]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/values.c
import gdb-1999-09-08 snapshot
[thirdparty/binutils-gdb.git] / gdb / values.c
CommitLineData
c906108c
SS
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
35
36/* Prototypes for exported functions. */
37
38void _initialize_values PARAMS ((void));
39
40/* Prototypes for local functions. */
41
42static value_ptr value_headof PARAMS ((value_ptr, struct type *,
43 struct type *));
44
45static void show_values PARAMS ((char *, int));
46
47static void show_convenience PARAMS ((char *, int));
48
49static int vb_match PARAMS ((struct type *, int, struct type *));
50
51/* The value-history records all the values printed
52 by print commands during this session. Each chunk
53 records 60 consecutive values. The first chunk on
54 the chain records the most recent values.
55 The total number of values is in value_history_count. */
56
57#define VALUE_HISTORY_CHUNK 60
58
59struct value_history_chunk
c5aa993b
JM
60 {
61 struct value_history_chunk *next;
62 value_ptr values[VALUE_HISTORY_CHUNK];
63 };
c906108c
SS
64
65/* Chain of chunks now in use. */
66
67static struct value_history_chunk *value_history_chain;
68
69static int value_history_count; /* Abs number of last entry stored */
70\f
71/* List of all value objects currently allocated
72 (except for those released by calls to release_value)
73 This is so they can be freed after each command. */
74
75static value_ptr all_values;
76
77/* Allocate a value that has the correct length for type TYPE. */
78
79value_ptr
80allocate_value (type)
81 struct type *type;
82{
83 register value_ptr val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 VALUE_NEXT (val) = all_values;
88 all_values = val;
89 VALUE_TYPE (val) = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME (val) = 0;
94 VALUE_OFFSET (val) = 0;
95 VALUE_BITPOS (val) = 0;
96 VALUE_BITSIZE (val) = 0;
97 VALUE_REGNO (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_BFD_SECTION (val) = NULL;
101 VALUE_EMBEDDED_OFFSET (val) = 0;
102 VALUE_POINTED_TO_OFFSET (val) = 0;
103 val->modifiable = 1;
104 return val;
105}
106
107/* Allocate a value that has the correct length
108 for COUNT repetitions type TYPE. */
109
110value_ptr
111allocate_repeat_value (type, count)
112 struct type *type;
113 int count;
114{
c5aa993b 115 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
116 /* FIXME-type-allocation: need a way to free this type when we are
117 done with it. */
118 struct type *range_type
c5aa993b
JM
119 = create_range_type ((struct type *) NULL, builtin_type_int,
120 low_bound, count + low_bound - 1);
c906108c
SS
121 /* FIXME-type-allocation: need a way to free this type when we are
122 done with it. */
123 return allocate_value (create_array_type ((struct type *) NULL,
124 type, range_type));
125}
126
127/* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
130value_ptr
131value_mark ()
132{
133 return all_values;
134}
135
136/* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138void
139value_free_to_mark (mark)
140 value_ptr mark;
141{
142 value_ptr val, next;
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150}
151
152/* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155void
156free_all_values ()
157{
158 register value_ptr val, next;
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167}
168
169/* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172void
173release_value (val)
174 register value_ptr val;
175{
176 register value_ptr v;
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192}
193
194/* Release all values up to mark */
195value_ptr
196value_release_to_mark (mark)
197 value_ptr mark;
198{
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210}
211
212/* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
216value_ptr
217value_copy (arg)
218 value_ptr arg;
219{
220 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
221 register value_ptr val = allocate_value (encl_type);
222 VALUE_TYPE (val) = VALUE_TYPE (arg);
223 VALUE_LVAL (val) = VALUE_LVAL (arg);
224 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
225 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
226 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
227 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
228 VALUE_FRAME (val) = VALUE_FRAME (arg);
229 VALUE_REGNO (val) = VALUE_REGNO (arg);
230 VALUE_LAZY (val) = VALUE_LAZY (arg);
231 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
232 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
233 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
234 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
235 val->modifiable = arg->modifiable;
236 if (!VALUE_LAZY (val))
237 {
238 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
239 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
240
241 }
242 return val;
243}
244\f
245/* Access to the value history. */
246
247/* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
251
252int
253record_latest_value (val)
254 value_ptr val;
255{
256 int i;
257
258 /* We don't want this value to have anything to do with the inferior anymore.
259 In particular, "set $1 = 50" should not affect the variable from which
260 the value was taken, and fast watchpoints should be able to assume that
261 a value on the value history never changes. */
262 if (VALUE_LAZY (val))
263 value_fetch_lazy (val);
264 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
265 from. This is a bit dubious, because then *&$1 does not just return $1
266 but the current contents of that location. c'est la vie... */
267 val->modifiable = 0;
268 release_value (val);
269
270 /* Here we treat value_history_count as origin-zero
271 and applying to the value being stored now. */
272
273 i = value_history_count % VALUE_HISTORY_CHUNK;
274 if (i == 0)
275 {
276 register struct value_history_chunk *new
c5aa993b
JM
277 = (struct value_history_chunk *)
278 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
279 memset (new->values, 0, sizeof new->values);
280 new->next = value_history_chain;
281 value_history_chain = new;
282 }
283
284 value_history_chain->values[i] = val;
285
286 /* Now we regard value_history_count as origin-one
287 and applying to the value just stored. */
288
289 return ++value_history_count;
290}
291
292/* Return a copy of the value in the history with sequence number NUM. */
293
294value_ptr
295access_value_history (num)
296 int num;
297{
298 register struct value_history_chunk *chunk;
299 register int i;
300 register int absnum = num;
301
302 if (absnum <= 0)
303 absnum += value_history_count;
304
305 if (absnum <= 0)
306 {
307 if (num == 0)
308 error ("The history is empty.");
309 else if (num == 1)
310 error ("There is only one value in the history.");
311 else
312 error ("History does not go back to $$%d.", -num);
313 }
314 if (absnum > value_history_count)
315 error ("History has not yet reached $%d.", absnum);
316
317 absnum--;
318
319 /* Now absnum is always absolute and origin zero. */
320
321 chunk = value_history_chain;
322 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
323 i > 0; i--)
324 chunk = chunk->next;
325
326 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
327}
328
329/* Clear the value history entirely.
330 Must be done when new symbol tables are loaded,
331 because the type pointers become invalid. */
332
333void
334clear_value_history ()
335{
336 register struct value_history_chunk *next;
337 register int i;
338 register value_ptr val;
339
340 while (value_history_chain)
341 {
342 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
343 if ((val = value_history_chain->values[i]) != NULL)
c5aa993b 344 free ((PTR) val);
c906108c 345 next = value_history_chain->next;
c5aa993b 346 free ((PTR) value_history_chain);
c906108c
SS
347 value_history_chain = next;
348 }
349 value_history_count = 0;
350}
351
352static void
353show_values (num_exp, from_tty)
354 char *num_exp;
355 int from_tty;
356{
357 register int i;
358 register value_ptr val;
359 static int num = 1;
360
361 if (num_exp)
362 {
c5aa993b
JM
363 /* "info history +" should print from the stored position.
364 "info history <exp>" should print around value number <exp>. */
c906108c
SS
365 if (num_exp[0] != '+' || num_exp[1] != '\0')
366 num = parse_and_eval_address (num_exp) - 5;
367 }
368 else
369 {
370 /* "info history" means print the last 10 values. */
371 num = value_history_count - 9;
372 }
373
374 if (num <= 0)
375 num = 1;
376
377 for (i = num; i < num + 10 && i <= value_history_count; i++)
378 {
379 val = access_value_history (i);
380 printf_filtered ("$%d = ", i);
381 value_print (val, gdb_stdout, 0, Val_pretty_default);
382 printf_filtered ("\n");
383 }
384
385 /* The next "info history +" should start after what we just printed. */
386 num += 10;
387
388 /* Hitting just return after this command should do the same thing as
389 "info history +". If num_exp is null, this is unnecessary, since
390 "info history +" is not useful after "info history". */
391 if (from_tty && num_exp)
392 {
393 num_exp[0] = '+';
394 num_exp[1] = '\0';
395 }
396}
397\f
398/* Internal variables. These are variables within the debugger
399 that hold values assigned by debugger commands.
400 The user refers to them with a '$' prefix
401 that does not appear in the variable names stored internally. */
402
403static struct internalvar *internalvars;
404
405/* Look up an internal variable with name NAME. NAME should not
406 normally include a dollar sign.
407
408 If the specified internal variable does not exist,
409 one is created, with a void value. */
410
411struct internalvar *
412lookup_internalvar (name)
413 char *name;
414{
415 register struct internalvar *var;
416
417 for (var = internalvars; var; var = var->next)
418 if (STREQ (var->name, name))
419 return var;
420
421 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
422 var->name = concat (name, NULL);
423 var->value = allocate_value (builtin_type_void);
424 release_value (var->value);
425 var->next = internalvars;
426 internalvars = var;
427 return var;
428}
429
430value_ptr
431value_of_internalvar (var)
432 struct internalvar *var;
433{
434 register value_ptr val;
435
436#ifdef IS_TRAPPED_INTERNALVAR
437 if (IS_TRAPPED_INTERNALVAR (var->name))
438 return VALUE_OF_TRAPPED_INTERNALVAR (var);
c5aa993b 439#endif
c906108c
SS
440
441 val = value_copy (var->value);
442 if (VALUE_LAZY (val))
443 value_fetch_lazy (val);
444 VALUE_LVAL (val) = lval_internalvar;
445 VALUE_INTERNALVAR (val) = var;
446 return val;
447}
448
449void
450set_internalvar_component (var, offset, bitpos, bitsize, newval)
451 struct internalvar *var;
452 int offset, bitpos, bitsize;
453 value_ptr newval;
454{
455 register char *addr = VALUE_CONTENTS (var->value) + offset;
456
457#ifdef IS_TRAPPED_INTERNALVAR
458 if (IS_TRAPPED_INTERNALVAR (var->name))
459 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
460#endif
461
462 if (bitsize)
463 modify_field (addr, value_as_long (newval),
464 bitpos, bitsize);
465 else
466 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
467}
468
469void
470set_internalvar (var, val)
471 struct internalvar *var;
472 value_ptr val;
473{
474 value_ptr newval;
475
476#ifdef IS_TRAPPED_INTERNALVAR
477 if (IS_TRAPPED_INTERNALVAR (var->name))
478 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
479#endif
480
481 newval = value_copy (val);
482 newval->modifiable = 1;
483
484 /* Force the value to be fetched from the target now, to avoid problems
485 later when this internalvar is referenced and the target is gone or
486 has changed. */
487 if (VALUE_LAZY (newval))
488 value_fetch_lazy (newval);
489
490 /* Begin code which must not call error(). If var->value points to
491 something free'd, an error() obviously leaves a dangling pointer.
492 But we also get a danling pointer if var->value points to
493 something in the value chain (i.e., before release_value is
494 called), because after the error free_all_values will get called before
495 long. */
c5aa993b 496 free ((PTR) var->value);
c906108c
SS
497 var->value = newval;
498 release_value (newval);
499 /* End code which must not call error(). */
500}
501
502char *
503internalvar_name (var)
504 struct internalvar *var;
505{
506 return var->name;
507}
508
509/* Free all internalvars. Done when new symtabs are loaded,
510 because that makes the values invalid. */
511
512void
513clear_internalvars ()
514{
515 register struct internalvar *var;
516
517 while (internalvars)
518 {
519 var = internalvars;
520 internalvars = var->next;
c5aa993b
JM
521 free ((PTR) var->name);
522 free ((PTR) var->value);
523 free ((PTR) var);
c906108c
SS
524 }
525}
526
527static void
528show_convenience (ignore, from_tty)
529 char *ignore;
530 int from_tty;
531{
532 register struct internalvar *var;
533 int varseen = 0;
534
535 for (var = internalvars; var; var = var->next)
536 {
537#ifdef IS_TRAPPED_INTERNALVAR
538 if (IS_TRAPPED_INTERNALVAR (var->name))
539 continue;
540#endif
541 if (!varseen)
542 {
543 varseen = 1;
544 }
545 printf_filtered ("$%s = ", var->name);
546 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
547 printf_filtered ("\n");
548 }
549 if (!varseen)
550 printf_unfiltered ("No debugger convenience variables now defined.\n\
551Convenience variables have names starting with \"$\";\n\
552use \"set\" as in \"set $foo = 5\" to define them.\n");
553}
554\f
555/* Extract a value as a C number (either long or double).
556 Knows how to convert fixed values to double, or
557 floating values to long.
558 Does not deallocate the value. */
559
560LONGEST
561value_as_long (val)
562 register value_ptr val;
563{
564 /* This coerces arrays and functions, which is necessary (e.g.
565 in disassemble_command). It also dereferences references, which
566 I suspect is the most logical thing to do. */
567 COERCE_ARRAY (val);
568 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
569}
570
571DOUBLEST
572value_as_double (val)
573 register value_ptr val;
574{
575 DOUBLEST foo;
576 int inv;
c5aa993b 577
c906108c
SS
578 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
579 if (inv)
580 error ("Invalid floating value found in program.");
581 return foo;
582}
583/* Extract a value as a C pointer.
584 Does not deallocate the value. */
585CORE_ADDR
586value_as_pointer (val)
587 value_ptr val;
588{
589 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
590 whether we want this to be true eventually. */
591#if 0
592 /* ADDR_BITS_REMOVE is wrong if we are being called for a
593 non-address (e.g. argument to "signal", "info break", etc.), or
594 for pointers to char, in which the low bits *are* significant. */
c5aa993b 595 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c
SS
596#else
597 return value_as_long (val);
598#endif
599}
600\f
601/* Unpack raw data (copied from debugee, target byte order) at VALADDR
602 as a long, or as a double, assuming the raw data is described
603 by type TYPE. Knows how to convert different sizes of values
604 and can convert between fixed and floating point. We don't assume
605 any alignment for the raw data. Return value is in host byte order.
606
607 If you want functions and arrays to be coerced to pointers, and
608 references to be dereferenced, call value_as_long() instead.
609
610 C++: It is assumed that the front-end has taken care of
611 all matters concerning pointers to members. A pointer
612 to member which reaches here is considered to be equivalent
613 to an INT (or some size). After all, it is only an offset. */
614
615LONGEST
616unpack_long (type, valaddr)
617 struct type *type;
618 char *valaddr;
619{
620 register enum type_code code = TYPE_CODE (type);
621 register int len = TYPE_LENGTH (type);
622 register int nosign = TYPE_UNSIGNED (type);
623
624 if (current_language->la_language == language_scm
625 && is_scmvalue_type (type))
626 return scm_unpack (type, valaddr, TYPE_CODE_INT);
627
628 switch (code)
629 {
630 case TYPE_CODE_TYPEDEF:
631 return unpack_long (check_typedef (type), valaddr);
632 case TYPE_CODE_ENUM:
633 case TYPE_CODE_BOOL:
634 case TYPE_CODE_INT:
635 case TYPE_CODE_CHAR:
636 case TYPE_CODE_RANGE:
637 if (nosign)
638 return extract_unsigned_integer (valaddr, len);
639 else
640 return extract_signed_integer (valaddr, len);
641
642 case TYPE_CODE_FLT:
643 return extract_floating (valaddr, len);
644
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_REF:
647 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 648 whether we want this to be true eventually. */
7a292a7a
SS
649 if (GDB_TARGET_IS_D10V
650 && len == 2)
c5aa993b 651 return D10V_MAKE_DADDR (extract_address (valaddr, len));
c906108c
SS
652 return extract_address (valaddr, len);
653
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
656
657 default:
658 error ("Value can't be converted to integer.");
659 }
c5aa993b 660 return 0; /* Placate lint. */
c906108c
SS
661}
662
663/* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
668
669DOUBLEST
670unpack_double (type, valaddr, invp)
671 struct type *type;
672 char *valaddr;
673 int *invp;
674{
675 enum type_code code;
676 int len;
677 int nosign;
678
679 *invp = 0; /* Assume valid. */
680 CHECK_TYPEDEF (type);
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
684 if (code == TYPE_CODE_FLT)
685 {
686#ifdef INVALID_FLOAT
687 if (INVALID_FLOAT (valaddr, len))
688 {
689 *invp = 1;
690 return 1.234567891011121314;
691 }
692#endif
693 return extract_floating (valaddr, len);
694 }
695 else if (nosign)
696 {
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698#if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST) unpack_long (type, valaddr);
700#else
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
703#endif /* _MSC_VER */
704 }
705 else
706 {
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
709 }
710}
711
712/* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
715 host byte order.
716
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
719
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
724
725CORE_ADDR
726unpack_pointer (type, valaddr)
727 struct type *type;
728 char *valaddr;
729{
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type, valaddr);
733}
734\f
735/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
736
737value_ptr
738value_static_field (type, fieldno)
739 struct type *type;
740 int fieldno;
741{
742 CORE_ADDR addr;
743 asection *sect;
744 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
745 {
746 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
747 sect = NULL;
748 }
749 else
750 {
751 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
752 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
753 if (sym == NULL)
754 {
755 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
756 as non-debuggable symbols */
757 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
758 if (!msym)
759 return NULL;
760 else
c5aa993b 761 {
c906108c
SS
762 addr = SYMBOL_VALUE_ADDRESS (msym);
763 sect = SYMBOL_BFD_SECTION (msym);
764 }
765 }
766 else
767 {
768 addr = SYMBOL_VALUE_ADDRESS (sym);
769 sect = SYMBOL_BFD_SECTION (sym);
770 }
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
772 }
773 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
774}
775
776/* Given a value ARG1 (offset by OFFSET bytes)
777 of a struct or union type ARG_TYPE,
778 extract and return the value of one of its (non-static) fields.
779 FIELDNO says which field. */
780
781value_ptr
782value_primitive_field (arg1, offset, fieldno, arg_type)
783 register value_ptr arg1;
784 int offset;
785 register int fieldno;
786 register struct type *arg_type;
787{
788 register value_ptr v;
789 register struct type *type;
790
791 CHECK_TYPEDEF (arg_type);
792 type = TYPE_FIELD_TYPE (arg_type, fieldno);
793
794 /* Handle packed fields */
795
796 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
797 {
798 v = value_from_longest (type,
799 unpack_field_as_long (arg_type,
800 VALUE_CONTENTS (arg1)
c5aa993b 801 + offset,
c906108c
SS
802 fieldno));
803 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
804 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
805 }
806 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
807 {
808 /* This field is actually a base subobject, so preserve the
809 entire object's contents for later references to virtual
810 bases, etc. */
811 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
812 VALUE_TYPE (v) = arg_type;
813 if (VALUE_LAZY (arg1))
814 VALUE_LAZY (v) = 1;
815 else
816 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
818 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
819 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
820 = offset +
821 VALUE_EMBEDDED_OFFSET (arg1) +
822 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
823 }
824 else
825 {
826 /* Plain old data member */
827 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
828 v = allocate_value (type);
829 if (VALUE_LAZY (arg1))
830 VALUE_LAZY (v) = 1;
831 else
832 memcpy (VALUE_CONTENTS_RAW (v),
833 VALUE_CONTENTS_RAW (arg1) + offset,
834 TYPE_LENGTH (type));
835 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
836 }
837 VALUE_LVAL (v) = VALUE_LVAL (arg1);
838 if (VALUE_LVAL (arg1) == lval_internalvar)
839 VALUE_LVAL (v) = lval_internalvar_component;
840 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
841/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 842 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
843 return v;
844}
845
846/* Given a value ARG1 of a struct or union type,
847 extract and return the value of one of its (non-static) fields.
848 FIELDNO says which field. */
849
850value_ptr
851value_field (arg1, fieldno)
852 register value_ptr arg1;
853 register int fieldno;
854{
855 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
856}
857
858/* Return a non-virtual function as a value.
859 F is the list of member functions which contains the desired method.
860 J is an index into F which provides the desired method. */
861
862value_ptr
863value_fn_field (arg1p, f, j, type, offset)
864 value_ptr *arg1p;
865 struct fn_field *f;
866 int j;
867 struct type *type;
868 int offset;
869{
870 register value_ptr v;
871 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
872 struct symbol *sym;
873
874 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
875 0, VAR_NAMESPACE, 0, NULL);
c5aa993b
JM
876 if (!sym)
877 return NULL;
c906108c 878/*
c5aa993b
JM
879 error ("Internal error: could not find physical method named %s",
880 TYPE_FN_FIELD_PHYSNAME (f, j));
881 */
882
c906108c
SS
883 v = allocate_value (ftype);
884 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
885 VALUE_TYPE (v) = ftype;
886
887 if (arg1p)
c5aa993b
JM
888 {
889 if (type != VALUE_TYPE (*arg1p))
890 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
891 value_addr (*arg1p)));
892
893 /* Move the `this' pointer according to the offset.
894 VALUE_OFFSET (*arg1p) += offset;
895 */
c906108c
SS
896 }
897
898 return v;
899}
900
901/* Return a virtual function as a value.
902 ARG1 is the object which provides the virtual function
903 table pointer. *ARG1P is side-effected in calling this function.
904 F is the list of member functions which contains the desired virtual
905 function.
906 J is an index into F which provides the desired virtual function.
907
908 TYPE is the type in which F is located. */
909value_ptr
910value_virtual_fn_field (arg1p, f, j, type, offset)
911 value_ptr *arg1p;
912 struct fn_field *f;
913 int j;
914 struct type *type;
915 int offset;
916{
917 value_ptr arg1 = *arg1p;
918 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
919
920 if (TYPE_HAS_VTABLE (type))
921 {
922 /* Deal with HP/Taligent runtime model for virtual functions */
923 value_ptr vp;
c5aa993b 924 value_ptr argp; /* arg1 cast to base */
c5aa993b
JM
925 CORE_ADDR coreptr; /* pointer to target address */
926 int class_index; /* which class segment pointer to use */
927 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
c906108c
SS
928
929 argp = value_cast (type, *arg1p);
930
931 if (VALUE_ADDRESS (argp) == 0)
c5aa993b
JM
932 error ("Address of object is null; object may not have been created.");
933
c906108c
SS
934 /* pai: FIXME -- 32x64 possible problem? */
935 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b
JM
936 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
937 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
c906108c
SS
938
939 if (!coreptr)
c5aa993b
JM
940 error ("Virtual table pointer is null for object; object may not have been created.");
941
c906108c
SS
942 /* pai/1997-05-09
943 * FIXME: The code here currently handles only
944 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
945 * is introduced, the condition for the "if" below will have to
946 * be changed to be a test for the RRBC case. */
c5aa993b 947
c906108c 948 if (1)
c5aa993b
JM
949 {
950 /* Non-RRBC case; the virtual function pointers are stored at fixed
951 * offsets in the virtual table. */
952
953 /* Retrieve the offset in the virtual table from the debug
954 * info. The offset of the vfunc's entry is in words from
955 * the beginning of the vtable; but first we have to adjust
956 * by HP_ACC_VFUNC_START to account for other entries */
957
958 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
959 * which case the multiplier should be 8 and values should be long */
960 vp = value_at (builtin_type_int,
961 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
962
963 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
964 /* coreptr now contains the address of the virtual function */
965 /* (Actually, it contains the pointer to the plabel for the function. */
966 }
c906108c 967 else
c5aa993b
JM
968 {
969 /* RRBC case; the virtual function pointers are found by double
970 * indirection through the class segment tables. */
971
972 /* Choose class segment depending on type we were passed */
973 class_index = class_index_in_primary_list (type);
974
975 /* Find class segment pointer. These are in the vtable slots after
976 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
977 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
978 * the multiplier below has to be 8 and value should be long. */
979 vp = value_at (builtin_type_int,
980 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
981 /* Indirect once more, offset by function index */
982 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
983 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
984 vp = value_at (builtin_type_int, coreptr, NULL);
985 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
986
987 /* coreptr now contains the address of the virtual function */
988 /* (Actually, it contains the pointer to the plabel for the function.) */
989
990 }
c906108c
SS
991
992 if (!coreptr)
c5aa993b 993 error ("Address of virtual function is null; error in virtual table?");
c906108c 994
c5aa993b 995 /* Wrap this addr in a value and return pointer */
c906108c
SS
996 vp = allocate_value (ftype);
997 VALUE_TYPE (vp) = ftype;
998 VALUE_ADDRESS (vp) = coreptr;
c5aa993b 999
c906108c
SS
1000 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1001 return vp;
1002 }
c5aa993b
JM
1003 else
1004 { /* Not using HP/Taligent runtime conventions; so try to
1005 * use g++ conventions for virtual table */
1006
c906108c
SS
1007 struct type *entry_type;
1008 /* First, get the virtual function table pointer. That comes
1009 with a strange type, so cast it to type `pointer to long' (which
1010 should serve just fine as a function type). Then, index into
1011 the table, and convert final value to appropriate function type. */
1012 value_ptr entry, vfn, vtbl;
c5aa993b
JM
1013 value_ptr vi = value_from_longest (builtin_type_int,
1014 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
c906108c
SS
1015 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1016 struct type *context;
1017 if (fcontext == NULL)
c5aa993b
JM
1018 /* We don't have an fcontext (e.g. the program was compiled with
1019 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1020 This won't work right for multiple inheritance, but at least we
1021 should do as well as GDB 3.x did. */
1022 fcontext = TYPE_VPTR_BASETYPE (type);
c906108c
SS
1023 context = lookup_pointer_type (fcontext);
1024 /* Now context is a pointer to the basetype containing the vtbl. */
1025 if (TYPE_TARGET_TYPE (context) != type1)
c5aa993b 1026 {
c906108c
SS
1027 value_ptr tmp = value_cast (context, value_addr (arg1));
1028 VALUE_POINTED_TO_OFFSET (tmp) = 0;
c5aa993b
JM
1029 arg1 = value_ind (tmp);
1030 type1 = check_typedef (VALUE_TYPE (arg1));
1031 }
c906108c
SS
1032
1033 context = type1;
1034 /* Now context is the basetype containing the vtbl. */
1035
1036 /* This type may have been defined before its virtual function table
1037 was. If so, fill in the virtual function table entry for the
1038 type now. */
1039 if (TYPE_VPTR_FIELDNO (context) < 0)
c5aa993b 1040 fill_in_vptr_fieldno (context);
c906108c
SS
1041
1042 /* The virtual function table is now an array of structures
1043 which have the form { int16 offset, delta; void *pfn; }. */
1044 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1045 TYPE_VPTR_BASETYPE (context));
c5aa993b 1046
c906108c 1047 /* With older versions of g++, the vtbl field pointed to an array
c5aa993b 1048 of structures. Nowadays it points directly to the structure. */
c906108c 1049 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
c5aa993b 1050 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
c906108c
SS
1051 {
1052 /* Handle the case where the vtbl field points to an
1053 array of structures. */
1054 vtbl = value_ind (vtbl);
1055
1056 /* Index into the virtual function table. This is hard-coded because
1057 looking up a field is not cheap, and it may be important to save
1058 time, e.g. if the user has set a conditional breakpoint calling
1059 a virtual function. */
1060 entry = value_subscript (vtbl, vi);
1061 }
1062 else
1063 {
1064 /* Handle the case where the vtbl field points directly to a structure. */
1065 vtbl = value_add (vtbl, vi);
1066 entry = value_ind (vtbl);
1067 }
1068
1069 entry_type = check_typedef (VALUE_TYPE (entry));
1070
1071 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
c5aa993b
JM
1072 {
1073 /* Move the `this' pointer according to the virtual function table. */
1074 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1075
1076 if (!VALUE_LAZY (arg1))
1077 {
1078 VALUE_LAZY (arg1) = 1;
1079 value_fetch_lazy (arg1);
1080 }
1081
1082 vfn = value_field (entry, 2);
1083 }
c906108c 1084 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
c5aa993b 1085 vfn = entry;
c906108c 1086 else
c5aa993b 1087 error ("I'm confused: virtual function table has bad type");
c906108c
SS
1088 /* Reinstantiate the function pointer with the correct type. */
1089 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1090
1091 *arg1p = arg1;
1092 return vfn;
1093 }
1094}
1095
1096/* ARG is a pointer to an object we know to be at least
1097 a DTYPE. BTYPE is the most derived basetype that has
1098 already been searched (and need not be searched again).
1099 After looking at the vtables between BTYPE and DTYPE,
1100 return the most derived type we find. The caller must
1101 be satisfied when the return value == DTYPE.
1102
1103 FIXME-tiemann: should work with dossier entries as well. */
1104
1105static value_ptr
1106value_headof (in_arg, btype, dtype)
1107 value_ptr in_arg;
1108 struct type *btype, *dtype;
1109{
1110 /* First collect the vtables we must look at for this object. */
1111 /* FIXME-tiemann: right now, just look at top-most vtable. */
1112 value_ptr arg, vtbl, entry, best_entry = 0;
1113 int i, nelems;
1114 int offset, best_offset = 0;
1115 struct symbol *sym;
1116 CORE_ADDR pc_for_sym;
1117 char *demangled_name;
1118 struct minimal_symbol *msymbol;
1119
1120 btype = TYPE_VPTR_BASETYPE (dtype);
1121 CHECK_TYPEDEF (btype);
1122 arg = in_arg;
1123 if (btype != dtype)
1124 arg = value_cast (lookup_pointer_type (btype), arg);
1125 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1126
1127 /* Check that VTBL looks like it points to a virtual function table. */
1128 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1129 if (msymbol == NULL
1130 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
1131 || !VTBL_PREFIX_P (demangled_name))
1132 {
1133 /* If we expected to find a vtable, but did not, let the user
c5aa993b
JM
1134 know that we aren't happy, but don't throw an error.
1135 FIXME: there has to be a better way to do this. */
1136 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
c906108c
SS
1137 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1138 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1139 VALUE_TYPE (in_arg) = error_type;
1140 return in_arg;
1141 }
1142
1143 /* Now search through the virtual function table. */
1144 entry = value_ind (vtbl);
1145 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1146 for (i = 1; i <= nelems; i++)
1147 {
c5aa993b
JM
1148 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1149 (LONGEST) i));
c906108c
SS
1150 /* This won't work if we're using thunks. */
1151 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
1152 break;
1153 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1154 /* If we use '<=' we can handle single inheritance
1155 * where all offsets are zero - just use the first entry found. */
1156 if (offset <= best_offset)
1157 {
1158 best_offset = offset;
1159 best_entry = entry;
1160 }
1161 }
1162 /* Move the pointer according to BEST_ENTRY's offset, and figure
1163 out what type we should return as the new pointer. */
1164 if (best_entry == 0)
1165 {
1166 /* An alternative method (which should no longer be necessary).
1167 * But we leave it in for future use, when we will hopefully
1168 * have optimizes the vtable to use thunks instead of offsets. */
1169 /* Use the name of vtable itself to extract a base type. */
c5aa993b 1170 demangled_name += 4; /* Skip _vt$ prefix. */
c906108c
SS
1171 }
1172 else
1173 {
1174 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1175 sym = find_pc_function (pc_for_sym);
1176 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1177 *(strchr (demangled_name, ':')) = '\0';
1178 }
1179 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1180 if (sym == NULL)
1181 error ("could not find type declaration for `%s'", demangled_name);
1182 if (best_entry)
1183 {
1184 free (demangled_name);
1185 arg = value_add (value_cast (builtin_type_int, arg),
1186 value_field (best_entry, 0));
1187 }
c5aa993b
JM
1188 else
1189 arg = in_arg;
c906108c
SS
1190 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1191 return arg;
1192}
1193
1194/* ARG is a pointer object of type TYPE. If TYPE has virtual
1195 function tables, probe ARG's tables (including the vtables
1196 of its baseclasses) to figure out the most derived type that ARG
1197 could actually be a pointer to. */
1198
1199value_ptr
1200value_from_vtable_info (arg, type)
1201 value_ptr arg;
1202 struct type *type;
1203{
1204 /* Take care of preliminaries. */
1205 if (TYPE_VPTR_FIELDNO (type) < 0)
1206 fill_in_vptr_fieldno (type);
1207 if (TYPE_VPTR_FIELDNO (type) < 0)
1208 return 0;
1209
1210 return value_headof (arg, 0, type);
1211}
1212
1213/* Return true if the INDEXth field of TYPE is a virtual baseclass
1214 pointer which is for the base class whose type is BASECLASS. */
1215
1216static int
1217vb_match (type, index, basetype)
1218 struct type *type;
1219 int index;
1220 struct type *basetype;
1221{
1222 struct type *fieldtype;
1223 char *name = TYPE_FIELD_NAME (type, index);
1224 char *field_class_name = NULL;
1225
1226 if (*name != '_')
1227 return 0;
1228 /* gcc 2.4 uses _vb$. */
1229 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1230 field_class_name = name + 4;
1231 /* gcc 2.5 will use __vb_. */
1232 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1233 field_class_name = name + 5;
1234
1235 if (field_class_name == NULL)
1236 /* This field is not a virtual base class pointer. */
1237 return 0;
1238
1239 /* It's a virtual baseclass pointer, now we just need to find out whether
1240 it is for this baseclass. */
1241 fieldtype = TYPE_FIELD_TYPE (type, index);
1242 if (fieldtype == NULL
1243 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1244 /* "Can't happen". */
1245 return 0;
1246
1247 /* What we check for is that either the types are equal (needed for
1248 nameless types) or have the same name. This is ugly, and a more
1249 elegant solution should be devised (which would probably just push
1250 the ugliness into symbol reading unless we change the stabs format). */
1251 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1252 return 1;
1253
1254 if (TYPE_NAME (basetype) != NULL
1255 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1256 && STREQ (TYPE_NAME (basetype),
1257 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1258 return 1;
1259 return 0;
1260}
1261
1262/* Compute the offset of the baseclass which is
1263 the INDEXth baseclass of class TYPE,
1264 for value at VALADDR (in host) at ADDRESS (in target).
1265 The result is the offset of the baseclass value relative
1266 to (the address of)(ARG) + OFFSET.
1267
1268 -1 is returned on error. */
1269
1270int
1271baseclass_offset (type, index, valaddr, address)
1272 struct type *type;
1273 int index;
1274 char *valaddr;
1275 CORE_ADDR address;
1276{
1277 struct type *basetype = TYPE_BASECLASS (type, index);
1278
1279 if (BASETYPE_VIA_VIRTUAL (type, index))
1280 {
1281 /* Must hunt for the pointer to this virtual baseclass. */
1282 register int i, len = TYPE_NFIELDS (type);
1283 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1284
1285 /* First look for the virtual baseclass pointer
c5aa993b 1286 in the fields. */
c906108c
SS
1287 for (i = n_baseclasses; i < len; i++)
1288 {
1289 if (vb_match (type, i, basetype))
1290 {
1291 CORE_ADDR addr
c5aa993b
JM
1292 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1293 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
c906108c
SS
1294
1295 return addr - (LONGEST) address;
1296 }
1297 }
1298 /* Not in the fields, so try looking through the baseclasses. */
c5aa993b 1299 for (i = index + 1; i < n_baseclasses; i++)
c906108c
SS
1300 {
1301 int boffset =
c5aa993b 1302 baseclass_offset (type, i, valaddr, address);
c906108c
SS
1303 if (boffset)
1304 return boffset;
1305 }
1306 /* Not found. */
1307 return -1;
1308 }
1309
1310 /* Baseclass is easily computed. */
1311 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1312}
1313\f
1314/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1315 VALADDR.
1316
1317 Extracting bits depends on endianness of the machine. Compute the
1318 number of least significant bits to discard. For big endian machines,
1319 we compute the total number of bits in the anonymous object, subtract
1320 off the bit count from the MSB of the object to the MSB of the
1321 bitfield, then the size of the bitfield, which leaves the LSB discard
1322 count. For little endian machines, the discard count is simply the
1323 number of bits from the LSB of the anonymous object to the LSB of the
1324 bitfield.
1325
1326 If the field is signed, we also do sign extension. */
1327
1328LONGEST
1329unpack_field_as_long (type, valaddr, fieldno)
1330 struct type *type;
1331 char *valaddr;
1332 int fieldno;
1333{
1334 ULONGEST val;
1335 ULONGEST valmask;
1336 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1337 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1338 int lsbcount;
1339 struct type *field_type;
1340
1341 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1342 field_type = TYPE_FIELD_TYPE (type, fieldno);
1343 CHECK_TYPEDEF (field_type);
1344
1345 /* Extract bits. See comment above. */
1346
1347 if (BITS_BIG_ENDIAN)
1348 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1349 else
1350 lsbcount = (bitpos % 8);
1351 val >>= lsbcount;
1352
1353 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1354 If the field is signed, and is negative, then sign extend. */
1355
1356 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1357 {
1358 valmask = (((ULONGEST) 1) << bitsize) - 1;
1359 val &= valmask;
1360 if (!TYPE_UNSIGNED (field_type))
1361 {
1362 if (val & (valmask ^ (valmask >> 1)))
1363 {
1364 val |= ~valmask;
1365 }
1366 }
1367 }
1368 return (val);
1369}
1370
1371/* Modify the value of a bitfield. ADDR points to a block of memory in
1372 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1373 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1374 indicate which bits (in target bit order) comprise the bitfield. */
1375
1376void
1377modify_field (addr, fieldval, bitpos, bitsize)
1378 char *addr;
1379 LONGEST fieldval;
1380 int bitpos, bitsize;
1381{
1382 LONGEST oword;
1383
1384 /* If a negative fieldval fits in the field in question, chop
1385 off the sign extension bits. */
1386 if (bitsize < (8 * (int) sizeof (fieldval))
1387 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1388 fieldval = fieldval & ((1 << bitsize) - 1);
1389
1390 /* Warn if value is too big to fit in the field in question. */
1391 if (bitsize < (8 * (int) sizeof (fieldval))
c5aa993b 1392 && 0 != (fieldval & ~((1 << bitsize) - 1)))
c906108c
SS
1393 {
1394 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1395 we don't have a sprintf_longest. */
c906108c
SS
1396 warning ("Value does not fit in %d bits.", bitsize);
1397
1398 /* Truncate it, otherwise adjoining fields may be corrupted. */
1399 fieldval = fieldval & ((1 << bitsize) - 1);
1400 }
1401
1402 oword = extract_signed_integer (addr, sizeof oword);
1403
1404 /* Shifting for bit field depends on endianness of the target machine. */
1405 if (BITS_BIG_ENDIAN)
1406 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1407
1408 /* Mask out old value, while avoiding shifts >= size of oword */
1409 if (bitsize < 8 * (int) sizeof (oword))
c5aa993b 1410 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
c906108c 1411 else
c5aa993b 1412 oword &= ~((~(ULONGEST) 0) << bitpos);
c906108c
SS
1413 oword |= fieldval << bitpos;
1414
1415 store_signed_integer (addr, sizeof oword, oword);
1416}
1417\f
1418/* Convert C numbers into newly allocated values */
1419
1420value_ptr
1421value_from_longest (type, num)
1422 struct type *type;
1423 register LONGEST num;
1424{
1425 register value_ptr val = allocate_value (type);
1426 register enum type_code code;
1427 register int len;
c5aa993b 1428retry:
c906108c
SS
1429 code = TYPE_CODE (type);
1430 len = TYPE_LENGTH (type);
1431
1432 switch (code)
1433 {
1434 case TYPE_CODE_TYPEDEF:
1435 type = check_typedef (type);
1436 goto retry;
1437 case TYPE_CODE_INT:
1438 case TYPE_CODE_CHAR:
1439 case TYPE_CODE_ENUM:
1440 case TYPE_CODE_BOOL:
1441 case TYPE_CODE_RANGE:
1442 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1443 break;
c5aa993b 1444
c906108c
SS
1445 case TYPE_CODE_REF:
1446 case TYPE_CODE_PTR:
1447 /* This assumes that all pointers of a given length
c5aa993b 1448 have the same form. */
c906108c
SS
1449 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1450 break;
c5aa993b 1451
c906108c
SS
1452 default:
1453 error ("Unexpected type (%d) encountered for integer constant.", code);
1454 }
1455 return val;
1456}
1457
0f71a2f6
JM
1458/* Create a value for a string constant to be stored locally
1459 (not in the inferior's memory space, but in GDB memory).
1460 This is analogous to value_from_longest, which also does not
1461 use inferior memory. String shall NOT contain embedded nulls. */
1462
1463value_ptr
1464value_from_string (ptr)
1465 char *ptr;
1466{
1467 value_ptr val;
c5aa993b 1468 int len = strlen (ptr);
0f71a2f6 1469 int lowbound = current_language->string_lower_bound;
c5aa993b
JM
1470 struct type *rangetype =
1471 create_range_type ((struct type *) NULL,
1472 builtin_type_int,
1473 lowbound, len + lowbound - 1);
1474 struct type *stringtype =
1475 create_array_type ((struct type *) NULL,
1476 *current_language->string_char_type,
1477 rangetype);
0f71a2f6
JM
1478
1479 val = allocate_value (stringtype);
1480 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1481 return val;
1482}
1483
c906108c
SS
1484value_ptr
1485value_from_double (type, num)
1486 struct type *type;
1487 DOUBLEST num;
1488{
1489 register value_ptr val = allocate_value (type);
1490 struct type *base_type = check_typedef (type);
1491 register enum type_code code = TYPE_CODE (base_type);
1492 register int len = TYPE_LENGTH (base_type);
1493
1494 if (code == TYPE_CODE_FLT)
1495 {
1496 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1497 }
1498 else
1499 error ("Unexpected type encountered for floating constant.");
1500
1501 return val;
1502}
1503\f
1504/* Deal with the value that is "about to be returned". */
1505
1506/* Return the value that a function returning now
1507 would be returning to its caller, assuming its type is VALTYPE.
1508 RETBUF is where we look for what ought to be the contents
1509 of the registers (in raw form). This is because it is often
1510 desirable to restore old values to those registers
1511 after saving the contents of interest, and then call
1512 this function using the saved values.
1513 struct_return is non-zero when the function in question is
1514 using the structure return conventions on the machine in question;
1515 0 when it is using the value returning conventions (this often
1516 means returning pointer to where structure is vs. returning value). */
1517
1518value_ptr
1519value_being_returned (valtype, retbuf, struct_return)
1520 register struct type *valtype;
7a292a7a 1521 char *retbuf;
c906108c 1522 int struct_return;
c5aa993b 1523 /*ARGSUSED */
c906108c
SS
1524{
1525 register value_ptr val;
1526 CORE_ADDR addr;
1527
c906108c 1528 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
ac9a91a7
JM
1529 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1530 if (struct_return)
1531 {
1532 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1533 if (!addr)
1534 error ("Function return value unknown");
1535 return value_at (valtype, addr, NULL);
1536 }
c906108c
SS
1537
1538 val = allocate_value (valtype);
1539 CHECK_TYPEDEF (valtype);
1540 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1541
1542 return val;
1543}
1544
1545/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1546 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1547 and TYPE is the type (which is known to be struct, union or array).
1548
1549 On most machines, the struct convention is used unless we are
1550 using gcc and the type is of a special size. */
1551/* As of about 31 Mar 93, GCC was changed to be compatible with the
1552 native compiler. GCC 2.3.3 was the last release that did it the
1553 old way. Since gcc2_compiled was not changed, we have no
1554 way to correctly win in all cases, so we just do the right thing
1555 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1556 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1557 would cause more chaos than dealing with some struct returns being
1558 handled wrong. */
1559
1560int
1561generic_use_struct_convention (gcc_p, value_type)
1562 int gcc_p;
1563 struct type *value_type;
c5aa993b 1564{
c906108c 1565 return !((gcc_p == 1)
c5aa993b
JM
1566 && (TYPE_LENGTH (value_type) == 1
1567 || TYPE_LENGTH (value_type) == 2
1568 || TYPE_LENGTH (value_type) == 4
1569 || TYPE_LENGTH (value_type) == 8));
c906108c
SS
1570}
1571
1572#ifndef USE_STRUCT_CONVENTION
1573#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1574#endif
1575
1576/* Some fundamental types (such as long double) are returned on the stack for
1577 certain architectures. This macro should return true for any type besides
1578 struct, union or array that gets returned on the stack. */
1579
1580#ifndef RETURN_VALUE_ON_STACK
1581#define RETURN_VALUE_ON_STACK(TYPE) 0
1582#endif
1583
1584/* Return true if the function specified is using the structure returning
1585 convention on this machine to return arguments, or 0 if it is using
1586 the value returning convention. FUNCTION is the value representing
1587 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1588 is the type returned by the function. GCC_P is nonzero if compiled
1589 with GCC. */
1590
1591int
1592using_struct_return (function, funcaddr, value_type, gcc_p)
1593 value_ptr function;
1594 CORE_ADDR funcaddr;
1595 struct type *value_type;
1596 int gcc_p;
c5aa993b 1597 /*ARGSUSED */
c906108c
SS
1598{
1599 register enum type_code code = TYPE_CODE (value_type);
1600
1601 if (code == TYPE_CODE_ERROR)
1602 error ("Function return type unknown.");
1603
1604 if (code == TYPE_CODE_STRUCT
1605 || code == TYPE_CODE_UNION
1606 || code == TYPE_CODE_ARRAY
1607 || RETURN_VALUE_ON_STACK (value_type))
1608 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1609
1610 return 0;
1611}
1612
1613/* Store VAL so it will be returned if a function returns now.
1614 Does not verify that VAL's type matches what the current
1615 function wants to return. */
1616
1617void
1618set_return_value (val)
1619 value_ptr val;
1620{
1621 struct type *type = check_typedef (VALUE_TYPE (val));
1622 register enum type_code code = TYPE_CODE (type);
1623
1624 if (code == TYPE_CODE_ERROR)
1625 error ("Function return type unknown.");
1626
c5aa993b 1627 if (code == TYPE_CODE_STRUCT
c906108c
SS
1628 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1629 error ("GDB does not support specifying a struct or union return value.");
1630
1631 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1632}
1633\f
1634void
1635_initialize_values ()
1636{
1637 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1638 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1639These variables are created when you assign them values;\n\
1640thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1641A few convenience variables are given values automatically:\n\
1642\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1643\"$__\" holds the contents of the last address examined with \"x\".",
1644 &showlist);
1645
1646 add_cmd ("values", no_class, show_values,
1647 "Elements of value history around item number IDX (or last ten).",
1648 &showlist);
1649}