]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/value.c
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
8acc9f48 3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "gdb_string.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
a08702d6 41#include "python/python.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
0914bcdb 45
581e13c1 46/* Prototypes for exported functions. */
c906108c 47
a14ed312 48void _initialize_values (void);
c906108c 49
bc3b79fd
TJB
50/* Definition of a user function. */
51struct internal_function
52{
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
56 char *name;
57
58 /* The handler. */
59 internal_function_fn handler;
60
61 /* User data for the handler. */
62 void *cookie;
63};
64
4e07d55f
PA
65/* Defines an [OFFSET, OFFSET + LENGTH) range. */
66
67struct range
68{
69 /* Lowest offset in the range. */
70 int offset;
71
72 /* Length of the range. */
73 int length;
74};
75
76typedef struct range range_s;
77
78DEF_VEC_O(range_s);
79
80/* Returns true if the ranges defined by [offset1, offset1+len1) and
81 [offset2, offset2+len2) overlap. */
82
83static int
84ranges_overlap (int offset1, int len1,
85 int offset2, int len2)
86{
87 ULONGEST h, l;
88
89 l = max (offset1, offset2);
90 h = min (offset1 + len1, offset2 + len2);
91 return (l < h);
92}
93
94/* Returns true if the first argument is strictly less than the
95 second, useful for VEC_lower_bound. We keep ranges sorted by
96 offset and coalesce overlapping and contiguous ranges, so this just
97 compares the starting offset. */
98
99static int
100range_lessthan (const range_s *r1, const range_s *r2)
101{
102 return r1->offset < r2->offset;
103}
104
105/* Returns true if RANGES contains any range that overlaps [OFFSET,
106 OFFSET+LENGTH). */
107
108static int
109ranges_contain (VEC(range_s) *ranges, int offset, int length)
110{
111 range_s what;
112 int i;
113
114 what.offset = offset;
115 what.length = length;
116
117 /* We keep ranges sorted by offset and coalesce overlapping and
118 contiguous ranges, so to check if a range list contains a given
119 range, we can do a binary search for the position the given range
120 would be inserted if we only considered the starting OFFSET of
121 ranges. We call that position I. Since we also have LENGTH to
122 care for (this is a range afterall), we need to check if the
123 _previous_ range overlaps the I range. E.g.,
124
125 R
126 |---|
127 |---| |---| |------| ... |--|
128 0 1 2 N
129
130 I=1
131
132 In the case above, the binary search would return `I=1', meaning,
133 this OFFSET should be inserted at position 1, and the current
134 position 1 should be pushed further (and before 2). But, `0'
135 overlaps with R.
136
137 Then we need to check if the I range overlaps the I range itself.
138 E.g.,
139
140 R
141 |---|
142 |---| |---| |-------| ... |--|
143 0 1 2 N
144
145 I=1
146 */
147
148 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
149
150 if (i > 0)
151 {
152 struct range *bef = VEC_index (range_s, ranges, i - 1);
153
154 if (ranges_overlap (bef->offset, bef->length, offset, length))
155 return 1;
156 }
157
158 if (i < VEC_length (range_s, ranges))
159 {
160 struct range *r = VEC_index (range_s, ranges, i);
161
162 if (ranges_overlap (r->offset, r->length, offset, length))
163 return 1;
164 }
165
166 return 0;
167}
168
bc3b79fd
TJB
169static struct cmd_list_element *functionlist;
170
87784a47
TT
171/* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
91294c83
AC
174struct value
175{
176 /* Type of value; either not an lval, or one of the various
177 different possible kinds of lval. */
178 enum lval_type lval;
179
180 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
181 unsigned int modifiable : 1;
182
183 /* If zero, contents of this value are in the contents field. If
184 nonzero, contents are in inferior. If the lval field is lval_memory,
185 the contents are in inferior memory at location.address plus offset.
186 The lval field may also be lval_register.
187
188 WARNING: This field is used by the code which handles watchpoints
189 (see breakpoint.c) to decide whether a particular value can be
190 watched by hardware watchpoints. If the lazy flag is set for
191 some member of a value chain, it is assumed that this member of
192 the chain doesn't need to be watched as part of watching the
193 value itself. This is how GDB avoids watching the entire struct
194 or array when the user wants to watch a single struct member or
195 array element. If you ever change the way lazy flag is set and
196 reset, be sure to consider this use as well! */
197 unsigned int lazy : 1;
198
199 /* If nonzero, this is the value of a variable which does not
200 actually exist in the program. */
201 unsigned int optimized_out : 1;
202
203 /* If value is a variable, is it initialized or not. */
204 unsigned int initialized : 1;
205
206 /* If value is from the stack. If this is set, read_stack will be
207 used instead of read_memory to enable extra caching. */
208 unsigned int stack : 1;
91294c83 209
e848a8a5
TT
210 /* If the value has been released. */
211 unsigned int released : 1;
212
91294c83
AC
213 /* Location of value (if lval). */
214 union
215 {
216 /* If lval == lval_memory, this is the address in the inferior.
217 If lval == lval_register, this is the byte offset into the
218 registers structure. */
219 CORE_ADDR address;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
5f5233d4
PA
223
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
237 /* Describes offset of a value within lval of a structure in bytes.
238 If lval == lval_memory, this is an offset to the address. If
239 lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the
241 member embedded_offset below. */
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
294 offset of `type' within that larger type, in bytes. The
295 value_contents() macro takes `embedded_offset' into account, so
296 most GDB code continues to see the `type' portion of the value,
297 just as the inferior would.
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
301 the offset in bytes from the full object to the pointed-to object
302 -- that is, the value `embedded_offset' would have if we followed
303 the pointer and fetched the complete object. (I don't really see
304 the point. Why not just determine the run-time type when you
305 indirect, and avoid the special case? The contents don't matter
306 until you indirect anyway.)
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
321 /* Register number if the value is from a register. */
322 short regnum;
323
3e3d7139
JG
324 /* Actual contents of the value. Target byte-order. NULL or not
325 valid if lazy is nonzero. */
326 gdb_byte *contents;
828d3400 327
4e07d55f
PA
328 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
329 rather than available, since the common and default case is for a
330 value to be available. This is filled in at value read time. */
331 VEC(range_s) *unavailable;
91294c83
AC
332};
333
4e07d55f
PA
334int
335value_bytes_available (const struct value *value, int offset, int length)
336{
337 gdb_assert (!value->lazy);
338
339 return !ranges_contain (value->unavailable, offset, length);
340}
341
ec0a52e1
PA
342int
343value_entirely_available (struct value *value)
344{
345 /* We can only tell whether the whole value is available when we try
346 to read it. */
347 if (value->lazy)
348 value_fetch_lazy (value);
349
350 if (VEC_empty (range_s, value->unavailable))
351 return 1;
352 return 0;
353}
354
4e07d55f
PA
355void
356mark_value_bytes_unavailable (struct value *value, int offset, int length)
357{
358 range_s newr;
359 int i;
360
361 /* Insert the range sorted. If there's overlap or the new range
362 would be contiguous with an existing range, merge. */
363
364 newr.offset = offset;
365 newr.length = length;
366
367 /* Do a binary search for the position the given range would be
368 inserted if we only considered the starting OFFSET of ranges.
369 Call that position I. Since we also have LENGTH to care for
370 (this is a range afterall), we need to check if the _previous_
371 range overlaps the I range. E.g., calling R the new range:
372
373 #1 - overlaps with previous
374
375 R
376 |-...-|
377 |---| |---| |------| ... |--|
378 0 1 2 N
379
380 I=1
381
382 In the case #1 above, the binary search would return `I=1',
383 meaning, this OFFSET should be inserted at position 1, and the
384 current position 1 should be pushed further (and become 2). But,
385 note that `0' overlaps with R, so we want to merge them.
386
387 A similar consideration needs to be taken if the new range would
388 be contiguous with the previous range:
389
390 #2 - contiguous with previous
391
392 R
393 |-...-|
394 |--| |---| |------| ... |--|
395 0 1 2 N
396
397 I=1
398
399 If there's no overlap with the previous range, as in:
400
401 #3 - not overlapping and not contiguous
402
403 R
404 |-...-|
405 |--| |---| |------| ... |--|
406 0 1 2 N
407
408 I=1
409
410 or if I is 0:
411
412 #4 - R is the range with lowest offset
413
414 R
415 |-...-|
416 |--| |---| |------| ... |--|
417 0 1 2 N
418
419 I=0
420
421 ... we just push the new range to I.
422
423 All the 4 cases above need to consider that the new range may
424 also overlap several of the ranges that follow, or that R may be
425 contiguous with the following range, and merge. E.g.,
426
427 #5 - overlapping following ranges
428
429 R
430 |------------------------|
431 |--| |---| |------| ... |--|
432 0 1 2 N
433
434 I=0
435
436 or:
437
438 R
439 |-------|
440 |--| |---| |------| ... |--|
441 0 1 2 N
442
443 I=1
444
445 */
446
447 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
448 if (i > 0)
449 {
6bfc80c7 450 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
451
452 if (ranges_overlap (bef->offset, bef->length, offset, length))
453 {
454 /* #1 */
455 ULONGEST l = min (bef->offset, offset);
456 ULONGEST h = max (bef->offset + bef->length, offset + length);
457
458 bef->offset = l;
459 bef->length = h - l;
460 i--;
461 }
462 else if (offset == bef->offset + bef->length)
463 {
464 /* #2 */
465 bef->length += length;
466 i--;
467 }
468 else
469 {
470 /* #3 */
471 VEC_safe_insert (range_s, value->unavailable, i, &newr);
472 }
473 }
474 else
475 {
476 /* #4 */
477 VEC_safe_insert (range_s, value->unavailable, i, &newr);
478 }
479
480 /* Check whether the ranges following the one we've just added or
481 touched can be folded in (#5 above). */
482 if (i + 1 < VEC_length (range_s, value->unavailable))
483 {
484 struct range *t;
485 struct range *r;
486 int removed = 0;
487 int next = i + 1;
488
489 /* Get the range we just touched. */
490 t = VEC_index (range_s, value->unavailable, i);
491 removed = 0;
492
493 i = next;
494 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
495 if (r->offset <= t->offset + t->length)
496 {
497 ULONGEST l, h;
498
499 l = min (t->offset, r->offset);
500 h = max (t->offset + t->length, r->offset + r->length);
501
502 t->offset = l;
503 t->length = h - l;
504
505 removed++;
506 }
507 else
508 {
509 /* If we couldn't merge this one, we won't be able to
510 merge following ones either, since the ranges are
511 always sorted by OFFSET. */
512 break;
513 }
514
515 if (removed != 0)
516 VEC_block_remove (range_s, value->unavailable, next, removed);
517 }
518}
519
c8c1c22f
PA
520/* Find the first range in RANGES that overlaps the range defined by
521 OFFSET and LENGTH, starting at element POS in the RANGES vector,
522 Returns the index into RANGES where such overlapping range was
523 found, or -1 if none was found. */
524
525static int
526find_first_range_overlap (VEC(range_s) *ranges, int pos,
527 int offset, int length)
528{
529 range_s *r;
530 int i;
531
532 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
533 if (ranges_overlap (r->offset, r->length, offset, length))
534 return i;
535
536 return -1;
537}
538
539int
540value_available_contents_eq (const struct value *val1, int offset1,
541 const struct value *val2, int offset2,
542 int length)
543{
c8c1c22f 544 int idx1 = 0, idx2 = 0;
c8c1c22f
PA
545
546 /* This routine is used by printing routines, where we should
547 already have read the value. Note that we only know whether a
548 value chunk is available if we've tried to read it. */
549 gdb_assert (!val1->lazy && !val2->lazy);
550
c8c1c22f
PA
551 while (length > 0)
552 {
553 range_s *r1, *r2;
554 ULONGEST l1, h1;
555 ULONGEST l2, h2;
556
557 idx1 = find_first_range_overlap (val1->unavailable, idx1,
558 offset1, length);
559 idx2 = find_first_range_overlap (val2->unavailable, idx2,
560 offset2, length);
561
562 /* The usual case is for both values to be completely available. */
563 if (idx1 == -1 && idx2 == -1)
cd24cfaa
PA
564 return (memcmp (val1->contents + offset1,
565 val2->contents + offset2,
566 length) == 0);
c8c1c22f
PA
567 /* The contents only match equal if the available set matches as
568 well. */
569 else if (idx1 == -1 || idx2 == -1)
570 return 0;
571
572 gdb_assert (idx1 != -1 && idx2 != -1);
573
574 r1 = VEC_index (range_s, val1->unavailable, idx1);
575 r2 = VEC_index (range_s, val2->unavailable, idx2);
576
577 /* Get the unavailable windows intersected by the incoming
578 ranges. The first and last ranges that overlap the argument
579 range may be wider than said incoming arguments ranges. */
580 l1 = max (offset1, r1->offset);
581 h1 = min (offset1 + length, r1->offset + r1->length);
582
583 l2 = max (offset2, r2->offset);
584 h2 = min (offset2 + length, r2->offset + r2->length);
585
586 /* Make them relative to the respective start offsets, so we can
587 compare them for equality. */
588 l1 -= offset1;
589 h1 -= offset1;
590
591 l2 -= offset2;
592 h2 -= offset2;
593
594 /* Different availability, no match. */
595 if (l1 != l2 || h1 != h2)
596 return 0;
597
598 /* Compare the _available_ contents. */
cd24cfaa
PA
599 if (memcmp (val1->contents + offset1,
600 val2->contents + offset2,
601 l1) != 0)
c8c1c22f
PA
602 return 0;
603
c8c1c22f
PA
604 length -= h1;
605 offset1 += h1;
606 offset2 += h1;
607 }
608
609 return 1;
610}
611
581e13c1 612/* Prototypes for local functions. */
c906108c 613
a14ed312 614static void show_values (char *, int);
c906108c 615
a14ed312 616static void show_convenience (char *, int);
c906108c 617
c906108c
SS
618
619/* The value-history records all the values printed
620 by print commands during this session. Each chunk
621 records 60 consecutive values. The first chunk on
622 the chain records the most recent values.
623 The total number of values is in value_history_count. */
624
625#define VALUE_HISTORY_CHUNK 60
626
627struct value_history_chunk
c5aa993b
JM
628 {
629 struct value_history_chunk *next;
f23631e4 630 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 631 };
c906108c
SS
632
633/* Chain of chunks now in use. */
634
635static struct value_history_chunk *value_history_chain;
636
581e13c1 637static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 638
c906108c
SS
639\f
640/* List of all value objects currently allocated
641 (except for those released by calls to release_value)
642 This is so they can be freed after each command. */
643
f23631e4 644static struct value *all_values;
c906108c 645
3e3d7139
JG
646/* Allocate a lazy value for type TYPE. Its actual content is
647 "lazily" allocated too: the content field of the return value is
648 NULL; it will be allocated when it is fetched from the target. */
c906108c 649
f23631e4 650struct value *
3e3d7139 651allocate_value_lazy (struct type *type)
c906108c 652{
f23631e4 653 struct value *val;
c54eabfa
JK
654
655 /* Call check_typedef on our type to make sure that, if TYPE
656 is a TYPE_CODE_TYPEDEF, its length is set to the length
657 of the target type instead of zero. However, we do not
658 replace the typedef type by the target type, because we want
659 to keep the typedef in order to be able to set the VAL's type
660 description correctly. */
661 check_typedef (type);
c906108c 662
3e3d7139
JG
663 val = (struct value *) xzalloc (sizeof (struct value));
664 val->contents = NULL;
df407dfe 665 val->next = all_values;
c906108c 666 all_values = val;
df407dfe 667 val->type = type;
4754a64e 668 val->enclosing_type = type;
c906108c 669 VALUE_LVAL (val) = not_lval;
42ae5230 670 val->location.address = 0;
1df6926e 671 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
672 val->offset = 0;
673 val->bitpos = 0;
674 val->bitsize = 0;
9ee8fc9d 675 VALUE_REGNUM (val) = -1;
3e3d7139 676 val->lazy = 1;
feb13ab0 677 val->optimized_out = 0;
13c3b5f5 678 val->embedded_offset = 0;
b44d461b 679 val->pointed_to_offset = 0;
c906108c 680 val->modifiable = 1;
42be36b3 681 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
682
683 /* Values start out on the all_values chain. */
684 val->reference_count = 1;
685
c906108c
SS
686 return val;
687}
688
3e3d7139
JG
689/* Allocate the contents of VAL if it has not been allocated yet. */
690
691void
692allocate_value_contents (struct value *val)
693{
694 if (!val->contents)
695 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
696}
697
698/* Allocate a value and its contents for type TYPE. */
699
700struct value *
701allocate_value (struct type *type)
702{
703 struct value *val = allocate_value_lazy (type);
a109c7c1 704
3e3d7139
JG
705 allocate_value_contents (val);
706 val->lazy = 0;
707 return val;
708}
709
c906108c 710/* Allocate a value that has the correct length
938f5214 711 for COUNT repetitions of type TYPE. */
c906108c 712
f23631e4 713struct value *
fba45db2 714allocate_repeat_value (struct type *type, int count)
c906108c 715{
c5aa993b 716 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
717 /* FIXME-type-allocation: need a way to free this type when we are
718 done with it. */
e3506a9f
UW
719 struct type *array_type
720 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 721
e3506a9f 722 return allocate_value (array_type);
c906108c
SS
723}
724
5f5233d4
PA
725struct value *
726allocate_computed_value (struct type *type,
c8f2448a 727 const struct lval_funcs *funcs,
5f5233d4
PA
728 void *closure)
729{
41e8491f 730 struct value *v = allocate_value_lazy (type);
a109c7c1 731
5f5233d4
PA
732 VALUE_LVAL (v) = lval_computed;
733 v->location.computed.funcs = funcs;
734 v->location.computed.closure = closure;
5f5233d4
PA
735
736 return v;
737}
738
a7035dbb
JK
739/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
740
741struct value *
742allocate_optimized_out_value (struct type *type)
743{
744 struct value *retval = allocate_value_lazy (type);
745
746 set_value_optimized_out (retval, 1);
747
748 return retval;
749}
750
df407dfe
AC
751/* Accessor methods. */
752
17cf0ecd
AC
753struct value *
754value_next (struct value *value)
755{
756 return value->next;
757}
758
df407dfe 759struct type *
0e03807e 760value_type (const struct value *value)
df407dfe
AC
761{
762 return value->type;
763}
04624583
AC
764void
765deprecated_set_value_type (struct value *value, struct type *type)
766{
767 value->type = type;
768}
df407dfe
AC
769
770int
0e03807e 771value_offset (const struct value *value)
df407dfe
AC
772{
773 return value->offset;
774}
f5cf64a7
AC
775void
776set_value_offset (struct value *value, int offset)
777{
778 value->offset = offset;
779}
df407dfe
AC
780
781int
0e03807e 782value_bitpos (const struct value *value)
df407dfe
AC
783{
784 return value->bitpos;
785}
9bbda503
AC
786void
787set_value_bitpos (struct value *value, int bit)
788{
789 value->bitpos = bit;
790}
df407dfe
AC
791
792int
0e03807e 793value_bitsize (const struct value *value)
df407dfe
AC
794{
795 return value->bitsize;
796}
9bbda503
AC
797void
798set_value_bitsize (struct value *value, int bit)
799{
800 value->bitsize = bit;
801}
df407dfe 802
4ea48cc1
DJ
803struct value *
804value_parent (struct value *value)
805{
806 return value->parent;
807}
808
53ba8333
JB
809/* See value.h. */
810
811void
812set_value_parent (struct value *value, struct value *parent)
813{
814 value->parent = parent;
815}
816
fc1a4b47 817gdb_byte *
990a07ab
AC
818value_contents_raw (struct value *value)
819{
3e3d7139
JG
820 allocate_value_contents (value);
821 return value->contents + value->embedded_offset;
990a07ab
AC
822}
823
fc1a4b47 824gdb_byte *
990a07ab
AC
825value_contents_all_raw (struct value *value)
826{
3e3d7139
JG
827 allocate_value_contents (value);
828 return value->contents;
990a07ab
AC
829}
830
4754a64e
AC
831struct type *
832value_enclosing_type (struct value *value)
833{
834 return value->enclosing_type;
835}
836
8264ba82
AG
837/* Look at value.h for description. */
838
839struct type *
840value_actual_type (struct value *value, int resolve_simple_types,
841 int *real_type_found)
842{
843 struct value_print_options opts;
8264ba82
AG
844 struct type *result;
845
846 get_user_print_options (&opts);
847
848 if (real_type_found)
849 *real_type_found = 0;
850 result = value_type (value);
851 if (opts.objectprint)
852 {
5e34c6c3
LM
853 /* If result's target type is TYPE_CODE_STRUCT, proceed to
854 fetch its rtti type. */
855 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 856 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
857 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
858 == TYPE_CODE_STRUCT)
8264ba82
AG
859 {
860 struct type *real_type;
861
862 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
863 if (real_type)
864 {
865 if (real_type_found)
866 *real_type_found = 1;
867 result = real_type;
868 }
869 }
870 else if (resolve_simple_types)
871 {
872 if (real_type_found)
873 *real_type_found = 1;
874 result = value_enclosing_type (value);
875 }
876 }
877
878 return result;
879}
880
0e03807e 881static void
4e07d55f 882require_not_optimized_out (const struct value *value)
0e03807e
TT
883{
884 if (value->optimized_out)
885 error (_("value has been optimized out"));
886}
887
4e07d55f
PA
888static void
889require_available (const struct value *value)
890{
891 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 892 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
893}
894
fc1a4b47 895const gdb_byte *
0e03807e 896value_contents_for_printing (struct value *value)
46615f07
AC
897{
898 if (value->lazy)
899 value_fetch_lazy (value);
3e3d7139 900 return value->contents;
46615f07
AC
901}
902
de4127a3
PA
903const gdb_byte *
904value_contents_for_printing_const (const struct value *value)
905{
906 gdb_assert (!value->lazy);
907 return value->contents;
908}
909
0e03807e
TT
910const gdb_byte *
911value_contents_all (struct value *value)
912{
913 const gdb_byte *result = value_contents_for_printing (value);
914 require_not_optimized_out (value);
4e07d55f 915 require_available (value);
0e03807e
TT
916 return result;
917}
918
29976f3f
PA
919/* Copy LENGTH bytes of SRC value's (all) contents
920 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
921 contents, starting at DST_OFFSET. If unavailable contents are
922 being copied from SRC, the corresponding DST contents are marked
923 unavailable accordingly. Neither DST nor SRC may be lazy
924 values.
925
926 It is assumed the contents of DST in the [DST_OFFSET,
927 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
928
929void
930value_contents_copy_raw (struct value *dst, int dst_offset,
931 struct value *src, int src_offset, int length)
932{
933 range_s *r;
934 int i;
935
936 /* A lazy DST would make that this copy operation useless, since as
937 soon as DST's contents were un-lazied (by a later value_contents
938 call, say), the contents would be overwritten. A lazy SRC would
939 mean we'd be copying garbage. */
940 gdb_assert (!dst->lazy && !src->lazy);
941
29976f3f
PA
942 /* The overwritten DST range gets unavailability ORed in, not
943 replaced. Make sure to remember to implement replacing if it
944 turns out actually necessary. */
945 gdb_assert (value_bytes_available (dst, dst_offset, length));
946
39d37385
PA
947 /* Copy the data. */
948 memcpy (value_contents_all_raw (dst) + dst_offset,
949 value_contents_all_raw (src) + src_offset,
950 length);
951
952 /* Copy the meta-data, adjusted. */
953 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
954 {
955 ULONGEST h, l;
956
957 l = max (r->offset, src_offset);
958 h = min (r->offset + r->length, src_offset + length);
959
960 if (l < h)
961 mark_value_bytes_unavailable (dst,
962 dst_offset + (l - src_offset),
963 h - l);
964 }
965}
966
29976f3f
PA
967/* Copy LENGTH bytes of SRC value's (all) contents
968 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
969 (all) contents, starting at DST_OFFSET. If unavailable contents
970 are being copied from SRC, the corresponding DST contents are
971 marked unavailable accordingly. DST must not be lazy. If SRC is
972 lazy, it will be fetched now. If SRC is not valid (is optimized
973 out), an error is thrown.
974
975 It is assumed the contents of DST in the [DST_OFFSET,
976 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
977
978void
979value_contents_copy (struct value *dst, int dst_offset,
980 struct value *src, int src_offset, int length)
981{
982 require_not_optimized_out (src);
983
984 if (src->lazy)
985 value_fetch_lazy (src);
986
987 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
988}
989
d69fe07e
AC
990int
991value_lazy (struct value *value)
992{
993 return value->lazy;
994}
995
dfa52d88
AC
996void
997set_value_lazy (struct value *value, int val)
998{
999 value->lazy = val;
1000}
1001
4e5d721f
DE
1002int
1003value_stack (struct value *value)
1004{
1005 return value->stack;
1006}
1007
1008void
1009set_value_stack (struct value *value, int val)
1010{
1011 value->stack = val;
1012}
1013
fc1a4b47 1014const gdb_byte *
0fd88904
AC
1015value_contents (struct value *value)
1016{
0e03807e
TT
1017 const gdb_byte *result = value_contents_writeable (value);
1018 require_not_optimized_out (value);
4e07d55f 1019 require_available (value);
0e03807e 1020 return result;
0fd88904
AC
1021}
1022
fc1a4b47 1023gdb_byte *
0fd88904
AC
1024value_contents_writeable (struct value *value)
1025{
1026 if (value->lazy)
1027 value_fetch_lazy (value);
fc0c53a0 1028 return value_contents_raw (value);
0fd88904
AC
1029}
1030
a6c442d8
MK
1031/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1032 this function is different from value_equal; in C the operator ==
1033 can return 0 even if the two values being compared are equal. */
1034
1035int
1036value_contents_equal (struct value *val1, struct value *val2)
1037{
1038 struct type *type1;
1039 struct type *type2;
a6c442d8
MK
1040
1041 type1 = check_typedef (value_type (val1));
1042 type2 = check_typedef (value_type (val2));
744a8059 1043 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
a6c442d8
MK
1044 return 0;
1045
744a8059
SP
1046 return (memcmp (value_contents (val1), value_contents (val2),
1047 TYPE_LENGTH (type1)) == 0);
a6c442d8
MK
1048}
1049
feb13ab0
AC
1050int
1051value_optimized_out (struct value *value)
1052{
1053 return value->optimized_out;
1054}
1055
1056void
1057set_value_optimized_out (struct value *value, int val)
1058{
1059 value->optimized_out = val;
1060}
13c3b5f5 1061
0e03807e
TT
1062int
1063value_entirely_optimized_out (const struct value *value)
1064{
1065 if (!value->optimized_out)
1066 return 0;
1067 if (value->lval != lval_computed
ba19bb4d 1068 || !value->location.computed.funcs->check_any_valid)
0e03807e 1069 return 1;
b65c7efe 1070 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1071}
1072
1073int
1074value_bits_valid (const struct value *value, int offset, int length)
1075{
e7303042 1076 if (!value->optimized_out)
0e03807e
TT
1077 return 1;
1078 if (value->lval != lval_computed
1079 || !value->location.computed.funcs->check_validity)
1080 return 0;
1081 return value->location.computed.funcs->check_validity (value, offset,
1082 length);
1083}
1084
8cf6f0b1
TT
1085int
1086value_bits_synthetic_pointer (const struct value *value,
1087 int offset, int length)
1088{
e7303042 1089 if (value->lval != lval_computed
8cf6f0b1
TT
1090 || !value->location.computed.funcs->check_synthetic_pointer)
1091 return 0;
1092 return value->location.computed.funcs->check_synthetic_pointer (value,
1093 offset,
1094 length);
1095}
1096
13c3b5f5
AC
1097int
1098value_embedded_offset (struct value *value)
1099{
1100 return value->embedded_offset;
1101}
1102
1103void
1104set_value_embedded_offset (struct value *value, int val)
1105{
1106 value->embedded_offset = val;
1107}
b44d461b
AC
1108
1109int
1110value_pointed_to_offset (struct value *value)
1111{
1112 return value->pointed_to_offset;
1113}
1114
1115void
1116set_value_pointed_to_offset (struct value *value, int val)
1117{
1118 value->pointed_to_offset = val;
1119}
13bb5560 1120
c8f2448a 1121const struct lval_funcs *
a471c594 1122value_computed_funcs (const struct value *v)
5f5233d4 1123{
a471c594 1124 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1125
1126 return v->location.computed.funcs;
1127}
1128
1129void *
0e03807e 1130value_computed_closure (const struct value *v)
5f5233d4 1131{
0e03807e 1132 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1133
1134 return v->location.computed.closure;
1135}
1136
13bb5560
AC
1137enum lval_type *
1138deprecated_value_lval_hack (struct value *value)
1139{
1140 return &value->lval;
1141}
1142
a471c594
JK
1143enum lval_type
1144value_lval_const (const struct value *value)
1145{
1146 return value->lval;
1147}
1148
42ae5230 1149CORE_ADDR
de4127a3 1150value_address (const struct value *value)
42ae5230
TT
1151{
1152 if (value->lval == lval_internalvar
1153 || value->lval == lval_internalvar_component)
1154 return 0;
53ba8333
JB
1155 if (value->parent != NULL)
1156 return value_address (value->parent) + value->offset;
1157 else
1158 return value->location.address + value->offset;
42ae5230
TT
1159}
1160
1161CORE_ADDR
1162value_raw_address (struct value *value)
1163{
1164 if (value->lval == lval_internalvar
1165 || value->lval == lval_internalvar_component)
1166 return 0;
1167 return value->location.address;
1168}
1169
1170void
1171set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1172{
42ae5230
TT
1173 gdb_assert (value->lval != lval_internalvar
1174 && value->lval != lval_internalvar_component);
1175 value->location.address = addr;
13bb5560
AC
1176}
1177
1178struct internalvar **
1179deprecated_value_internalvar_hack (struct value *value)
1180{
1181 return &value->location.internalvar;
1182}
1183
1184struct frame_id *
1185deprecated_value_frame_id_hack (struct value *value)
1186{
1187 return &value->frame_id;
1188}
1189
1190short *
1191deprecated_value_regnum_hack (struct value *value)
1192{
1193 return &value->regnum;
1194}
88e3b34b
AC
1195
1196int
1197deprecated_value_modifiable (struct value *value)
1198{
1199 return value->modifiable;
1200}
1201void
1202deprecated_set_value_modifiable (struct value *value, int modifiable)
1203{
1204 value->modifiable = modifiable;
1205}
990a07ab 1206\f
c906108c
SS
1207/* Return a mark in the value chain. All values allocated after the
1208 mark is obtained (except for those released) are subject to being freed
1209 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1210struct value *
fba45db2 1211value_mark (void)
c906108c
SS
1212{
1213 return all_values;
1214}
1215
828d3400
DJ
1216/* Take a reference to VAL. VAL will not be deallocated until all
1217 references are released. */
1218
1219void
1220value_incref (struct value *val)
1221{
1222 val->reference_count++;
1223}
1224
1225/* Release a reference to VAL, which was acquired with value_incref.
1226 This function is also called to deallocate values from the value
1227 chain. */
1228
3e3d7139
JG
1229void
1230value_free (struct value *val)
1231{
1232 if (val)
5f5233d4 1233 {
828d3400
DJ
1234 gdb_assert (val->reference_count > 0);
1235 val->reference_count--;
1236 if (val->reference_count > 0)
1237 return;
1238
4ea48cc1
DJ
1239 /* If there's an associated parent value, drop our reference to
1240 it. */
1241 if (val->parent != NULL)
1242 value_free (val->parent);
1243
5f5233d4
PA
1244 if (VALUE_LVAL (val) == lval_computed)
1245 {
c8f2448a 1246 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1247
1248 if (funcs->free_closure)
1249 funcs->free_closure (val);
1250 }
1251
1252 xfree (val->contents);
4e07d55f 1253 VEC_free (range_s, val->unavailable);
5f5233d4 1254 }
3e3d7139
JG
1255 xfree (val);
1256}
1257
c906108c
SS
1258/* Free all values allocated since MARK was obtained by value_mark
1259 (except for those released). */
1260void
f23631e4 1261value_free_to_mark (struct value *mark)
c906108c 1262{
f23631e4
AC
1263 struct value *val;
1264 struct value *next;
c906108c
SS
1265
1266 for (val = all_values; val && val != mark; val = next)
1267 {
df407dfe 1268 next = val->next;
e848a8a5 1269 val->released = 1;
c906108c
SS
1270 value_free (val);
1271 }
1272 all_values = val;
1273}
1274
1275/* Free all the values that have been allocated (except for those released).
725e88af
DE
1276 Call after each command, successful or not.
1277 In practice this is called before each command, which is sufficient. */
c906108c
SS
1278
1279void
fba45db2 1280free_all_values (void)
c906108c 1281{
f23631e4
AC
1282 struct value *val;
1283 struct value *next;
c906108c
SS
1284
1285 for (val = all_values; val; val = next)
1286 {
df407dfe 1287 next = val->next;
e848a8a5 1288 val->released = 1;
c906108c
SS
1289 value_free (val);
1290 }
1291
1292 all_values = 0;
1293}
1294
0cf6dd15
TJB
1295/* Frees all the elements in a chain of values. */
1296
1297void
1298free_value_chain (struct value *v)
1299{
1300 struct value *next;
1301
1302 for (; v; v = next)
1303 {
1304 next = value_next (v);
1305 value_free (v);
1306 }
1307}
1308
c906108c
SS
1309/* Remove VAL from the chain all_values
1310 so it will not be freed automatically. */
1311
1312void
f23631e4 1313release_value (struct value *val)
c906108c 1314{
f23631e4 1315 struct value *v;
c906108c
SS
1316
1317 if (all_values == val)
1318 {
1319 all_values = val->next;
06a64a0b 1320 val->next = NULL;
e848a8a5 1321 val->released = 1;
c906108c
SS
1322 return;
1323 }
1324
1325 for (v = all_values; v; v = v->next)
1326 {
1327 if (v->next == val)
1328 {
1329 v->next = val->next;
06a64a0b 1330 val->next = NULL;
e848a8a5 1331 val->released = 1;
c906108c
SS
1332 break;
1333 }
1334 }
1335}
1336
e848a8a5
TT
1337/* If the value is not already released, release it.
1338 If the value is already released, increment its reference count.
1339 That is, this function ensures that the value is released from the
1340 value chain and that the caller owns a reference to it. */
1341
1342void
1343release_value_or_incref (struct value *val)
1344{
1345 if (val->released)
1346 value_incref (val);
1347 else
1348 release_value (val);
1349}
1350
c906108c 1351/* Release all values up to mark */
f23631e4
AC
1352struct value *
1353value_release_to_mark (struct value *mark)
c906108c 1354{
f23631e4
AC
1355 struct value *val;
1356 struct value *next;
c906108c 1357
df407dfe 1358 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1359 {
1360 if (next->next == mark)
1361 {
1362 all_values = next->next;
1363 next->next = NULL;
1364 return val;
1365 }
1366 next->released = 1;
1367 }
c906108c
SS
1368 all_values = 0;
1369 return val;
1370}
1371
1372/* Return a copy of the value ARG.
1373 It contains the same contents, for same memory address,
1374 but it's a different block of storage. */
1375
f23631e4
AC
1376struct value *
1377value_copy (struct value *arg)
c906108c 1378{
4754a64e 1379 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1380 struct value *val;
1381
1382 if (value_lazy (arg))
1383 val = allocate_value_lazy (encl_type);
1384 else
1385 val = allocate_value (encl_type);
df407dfe 1386 val->type = arg->type;
c906108c 1387 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1388 val->location = arg->location;
df407dfe
AC
1389 val->offset = arg->offset;
1390 val->bitpos = arg->bitpos;
1391 val->bitsize = arg->bitsize;
1df6926e 1392 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1393 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1394 val->lazy = arg->lazy;
feb13ab0 1395 val->optimized_out = arg->optimized_out;
13c3b5f5 1396 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1397 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1398 val->modifiable = arg->modifiable;
d69fe07e 1399 if (!value_lazy (val))
c906108c 1400 {
990a07ab 1401 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1402 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1403
1404 }
4e07d55f 1405 val->unavailable = VEC_copy (range_s, arg->unavailable);
4ea48cc1
DJ
1406 val->parent = arg->parent;
1407 if (val->parent)
1408 value_incref (val->parent);
5f5233d4
PA
1409 if (VALUE_LVAL (val) == lval_computed)
1410 {
c8f2448a 1411 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1412
1413 if (funcs->copy_closure)
1414 val->location.computed.closure = funcs->copy_closure (val);
1415 }
c906108c
SS
1416 return val;
1417}
74bcbdf3 1418
c37f7098
KW
1419/* Return a version of ARG that is non-lvalue. */
1420
1421struct value *
1422value_non_lval (struct value *arg)
1423{
1424 if (VALUE_LVAL (arg) != not_lval)
1425 {
1426 struct type *enc_type = value_enclosing_type (arg);
1427 struct value *val = allocate_value (enc_type);
1428
1429 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1430 TYPE_LENGTH (enc_type));
1431 val->type = arg->type;
1432 set_value_embedded_offset (val, value_embedded_offset (arg));
1433 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1434 return val;
1435 }
1436 return arg;
1437}
1438
74bcbdf3 1439void
0e03807e
TT
1440set_value_component_location (struct value *component,
1441 const struct value *whole)
74bcbdf3 1442{
0e03807e 1443 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1444 VALUE_LVAL (component) = lval_internalvar_component;
1445 else
0e03807e 1446 VALUE_LVAL (component) = whole->lval;
5f5233d4 1447
74bcbdf3 1448 component->location = whole->location;
0e03807e 1449 if (whole->lval == lval_computed)
5f5233d4 1450 {
c8f2448a 1451 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1452
1453 if (funcs->copy_closure)
1454 component->location.computed.closure = funcs->copy_closure (whole);
1455 }
74bcbdf3
PA
1456}
1457
c906108c
SS
1458\f
1459/* Access to the value history. */
1460
1461/* Record a new value in the value history.
1462 Returns the absolute history index of the entry.
1463 Result of -1 indicates the value was not saved; otherwise it is the
1464 value history index of this new item. */
1465
1466int
f23631e4 1467record_latest_value (struct value *val)
c906108c
SS
1468{
1469 int i;
1470
1471 /* We don't want this value to have anything to do with the inferior anymore.
1472 In particular, "set $1 = 50" should not affect the variable from which
1473 the value was taken, and fast watchpoints should be able to assume that
1474 a value on the value history never changes. */
d69fe07e 1475 if (value_lazy (val))
c906108c
SS
1476 value_fetch_lazy (val);
1477 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1478 from. This is a bit dubious, because then *&$1 does not just return $1
1479 but the current contents of that location. c'est la vie... */
1480 val->modifiable = 0;
1481 release_value (val);
1482
1483 /* Here we treat value_history_count as origin-zero
1484 and applying to the value being stored now. */
1485
1486 i = value_history_count % VALUE_HISTORY_CHUNK;
1487 if (i == 0)
1488 {
f23631e4 1489 struct value_history_chunk *new
a109c7c1
MS
1490 = (struct value_history_chunk *)
1491
c5aa993b 1492 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1493 memset (new->values, 0, sizeof new->values);
1494 new->next = value_history_chain;
1495 value_history_chain = new;
1496 }
1497
1498 value_history_chain->values[i] = val;
1499
1500 /* Now we regard value_history_count as origin-one
1501 and applying to the value just stored. */
1502
1503 return ++value_history_count;
1504}
1505
1506/* Return a copy of the value in the history with sequence number NUM. */
1507
f23631e4 1508struct value *
fba45db2 1509access_value_history (int num)
c906108c 1510{
f23631e4 1511 struct value_history_chunk *chunk;
52f0bd74
AC
1512 int i;
1513 int absnum = num;
c906108c
SS
1514
1515 if (absnum <= 0)
1516 absnum += value_history_count;
1517
1518 if (absnum <= 0)
1519 {
1520 if (num == 0)
8a3fe4f8 1521 error (_("The history is empty."));
c906108c 1522 else if (num == 1)
8a3fe4f8 1523 error (_("There is only one value in the history."));
c906108c 1524 else
8a3fe4f8 1525 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1526 }
1527 if (absnum > value_history_count)
8a3fe4f8 1528 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1529
1530 absnum--;
1531
1532 /* Now absnum is always absolute and origin zero. */
1533
1534 chunk = value_history_chain;
3e43a32a
MS
1535 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1536 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1537 i > 0; i--)
1538 chunk = chunk->next;
1539
1540 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1541}
1542
c906108c 1543static void
fba45db2 1544show_values (char *num_exp, int from_tty)
c906108c 1545{
52f0bd74 1546 int i;
f23631e4 1547 struct value *val;
c906108c
SS
1548 static int num = 1;
1549
1550 if (num_exp)
1551 {
f132ba9d
TJB
1552 /* "show values +" should print from the stored position.
1553 "show values <exp>" should print around value number <exp>. */
c906108c 1554 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1555 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1556 }
1557 else
1558 {
f132ba9d 1559 /* "show values" means print the last 10 values. */
c906108c
SS
1560 num = value_history_count - 9;
1561 }
1562
1563 if (num <= 0)
1564 num = 1;
1565
1566 for (i = num; i < num + 10 && i <= value_history_count; i++)
1567 {
79a45b7d 1568 struct value_print_options opts;
a109c7c1 1569
c906108c 1570 val = access_value_history (i);
a3f17187 1571 printf_filtered (("$%d = "), i);
79a45b7d
TT
1572 get_user_print_options (&opts);
1573 value_print (val, gdb_stdout, &opts);
a3f17187 1574 printf_filtered (("\n"));
c906108c
SS
1575 }
1576
f132ba9d 1577 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1578 num += 10;
1579
1580 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1581 "show values +". If num_exp is null, this is unnecessary, since
1582 "show values +" is not useful after "show values". */
c906108c
SS
1583 if (from_tty && num_exp)
1584 {
1585 num_exp[0] = '+';
1586 num_exp[1] = '\0';
1587 }
1588}
1589\f
1590/* Internal variables. These are variables within the debugger
1591 that hold values assigned by debugger commands.
1592 The user refers to them with a '$' prefix
1593 that does not appear in the variable names stored internally. */
1594
4fa62494
UW
1595struct internalvar
1596{
1597 struct internalvar *next;
1598 char *name;
4fa62494 1599
78267919
UW
1600 /* We support various different kinds of content of an internal variable.
1601 enum internalvar_kind specifies the kind, and union internalvar_data
1602 provides the data associated with this particular kind. */
1603
1604 enum internalvar_kind
1605 {
1606 /* The internal variable is empty. */
1607 INTERNALVAR_VOID,
1608
1609 /* The value of the internal variable is provided directly as
1610 a GDB value object. */
1611 INTERNALVAR_VALUE,
1612
1613 /* A fresh value is computed via a call-back routine on every
1614 access to the internal variable. */
1615 INTERNALVAR_MAKE_VALUE,
4fa62494 1616
78267919
UW
1617 /* The internal variable holds a GDB internal convenience function. */
1618 INTERNALVAR_FUNCTION,
1619
cab0c772
UW
1620 /* The variable holds an integer value. */
1621 INTERNALVAR_INTEGER,
1622
78267919
UW
1623 /* The variable holds a GDB-provided string. */
1624 INTERNALVAR_STRING,
1625
1626 } kind;
4fa62494 1627
4fa62494
UW
1628 union internalvar_data
1629 {
78267919
UW
1630 /* A value object used with INTERNALVAR_VALUE. */
1631 struct value *value;
1632
1633 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1634 struct
1635 {
1636 /* The functions to call. */
1637 const struct internalvar_funcs *functions;
1638
1639 /* The function's user-data. */
1640 void *data;
1641 } make_value;
78267919
UW
1642
1643 /* The internal function used with INTERNALVAR_FUNCTION. */
1644 struct
1645 {
1646 struct internal_function *function;
1647 /* True if this is the canonical name for the function. */
1648 int canonical;
1649 } fn;
1650
cab0c772 1651 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1652 struct
1653 {
1654 /* If type is non-NULL, it will be used as the type to generate
1655 a value for this internal variable. If type is NULL, a default
1656 integer type for the architecture is used. */
1657 struct type *type;
cab0c772
UW
1658 LONGEST val;
1659 } integer;
1660
78267919
UW
1661 /* A string value used with INTERNALVAR_STRING. */
1662 char *string;
4fa62494
UW
1663 } u;
1664};
1665
c906108c
SS
1666static struct internalvar *internalvars;
1667
3e43a32a
MS
1668/* If the variable does not already exist create it and give it the
1669 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1670static void
1671init_if_undefined_command (char* args, int from_tty)
1672{
1673 struct internalvar* intvar;
1674
1675 /* Parse the expression - this is taken from set_command(). */
1676 struct expression *expr = parse_expression (args);
1677 register struct cleanup *old_chain =
1678 make_cleanup (free_current_contents, &expr);
1679
1680 /* Validate the expression.
1681 Was the expression an assignment?
1682 Or even an expression at all? */
1683 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1684 error (_("Init-if-undefined requires an assignment expression."));
1685
1686 /* Extract the variable from the parsed expression.
1687 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1688 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1689 error (_("The first parameter to init-if-undefined "
1690 "should be a GDB variable."));
53e5f3cf
AS
1691 intvar = expr->elts[2].internalvar;
1692
1693 /* Only evaluate the expression if the lvalue is void.
1694 This may still fail if the expresssion is invalid. */
78267919 1695 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1696 evaluate_expression (expr);
1697
1698 do_cleanups (old_chain);
1699}
1700
1701
c906108c
SS
1702/* Look up an internal variable with name NAME. NAME should not
1703 normally include a dollar sign.
1704
1705 If the specified internal variable does not exist,
c4a3d09a 1706 the return value is NULL. */
c906108c
SS
1707
1708struct internalvar *
bc3b79fd 1709lookup_only_internalvar (const char *name)
c906108c 1710{
52f0bd74 1711 struct internalvar *var;
c906108c
SS
1712
1713 for (var = internalvars; var; var = var->next)
5cb316ef 1714 if (strcmp (var->name, name) == 0)
c906108c
SS
1715 return var;
1716
c4a3d09a
MF
1717 return NULL;
1718}
1719
d55637df
TT
1720/* Complete NAME by comparing it to the names of internal variables.
1721 Returns a vector of newly allocated strings, or NULL if no matches
1722 were found. */
1723
1724VEC (char_ptr) *
1725complete_internalvar (const char *name)
1726{
1727 VEC (char_ptr) *result = NULL;
1728 struct internalvar *var;
1729 int len;
1730
1731 len = strlen (name);
1732
1733 for (var = internalvars; var; var = var->next)
1734 if (strncmp (var->name, name, len) == 0)
1735 {
1736 char *r = xstrdup (var->name);
1737
1738 VEC_safe_push (char_ptr, result, r);
1739 }
1740
1741 return result;
1742}
c4a3d09a
MF
1743
1744/* Create an internal variable with name NAME and with a void value.
1745 NAME should not normally include a dollar sign. */
1746
1747struct internalvar *
bc3b79fd 1748create_internalvar (const char *name)
c4a3d09a
MF
1749{
1750 struct internalvar *var;
a109c7c1 1751
c906108c 1752 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1753 var->name = concat (name, (char *)NULL);
78267919 1754 var->kind = INTERNALVAR_VOID;
c906108c
SS
1755 var->next = internalvars;
1756 internalvars = var;
1757 return var;
1758}
1759
4aa995e1
PA
1760/* Create an internal variable with name NAME and register FUN as the
1761 function that value_of_internalvar uses to create a value whenever
1762 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1763 dollar sign. DATA is passed uninterpreted to FUN when it is
1764 called. CLEANUP, if not NULL, is called when the internal variable
1765 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1766
1767struct internalvar *
22d2b532
SDJ
1768create_internalvar_type_lazy (const char *name,
1769 const struct internalvar_funcs *funcs,
1770 void *data)
4aa995e1 1771{
4fa62494 1772 struct internalvar *var = create_internalvar (name);
a109c7c1 1773
78267919 1774 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1775 var->u.make_value.functions = funcs;
1776 var->u.make_value.data = data;
4aa995e1
PA
1777 return var;
1778}
c4a3d09a 1779
22d2b532
SDJ
1780/* See documentation in value.h. */
1781
1782int
1783compile_internalvar_to_ax (struct internalvar *var,
1784 struct agent_expr *expr,
1785 struct axs_value *value)
1786{
1787 if (var->kind != INTERNALVAR_MAKE_VALUE
1788 || var->u.make_value.functions->compile_to_ax == NULL)
1789 return 0;
1790
1791 var->u.make_value.functions->compile_to_ax (var, expr, value,
1792 var->u.make_value.data);
1793 return 1;
1794}
1795
c4a3d09a
MF
1796/* Look up an internal variable with name NAME. NAME should not
1797 normally include a dollar sign.
1798
1799 If the specified internal variable does not exist,
1800 one is created, with a void value. */
1801
1802struct internalvar *
bc3b79fd 1803lookup_internalvar (const char *name)
c4a3d09a
MF
1804{
1805 struct internalvar *var;
1806
1807 var = lookup_only_internalvar (name);
1808 if (var)
1809 return var;
1810
1811 return create_internalvar (name);
1812}
1813
78267919
UW
1814/* Return current value of internal variable VAR. For variables that
1815 are not inherently typed, use a value type appropriate for GDBARCH. */
1816
f23631e4 1817struct value *
78267919 1818value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1819{
f23631e4 1820 struct value *val;
0914bcdb
SS
1821 struct trace_state_variable *tsv;
1822
1823 /* If there is a trace state variable of the same name, assume that
1824 is what we really want to see. */
1825 tsv = find_trace_state_variable (var->name);
1826 if (tsv)
1827 {
1828 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1829 &(tsv->value));
1830 if (tsv->value_known)
1831 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1832 tsv->value);
1833 else
1834 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1835 return val;
1836 }
c906108c 1837
78267919 1838 switch (var->kind)
5f5233d4 1839 {
78267919
UW
1840 case INTERNALVAR_VOID:
1841 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1842 break;
4fa62494 1843
78267919
UW
1844 case INTERNALVAR_FUNCTION:
1845 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1846 break;
4fa62494 1847
cab0c772
UW
1848 case INTERNALVAR_INTEGER:
1849 if (!var->u.integer.type)
78267919 1850 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1851 var->u.integer.val);
78267919 1852 else
cab0c772
UW
1853 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1854 break;
1855
78267919
UW
1856 case INTERNALVAR_STRING:
1857 val = value_cstring (var->u.string, strlen (var->u.string),
1858 builtin_type (gdbarch)->builtin_char);
1859 break;
4fa62494 1860
78267919
UW
1861 case INTERNALVAR_VALUE:
1862 val = value_copy (var->u.value);
4aa995e1
PA
1863 if (value_lazy (val))
1864 value_fetch_lazy (val);
78267919 1865 break;
4aa995e1 1866
78267919 1867 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
1868 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1869 var->u.make_value.data);
78267919
UW
1870 break;
1871
1872 default:
9b20d036 1873 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1874 }
1875
1876 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1877 on this value go back to affect the original internal variable.
1878
1879 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1880 no underlying modifyable state in the internal variable.
1881
1882 Likewise, if the variable's value is a computed lvalue, we want
1883 references to it to produce another computed lvalue, where
1884 references and assignments actually operate through the
1885 computed value's functions.
1886
1887 This means that internal variables with computed values
1888 behave a little differently from other internal variables:
1889 assignments to them don't just replace the previous value
1890 altogether. At the moment, this seems like the behavior we
1891 want. */
1892
1893 if (var->kind != INTERNALVAR_MAKE_VALUE
1894 && val->lval != lval_computed)
1895 {
1896 VALUE_LVAL (val) = lval_internalvar;
1897 VALUE_INTERNALVAR (val) = var;
5f5233d4 1898 }
d3c139e9 1899
4fa62494
UW
1900 return val;
1901}
d3c139e9 1902
4fa62494
UW
1903int
1904get_internalvar_integer (struct internalvar *var, LONGEST *result)
1905{
3158c6ed 1906 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 1907 {
cab0c772
UW
1908 *result = var->u.integer.val;
1909 return 1;
3158c6ed 1910 }
d3c139e9 1911
3158c6ed
PA
1912 if (var->kind == INTERNALVAR_VALUE)
1913 {
1914 struct type *type = check_typedef (value_type (var->u.value));
1915
1916 if (TYPE_CODE (type) == TYPE_CODE_INT)
1917 {
1918 *result = value_as_long (var->u.value);
1919 return 1;
1920 }
4fa62494 1921 }
3158c6ed
PA
1922
1923 return 0;
4fa62494 1924}
d3c139e9 1925
4fa62494
UW
1926static int
1927get_internalvar_function (struct internalvar *var,
1928 struct internal_function **result)
1929{
78267919 1930 switch (var->kind)
d3c139e9 1931 {
78267919
UW
1932 case INTERNALVAR_FUNCTION:
1933 *result = var->u.fn.function;
4fa62494 1934 return 1;
d3c139e9 1935
4fa62494
UW
1936 default:
1937 return 0;
1938 }
c906108c
SS
1939}
1940
1941void
fba45db2 1942set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1943 int bitsize, struct value *newval)
c906108c 1944{
4fa62494 1945 gdb_byte *addr;
c906108c 1946
78267919 1947 switch (var->kind)
4fa62494 1948 {
78267919
UW
1949 case INTERNALVAR_VALUE:
1950 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1951
1952 if (bitsize)
50810684 1953 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1954 value_as_long (newval), bitpos, bitsize);
1955 else
1956 memcpy (addr + offset, value_contents (newval),
1957 TYPE_LENGTH (value_type (newval)));
1958 break;
78267919
UW
1959
1960 default:
1961 /* We can never get a component of any other kind. */
9b20d036 1962 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 1963 }
c906108c
SS
1964}
1965
1966void
f23631e4 1967set_internalvar (struct internalvar *var, struct value *val)
c906108c 1968{
78267919 1969 enum internalvar_kind new_kind;
4fa62494 1970 union internalvar_data new_data = { 0 };
c906108c 1971
78267919 1972 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1973 error (_("Cannot overwrite convenience function %s"), var->name);
1974
4fa62494 1975 /* Prepare new contents. */
78267919 1976 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1977 {
1978 case TYPE_CODE_VOID:
78267919 1979 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1980 break;
1981
1982 case TYPE_CODE_INTERNAL_FUNCTION:
1983 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1984 new_kind = INTERNALVAR_FUNCTION;
1985 get_internalvar_function (VALUE_INTERNALVAR (val),
1986 &new_data.fn.function);
1987 /* Copies created here are never canonical. */
4fa62494
UW
1988 break;
1989
4fa62494 1990 default:
78267919
UW
1991 new_kind = INTERNALVAR_VALUE;
1992 new_data.value = value_copy (val);
1993 new_data.value->modifiable = 1;
4fa62494
UW
1994
1995 /* Force the value to be fetched from the target now, to avoid problems
1996 later when this internalvar is referenced and the target is gone or
1997 has changed. */
78267919
UW
1998 if (value_lazy (new_data.value))
1999 value_fetch_lazy (new_data.value);
4fa62494
UW
2000
2001 /* Release the value from the value chain to prevent it from being
2002 deleted by free_all_values. From here on this function should not
2003 call error () until new_data is installed into the var->u to avoid
2004 leaking memory. */
78267919 2005 release_value (new_data.value);
4fa62494
UW
2006 break;
2007 }
2008
2009 /* Clean up old contents. */
2010 clear_internalvar (var);
2011
2012 /* Switch over. */
78267919 2013 var->kind = new_kind;
4fa62494 2014 var->u = new_data;
c906108c
SS
2015 /* End code which must not call error(). */
2016}
2017
4fa62494
UW
2018void
2019set_internalvar_integer (struct internalvar *var, LONGEST l)
2020{
2021 /* Clean up old contents. */
2022 clear_internalvar (var);
2023
cab0c772
UW
2024 var->kind = INTERNALVAR_INTEGER;
2025 var->u.integer.type = NULL;
2026 var->u.integer.val = l;
78267919
UW
2027}
2028
2029void
2030set_internalvar_string (struct internalvar *var, const char *string)
2031{
2032 /* Clean up old contents. */
2033 clear_internalvar (var);
2034
2035 var->kind = INTERNALVAR_STRING;
2036 var->u.string = xstrdup (string);
4fa62494
UW
2037}
2038
2039static void
2040set_internalvar_function (struct internalvar *var, struct internal_function *f)
2041{
2042 /* Clean up old contents. */
2043 clear_internalvar (var);
2044
78267919
UW
2045 var->kind = INTERNALVAR_FUNCTION;
2046 var->u.fn.function = f;
2047 var->u.fn.canonical = 1;
2048 /* Variables installed here are always the canonical version. */
4fa62494
UW
2049}
2050
2051void
2052clear_internalvar (struct internalvar *var)
2053{
2054 /* Clean up old contents. */
78267919 2055 switch (var->kind)
4fa62494 2056 {
78267919
UW
2057 case INTERNALVAR_VALUE:
2058 value_free (var->u.value);
2059 break;
2060
2061 case INTERNALVAR_STRING:
2062 xfree (var->u.string);
4fa62494
UW
2063 break;
2064
22d2b532
SDJ
2065 case INTERNALVAR_MAKE_VALUE:
2066 if (var->u.make_value.functions->destroy != NULL)
2067 var->u.make_value.functions->destroy (var->u.make_value.data);
2068 break;
2069
4fa62494 2070 default:
4fa62494
UW
2071 break;
2072 }
2073
78267919
UW
2074 /* Reset to void kind. */
2075 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2076}
2077
c906108c 2078char *
fba45db2 2079internalvar_name (struct internalvar *var)
c906108c
SS
2080{
2081 return var->name;
2082}
2083
4fa62494
UW
2084static struct internal_function *
2085create_internal_function (const char *name,
2086 internal_function_fn handler, void *cookie)
bc3b79fd 2087{
bc3b79fd 2088 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2089
bc3b79fd
TJB
2090 ifn->name = xstrdup (name);
2091 ifn->handler = handler;
2092 ifn->cookie = cookie;
4fa62494 2093 return ifn;
bc3b79fd
TJB
2094}
2095
2096char *
2097value_internal_function_name (struct value *val)
2098{
4fa62494
UW
2099 struct internal_function *ifn;
2100 int result;
2101
2102 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2103 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2104 gdb_assert (result);
2105
bc3b79fd
TJB
2106 return ifn->name;
2107}
2108
2109struct value *
d452c4bc
UW
2110call_internal_function (struct gdbarch *gdbarch,
2111 const struct language_defn *language,
2112 struct value *func, int argc, struct value **argv)
bc3b79fd 2113{
4fa62494
UW
2114 struct internal_function *ifn;
2115 int result;
2116
2117 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2118 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2119 gdb_assert (result);
2120
d452c4bc 2121 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2122}
2123
2124/* The 'function' command. This does nothing -- it is just a
2125 placeholder to let "help function NAME" work. This is also used as
2126 the implementation of the sub-command that is created when
2127 registering an internal function. */
2128static void
2129function_command (char *command, int from_tty)
2130{
2131 /* Do nothing. */
2132}
2133
2134/* Clean up if an internal function's command is destroyed. */
2135static void
2136function_destroyer (struct cmd_list_element *self, void *ignore)
2137{
2138 xfree (self->name);
2139 xfree (self->doc);
2140}
2141
2142/* Add a new internal function. NAME is the name of the function; DOC
2143 is a documentation string describing the function. HANDLER is
2144 called when the function is invoked. COOKIE is an arbitrary
2145 pointer which is passed to HANDLER and is intended for "user
2146 data". */
2147void
2148add_internal_function (const char *name, const char *doc,
2149 internal_function_fn handler, void *cookie)
2150{
2151 struct cmd_list_element *cmd;
4fa62494 2152 struct internal_function *ifn;
bc3b79fd 2153 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2154
2155 ifn = create_internal_function (name, handler, cookie);
2156 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2157
2158 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2159 &functionlist);
2160 cmd->destroyer = function_destroyer;
2161}
2162
ae5a43e0
DJ
2163/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2164 prevent cycles / duplicates. */
2165
4e7a5ef5 2166void
ae5a43e0
DJ
2167preserve_one_value (struct value *value, struct objfile *objfile,
2168 htab_t copied_types)
2169{
2170 if (TYPE_OBJFILE (value->type) == objfile)
2171 value->type = copy_type_recursive (objfile, value->type, copied_types);
2172
2173 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2174 value->enclosing_type = copy_type_recursive (objfile,
2175 value->enclosing_type,
2176 copied_types);
2177}
2178
78267919
UW
2179/* Likewise for internal variable VAR. */
2180
2181static void
2182preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2183 htab_t copied_types)
2184{
2185 switch (var->kind)
2186 {
cab0c772
UW
2187 case INTERNALVAR_INTEGER:
2188 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2189 var->u.integer.type
2190 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2191 break;
2192
78267919
UW
2193 case INTERNALVAR_VALUE:
2194 preserve_one_value (var->u.value, objfile, copied_types);
2195 break;
2196 }
2197}
2198
ae5a43e0
DJ
2199/* Update the internal variables and value history when OBJFILE is
2200 discarded; we must copy the types out of the objfile. New global types
2201 will be created for every convenience variable which currently points to
2202 this objfile's types, and the convenience variables will be adjusted to
2203 use the new global types. */
c906108c
SS
2204
2205void
ae5a43e0 2206preserve_values (struct objfile *objfile)
c906108c 2207{
ae5a43e0
DJ
2208 htab_t copied_types;
2209 struct value_history_chunk *cur;
52f0bd74 2210 struct internalvar *var;
ae5a43e0 2211 int i;
c906108c 2212
ae5a43e0
DJ
2213 /* Create the hash table. We allocate on the objfile's obstack, since
2214 it is soon to be deleted. */
2215 copied_types = create_copied_types_hash (objfile);
2216
2217 for (cur = value_history_chain; cur; cur = cur->next)
2218 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2219 if (cur->values[i])
2220 preserve_one_value (cur->values[i], objfile, copied_types);
2221
2222 for (var = internalvars; var; var = var->next)
78267919 2223 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2224
4e7a5ef5 2225 preserve_python_values (objfile, copied_types);
a08702d6 2226
ae5a43e0 2227 htab_delete (copied_types);
c906108c
SS
2228}
2229
2230static void
fba45db2 2231show_convenience (char *ignore, int from_tty)
c906108c 2232{
e17c207e 2233 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2234 struct internalvar *var;
c906108c 2235 int varseen = 0;
79a45b7d 2236 struct value_print_options opts;
c906108c 2237
79a45b7d 2238 get_user_print_options (&opts);
c906108c
SS
2239 for (var = internalvars; var; var = var->next)
2240 {
c709acd1
PA
2241 volatile struct gdb_exception ex;
2242
c906108c
SS
2243 if (!varseen)
2244 {
2245 varseen = 1;
2246 }
a3f17187 2247 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2248
2249 TRY_CATCH (ex, RETURN_MASK_ERROR)
2250 {
2251 struct value *val;
2252
2253 val = value_of_internalvar (gdbarch, var);
2254 value_print (val, gdb_stdout, &opts);
2255 }
2256 if (ex.reason < 0)
2257 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2258 printf_filtered (("\n"));
c906108c
SS
2259 }
2260 if (!varseen)
f47f77df
DE
2261 {
2262 /* This text does not mention convenience functions on purpose.
2263 The user can't create them except via Python, and if Python support
2264 is installed this message will never be printed ($_streq will
2265 exist). */
2266 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2267 "Convenience variables have "
2268 "names starting with \"$\";\n"
2269 "use \"set\" as in \"set "
2270 "$foo = 5\" to define them.\n"));
2271 }
c906108c
SS
2272}
2273\f
2274/* Extract a value as a C number (either long or double).
2275 Knows how to convert fixed values to double, or
2276 floating values to long.
2277 Does not deallocate the value. */
2278
2279LONGEST
f23631e4 2280value_as_long (struct value *val)
c906108c
SS
2281{
2282 /* This coerces arrays and functions, which is necessary (e.g.
2283 in disassemble_command). It also dereferences references, which
2284 I suspect is the most logical thing to do. */
994b9211 2285 val = coerce_array (val);
0fd88904 2286 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2287}
2288
2289DOUBLEST
f23631e4 2290value_as_double (struct value *val)
c906108c
SS
2291{
2292 DOUBLEST foo;
2293 int inv;
c5aa993b 2294
0fd88904 2295 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2296 if (inv)
8a3fe4f8 2297 error (_("Invalid floating value found in program."));
c906108c
SS
2298 return foo;
2299}
4ef30785 2300
581e13c1 2301/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2302 Note that val's type may not actually be a pointer; value_as_long
2303 handles all the cases. */
c906108c 2304CORE_ADDR
f23631e4 2305value_as_address (struct value *val)
c906108c 2306{
50810684
UW
2307 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2308
c906108c
SS
2309 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2310 whether we want this to be true eventually. */
2311#if 0
bf6ae464 2312 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2313 non-address (e.g. argument to "signal", "info break", etc.), or
2314 for pointers to char, in which the low bits *are* significant. */
50810684 2315 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2316#else
f312f057
JB
2317
2318 /* There are several targets (IA-64, PowerPC, and others) which
2319 don't represent pointers to functions as simply the address of
2320 the function's entry point. For example, on the IA-64, a
2321 function pointer points to a two-word descriptor, generated by
2322 the linker, which contains the function's entry point, and the
2323 value the IA-64 "global pointer" register should have --- to
2324 support position-independent code. The linker generates
2325 descriptors only for those functions whose addresses are taken.
2326
2327 On such targets, it's difficult for GDB to convert an arbitrary
2328 function address into a function pointer; it has to either find
2329 an existing descriptor for that function, or call malloc and
2330 build its own. On some targets, it is impossible for GDB to
2331 build a descriptor at all: the descriptor must contain a jump
2332 instruction; data memory cannot be executed; and code memory
2333 cannot be modified.
2334
2335 Upon entry to this function, if VAL is a value of type `function'
2336 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2337 value_address (val) is the address of the function. This is what
f312f057
JB
2338 you'll get if you evaluate an expression like `main'. The call
2339 to COERCE_ARRAY below actually does all the usual unary
2340 conversions, which includes converting values of type `function'
2341 to `pointer to function'. This is the challenging conversion
2342 discussed above. Then, `unpack_long' will convert that pointer
2343 back into an address.
2344
2345 So, suppose the user types `disassemble foo' on an architecture
2346 with a strange function pointer representation, on which GDB
2347 cannot build its own descriptors, and suppose further that `foo'
2348 has no linker-built descriptor. The address->pointer conversion
2349 will signal an error and prevent the command from running, even
2350 though the next step would have been to convert the pointer
2351 directly back into the same address.
2352
2353 The following shortcut avoids this whole mess. If VAL is a
2354 function, just return its address directly. */
df407dfe
AC
2355 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2356 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2357 return value_address (val);
f312f057 2358
994b9211 2359 val = coerce_array (val);
fc0c74b1
AC
2360
2361 /* Some architectures (e.g. Harvard), map instruction and data
2362 addresses onto a single large unified address space. For
2363 instance: An architecture may consider a large integer in the
2364 range 0x10000000 .. 0x1000ffff to already represent a data
2365 addresses (hence not need a pointer to address conversion) while
2366 a small integer would still need to be converted integer to
2367 pointer to address. Just assume such architectures handle all
2368 integer conversions in a single function. */
2369
2370 /* JimB writes:
2371
2372 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2373 must admonish GDB hackers to make sure its behavior matches the
2374 compiler's, whenever possible.
2375
2376 In general, I think GDB should evaluate expressions the same way
2377 the compiler does. When the user copies an expression out of
2378 their source code and hands it to a `print' command, they should
2379 get the same value the compiler would have computed. Any
2380 deviation from this rule can cause major confusion and annoyance,
2381 and needs to be justified carefully. In other words, GDB doesn't
2382 really have the freedom to do these conversions in clever and
2383 useful ways.
2384
2385 AndrewC pointed out that users aren't complaining about how GDB
2386 casts integers to pointers; they are complaining that they can't
2387 take an address from a disassembly listing and give it to `x/i'.
2388 This is certainly important.
2389
79dd2d24 2390 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2391 makes it possible for GDB to "get it right" in all circumstances
2392 --- the target has complete control over how things get done, so
2393 people can Do The Right Thing for their target without breaking
2394 anyone else. The standard doesn't specify how integers get
2395 converted to pointers; usually, the ABI doesn't either, but
2396 ABI-specific code is a more reasonable place to handle it. */
2397
df407dfe
AC
2398 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2399 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2400 && gdbarch_integer_to_address_p (gdbarch))
2401 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2402 value_contents (val));
fc0c74b1 2403
0fd88904 2404 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2405#endif
2406}
2407\f
2408/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2409 as a long, or as a double, assuming the raw data is described
2410 by type TYPE. Knows how to convert different sizes of values
2411 and can convert between fixed and floating point. We don't assume
2412 any alignment for the raw data. Return value is in host byte order.
2413
2414 If you want functions and arrays to be coerced to pointers, and
2415 references to be dereferenced, call value_as_long() instead.
2416
2417 C++: It is assumed that the front-end has taken care of
2418 all matters concerning pointers to members. A pointer
2419 to member which reaches here is considered to be equivalent
2420 to an INT (or some size). After all, it is only an offset. */
2421
2422LONGEST
fc1a4b47 2423unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2424{
e17a4113 2425 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2426 enum type_code code = TYPE_CODE (type);
2427 int len = TYPE_LENGTH (type);
2428 int nosign = TYPE_UNSIGNED (type);
c906108c 2429
c906108c
SS
2430 switch (code)
2431 {
2432 case TYPE_CODE_TYPEDEF:
2433 return unpack_long (check_typedef (type), valaddr);
2434 case TYPE_CODE_ENUM:
4f2aea11 2435 case TYPE_CODE_FLAGS:
c906108c
SS
2436 case TYPE_CODE_BOOL:
2437 case TYPE_CODE_INT:
2438 case TYPE_CODE_CHAR:
2439 case TYPE_CODE_RANGE:
0d5de010 2440 case TYPE_CODE_MEMBERPTR:
c906108c 2441 if (nosign)
e17a4113 2442 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2443 else
e17a4113 2444 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2445
2446 case TYPE_CODE_FLT:
96d2f608 2447 return extract_typed_floating (valaddr, type);
c906108c 2448
4ef30785
TJB
2449 case TYPE_CODE_DECFLOAT:
2450 /* libdecnumber has a function to convert from decimal to integer, but
2451 it doesn't work when the decimal number has a fractional part. */
e17a4113 2452 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2453
c906108c
SS
2454 case TYPE_CODE_PTR:
2455 case TYPE_CODE_REF:
2456 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2457 whether we want this to be true eventually. */
4478b372 2458 return extract_typed_address (valaddr, type);
c906108c 2459
c906108c 2460 default:
8a3fe4f8 2461 error (_("Value can't be converted to integer."));
c906108c 2462 }
c5aa993b 2463 return 0; /* Placate lint. */
c906108c
SS
2464}
2465
2466/* Return a double value from the specified type and address.
2467 INVP points to an int which is set to 0 for valid value,
2468 1 for invalid value (bad float format). In either case,
2469 the returned double is OK to use. Argument is in target
2470 format, result is in host format. */
2471
2472DOUBLEST
fc1a4b47 2473unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2474{
e17a4113 2475 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2476 enum type_code code;
2477 int len;
2478 int nosign;
2479
581e13c1 2480 *invp = 0; /* Assume valid. */
c906108c
SS
2481 CHECK_TYPEDEF (type);
2482 code = TYPE_CODE (type);
2483 len = TYPE_LENGTH (type);
2484 nosign = TYPE_UNSIGNED (type);
2485 if (code == TYPE_CODE_FLT)
2486 {
75bc7ddf
AC
2487 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2488 floating-point value was valid (using the macro
2489 INVALID_FLOAT). That test/macro have been removed.
2490
2491 It turns out that only the VAX defined this macro and then
2492 only in a non-portable way. Fixing the portability problem
2493 wouldn't help since the VAX floating-point code is also badly
2494 bit-rotten. The target needs to add definitions for the
ea06eb3d 2495 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2496 exactly describe the target floating-point format. The
2497 problem here is that the corresponding floatformat_vax_f and
2498 floatformat_vax_d values these methods should be set to are
2499 also not defined either. Oops!
2500
2501 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2502 definitions and the new cases for floatformat_is_valid (). */
2503
2504 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2505 {
2506 *invp = 1;
2507 return 0.0;
2508 }
2509
96d2f608 2510 return extract_typed_floating (valaddr, type);
c906108c 2511 }
4ef30785 2512 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2513 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2514 else if (nosign)
2515 {
2516 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2517 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2518 }
2519 else
2520 {
2521 /* Signed -- we are OK with unpack_long. */
2522 return unpack_long (type, valaddr);
2523 }
2524}
2525
2526/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2527 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2528 We don't assume any alignment for the raw data. Return value is in
2529 host byte order.
2530
2531 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2532 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2533
2534 C++: It is assumed that the front-end has taken care of
2535 all matters concerning pointers to members. A pointer
2536 to member which reaches here is considered to be equivalent
2537 to an INT (or some size). After all, it is only an offset. */
2538
2539CORE_ADDR
fc1a4b47 2540unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2541{
2542 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2543 whether we want this to be true eventually. */
2544 return unpack_long (type, valaddr);
2545}
4478b372 2546
c906108c 2547\f
1596cb5d 2548/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0 2549 TYPE. Return NULL if the field doesn't exist or has been
581e13c1 2550 optimized out. */
c906108c 2551
f23631e4 2552struct value *
fba45db2 2553value_static_field (struct type *type, int fieldno)
c906108c 2554{
948e66d9
DJ
2555 struct value *retval;
2556
1596cb5d 2557 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2558 {
1596cb5d 2559 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2560 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2561 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2562 break;
2563 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2564 {
ff355380 2565 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2566 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2567 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2568
948e66d9 2569 if (sym == NULL)
c906108c 2570 {
a109c7c1 2571 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2572 reported as non-debuggable symbols. */
a109c7c1
MS
2573 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2574 NULL, NULL);
2575
c906108c
SS
2576 if (!msym)
2577 return NULL;
2578 else
c5aa993b 2579 {
52e9fde8
SS
2580 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2581 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2582 }
2583 }
2584 else
515ed532 2585 retval = value_of_variable (sym, NULL);
1596cb5d 2586 break;
c906108c 2587 }
1596cb5d 2588 default:
f3574227 2589 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2590 }
2591
948e66d9 2592 return retval;
c906108c
SS
2593}
2594
4dfea560
DE
2595/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2596 You have to be careful here, since the size of the data area for the value
2597 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2598 than the old enclosing type, you have to allocate more space for the
2599 data. */
2b127877 2600
4dfea560
DE
2601void
2602set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2603{
3e3d7139
JG
2604 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2605 val->contents =
2606 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2607
2608 val->enclosing_type = new_encl_type;
2b127877
DB
2609}
2610
c906108c
SS
2611/* Given a value ARG1 (offset by OFFSET bytes)
2612 of a struct or union type ARG_TYPE,
2613 extract and return the value of one of its (non-static) fields.
581e13c1 2614 FIELDNO says which field. */
c906108c 2615
f23631e4
AC
2616struct value *
2617value_primitive_field (struct value *arg1, int offset,
aa1ee363 2618 int fieldno, struct type *arg_type)
c906108c 2619{
f23631e4 2620 struct value *v;
52f0bd74 2621 struct type *type;
c906108c
SS
2622
2623 CHECK_TYPEDEF (arg_type);
2624 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2625
2626 /* Call check_typedef on our type to make sure that, if TYPE
2627 is a TYPE_CODE_TYPEDEF, its length is set to the length
2628 of the target type instead of zero. However, we do not
2629 replace the typedef type by the target type, because we want
2630 to keep the typedef in order to be able to print the type
2631 description correctly. */
2632 check_typedef (type);
c906108c 2633
22c05d8a
JK
2634 if (value_optimized_out (arg1))
2635 v = allocate_optimized_out_value (type);
2636 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2637 {
22c05d8a
JK
2638 /* Handle packed fields.
2639
2640 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2641 set. If possible, arrange offset and bitpos so that we can
2642 do a single aligned read of the size of the containing type.
2643 Otherwise, adjust offset to the byte containing the first
2644 bit. Assume that the address, offset, and embedded offset
2645 are sufficiently aligned. */
22c05d8a 2646
4ea48cc1
DJ
2647 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2648 int container_bitsize = TYPE_LENGTH (type) * 8;
2649
2650 v = allocate_value_lazy (type);
df407dfe 2651 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
2652 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2653 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2654 v->bitpos = bitpos % container_bitsize;
2655 else
2656 v->bitpos = bitpos % 8;
38f12cfc
TT
2657 v->offset = (value_embedded_offset (arg1)
2658 + offset
2659 + (bitpos - v->bitpos) / 8);
4ea48cc1
DJ
2660 v->parent = arg1;
2661 value_incref (v->parent);
2662 if (!value_lazy (arg1))
2663 value_fetch_lazy (v);
c906108c
SS
2664 }
2665 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2666 {
2667 /* This field is actually a base subobject, so preserve the
39d37385
PA
2668 entire object's contents for later references to virtual
2669 bases, etc. */
be335936 2670 int boffset;
a4e2ee12
DJ
2671
2672 /* Lazy register values with offsets are not supported. */
2673 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2674 value_fetch_lazy (arg1);
2675
9f9f1f31
TT
2676 /* We special case virtual inheritance here because this
2677 requires access to the contents, which we would rather avoid
2678 for references to ordinary fields of unavailable values. */
2679 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2680 boffset = baseclass_offset (arg_type, fieldno,
2681 value_contents (arg1),
2682 value_embedded_offset (arg1),
2683 value_address (arg1),
2684 arg1);
2685 else
2686 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
be335936 2687
a4e2ee12 2688 if (value_lazy (arg1))
3e3d7139 2689 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2690 else
3e3d7139
JG
2691 {
2692 v = allocate_value (value_enclosing_type (arg1));
39d37385
PA
2693 value_contents_copy_raw (v, 0, arg1, 0,
2694 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139
JG
2695 }
2696 v->type = type;
df407dfe 2697 v->offset = value_offset (arg1);
be335936 2698 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
2699 }
2700 else
2701 {
2702 /* Plain old data member */
2703 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2704
2705 /* Lazy register values with offsets are not supported. */
2706 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2707 value_fetch_lazy (arg1);
2708
2709 if (value_lazy (arg1))
3e3d7139 2710 v = allocate_value_lazy (type);
c906108c 2711 else
3e3d7139
JG
2712 {
2713 v = allocate_value (type);
39d37385
PA
2714 value_contents_copy_raw (v, value_embedded_offset (v),
2715 arg1, value_embedded_offset (arg1) + offset,
2716 TYPE_LENGTH (type));
3e3d7139 2717 }
df407dfe 2718 v->offset = (value_offset (arg1) + offset
13c3b5f5 2719 + value_embedded_offset (arg1));
c906108c 2720 }
74bcbdf3 2721 set_value_component_location (v, arg1);
9ee8fc9d 2722 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2723 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2724 return v;
2725}
2726
2727/* Given a value ARG1 of a struct or union type,
2728 extract and return the value of one of its (non-static) fields.
581e13c1 2729 FIELDNO says which field. */
c906108c 2730
f23631e4 2731struct value *
aa1ee363 2732value_field (struct value *arg1, int fieldno)
c906108c 2733{
df407dfe 2734 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2735}
2736
2737/* Return a non-virtual function as a value.
2738 F is the list of member functions which contains the desired method.
0478d61c
FF
2739 J is an index into F which provides the desired method.
2740
2741 We only use the symbol for its address, so be happy with either a
581e13c1 2742 full symbol or a minimal symbol. */
c906108c 2743
f23631e4 2744struct value *
3e43a32a
MS
2745value_fn_field (struct value **arg1p, struct fn_field *f,
2746 int j, struct type *type,
fba45db2 2747 int offset)
c906108c 2748{
f23631e4 2749 struct value *v;
52f0bd74 2750 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2751 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2752 struct symbol *sym;
0478d61c 2753 struct minimal_symbol *msym;
c906108c 2754
2570f2b7 2755 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2756 if (sym != NULL)
0478d61c 2757 {
5ae326fa
AC
2758 msym = NULL;
2759 }
2760 else
2761 {
2762 gdb_assert (sym == NULL);
0478d61c 2763 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2764 if (msym == NULL)
2765 return NULL;
0478d61c
FF
2766 }
2767
c906108c 2768 v = allocate_value (ftype);
0478d61c
FF
2769 if (sym)
2770 {
42ae5230 2771 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2772 }
2773 else
2774 {
bccdca4a
UW
2775 /* The minimal symbol might point to a function descriptor;
2776 resolve it to the actual code address instead. */
2777 struct objfile *objfile = msymbol_objfile (msym);
2778 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2779
42ae5230
TT
2780 set_value_address (v,
2781 gdbarch_convert_from_func_ptr_addr
2782 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2783 }
c906108c
SS
2784
2785 if (arg1p)
c5aa993b 2786 {
df407dfe 2787 if (type != value_type (*arg1p))
c5aa993b
JM
2788 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2789 value_addr (*arg1p)));
2790
070ad9f0 2791 /* Move the `this' pointer according to the offset.
581e13c1 2792 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2793 }
2794
2795 return v;
2796}
2797
c906108c 2798\f
c906108c 2799
5467c6c8
PA
2800/* Helper function for both unpack_value_bits_as_long and
2801 unpack_bits_as_long. See those functions for more details on the
2802 interface; the only difference is that this function accepts either
2803 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2804
5467c6c8
PA
2805static int
2806unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2807 int embedded_offset, int bitpos, int bitsize,
2808 const struct value *original_value,
2809 LONGEST *result)
c906108c 2810{
4ea48cc1 2811 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2812 ULONGEST val;
2813 ULONGEST valmask;
c906108c 2814 int lsbcount;
4a76eae5 2815 int bytes_read;
5467c6c8 2816 int read_offset;
c906108c 2817
4a76eae5
DJ
2818 /* Read the minimum number of bytes required; there may not be
2819 enough bytes to read an entire ULONGEST. */
c906108c 2820 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2821 if (bitsize)
2822 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2823 else
2824 bytes_read = TYPE_LENGTH (field_type);
2825
5467c6c8
PA
2826 read_offset = bitpos / 8;
2827
2828 if (original_value != NULL
2829 && !value_bytes_available (original_value, embedded_offset + read_offset,
2830 bytes_read))
2831 return 0;
2832
2833 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 2834 bytes_read, byte_order);
c906108c 2835
581e13c1 2836 /* Extract bits. See comment above. */
c906108c 2837
4ea48cc1 2838 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2839 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2840 else
2841 lsbcount = (bitpos % 8);
2842 val >>= lsbcount;
2843
2844 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2845 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2846
2847 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2848 {
2849 valmask = (((ULONGEST) 1) << bitsize) - 1;
2850 val &= valmask;
2851 if (!TYPE_UNSIGNED (field_type))
2852 {
2853 if (val & (valmask ^ (valmask >> 1)))
2854 {
2855 val |= ~valmask;
2856 }
2857 }
2858 }
5467c6c8
PA
2859
2860 *result = val;
2861 return 1;
c906108c
SS
2862}
2863
5467c6c8
PA
2864/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2865 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2866 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2867 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2868 bits.
4ea48cc1 2869
5467c6c8
PA
2870 Returns false if the value contents are unavailable, otherwise
2871 returns true, indicating a valid value has been stored in *RESULT.
2872
2873 Extracting bits depends on endianness of the machine. Compute the
2874 number of least significant bits to discard. For big endian machines,
2875 we compute the total number of bits in the anonymous object, subtract
2876 off the bit count from the MSB of the object to the MSB of the
2877 bitfield, then the size of the bitfield, which leaves the LSB discard
2878 count. For little endian machines, the discard count is simply the
2879 number of bits from the LSB of the anonymous object to the LSB of the
2880 bitfield.
2881
2882 If the field is signed, we also do sign extension. */
2883
2884int
2885unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2886 int embedded_offset, int bitpos, int bitsize,
2887 const struct value *original_value,
2888 LONGEST *result)
2889{
2890 gdb_assert (original_value != NULL);
2891
2892 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2893 bitpos, bitsize, original_value, result);
2894
2895}
2896
2897/* Unpack a field FIELDNO of the specified TYPE, from the object at
2898 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2899 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2900 details. */
2901
2902static int
2903unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2904 int embedded_offset, int fieldno,
2905 const struct value *val, LONGEST *result)
4ea48cc1
DJ
2906{
2907 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2908 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2909 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2910
5467c6c8
PA
2911 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2912 bitpos, bitsize, val,
2913 result);
2914}
2915
2916/* Unpack a field FIELDNO of the specified TYPE, from the object at
2917 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2918 ORIGINAL_VALUE, which must not be NULL. See
2919 unpack_value_bits_as_long for more details. */
2920
2921int
2922unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2923 int embedded_offset, int fieldno,
2924 const struct value *val, LONGEST *result)
2925{
2926 gdb_assert (val != NULL);
2927
2928 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2929 fieldno, val, result);
2930}
2931
2932/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2933 object at VALADDR. See unpack_value_bits_as_long for more details.
2934 This function differs from unpack_value_field_as_long in that it
2935 operates without a struct value object. */
2936
2937LONGEST
2938unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2939{
2940 LONGEST result;
2941
2942 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2943 return result;
2944}
2945
2946/* Return a new value with type TYPE, which is FIELDNO field of the
2947 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2948 of VAL. If the VAL's contents required to extract the bitfield
2949 from are unavailable, the new value is correspondingly marked as
2950 unavailable. */
2951
2952struct value *
2953value_field_bitfield (struct type *type, int fieldno,
2954 const gdb_byte *valaddr,
2955 int embedded_offset, const struct value *val)
2956{
2957 LONGEST l;
2958
2959 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2960 val, &l))
2961 {
2962 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2963 struct value *retval = allocate_value (field_type);
2964 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2965 return retval;
2966 }
2967 else
2968 {
2969 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2970 }
4ea48cc1
DJ
2971}
2972
c906108c
SS
2973/* Modify the value of a bitfield. ADDR points to a block of memory in
2974 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2975 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 2976 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2977 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2978 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2979
2980void
50810684
UW
2981modify_field (struct type *type, gdb_byte *addr,
2982 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2983{
e17a4113 2984 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2985 ULONGEST oword;
2986 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
2987 int bytesize;
2988
2989 /* Normalize BITPOS. */
2990 addr += bitpos / 8;
2991 bitpos %= 8;
c906108c
SS
2992
2993 /* If a negative fieldval fits in the field in question, chop
2994 off the sign extension bits. */
f4e88c8e
PH
2995 if ((~fieldval & ~(mask >> 1)) == 0)
2996 fieldval &= mask;
c906108c
SS
2997
2998 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2999 if (0 != (fieldval & ~mask))
c906108c
SS
3000 {
3001 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3002 we don't have a sprintf_longest. */
8a3fe4f8 3003 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3004
3005 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3006 fieldval &= mask;
c906108c
SS
3007 }
3008
19f220c3
JK
3009 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3010 false valgrind reports. */
3011
3012 bytesize = (bitpos + bitsize + 7) / 8;
3013 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3014
3015 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3016 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3017 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3018
f4e88c8e 3019 oword &= ~(mask << bitpos);
c906108c
SS
3020 oword |= fieldval << bitpos;
3021
19f220c3 3022 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3023}
3024\f
14d06750 3025/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3026
14d06750
DJ
3027void
3028pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3029{
e17a4113 3030 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3031 int len;
14d06750
DJ
3032
3033 type = check_typedef (type);
c906108c
SS
3034 len = TYPE_LENGTH (type);
3035
14d06750 3036 switch (TYPE_CODE (type))
c906108c 3037 {
c906108c
SS
3038 case TYPE_CODE_INT:
3039 case TYPE_CODE_CHAR:
3040 case TYPE_CODE_ENUM:
4f2aea11 3041 case TYPE_CODE_FLAGS:
c906108c
SS
3042 case TYPE_CODE_BOOL:
3043 case TYPE_CODE_RANGE:
0d5de010 3044 case TYPE_CODE_MEMBERPTR:
e17a4113 3045 store_signed_integer (buf, len, byte_order, num);
c906108c 3046 break;
c5aa993b 3047
c906108c
SS
3048 case TYPE_CODE_REF:
3049 case TYPE_CODE_PTR:
14d06750 3050 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3051 break;
c5aa993b 3052
c906108c 3053 default:
14d06750
DJ
3054 error (_("Unexpected type (%d) encountered for integer constant."),
3055 TYPE_CODE (type));
c906108c 3056 }
14d06750
DJ
3057}
3058
3059
595939de
PM
3060/* Pack NUM into BUF using a target format of TYPE. */
3061
70221824 3062static void
595939de
PM
3063pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3064{
3065 int len;
3066 enum bfd_endian byte_order;
3067
3068 type = check_typedef (type);
3069 len = TYPE_LENGTH (type);
3070 byte_order = gdbarch_byte_order (get_type_arch (type));
3071
3072 switch (TYPE_CODE (type))
3073 {
3074 case TYPE_CODE_INT:
3075 case TYPE_CODE_CHAR:
3076 case TYPE_CODE_ENUM:
3077 case TYPE_CODE_FLAGS:
3078 case TYPE_CODE_BOOL:
3079 case TYPE_CODE_RANGE:
3080 case TYPE_CODE_MEMBERPTR:
3081 store_unsigned_integer (buf, len, byte_order, num);
3082 break;
3083
3084 case TYPE_CODE_REF:
3085 case TYPE_CODE_PTR:
3086 store_typed_address (buf, type, (CORE_ADDR) num);
3087 break;
3088
3089 default:
3e43a32a
MS
3090 error (_("Unexpected type (%d) encountered "
3091 "for unsigned integer constant."),
595939de
PM
3092 TYPE_CODE (type));
3093 }
3094}
3095
3096
14d06750
DJ
3097/* Convert C numbers into newly allocated values. */
3098
3099struct value *
3100value_from_longest (struct type *type, LONGEST num)
3101{
3102 struct value *val = allocate_value (type);
3103
3104 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3105 return val;
3106}
3107
4478b372 3108
595939de
PM
3109/* Convert C unsigned numbers into newly allocated values. */
3110
3111struct value *
3112value_from_ulongest (struct type *type, ULONGEST num)
3113{
3114 struct value *val = allocate_value (type);
3115
3116 pack_unsigned_long (value_contents_raw (val), type, num);
3117
3118 return val;
3119}
3120
3121
4478b372
JB
3122/* Create a value representing a pointer of type TYPE to the address
3123 ADDR. */
f23631e4 3124struct value *
4478b372
JB
3125value_from_pointer (struct type *type, CORE_ADDR addr)
3126{
f23631e4 3127 struct value *val = allocate_value (type);
a109c7c1 3128
cab0c772 3129 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
3130 return val;
3131}
3132
3133
8acb6b92
TT
3134/* Create a value of type TYPE whose contents come from VALADDR, if it
3135 is non-null, and whose memory address (in the inferior) is
3136 ADDRESS. */
3137
3138struct value *
3139value_from_contents_and_address (struct type *type,
3140 const gdb_byte *valaddr,
3141 CORE_ADDR address)
3142{
41e8491f 3143 struct value *v;
a109c7c1 3144
8acb6b92 3145 if (valaddr == NULL)
41e8491f 3146 v = allocate_value_lazy (type);
8acb6b92 3147 else
41e8491f
JK
3148 {
3149 v = allocate_value (type);
3150 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3151 }
42ae5230 3152 set_value_address (v, address);
33d502b4 3153 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3154 return v;
3155}
3156
8a9b8146
TT
3157/* Create a value of type TYPE holding the contents CONTENTS.
3158 The new value is `not_lval'. */
3159
3160struct value *
3161value_from_contents (struct type *type, const gdb_byte *contents)
3162{
3163 struct value *result;
3164
3165 result = allocate_value (type);
3166 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3167 return result;
3168}
3169
f23631e4 3170struct value *
fba45db2 3171value_from_double (struct type *type, DOUBLEST num)
c906108c 3172{
f23631e4 3173 struct value *val = allocate_value (type);
c906108c 3174 struct type *base_type = check_typedef (type);
52f0bd74 3175 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3176
3177 if (code == TYPE_CODE_FLT)
3178 {
990a07ab 3179 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3180 }
3181 else
8a3fe4f8 3182 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3183
3184 return val;
3185}
994b9211 3186
27bc4d80 3187struct value *
4ef30785 3188value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3189{
3190 struct value *val = allocate_value (type);
27bc4d80 3191
4ef30785 3192 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3193 return val;
3194}
3195
3bd0f5ef
MS
3196/* Extract a value from the history file. Input will be of the form
3197 $digits or $$digits. See block comment above 'write_dollar_variable'
3198 for details. */
3199
3200struct value *
3201value_from_history_ref (char *h, char **endp)
3202{
3203 int index, len;
3204
3205 if (h[0] == '$')
3206 len = 1;
3207 else
3208 return NULL;
3209
3210 if (h[1] == '$')
3211 len = 2;
3212
3213 /* Find length of numeral string. */
3214 for (; isdigit (h[len]); len++)
3215 ;
3216
3217 /* Make sure numeral string is not part of an identifier. */
3218 if (h[len] == '_' || isalpha (h[len]))
3219 return NULL;
3220
3221 /* Now collect the index value. */
3222 if (h[1] == '$')
3223 {
3224 if (len == 2)
3225 {
3226 /* For some bizarre reason, "$$" is equivalent to "$$1",
3227 rather than to "$$0" as it ought to be! */
3228 index = -1;
3229 *endp += len;
3230 }
3231 else
3232 index = -strtol (&h[2], endp, 10);
3233 }
3234 else
3235 {
3236 if (len == 1)
3237 {
3238 /* "$" is equivalent to "$0". */
3239 index = 0;
3240 *endp += len;
3241 }
3242 else
3243 index = strtol (&h[1], endp, 10);
3244 }
3245
3246 return access_value_history (index);
3247}
3248
a471c594
JK
3249struct value *
3250coerce_ref_if_computed (const struct value *arg)
3251{
3252 const struct lval_funcs *funcs;
3253
3254 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3255 return NULL;
3256
3257 if (value_lval_const (arg) != lval_computed)
3258 return NULL;
3259
3260 funcs = value_computed_funcs (arg);
3261 if (funcs->coerce_ref == NULL)
3262 return NULL;
3263
3264 return funcs->coerce_ref (arg);
3265}
3266
dfcee124
AG
3267/* Look at value.h for description. */
3268
3269struct value *
3270readjust_indirect_value_type (struct value *value, struct type *enc_type,
3271 struct type *original_type,
3272 struct value *original_value)
3273{
3274 /* Re-adjust type. */
3275 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3276
3277 /* Add embedding info. */
3278 set_value_enclosing_type (value, enc_type);
3279 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3280
3281 /* We may be pointing to an object of some derived type. */
3282 return value_full_object (value, NULL, 0, 0, 0);
3283}
3284
994b9211
AC
3285struct value *
3286coerce_ref (struct value *arg)
3287{
df407dfe 3288 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3289 struct value *retval;
dfcee124 3290 struct type *enc_type;
a109c7c1 3291
a471c594
JK
3292 retval = coerce_ref_if_computed (arg);
3293 if (retval)
3294 return retval;
3295
3296 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3297 return arg;
3298
dfcee124
AG
3299 enc_type = check_typedef (value_enclosing_type (arg));
3300 enc_type = TYPE_TARGET_TYPE (enc_type);
3301
3302 retval = value_at_lazy (enc_type,
3303 unpack_pointer (value_type (arg),
3304 value_contents (arg)));
3305 return readjust_indirect_value_type (retval, enc_type,
3306 value_type_arg_tmp, arg);
994b9211
AC
3307}
3308
3309struct value *
3310coerce_array (struct value *arg)
3311{
f3134b88
TT
3312 struct type *type;
3313
994b9211 3314 arg = coerce_ref (arg);
f3134b88
TT
3315 type = check_typedef (value_type (arg));
3316
3317 switch (TYPE_CODE (type))
3318 {
3319 case TYPE_CODE_ARRAY:
7346b668 3320 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3321 arg = value_coerce_array (arg);
3322 break;
3323 case TYPE_CODE_FUNC:
3324 arg = value_coerce_function (arg);
3325 break;
3326 }
994b9211
AC
3327 return arg;
3328}
c906108c 3329\f
c906108c 3330
48436ce6
AC
3331/* Return true if the function returning the specified type is using
3332 the convention of returning structures in memory (passing in the
82585c72 3333 address as a hidden first parameter). */
c906108c
SS
3334
3335int
d80b854b 3336using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3337 struct value *function, struct type *value_type)
c906108c 3338{
52f0bd74 3339 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
3340
3341 if (code == TYPE_CODE_ERROR)
8a3fe4f8 3342 error (_("Function return type unknown."));
c906108c 3343
667e784f
AC
3344 if (code == TYPE_CODE_VOID)
3345 /* A void return value is never in memory. See also corresponding
44e5158b 3346 code in "print_return_value". */
667e784f
AC
3347 return 0;
3348
92ad9cd9 3349 /* Probe the architecture for the return-value convention. */
6a3a010b 3350 return (gdbarch_return_value (gdbarch, function, value_type,
92ad9cd9 3351 NULL, NULL, NULL)
31db7b6c 3352 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3353}
3354
42be36b3
CT
3355/* Set the initialized field in a value struct. */
3356
3357void
3358set_value_initialized (struct value *val, int status)
3359{
3360 val->initialized = status;
3361}
3362
3363/* Return the initialized field in a value struct. */
3364
3365int
3366value_initialized (struct value *val)
3367{
3368 return val->initialized;
3369}
3370
c906108c 3371void
fba45db2 3372_initialize_values (void)
c906108c 3373{
1a966eab 3374 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3375Debugger convenience (\"$foo\") variables and functions.\n\
3376Convenience variables are created when you assign them values;\n\
3377thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3378\n\
c906108c
SS
3379A few convenience variables are given values automatically:\n\
3380\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3381\"$__\" holds the contents of the last address examined with \"x\"."
3382#ifdef HAVE_PYTHON
3383"\n\n\
3384Convenience functions are defined via the Python API."
3385#endif
3386 ), &showlist);
7e20dfcd 3387 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3388
db5f229b 3389 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3390Elements of value history around item number IDX (or last ten)."),
c906108c 3391 &showlist);
53e5f3cf
AS
3392
3393 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3394Initialize a convenience variable if necessary.\n\
3395init-if-undefined VARIABLE = EXPRESSION\n\
3396Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3397exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3398VARIABLE is already initialized."));
bc3b79fd
TJB
3399
3400 add_prefix_cmd ("function", no_class, function_command, _("\
3401Placeholder command for showing help on convenience functions."),
3402 &functionlist, "function ", 0, &cmdlist);
c906108c 3403}