]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/layout.cc
2006-09-29 H.J. Lu <hongjiu.lu@intel.com>
[thirdparty/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
3#include "gold.h"
4
5#include <cassert>
6#include <cstring>
54dc6425 7#include <algorithm>
a2fb1b05
ILT
8#include <iostream>
9#include <utility>
10
11#include "output.h"
12#include "layout.h"
13
14namespace gold
15{
16
17// Layout_task methods.
18
19Layout_task::~Layout_task()
20{
21}
22
23// This task can be run when it is unblocked.
24
25Task::Is_runnable_type
26Layout_task::is_runnable(Workqueue*)
27{
28 if (this->this_blocker_->is_blocked())
29 return IS_BLOCKED;
30 return IS_RUNNABLE;
31}
32
33// We don't need to hold any locks for the duration of this task. In
34// fact this task will be the only one running.
35
36Task_locker*
37Layout_task::locks(Workqueue*)
38{
39 return NULL;
40}
41
42// Lay out the sections. This is called after all the input objects
43// have been read.
44
45void
46Layout_task::run(Workqueue*)
47{
48 Layout layout(this->options_);
54dc6425
ILT
49 layout.init();
50 for (Input_objects::Object_list::const_iterator p =
51 this->input_objects_->begin();
a2fb1b05
ILT
52 p != this->input_objects_->end();
53 ++p)
54 (*p)->layout(&layout);
75f65a3e 55 layout.finalize(this->input_objects_, this->symtab_);
a2fb1b05
ILT
56}
57
58// Layout methods.
59
54dc6425 60Layout::Layout(const General_options& options)
75f65a3e
ILT
61 : options_(options), namepool_(), sympool_(), signatures_(),
62 section_name_map_(), segment_list_(), section_list_()
54dc6425
ILT
63{
64}
65
66// Prepare for doing layout.
67
68void
69Layout::init()
70{
71 // Make space for more than enough segments for a typical file.
72 // This is just for efficiency--it's OK if we wind up needing more.
73 segment_list_.reserve(12);
74}
75
a2fb1b05
ILT
76// Hash a key we use to look up an output section mapping.
77
78size_t
79Layout::Hash_key::operator()(const Layout::Key& k) const
80{
81 return reinterpret_cast<size_t>(k.first) + k.second.first + k.second.second;
82}
83
84// Whether to include this section in the link.
85
86template<int size, bool big_endian>
87bool
88Layout::include_section(Object*, const char*,
89 const elfcpp::Shdr<size, big_endian>& shdr)
90{
91 // Some section types are never linked. Some are only linked when
92 // doing a relocateable link.
93 switch (shdr.get_sh_type())
94 {
95 case elfcpp::SHT_NULL:
96 case elfcpp::SHT_SYMTAB:
97 case elfcpp::SHT_DYNSYM:
98 case elfcpp::SHT_STRTAB:
99 case elfcpp::SHT_HASH:
100 case elfcpp::SHT_DYNAMIC:
101 case elfcpp::SHT_SYMTAB_SHNDX:
102 return false;
103
104 case elfcpp::SHT_RELA:
105 case elfcpp::SHT_REL:
106 case elfcpp::SHT_GROUP:
107 return this->options_.is_relocatable();
108
109 default:
110 // FIXME: Handle stripping debug sections here.
111 return true;
112 }
113}
114
115// Return the output section to use for input section NAME, with
116// header HEADER, from object OBJECT. Set *OFF to the offset of this
117// input section without the output section.
118
119template<int size, bool big_endian>
120Output_section*
121Layout::layout(Object* object, const char* name,
122 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
123{
124 if (!this->include_section(object, name, shdr))
125 return NULL;
126
127 // Unless we are doing a relocateable link, .gnu.linkonce sections
128 // are laid out as though they were named for the sections are
129 // placed into.
130 if (!this->options_.is_relocatable() && Layout::is_linkonce(name))
131 name = Layout::linkonce_output_name(name);
132
133 // FIXME: Handle SHF_OS_NONCONFORMING here.
134
135 // Canonicalize the section name.
136 name = this->namepool_.add(name);
137
138 // Find the output section. The output section is selected based on
139 // the section name, type, and flags.
140
141 // FIXME: If we want to do relaxation, we need to modify this
142 // algorithm. We also build a list of input sections for each
143 // output section. Then we relax all the input sections. Then we
144 // walk down the list and adjust all the offsets.
145
146 elfcpp::Elf_Word type = shdr.get_sh_type();
147 elfcpp::Elf_Xword flags = shdr.get_sh_flags();
148 const Key key(name, std::make_pair(type, flags));
149 const std::pair<Key, Output_section*> v(key, NULL);
150 std::pair<Section_name_map::iterator, bool> ins(
151 this->section_name_map_.insert(v));
152
153 Output_section* os;
154 if (!ins.second)
155 os = ins.first->second;
156 else
157 {
158 // This is the first time we've seen this name/type/flags
159 // combination.
160 os = this->make_output_section(name, type, flags);
161 ins.first->second = os;
162 }
163
164 // FIXME: Handle SHF_LINK_ORDER somewhere.
165
166 *off = os->add_input_section(object, name, shdr);
167
168 return os;
169}
170
a2fb1b05
ILT
171// Map section flags to segment flags.
172
173elfcpp::Elf_Word
174Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
175{
176 elfcpp::Elf_Word ret = elfcpp::PF_R;
177 if ((flags & elfcpp::SHF_WRITE) != 0)
178 ret |= elfcpp::PF_W;
179 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
180 ret |= elfcpp::PF_X;
181 return ret;
182}
183
184// Make a new Output_section, and attach it to segments as
185// appropriate.
186
187Output_section*
188Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
189 elfcpp::Elf_Xword flags)
190{
191 Output_section* os = new Output_section(name, type, flags);
192
193 if ((flags & elfcpp::SHF_ALLOC) == 0)
194 this->section_list_.push_back(os);
195 else
196 {
197 // This output section goes into a PT_LOAD segment.
198
199 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
200
201 // The only thing we really care about for PT_LOAD segments is
202 // whether or not they are writable, so that is how we search
203 // for them. People who need segments sorted on some other
204 // basis will have to wait until we implement a mechanism for
205 // them to describe the segments they want.
206
207 Segment_list::const_iterator p;
208 for (p = this->segment_list_.begin();
209 p != this->segment_list_.end();
210 ++p)
211 {
212 if ((*p)->type() == elfcpp::PT_LOAD
213 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
214 {
75f65a3e 215 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
216 break;
217 }
218 }
219
220 if (p == this->segment_list_.end())
221 {
222 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
223 seg_flags);
224 this->segment_list_.push_back(oseg);
75f65a3e 225 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
226 }
227
228 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
229 // segment.
230 if (type == elfcpp::SHT_NOTE)
231 {
232 // See if we already have an equivalent PT_NOTE segment.
233 for (p = this->segment_list_.begin();
234 p != segment_list_.end();
235 ++p)
236 {
237 if ((*p)->type() == elfcpp::PT_NOTE
238 && (((*p)->flags() & elfcpp::PF_W)
239 == (seg_flags & elfcpp::PF_W)))
240 {
75f65a3e 241 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
242 break;
243 }
244 }
245
246 if (p == this->segment_list_.end())
247 {
248 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
249 seg_flags);
250 this->segment_list_.push_back(oseg);
75f65a3e 251 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
252 }
253 }
54dc6425
ILT
254
255 // If we see a loadable SHF_TLS section, we create a PT_TLS
256 // segment.
257 if ((flags & elfcpp::SHF_TLS) != 0)
258 {
259 // See if we already have an equivalent PT_TLS segment.
260 for (p = this->segment_list_.begin();
261 p != segment_list_.end();
262 ++p)
263 {
264 if ((*p)->type() == elfcpp::PT_TLS
265 && (((*p)->flags() & elfcpp::PF_W)
266 == (seg_flags & elfcpp::PF_W)))
267 {
75f65a3e 268 (*p)->add_output_section(os, seg_flags);
54dc6425
ILT
269 break;
270 }
271 }
272
273 if (p == this->segment_list_.end())
274 {
275 Output_segment* oseg = new Output_segment(elfcpp::PT_TLS,
276 seg_flags);
277 this->segment_list_.push_back(oseg);
75f65a3e 278 oseg->add_output_section(os, seg_flags);
54dc6425
ILT
279 }
280 }
a2fb1b05
ILT
281 }
282
283 return os;
284}
285
75f65a3e
ILT
286// Find the first read-only PT_LOAD segment, creating one if
287// necessary.
54dc6425 288
75f65a3e
ILT
289Output_segment*
290Layout::find_first_load_seg()
54dc6425 291{
75f65a3e
ILT
292 for (Segment_list::const_iterator p = this->segment_list_.begin();
293 p != this->segment_list_.end();
294 ++p)
295 {
296 if ((*p)->type() == elfcpp::PT_LOAD
297 && ((*p)->flags() & elfcpp::PF_R) != 0
298 && ((*p)->flags() & elfcpp::PF_W) == 0)
299 return *p;
300 }
301
302 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
303 this->segment_list_.push_back(load_seg);
304 return load_seg;
54dc6425
ILT
305}
306
307// Finalize the layout. When this is called, we have created all the
308// output sections and all the output segments which are based on
309// input sections. We have several things to do, and we have to do
310// them in the right order, so that we get the right results correctly
311// and efficiently.
312
313// 1) Finalize the list of output segments and create the segment
314// table header.
315
316// 2) Finalize the dynamic symbol table and associated sections.
317
318// 3) Determine the final file offset of all the output segments.
319
320// 4) Determine the final file offset of all the SHF_ALLOC output
321// sections.
322
75f65a3e
ILT
323// 5) Create the symbol table sections and the section name table
324// section.
325
326// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
327// value and make a final determination of which symbols are going
328// into the output symbol table.
329
54dc6425
ILT
330// 7) Create the section table header.
331
332// 8) Determine the final file offset of all the output sections which
333// are not SHF_ALLOC, including the section table header.
334
335// 9) Finalize the ELF file header.
336
75f65a3e
ILT
337// This function returns the size of the output file.
338
339off_t
340Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
54dc6425
ILT
341{
342 if (input_objects->any_dynamic())
343 {
344 // If there are any dynamic objects in the link, then we need
345 // some additional segments: PT_PHDRS, PT_INTERP, and
346 // PT_DYNAMIC. We also need to finalize the dynamic symbol
347 // table and create the dynamic hash table.
348 abort();
349 }
350
351 // FIXME: Handle PT_GNU_STACK.
352
75f65a3e
ILT
353 Output_segment* load_seg = this->find_first_load_seg();
354
355 // Lay out the segment headers.
356 int size = input_objects->target()->get_size();
357 Output_segment_headers* segment_headers;
358 segment_headers = new Output_segment_headers(size, this->segment_list_);
359 load_seg->add_initial_output_data(segment_headers);
360 // FIXME: Attach them to PT_PHDRS if necessary.
361
362 // Lay out the file header.
363 Output_file_header* file_header;
364 file_header = new Output_file_header(size,
365 this->options_,
366 input_objects->target(),
367 symtab,
368 segment_headers);
369 load_seg->add_initial_output_data(file_header);
370
371 // Set the file offsets of all the segments.
372 off_t off = this->set_segment_offsets(input_objects->target(), load_seg);
373
374 // Create the symbol table sections.
375 // FIXME: We don't need to do this if we are stripping symbols.
376 Output_section* osymtab;
377 Output_section* ostrtab;
378 this->create_symtab_sections(input_objects, symtab, &osymtab, &ostrtab);
379
380 // Create the .shstrtab section.
381 Output_section* shstrtab_section = this->create_shstrtab();
382
383 // Set the file offsets of all the sections not associated with
384 // segments.
385 off = this->set_section_offsets(off);
386
387 // Create the section table header.
388 Output_section_headers* oshdrs = this->create_shdrs(size, off);
389 off += oshdrs->data_size();
390
391 file_header->set_section_info(oshdrs, shstrtab_section);
392
393 // Now we know exactly where everything goes in the output file.
394
395 return off;
396}
397
398// Return whether SEG1 should be before SEG2 in the output file. This
399// is based entirely on the segment type and flags. When this is
400// called the segment addresses has normally not yet been set.
401
402bool
403Layout::segment_precedes(const Output_segment* seg1,
404 const Output_segment* seg2)
405{
406 elfcpp::Elf_Word type1 = seg1->type();
407 elfcpp::Elf_Word type2 = seg2->type();
408
409 // The single PT_PHDR segment is required to precede any loadable
410 // segment. We simply make it always first.
411 if (type1 == elfcpp::PT_PHDR)
412 {
413 assert(type2 != elfcpp::PT_PHDR);
414 return true;
415 }
416 if (type2 == elfcpp::PT_PHDR)
417 return false;
418
419 // The single PT_INTERP segment is required to precede any loadable
420 // segment. We simply make it always second.
421 if (type1 == elfcpp::PT_INTERP)
422 {
423 assert(type2 != elfcpp::PT_INTERP);
424 return true;
425 }
426 if (type2 == elfcpp::PT_INTERP)
427 return false;
428
429 // We then put PT_LOAD segments before any other segments.
430 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
431 return true;
432 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
433 return false;
434
435 const elfcpp::Elf_Word flags1 = seg1->flags();
436 const elfcpp::Elf_Word flags2 = seg2->flags();
437
438 // The order of non-PT_LOAD segments is unimportant. We simply sort
439 // by the numeric segment type and flags values. There should not
440 // be more than one segment with the same type and flags.
441 if (type1 != elfcpp::PT_LOAD)
442 {
443 if (type1 != type2)
444 return type1 < type2;
445 assert(flags1 != flags2);
446 return flags1 < flags2;
447 }
448
449 // We sort PT_LOAD segments based on the flags. Readonly segments
450 // come before writable segments. Then executable segments come
451 // before non-executable segments. Then the unlikely case of a
452 // non-readable segment comes before the normal case of a readable
453 // segment. If there are multiple segments with the same type and
454 // flags, we require that the address be set, and we sort by
455 // virtual address and then physical address.
456 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
457 return (flags1 & elfcpp::PF_W) == 0;
458 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
459 return (flags1 & elfcpp::PF_X) != 0;
460 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
461 return (flags1 & elfcpp::PF_R) == 0;
462
463 uint64_t vaddr1 = seg1->vaddr();
464 uint64_t vaddr2 = seg2->vaddr();
465 if (vaddr1 != vaddr2)
466 return vaddr1 < vaddr2;
467
468 uint64_t paddr1 = seg1->paddr();
469 uint64_t paddr2 = seg2->paddr();
470 assert(paddr1 != paddr2);
471 return paddr1 < paddr2;
472}
473
474// Set the file offsets of all the segments. They have all been
475// created. LOAD_SEG must be be laid out first. Return the offset of
476// the data to follow.
477
478off_t
479Layout::set_segment_offsets(const Target* target, Output_segment* load_seg)
480{
481 // Sort them into the final order.
54dc6425
ILT
482 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
483 Layout::Compare_segments());
484
75f65a3e
ILT
485 // Find the PT_LOAD segments, and set their addresses and offsets
486 // and their section's addresses and offsets.
487 uint64_t addr = target->text_segment_address();
488 off_t off = 0;
489 bool was_readonly = false;
490 for (Segment_list::iterator p = this->segment_list_.begin();
491 p != this->segment_list_.end();
492 ++p)
493 {
494 if ((*p)->type() == elfcpp::PT_LOAD)
495 {
496 if (load_seg != NULL && load_seg != *p)
497 abort();
498 load_seg = NULL;
499
500 // If the last segment was readonly, and this one is not,
501 // then skip the address forward one page, maintaining the
502 // same position within the page. This lets us store both
503 // segments overlapping on a single page in the file, but
504 // the loader will put them on different pages in memory.
505
506 uint64_t orig_addr = addr;
507 uint64_t orig_off = off;
508
509 uint64_t aligned_addr = addr;
510 uint64_t abi_pagesize = target->abi_pagesize();
511 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
512 {
513 uint64_t align = (*p)->max_data_align();
514
515 addr = (addr + align - 1) & ~ (align - 1);
516 aligned_addr = addr;
517 if ((addr & (abi_pagesize - 1)) != 0)
518 addr = addr + abi_pagesize;
519 }
520
521 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
522 uint64_t new_addr = (*p)->set_section_addresses(addr, &off);
523
524 // Now that we know the size of this segment, we may be able
525 // to save a page in memory, at the cost of wasting some
526 // file space, by instead aligning to the start of a new
527 // page. Here we use the real machine page size rather than
528 // the ABI mandated page size.
529
530 if (aligned_addr != addr)
531 {
532 uint64_t common_pagesize = target->common_pagesize();
533 uint64_t first_off = (common_pagesize
534 - (aligned_addr
535 & (common_pagesize - 1)));
536 uint64_t last_off = new_addr & (common_pagesize - 1);
537 if (first_off > 0
538 && last_off > 0
539 && ((aligned_addr & ~ (common_pagesize - 1))
540 != (new_addr & ~ (common_pagesize - 1)))
541 && first_off + last_off <= common_pagesize)
542 {
543 addr = ((aligned_addr + common_pagesize - 1)
544 & ~ (common_pagesize - 1));
545 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
546 new_addr = (*p)->set_section_addresses(addr, &off);
547 }
548 }
549
550 addr = new_addr;
551
552 if (((*p)->flags() & elfcpp::PF_W) == 0)
553 was_readonly = true;
554 }
555 }
556
557 // Handle the non-PT_LOAD segments, setting their offsets from their
558 // section's offsets.
559 for (Segment_list::iterator p = this->segment_list_.begin();
560 p != this->segment_list_.end();
561 ++p)
562 {
563 if ((*p)->type() != elfcpp::PT_LOAD)
564 (*p)->set_offset();
565 }
566
567 return off;
568}
569
570// Set the file offset of all the sections not associated with a
571// segment.
572
573off_t
574Layout::set_section_offsets(off_t off)
575{
576 for (Layout::Section_list::iterator p = this->section_list_.begin();
577 p != this->section_list_.end();
578 ++p)
579 {
580 uint64_t addralign = (*p)->addralign();
581 off = (off + addralign - 1) & ~ (addralign - 1);
582 (*p)->set_address(0, off);
583 off += (*p)->data_size();
584 }
585 return off;
586}
587
588// Create the symbol table sections.
589
590void
591Layout::create_symtab_sections(const Input_objects* input_objects,
592 Symbol_table* symtab,
593 Output_section** posymtab,
594 Output_section** postrtab)
595{
596 off_t off = 0;
597 for (Input_objects::Object_list::const_iterator p = input_objects->begin();
598 p != input_objects->end();
599 ++p)
600 {
601 Task_lock_obj<Object> tlo(**p);
602 off = (*p)->finalize_local_symbols(off, &this->sympool_);
603 }
604
605 off = symtab->finalize(off, &this->sympool_);
606
607 *posymtab = new Output_section_symtab(this->namepool_.add(".symtab"), off);
608 *postrtab = new Output_section_strtab(this->namepool_.add(".strtab"),
609 &this->sympool_);
610}
611
612// Create the .shstrtab section, which holds the names of the
613// sections. At the time this is called, we have created all the
614// output sections except .shstrtab itself.
615
616Output_section*
617Layout::create_shstrtab()
618{
619 // FIXME: We don't need to create a .shstrtab section if we are
620 // stripping everything.
621
622 const char* name = this->namepool_.add(".shstrtab");
623
624 Output_section* os = new Output_section_strtab(name,
625 &this->namepool_);
626
627 this->section_list_.push_back(os);
628
629 return os;
630}
631
632// Create the section headers. SIZE is 32 or 64. OFF is the file
633// offset.
634
635Output_section_headers*
636Layout::create_shdrs(int size, off_t off)
637{
638 Output_section_headers* oshdrs;
639 oshdrs = new Output_section_headers(size, this->segment_list_,
640 this->section_list_);
641 uint64_t addralign = oshdrs->addralign();
642 off = (off + addralign - 1) & ~ (addralign - 1);
643 oshdrs->set_address(0, off);
644 return oshdrs;
54dc6425
ILT
645}
646
a2fb1b05
ILT
647// The mapping of .gnu.linkonce section names to real section names.
648
649#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t }
650const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
651{
652 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
653 MAPPING_INIT("t", ".text"),
654 MAPPING_INIT("r", ".rodata"),
655 MAPPING_INIT("d", ".data"),
656 MAPPING_INIT("b", ".bss"),
657 MAPPING_INIT("s", ".sdata"),
658 MAPPING_INIT("sb", ".sbss"),
659 MAPPING_INIT("s2", ".sdata2"),
660 MAPPING_INIT("sb2", ".sbss2"),
661 MAPPING_INIT("wi", ".debug_info"),
662 MAPPING_INIT("td", ".tdata"),
663 MAPPING_INIT("tb", ".tbss"),
664 MAPPING_INIT("lr", ".lrodata"),
665 MAPPING_INIT("l", ".ldata"),
666 MAPPING_INIT("lb", ".lbss"),
667};
668#undef MAPPING_INIT
669
670const int Layout::linkonce_mapping_count =
671 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
672
673// Return the name of the output section to use for a .gnu.linkonce
674// section. This is based on the default ELF linker script of the old
675// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
676// to ".text".
677
678const char*
679Layout::linkonce_output_name(const char* name)
680{
681 const char* s = name + sizeof(".gnu.linkonce") - 1;
682 if (*s != '.')
683 return name;
684 ++s;
685 const Linkonce_mapping* plm = linkonce_mapping;
686 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
687 {
688 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
689 return plm->to;
690 }
691 return name;
692}
693
694// Record the signature of a comdat section, and return whether to
695// include it in the link. If GROUP is true, this is a regular
696// section group. If GROUP is false, this is a group signature
697// derived from the name of a linkonce section. We want linkonce
698// signatures and group signatures to block each other, but we don't
699// want a linkonce signature to block another linkonce signature.
700
701bool
702Layout::add_comdat(const char* signature, bool group)
703{
704 std::string sig(signature);
705 std::pair<Signatures::iterator, bool> ins(
706 this->signatures_.insert(std::make_pair(signature, group)));
707
708 if (ins.second)
709 {
710 // This is the first time we've seen this signature.
711 return true;
712 }
713
714 if (ins.first->second)
715 {
716 // We've already seen a real section group with this signature.
717 return false;
718 }
719 else if (group)
720 {
721 // This is a real section group, and we've already seen a
722 // linkonce section with tihs signature. Record that we've seen
723 // a section group, and don't include this section group.
724 ins.first->second = true;
725 return false;
726 }
727 else
728 {
729 // We've already seen a linkonce section and this is a linkonce
730 // section. These don't block each other--this may be the same
731 // symbol name with different section types.
732 return true;
733 }
734}
735
736// Instantiate the templates we need. We could use the configure
737// script to restrict this to only the ones for implemented targets.
738
739template
740Output_section*
741Layout::layout<32, false>(Object* object, const char* name,
742 const elfcpp::Shdr<32, false>& shdr, off_t*);
743
744template
745Output_section*
746Layout::layout<32, true>(Object* object, const char* name,
747 const elfcpp::Shdr<32, true>& shdr, off_t*);
748
749template
750Output_section*
751Layout::layout<64, false>(Object* object, const char* name,
752 const elfcpp::Shdr<64, false>& shdr, off_t*);
753
754template
755Output_section*
756Layout::layout<64, true>(Object* object, const char* name,
757 const elfcpp::Shdr<64, true>& shdr, off_t*);
758
759
760} // End namespace gold.