]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/target.h
* config/tc-arm.c (md_assemble): Allow barrier instructions on
[thirdparty/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
3a3e9ee3 94 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
3a3e9ee3 100 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
b2175913
MS
131 TARGET_WAITKIND_IGNORE,
132
133 /* The target has run out of history information,
134 and cannot run backward any further. */
135 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
136 };
137
c5aa993b
JM
138struct target_waitstatus
139 {
140 enum target_waitkind kind;
141
142 /* Forked child pid, execd pathname, exit status or signal number. */
143 union
144 {
145 int integer;
146 enum target_signal sig;
3a3e9ee3 147 ptid_t related_pid;
c5aa993b
JM
148 char *execd_pathname;
149 int syscall_id;
150 }
151 value;
152 };
c906108c 153
f00150c9
DE
154/* Return a pretty printed form of target_waitstatus.
155 Space for the result is malloc'd, caller must free. */
156extern char *target_waitstatus_to_string (const struct target_waitstatus *);
157
2acceee2 158/* Possible types of events that the inferior handler will have to
0d06e24b 159 deal with. */
2acceee2
JM
160enum inferior_event_type
161 {
0d06e24b 162 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
163 INF_QUIT_REQ,
164 /* Process a normal inferior event which will result in target_wait
0d06e24b 165 being called. */
2146d243 166 INF_REG_EVENT,
0d06e24b 167 /* Deal with an error on the inferior. */
2acceee2 168 INF_ERROR,
0d06e24b 169 /* We are called because a timer went off. */
2acceee2 170 INF_TIMER,
0d06e24b 171 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
172 INF_EXEC_COMPLETE,
173 /* We are called to do some stuff after the inferior stops, but we
174 are expected to reenter the proceed() and
175 handle_inferior_event() functions. This is used only in case of
0d06e24b 176 'step n' like commands. */
c2d11a7d 177 INF_EXEC_CONTINUE
2acceee2
JM
178 };
179
c906108c 180/* Return the string for a signal. */
54363045 181extern const char *target_signal_to_string (enum target_signal);
c906108c
SS
182
183/* Return the name (SIGHUP, etc.) for a signal. */
54363045 184extern const char *target_signal_to_name (enum target_signal);
c906108c
SS
185
186/* Given a name (SIGHUP, etc.), return its signal. */
54363045 187enum target_signal target_signal_from_name (const char *);
c906108c 188\f
13547ab6
DJ
189/* Target objects which can be transfered using target_read,
190 target_write, et cetera. */
1e3ff5ad
AC
191
192enum target_object
193{
1e3ff5ad
AC
194 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
195 TARGET_OBJECT_AVR,
23d964e7
UW
196 /* SPU target specific transfer. See "spu-tdep.c". */
197 TARGET_OBJECT_SPU,
1e3ff5ad 198 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 199 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
200 /* Memory, avoiding GDB's data cache and trusting the executable.
201 Target implementations of to_xfer_partial never need to handle
202 this object, and most callers should not use it. */
203 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
204 /* Kernel Unwind Table. See "ia64-tdep.c". */
205 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
206 /* Transfer auxilliary vector. */
207 TARGET_OBJECT_AUXV,
baf92889 208 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
209 TARGET_OBJECT_WCOOKIE,
210 /* Target memory map in XML format. */
211 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
212 /* Flash memory. This object can be used to write contents to
213 a previously erased flash memory. Using it without erasing
214 flash can have unexpected results. Addresses are physical
215 address on target, and not relative to flash start. */
23181151
DJ
216 TARGET_OBJECT_FLASH,
217 /* Available target-specific features, e.g. registers and coprocessors.
218 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
219 TARGET_OBJECT_AVAILABLE_FEATURES,
220 /* Currently loaded libraries, in XML format. */
07e059b5
VP
221 TARGET_OBJECT_LIBRARIES,
222 /* Get OS specific data. The ANNEX specifies the type (running
223 processes, etc.). */
4aa995e1
PA
224 TARGET_OBJECT_OSDATA,
225 /* Extra signal info. Usually the contents of `siginfo_t' on unix
226 platforms. */
227 TARGET_OBJECT_SIGNAL_INFO,
07e059b5 228 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
229};
230
13547ab6
DJ
231/* Request that OPS transfer up to LEN 8-bit bytes of the target's
232 OBJECT. The OFFSET, for a seekable object, specifies the
233 starting point. The ANNEX can be used to provide additional
234 data-specific information to the target.
1e3ff5ad 235
13547ab6
DJ
236 Return the number of bytes actually transfered, or -1 if the
237 transfer is not supported or otherwise fails. Return of a positive
238 value less than LEN indicates that no further transfer is possible.
239 Unlike the raw to_xfer_partial interface, callers of these
240 functions do not need to retry partial transfers. */
1e3ff5ad 241
1e3ff5ad
AC
242extern LONGEST target_read (struct target_ops *ops,
243 enum target_object object,
1b0ba102 244 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
245 ULONGEST offset, LONGEST len);
246
d5086790
VP
247extern LONGEST target_read_until_error (struct target_ops *ops,
248 enum target_object object,
249 const char *annex, gdb_byte *buf,
250 ULONGEST offset, LONGEST len);
251
1e3ff5ad
AC
252extern LONGEST target_write (struct target_ops *ops,
253 enum target_object object,
1b0ba102 254 const char *annex, const gdb_byte *buf,
1e3ff5ad 255 ULONGEST offset, LONGEST len);
b6591e8b 256
a76d924d
DJ
257/* Similar to target_write, except that it also calls PROGRESS with
258 the number of bytes written and the opaque BATON after every
259 successful partial write (and before the first write). This is
260 useful for progress reporting and user interaction while writing
261 data. To abort the transfer, the progress callback can throw an
262 exception. */
263
cf7a04e8
DJ
264LONGEST target_write_with_progress (struct target_ops *ops,
265 enum target_object object,
266 const char *annex, const gdb_byte *buf,
267 ULONGEST offset, LONGEST len,
268 void (*progress) (ULONGEST, void *),
269 void *baton);
270
13547ab6
DJ
271/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
272 be read using OPS. The return value will be -1 if the transfer
273 fails or is not supported; 0 if the object is empty; or the length
274 of the object otherwise. If a positive value is returned, a
275 sufficiently large buffer will be allocated using xmalloc and
276 returned in *BUF_P containing the contents of the object.
277
278 This method should be used for objects sufficiently small to store
279 in a single xmalloc'd buffer, when no fixed bound on the object's
280 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
281 through this function. */
282
283extern LONGEST target_read_alloc (struct target_ops *ops,
284 enum target_object object,
285 const char *annex, gdb_byte **buf_p);
286
159f81f3
DJ
287/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
288 returned as a string, allocated using xmalloc. If an error occurs
289 or the transfer is unsupported, NULL is returned. Empty objects
290 are returned as allocated but empty strings. A warning is issued
291 if the result contains any embedded NUL bytes. */
292
293extern char *target_read_stralloc (struct target_ops *ops,
294 enum target_object object,
295 const char *annex);
296
b6591e8b
AC
297/* Wrappers to target read/write that perform memory transfers. They
298 throw an error if the memory transfer fails.
299
300 NOTE: cagney/2003-10-23: The naming schema is lifted from
301 "frame.h". The parameter order is lifted from get_frame_memory,
302 which in turn lifted it from read_memory. */
303
304extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 305 gdb_byte *buf, LONGEST len);
b6591e8b
AC
306extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
307 CORE_ADDR addr, int len);
1e3ff5ad 308\f
0d06e24b
JM
309struct thread_info; /* fwd decl for parameter list below: */
310
c906108c 311struct target_ops
c5aa993b 312 {
258b763a 313 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
314 char *to_shortname; /* Name this target type */
315 char *to_longname; /* Name for printing */
316 char *to_doc; /* Documentation. Does not include trailing
c906108c 317 newline, and starts with a one-line descrip-
0d06e24b 318 tion (probably similar to to_longname). */
bba2d28d
AC
319 /* Per-target scratch pad. */
320 void *to_data;
f1c07ab0
AC
321 /* The open routine takes the rest of the parameters from the
322 command, and (if successful) pushes a new target onto the
323 stack. Targets should supply this routine, if only to provide
324 an error message. */
507f3c78 325 void (*to_open) (char *, int);
f1c07ab0
AC
326 /* Old targets with a static target vector provide "to_close".
327 New re-entrant targets provide "to_xclose" and that is expected
328 to xfree everything (including the "struct target_ops"). */
329 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 330 void (*to_close) (int);
136d6dae 331 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 332 void (*to_post_attach) (int);
136d6dae 333 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 334 void (*to_disconnect) (struct target_ops *, char *, int);
28439f5e 335 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
117de6a9
PA
336 ptid_t (*to_wait) (struct target_ops *,
337 ptid_t, struct target_waitstatus *);
28439f5e
PA
338 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
339 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
316f2060 340 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
341
342 /* Transfer LEN bytes of memory between GDB address MYADDR and
343 target address MEMADDR. If WRITE, transfer them to the target, else
344 transfer them from the target. TARGET is the target from which we
345 get this function.
346
347 Return value, N, is one of the following:
348
349 0 means that we can't handle this. If errno has been set, it is the
350 error which prevented us from doing it (FIXME: What about bfd_error?).
351
352 positive (call it N) means that we have transferred N bytes
353 starting at MEMADDR. We might be able to handle more bytes
354 beyond this length, but no promises.
355
356 negative (call its absolute value N) means that we cannot
357 transfer right at MEMADDR, but we could transfer at least
c8e73a31 358 something at MEMADDR + N.
c5aa993b 359
c8e73a31
AC
360 NOTE: cagney/2004-10-01: This has been entirely superseeded by
361 to_xfer_partial and inferior inheritance. */
362
1b0ba102 363 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
364 int len, int write,
365 struct mem_attrib *attrib,
366 struct target_ops *target);
c906108c 367
507f3c78 368 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
369 int (*to_insert_breakpoint) (struct bp_target_info *);
370 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 371 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
372 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
373 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
374 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
375 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
376 int (*to_stopped_by_watchpoint) (void);
74174d2e 377 int to_have_steppable_watchpoint;
7df1a324 378 int to_have_continuable_watchpoint;
4aa7a7f5 379 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
380 int (*to_watchpoint_addr_within_range) (struct target_ops *,
381 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 382 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
383 void (*to_terminal_init) (void);
384 void (*to_terminal_inferior) (void);
385 void (*to_terminal_ours_for_output) (void);
386 void (*to_terminal_ours) (void);
a790ad35 387 void (*to_terminal_save_ours) (void);
507f3c78
KB
388 void (*to_terminal_info) (char *, int);
389 void (*to_kill) (void);
390 void (*to_load) (char *, int);
391 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
392 void (*to_create_inferior) (struct target_ops *,
393 char *, char *, char **, int);
39f77062 394 void (*to_post_startup_inferior) (ptid_t);
507f3c78 395 void (*to_acknowledge_created_inferior) (int);
fa113d1a 396 void (*to_insert_fork_catchpoint) (int);
507f3c78 397 int (*to_remove_fork_catchpoint) (int);
fa113d1a 398 void (*to_insert_vfork_catchpoint) (int);
507f3c78 399 int (*to_remove_vfork_catchpoint) (int);
ee057212 400 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 401 void (*to_insert_exec_catchpoint) (int);
507f3c78 402 int (*to_remove_exec_catchpoint) (int);
507f3c78 403 int (*to_has_exited) (int, int, int *);
136d6dae 404 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 405 int (*to_can_run) (void);
39f77062 406 void (*to_notice_signals) (ptid_t ptid);
28439f5e
PA
407 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
408 void (*to_find_new_threads) (struct target_ops *);
117de6a9 409 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
507f3c78 410 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 411 void (*to_stop) (ptid_t);
d9fcf2fb 412 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 413 char *(*to_pid_to_exec_file) (int pid);
49d03eab 414 void (*to_log_command) (const char *);
c5aa993b 415 enum strata to_stratum;
c5aa993b
JM
416 int to_has_all_memory;
417 int to_has_memory;
418 int to_has_stack;
419 int to_has_registers;
420 int to_has_execution;
421 int to_has_thread_control; /* control thread execution */
dc177b7a 422 int to_attach_no_wait;
c5aa993b
JM
423 struct section_table
424 *to_sections;
425 struct section_table
426 *to_sections_end;
6426a772
JM
427 /* ASYNC target controls */
428 int (*to_can_async_p) (void);
429 int (*to_is_async_p) (void);
b84876c2
PA
430 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
431 int (*to_async_mask) (int);
9908b566 432 int (*to_supports_non_stop) (void);
2146d243
RM
433 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
434 unsigned long,
435 int, int, int,
436 void *),
be4d1333
MS
437 void *);
438 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
439
440 /* Return the thread-local address at OFFSET in the
441 thread-local storage for the thread PTID and the shared library
442 or executable file given by OBJFILE. If that block of
443 thread-local storage hasn't been allocated yet, this function
444 may return an error. */
117de6a9
PA
445 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
446 ptid_t ptid,
b2756930 447 CORE_ADDR load_module_addr,
3f47be5c
EZ
448 CORE_ADDR offset);
449
13547ab6
DJ
450 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
451 OBJECT. The OFFSET, for a seekable object, specifies the
452 starting point. The ANNEX can be used to provide additional
453 data-specific information to the target.
454
455 Return the number of bytes actually transfered, zero when no
456 further transfer is possible, and -1 when the transfer is not
457 supported. Return of a positive value smaller than LEN does
458 not indicate the end of the object, only the end of the
459 transfer; higher level code should continue transferring if
460 desired. This is handled in target.c.
461
462 The interface does not support a "retry" mechanism. Instead it
463 assumes that at least one byte will be transfered on each
464 successful call.
465
466 NOTE: cagney/2003-10-17: The current interface can lead to
467 fragmented transfers. Lower target levels should not implement
468 hacks, such as enlarging the transfer, in an attempt to
469 compensate for this. Instead, the target stack should be
470 extended so that it implements supply/collect methods and a
471 look-aside object cache. With that available, the lowest
472 target can safely and freely "push" data up the stack.
473
474 See target_read and target_write for more information. One,
475 and only one, of readbuf or writebuf must be non-NULL. */
476
4b8a223f 477 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 478 enum target_object object, const char *annex,
1b0ba102 479 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 480 ULONGEST offset, LONGEST len);
1e3ff5ad 481
fd79ecee
DJ
482 /* Returns the memory map for the target. A return value of NULL
483 means that no memory map is available. If a memory address
484 does not fall within any returned regions, it's assumed to be
485 RAM. The returned memory regions should not overlap.
486
487 The order of regions does not matter; target_memory_map will
488 sort regions by starting address. For that reason, this
489 function should not be called directly except via
490 target_memory_map.
491
492 This method should not cache data; if the memory map could
493 change unexpectedly, it should be invalidated, and higher
494 layers will re-fetch it. */
495 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
496
a76d924d
DJ
497 /* Erases the region of flash memory starting at ADDRESS, of
498 length LENGTH.
499
500 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
501 on flash block boundaries, as reported by 'to_memory_map'. */
502 void (*to_flash_erase) (struct target_ops *,
503 ULONGEST address, LONGEST length);
504
505 /* Finishes a flash memory write sequence. After this operation
506 all flash memory should be available for writing and the result
507 of reading from areas written by 'to_flash_write' should be
508 equal to what was written. */
509 void (*to_flash_done) (struct target_ops *);
510
424163ea
DJ
511 /* Describe the architecture-specific features of this target.
512 Returns the description found, or NULL if no description
513 was available. */
514 const struct target_desc *(*to_read_description) (struct target_ops *ops);
515
0ef643c8
JB
516 /* Build the PTID of the thread on which a given task is running,
517 based on LWP and THREAD. These values are extracted from the
518 task Private_Data section of the Ada Task Control Block, and
519 their interpretation depends on the target. */
520 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
521
c47ffbe3
VP
522 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
523 Return 0 if *READPTR is already at the end of the buffer.
524 Return -1 if there is insufficient buffer for a whole entry.
525 Return 1 if an entry was read into *TYPEP and *VALP. */
526 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
527 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
528
08388c79
DE
529 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
530 sequence of bytes in PATTERN with length PATTERN_LEN.
531
532 The result is 1 if found, 0 if not found, and -1 if there was an error
533 requiring halting of the search (e.g. memory read error).
534 If the pattern is found the address is recorded in FOUND_ADDRP. */
535 int (*to_search_memory) (struct target_ops *ops,
536 CORE_ADDR start_addr, ULONGEST search_space_len,
537 const gdb_byte *pattern, ULONGEST pattern_len,
538 CORE_ADDR *found_addrp);
539
b2175913 540 /* Can target execute in reverse? */
2c0b251b 541 int (*to_can_execute_reverse) (void);
b2175913 542
8a305172
PA
543 /* Does this target support debugging multiple processes
544 simultaneously? */
545 int (*to_supports_multi_process) (void);
546
c5aa993b 547 int to_magic;
0d06e24b
JM
548 /* Need sub-structure for target machine related rather than comm related?
549 */
c5aa993b 550 };
c906108c
SS
551
552/* Magic number for checking ops size. If a struct doesn't end with this
553 number, somebody changed the declaration but didn't change all the
554 places that initialize one. */
555
556#define OPS_MAGIC 3840
557
558/* The ops structure for our "current" target process. This should
559 never be NULL. If there is no target, it points to the dummy_target. */
560
c5aa993b 561extern struct target_ops current_target;
c906108c 562
c906108c
SS
563/* Define easy words for doing these operations on our current target. */
564
565#define target_shortname (current_target.to_shortname)
566#define target_longname (current_target.to_longname)
567
f1c07ab0
AC
568/* Does whatever cleanup is required for a target that we are no
569 longer going to be calling. QUITTING indicates that GDB is exiting
570 and should not get hung on an error (otherwise it is important to
571 perform clean termination, even if it takes a while). This routine
572 is automatically always called when popping the target off the
573 target stack (to_beneath is undefined). Closing file descriptors
574 and freeing all memory allocated memory are typical things it
575 should do. */
576
577void target_close (struct target_ops *targ, int quitting);
c906108c
SS
578
579/* Attaches to a process on the target side. Arguments are as passed
580 to the `attach' command by the user. This routine can be called
581 when the target is not on the target-stack, if the target_can_run
2146d243 582 routine returns 1; in that case, it must push itself onto the stack.
c906108c 583 Upon exit, the target should be ready for normal operations, and
2146d243 584 should be ready to deliver the status of the process immediately
c906108c
SS
585 (without waiting) to an upcoming target_wait call. */
586
136d6dae 587void target_attach (char *, int);
c906108c 588
dc177b7a
PA
589/* Some targets don't generate traps when attaching to the inferior,
590 or their target_attach implementation takes care of the waiting.
591 These targets must set to_attach_no_wait. */
592
593#define target_attach_no_wait \
594 (current_target.to_attach_no_wait)
595
c906108c
SS
596/* The target_attach operation places a process under debugger control,
597 and stops the process.
598
599 This operation provides a target-specific hook that allows the
0d06e24b 600 necessary bookkeeping to be performed after an attach completes. */
c906108c 601#define target_post_attach(pid) \
0d06e24b 602 (*current_target.to_post_attach) (pid)
c906108c 603
c906108c
SS
604/* Takes a program previously attached to and detaches it.
605 The program may resume execution (some targets do, some don't) and will
606 no longer stop on signals, etc. We better not have left any breakpoints
607 in the program or it'll die when it hits one. ARGS is arguments
608 typed by the user (e.g. a signal to send the process). FROM_TTY
609 says whether to be verbose or not. */
610
a14ed312 611extern void target_detach (char *, int);
c906108c 612
6ad8ae5c
DJ
613/* Disconnect from the current target without resuming it (leaving it
614 waiting for a debugger). */
615
616extern void target_disconnect (char *, int);
617
39f77062 618/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
619 single-step or to run free; SIGGNAL is the signal to be given to
620 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
621 pass TARGET_SIGNAL_DEFAULT. */
622
e1ac3328 623extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 624
b5a2688f
AC
625/* Wait for process pid to do something. PTID = -1 to wait for any
626 pid to do something. Return pid of child, or -1 in case of error;
c906108c 627 store status through argument pointer STATUS. Note that it is
b5a2688f 628 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
629 the debugging target from the stack; GDB isn't prepared to get back
630 to the prompt with a debugging target but without the frame cache,
631 stop_pc, etc., set up. */
632
117de6a9 633extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status);
c906108c 634
17dee195 635/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 636
28439f5e 637extern void target_fetch_registers (struct regcache *regcache, int regno);
c906108c
SS
638
639/* Store at least register REGNO, or all regs if REGNO == -1.
640 It can store as many registers as it wants to, so target_prepare_to_store
641 must have been previously called. Calls error() if there are problems. */
642
28439f5e 643extern void target_store_registers (struct regcache *regcache, int regs);
c906108c
SS
644
645/* Get ready to modify the registers array. On machines which store
646 individual registers, this doesn't need to do anything. On machines
647 which store all the registers in one fell swoop, this makes sure
648 that REGISTERS contains all the registers from the program being
649 debugged. */
650
316f2060
UW
651#define target_prepare_to_store(regcache) \
652 (*current_target.to_prepare_to_store) (regcache)
c906108c 653
8a305172
PA
654/* Returns true if this target can debug multiple processes
655 simultaneously. */
656
657#define target_supports_multi_process() \
658 (*current_target.to_supports_multi_process) ()
659
4930751a
C
660extern DCACHE *target_dcache;
661
a14ed312 662extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 663
fc1a4b47 664extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 665
fc1a4b47 666extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 667 int len);
c906108c 668
1b0ba102 669extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 670 struct mem_attrib *, struct target_ops *);
c906108c 671
fd79ecee
DJ
672/* Fetches the target's memory map. If one is found it is sorted
673 and returned, after some consistency checking. Otherwise, NULL
674 is returned. */
675VEC(mem_region_s) *target_memory_map (void);
676
a76d924d
DJ
677/* Erase the specified flash region. */
678void target_flash_erase (ULONGEST address, LONGEST length);
679
680/* Finish a sequence of flash operations. */
681void target_flash_done (void);
682
683/* Describes a request for a memory write operation. */
684struct memory_write_request
685 {
686 /* Begining address that must be written. */
687 ULONGEST begin;
688 /* Past-the-end address. */
689 ULONGEST end;
690 /* The data to write. */
691 gdb_byte *data;
692 /* A callback baton for progress reporting for this request. */
693 void *baton;
694 };
695typedef struct memory_write_request memory_write_request_s;
696DEF_VEC_O(memory_write_request_s);
697
698/* Enumeration specifying different flash preservation behaviour. */
699enum flash_preserve_mode
700 {
701 flash_preserve,
702 flash_discard
703 };
704
705/* Write several memory blocks at once. This version can be more
706 efficient than making several calls to target_write_memory, in
707 particular because it can optimize accesses to flash memory.
708
709 Moreover, this is currently the only memory access function in gdb
710 that supports writing to flash memory, and it should be used for
711 all cases where access to flash memory is desirable.
712
713 REQUESTS is the vector (see vec.h) of memory_write_request.
714 PRESERVE_FLASH_P indicates what to do with blocks which must be
715 erased, but not completely rewritten.
716 PROGRESS_CB is a function that will be periodically called to provide
717 feedback to user. It will be called with the baton corresponding
718 to the request currently being written. It may also be called
719 with a NULL baton, when preserved flash sectors are being rewritten.
720
721 The function returns 0 on success, and error otherwise. */
722int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
723 enum flash_preserve_mode preserve_flash_p,
724 void (*progress_cb) (ULONGEST, void *));
725
47932f85
DJ
726/* From infrun.c. */
727
3a3e9ee3 728extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 729
3a3e9ee3 730extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 731
3a3e9ee3 732extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 733
c906108c
SS
734/* From exec.c */
735
a14ed312 736extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
737
738/* Print a line about the current target. */
739
740#define target_files_info() \
0d06e24b 741 (*current_target.to_files_info) (&current_target)
c906108c 742
8181d85f
DJ
743/* Insert a breakpoint at address BP_TGT->placed_address in the target
744 machine. Result is 0 for success, or an errno value. */
c906108c 745
8181d85f
DJ
746#define target_insert_breakpoint(bp_tgt) \
747 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 748
8181d85f
DJ
749/* Remove a breakpoint at address BP_TGT->placed_address in the target
750 machine. Result is 0 for success, or an errno value. */
c906108c 751
8181d85f
DJ
752#define target_remove_breakpoint(bp_tgt) \
753 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
754
755/* Initialize the terminal settings we record for the inferior,
756 before we actually run the inferior. */
757
758#define target_terminal_init() \
0d06e24b 759 (*current_target.to_terminal_init) ()
c906108c
SS
760
761/* Put the inferior's terminal settings into effect.
762 This is preparation for starting or resuming the inferior. */
763
764#define target_terminal_inferior() \
0d06e24b 765 (*current_target.to_terminal_inferior) ()
c906108c
SS
766
767/* Put some of our terminal settings into effect,
768 enough to get proper results from our output,
769 but do not change into or out of RAW mode
770 so that no input is discarded.
771
772 After doing this, either terminal_ours or terminal_inferior
773 should be called to get back to a normal state of affairs. */
774
775#define target_terminal_ours_for_output() \
0d06e24b 776 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
777
778/* Put our terminal settings into effect.
779 First record the inferior's terminal settings
780 so they can be restored properly later. */
781
782#define target_terminal_ours() \
0d06e24b 783 (*current_target.to_terminal_ours) ()
c906108c 784
a790ad35
SC
785/* Save our terminal settings.
786 This is called from TUI after entering or leaving the curses
787 mode. Since curses modifies our terminal this call is here
788 to take this change into account. */
789
790#define target_terminal_save_ours() \
791 (*current_target.to_terminal_save_ours) ()
792
c906108c
SS
793/* Print useful information about our terminal status, if such a thing
794 exists. */
795
796#define target_terminal_info(arg, from_tty) \
0d06e24b 797 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
798
799/* Kill the inferior process. Make it go away. */
800
801#define target_kill() \
0d06e24b 802 (*current_target.to_kill) ()
c906108c 803
0d06e24b
JM
804/* Load an executable file into the target process. This is expected
805 to not only bring new code into the target process, but also to
1986bccd
AS
806 update GDB's symbol tables to match.
807
808 ARG contains command-line arguments, to be broken down with
809 buildargv (). The first non-switch argument is the filename to
810 load, FILE; the second is a number (as parsed by strtoul (..., ...,
811 0)), which is an offset to apply to the load addresses of FILE's
812 sections. The target may define switches, or other non-switch
813 arguments, as it pleases. */
c906108c 814
11cf8741 815extern void target_load (char *arg, int from_tty);
c906108c
SS
816
817/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
818 name. ADDRP is a CORE_ADDR * pointing to where the value of the
819 symbol should be returned. The result is 0 if successful, nonzero
820 if the symbol does not exist in the target environment. This
821 function should not call error() if communication with the target
822 is interrupted, since it is called from symbol reading, but should
823 return nonzero, possibly doing a complain(). */
c906108c 824
0d06e24b
JM
825#define target_lookup_symbol(name, addrp) \
826 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 827
39f77062 828/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
829 EXEC_FILE is the file to run.
830 ALLARGS is a string containing the arguments to the program.
831 ENV is the environment vector to pass. Errors reported with error().
832 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 833
136d6dae
VP
834void target_create_inferior (char *exec_file, char *args,
835 char **env, int from_tty);
c906108c
SS
836
837/* Some targets (such as ttrace-based HPUX) don't allow us to request
838 notification of inferior events such as fork and vork immediately
839 after the inferior is created. (This because of how gdb gets an
840 inferior created via invoking a shell to do it. In such a scenario,
841 if the shell init file has commands in it, the shell will fork and
842 exec for each of those commands, and we will see each such fork
843 event. Very bad.)
c5aa993b 844
0d06e24b
JM
845 Such targets will supply an appropriate definition for this function. */
846
39f77062
KB
847#define target_post_startup_inferior(ptid) \
848 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
849
850/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
851 some synchronization between gdb and the new inferior process, PID. */
852
c906108c 853#define target_acknowledge_created_inferior(pid) \
0d06e24b 854 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 855
0d06e24b
JM
856/* On some targets, we can catch an inferior fork or vfork event when
857 it occurs. These functions insert/remove an already-created
858 catchpoint for such events. */
c906108c 859
c906108c 860#define target_insert_fork_catchpoint(pid) \
0d06e24b 861 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
862
863#define target_remove_fork_catchpoint(pid) \
0d06e24b 864 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
865
866#define target_insert_vfork_catchpoint(pid) \
0d06e24b 867 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
868
869#define target_remove_vfork_catchpoint(pid) \
0d06e24b 870 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 871
6604731b
DJ
872/* If the inferior forks or vforks, this function will be called at
873 the next resume in order to perform any bookkeeping and fiddling
874 necessary to continue debugging either the parent or child, as
875 requested, and releasing the other. Information about the fork
876 or vfork event is available via get_last_target_status ().
877 This function returns 1 if the inferior should not be resumed
878 (i.e. there is another event pending). */
0d06e24b 879
ee057212 880int target_follow_fork (int follow_child);
c906108c
SS
881
882/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
883 occurs. These functions insert/remove an already-created
884 catchpoint for such events. */
885
c906108c 886#define target_insert_exec_catchpoint(pid) \
0d06e24b 887 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 888
c906108c 889#define target_remove_exec_catchpoint(pid) \
0d06e24b 890 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 891
c906108c 892/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
893 exit code of PID, if any. */
894
c906108c 895#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 896 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
897
898/* The debugger has completed a blocking wait() call. There is now
2146d243 899 some process event that must be processed. This function should
c906108c 900 be defined by those targets that require the debugger to perform
0d06e24b 901 cleanup or internal state changes in response to the process event. */
c906108c
SS
902
903/* The inferior process has died. Do what is right. */
904
136d6dae 905void target_mourn_inferior (void);
c906108c
SS
906
907/* Does target have enough data to do a run or attach command? */
908
909#define target_can_run(t) \
0d06e24b 910 ((t)->to_can_run) ()
c906108c
SS
911
912/* post process changes to signal handling in the inferior. */
913
39f77062
KB
914#define target_notice_signals(ptid) \
915 (*current_target.to_notice_signals) (ptid)
c906108c
SS
916
917/* Check to see if a thread is still alive. */
918
28439f5e 919extern int target_thread_alive (ptid_t ptid);
c906108c 920
b83266a0
SS
921/* Query for new threads and add them to the thread list. */
922
28439f5e 923extern void target_find_new_threads (void);
b83266a0 924
0d06e24b
JM
925/* Make target stop in a continuable fashion. (For instance, under
926 Unix, this should act like SIGSTOP). This function is normally
927 used by GUIs to implement a stop button. */
c906108c 928
94cc34af 929#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 930
96baa820
JM
931/* Send the specified COMMAND to the target's monitor
932 (shell,interpreter) for execution. The result of the query is
0d06e24b 933 placed in OUTBUF. */
96baa820
JM
934
935#define target_rcmd(command, outbuf) \
936 (*current_target.to_rcmd) (command, outbuf)
937
938
c906108c
SS
939/* Does the target include all of memory, or only part of it? This
940 determines whether we look up the target chain for other parts of
941 memory if this target can't satisfy a request. */
942
943#define target_has_all_memory \
0d06e24b 944 (current_target.to_has_all_memory)
c906108c
SS
945
946/* Does the target include memory? (Dummy targets don't.) */
947
948#define target_has_memory \
0d06e24b 949 (current_target.to_has_memory)
c906108c
SS
950
951/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
952 we start a process.) */
c5aa993b 953
c906108c 954#define target_has_stack \
0d06e24b 955 (current_target.to_has_stack)
c906108c
SS
956
957/* Does the target have registers? (Exec files don't.) */
958
959#define target_has_registers \
0d06e24b 960 (current_target.to_has_registers)
c906108c
SS
961
962/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
963 hoops), or pop its stack a few times? This means that the current
964 target is currently executing; for some targets, that's the same as
965 whether or not the target is capable of execution, but there are
966 also targets which can be current while not executing. In that
967 case this will become true after target_create_inferior or
968 target_attach. */
c906108c
SS
969
970#define target_has_execution \
0d06e24b 971 (current_target.to_has_execution)
c906108c
SS
972
973/* Can the target support the debugger control of thread execution?
d6350901 974 Can it lock the thread scheduler? */
c906108c
SS
975
976#define target_can_lock_scheduler \
0d06e24b 977 (current_target.to_has_thread_control & tc_schedlock)
c906108c 978
c6ebd6cf
VP
979/* Should the target enable async mode if it is supported? Temporary
980 cludge until async mode is a strict superset of sync mode. */
981extern int target_async_permitted;
982
6426a772
JM
983/* Can the target support asynchronous execution? */
984#define target_can_async_p() (current_target.to_can_async_p ())
985
986/* Is the target in asynchronous execution mode? */
b84876c2 987#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 988
9908b566
VP
989int target_supports_non_stop (void);
990
6426a772 991/* Put the target in async mode with the specified callback function. */
0d06e24b 992#define target_async(CALLBACK,CONTEXT) \
b84876c2 993 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 994
04714b91
AC
995/* This is to be used ONLY within call_function_by_hand(). It provides
996 a workaround, to have inferior function calls done in sychronous
997 mode, even though the target is asynchronous. After
ed9a39eb
JM
998 target_async_mask(0) is called, calls to target_can_async_p() will
999 return FALSE , so that target_resume() will not try to start the
1000 target asynchronously. After the inferior stops, we IMMEDIATELY
1001 restore the previous nature of the target, by calling
1002 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1003 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1004
1005 FIXME ezannoni 1999-12-13: we won't need this once we move
1006 the turning async on and off to the single execution commands,
0d06e24b 1007 from where it is done currently, in remote_resume(). */
ed9a39eb 1008
b84876c2
PA
1009#define target_async_mask(MASK) \
1010 (current_target.to_async_mask (MASK))
ed9a39eb 1011
c906108c
SS
1012/* Converts a process id to a string. Usually, the string just contains
1013 `process xyz', but on some systems it may contain
1014 `process xyz thread abc'. */
1015
117de6a9 1016extern char *target_pid_to_str (ptid_t ptid);
c906108c 1017
39f77062 1018extern char *normal_pid_to_str (ptid_t ptid);
c5aa993b 1019
0d06e24b
JM
1020/* Return a short string describing extra information about PID,
1021 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1022 is okay. */
1023
1024#define target_extra_thread_info(TP) \
1025 (current_target.to_extra_thread_info (TP))
ed9a39eb 1026
c906108c
SS
1027/* Attempts to find the pathname of the executable file
1028 that was run to create a specified process.
1029
1030 The process PID must be stopped when this operation is used.
c5aa993b 1031
c906108c
SS
1032 If the executable file cannot be determined, NULL is returned.
1033
1034 Else, a pointer to a character string containing the pathname
1035 is returned. This string should be copied into a buffer by
1036 the client if the string will not be immediately used, or if
0d06e24b 1037 it must persist. */
c906108c
SS
1038
1039#define target_pid_to_exec_file(pid) \
0d06e24b 1040 (current_target.to_pid_to_exec_file) (pid)
c906108c 1041
be4d1333
MS
1042/*
1043 * Iterator function for target memory regions.
1044 * Calls a callback function once for each memory region 'mapped'
1045 * in the child process. Defined as a simple macro rather than
2146d243 1046 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1047 */
1048
1049#define target_find_memory_regions(FUNC, DATA) \
1050 (current_target.to_find_memory_regions) (FUNC, DATA)
1051
1052/*
1053 * Compose corefile .note section.
1054 */
1055
1056#define target_make_corefile_notes(BFD, SIZE_P) \
1057 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1058
c906108c
SS
1059/* Hardware watchpoint interfaces. */
1060
1061/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1062 write). */
1063
1064#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1065#define STOPPED_BY_WATCHPOINT(w) \
1066 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1067#endif
7df1a324 1068
74174d2e
UW
1069/* Non-zero if we have steppable watchpoints */
1070
1071#ifndef HAVE_STEPPABLE_WATCHPOINT
1072#define HAVE_STEPPABLE_WATCHPOINT \
1073 (current_target.to_have_steppable_watchpoint)
1074#endif
1075
7df1a324
KW
1076/* Non-zero if we have continuable watchpoints */
1077
1078#ifndef HAVE_CONTINUABLE_WATCHPOINT
1079#define HAVE_CONTINUABLE_WATCHPOINT \
1080 (current_target.to_have_continuable_watchpoint)
1081#endif
c906108c 1082
ccaa32c7 1083/* Provide defaults for hardware watchpoint functions. */
c906108c 1084
2146d243 1085/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1086 elsewhere use the definitions in the target vector. */
c906108c
SS
1087
1088/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1089 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1090 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1091 (including this one?). OTHERTYPE is who knows what... */
1092
ccaa32c7
GS
1093#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1094#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1095 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1096#endif
c906108c 1097
e0d24f8d
WZ
1098#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1099#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1100 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1101#endif
1102
c906108c
SS
1103
1104/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1105 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1106 success, non-zero for failure. */
1107
ccaa32c7
GS
1108#ifndef target_insert_watchpoint
1109#define target_insert_watchpoint(addr, len, type) \
1110 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1111
ccaa32c7
GS
1112#define target_remove_watchpoint(addr, len, type) \
1113 (*current_target.to_remove_watchpoint) (addr, len, type)
1114#endif
c906108c
SS
1115
1116#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1117#define target_insert_hw_breakpoint(bp_tgt) \
1118 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1119
8181d85f
DJ
1120#define target_remove_hw_breakpoint(bp_tgt) \
1121 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1122#endif
1123
1124#ifndef target_stopped_data_address
4aa7a7f5
JJ
1125#define target_stopped_data_address(target, x) \
1126 (*target.to_stopped_data_address) (target, x)
c906108c
SS
1127#endif
1128
5009afc5
AS
1129#define target_watchpoint_addr_within_range(target, addr, start, length) \
1130 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1131
b2175913
MS
1132/* Target can execute in reverse? */
1133#define target_can_execute_reverse \
1134 (current_target.to_can_execute_reverse ? \
1135 current_target.to_can_execute_reverse () : 0)
1136
424163ea
DJ
1137extern const struct target_desc *target_read_description (struct target_ops *);
1138
0ef643c8
JB
1139#define target_get_ada_task_ptid(lwp, tid) \
1140 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1141
08388c79
DE
1142/* Utility implementation of searching memory. */
1143extern int simple_search_memory (struct target_ops* ops,
1144 CORE_ADDR start_addr,
1145 ULONGEST search_space_len,
1146 const gdb_byte *pattern,
1147 ULONGEST pattern_len,
1148 CORE_ADDR *found_addrp);
1149
1150/* Main entry point for searching memory. */
1151extern int target_search_memory (CORE_ADDR start_addr,
1152 ULONGEST search_space_len,
1153 const gdb_byte *pattern,
1154 ULONGEST pattern_len,
1155 CORE_ADDR *found_addrp);
1156
49d03eab
MR
1157/* Command logging facility. */
1158
1159#define target_log_command(p) \
1160 do \
1161 if (current_target.to_log_command) \
1162 (*current_target.to_log_command) (p); \
1163 while (0)
1164
c906108c
SS
1165/* Routines for maintenance of the target structures...
1166
1167 add_target: Add a target to the list of all possible targets.
1168
1169 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1170 targets, within its particular stratum of the stack. Result
1171 is 0 if now atop the stack, nonzero if not on top (maybe
1172 should warn user).
c906108c
SS
1173
1174 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1175 no matter where it is on the list. Returns 0 if no
1176 change, 1 if removed from stack.
c906108c 1177
c5aa993b 1178 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1179
a14ed312 1180extern void add_target (struct target_ops *);
c906108c 1181
a14ed312 1182extern int push_target (struct target_ops *);
c906108c 1183
a14ed312 1184extern int unpush_target (struct target_ops *);
c906108c 1185
fd79ecee
DJ
1186extern void target_pre_inferior (int);
1187
a14ed312 1188extern void target_preopen (int);
c906108c 1189
a14ed312 1190extern void pop_target (void);
c906108c 1191
aa76d38d
PA
1192/* Does whatever cleanup is required to get rid of all pushed targets.
1193 QUITTING is propagated to target_close; it indicates that GDB is
1194 exiting and should not get hung on an error (otherwise it is
1195 important to perform clean termination, even if it takes a
1196 while). */
1197extern void pop_all_targets (int quitting);
1198
87ab71f0
PA
1199/* Like pop_all_targets, but pops only targets whose stratum is
1200 strictly above ABOVE_STRATUM. */
1201extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1202
9e35dae4
DJ
1203extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1204 CORE_ADDR offset);
1205
52bb452f
DJ
1206/* Mark a pushed target as running or exited, for targets which do not
1207 automatically pop when not active. */
1208
1209void target_mark_running (struct target_ops *);
1210
1211void target_mark_exited (struct target_ops *);
1212
c906108c
SS
1213/* Struct section_table maps address ranges to file sections. It is
1214 mostly used with BFD files, but can be used without (e.g. for handling
1215 raw disks, or files not in formats handled by BFD). */
1216
c5aa993b
JM
1217struct section_table
1218 {
1219 CORE_ADDR addr; /* Lowest address in section */
1220 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1221
7be0c536 1222 struct bfd_section *the_bfd_section;
c906108c 1223
c5aa993b
JM
1224 bfd *bfd; /* BFD file pointer */
1225 };
c906108c 1226
8db32d44
AC
1227/* Return the "section" containing the specified address. */
1228struct section_table *target_section_by_addr (struct target_ops *target,
1229 CORE_ADDR addr);
1230
1231
c906108c
SS
1232/* From mem-break.c */
1233
8181d85f 1234extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1235
8181d85f 1236extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1237
ae4b2284 1238extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1239
ae4b2284 1240extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1241
c906108c
SS
1242
1243/* From target.c */
1244
a14ed312 1245extern void initialize_targets (void);
c906108c 1246
117de6a9 1247extern NORETURN void noprocess (void) ATTR_NORETURN;
c906108c 1248
8edfe269
DJ
1249extern void target_require_runnable (void);
1250
136d6dae 1251extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1252
136d6dae
VP
1253extern void find_default_create_inferior (struct target_ops *,
1254 char *, char *, char **, int);
c906108c 1255
a14ed312 1256extern struct target_ops *find_run_target (void);
7a292a7a 1257
a14ed312 1258extern struct target_ops *find_core_target (void);
6426a772 1259
a14ed312 1260extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1261
570b8f7c
AC
1262extern int target_resize_to_sections (struct target_ops *target,
1263 int num_added);
07cd4b97
JB
1264
1265extern void remove_target_sections (bfd *abfd);
1266
e0665bc8
PA
1267/* Read OS data object of type TYPE from the target, and return it in
1268 XML format. The result is NUL-terminated and returned as a string,
1269 allocated using xmalloc. If an error occurs or the transfer is
1270 unsupported, NULL is returned. Empty objects are returned as
1271 allocated but empty strings. */
1272
07e059b5
VP
1273extern char *target_get_osdata (const char *type);
1274
c906108c
SS
1275\f
1276/* Stuff that should be shared among the various remote targets. */
1277
1278/* Debugging level. 0 is off, and non-zero values mean to print some debug
1279 information (higher values, more information). */
1280extern int remote_debug;
1281
1282/* Speed in bits per second, or -1 which means don't mess with the speed. */
1283extern int baud_rate;
1284/* Timeout limit for response from target. */
1285extern int remote_timeout;
1286
c906108c
SS
1287\f
1288/* Functions for helping to write a native target. */
1289
1290/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1291extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1292
c2d11a7d 1293/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1294 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1295/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1296 to the shorter target_signal_p() because it is far less ambigious.
1297 In this context ``target_signal'' refers to GDB's internal
1298 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1299 refers to the target operating system's signal. Confused? */
1300
c2d11a7d
JM
1301extern int target_signal_to_host_p (enum target_signal signo);
1302
1303/* Convert between host signal numbers and enum target_signal's.
1304 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1305 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1306/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1307 refering to the target operating system's signal numbering.
1308 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1309 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1310 internal representation of a target operating system's signal. */
1311
a14ed312
KB
1312extern enum target_signal target_signal_from_host (int);
1313extern int target_signal_to_host (enum target_signal);
c906108c 1314
1cded358
AR
1315extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1316 int);
1317extern int default_target_signal_to_host (struct gdbarch *,
1318 enum target_signal);
1319
c906108c 1320/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1321extern enum target_signal target_signal_from_command (int);
c906108c 1322
8defab1a
DJ
1323/* Set the show memory breakpoints mode to show, and installs a cleanup
1324 to restore it back to the current value. */
1325extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1326
c906108c
SS
1327\f
1328/* Imported from machine dependent code */
1329
c906108c 1330/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1331void target_ignore (void);
c906108c 1332
1df84f13 1333extern struct target_ops deprecated_child_ops;
5ac10fd1 1334
c5aa993b 1335#endif /* !defined (TARGET_H) */