_id *this_id)
1114{
1115 struct spu_unwind_cache *info =
8d998b8f 1116 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1117
1118 if (info->frame_base == 0)
1119 return;
1120
1121 *this_id = frame_id_build (info->frame_base, info->func);
1122}
1123
8d998b8f
UW
1124static struct value *
1125spu_frame_prev_register (struct frame_info *this_frame,
1126 void **this_prologue_cache, int regnum)
771b4502
UW
1127{
1128 struct spu_unwind_cache *info
8d998b8f 1129 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1130
1131 /* Special-case the stack pointer. */
1132 if (regnum == SPU_RAW_SP_REGNUM)
1133 regnum = SPU_SP_REGNUM;
1134
8d998b8f 1135 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1136}
1137
1138static const struct frame_unwind spu_frame_unwind = {
1139 NORMAL_FRAME,
8fbca658 1140 default_frame_unwind_stop_reason,
771b4502 1141 spu_frame_this_id,
8d998b8f
UW
1142 spu_frame_prev_register,
1143 NULL,
1144 default_frame_sniffer
771b4502
UW
1145};
1146
771b4502 1147static CORE_ADDR
8d998b8f 1148spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1149{
1150 struct spu_unwind_cache *info
8d998b8f 1151 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1152 return info->local_base;
1153}
1154
1155static const struct frame_base spu_frame_base = {
1156 &spu_frame_unwind,
1157 spu_frame_base_address,
1158 spu_frame_base_address,
1159 spu_frame_base_address
1160};
1161
1162static CORE_ADDR
1163spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1164{
85e747d2 1165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1166 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1167 /* Mask off interrupt enable bit. */
85e747d2 1168 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1169}
1170
1171static CORE_ADDR
1172spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1173{
85e747d2
UW
1174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1175 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1176 return SPUADDR (tdep->id, sp);
771b4502
UW
1177}
1178
118dfbaf 1179static CORE_ADDR
61a1198a 1180spu_read_pc (struct regcache *regcache)
118dfbaf 1181{
85e747d2 1182 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
61a1198a
UW
1183 ULONGEST pc;
1184 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1185 /* Mask off interrupt enable bit. */
85e747d2 1186 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1187}
1188
1189static void
61a1198a 1190spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1191{
1192 /* Keep interrupt enabled state unchanged. */
61a1198a 1193 ULONGEST old_pc;
30bcb456 1194
61a1198a
UW
1195 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1196 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1197 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1198}
1199
771b4502 1200
cc5f0d61
UW
1201/* Cell/B.E. cross-architecture unwinder support. */
1202
1203struct spu2ppu_cache
1204{
1205 struct frame_id frame_id;
1206 struct regcache *regcache;
1207};
1208
1209static struct gdbarch *
1210spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211{
19ba03f4 1212 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
cc5f0d61
UW
1213 return get_regcache_arch (cache->regcache);
1214}
1215
1216static void
1217spu2ppu_this_id (struct frame_info *this_frame,
1218 void **this_cache, struct frame_id *this_id)
1219{
19ba03f4 1220 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
cc5f0d61
UW
1221 *this_id = cache->frame_id;
1222}
1223
1224static struct value *
1225spu2ppu_prev_register (struct frame_info *this_frame,
1226 void **this_cache, int regnum)
1227{
19ba03f4 1228 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
cc5f0d61
UW
1229 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1230 gdb_byte *buf;
1231
224c3ddb 1232 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
cc5f0d61
UW
1233 regcache_cooked_read (cache->regcache, regnum, buf);
1234 return frame_unwind_got_bytes (this_frame, regnum, buf);
1235}
1236
1237static int
1238spu2ppu_sniffer (const struct frame_unwind *self,
1239 struct frame_info *this_frame, void **this_prologue_cache)
1240{
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 CORE_ADDR base, func, backchain;
1244 gdb_byte buf[4];
1245
f5656ead 1246 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
cc5f0d61
UW
1247 return 0;
1248
1249 base = get_frame_sp (this_frame);
1250 func = get_frame_pc (this_frame);
1251 if (target_read_memory (base, buf, 4))
1252 return 0;
1253 backchain = extract_unsigned_integer (buf, 4, byte_order);
1254
1255 if (!backchain)
1256 {
1257 struct frame_info *fi;
1258
1259 struct spu2ppu_cache *cache
1260 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261
1262 cache->frame_id = frame_id_build (base + 16, func);
1263
1264 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1265 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1266 break;
1267
1268 if (fi)
1269 {
1270 cache->regcache = frame_save_as_regcache (fi);
1271 *this_prologue_cache = cache;
1272 return 1;
1273 }
1274 else
1275 {
1276 struct regcache *regcache;
f5656ead 1277 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
cc5f0d61
UW
1278 cache->regcache = regcache_dup (regcache);
1279 *this_prologue_cache = cache;
1280 return 1;
1281 }
1282 }
1283
1284 return 0;
1285}
1286
1287static void
1288spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289{
19ba03f4 1290 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
cc5f0d61
UW
1291 regcache_xfree (cache->regcache);
1292}
1293
1294static const struct frame_unwind spu2ppu_unwind = {
1295 ARCH_FRAME,
8fbca658 1296 default_frame_unwind_stop_reason,
cc5f0d61
UW
1297 spu2ppu_this_id,
1298 spu2ppu_prev_register,
1299 NULL,
1300 spu2ppu_sniffer,
1301 spu2ppu_dealloc_cache,
1302 spu2ppu_prev_arch,
1303};
1304
1305
771b4502
UW
1306/* Function calling convention. */
1307
7b3dc0b7
UW
1308static CORE_ADDR
1309spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310{
1311 return sp & ~15;
1312}
1313
87805e63
UW
1314static CORE_ADDR
1315spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1316 struct value **args, int nargs, struct type *value_type,
1317 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1318 struct regcache *regcache)
1319{
1320 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1321 sp = (sp - 4) & ~15;
1322 /* Store the address of that breakpoint */
1323 *bp_addr = sp;
1324 /* The call starts at the callee's entry point. */
1325 *real_pc = funaddr;
1326
1327 return sp;
1328}
1329
771b4502
UW
1330static int
1331spu_scalar_value_p (struct type *type)
1332{
1333 switch (TYPE_CODE (type))
1334 {
1335 case TYPE_CODE_INT:
1336 case TYPE_CODE_ENUM:
1337 case TYPE_CODE_RANGE:
1338 case TYPE_CODE_CHAR:
1339 case TYPE_CODE_BOOL:
1340 case TYPE_CODE_PTR:
1341 case TYPE_CODE_REF:
aa006118 1342 case TYPE_CODE_RVALUE_REF:
771b4502
UW
1343 return TYPE_LENGTH (type) <= 16;
1344
1345 default:
1346 return 0;
1347 }
1348}
1349
1350static void
1351spu_value_to_regcache (struct regcache *regcache, int regnum,
1352 struct type *type, const gdb_byte *in)
1353{
1354 int len = TYPE_LENGTH (type);
1355
1356 if (spu_scalar_value_p (type))
1357 {
1358 int preferred_slot = len < 4 ? 4 - len : 0;
1359 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1360 }
1361 else
1362 {
1363 while (len >= 16)
1364 {
1365 regcache_cooked_write (regcache, regnum++, in);
1366 in += 16;
1367 len -= 16;
1368 }
1369
1370 if (len > 0)
1371 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1372 }
1373}
1374
1375static void
1376spu_regcache_to_value (struct regcache *regcache, int regnum,
1377 struct type *type, gdb_byte *out)
1378{
1379 int len = TYPE_LENGTH (type);
1380
1381 if (spu_scalar_value_p (type))
1382 {
1383 int preferred_slot = len < 4 ? 4 - len : 0;
1384 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1385 }
1386 else
1387 {
1388 while (len >= 16)
1389 {
1390 regcache_cooked_read (regcache, regnum++, out);
1391 out += 16;
1392 len -= 16;
1393 }
1394
1395 if (len > 0)
1396 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1397 }
1398}
1399
1400static CORE_ADDR
1401spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1402 struct regcache *regcache, CORE_ADDR bp_addr,
1403 int nargs, struct value **args, CORE_ADDR sp,
1404 int struct_return, CORE_ADDR struct_addr)
1405{
e17a4113 1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1407 CORE_ADDR sp_delta;
771b4502
UW
1408 int i;
1409 int regnum = SPU_ARG1_REGNUM;
1410 int stack_arg = -1;
1411 gdb_byte buf[16];
1412
1413 /* Set the return address. */
1414 memset (buf, 0, sizeof buf);
85e747d2 1415 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1416 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1417
1418 /* If STRUCT_RETURN is true, then the struct return address (in
1419 STRUCT_ADDR) will consume the first argument-passing register.
1420 Both adjust the register count and store that value. */
1421 if (struct_return)
1422 {
1423 memset (buf, 0, sizeof buf);
85e747d2 1424 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1425 regcache_cooked_write (regcache, regnum++, buf);
1426 }
1427
1428 /* Fill in argument registers. */
1429 for (i = 0; i < nargs; i++)
1430 {
1431 struct value *arg = args[i];
1432 struct type *type = check_typedef (value_type (arg));
1433 const gdb_byte *contents = value_contents (arg);
354ecfd5 1434 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
771b4502
UW
1435
1436 /* If the argument doesn't wholly fit into registers, it and
1437 all subsequent arguments go to the stack. */
1438 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1439 {
1440 stack_arg = i;
1441 break;
1442 }
1443
1444 spu_value_to_regcache (regcache, regnum, type, contents);
1445 regnum += n_regs;
1446 }
1447
1448 /* Overflow arguments go to the stack. */
1449 if (stack_arg != -1)
1450 {
1451 CORE_ADDR ap;
1452
1453 /* Allocate all required stack size. */
1454 for (i = stack_arg; i < nargs; i++)
1455 {
1456 struct type *type = check_typedef (value_type (args[i]));
1457 sp -= align_up (TYPE_LENGTH (type), 16);
1458 }
1459
1460 /* Fill in stack arguments. */
1461 ap = sp;
1462 for (i = stack_arg; i < nargs; i++)
1463 {
1464 struct value *arg = args[i];
1465 struct type *type = check_typedef (value_type (arg));
1466 int len = TYPE_LENGTH (type);
1467 int preferred_slot;
1468
1469 if (spu_scalar_value_p (type))
1470 preferred_slot = len < 4 ? 4 - len : 0;
1471 else
1472 preferred_slot = 0;
1473
1474 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1475 ap += align_up (TYPE_LENGTH (type), 16);
1476 }
1477 }
1478
1479 /* Allocate stack frame header. */
1480 sp -= 32;
1481
ee82e879
UW
1482 /* Store stack back chain. */
1483 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1484 target_write_memory (sp, buf, 16);
1485
9ff3afda 1486 /* Finally, update all slots of the SP register. */
e17a4113 1487 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1488 for (i = 0; i < 4; i++)
1489 {
e17a4113
UW
1490 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1491 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1492 }
1493 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1494
1495 return sp;
1496}
1497
1498static struct frame_id
8d998b8f 1499spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1500{
85e747d2 1501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1502 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1503 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1504 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1505}
1506
1507/* Function return value access. */
1508
1509static enum return_value_convention
6a3a010b 1510spu_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1511 struct type *type, struct regcache *regcache,
1512 gdb_byte *out, const gdb_byte *in)
771b4502 1513{
6a3a010b 1514 struct type *func_type = function ? value_type (function) : NULL;
771b4502 1515 enum return_value_convention rvc;
54fcddd0
UW
1516 int opencl_vector = 0;
1517
598cfb71
UW
1518 if (func_type)
1519 {
1520 func_type = check_typedef (func_type);
1521
1522 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1523 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1524
1525 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1526 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1527 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 && TYPE_VECTOR (type))
1529 opencl_vector = 1;
1530 }
771b4502
UW
1531
1532 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1533 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1534 else
1535 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1536
1537 if (in)
1538 {
1539 switch (rvc)
1540 {
1541 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1542 if (opencl_vector && TYPE_LENGTH (type) == 2)
1543 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1544 else
1545 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1546 break;
1547
1548 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1549 error (_("Cannot set function return value."));
771b4502
UW
1550 break;
1551 }
1552 }
1553 else if (out)
1554 {
1555 switch (rvc)
1556 {
1557 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1558 if (opencl_vector && TYPE_LENGTH (type) == 2)
1559 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1560 else
1561 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1562 break;
1563
1564 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1565 error (_("Function return value unknown."));
771b4502
UW
1566 break;
1567 }
1568 }
1569
1570 return rvc;
1571}
1572
1573
1574/* Breakpoints. */
04180708 1575constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
771b4502 1576
04180708 1577typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
771b4502 1578
d03285ec
UW
1579static int
1580spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1581 struct bp_target_info *bp_tgt)
1582{
1583 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1584 that in a combined application, we have some breakpoints inserted in SPU
1585 code, and now the application forks (on the PPU side). GDB common code
1586 will assume that the fork system call copied all breakpoints into the new
1587 process' address space, and that all those copies now need to be removed
1588 (see breakpoint.c:detach_breakpoints).
1589
1590 While this is certainly true for PPU side breakpoints, it is not true
1591 for SPU side breakpoints. fork will clone the SPU context file
1592 descriptors, so that all the existing SPU contexts are in accessible
1593 in the new process. However, the contents of the SPU contexts themselves
1594 are *not* cloned. Therefore the effect of detach_breakpoints is to
1595 remove SPU breakpoints from the *original* SPU context's local store
1596 -- this is not the correct behaviour.
1597
1598 The workaround is to check whether the PID we are asked to remove this
1599 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1600 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1601 true in the context of detach_breakpoints. If so, we simply do nothing.
1602 [ Note that for the fork child process, it does not matter if breakpoints
1603 remain inserted, because those SPU contexts are not runnable anyway --
1604 the Linux kernel allows only the original process to invoke spu_run. */
1605
1606 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1607 return 0;
1608
1609 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1610}
1611
771b4502
UW
1612
1613/* Software single-stepping support. */
1614
a0ff9e1a 1615static std::vector<CORE_ADDR>
f5ea389a 1616spu_software_single_step (struct regcache *regcache)
771b4502 1617{
b2260160 1618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 1619 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1620 CORE_ADDR pc, next_pc;
1621 unsigned int insn;
1622 int offset, reg;
1623 gdb_byte buf[4];
13def385 1624 ULONGEST lslr;
a0ff9e1a 1625 std::vector<CORE_ADDR> next_pcs;
771b4502 1626
b2260160 1627 pc = regcache_read_pc (regcache);
771b4502 1628
e0cd558a 1629 if (target_read_memory (pc, buf, 4))
941319d1
YQ
1630 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1631 paddress (gdbarch, pc));
1632
e17a4113 1633 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1634
13def385 1635 /* Get local store limit. */
b2260160 1636 lslr = regcache_raw_get_unsigned (regcache, SPU_LSLR_REGNUM);
13def385
UW
1637 if (!lslr)
1638 lslr = (ULONGEST) -1;
1639
e0cd558a
UW
1640 /* Next sequential instruction is at PC + 4, except if the current
1641 instruction is a PPE-assisted call, in which case it is at PC + 8.
1642 Wrap around LS limit to be on the safe side. */
1643 if ((insn & 0xffffff00) == 0x00002100)
13def385 1644 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1645 else
13def385 1646 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1647
a0ff9e1a 1648 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1649
e0cd558a
UW
1650 if (is_branch (insn, &offset, &reg))
1651 {
1652 CORE_ADDR target = offset;
771b4502 1653
e0cd558a 1654 if (reg == SPU_PC_REGNUM)
85e747d2 1655 target += SPUADDR_ADDR (pc);
e0cd558a 1656 else if (reg != -1)
b2260160 1657 target += regcache_raw_get_unsigned (regcache, reg) & -4;
e0cd558a 1658
13def385 1659 target = target & lslr;
e0cd558a 1660 if (target != next_pc)
a0ff9e1a 1661 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1662 }
e6590a1b 1663
93f9a11f 1664 return next_pcs;
771b4502
UW
1665}
1666
6e3f70d7
UW
1667
1668/* Longjmp support. */
1669
1670static int
1671spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1672{
e17a4113 1673 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1674 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1676 gdb_byte buf[4];
1677 CORE_ADDR jb_addr;
8dccd430 1678 int optim, unavail;
6e3f70d7
UW
1679
1680 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1681 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1682 &optim, &unavail))
1683 return 0;
1684
e17a4113 1685 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1686 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1687 return 0;
1688
e17a4113 1689 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1690 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1691 return 1;
1692}
1693
1694
85e747d2
UW
1695/* Disassembler. */
1696
e47ad6c0 1697struct spu_dis_asm_info : disassemble_info
85e747d2 1698{
85e747d2
UW
1699 int id;
1700};
1701
1702static void
1703spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1704{
e47ad6c0
YQ
1705 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1706 gdb_disassembler *di
1707 = static_cast<gdb_disassembler *>(info->application_data);
1708
1709 print_address (di->arch (), SPUADDR (data->id, addr),
19ba03f4 1710 (struct ui_file *) info->stream);
85e747d2
UW
1711}
1712
1713static int
1714gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1715{
c378eb4e
MS
1716 /* The opcodes disassembler does 18-bit address arithmetic. Make
1717 sure the SPU ID encoded in the high bits is added back when we
1718 call print_address. */
e47ad6c0 1719 struct spu_dis_asm_info spu_info;
85e747d2 1720
e47ad6c0
YQ
1721 memcpy (&spu_info, info, sizeof (*info));
1722 spu_info.id = SPUADDR_SPU (memaddr);
85e747d2
UW
1723 spu_info.print_address_func = spu_dis_asm_print_address;
1724 return print_insn_spu (memaddr, &spu_info);
1725}
1726
1727
dcf52cd8
UW
1728/* Target overlays for the SPU overlay manager.
1729
1730 See the documentation of simple_overlay_update for how the
1731 interface is supposed to work.
1732
1733 Data structures used by the overlay manager:
1734
1735 struct ovly_table
1736 {
1737 u32 vma;
1738 u32 size;
1739 u32 pos;
1740 u32 buf;
1741 } _ovly_table[]; -- one entry per overlay section
1742
1743 struct ovly_buf_table
1744 {
1745 u32 mapped;
1746 } _ovly_buf_table[]; -- one entry per overlay buffer
1747
1748 _ovly_table should never change.
1749
c378eb4e
MS
1750 Both tables are aligned to a 16-byte boundary, the symbols
1751 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1752 size set to the size of the respective array. buf in _ovly_table is
1753 an index into _ovly_buf_table.
dcf52cd8 1754
c378eb4e 1755 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1756 from one to reference the first entry in their respective tables. */
1757
1758/* Using the per-objfile private data mechanism, we store for each
1759 objfile an array of "struct spu_overlay_table" structures, one
1760 for each obj_section of the objfile. This structure holds two
1761 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1762 is *not* an overlay section. If it is non-zero, it represents
1763 a target address. The overlay section is mapped iff the target
1764 integer at this location equals MAPPED_VAL. */
1765
1766static const struct objfile_data *spu_overlay_data;
1767
1768struct spu_overlay_table
1769 {
1770 CORE_ADDR mapped_ptr;
1771 CORE_ADDR mapped_val;
1772 };
1773
1774/* Retrieve the overlay table for OBJFILE. If not already cached, read
1775 the _ovly_table data structure from the target and initialize the
1776 spu_overlay_table data structure from it. */
1777static struct spu_overlay_table *
1778spu_get_overlay_table (struct objfile *objfile)
1779{
e17a4113
UW
1780 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1781 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3b7344d5 1782 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
dcf52cd8
UW
1783 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1784 unsigned ovly_table_size, ovly_buf_table_size;
1785 struct spu_overlay_table *tbl;
1786 struct obj_section *osect;
948f8e3d 1787 gdb_byte *ovly_table;
dcf52cd8
UW
1788 int i;
1789
19ba03f4 1790 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
dcf52cd8
UW
1791 if (tbl)
1792 return tbl;
1793
1794 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
3b7344d5 1795 if (!ovly_table_msym.minsym)
dcf52cd8
UW
1796 return NULL;
1797
c378eb4e
MS
1798 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1799 NULL, objfile);
3b7344d5 1800 if (!ovly_buf_table_msym.minsym)
dcf52cd8
UW
1801 return NULL;
1802
77e371c0 1803 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3b7344d5 1804 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
dcf52cd8 1805
77e371c0 1806 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
3b7344d5 1807 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
dcf52cd8 1808
224c3ddb 1809 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
dcf52cd8
UW
1810 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1811
1812 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1813 objfile->sections_end - objfile->sections,
1814 struct spu_overlay_table);
1815
1816 for (i = 0; i < ovly_table_size / 16; i++)
1817 {
e17a4113
UW
1818 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1819 4, byte_order);
1820 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1821 4, byte_order);
1822 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1823 4, byte_order);
1824 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1825 4, byte_order);
dcf52cd8
UW
1826
1827 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1828 continue;
1829
1830 ALL_OBJFILE_OSECTIONS (objfile, osect)
1831 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1832 && pos == osect->the_bfd_section->filepos)
1833 {
1834 int ndx = osect - objfile->sections;
1835 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1836 tbl[ndx].mapped_val = i + 1;
1837 break;
1838 }
1839 }
1840
1841 xfree (ovly_table);
1842 set_objfile_data (objfile, spu_overlay_data, tbl);
1843 return tbl;
1844}
1845
1846/* Read _ovly_buf_table entry from the target to dermine whether
1847 OSECT is currently mapped, and update the mapped state. */
1848static void
1849spu_overlay_update_osect (struct obj_section *osect)
1850{
e17a4113
UW
1851 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1852 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1853 struct spu_overlay_table *ovly_table;
85e747d2 1854 CORE_ADDR id, val;
dcf52cd8
UW
1855
1856 ovly_table = spu_get_overlay_table (osect->objfile);
1857 if (!ovly_table)
1858 return;
1859
1860 ovly_table += osect - osect->objfile->sections;
1861 if (ovly_table->mapped_ptr == 0)
1862 return;
1863
85e747d2
UW
1864 id = SPUADDR_SPU (obj_section_addr (osect));
1865 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1866 4, byte_order);
dcf52cd8
UW
1867 osect->ovly_mapped = (val == ovly_table->mapped_val);
1868}
1869
1870/* If OSECT is NULL, then update all sections' mapped state.
1871 If OSECT is non-NULL, then update only OSECT's mapped state. */
1872static void
1873spu_overlay_update (struct obj_section *osect)
1874{
1875 /* Just one section. */
1876 if (osect)
1877 spu_overlay_update_osect (osect);
1878
1879 /* All sections. */
1880 else
1881 {
1882 struct objfile *objfile;
1883
1884 ALL_OBJSECTIONS (objfile, osect)
714835d5 1885 if (section_is_overlay (osect))
dcf52cd8
UW
1886 spu_overlay_update_osect (osect);
1887 }
1888}
1889
1890/* Whenever a new objfile is loaded, read the target's _ovly_table.
1891 If there is one, go through all sections and make sure for non-
1892 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1893 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1894static void
1895spu_overlay_new_objfile (struct objfile *objfile)
1896{
1897 struct spu_overlay_table *ovly_table;
1898 struct obj_section *osect;
1899
1900 /* If we've already touched this file, do nothing. */
1901 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1902 return;
1903
0391f248
UW
1904 /* Consider only SPU objfiles. */
1905 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1906 return;
1907
dcf52cd8
UW
1908 /* Check if this objfile has overlays. */
1909 ovly_table = spu_get_overlay_table (objfile);
1910 if (!ovly_table)
1911 return;
1912
1913 /* Now go and fiddle with all the LMAs. */
1914 ALL_OBJFILE_OSECTIONS (objfile, osect)
1915 {
1916 bfd *obfd = objfile->obfd;
1917 asection *bsect = osect->the_bfd_section;
1918 int ndx = osect - objfile->sections;
1919
1920 if (ovly_table[ndx].mapped_ptr == 0)
1921 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1922 else
d2ed6730 1923 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1924 }
1925}
1926
771b4502 1927
3285f3fe
UW
1928/* Insert temporary breakpoint on "main" function of newly loaded
1929 SPE context OBJFILE. */
1930static void
1931spu_catch_start (struct objfile *objfile)
1932{
3b7344d5 1933 struct bound_minimal_symbol minsym;
43f3e411 1934 struct compunit_symtab *cust;
3285f3fe 1935 CORE_ADDR pc;
3285f3fe
UW
1936
1937 /* Do this only if requested by "set spu stop-on-load on". */
1938 if (!spu_stop_on_load_p)
1939 return;
1940
1941 /* Consider only SPU objfiles. */
1942 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1943 return;
1944
1945 /* The main objfile is handled differently. */
1946 if (objfile == symfile_objfile)
1947 return;
1948
1949 /* There can be multiple symbols named "main". Search for the
1950 "main" in *this* objfile. */
1951 minsym = lookup_minimal_symbol ("main", NULL, objfile);
3b7344d5 1952 if (!minsym.minsym)
3285f3fe
UW
1953 return;
1954
1955 /* If we have debugging information, try to use it -- this
1956 will allow us to properly skip the prologue. */
77e371c0 1957 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
43f3e411
DE
1958 cust
1959 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1960 minsym.minsym));
1961 if (cust != NULL)
3285f3fe 1962 {
43f3e411 1963 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
3285f3fe
UW
1964 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1965 struct symbol *sym;
1966 struct symtab_and_line sal;
1967
16b2eaa1 1968 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
3285f3fe
UW
1969 if (sym)
1970 {
1971 fixup_symbol_section (sym, objfile);
1972 sal = find_function_start_sal (sym, 1);
1973 pc = sal.pc;
1974 }
1975 }
1976
1977 /* Use a numerical address for the set_breakpoint command to avoid having
1978 the breakpoint re-set incorrectly. */
ffc2605c
TT
1979 event_location_up location = new_address_location (pc, NULL, 0);
1980 create_breakpoint (get_objfile_arch (objfile), location.get (),
d8c09fb5 1981 NULL /* cond_string */, -1 /* thread */,
6a609e58 1982 NULL /* extra_string */,
d8c09fb5 1983 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 1984 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
1985 0 /* ignore_count */,
1986 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f 1987 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
44f238bb 1988 1 /* enabled */, 0 /* internal */, 0);
3285f3fe
UW
1989}
1990
1991
ff1a52c6
UW
1992/* Look up OBJFILE loaded into FRAME's SPU context. */
1993static struct objfile *
1994spu_objfile_from_frame (struct frame_info *frame)
1995{
1996 struct gdbarch *gdbarch = get_frame_arch (frame);
1997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1998 struct objfile *obj;
1999
2000 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2001 return NULL;
2002
2003 ALL_OBJFILES (obj)
2004 {
2005 if (obj->sections != obj->sections_end
2006 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2007 return obj;
2008 }
2009
2010 return NULL;
2011}
2012
2013/* Flush cache for ea pointer access if available. */
2014static void
2015flush_ea_cache (void)
2016{
3b7344d5 2017 struct bound_minimal_symbol msymbol;
ff1a52c6
UW
2018 struct objfile *obj;
2019
2020 if (!has_stack_frames ())
2021 return;
2022
2023 obj = spu_objfile_from_frame (get_current_frame ());
2024 if (obj == NULL)
2025 return;
2026
2027 /* Lookup inferior function __cache_flush. */
2028 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
3b7344d5 2029 if (msymbol.minsym != NULL)
ff1a52c6
UW
2030 {
2031 struct type *type;
2032 CORE_ADDR addr;
2033
2034 type = objfile_type (obj)->builtin_void;
2035 type = lookup_function_type (type);
2036 type = lookup_pointer_type (type);
77e371c0 2037 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
ff1a52c6
UW
2038
2039 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2040 }
2041}
2042
2043/* This handler is called when the inferior has stopped. If it is stopped in
2044 SPU architecture then flush the ea cache if used. */
2045static void
2046spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2047{
2048 if (!spu_auto_flush_cache_p)
2049 return;
2050
2051 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2052 re-entering this function when __cache_flush stops. */
2053 spu_auto_flush_cache_p = 0;
2054 flush_ea_cache ();
2055 spu_auto_flush_cache_p = 1;
2056}
2057
2058
23d964e7
UW
2059/* "info spu" commands. */
2060
2061static void
2062info_spu_event_command (char *args, int from_tty)
2063{
2064 struct frame_info *frame = get_selected_frame (NULL);
2065 ULONGEST event_status = 0;
2066 ULONGEST event_mask = 0;
2067 struct cleanup *chain;
2068 gdb_byte buf[100];
2069 char annex[32];
2070 LONGEST len;
22e048c9 2071 int id;
23d964e7 2072
0391f248
UW
2073 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2074 error (_("\"info spu\" is only supported on the SPU architecture."));
2075
23d964e7
UW
2076 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2077
2078 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2079 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2080 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2081 if (len <= 0)
2082 error (_("Could not read event_status."));
9971ac47 2083 buf[len] = '\0';
001f13d8 2084 event_status = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2085
2086 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2087 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2088 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2089 if (len <= 0)
2090 error (_("Could not read event_mask."));
9971ac47 2091 buf[len] = '\0';
001f13d8 2092 event_mask = strtoulst ((char *) buf, NULL, 16);
23d964e7 2093
31a0ae49 2094 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
23d964e7 2095
112e8700 2096 if (current_uiout->is_mi_like_p ())
23d964e7 2097 {
112e8700
SM
2098 current_uiout->field_fmt ("event_status",
2099 "0x%s", phex_nz (event_status, 4));
2100 current_uiout->field_fmt ("event_mask",
2101 "0x%s", phex_nz (event_mask, 4));
23d964e7
UW
2102 }
2103 else
2104 {
2105 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2106 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2107 }
2108
2109 do_cleanups (chain);
2110}
2111
2112static void
2113info_spu_signal_command (char *args, int from_tty)
2114{
2115 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2116 struct gdbarch *gdbarch = get_frame_arch (frame);
2117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2118 ULONGEST signal1 = 0;
2119 ULONGEST signal1_type = 0;
2120 int signal1_pending = 0;
2121 ULONGEST signal2 = 0;
2122 ULONGEST signal2_type = 0;
2123 int signal2_pending = 0;
2124 struct cleanup *chain;
2125 char annex[32];
2126 gdb_byte buf[100];
2127 LONGEST len;
22e048c9 2128 int id;
23d964e7 2129
e17a4113 2130 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2131 error (_("\"info spu\" is only supported on the SPU architecture."));
2132
23d964e7
UW
2133 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2134
2135 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2136 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2137 if (len < 0)
2138 error (_("Could not read signal1."));
2139 else if (len == 4)
2140 {
e17a4113 2141 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2142 signal1_pending = 1;
2143 }
2144
2145 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2146 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2147 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2148 if (len <= 0)
2149 error (_("Could not read signal1_type."));
9971ac47 2150 buf[len] = '\0';
001f13d8 2151 signal1_type = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2152
2153 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2154 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2155 if (len < 0)
2156 error (_("Could not read signal2."));
2157 else if (len == 4)
2158 {
e17a4113 2159 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2160 signal2_pending = 1;
2161 }
2162
2163 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2164 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2165 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2166 if (len <= 0)
2167 error (_("Could not read signal2_type."));
9971ac47 2168 buf[len] = '\0';
001f13d8 2169 signal2_type = strtoulst ((char *) buf, NULL, 16);
23d964e7 2170
31a0ae49 2171 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
23d964e7 2172
112e8700 2173 if (current_uiout->is_mi_like_p ())
23d964e7 2174 {
112e8700
SM
2175 current_uiout->field_int ("signal1_pending", signal1_pending);
2176 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2177 current_uiout->field_int ("signal1_type", signal1_type);
2178 current_uiout->field_int ("signal2_pending", signal2_pending);
2179 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2180 current_uiout->field_int ("signal2_type", signal2_type);
23d964e7
UW
2181 }
2182 else
2183 {
2184 if (signal1_pending)
2185 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2186 else
2187 printf_filtered (_("Signal 1 not pending "));
2188
2189 if (signal1_type)
23d964e7 2190 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2191 else
2192 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2193
2194 if (signal2_pending)
2195 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2196 else
2197 printf_filtered (_("Signal 2 not pending "));
2198
2199 if (signal2_type)
23d964e7 2200 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2201 else
2202 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2203 }
2204
2205 do_cleanups (chain);
2206}
2207
2208static void
e17a4113 2209info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2210 const char *field, const char *msg)
2211{
2212 struct cleanup *chain;
2213 int i;
2214
2215 if (nr <= 0)
2216 return;
2217
31a0ae49 2218 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
23d964e7 2219
112e8700
SM
2220 current_uiout->table_header (32, ui_left, field, msg);
2221 current_uiout->table_body ();
23d964e7
UW
2222
2223 for (i = 0; i < nr; i++)
2224 {
2225 struct cleanup *val_chain;
2226 ULONGEST val;
31a0ae49 2227 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
e17a4113 2228 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
112e8700 2229 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
23d964e7
UW
2230 do_cleanups (val_chain);
2231
112e8700 2232 if (!current_uiout->is_mi_like_p ())
23d964e7
UW
2233 printf_filtered ("\n");
2234 }
2235
2236 do_cleanups (chain);
2237}
2238
2239static void
2240info_spu_mailbox_command (char *args, int from_tty)
2241{
2242 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2243 struct gdbarch *gdbarch = get_frame_arch (frame);
2244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2245 struct cleanup *chain;
2246 char annex[32];
2247 gdb_byte buf[1024];
2248 LONGEST len;
22e048c9 2249 int id;
23d964e7 2250
e17a4113 2251 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2252 error (_("\"info spu\" is only supported on the SPU architecture."));
2253
23d964e7
UW
2254 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2255
31a0ae49 2256 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2257
2258 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2259 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2260 buf, 0, sizeof buf);
2261 if (len < 0)
2262 error (_("Could not read mbox_info."));
2263
e17a4113
UW
2264 info_spu_mailbox_list (buf, len / 4, byte_order,
2265 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2266
2267 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2268 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2269 buf, 0, sizeof buf);
2270 if (len < 0)
2271 error (_("Could not read ibox_info."));
2272
e17a4113
UW
2273 info_spu_mailbox_list (buf, len / 4, byte_order,
2274 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2275
2276 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2277 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2278 buf, 0, sizeof buf);
2279 if (len < 0)
2280 error (_("Could not read wbox_info."));
2281
e17a4113
UW
2282 info_spu_mailbox_list (buf, len / 4, byte_order,
2283 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2284
2285 do_cleanups (chain);
2286}
2287
2288static ULONGEST
2289spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2290{
2291 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2292 return (word >> (63 - last)) & mask;
2293}
2294
2295static void
e17a4113 2296info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7 2297{
a121b7c1 2298 static const char *spu_mfc_opcode[256] =
23d964e7
UW
2299 {
2300 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2301 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2302 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2303 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2304 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2305 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2306 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2307 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2308 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2309 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2310 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2311 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2312 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2313 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2314 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2315 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2317 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2318 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2319 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2320 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2321 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2322 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2323 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2326 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2327 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2328 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2329 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2330 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 };
2333
8d749320 2334 int *seq = XALLOCAVEC (int, nr);
12ab8a60 2335 int done = 0;
23d964e7 2336 struct cleanup *chain;
12ab8a60
UW
2337 int i, j;
2338
2339
2340 /* Determine sequence in which to display (valid) entries. */
2341 for (i = 0; i < nr; i++)
2342 {
2343 /* Search for the first valid entry all of whose
2344 dependencies are met. */
2345 for (j = 0; j < nr; j++)
2346 {
2347 ULONGEST mfc_cq_dw3;
2348 ULONGEST dependencies;
2349
2350 if (done & (1 << (nr - 1 - j)))
2351 continue;
2352
e17a4113
UW
2353 mfc_cq_dw3
2354 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2355 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2356 continue;
2357
2358 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2359 if ((dependencies & done) != dependencies)
2360 continue;
2361
2362 seq[i] = j;
2363 done |= 1 << (nr - 1 - j);
2364 break;
2365 }
2366
2367 if (j == nr)
2368 break;
2369 }
2370
2371 nr = i;
2372
23d964e7 2373
31a0ae49
JK
2374 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2375 "dma_cmd");
23d964e7 2376
112e8700
SM
2377 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2378 current_uiout->table_header (3, ui_left, "tag", "Tag");
2379 current_uiout->table_header (3, ui_left, "tid", "TId");
2380 current_uiout->table_header (3, ui_left, "rid", "RId");
2381 current_uiout->table_header (18, ui_left, "ea", "EA");
2382 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2383 current_uiout->table_header (7, ui_left, "size", "Size");
2384 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2385 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2386 current_uiout->table_header (1, ui_left, "error_p", "E");
23d964e7 2387
112e8700 2388 current_uiout->table_body ();
23d964e7
UW
2389
2390 for (i = 0; i < nr; i++)
2391 {
2392 struct cleanup *cmd_chain;
2393 ULONGEST mfc_cq_dw0;
2394 ULONGEST mfc_cq_dw1;
2395 ULONGEST mfc_cq_dw2;
23d964e7 2396 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
22e048c9 2397 int list_lsa, list_size, mfc_lsa, mfc_size;
23d964e7 2398 ULONGEST mfc_ea;
870f88f7 2399 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
23d964e7
UW
2400
2401 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2402 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2403
e17a4113
UW
2404 mfc_cq_dw0
2405 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2406 mfc_cq_dw1
2407 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2408 mfc_cq_dw2
2409 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2410
2411 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2412 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2413 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2414 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2415 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2416 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2417 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2418
2419 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2420 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2421
2422 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2423 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
23d964e7
UW
2424 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2425 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2426 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2427
31a0ae49 2428 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
23d964e7
UW
2429
2430 if (spu_mfc_opcode[mfc_cmd_opcode])
112e8700 2431 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
23d964e7 2432 else
112e8700 2433 current_uiout->field_int ("opcode", mfc_cmd_opcode);
23d964e7 2434
112e8700
SM
2435 current_uiout->field_int ("tag", mfc_cmd_tag);
2436 current_uiout->field_int ("tid", tclass_id);
2437 current_uiout->field_int ("rid", rclass_id);
23d964e7
UW
2438
2439 if (ea_valid_p)
112e8700 2440 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
23d964e7 2441 else
112e8700 2442 current_uiout->field_skip ("ea");
23d964e7 2443
112e8700 2444 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
23d964e7 2445 if (qw_valid_p)
112e8700 2446 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
23d964e7 2447 else
112e8700 2448 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
23d964e7
UW
2449
2450 if (list_valid_p)
2451 {
112e8700
SM
2452 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2453 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
23d964e7
UW
2454 }
2455 else
2456 {
112e8700
SM
2457 current_uiout->field_skip ("lstaddr");
2458 current_uiout->field_skip ("lstsize");
23d964e7
UW
2459 }
2460
2461 if (cmd_error_p)
112e8700 2462 current_uiout->field_string ("error_p", "*");
23d964e7 2463 else
112e8700 2464 current_uiout->field_skip ("error_p");
23d964e7
UW
2465
2466 do_cleanups (cmd_chain);
2467
112e8700 2468 if (!current_uiout->is_mi_like_p ())
23d964e7
UW
2469 printf_filtered ("\n");
2470 }
2471
2472 do_cleanups (chain);
2473}
2474
2475static void
2476info_spu_dma_command (char *args, int from_tty)
2477{
2478 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2479 struct gdbarch *gdbarch = get_frame_arch (frame);
2480 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2481 ULONGEST dma_info_type;
2482 ULONGEST dma_info_mask;
2483 ULONGEST dma_info_status;
2484 ULONGEST dma_info_stall_and_notify;
2485 ULONGEST dma_info_atomic_command_status;
2486 struct cleanup *chain;
2487 char annex[32];
2488 gdb_byte buf[1024];
2489 LONGEST len;
22e048c9 2490 int id;
23d964e7 2491
0391f248
UW
2492 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2493 error (_("\"info spu\" is only supported on the SPU architecture."));
2494
23d964e7
UW
2495 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2496
2497 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2498 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2499 buf, 0, 40 + 16 * 32);
2500 if (len <= 0)
2501 error (_("Could not read dma_info."));
2502
e17a4113
UW
2503 dma_info_type
2504 = extract_unsigned_integer (buf, 8, byte_order);
2505 dma_info_mask
2506 = extract_unsigned_integer (buf + 8, 8, byte_order);
2507 dma_info_status
2508 = extract_unsigned_integer (buf + 16, 8, byte_order);
2509 dma_info_stall_and_notify
2510 = extract_unsigned_integer (buf + 24, 8, byte_order);
2511 dma_info_atomic_command_status
2512 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2513
31a0ae49 2514 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
23d964e7 2515
112e8700 2516 if (current_uiout->is_mi_like_p ())
23d964e7 2517 {
112e8700
SM
2518 current_uiout->field_fmt ("dma_info_type", "0x%s",
2519 phex_nz (dma_info_type, 4));
2520 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2521 phex_nz (dma_info_mask, 4));
2522 current_uiout->field_fmt ("dma_info_status", "0x%s",
2523 phex_nz (dma_info_status, 4));
2524 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2525 phex_nz (dma_info_stall_and_notify, 4));
2526 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2527 phex_nz (dma_info_atomic_command_status, 4));
23d964e7
UW
2528 }
2529 else
2530 {
8fbde58b 2531 const char *query_msg = _("no query pending");
23d964e7 2532
8fbde58b
UW
2533 if (dma_info_type & 4)
2534 switch (dma_info_type & 3)
2535 {
2536 case 1: query_msg = _("'any' query pending"); break;
2537 case 2: query_msg = _("'all' query pending"); break;
2538 default: query_msg = _("undefined query type"); break;
2539 }
23d964e7
UW
2540
2541 printf_filtered (_("Tag-Group Status 0x%s\n"),
2542 phex (dma_info_status, 4));
2543 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2544 phex (dma_info_mask, 4), query_msg);
2545 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2546 phex (dma_info_stall_and_notify, 4));
2547 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2548 phex (dma_info_atomic_command_status, 4));
2549 printf_filtered ("\n");
2550 }
2551
e17a4113 2552 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2553 do_cleanups (chain);
2554}
2555
2556static void
2557info_spu_proxydma_command (char *args, int from_tty)
2558{
2559 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2560 struct gdbarch *gdbarch = get_frame_arch (frame);
2561 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2562 ULONGEST dma_info_type;
2563 ULONGEST dma_info_mask;
2564 ULONGEST dma_info_status;
2565 struct cleanup *chain;
2566 char annex[32];
2567 gdb_byte buf[1024];
2568 LONGEST len;
22e048c9 2569 int id;
23d964e7 2570
e17a4113 2571 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2572 error (_("\"info spu\" is only supported on the SPU architecture."));
2573
23d964e7
UW
2574 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2575
2576 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2577 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2578 buf, 0, 24 + 8 * 32);
2579 if (len <= 0)
2580 error (_("Could not read proxydma_info."));
2581
e17a4113
UW
2582 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2583 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2584 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2585
31a0ae49
JK
2586 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2587 "SPUInfoProxyDMA");
23d964e7 2588
112e8700 2589 if (current_uiout->is_mi_like_p ())
23d964e7 2590 {
112e8700
SM
2591 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2592 phex_nz (dma_info_type, 4));
2593 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2594 phex_nz (dma_info_mask, 4));
2595 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2596 phex_nz (dma_info_status, 4));
23d964e7
UW
2597 }
2598 else
2599 {
2600 const char *query_msg;
2601
8fbde58b 2602 switch (dma_info_type & 3)
23d964e7
UW
2603 {
2604 case 0: query_msg = _("no query pending"); break;
2605 case 1: query_msg = _("'any' query pending"); break;
2606 case 2: query_msg = _("'all' query pending"); break;
2607 default: query_msg = _("undefined query type"); break;
2608 }
2609
2610 printf_filtered (_("Tag-Group Status 0x%s\n"),
2611 phex (dma_info_status, 4));
2612 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2613 phex (dma_info_mask, 4), query_msg);
2614 printf_filtered ("\n");
2615 }
2616
e17a4113 2617 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2618 do_cleanups (chain);
2619}
2620
2621static void
2622info_spu_command (char *args, int from_tty)
2623{
c378eb4e
MS
2624 printf_unfiltered (_("\"info spu\" must be followed by "
2625 "the name of an SPU facility.\n"));
635c7e8a 2626 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
23d964e7
UW
2627}
2628
2629
3285f3fe
UW
2630/* Root of all "set spu "/"show spu " commands. */
2631
2632static void
2633show_spu_command (char *args, int from_tty)
2634{
2635 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2636}
2637
2638static void
2639set_spu_command (char *args, int from_tty)
2640{
2641 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2642}
2643
2644static void
2645show_spu_stop_on_load (struct ui_file *file, int from_tty,
2646 struct cmd_list_element *c, const char *value)
2647{
2648 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2649 value);
2650}
2651
ff1a52c6
UW
2652static void
2653show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2654 struct cmd_list_element *c, const char *value)
2655{
2656 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2657 value);
2658}
2659
3285f3fe 2660
771b4502
UW
2661/* Set up gdbarch struct. */
2662
2663static struct gdbarch *
2664spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2665{
2666 struct gdbarch *gdbarch;
794ac428 2667 struct gdbarch_tdep *tdep;
85e747d2
UW
2668 int id = -1;
2669
2670 /* Which spufs ID was requested as address space? */
2671 if (info.tdep_info)
2672 id = *(int *)info.tdep_info;
2673 /* For objfile architectures of SPU solibs, decode the ID from the name.
2674 This assumes the filename convention employed by solib-spu.c. */
2675 else if (info.abfd)
2676 {
53e78085 2677 const char *name = strrchr (info.abfd->filename, '@');
85e747d2
UW
2678 if (name)
2679 sscanf (name, "@0x%*x <%d>", &id);
2680 }
771b4502 2681
85e747d2
UW
2682 /* Find a candidate among extant architectures. */
2683 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2684 arches != NULL;
2685 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2686 {
2687 tdep = gdbarch_tdep (arches->gdbarch);
2688 if (tdep && tdep->id == id)
2689 return arches->gdbarch;
2690 }
771b4502 2691
85e747d2 2692 /* None found, so create a new architecture. */
fc270c35 2693 tdep = XCNEW (struct gdbarch_tdep);
85e747d2 2694 tdep->id = id;
794ac428 2695 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2696
2697 /* Disassembler. */
85e747d2 2698 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2699
2700 /* Registers. */
2701 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2702 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2703 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2704 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2705 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2706 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2707 set_gdbarch_register_name (gdbarch, spu_register_name);
2708 set_gdbarch_register_type (gdbarch, spu_register_type);
2709 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2710 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2711 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502 2712 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
7ce16bd4
UW
2713 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2714 set_gdbarch_ax_pseudo_register_collect
2715 (gdbarch, spu_ax_pseudo_register_collect);
2716 set_gdbarch_ax_pseudo_register_push_stack
2717 (gdbarch, spu_ax_pseudo_register_push_stack);
771b4502
UW
2718
2719 /* Data types. */
2720 set_gdbarch_char_signed (gdbarch, 0);
2721 set_gdbarch_ptr_bit (gdbarch, 32);
2722 set_gdbarch_addr_bit (gdbarch, 32);
2723 set_gdbarch_short_bit (gdbarch, 16);
2724 set_gdbarch_int_bit (gdbarch, 32);
2725 set_gdbarch_long_bit (gdbarch, 32);
2726 set_gdbarch_long_long_bit (gdbarch, 64);
2727 set_gdbarch_float_bit (gdbarch, 32);
2728 set_gdbarch_double_bit (gdbarch, 64);
2729 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2730 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2731 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2732 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2733
ff1a52c6 2734 /* Address handling. */
85e747d2 2735 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2736 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2737 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2738 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2739 set_gdbarch_address_class_type_flags_to_name
2740 (gdbarch, spu_address_class_type_flags_to_name);
2741 set_gdbarch_address_class_name_to_type_flags
2742 (gdbarch, spu_address_class_name_to_type_flags);
2743
36acd84e 2744
771b4502 2745 /* Inferior function calls. */
7b3dc0b7
UW
2746 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2747 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2748 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2749 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2750 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2751 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2752 set_gdbarch_return_value (gdbarch, spu_return_value);
2753
2754 /* Frame handling. */
2755 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7ce16bd4 2756 dwarf2_append_unwinders (gdbarch);
8d998b8f 2757 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2758 frame_base_set_default (gdbarch, &spu_frame_base);
2759 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2760 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2761 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2762 set_gdbarch_frame_args_skip (gdbarch, 0);
2763 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
c9cf6e20 2764 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
771b4502 2765
cc5f0d61
UW
2766 /* Cell/B.E. cross-architecture unwinder support. */
2767 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2768
771b4502
UW
2769 /* Breakpoints. */
2770 set_gdbarch_decr_pc_after_break (gdbarch, 4);
04180708
YQ
2771 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2772 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
d03285ec 2773 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502 2774 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2775 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2776
dcf52cd8
UW
2777 /* Overlays. */
2778 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2779
771b4502
UW
2780 return gdbarch;
2781}
2782
63807e1d
PA
2783/* Provide a prototype to silence -Wmissing-prototypes. */
2784extern initialize_file_ftype _initialize_spu_tdep;
2785
771b4502
UW
2786void
2787_initialize_spu_tdep (void)
2788{
2789 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2790
dcf52cd8
UW
2791 /* Add ourselves to objfile event chain. */
2792 observer_attach_new_objfile (spu_overlay_new_objfile);
2793 spu_overlay_data = register_objfile_data ();
23d964e7 2794
3285f3fe
UW
2795 /* Install spu stop-on-load handler. */
2796 observer_attach_new_objfile (spu_catch_start);
2797
ff1a52c6
UW
2798 /* Add ourselves to normal_stop event chain. */
2799 observer_attach_normal_stop (spu_attach_normal_stop);
2800
3285f3fe
UW
2801 /* Add root prefix command for all "set spu"/"show spu" commands. */
2802 add_prefix_cmd ("spu", no_class, set_spu_command,
2803 _("Various SPU specific commands."),
2804 &setspucmdlist, "set spu ", 0, &setlist);
2805 add_prefix_cmd ("spu", no_class, show_spu_command,
2806 _("Various SPU specific commands."),
2807 &showspucmdlist, "show spu ", 0, &showlist);
2808
2809 /* Toggle whether or not to add a temporary breakpoint at the "main"
2810 function of new SPE contexts. */
2811 add_setshow_boolean_cmd ("stop-on-load", class_support,
2812 &spu_stop_on_load_p, _("\
2813Set whether to stop for new SPE threads."),
2814 _("\
2815Show whether to stop for new SPE threads."),
2816 _("\
2817Use \"on\" to give control to the user when a new SPE thread\n\
2818enters its \"main\" function.\n\
2819Use \"off\" to disable stopping for new SPE threads."),
2820 NULL,
2821 show_spu_stop_on_load,
2822 &setspucmdlist, &showspucmdlist);
2823
ff1a52c6
UW
2824 /* Toggle whether or not to automatically flush the software-managed
2825 cache whenever SPE execution stops. */
2826 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2827 &spu_auto_flush_cache_p, _("\
2828Set whether to automatically flush the software-managed cache."),
2829 _("\
2830Show whether to automatically flush the software-managed cache."),
2831 _("\
2832Use \"on\" to automatically flush the software-managed cache\n\
2833whenever SPE execution stops.\n\
2834Use \"off\" to never automatically flush the software-managed cache."),
2835 NULL,
2836 show_spu_auto_flush_cache,
2837 &setspucmdlist, &showspucmdlist);
2838
23d964e7
UW
2839 /* Add root prefix command for all "info spu" commands. */
2840 add_prefix_cmd ("spu", class_info, info_spu_command,
2841 _("Various SPU specific commands."),
2842 &infospucmdlist, "info spu ", 0, &infolist);
2843
2844 /* Add various "info spu" commands. */
2845 add_cmd ("event", class_info, info_spu_event_command,
2846 _("Display SPU event facility status.\n"),
2847 &infospucmdlist);
2848 add_cmd ("signal", class_info, info_spu_signal_command,
2849 _("Display SPU signal notification facility status.\n"),
2850 &infospucmdlist);
2851 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2852 _("Display SPU mailbox facility status.\n"),
2853 &infospucmdlist);
2854 add_cmd ("dma", class_info, info_spu_dma_command,
2855 _("Display MFC DMA status.\n"),
2856 &infospucmdlist);
2857 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2858 _("Display MFC Proxy-DMA status.\n"),
2859 &infospucmdlist);
771b4502 2860}