]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - libctf/ctf-open.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / libctf / ctf-open.c
CommitLineData
72f33921 1/* Opening CTF files.
250d07de 2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
72f33921
NA
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20#include <ctf-impl.h>
21#include <stddef.h>
22#include <string.h>
23#include <sys/types.h>
24#include <elf.h>
72f33921
NA
25#include "swap.h"
26#include <bfd.h>
27#include <zlib.h>
28
72f33921
NA
29static const ctf_dmodel_t _libctf_models[] = {
30 {"ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4},
31 {"LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8},
32 {NULL, 0, 0, 0, 0, 0, 0}
33};
34
35const char _CTF_SECTION[] = ".ctf";
36const char _CTF_NULLSTR[] = "";
37
38/* Version-sensitive accessors. */
39
40static uint32_t
41get_kind_v1 (uint32_t info)
42{
43 return (CTF_V1_INFO_KIND (info));
44}
45
46static uint32_t
47get_root_v1 (uint32_t info)
48{
49 return (CTF_V1_INFO_ISROOT (info));
50}
51
52static uint32_t
53get_vlen_v1 (uint32_t info)
54{
55 return (CTF_V1_INFO_VLEN (info));
56}
57
58static uint32_t
59get_kind_v2 (uint32_t info)
60{
61 return (CTF_V2_INFO_KIND (info));
62}
63
64static uint32_t
65get_root_v2 (uint32_t info)
66{
67 return (CTF_V2_INFO_ISROOT (info));
68}
69
70static uint32_t
71get_vlen_v2 (uint32_t info)
72{
73 return (CTF_V2_INFO_VLEN (info));
74}
75
76static inline ssize_t
139633c3 77get_ctt_size_common (const ctf_dict_t *fp _libctf_unused_,
72f33921
NA
78 const ctf_type_t *tp _libctf_unused_,
79 ssize_t *sizep, ssize_t *incrementp, size_t lsize,
80 size_t csize, size_t ctf_type_size,
81 size_t ctf_stype_size, size_t ctf_lsize_sent)
82{
83 ssize_t size, increment;
84
85 if (csize == ctf_lsize_sent)
86 {
87 size = lsize;
88 increment = ctf_type_size;
89 }
90 else
91 {
92 size = csize;
93 increment = ctf_stype_size;
94 }
95
96 if (sizep)
97 *sizep = size;
98 if (incrementp)
99 *incrementp = increment;
100
101 return size;
102}
103
104static ssize_t
139633c3 105get_ctt_size_v1 (const ctf_dict_t *fp, const ctf_type_t *tp,
72f33921
NA
106 ssize_t *sizep, ssize_t *incrementp)
107{
108 ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
109
110 return (get_ctt_size_common (fp, tp, sizep, incrementp,
111 CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
112 sizeof (ctf_type_v1_t), sizeof (ctf_stype_v1_t),
113 CTF_LSIZE_SENT_V1));
114}
115
116/* Return the size that a v1 will be once it is converted to v2. */
117
118static ssize_t
139633c3 119get_ctt_size_v2_unconverted (const ctf_dict_t *fp, const ctf_type_t *tp,
72f33921
NA
120 ssize_t *sizep, ssize_t *incrementp)
121{
122 ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
123
124 return (get_ctt_size_common (fp, tp, sizep, incrementp,
125 CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
126 sizeof (ctf_type_t), sizeof (ctf_stype_t),
127 CTF_LSIZE_SENT));
128}
129
130static ssize_t
139633c3 131get_ctt_size_v2 (const ctf_dict_t *fp, const ctf_type_t *tp,
72f33921
NA
132 ssize_t *sizep, ssize_t *incrementp)
133{
134 return (get_ctt_size_common (fp, tp, sizep, incrementp,
135 CTF_TYPE_LSIZE (tp), tp->ctt_size,
136 sizeof (ctf_type_t), sizeof (ctf_stype_t),
137 CTF_LSIZE_SENT));
138}
139
140static ssize_t
139633c3 141get_vbytes_common (ctf_dict_t *fp, unsigned short kind,
926c9e76 142 ssize_t size _libctf_unused_, size_t vlen)
72f33921
NA
143{
144 switch (kind)
145 {
146 case CTF_K_INTEGER:
147 case CTF_K_FLOAT:
148 return (sizeof (uint32_t));
149 case CTF_K_SLICE:
7cee1826 150 return (sizeof (ctf_slice_t));
72f33921
NA
151 case CTF_K_ENUM:
152 return (sizeof (ctf_enum_t) * vlen);
153 case CTF_K_FORWARD:
154 case CTF_K_UNKNOWN:
155 case CTF_K_POINTER:
156 case CTF_K_TYPEDEF:
157 case CTF_K_VOLATILE:
158 case CTF_K_CONST:
159 case CTF_K_RESTRICT:
160 return 0;
161 default:
926c9e76
NA
162 ctf_set_errno (fp, ECTF_CORRUPT);
163 ctf_err_warn (fp, 0, 0, _("detected invalid CTF kind: %x"), kind);
164 return -1;
72f33921
NA
165 }
166}
167
168static ssize_t
139633c3 169get_vbytes_v1 (ctf_dict_t *fp, unsigned short kind, ssize_t size, size_t vlen)
72f33921
NA
170{
171 switch (kind)
172 {
173 case CTF_K_ARRAY:
174 return (sizeof (ctf_array_v1_t));
175 case CTF_K_FUNCTION:
176 return (sizeof (unsigned short) * (vlen + (vlen & 1)));
177 case CTF_K_STRUCT:
178 case CTF_K_UNION:
179 if (size < CTF_LSTRUCT_THRESH_V1)
180 return (sizeof (ctf_member_v1_t) * vlen);
181 else
182 return (sizeof (ctf_lmember_v1_t) * vlen);
183 }
184
926c9e76 185 return (get_vbytes_common (fp, kind, size, vlen));
72f33921
NA
186}
187
188static ssize_t
139633c3 189get_vbytes_v2 (ctf_dict_t *fp, unsigned short kind, ssize_t size, size_t vlen)
72f33921
NA
190{
191 switch (kind)
192 {
193 case CTF_K_ARRAY:
194 return (sizeof (ctf_array_t));
195 case CTF_K_FUNCTION:
196 return (sizeof (uint32_t) * (vlen + (vlen & 1)));
197 case CTF_K_STRUCT:
198 case CTF_K_UNION:
199 if (size < CTF_LSTRUCT_THRESH)
200 return (sizeof (ctf_member_t) * vlen);
201 else
202 return (sizeof (ctf_lmember_t) * vlen);
203 }
204
926c9e76 205 return (get_vbytes_common (fp, kind, size, vlen));
72f33921
NA
206}
207
139633c3 208static const ctf_dictops_t ctf_dictops[] = {
72f33921
NA
209 {NULL, NULL, NULL, NULL, NULL},
210 /* CTF_VERSION_1 */
211 {get_kind_v1, get_root_v1, get_vlen_v1, get_ctt_size_v1, get_vbytes_v1},
212 /* CTF_VERSION_1_UPGRADED_3 */
213 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
214 /* CTF_VERSION_2 */
215 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
216 /* CTF_VERSION_3, identical to 2: only new type kinds */
217 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
218};
219
1136c379
NA
220/* Initialize the symtab translation table as appropriate for its indexing
221 state. For unindexed symtypetabs, fill each entry with the offset of the CTF
222 type or function data corresponding to each STT_FUNC or STT_OBJECT entry in
223 the symbol table. For indexed symtypetabs, do nothing: the needed
224 initialization for indexed lookups may be quite expensive, so it is done only
225 as needed, when lookups happen. (In particular, the majority of indexed
226 symtypetabs come from the compiler, and all the linker does is iteration over
227 all entries, which doesn't need this initialization.)
228
53651de8
NA
229 The SP symbol table section may be NULL if there is no symtab.
230
231 If init_symtab works on one call, it cannot fail on future calls to the same
232 fp: ctf_symsect_endianness relies on this. */
72f33921
NA
233
234static int
1136c379 235init_symtab (ctf_dict_t *fp, const ctf_header_t *hp, const ctf_sect_t *sp)
72f33921 236{
1136c379
NA
237 const unsigned char *symp;
238 int skip_func_info = 0;
239 int i;
72f33921
NA
240 uint32_t *xp = fp->ctf_sxlate;
241 uint32_t *xend = xp + fp->ctf_nsyms;
242
243 uint32_t objtoff = hp->cth_objtoff;
244 uint32_t funcoff = hp->cth_funcoff;
245
1136c379
NA
246 /* If the CTF_F_NEWFUNCINFO flag is not set, pretend the func info section
247 is empty: this compiler is too old to emit a function info section we
248 understand. */
249
250 if (!(hp->cth_flags & CTF_F_NEWFUNCINFO))
251 skip_func_info = 1;
252
253 if (hp->cth_objtidxoff < hp->cth_funcidxoff)
254 fp->ctf_objtidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_objtidxoff);
255 if (hp->cth_funcidxoff < hp->cth_varoff && !skip_func_info)
256 fp->ctf_funcidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_funcidxoff);
257
258 /* Don't bother doing the rest if everything is indexed, or if we don't have a
259 symbol table: we will never use it. */
260 if ((fp->ctf_objtidx_names && fp->ctf_funcidx_names) || !sp || !sp->cts_data)
261 return 0;
262
263 /* The CTF data object and function type sections are ordered to match the
264 relative order of the respective symbol types in the symtab, unless there
265 is an index section, in which case the order is arbitrary and the index
266 gives the mapping. If no type information is available for a symbol table
267 entry, a pad is inserted in the CTF section. As a further optimization,
268 anonymous or undefined symbols are omitted from the CTF data. If an
269 index is available for function symbols but not object symbols, or vice
270 versa, we populate the xslate table for the unindexed symbols only. */
271
272 for (i = 0, symp = sp->cts_data; xp < xend; xp++, symp += sp->cts_entsize,
273 i++)
72f33921 274 {
1136c379 275 ctf_link_sym_t sym;
72f33921 276
1136c379
NA
277 switch (sp->cts_entsize)
278 {
279 case sizeof (Elf64_Sym):
280 {
281 const Elf64_Sym *symp64 = (Elf64_Sym *) (uintptr_t) symp;
282 ctf_elf64_to_link_sym (fp, &sym, symp64, i);
283 }
284 break;
285 case sizeof (Elf32_Sym):
286 {
287 const Elf32_Sym *symp32 = (Elf32_Sym *) (uintptr_t) symp;
288 ctf_elf32_to_link_sym (fp, &sym, symp32, i);
289 }
290 break;
291 default:
292 return ECTF_SYMTAB;
293 }
72f33921 294
53651de8
NA
295 /* This call may be led astray if our idea of the symtab's endianness is
296 wrong, but when this is fixed by a call to ctf_symsect_endianness,
297 init_symtab will be called again with the right endianness in
298 force. */
1136c379 299 if (ctf_symtab_skippable (&sym))
72f33921
NA
300 {
301 *xp = -1u;
302 continue;
303 }
304
1136c379 305 switch (sym.st_type)
72f33921
NA
306 {
307 case STT_OBJECT:
1136c379 308 if (fp->ctf_objtidx_names || objtoff >= hp->cth_funcoff)
72f33921
NA
309 {
310 *xp = -1u;
311 break;
312 }
313
314 *xp = objtoff;
315 objtoff += sizeof (uint32_t);
316 break;
317
318 case STT_FUNC:
1136c379
NA
319 if (fp->ctf_funcidx_names || funcoff >= hp->cth_objtidxoff
320 || skip_func_info)
72f33921
NA
321 {
322 *xp = -1u;
323 break;
324 }
325
326 *xp = funcoff;
1136c379 327 funcoff += sizeof (uint32_t);
72f33921
NA
328 break;
329
330 default:
331 *xp = -1u;
332 break;
333 }
334 }
335
336 ctf_dprintf ("loaded %lu symtab entries\n", fp->ctf_nsyms);
337 return 0;
338}
339
fd55eae8 340/* Reset the CTF base pointer and derive the buf pointer from it, initializing
139633c3 341 everything in the ctf_dict that depends on the base or buf pointers.
fd55eae8
NA
342
343 The original gap between the buf and base pointers, if any -- the original,
344 unconverted CTF header -- is kept, but its contents are not specified and are
345 never used. */
72f33921
NA
346
347static void
139633c3 348ctf_set_base (ctf_dict_t *fp, const ctf_header_t *hp, unsigned char *base)
72f33921 349{
fd55eae8 350 fp->ctf_buf = base + (fp->ctf_buf - fp->ctf_base);
72f33921 351 fp->ctf_base = base;
72f33921
NA
352 fp->ctf_vars = (ctf_varent_t *) ((const char *) fp->ctf_buf +
353 hp->cth_varoff);
354 fp->ctf_nvars = (hp->cth_typeoff - hp->cth_varoff) / sizeof (ctf_varent_t);
355
356 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
357 + hp->cth_stroff;
358 fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;
359
139633c3
NA
360 /* If we have a parent dict name and label, store the relocated string
361 pointers in the CTF dict for easy access later. */
72f33921
NA
362
363 /* Note: before conversion, these will be set to values that will be
364 immediately invalidated by the conversion process, but the conversion
365 process will call ctf_set_base() again to fix things up. */
366
367 if (hp->cth_parlabel != 0)
368 fp->ctf_parlabel = ctf_strptr (fp, hp->cth_parlabel);
369 if (hp->cth_parname != 0)
370 fp->ctf_parname = ctf_strptr (fp, hp->cth_parname);
fd55eae8
NA
371 if (hp->cth_cuname != 0)
372 fp->ctf_cuname = ctf_strptr (fp, hp->cth_cuname);
373
374 if (fp->ctf_cuname)
375 ctf_dprintf ("ctf_set_base: CU name %s\n", fp->ctf_cuname);
376 if (fp->ctf_parname)
377 ctf_dprintf ("ctf_set_base: parent name %s (label %s)\n",
378 fp->ctf_parname,
72f33921
NA
379 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
380}
381
72f33921
NA
382/* Set the version of the CTF file. */
383
384/* When this is reset, LCTF_* changes behaviour, but there is no guarantee that
385 the variable data list associated with each type has been upgraded: the
386 caller must ensure this has been done in advance. */
387
388static void
139633c3 389ctf_set_version (ctf_dict_t *fp, ctf_header_t *cth, int ctf_version)
72f33921
NA
390{
391 fp->ctf_version = ctf_version;
392 cth->cth_version = ctf_version;
139633c3 393 fp->ctf_dictops = &ctf_dictops[ctf_version];
72f33921
NA
394}
395
fd55eae8
NA
396
397/* Upgrade the header to CTF_VERSION_3. The upgrade is done in-place. */
398static void
399upgrade_header (ctf_header_t *hp)
400{
401 ctf_header_v2_t *oldhp = (ctf_header_v2_t *) hp;
402
403 hp->cth_strlen = oldhp->cth_strlen;
404 hp->cth_stroff = oldhp->cth_stroff;
405 hp->cth_typeoff = oldhp->cth_typeoff;
406 hp->cth_varoff = oldhp->cth_varoff;
2db912ba
NA
407 hp->cth_funcidxoff = hp->cth_varoff; /* No index sections. */
408 hp->cth_objtidxoff = hp->cth_funcidxoff;
fd55eae8
NA
409 hp->cth_funcoff = oldhp->cth_funcoff;
410 hp->cth_objtoff = oldhp->cth_objtoff;
411 hp->cth_lbloff = oldhp->cth_lbloff;
412 hp->cth_cuname = 0; /* No CU name. */
413}
414
415/* Upgrade the type table to CTF_VERSION_3 (really CTF_VERSION_1_UPGRADED_3)
416 from CTF_VERSION_1.
72f33921
NA
417
418 The upgrade is not done in-place: the ctf_base is moved. ctf_strptr() must
419 not be called before reallocation is complete.
420
2db912ba
NA
421 Sections not checked here due to nonexistence or nonpopulated state in older
422 formats: objtidx, funcidx.
423
72f33921
NA
424 Type kinds not checked here due to nonexistence in older formats:
425 CTF_K_SLICE. */
426static int
139633c3 427upgrade_types_v1 (ctf_dict_t *fp, ctf_header_t *cth)
72f33921
NA
428{
429 const ctf_type_v1_t *tbuf;
430 const ctf_type_v1_t *tend;
fd55eae8 431 unsigned char *ctf_base, *old_ctf_base = (unsigned char *) fp->ctf_dynbase;
72f33921
NA
432 ctf_type_t *t2buf;
433
434 ssize_t increase = 0, size, increment, v2increment, vbytes, v2bytes;
435 const ctf_type_v1_t *tp;
436 ctf_type_t *t2p;
72f33921
NA
437
438 tbuf = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_typeoff);
439 tend = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_stroff);
440
441 /* Much like init_types(), this is a two-pass process.
442
443 First, figure out the new type-section size needed. (It is possible,
444 in theory, for it to be less than the old size, but this is very
445 unlikely. It cannot be so small that cth_typeoff ends up of negative
446 size. We validate this with an assertion below.)
447
448 We must cater not only for changes in vlen and types sizes but also
449 for changes in 'increment', which happen because v2 places some types
450 into ctf_stype_t where v1 would be forced to use the larger non-stype. */
451
452 for (tp = tbuf; tp < tend;
453 tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes))
454 {
455 unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
456 unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
457
458 size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
926c9e76 459 vbytes = get_vbytes_v1 (fp, kind, size, vlen);
72f33921
NA
460
461 get_ctt_size_v2_unconverted (fp, (const ctf_type_t *) tp, NULL,
462 &v2increment);
926c9e76 463 v2bytes = get_vbytes_v2 (fp, kind, size, vlen);
72f33921
NA
464
465 if ((vbytes < 0) || (size < 0))
466 return ECTF_CORRUPT;
467
468 increase += v2increment - increment; /* May be negative. */
469 increase += v2bytes - vbytes;
470 }
471
fd55eae8
NA
472 /* Allocate enough room for the new buffer, then copy everything but the type
473 section into place, and reset the base accordingly. Leave the version
474 number unchanged, so that LCTF_INFO_* still works on the
72f33921
NA
475 as-yet-untranslated type info. */
476
de07e349 477 if ((ctf_base = malloc (fp->ctf_size + increase)) == NULL)
72f33921
NA
478 return ECTF_ZALLOC;
479
fd55eae8
NA
480 /* Start at ctf_buf, not ctf_base, to squeeze out the original header: we
481 never use it and it is unconverted. */
72f33921 482
fd55eae8
NA
483 memcpy (ctf_base, fp->ctf_buf, cth->cth_typeoff);
484 memcpy (ctf_base + cth->cth_stroff + increase,
485 fp->ctf_buf + cth->cth_stroff, cth->cth_strlen);
72f33921 486
fd55eae8
NA
487 memset (ctf_base + cth->cth_typeoff, 0, cth->cth_stroff - cth->cth_typeoff
488 + increase);
72f33921 489
fd55eae8 490 cth->cth_stroff += increase;
72f33921 491 fp->ctf_size += increase;
fd55eae8
NA
492 assert (cth->cth_stroff >= cth->cth_typeoff);
493 fp->ctf_base = ctf_base;
494 fp->ctf_buf = ctf_base;
495 fp->ctf_dynbase = ctf_base;
496 ctf_set_base (fp, cth, ctf_base);
72f33921 497
fd55eae8 498 t2buf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
72f33921
NA
499
500 /* Iterate through all the types again, upgrading them.
501
502 Everything that hasn't changed can just be outright memcpy()ed.
503 Things that have changed need field-by-field consideration. */
504
505 for (tp = tbuf, t2p = t2buf; tp < tend;
506 tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes),
507 t2p = (ctf_type_t *) ((uintptr_t) t2p + v2increment + v2bytes))
508 {
509 unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
510 int isroot = CTF_V1_INFO_ISROOT (tp->ctt_info);
511 unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
512 ssize_t v2size;
513 void *vdata, *v2data;
514
515 size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
926c9e76 516 vbytes = get_vbytes_v1 (fp, kind, size, vlen);
72f33921
NA
517
518 t2p->ctt_name = tp->ctt_name;
519 t2p->ctt_info = CTF_TYPE_INFO (kind, isroot, vlen);
520
521 switch (kind)
522 {
523 case CTF_K_FUNCTION:
524 case CTF_K_FORWARD:
525 case CTF_K_TYPEDEF:
526 case CTF_K_POINTER:
527 case CTF_K_VOLATILE:
528 case CTF_K_CONST:
529 case CTF_K_RESTRICT:
530 t2p->ctt_type = tp->ctt_type;
531 break;
532 case CTF_K_INTEGER:
533 case CTF_K_FLOAT:
534 case CTF_K_ARRAY:
535 case CTF_K_STRUCT:
536 case CTF_K_UNION:
537 case CTF_K_ENUM:
538 case CTF_K_UNKNOWN:
a0486bac 539 if ((size_t) size <= CTF_MAX_SIZE)
72f33921
NA
540 t2p->ctt_size = size;
541 else
542 {
543 t2p->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
544 t2p->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
545 }
546 break;
547 }
548
549 v2size = get_ctt_size_v2 (fp, t2p, NULL, &v2increment);
926c9e76 550 v2bytes = get_vbytes_v2 (fp, kind, v2size, vlen);
72f33921
NA
551
552 /* Catch out-of-sync get_ctt_size_*(). The count goes wrong if
553 these are not identical (and having them different makes no
554 sense semantically). */
555
556 assert (size == v2size);
557
558 /* Now the varlen info. */
559
560 vdata = (void *) ((uintptr_t) tp + increment);
561 v2data = (void *) ((uintptr_t) t2p + v2increment);
562
563 switch (kind)
564 {
565 case CTF_K_ARRAY:
566 {
567 const ctf_array_v1_t *ap = (const ctf_array_v1_t *) vdata;
568 ctf_array_t *a2p = (ctf_array_t *) v2data;
569
570 a2p->cta_contents = ap->cta_contents;
571 a2p->cta_index = ap->cta_index;
572 a2p->cta_nelems = ap->cta_nelems;
573 break;
574 }
575 case CTF_K_STRUCT:
576 case CTF_K_UNION:
577 {
578 ctf_member_t tmp;
579 const ctf_member_v1_t *m1 = (const ctf_member_v1_t *) vdata;
580 const ctf_lmember_v1_t *lm1 = (const ctf_lmember_v1_t *) m1;
581 ctf_member_t *m2 = (ctf_member_t *) v2data;
582 ctf_lmember_t *lm2 = (ctf_lmember_t *) m2;
583 unsigned long i;
584
585 /* We walk all four pointers forward, but only reference the two
586 that are valid for the given size, to avoid quadruplicating all
587 the code. */
588
589 for (i = vlen; i != 0; i--, m1++, lm1++, m2++, lm2++)
590 {
591 size_t offset;
592 if (size < CTF_LSTRUCT_THRESH_V1)
593 {
594 offset = m1->ctm_offset;
595 tmp.ctm_name = m1->ctm_name;
596 tmp.ctm_type = m1->ctm_type;
597 }
598 else
599 {
600 offset = CTF_LMEM_OFFSET (lm1);
601 tmp.ctm_name = lm1->ctlm_name;
602 tmp.ctm_type = lm1->ctlm_type;
603 }
604 if (size < CTF_LSTRUCT_THRESH)
605 {
606 m2->ctm_name = tmp.ctm_name;
607 m2->ctm_type = tmp.ctm_type;
608 m2->ctm_offset = offset;
609 }
610 else
611 {
612 lm2->ctlm_name = tmp.ctm_name;
613 lm2->ctlm_type = tmp.ctm_type;
614 lm2->ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (offset);
615 lm2->ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (offset);
616 }
617 }
618 break;
619 }
620 case CTF_K_FUNCTION:
621 {
622 unsigned long i;
623 unsigned short *a1 = (unsigned short *) vdata;
624 uint32_t *a2 = (uint32_t *) v2data;
625
626 for (i = vlen; i != 0; i--, a1++, a2++)
627 *a2 = *a1;
628 }
629 /* FALLTHRU */
630 default:
631 /* Catch out-of-sync get_vbytes_*(). */
632 assert (vbytes == v2bytes);
633 memcpy (v2data, vdata, vbytes);
634 }
635 }
636
637 /* Verify that the entire region was converted. If not, we are either
638 converting too much, or too little (leading to a buffer overrun either here
639 or at read time, in init_types().) */
640
fd55eae8 641 assert ((size_t) t2p - (size_t) fp->ctf_buf == cth->cth_stroff);
72f33921 642
fd55eae8 643 ctf_set_version (fp, cth, CTF_VERSION_1_UPGRADED_3);
de07e349 644 free (old_ctf_base);
72f33921
NA
645
646 return 0;
647}
648
fd55eae8
NA
649/* Upgrade from any earlier version. */
650static int
139633c3 651upgrade_types (ctf_dict_t *fp, ctf_header_t *cth)
fd55eae8
NA
652{
653 switch (cth->cth_version)
654 {
655 /* v1 requires a full pass and reformatting. */
656 case CTF_VERSION_1:
657 upgrade_types_v1 (fp, cth);
658 /* FALLTHRU */
659 /* Already-converted v1 is just like later versions except that its
660 parent/child boundary is unchanged (and much lower). */
661
662 case CTF_VERSION_1_UPGRADED_3:
663 fp->ctf_parmax = CTF_MAX_PTYPE_V1;
664
665 /* v2 is just the same as v3 except for new types and sections:
666 no upgrading required. */
667 case CTF_VERSION_2: ;
668 /* FALLTHRU */
669 }
670 return 0;
671}
672
72f33921
NA
673/* Initialize the type ID translation table with the byte offset of each type,
674 and initialize the hash tables of each named type. Upgrade the type table to
675 the latest supported representation in the process, if needed, and if this
676 recension of libctf supports upgrading. */
677
678static int
139633c3 679init_types (ctf_dict_t *fp, ctf_header_t *cth)
72f33921
NA
680{
681 const ctf_type_t *tbuf;
682 const ctf_type_t *tend;
683
684 unsigned long pop[CTF_K_MAX + 1] = { 0 };
685 const ctf_type_t *tp;
72f33921
NA
686 uint32_t id, dst;
687 uint32_t *xp;
688
139633c3
NA
689 /* We determine whether the dict is a child or a parent based on the value of
690 cth_parname. */
72f33921
NA
691
692 int child = cth->cth_parname != 0;
693 int nlstructs = 0, nlunions = 0;
694 int err;
695
676c3ecb
NA
696 assert (!(fp->ctf_flags & LCTF_RDWR));
697
72f33921
NA
698 if (_libctf_unlikely_ (fp->ctf_version == CTF_VERSION_1))
699 {
700 int err;
701 if ((err = upgrade_types (fp, cth)) != 0)
702 return err; /* Upgrade failed. */
703 }
704
705 tbuf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
706 tend = (ctf_type_t *) (fp->ctf_buf + cth->cth_stroff);
707
708 /* We make two passes through the entire type section. In this first
709 pass, we count the number of each type and the total number of types. */
710
711 for (tp = tbuf; tp < tend; fp->ctf_typemax++)
712 {
713 unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
714 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
715 ssize_t size, increment, vbytes;
716
717 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
718 vbytes = LCTF_VBYTES (fp, kind, size, vlen);
719
720 if (vbytes < 0)
721 return ECTF_CORRUPT;
722
2484ca43
NA
723 /* For forward declarations, ctt_type is the CTF_K_* kind for the tag,
724 so bump that population count too. */
72f33921 725 if (kind == CTF_K_FORWARD)
2484ca43 726 pop[tp->ctt_type]++;
72f33921 727
72f33921
NA
728 tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
729 pop[kind]++;
730 }
731
732 if (child)
733 {
139633c3 734 ctf_dprintf ("CTF dict %p is a child\n", (void *) fp);
72f33921
NA
735 fp->ctf_flags |= LCTF_CHILD;
736 }
737 else
139633c3 738 ctf_dprintf ("CTF dict %p is a parent\n", (void *) fp);
72f33921
NA
739
740 /* Now that we've counted up the number of each type, we can allocate
741 the hash tables, type translation table, and pointer table. */
742
676c3ecb
NA
743 if ((fp->ctf_structs.ctn_readonly
744 = ctf_hash_create (pop[CTF_K_STRUCT], ctf_hash_string,
745 ctf_hash_eq_string)) == NULL)
72f33921
NA
746 return ENOMEM;
747
676c3ecb
NA
748 if ((fp->ctf_unions.ctn_readonly
749 = ctf_hash_create (pop[CTF_K_UNION], ctf_hash_string,
750 ctf_hash_eq_string)) == NULL)
72f33921
NA
751 return ENOMEM;
752
676c3ecb
NA
753 if ((fp->ctf_enums.ctn_readonly
754 = ctf_hash_create (pop[CTF_K_ENUM], ctf_hash_string,
755 ctf_hash_eq_string)) == NULL)
72f33921
NA
756 return ENOMEM;
757
676c3ecb
NA
758 if ((fp->ctf_names.ctn_readonly
759 = ctf_hash_create (pop[CTF_K_INTEGER] +
760 pop[CTF_K_FLOAT] +
761 pop[CTF_K_FUNCTION] +
762 pop[CTF_K_TYPEDEF] +
763 pop[CTF_K_POINTER] +
764 pop[CTF_K_VOLATILE] +
765 pop[CTF_K_CONST] +
766 pop[CTF_K_RESTRICT],
767 ctf_hash_string,
768 ctf_hash_eq_string)) == NULL)
72f33921
NA
769 return ENOMEM;
770
de07e349 771 fp->ctf_txlate = malloc (sizeof (uint32_t) * (fp->ctf_typemax + 1));
676c3ecb 772 fp->ctf_ptrtab_len = fp->ctf_typemax + 1;
de07e349 773 fp->ctf_ptrtab = malloc (sizeof (uint32_t) * fp->ctf_ptrtab_len);
72f33921
NA
774
775 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
776 return ENOMEM; /* Memory allocation failed. */
777
778 xp = fp->ctf_txlate;
779 *xp++ = 0; /* Type id 0 is used as a sentinel value. */
780
781 memset (fp->ctf_txlate, 0, sizeof (uint32_t) * (fp->ctf_typemax + 1));
782 memset (fp->ctf_ptrtab, 0, sizeof (uint32_t) * (fp->ctf_typemax + 1));
783
784 /* In the second pass through the types, we fill in each entry of the
785 type and pointer tables and add names to the appropriate hashes. */
786
787 for (id = 1, tp = tbuf; tp < tend; xp++, id++)
788 {
789 unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
fe4c2d55 790 unsigned short isroot = LCTF_INFO_ISROOT (fp, tp->ctt_info);
72f33921
NA
791 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
792 ssize_t size, increment, vbytes;
793
794 const char *name;
795
796 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
797 name = ctf_strptr (fp, tp->ctt_name);
926c9e76 798 /* Cannot fail: shielded by call in loop above. */
72f33921
NA
799 vbytes = LCTF_VBYTES (fp, kind, size, vlen);
800
801 switch (kind)
802 {
803 case CTF_K_INTEGER:
804 case CTF_K_FLOAT:
805 /* Names are reused by bit-fields, which are differentiated by their
806 encodings, and so typically we'd record only the first instance of
807 a given intrinsic. However, we replace an existing type with a
808 root-visible version so that we can be sure to find it when
809 checking for conflicting definitions in ctf_add_type(). */
810
676c3ecb
NA
811 if (((ctf_hash_lookup_type (fp->ctf_names.ctn_readonly,
812 fp, name)) == 0)
fe4c2d55 813 || isroot)
72f33921 814 {
676c3ecb 815 err = ctf_hash_define_type (fp->ctf_names.ctn_readonly, fp,
72f33921
NA
816 LCTF_INDEX_TO_TYPE (fp, id, child),
817 tp->ctt_name);
d851ecd3 818 if (err != 0)
72f33921
NA
819 return err;
820 }
821 break;
822
823 /* These kinds have no name, so do not need interning into any
824 hashtables. */
825 case CTF_K_ARRAY:
826 case CTF_K_SLICE:
827 break;
828
829 case CTF_K_FUNCTION:
fe4c2d55
NA
830 if (!isroot)
831 break;
832
676c3ecb 833 err = ctf_hash_insert_type (fp->ctf_names.ctn_readonly, fp,
72f33921
NA
834 LCTF_INDEX_TO_TYPE (fp, id, child),
835 tp->ctt_name);
d851ecd3 836 if (err != 0)
72f33921
NA
837 return err;
838 break;
839
840 case CTF_K_STRUCT:
fe4c2d55
NA
841 if (size >= CTF_LSTRUCT_THRESH)
842 nlstructs++;
843
844 if (!isroot)
845 break;
846
676c3ecb 847 err = ctf_hash_define_type (fp->ctf_structs.ctn_readonly, fp,
72f33921
NA
848 LCTF_INDEX_TO_TYPE (fp, id, child),
849 tp->ctt_name);
850
d851ecd3 851 if (err != 0)
72f33921
NA
852 return err;
853
72f33921
NA
854 break;
855
856 case CTF_K_UNION:
fe4c2d55
NA
857 if (size >= CTF_LSTRUCT_THRESH)
858 nlunions++;
859
860 if (!isroot)
861 break;
862
676c3ecb 863 err = ctf_hash_define_type (fp->ctf_unions.ctn_readonly, fp,
72f33921
NA
864 LCTF_INDEX_TO_TYPE (fp, id, child),
865 tp->ctt_name);
866
d851ecd3 867 if (err != 0)
72f33921 868 return err;
72f33921
NA
869 break;
870
871 case CTF_K_ENUM:
fe4c2d55
NA
872 if (!isroot)
873 break;
874
676c3ecb 875 err = ctf_hash_define_type (fp->ctf_enums.ctn_readonly, fp,
72f33921
NA
876 LCTF_INDEX_TO_TYPE (fp, id, child),
877 tp->ctt_name);
878
d851ecd3 879 if (err != 0)
72f33921
NA
880 return err;
881 break;
882
883 case CTF_K_TYPEDEF:
fe4c2d55
NA
884 if (!isroot)
885 break;
886
676c3ecb 887 err = ctf_hash_insert_type (fp->ctf_names.ctn_readonly, fp,
72f33921
NA
888 LCTF_INDEX_TO_TYPE (fp, id, child),
889 tp->ctt_name);
d851ecd3 890 if (err != 0)
72f33921
NA
891 return err;
892 break;
893
894 case CTF_K_FORWARD:
676c3ecb
NA
895 {
896 ctf_names_t *np = ctf_name_table (fp, tp->ctt_type);
fe4c2d55
NA
897
898 if (!isroot)
899 break;
900
676c3ecb
NA
901 /* Only insert forward tags into the given hash if the type or tag
902 name is not already present. */
903 if (ctf_hash_lookup_type (np->ctn_readonly, fp, name) == 0)
904 {
905 err = ctf_hash_insert_type (np->ctn_readonly, fp,
906 LCTF_INDEX_TO_TYPE (fp, id, child),
907 tp->ctt_name);
908 if (err != 0)
909 return err;
910 }
911 break;
912 }
72f33921
NA
913
914 case CTF_K_POINTER:
139633c3
NA
915 /* If the type referenced by the pointer is in this CTF dict, then
916 store the index of the pointer type in fp->ctf_ptrtab[ index of
917 referenced type ]. */
72f33921
NA
918
919 if (LCTF_TYPE_ISCHILD (fp, tp->ctt_type) == child
920 && LCTF_TYPE_TO_INDEX (fp, tp->ctt_type) <= fp->ctf_typemax)
921 fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, tp->ctt_type)] = id;
922 /*FALLTHRU*/
923
924 case CTF_K_VOLATILE:
925 case CTF_K_CONST:
926 case CTF_K_RESTRICT:
fe4c2d55
NA
927 if (!isroot)
928 break;
929
676c3ecb 930 err = ctf_hash_insert_type (fp->ctf_names.ctn_readonly, fp,
72f33921
NA
931 LCTF_INDEX_TO_TYPE (fp, id, child),
932 tp->ctt_name);
d851ecd3 933 if (err != 0)
72f33921
NA
934 return err;
935 break;
0b4fa56e 936 default:
926c9e76
NA
937 ctf_err_warn (fp, 0, ECTF_CORRUPT,
938 _("init_types(): unhandled CTF kind: %x"), kind);
0b4fa56e 939 return ECTF_CORRUPT;
72f33921
NA
940 }
941
942 *xp = (uint32_t) ((uintptr_t) tp - (uintptr_t) fp->ctf_buf);
943 tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
944 }
945
946 ctf_dprintf ("%lu total types processed\n", fp->ctf_typemax);
676c3ecb
NA
947 ctf_dprintf ("%u enum names hashed\n",
948 ctf_hash_size (fp->ctf_enums.ctn_readonly));
72f33921 949 ctf_dprintf ("%u struct names hashed (%d long)\n",
676c3ecb 950 ctf_hash_size (fp->ctf_structs.ctn_readonly), nlstructs);
72f33921 951 ctf_dprintf ("%u union names hashed (%d long)\n",
676c3ecb
NA
952 ctf_hash_size (fp->ctf_unions.ctn_readonly), nlunions);
953 ctf_dprintf ("%u base type names hashed\n",
954 ctf_hash_size (fp->ctf_names.ctn_readonly));
72f33921
NA
955
956 /* Make an additional pass through the pointer table to find pointers that
957 point to anonymous typedef nodes. If we find one, modify the pointer table
958 so that the pointer is also known to point to the node that is referenced
959 by the anonymous typedef node. */
960
961 for (id = 1; id <= fp->ctf_typemax; id++)
962 {
963 if ((dst = fp->ctf_ptrtab[id]) != 0)
964 {
965 tp = LCTF_INDEX_TO_TYPEPTR (fp, id);
966
676c3ecb
NA
967 if (LCTF_INFO_KIND (fp, tp->ctt_info) == CTF_K_TYPEDEF
968 && strcmp (ctf_strptr (fp, tp->ctt_name), "") == 0
969 && LCTF_TYPE_ISCHILD (fp, tp->ctt_type) == child
970 && LCTF_TYPE_TO_INDEX (fp, tp->ctt_type) <= fp->ctf_typemax)
971 fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, tp->ctt_type)] = dst;
72f33921
NA
972 }
973 }
974
975 return 0;
976}
977
978/* Endianness-flipping routines.
979
980 We flip everything, mindlessly, even 1-byte entities, so that future
981 expansions do not require changes to this code. */
982
72f33921
NA
983/* Flip the endianness of the CTF header. */
984
985static void
986flip_header (ctf_header_t *cth)
987{
988 swap_thing (cth->cth_preamble.ctp_magic);
989 swap_thing (cth->cth_preamble.ctp_version);
990 swap_thing (cth->cth_preamble.ctp_flags);
991 swap_thing (cth->cth_parlabel);
992 swap_thing (cth->cth_parname);
fd55eae8 993 swap_thing (cth->cth_cuname);
72f33921
NA
994 swap_thing (cth->cth_objtoff);
995 swap_thing (cth->cth_funcoff);
2db912ba
NA
996 swap_thing (cth->cth_objtidxoff);
997 swap_thing (cth->cth_funcidxoff);
72f33921
NA
998 swap_thing (cth->cth_varoff);
999 swap_thing (cth->cth_typeoff);
1000 swap_thing (cth->cth_stroff);
1001 swap_thing (cth->cth_strlen);
1002}
1003
1004/* Flip the endianness of the label section, an array of ctf_lblent_t. */
1005
1006static void
1007flip_lbls (void *start, size_t len)
1008{
1009 ctf_lblent_t *lbl = start;
5ae6af75 1010 ssize_t i;
72f33921 1011
5ae6af75 1012 for (i = len / sizeof (struct ctf_lblent); i > 0; lbl++, i--)
72f33921
NA
1013 {
1014 swap_thing (lbl->ctl_label);
1015 swap_thing (lbl->ctl_type);
1016 }
1017}
1018
2db912ba 1019/* Flip the endianness of the data-object or function sections or their indexes,
1136c379 1020 all arrays of uint32_t. */
72f33921
NA
1021
1022static void
1023flip_objts (void *start, size_t len)
1024{
1025 uint32_t *obj = start;
5ae6af75 1026 ssize_t i;
72f33921 1027
5ae6af75 1028 for (i = len / sizeof (uint32_t); i > 0; obj++, i--)
72f33921
NA
1029 swap_thing (*obj);
1030}
1031
1032/* Flip the endianness of the variable section, an array of ctf_varent_t. */
1033
1034static void
1035flip_vars (void *start, size_t len)
1036{
1037 ctf_varent_t *var = start;
5ae6af75 1038 ssize_t i;
72f33921 1039
5ae6af75 1040 for (i = len / sizeof (struct ctf_varent); i > 0; var++, i--)
72f33921
NA
1041 {
1042 swap_thing (var->ctv_name);
1043 swap_thing (var->ctv_type);
1044 }
1045}
1046
1047/* Flip the endianness of the type section, a tagged array of ctf_type or
1048 ctf_stype followed by variable data. */
1049
1050static int
139633c3 1051flip_types (ctf_dict_t *fp, void *start, size_t len)
72f33921
NA
1052{
1053 ctf_type_t *t = start;
1054
1055 while ((uintptr_t) t < ((uintptr_t) start) + len)
1056 {
1057 swap_thing (t->ctt_name);
1058 swap_thing (t->ctt_info);
1059 swap_thing (t->ctt_size);
1060
1061 uint32_t kind = CTF_V2_INFO_KIND (t->ctt_info);
1062 size_t size = t->ctt_size;
1063 uint32_t vlen = CTF_V2_INFO_VLEN (t->ctt_info);
926c9e76 1064 size_t vbytes = get_vbytes_v2 (fp, kind, size, vlen);
72f33921
NA
1065
1066 if (_libctf_unlikely_ (size == CTF_LSIZE_SENT))
1067 {
1068 swap_thing (t->ctt_lsizehi);
1069 swap_thing (t->ctt_lsizelo);
1070 size = CTF_TYPE_LSIZE (t);
1071 t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_type_t));
1072 }
1073 else
1074 t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_stype_t));
1075
1076 switch (kind)
1077 {
1078 case CTF_K_FORWARD:
1079 case CTF_K_UNKNOWN:
1080 case CTF_K_POINTER:
1081 case CTF_K_TYPEDEF:
1082 case CTF_K_VOLATILE:
1083 case CTF_K_CONST:
1084 case CTF_K_RESTRICT:
1085 /* These types have no vlen data to swap. */
1086 assert (vbytes == 0);
1087 break;
1088
1089 case CTF_K_INTEGER:
1090 case CTF_K_FLOAT:
1091 {
1092 /* These types have a single uint32_t. */
1093
1094 uint32_t *item = (uint32_t *) t;
1095
1096 swap_thing (*item);
1097 break;
1098 }
1099
1100 case CTF_K_FUNCTION:
1101 {
1102 /* This type has a bunch of uint32_ts. */
1103
1104 uint32_t *item = (uint32_t *) t;
5ae6af75 1105 ssize_t i;
72f33921 1106
5ae6af75 1107 for (i = vlen; i > 0; item++, i--)
72f33921
NA
1108 swap_thing (*item);
1109 break;
1110 }
1111
1112 case CTF_K_ARRAY:
1113 {
1114 /* This has a single ctf_array_t. */
1115
1116 ctf_array_t *a = (ctf_array_t *) t;
1117
1118 assert (vbytes == sizeof (ctf_array_t));
1119 swap_thing (a->cta_contents);
1120 swap_thing (a->cta_index);
1121 swap_thing (a->cta_nelems);
1122
1123 break;
1124 }
1125
1126 case CTF_K_SLICE:
1127 {
1128 /* This has a single ctf_slice_t. */
1129
1130 ctf_slice_t *s = (ctf_slice_t *) t;
1131
1132 assert (vbytes == sizeof (ctf_slice_t));
1133 swap_thing (s->cts_type);
1134 swap_thing (s->cts_offset);
1135 swap_thing (s->cts_bits);
1136
1137 break;
1138 }
1139
1140 case CTF_K_STRUCT:
1141 case CTF_K_UNION:
1142 {
1143 /* This has an array of ctf_member or ctf_lmember, depending on
1144 size. We could consider it to be a simple array of uint32_t,
1145 but for safety's sake in case these structures ever acquire
1146 non-uint32_t members, do it member by member. */
1147
1148 if (_libctf_unlikely_ (size >= CTF_LSTRUCT_THRESH))
1149 {
1150 ctf_lmember_t *lm = (ctf_lmember_t *) t;
5ae6af75
NA
1151 ssize_t i;
1152 for (i = vlen; i > 0; i--, lm++)
72f33921
NA
1153 {
1154 swap_thing (lm->ctlm_name);
1155 swap_thing (lm->ctlm_offsethi);
1156 swap_thing (lm->ctlm_type);
1157 swap_thing (lm->ctlm_offsetlo);
1158 }
1159 }
1160 else
1161 {
1162 ctf_member_t *m = (ctf_member_t *) t;
5ae6af75
NA
1163 ssize_t i;
1164 for (i = vlen; i > 0; i--, m++)
72f33921
NA
1165 {
1166 swap_thing (m->ctm_name);
1167 swap_thing (m->ctm_offset);
1168 swap_thing (m->ctm_type);
1169 }
1170 }
1171 break;
1172 }
1173
1174 case CTF_K_ENUM:
1175 {
1176 /* This has an array of ctf_enum_t. */
1177
1178 ctf_enum_t *item = (ctf_enum_t *) t;
5ae6af75 1179 ssize_t i;
72f33921 1180
5ae6af75 1181 for (i = vlen; i > 0; item++, i--)
72f33921
NA
1182 {
1183 swap_thing (item->cte_name);
1184 swap_thing (item->cte_value);
1185 }
1186 break;
1187 }
1188 default:
926c9e76
NA
1189 ctf_err_warn (fp, 0, ECTF_CORRUPT,
1190 _("unhandled CTF kind in endianness conversion: %x"),
1191 kind);
72f33921
NA
1192 return ECTF_CORRUPT;
1193 }
1194
1195 t = (ctf_type_t *) ((uintptr_t) t + vbytes);
1196 }
1197
1198 return 0;
1199}
1200
fd55eae8 1201/* Flip the endianness of BUF, given the offsets in the (already endian-
72f33921
NA
1202 converted) CTH.
1203
1204 All of this stuff happens before the header is fully initialized, so the
1205 LCTF_*() macros cannot be used yet. Since we do not try to endian-convert v1
1206 data, this is no real loss. */
1207
1208static int
139633c3 1209flip_ctf (ctf_dict_t *fp, ctf_header_t *cth, unsigned char *buf)
72f33921 1210{
fd55eae8
NA
1211 flip_lbls (buf + cth->cth_lbloff, cth->cth_objtoff - cth->cth_lbloff);
1212 flip_objts (buf + cth->cth_objtoff, cth->cth_funcoff - cth->cth_objtoff);
2db912ba
NA
1213 flip_objts (buf + cth->cth_funcoff, cth->cth_objtidxoff - cth->cth_funcoff);
1214 flip_objts (buf + cth->cth_objtidxoff, cth->cth_funcidxoff - cth->cth_objtidxoff);
1215 flip_objts (buf + cth->cth_funcidxoff, cth->cth_varoff - cth->cth_funcidxoff);
fd55eae8 1216 flip_vars (buf + cth->cth_varoff, cth->cth_typeoff - cth->cth_varoff);
926c9e76 1217 return flip_types (fp, buf + cth->cth_typeoff, cth->cth_stroff - cth->cth_typeoff);
72f33921
NA
1218}
1219
139633c3 1220/* Set up the ctl hashes in a ctf_dict_t. Called by both writable and
676c3ecb 1221 non-writable dictionary initialization. */
139633c3 1222void ctf_set_ctl_hashes (ctf_dict_t *fp)
676c3ecb
NA
1223{
1224 /* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
1225 array of type name prefixes and the corresponding ctf_hash to use. */
1226 fp->ctf_lookups[0].ctl_prefix = "struct";
1227 fp->ctf_lookups[0].ctl_len = strlen (fp->ctf_lookups[0].ctl_prefix);
1228 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
1229 fp->ctf_lookups[1].ctl_prefix = "union";
1230 fp->ctf_lookups[1].ctl_len = strlen (fp->ctf_lookups[1].ctl_prefix);
1231 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
1232 fp->ctf_lookups[2].ctl_prefix = "enum";
1233 fp->ctf_lookups[2].ctl_len = strlen (fp->ctf_lookups[2].ctl_prefix);
1234 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
1235 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
1236 fp->ctf_lookups[3].ctl_len = strlen (fp->ctf_lookups[3].ctl_prefix);
1237 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
1238 fp->ctf_lookups[4].ctl_prefix = NULL;
1239 fp->ctf_lookups[4].ctl_len = 0;
1240 fp->ctf_lookups[4].ctl_hash = NULL;
1241}
1242
72f33921 1243/* Open a CTF file, mocking up a suitable ctf_sect. */
d851ecd3 1244
139633c3 1245ctf_dict_t *ctf_simple_open (const char *ctfsect, size_t ctfsect_size,
72f33921
NA
1246 const char *symsect, size_t symsect_size,
1247 size_t symsect_entsize,
1248 const char *strsect, size_t strsect_size,
1249 int *errp)
d851ecd3
NA
1250{
1251 return ctf_simple_open_internal (ctfsect, ctfsect_size, symsect, symsect_size,
1252 symsect_entsize, strsect, strsect_size, NULL,
676c3ecb 1253 0, errp);
d851ecd3
NA
1254}
1255
1256/* Open a CTF file, mocking up a suitable ctf_sect and overriding the external
1257 strtab with a synthetic one. */
1258
139633c3 1259ctf_dict_t *ctf_simple_open_internal (const char *ctfsect, size_t ctfsect_size,
d851ecd3
NA
1260 const char *symsect, size_t symsect_size,
1261 size_t symsect_entsize,
1262 const char *strsect, size_t strsect_size,
676c3ecb
NA
1263 ctf_dynhash_t *syn_strtab, int writable,
1264 int *errp)
72f33921
NA
1265{
1266 ctf_sect_t skeleton;
1267
1268 ctf_sect_t ctf_sect, sym_sect, str_sect;
1269 ctf_sect_t *ctfsectp = NULL;
1270 ctf_sect_t *symsectp = NULL;
1271 ctf_sect_t *strsectp = NULL;
1272
1273 skeleton.cts_name = _CTF_SECTION;
72f33921 1274 skeleton.cts_entsize = 1;
72f33921
NA
1275
1276 if (ctfsect)
1277 {
1278 memcpy (&ctf_sect, &skeleton, sizeof (struct ctf_sect));
1279 ctf_sect.cts_data = ctfsect;
1280 ctf_sect.cts_size = ctfsect_size;
1281 ctfsectp = &ctf_sect;
1282 }
1283
1284 if (symsect)
1285 {
1286 memcpy (&sym_sect, &skeleton, sizeof (struct ctf_sect));
1287 sym_sect.cts_data = symsect;
1288 sym_sect.cts_size = symsect_size;
1289 sym_sect.cts_entsize = symsect_entsize;
1290 symsectp = &sym_sect;
1291 }
1292
1293 if (strsect)
1294 {
1295 memcpy (&str_sect, &skeleton, sizeof (struct ctf_sect));
1296 str_sect.cts_data = strsect;
1297 str_sect.cts_size = strsect_size;
1298 strsectp = &str_sect;
1299 }
1300
676c3ecb
NA
1301 return ctf_bufopen_internal (ctfsectp, symsectp, strsectp, syn_strtab,
1302 writable, errp);
72f33921
NA
1303}
1304
1305/* Decode the specified CTF buffer and optional symbol table, and create a new
139633c3 1306 CTF dict representing the symbolic debugging information. This code can
72f33921
NA
1307 be used directly by the debugger, or it can be used as the engine for
1308 ctf_fdopen() or ctf_open(), below. */
1309
139633c3 1310ctf_dict_t *
72f33921
NA
1311ctf_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
1312 const ctf_sect_t *strsect, int *errp)
d851ecd3 1313{
676c3ecb 1314 return ctf_bufopen_internal (ctfsect, symsect, strsect, NULL, 0, errp);
d851ecd3
NA
1315}
1316
1317/* Like ctf_bufopen, but overriding the external strtab with a synthetic one. */
1318
139633c3 1319ctf_dict_t *
d851ecd3
NA
1320ctf_bufopen_internal (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
1321 const ctf_sect_t *strsect, ctf_dynhash_t *syn_strtab,
676c3ecb 1322 int writable, int *errp)
72f33921
NA
1323{
1324 const ctf_preamble_t *pp;
fd55eae8
NA
1325 size_t hdrsz = sizeof (ctf_header_t);
1326 ctf_header_t *hp;
139633c3 1327 ctf_dict_t *fp;
72f33921
NA
1328 int foreign_endian = 0;
1329 int err;
1330
1331 libctf_init_debug();
1332
d851ecd3
NA
1333 if ((ctfsect == NULL) || ((symsect != NULL) &&
1334 ((strsect == NULL) && syn_strtab == NULL)))
72f33921
NA
1335 return (ctf_set_open_errno (errp, EINVAL));
1336
1337 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
1338 symsect->cts_entsize != sizeof (Elf64_Sym))
1339 return (ctf_set_open_errno (errp, ECTF_SYMTAB));
1340
1341 if (symsect != NULL && symsect->cts_data == NULL)
1342 return (ctf_set_open_errno (errp, ECTF_SYMBAD));
1343
1344 if (strsect != NULL && strsect->cts_data == NULL)
1345 return (ctf_set_open_errno (errp, ECTF_STRBAD));
1346
1347 if (ctfsect->cts_size < sizeof (ctf_preamble_t))
1348 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1349
1350 pp = (const ctf_preamble_t *) ctfsect->cts_data;
1351
1352 ctf_dprintf ("ctf_bufopen: magic=0x%x version=%u\n",
1353 pp->ctp_magic, pp->ctp_version);
1354
1355 /* Validate each part of the CTF header.
1356
1357 First, we validate the preamble (common to all versions). At that point,
1358 we know the endianness and specific header version, and can validate the
1359 version-specific parts including section offsets and alignments.
1360
1361 We specifically do not support foreign-endian old versions. */
1362
1363 if (_libctf_unlikely_ (pp->ctp_magic != CTF_MAGIC))
1364 {
1365 if (pp->ctp_magic == bswap_16 (CTF_MAGIC))
1366 {
1367 if (pp->ctp_version != CTF_VERSION_3)
1368 return (ctf_set_open_errno (errp, ECTF_CTFVERS));
1369 foreign_endian = 1;
1370 }
1371 else
1372 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1373 }
1374
1375 if (_libctf_unlikely_ ((pp->ctp_version < CTF_VERSION_1)
1376 || (pp->ctp_version > CTF_VERSION_3)))
1377 return (ctf_set_open_errno (errp, ECTF_CTFVERS));
1378
1379 if ((symsect != NULL) && (pp->ctp_version < CTF_VERSION_2))
1380 {
1381 /* The symtab can contain function entries which contain embedded ctf
1382 info. We do not support dynamically upgrading such entries (none
1383 should exist in any case, since dwarf2ctf does not create them). */
1384
1136c379
NA
1385 ctf_err_warn (NULL, 0, ECTF_NOTSUP, _("ctf_bufopen: CTF version %d "
1386 "symsect not supported"),
1387 pp->ctp_version);
72f33921
NA
1388 return (ctf_set_open_errno (errp, ECTF_NOTSUP));
1389 }
1390
fd55eae8
NA
1391 if (pp->ctp_version < CTF_VERSION_3)
1392 hdrsz = sizeof (ctf_header_v2_t);
1393
ec388c16 1394 if (_libctf_unlikely_ (pp->ctp_flags > CTF_F_MAX))
1136c379
NA
1395 {
1396 ctf_err_warn (NULL, 0, ECTF_FLAGS, _("ctf_bufopen: invalid header "
1397 "flags: %x"),
1398 (unsigned int) pp->ctp_flags);
1399 return (ctf_set_open_errno (errp, ECTF_FLAGS));
1400 }
ec388c16 1401
fd55eae8 1402 if (ctfsect->cts_size < hdrsz)
72f33921
NA
1403 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1404
139633c3 1405 if ((fp = malloc (sizeof (ctf_dict_t))) == NULL)
fd55eae8
NA
1406 return (ctf_set_open_errno (errp, ENOMEM));
1407
139633c3 1408 memset (fp, 0, sizeof (ctf_dict_t));
fd55eae8 1409
676c3ecb
NA
1410 if (writable)
1411 fp->ctf_flags |= LCTF_RDWR;
1412
de07e349 1413 if ((fp->ctf_header = malloc (sizeof (struct ctf_header))) == NULL)
fd55eae8 1414 {
de07e349 1415 free (fp);
fd55eae8
NA
1416 return (ctf_set_open_errno (errp, ENOMEM));
1417 }
1418 hp = fp->ctf_header;
1419 memcpy (hp, ctfsect->cts_data, hdrsz);
1420 if (pp->ctp_version < CTF_VERSION_3)
1421 upgrade_header (hp);
72f33921
NA
1422
1423 if (foreign_endian)
fd55eae8 1424 flip_header (hp);
9b32cba4 1425 fp->ctf_openflags = hp->cth_flags;
fd55eae8 1426 fp->ctf_size = hp->cth_stroff + hp->cth_strlen;
72f33921 1427
fd55eae8
NA
1428 ctf_dprintf ("ctf_bufopen: uncompressed size=%lu\n",
1429 (unsigned long) fp->ctf_size);
72f33921 1430
fd55eae8 1431 if (hp->cth_lbloff > fp->ctf_size || hp->cth_objtoff > fp->ctf_size
2db912ba
NA
1432 || hp->cth_funcoff > fp->ctf_size || hp->cth_objtidxoff > fp->ctf_size
1433 || hp->cth_funcidxoff > fp->ctf_size || hp->cth_typeoff > fp->ctf_size
fd55eae8 1434 || hp->cth_stroff > fp->ctf_size)
1136c379
NA
1435 {
1436 ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("header offset exceeds CTF size"));
1437 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1438 }
72f33921 1439
fd55eae8
NA
1440 if (hp->cth_lbloff > hp->cth_objtoff
1441 || hp->cth_objtoff > hp->cth_funcoff
1442 || hp->cth_funcoff > hp->cth_typeoff
2db912ba
NA
1443 || hp->cth_funcoff > hp->cth_objtidxoff
1444 || hp->cth_objtidxoff > hp->cth_funcidxoff
1445 || hp->cth_funcidxoff > hp->cth_varoff
fd55eae8 1446 || hp->cth_varoff > hp->cth_typeoff || hp->cth_typeoff > hp->cth_stroff)
1136c379
NA
1447 {
1448 ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("overlapping CTF sections"));
1449 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1450 }
72f33921 1451
fd55eae8 1452 if ((hp->cth_lbloff & 3) || (hp->cth_objtoff & 2)
2db912ba
NA
1453 || (hp->cth_funcoff & 2) || (hp->cth_objtidxoff & 2)
1454 || (hp->cth_funcidxoff & 2) || (hp->cth_varoff & 3)
fd55eae8 1455 || (hp->cth_typeoff & 3))
1136c379
NA
1456 {
1457 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1458 _("CTF sections not properly aligned"));
1459 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1460 }
1461
1462 /* This invariant will be lifted in v4, but for now it is true. */
1463
1464 if ((hp->cth_funcidxoff - hp->cth_objtidxoff != 0) &&
1465 (hp->cth_funcidxoff - hp->cth_objtidxoff
1466 != hp->cth_funcoff - hp->cth_objtoff))
1467 {
1468 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1469 _("Object index section exists is neither empty nor the "
1470 "same length as the object section: %u versus %u "
1471 "bytes"), hp->cth_funcoff - hp->cth_objtoff,
1472 hp->cth_funcidxoff - hp->cth_objtidxoff);
1473 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1474 }
1475
1476 if ((hp->cth_varoff - hp->cth_funcidxoff != 0) &&
1477 (hp->cth_varoff - hp->cth_funcidxoff
1478 != hp->cth_objtidxoff - hp->cth_funcoff))
1479 {
1480 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1481 _("Function index section exists is neither empty nor the "
1482 "same length as the function section: %u versus %u "
1483 "bytes"), hp->cth_objtidxoff - hp->cth_funcoff,
1484 hp->cth_varoff - hp->cth_funcidxoff);
1485 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1486 }
72f33921
NA
1487
1488 /* Once everything is determined to be valid, attempt to decompress the CTF
1489 data buffer if it is compressed, or copy it into new storage if it is not
1490 compressed but needs endian-flipping. Otherwise we just put the data
1491 section's buffer pointer into ctf_buf, below. */
1492
1493 /* Note: if this is a v1 buffer, it will be reallocated and expanded by
1494 init_types(). */
1495
fd55eae8 1496 if (hp->cth_flags & CTF_F_COMPRESS)
72f33921 1497 {
a0486bac
JM
1498 size_t srclen;
1499 uLongf dstlen;
72f33921
NA
1500 const void *src;
1501 int rc = Z_OK;
1502
fd55eae8
NA
1503 /* We are allocating this ourselves, so we can drop the ctf header
1504 copy in favour of ctf->ctf_header. */
72f33921 1505
de07e349 1506 if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
fd55eae8
NA
1507 {
1508 err = ECTF_ZALLOC;
1509 goto bad;
1510 }
1511 fp->ctf_dynbase = fp->ctf_base;
1512 hp->cth_flags &= ~CTF_F_COMPRESS;
72f33921
NA
1513
1514 src = (unsigned char *) ctfsect->cts_data + hdrsz;
1515 srclen = ctfsect->cts_size - hdrsz;
fd55eae8
NA
1516 dstlen = fp->ctf_size;
1517 fp->ctf_buf = fp->ctf_base;
72f33921 1518
fd55eae8 1519 if ((rc = uncompress (fp->ctf_base, &dstlen, src, srclen)) != Z_OK)
72f33921 1520 {
926c9e76
NA
1521 ctf_err_warn (NULL, 0, ECTF_DECOMPRESS, _("zlib inflate err: %s"),
1522 zError (rc));
fd55eae8
NA
1523 err = ECTF_DECOMPRESS;
1524 goto bad;
72f33921
NA
1525 }
1526
fd55eae8 1527 if ((size_t) dstlen != fp->ctf_size)
72f33921 1528 {
926c9e76
NA
1529 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1530 _("zlib inflate short: got %lu of %lu bytes"),
1531 (unsigned long) dstlen, (unsigned long) fp->ctf_size);
fd55eae8
NA
1532 err = ECTF_CORRUPT;
1533 goto bad;
72f33921 1534 }
72f33921
NA
1535 }
1536 else if (foreign_endian)
1537 {
de07e349 1538 if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
fd55eae8
NA
1539 {
1540 err = ECTF_ZALLOC;
1541 goto bad;
1542 }
1543 fp->ctf_dynbase = fp->ctf_base;
1544 memcpy (fp->ctf_base, ((unsigned char *) ctfsect->cts_data) + hdrsz,
1545 fp->ctf_size);
1546 fp->ctf_buf = fp->ctf_base;
72f33921
NA
1547 }
1548 else
fd55eae8
NA
1549 {
1550 /* We are just using the section passed in -- but its header may be an old
1551 version. Point ctf_buf past the old header, and never touch it
1552 again. */
1553 fp->ctf_base = (unsigned char *) ctfsect->cts_data;
1554 fp->ctf_dynbase = NULL;
1555 fp->ctf_buf = fp->ctf_base + hdrsz;
1556 }
72f33921
NA
1557
1558 /* Once we have uncompressed and validated the CTF data buffer, we can
139633c3 1559 proceed with initializing the ctf_dict_t we allocated above.
72f33921
NA
1560
1561 Nothing that depends on buf or base should be set directly in this function
1562 before the init_types() call, because it may be reallocated during
1563 transparent upgrade if this recension of libctf is so configured: see
fd55eae8 1564 ctf_set_base(). */
72f33921 1565
fd55eae8 1566 ctf_set_version (fp, hp, hp->cth_version);
f5e9c9bd 1567 ctf_str_create_atoms (fp);
fd55eae8 1568 fp->ctf_parmax = CTF_MAX_PTYPE;
72f33921
NA
1569 memcpy (&fp->ctf_data, ctfsect, sizeof (ctf_sect_t));
1570
1571 if (symsect != NULL)
1572 {
1573 memcpy (&fp->ctf_symtab, symsect, sizeof (ctf_sect_t));
1574 memcpy (&fp->ctf_strtab, strsect, sizeof (ctf_sect_t));
1575 }
1576
1577 if (fp->ctf_data.cts_name != NULL)
de07e349
NA
1578 if ((fp->ctf_data.cts_name = strdup (fp->ctf_data.cts_name)) == NULL)
1579 {
1580 err = ENOMEM;
1581 goto bad;
1582 }
72f33921 1583 if (fp->ctf_symtab.cts_name != NULL)
de07e349
NA
1584 if ((fp->ctf_symtab.cts_name = strdup (fp->ctf_symtab.cts_name)) == NULL)
1585 {
1586 err = ENOMEM;
1587 goto bad;
1588 }
72f33921 1589 if (fp->ctf_strtab.cts_name != NULL)
de07e349
NA
1590 if ((fp->ctf_strtab.cts_name = strdup (fp->ctf_strtab.cts_name)) == NULL)
1591 {
1592 err = ENOMEM;
1593 goto bad;
1594 }
72f33921
NA
1595
1596 if (fp->ctf_data.cts_name == NULL)
1597 fp->ctf_data.cts_name = _CTF_NULLSTR;
1598 if (fp->ctf_symtab.cts_name == NULL)
1599 fp->ctf_symtab.cts_name = _CTF_NULLSTR;
1600 if (fp->ctf_strtab.cts_name == NULL)
1601 fp->ctf_strtab.cts_name = _CTF_NULLSTR;
1602
1603 if (strsect != NULL)
1604 {
1605 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
1606 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
1607 }
d851ecd3 1608 fp->ctf_syn_ext_strtab = syn_strtab;
72f33921
NA
1609
1610 if (foreign_endian &&
926c9e76 1611 (err = flip_ctf (fp, hp, fp->ctf_buf)) != 0)
72f33921
NA
1612 {
1613 /* We can be certain that flip_ctf() will have endian-flipped everything
fa56cdcd
NA
1614 other than the types table when we return. In particular the header
1615 is fine, so set it, to allow freeing to use the usual code path. */
72f33921 1616
fd55eae8 1617 ctf_set_base (fp, hp, fp->ctf_base);
72f33921
NA
1618 goto bad;
1619 }
1620
fd55eae8 1621 ctf_set_base (fp, hp, fp->ctf_base);
72f33921 1622
139633c3
NA
1623 /* No need to do anything else for dynamic dicts: they do not support symbol
1624 lookups, and the type table is maintained in the dthashes. */
676c3ecb
NA
1625 if (fp->ctf_flags & LCTF_RDWR)
1626 {
1627 fp->ctf_refcnt = 1;
1628 return fp;
1629 }
1630
fd55eae8
NA
1631 if ((err = init_types (fp, hp)) != 0)
1632 goto bad;
72f33921 1633
1136c379
NA
1634 /* Allocate and initialize the symtab translation table, pointed to by
1635 ctf_sxlate, and the corresponding index sections. This table may be too
1636 large for the actual size of the object and function info sections: if so,
1637 ctf_nsyms will be adjusted and the excess will never be used. It's
1638 possible to do indexed symbol lookups even without a symbol table, so check
53651de8
NA
1639 even in that case. Initially, we assume the symtab is native-endian: if it
1640 isn't, the caller will inform us later by calling ctf_symsect_endianness. */
1641#ifdef WORDS_BIGENDIAN
1642 fp->ctf_symsect_little_endian = 0;
1643#else
1644 fp->ctf_symsect_little_endian = 1;
1645#endif
72f33921
NA
1646
1647 if (symsect != NULL)
1648 {
1649 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
de07e349 1650 fp->ctf_sxlate = malloc (fp->ctf_nsyms * sizeof (uint32_t));
72f33921
NA
1651
1652 if (fp->ctf_sxlate == NULL)
1653 {
fd55eae8 1654 err = ENOMEM;
72f33921
NA
1655 goto bad;
1656 }
72f33921
NA
1657 }
1658
1136c379
NA
1659 if ((err = init_symtab (fp, hp, symsect)) != 0)
1660 goto bad;
1661
676c3ecb 1662 ctf_set_ctl_hashes (fp);
72f33921
NA
1663
1664 if (symsect != NULL)
1665 {
1666 if (symsect->cts_entsize == sizeof (Elf64_Sym))
1667 (void) ctf_setmodel (fp, CTF_MODEL_LP64);
1668 else
1669 (void) ctf_setmodel (fp, CTF_MODEL_ILP32);
1670 }
1671 else
1672 (void) ctf_setmodel (fp, CTF_MODEL_NATIVE);
1673
1674 fp->ctf_refcnt = 1;
1675 return fp;
1676
1677bad:
fd55eae8 1678 ctf_set_open_errno (errp, err);
926c9e76 1679 ctf_err_warn_to_open (fp);
139633c3 1680 ctf_dict_close (fp);
72f33921
NA
1681 return NULL;
1682}
1683
139633c3
NA
1684/* Bump the refcount on the specified CTF dict, to allow export of ctf_dict_t's
1685 from iterators that open and close the ctf_dict_t around the loop. (This
1686 does not extend their lifetime beyond that of the ctf_archive_t in which they
1687 are contained.) */
2399827b
NA
1688
1689void
139633c3 1690ctf_ref (ctf_dict_t *fp)
2399827b
NA
1691{
1692 fp->ctf_refcnt++;
1693}
1694
139633c3
NA
1695/* Close the specified CTF dict and free associated data structures. Note that
1696 ctf_dict_close() is a reference counted operation: if the specified file is
1697 the parent of other active dict, its reference count will be greater than one
1698 and it will be freed later when no active children exist. */
72f33921
NA
1699
1700void
139633c3 1701ctf_dict_close (ctf_dict_t *fp)
72f33921
NA
1702{
1703 ctf_dtdef_t *dtd, *ntd;
1704 ctf_dvdef_t *dvd, *nvd;
1136c379 1705 ctf_in_flight_dynsym_t *did, *nid;
8b37e7b6 1706 ctf_err_warning_t *err, *nerr;
72f33921
NA
1707
1708 if (fp == NULL)
139633c3 1709 return; /* Allow ctf_dict_close(NULL) to simplify caller code. */
72f33921 1710
139633c3 1711 ctf_dprintf ("ctf_dict_close(%p) refcnt=%u\n", (void *) fp, fp->ctf_refcnt);
72f33921
NA
1712
1713 if (fp->ctf_refcnt > 1)
1714 {
1715 fp->ctf_refcnt--;
1716 return;
1717 }
1718
1fa7a0c2
NA
1719 /* It is possible to recurse back in here, notably if dicts in the
1720 ctf_link_inputs or ctf_link_outputs cite this dict as a parent without
1721 using ctf_import_unref. Do nothing in that case. */
1722 if (fp->ctf_refcnt == 0)
1723 return;
1724
1725 fp->ctf_refcnt--;
de07e349
NA
1726 free (fp->ctf_dyncuname);
1727 free (fp->ctf_dynparname);
1fa7a0c2 1728 if (fp->ctf_parent && !fp->ctf_parent_unreffed)
139633c3 1729 ctf_dict_close (fp->ctf_parent);
72f33921
NA
1730
1731 for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
1732 {
1733 ntd = ctf_list_next (dtd);
1734 ctf_dtd_delete (fp, dtd);
1735 }
1736 ctf_dynhash_destroy (fp->ctf_dthash);
676c3ecb
NA
1737 if (fp->ctf_flags & LCTF_RDWR)
1738 {
1739 ctf_dynhash_destroy (fp->ctf_structs.ctn_writable);
1740 ctf_dynhash_destroy (fp->ctf_unions.ctn_writable);
1741 ctf_dynhash_destroy (fp->ctf_enums.ctn_writable);
1742 ctf_dynhash_destroy (fp->ctf_names.ctn_writable);
1743 }
1744 else
1745 {
1746 ctf_hash_destroy (fp->ctf_structs.ctn_readonly);
1747 ctf_hash_destroy (fp->ctf_unions.ctn_readonly);
1748 ctf_hash_destroy (fp->ctf_enums.ctn_readonly);
1749 ctf_hash_destroy (fp->ctf_names.ctn_readonly);
1750 }
72f33921
NA
1751
1752 for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
1753 {
1754 nvd = ctf_list_next (dvd);
1755 ctf_dvd_delete (fp, dvd);
1756 }
1757 ctf_dynhash_destroy (fp->ctf_dvhash);
1136c379
NA
1758
1759 free (fp->ctf_funcidx_sxlate);
1760 free (fp->ctf_objtidx_sxlate);
1761 ctf_dynhash_destroy (fp->ctf_objthash);
1762 ctf_dynhash_destroy (fp->ctf_funchash);
1763 free (fp->ctf_dynsymidx);
1764 ctf_dynhash_destroy (fp->ctf_dynsyms);
1765 for (did = ctf_list_next (&fp->ctf_in_flight_dynsyms); did != NULL; did = nid)
1766 {
1767 nid = ctf_list_next (did);
1768 ctf_list_delete (&fp->ctf_in_flight_dynsyms, did);
1769 free (did);
1770 }
1771
f5e9c9bd 1772 ctf_str_free_atoms (fp);
de07e349 1773 free (fp->ctf_tmp_typeslice);
72f33921 1774
fd55eae8 1775 if (fp->ctf_data.cts_name != _CTF_NULLSTR)
de07e349 1776 free ((char *) fp->ctf_data.cts_name);
72f33921 1777
fd55eae8 1778 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR)
de07e349 1779 free ((char *) fp->ctf_symtab.cts_name);
72f33921 1780
fd55eae8 1781 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR)
de07e349 1782 free ((char *) fp->ctf_strtab.cts_name);
72f33921
NA
1783 else if (fp->ctf_data_mmapped)
1784 ctf_munmap (fp->ctf_data_mmapped, fp->ctf_data_mmapped_len);
1785
de07e349 1786 free (fp->ctf_dynbase);
72f33921 1787
d851ecd3 1788 ctf_dynhash_destroy (fp->ctf_syn_ext_strtab);
72c83edd
NA
1789 ctf_dynhash_destroy (fp->ctf_link_inputs);
1790 ctf_dynhash_destroy (fp->ctf_link_outputs);
886453cb 1791 ctf_dynhash_destroy (fp->ctf_link_type_mapping);
5f54462c
NA
1792 ctf_dynhash_destroy (fp->ctf_link_in_cu_mapping);
1793 ctf_dynhash_destroy (fp->ctf_link_out_cu_mapping);
99dc3ebd 1794 ctf_dynhash_destroy (fp->ctf_add_processing);
0f0c11f7
NA
1795 ctf_dedup_fini (fp, NULL, 0);
1796 ctf_dynset_destroy (fp->ctf_dedup_atoms_alloc);
d851ecd3 1797
8b37e7b6
NA
1798 for (err = ctf_list_next (&fp->ctf_errs_warnings); err != NULL; err = nerr)
1799 {
1800 nerr = ctf_list_next (err);
1801 ctf_list_delete (&fp->ctf_errs_warnings, err);
1802 free (err->cew_text);
1803 free (err);
1804 }
1805
de07e349
NA
1806 free (fp->ctf_sxlate);
1807 free (fp->ctf_txlate);
1808 free (fp->ctf_ptrtab);
72f33921 1809
de07e349
NA
1810 free (fp->ctf_header);
1811 free (fp);
72f33921
NA
1812}
1813
139633c3
NA
1814/* Backward compatibility. */
1815void
1816ctf_file_close (ctf_file_t *fp)
1817{
1818 ctf_dict_close (fp);
1819}
1820
143dce84
NA
1821/* The converse of ctf_open(). ctf_open() disguises whatever it opens as an
1822 archive, so closing one is just like closing an archive. */
1823void
1824ctf_close (ctf_archive_t *arc)
1825{
1826 ctf_arc_close (arc);
1827}
1828
139633c3 1829/* Get the CTF archive from which this ctf_dict_t is derived. */
9402cc59 1830ctf_archive_t *
139633c3 1831ctf_get_arc (const ctf_dict_t *fp)
9402cc59
NA
1832{
1833 return fp->ctf_archive;
1834}
1835
72f33921 1836/* Return the ctfsect out of the core ctf_impl. Useful for freeing the
139633c3 1837 ctfsect's data * after ctf_dict_close(), which is why we return the actual
72f33921
NA
1838 structure, not a pointer to it, since that is likely to become a pointer to
1839 freed data before the return value is used under the expected use case of
139633c3 1840 ctf_getsect()/ ctf_dict_close()/free(). */
676c3ecb 1841ctf_sect_t
139633c3 1842ctf_getdatasect (const ctf_dict_t *fp)
72f33921
NA
1843{
1844 return fp->ctf_data;
1845}
1846
97a2a623
NA
1847ctf_sect_t
1848ctf_getsymsect (const ctf_dict_t *fp)
1849{
1850 return fp->ctf_symtab;
1851}
1852
1853ctf_sect_t
1854ctf_getstrsect (const ctf_dict_t *fp)
1855{
1856 return fp->ctf_strtab;
1857}
1858
53651de8
NA
1859/* Set the endianness of the symbol table attached to FP. */
1860void
1861ctf_symsect_endianness (ctf_dict_t *fp, int little_endian)
1862{
1863 int old_endianness = fp->ctf_symsect_little_endian;
1864
1865 fp->ctf_symsect_little_endian = !!little_endian;
1866
1867 /* If we already have a symtab translation table, we need to repopulate it if
1868 our idea of the endianness has changed. */
1869
1870 if (old_endianness != fp->ctf_symsect_little_endian
1871 && fp->ctf_sxlate != NULL && fp->ctf_symtab.cts_data != NULL)
1872 assert (init_symtab (fp, fp->ctf_header, &fp->ctf_symtab) == 0);
1873}
1874
139633c3
NA
1875/* Return the CTF handle for the parent CTF dict, if one exists. Otherwise
1876 return NULL to indicate this dict has no imported parent. */
1877ctf_dict_t *
1878ctf_parent_dict (ctf_dict_t *fp)
72f33921
NA
1879{
1880 return fp->ctf_parent;
1881}
1882
139633c3
NA
1883/* Backward compatibility. */
1884ctf_dict_t *
1885ctf_parent_file (ctf_dict_t *fp)
1886{
1887 return ctf_parent_dict (fp);
1888}
1889
1890/* Return the name of the parent CTF dict, if one exists, or NULL otherwise. */
72f33921 1891const char *
139633c3 1892ctf_parent_name (ctf_dict_t *fp)
72f33921
NA
1893{
1894 return fp->ctf_parname;
1895}
1896
1897/* Set the parent name. It is an error to call this routine without calling
1898 ctf_import() at some point. */
de07e349 1899int
139633c3 1900ctf_parent_name_set (ctf_dict_t *fp, const char *name)
72f33921
NA
1901{
1902 if (fp->ctf_dynparname != NULL)
de07e349 1903 free (fp->ctf_dynparname);
72f33921 1904
de07e349
NA
1905 if ((fp->ctf_dynparname = strdup (name)) == NULL)
1906 return (ctf_set_errno (fp, ENOMEM));
72f33921 1907 fp->ctf_parname = fp->ctf_dynparname;
de07e349 1908 return 0;
72f33921
NA
1909}
1910
fd55eae8 1911/* Return the name of the compilation unit this CTF file applies to. Usually
139633c3 1912 non-NULL only for non-parent dicts. */
fd55eae8 1913const char *
139633c3 1914ctf_cuname (ctf_dict_t *fp)
fd55eae8
NA
1915{
1916 return fp->ctf_cuname;
1917}
1918
1919/* Set the compilation unit name. */
de07e349 1920int
139633c3 1921ctf_cuname_set (ctf_dict_t *fp, const char *name)
fd55eae8
NA
1922{
1923 if (fp->ctf_dyncuname != NULL)
de07e349 1924 free (fp->ctf_dyncuname);
fd55eae8 1925
de07e349
NA
1926 if ((fp->ctf_dyncuname = strdup (name)) == NULL)
1927 return (ctf_set_errno (fp, ENOMEM));
fd55eae8 1928 fp->ctf_cuname = fp->ctf_dyncuname;
de07e349 1929 return 0;
fd55eae8
NA
1930}
1931
139633c3
NA
1932/* Import the types from the specified parent dict by storing a pointer to it in
1933 ctf_parent and incrementing its reference count. Only one parent is allowed:
1934 if a parent already exists, it is replaced by the new parent. */
72f33921 1935int
139633c3 1936ctf_import (ctf_dict_t *fp, ctf_dict_t *pfp)
72f33921
NA
1937{
1938 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
1939 return (ctf_set_errno (fp, EINVAL));
1940
1941 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
1942 return (ctf_set_errno (fp, ECTF_DMODEL));
1943
1fa7a0c2 1944 if (fp->ctf_parent && !fp->ctf_parent_unreffed)
139633c3 1945 ctf_dict_close (fp->ctf_parent);
1fa7a0c2
NA
1946 fp->ctf_parent = NULL;
1947
1948 if (pfp != NULL)
de07e349 1949 {
1fa7a0c2
NA
1950 int err;
1951
1952 if (fp->ctf_parname == NULL)
1953 if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
1954 return err;
1955
1956 fp->ctf_flags |= LCTF_CHILD;
1957 pfp->ctf_refcnt++;
1958 fp->ctf_parent_unreffed = 0;
de07e349 1959 }
72f33921 1960
1fa7a0c2
NA
1961 fp->ctf_parent = pfp;
1962 return 0;
1963}
1964
1965/* Like ctf_import, but does not increment the refcount on the imported parent
1966 or close it at any point: as a result it can go away at any time and the
1967 caller must do all freeing itself. Used internally to avoid refcount
1968 loops. */
1969int
139633c3 1970ctf_import_unref (ctf_dict_t *fp, ctf_dict_t *pfp)
1fa7a0c2
NA
1971{
1972 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
1973 return (ctf_set_errno (fp, EINVAL));
1974
1975 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
1976 return (ctf_set_errno (fp, ECTF_DMODEL));
1977
1978 if (fp->ctf_parent && !fp->ctf_parent_unreffed)
139633c3 1979 ctf_dict_close (fp->ctf_parent);
1fa7a0c2
NA
1980 fp->ctf_parent = NULL;
1981
72f33921
NA
1982 if (pfp != NULL)
1983 {
de07e349 1984 int err;
72f33921
NA
1985
1986 if (fp->ctf_parname == NULL)
de07e349
NA
1987 if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
1988 return err;
1989
1990 fp->ctf_flags |= LCTF_CHILD;
1fa7a0c2 1991 fp->ctf_parent_unreffed = 1;
72f33921 1992 }
ad613f1d 1993
72f33921
NA
1994 fp->ctf_parent = pfp;
1995 return 0;
1996}
1997
139633c3 1998/* Set the data model constant for the CTF dict. */
72f33921 1999int
139633c3 2000ctf_setmodel (ctf_dict_t *fp, int model)
72f33921
NA
2001{
2002 const ctf_dmodel_t *dp;
2003
2004 for (dp = _libctf_models; dp->ctd_name != NULL; dp++)
2005 {
2006 if (dp->ctd_code == model)
2007 {
2008 fp->ctf_dmodel = dp;
2009 return 0;
2010 }
2011 }
2012
2013 return (ctf_set_errno (fp, EINVAL));
2014}
2015
139633c3 2016/* Return the data model constant for the CTF dict. */
72f33921 2017int
139633c3 2018ctf_getmodel (ctf_dict_t *fp)
72f33921
NA
2019{
2020 return fp->ctf_dmodel->ctd_code;
2021}
2022
139633c3 2023/* The caller can hang an arbitrary pointer off each ctf_dict_t using this
a0486bac 2024 function. */
72f33921 2025void
139633c3 2026ctf_setspecific (ctf_dict_t *fp, void *data)
72f33921
NA
2027{
2028 fp->ctf_specific = data;
2029}
2030
a0486bac 2031/* Retrieve the arbitrary pointer again. */
72f33921 2032void *
139633c3 2033ctf_getspecific (ctf_dict_t *fp)
72f33921
NA
2034{
2035 return fp->ctf_specific;
2036}