]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - libiberty/hashtab.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / libiberty / hashtab.c
CommitLineData
e2eaf477 1/* An expandable hash tables datatype.
a2c58332 2 Copyright (C) 1999-2022 Free Software Foundation, Inc.
e2eaf477
ILT
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB. If
979c05d3
NC
18not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
19Boston, MA 02110-1301, USA. */
e2eaf477
ILT
20
21/* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
23
24 Elements in the table are generic pointers.
25
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
28
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
33
34#ifdef HAVE_CONFIG_H
35#include "config.h"
36#endif
37
38#include <sys/types.h>
39
40#ifdef HAVE_STDLIB_H
41#include <stdlib.h>
42#endif
5c82d20a
ZW
43#ifdef HAVE_STRING_H
44#include <string.h>
45#endif
5f73c378
DD
46#ifdef HAVE_MALLOC_H
47#include <malloc.h>
48#endif
bb6a587d
DD
49#ifdef HAVE_LIMITS_H
50#include <limits.h>
51#endif
a17fcd19
DD
52#ifdef HAVE_INTTYPES_H
53#include <inttypes.h>
54#endif
bb6a587d
DD
55#ifdef HAVE_STDINT_H
56#include <stdint.h>
57#endif
5f73c378 58
e2eaf477
ILT
59#include <stdio.h>
60
61#include "libiberty.h"
bb6a587d 62#include "ansidecl.h"
e2eaf477
ILT
63#include "hashtab.h"
64
bb6a587d
DD
65#ifndef CHAR_BIT
66#define CHAR_BIT 8
67#endif
68
49b1fae4
DD
69static unsigned int higher_prime_index (unsigned long);
70static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
71static hashval_t htab_mod (hashval_t, htab_t);
72static hashval_t htab_mod_m2 (hashval_t, htab_t);
73static hashval_t hash_pointer (const void *);
74static int eq_pointer (const void *, const void *);
75static int htab_expand (htab_t);
76static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
eb383413
L
77
78/* At some point, we could make these be NULL, and modify the
79 hash-table routines to handle NULL specially; that would avoid
80 function-call overhead for the common case of hashing pointers. */
81htab_hash htab_hash_pointer = hash_pointer;
82htab_eq htab_eq_pointer = eq_pointer;
83
bb6a587d
DD
84/* Table of primes and multiplicative inverses.
85
86 Note that these are not minimally reduced inverses. Unlike when generating
87 code to divide by a constant, we want to be able to use the same algorithm
88 all the time. All of these inverses (are implied to) have bit 32 set.
89
90 For the record, here's the function that computed the table; it's a
91 vastly simplified version of the function of the same name from gcc. */
92
93#if 0
94unsigned int
95ceil_log2 (unsigned int x)
96{
97 int i;
98 for (i = 31; i >= 0 ; --i)
99 if (x > (1u << i))
100 return i+1;
101 abort ();
102}
e2eaf477 103
bb6a587d
DD
104unsigned int
105choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
106{
107 unsigned long long mhigh;
108 double nx;
109 int lgup, post_shift;
110 int pow, pow2;
111 int n = 32, precision = 32;
112
113 lgup = ceil_log2 (d);
114 pow = n + lgup;
115 pow2 = n + lgup - precision;
116
117 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
118 mhigh = nx / d;
119
120 *shiftp = lgup - 1;
121 *mlp = mhigh;
122 return mhigh >> 32;
123}
124#endif
125
126struct prime_ent
127{
128 hashval_t prime;
129 hashval_t inv;
130 hashval_t inv_m2; /* inverse of prime-2 */
131 hashval_t shift;
132};
133
134static struct prime_ent const prime_tab[] = {
135 { 7, 0x24924925, 0x9999999b, 2 },
136 { 13, 0x3b13b13c, 0x745d1747, 3 },
137 { 31, 0x08421085, 0x1a7b9612, 4 },
138 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
139 { 127, 0x02040811, 0x0624dd30, 6 },
140 { 251, 0x05197f7e, 0x073260a5, 7 },
141 { 509, 0x01824366, 0x02864fc8, 8 },
142 { 1021, 0x00c0906d, 0x014191f7, 9 },
143 { 2039, 0x0121456f, 0x0161e69e, 10 },
144 { 4093, 0x00300902, 0x00501908, 11 },
145 { 8191, 0x00080041, 0x00180241, 12 },
146 { 16381, 0x000c0091, 0x00140191, 13 },
147 { 32749, 0x002605a5, 0x002a06e6, 14 },
148 { 65521, 0x000f00e2, 0x00110122, 15 },
149 { 131071, 0x00008001, 0x00018003, 16 },
150 { 262139, 0x00014002, 0x0001c004, 17 },
151 { 524287, 0x00002001, 0x00006001, 18 },
152 { 1048573, 0x00003001, 0x00005001, 19 },
153 { 2097143, 0x00004801, 0x00005801, 20 },
154 { 4194301, 0x00000c01, 0x00001401, 21 },
155 { 8388593, 0x00001e01, 0x00002201, 22 },
156 { 16777213, 0x00000301, 0x00000501, 23 },
157 { 33554393, 0x00001381, 0x00001481, 24 },
158 { 67108859, 0x00000141, 0x000001c1, 25 },
159 { 134217689, 0x000004e1, 0x00000521, 26 },
160 { 268435399, 0x00000391, 0x000003b1, 27 },
161 { 536870909, 0x00000019, 0x00000029, 28 },
162 { 1073741789, 0x0000008d, 0x00000095, 29 },
163 { 2147483647, 0x00000003, 0x00000007, 30 },
164 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
165 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
166};
167
168/* The following function returns an index into the above table of the
169 nearest prime number which is greater than N, and near a power of two. */
170
171static unsigned int
49b1fae4 172higher_prime_index (unsigned long n)
e2eaf477 173{
bb6a587d
DD
174 unsigned int low = 0;
175 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
5ca0f83d
DD
176
177 while (low != high)
178 {
bb6a587d
DD
179 unsigned int mid = low + (high - low) / 2;
180 if (n > prime_tab[mid].prime)
5ca0f83d
DD
181 low = mid + 1;
182 else
183 high = mid;
184 }
185
186 /* If we've run out of primes, abort. */
bb6a587d 187 if (n > prime_tab[low].prime)
5ca0f83d
DD
188 {
189 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
190 abort ();
191 }
192
bb6a587d 193 return low;
e2eaf477
ILT
194}
195
eb383413
L
196/* Returns non-zero if P1 and P2 are equal. */
197
198static int
49b1fae4 199eq_pointer (const PTR p1, const PTR p2)
eb383413
L
200{
201 return p1 == p2;
202}
203
fe046a17 204
abf6a75b
DD
205/* The parens around the function names in the next two definitions
206 are essential in order to prevent macro expansions of the name.
207 The bodies, however, are expanded as expected, so they are not
208 recursive definitions. */
209
210/* Return the current size of given hash table. */
211
212#define htab_size(htab) ((htab)->size)
213
214size_t
215(htab_size) (htab_t htab)
fe046a17 216{
abf6a75b 217 return htab_size (htab);
fe046a17
DD
218}
219
220/* Return the current number of elements in given hash table. */
221
abf6a75b
DD
222#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
223
224size_t
225(htab_elements) (htab_t htab)
fe046a17 226{
abf6a75b 227 return htab_elements (htab);
fe046a17
DD
228}
229
bb6a587d
DD
230/* Return X % Y. */
231
232static inline hashval_t
49b1fae4 233htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
bb6a587d
DD
234{
235 /* The multiplicative inverses computed above are for 32-bit types, and
236 requires that we be able to compute a highpart multiply. */
237#ifdef UNSIGNED_64BIT_TYPE
238 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
239 if (sizeof (hashval_t) * CHAR_BIT <= 32)
240 {
241 hashval_t t1, t2, t3, t4, q, r;
242
243 t1 = ((ull)x * inv) >> 32;
244 t2 = x - t1;
245 t3 = t2 >> 1;
246 t4 = t1 + t3;
247 q = t4 >> shift;
248 r = x - (q * y);
249
250 return r;
251 }
252#endif
253
254 /* Otherwise just use the native division routines. */
255 return x % y;
256}
257
fe046a17
DD
258/* Compute the primary hash for HASH given HTAB's current size. */
259
260static inline hashval_t
49b1fae4 261htab_mod (hashval_t hash, htab_t htab)
fe046a17 262{
bb6a587d
DD
263 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
264 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
fe046a17
DD
265}
266
267/* Compute the secondary hash for HASH given HTAB's current size. */
268
269static inline hashval_t
49b1fae4 270htab_mod_m2 (hashval_t hash, htab_t htab)
fe046a17 271{
bb6a587d
DD
272 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
273 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
fe046a17
DD
274}
275
e2eaf477
ILT
276/* This function creates table with length slightly longer than given
277 source length. Created hash table is initiated as empty (all the
c3cca4c9 278 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
18893690 279 created hash table, or NULL if memory allocation fails. */
e2eaf477 280
b4fe2683 281htab_t
49b1fae4
DD
282htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
283 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
219a461e
DD
284{
285 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
286 free_f);
287}
288
289/* As above, but uses the variants of ALLOC_F and FREE_F which accept
290 an extra argument. */
291
292htab_t
293htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
294 htab_del del_f, void *alloc_arg,
295 htab_alloc_with_arg alloc_f,
296 htab_free_with_arg free_f)
e2eaf477 297{
b4fe2683 298 htab_t result;
bb6a587d
DD
299 unsigned int size_prime_index;
300
301 size_prime_index = higher_prime_index (size);
302 size = prime_tab[size_prime_index].prime;
e2eaf477 303
219a461e 304 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
18893690
DD
305 if (result == NULL)
306 return NULL;
219a461e 307 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
18893690
DD
308 if (result->entries == NULL)
309 {
310 if (free_f != NULL)
219a461e 311 (*free_f) (alloc_arg, result);
18893690
DD
312 return NULL;
313 }
e2eaf477 314 result->size = size;
bb6a587d 315 result->size_prime_index = size_prime_index;
b4fe2683
JM
316 result->hash_f = hash_f;
317 result->eq_f = eq_f;
318 result->del_f = del_f;
219a461e
DD
319 result->alloc_arg = alloc_arg;
320 result->alloc_with_arg_f = alloc_f;
321 result->free_with_arg_f = free_f;
99a4c1bd
HPN
322 return result;
323}
324
219a461e
DD
325/*
326
d4d868a2
RW
327@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
328htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
329htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
219a461e
DD
330htab_free @var{free_f})
331
332This function creates a hash table that uses two different allocators
333@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
334and its entries respectively. This is useful when variables of different
335types need to be allocated with different allocators.
336
337The created hash table is slightly larger than @var{size} and it is
338initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
339The function returns the created hash table, or @code{NULL} if memory
340allocation fails.
341
342@end deftypefn
343
344*/
5f9624e3
DJ
345
346htab_t
219a461e
DD
347htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
348 htab_del del_f, htab_alloc alloc_tab_f,
349 htab_alloc alloc_f, htab_free free_f)
5f9624e3
DJ
350{
351 htab_t result;
bb6a587d
DD
352 unsigned int size_prime_index;
353
354 size_prime_index = higher_prime_index (size);
355 size = prime_tab[size_prime_index].prime;
5f9624e3 356
219a461e 357 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
5f9624e3
DJ
358 if (result == NULL)
359 return NULL;
219a461e 360 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
5f9624e3
DJ
361 if (result->entries == NULL)
362 {
363 if (free_f != NULL)
219a461e 364 (*free_f) (result);
5f9624e3
DJ
365 return NULL;
366 }
367 result->size = size;
bb6a587d 368 result->size_prime_index = size_prime_index;
5f9624e3
DJ
369 result->hash_f = hash_f;
370 result->eq_f = eq_f;
371 result->del_f = del_f;
219a461e
DD
372 result->alloc_f = alloc_f;
373 result->free_f = free_f;
5f9624e3
DJ
374 return result;
375}
376
219a461e 377
5f9624e3
DJ
378/* Update the function pointers and allocation parameter in the htab_t. */
379
380void
49b1fae4
DD
381htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
382 htab_del del_f, PTR alloc_arg,
383 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
5f9624e3
DJ
384{
385 htab->hash_f = hash_f;
386 htab->eq_f = eq_f;
387 htab->del_f = del_f;
388 htab->alloc_arg = alloc_arg;
389 htab->alloc_with_arg_f = alloc_f;
390 htab->free_with_arg_f = free_f;
391}
392
18893690 393/* These functions exist solely for backward compatibility. */
99a4c1bd 394
18893690 395#undef htab_create
99a4c1bd 396htab_t
49b1fae4 397htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
99a4c1bd 398{
18893690
DD
399 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
400}
99a4c1bd 401
18893690 402htab_t
49b1fae4 403htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
18893690
DD
404{
405 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
e2eaf477
ILT
406}
407
408/* This function frees all memory allocated for given hash table.
409 Naturally the hash table must already exist. */
410
411void
49b1fae4 412htab_delete (htab_t htab)
e2eaf477 413{
fe046a17
DD
414 size_t size = htab_size (htab);
415 PTR *entries = htab->entries;
b4fe2683 416 int i;
eb383413 417
b4fe2683 418 if (htab->del_f)
fe046a17 419 for (i = size - 1; i >= 0; i--)
c3cca4c9 420 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 421 (*htab->del_f) (entries[i]);
b4fe2683 422
18893690
DD
423 if (htab->free_f != NULL)
424 {
fe046a17 425 (*htab->free_f) (entries);
18893690
DD
426 (*htab->free_f) (htab);
427 }
5f9624e3
DJ
428 else if (htab->free_with_arg_f != NULL)
429 {
fe046a17 430 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
5f9624e3
DJ
431 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
432 }
e2eaf477
ILT
433}
434
435/* This function clears all entries in the given hash table. */
436
437void
49b1fae4 438htab_empty (htab_t htab)
b4fe2683 439{
fe046a17
DD
440 size_t size = htab_size (htab);
441 PTR *entries = htab->entries;
b4fe2683 442 int i;
eb383413 443
b4fe2683 444 if (htab->del_f)
fe046a17 445 for (i = size - 1; i >= 0; i--)
c3cca4c9 446 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
fe046a17 447 (*htab->del_f) (entries[i]);
b4fe2683 448
a7d421b8
DD
449 /* Instead of clearing megabyte, downsize the table. */
450 if (size > 1024*1024 / sizeof (PTR))
451 {
452 int nindex = higher_prime_index (1024 / sizeof (PTR));
453 int nsize = prime_tab[nindex].prime;
454
455 if (htab->free_f != NULL)
456 (*htab->free_f) (htab->entries);
457 else if (htab->free_with_arg_f != NULL)
458 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
459 if (htab->alloc_with_arg_f != NULL)
460 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
461 sizeof (PTR *));
462 else
463 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
464 htab->size = nsize;
465 htab->size_prime_index = nindex;
466 }
467 else
468 memset (entries, 0, size * sizeof (PTR));
469 htab->n_deleted = 0;
470 htab->n_elements = 0;
b4fe2683
JM
471}
472
473/* Similar to htab_find_slot, but without several unwanted side effects:
474 - Does not call htab->eq_f when it finds an existing entry.
475 - Does not change the count of elements/searches/collisions in the
476 hash table.
477 This function also assumes there are no deleted entries in the table.
478 HASH is the hash value for the element to be inserted. */
eb383413 479
e0f3df8f 480static PTR *
49b1fae4 481find_empty_slot_for_expand (htab_t htab, hashval_t hash)
e2eaf477 482{
fe046a17
DD
483 hashval_t index = htab_mod (hash, htab);
484 size_t size = htab_size (htab);
b1c933fc
RH
485 PTR *slot = htab->entries + index;
486 hashval_t hash2;
487
c3cca4c9 488 if (*slot == HTAB_EMPTY_ENTRY)
b1c933fc 489 return slot;
c3cca4c9 490 else if (*slot == HTAB_DELETED_ENTRY)
b1c933fc 491 abort ();
b4fe2683 492
fe046a17 493 hash2 = htab_mod_m2 (hash, htab);
b4fe2683
JM
494 for (;;)
495 {
b1c933fc
RH
496 index += hash2;
497 if (index >= size)
498 index -= size;
eb383413 499
b1c933fc 500 slot = htab->entries + index;
c3cca4c9 501 if (*slot == HTAB_EMPTY_ENTRY)
b4fe2683 502 return slot;
c3cca4c9 503 else if (*slot == HTAB_DELETED_ENTRY)
b4fe2683 504 abort ();
b4fe2683 505 }
e2eaf477
ILT
506}
507
508/* The following function changes size of memory allocated for the
509 entries and repeatedly inserts the table elements. The occupancy
510 of the table after the call will be about 50%. Naturally the hash
511 table must already exist. Remember also that the place of the
99a4c1bd
HPN
512 table entries is changed. If memory allocation failures are allowed,
513 this function will return zero, indicating that the table could not be
514 expanded. If all goes well, it will return a non-zero value. */
e2eaf477 515
99a4c1bd 516static int
49b1fae4 517htab_expand (htab_t htab)
e2eaf477 518{
e0f3df8f
HPN
519 PTR *oentries;
520 PTR *olimit;
521 PTR *p;
18893690 522 PTR *nentries;
bb6a587d
DD
523 size_t nsize, osize, elts;
524 unsigned int oindex, nindex;
b4fe2683
JM
525
526 oentries = htab->entries;
bb6a587d
DD
527 oindex = htab->size_prime_index;
528 osize = htab->size;
529 olimit = oentries + osize;
530 elts = htab_elements (htab);
b4fe2683 531
c4d8feb2
DD
532 /* Resize only when table after removal of unused elements is either
533 too full or too empty. */
bb6a587d
DD
534 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
535 {
536 nindex = higher_prime_index (elts * 2);
537 nsize = prime_tab[nindex].prime;
538 }
c4d8feb2 539 else
bb6a587d
DD
540 {
541 nindex = oindex;
542 nsize = osize;
543 }
99a4c1bd 544
5f9624e3
DJ
545 if (htab->alloc_with_arg_f != NULL)
546 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
547 sizeof (PTR *));
548 else
549 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
18893690
DD
550 if (nentries == NULL)
551 return 0;
552 htab->entries = nentries;
eed2b28c 553 htab->size = nsize;
bb6a587d 554 htab->size_prime_index = nindex;
b4fe2683
JM
555 htab->n_elements -= htab->n_deleted;
556 htab->n_deleted = 0;
557
558 p = oentries;
559 do
560 {
e0f3df8f 561 PTR x = *p;
eb383413 562
c3cca4c9 563 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683 564 {
e0f3df8f 565 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
eb383413 566
b4fe2683
JM
567 *q = x;
568 }
eb383413 569
b4fe2683
JM
570 p++;
571 }
572 while (p < olimit);
eb383413 573
18893690
DD
574 if (htab->free_f != NULL)
575 (*htab->free_f) (oentries);
5f9624e3
DJ
576 else if (htab->free_with_arg_f != NULL)
577 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
99a4c1bd 578 return 1;
e2eaf477
ILT
579}
580
b4fe2683
JM
581/* This function searches for a hash table entry equal to the given
582 element. It cannot be used to insert or delete an element. */
583
e0f3df8f 584PTR
49b1fae4 585htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 586{
fe046a17 587 hashval_t index, hash2;
b4fe2683 588 size_t size;
e0f3df8f 589 PTR entry;
e2eaf477 590
b4fe2683 591 htab->searches++;
fe046a17
DD
592 size = htab_size (htab);
593 index = htab_mod (hash, htab);
b4fe2683 594
eb383413 595 entry = htab->entries[index];
c3cca4c9
DD
596 if (entry == HTAB_EMPTY_ENTRY
597 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413
L
598 return entry;
599
fe046a17 600 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 601 for (;;)
e2eaf477 602 {
b4fe2683
JM
603 htab->collisions++;
604 index += hash2;
605 if (index >= size)
606 index -= size;
eb383413
L
607
608 entry = htab->entries[index];
c3cca4c9
DD
609 if (entry == HTAB_EMPTY_ENTRY
610 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
eb383413 611 return entry;
e2eaf477 612 }
b4fe2683
JM
613}
614
615/* Like htab_find_slot_with_hash, but compute the hash value from the
616 element. */
eb383413 617
e0f3df8f 618PTR
49b1fae4 619htab_find (htab_t htab, const PTR element)
b4fe2683
JM
620{
621 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
622}
623
624/* This function searches for a hash table slot containing an entry
625 equal to the given element. To delete an entry, call this with
bac7199c
DD
626 insert=NO_INSERT, then call htab_clear_slot on the slot returned
627 (possibly after doing some checks). To insert an entry, call this
628 with insert=INSERT, then write the value you want into the returned
629 slot. When inserting an entry, NULL may be returned if memory
630 allocation fails. */
b4fe2683 631
e0f3df8f 632PTR *
49b1fae4
DD
633htab_find_slot_with_hash (htab_t htab, const PTR element,
634 hashval_t hash, enum insert_option insert)
b4fe2683 635{
e0f3df8f 636 PTR *first_deleted_slot;
fe046a17 637 hashval_t index, hash2;
b4fe2683 638 size_t size;
b1c933fc 639 PTR entry;
b4fe2683 640
fe046a17
DD
641 size = htab_size (htab);
642 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
643 {
644 if (htab_expand (htab) == 0)
645 return NULL;
646 size = htab_size (htab);
647 }
b4fe2683 648
fe046a17 649 index = htab_mod (hash, htab);
b4fe2683 650
e2eaf477 651 htab->searches++;
b4fe2683
JM
652 first_deleted_slot = NULL;
653
b1c933fc 654 entry = htab->entries[index];
c3cca4c9 655 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 656 goto empty_entry;
c3cca4c9 657 else if (entry == HTAB_DELETED_ENTRY)
b1c933fc
RH
658 first_deleted_slot = &htab->entries[index];
659 else if ((*htab->eq_f) (entry, element))
660 return &htab->entries[index];
661
fe046a17 662 hash2 = htab_mod_m2 (hash, htab);
b4fe2683 663 for (;;)
e2eaf477 664 {
b1c933fc
RH
665 htab->collisions++;
666 index += hash2;
667 if (index >= size)
668 index -= size;
669
670 entry = htab->entries[index];
c3cca4c9 671 if (entry == HTAB_EMPTY_ENTRY)
b1c933fc 672 goto empty_entry;
c3cca4c9 673 else if (entry == HTAB_DELETED_ENTRY)
b4fe2683
JM
674 {
675 if (!first_deleted_slot)
676 first_deleted_slot = &htab->entries[index];
677 }
b1c933fc 678 else if ((*htab->eq_f) (entry, element))
eb383413 679 return &htab->entries[index];
e2eaf477 680 }
b1c933fc
RH
681
682 empty_entry:
683 if (insert == NO_INSERT)
684 return NULL;
685
b1c933fc
RH
686 if (first_deleted_slot)
687 {
686e72d7 688 htab->n_deleted--;
c3cca4c9 689 *first_deleted_slot = HTAB_EMPTY_ENTRY;
b1c933fc
RH
690 return first_deleted_slot;
691 }
692
686e72d7 693 htab->n_elements++;
b1c933fc 694 return &htab->entries[index];
e2eaf477
ILT
695}
696
b4fe2683
JM
697/* Like htab_find_slot_with_hash, but compute the hash value from the
698 element. */
eb383413 699
e0f3df8f 700PTR *
49b1fae4 701htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
b4fe2683
JM
702{
703 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
704 insert);
705}
706
d6ea4e80
DD
707/* This function deletes an element with the given value from hash
708 table (the hash is computed from the element). If there is no matching
709 element in the hash table, this function does nothing. */
710
711void
99e47410 712htab_remove_elt (htab_t htab, const PTR element)
d6ea4e80
DD
713{
714 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
715}
716
717
b4fe2683
JM
718/* This function deletes an element with the given value from hash
719 table. If there is no matching element in the hash table, this
720 function does nothing. */
e2eaf477
ILT
721
722void
99e47410 723htab_remove_elt_with_hash (htab_t htab, const PTR element, hashval_t hash)
e2eaf477 724{
e0f3df8f 725 PTR *slot;
b4fe2683 726
d6ea4e80 727 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
07ffcfec 728 if (slot == NULL)
b4fe2683
JM
729 return;
730
731 if (htab->del_f)
732 (*htab->del_f) (*slot);
e2eaf477 733
c3cca4c9 734 *slot = HTAB_DELETED_ENTRY;
b4fe2683 735 htab->n_deleted++;
e2eaf477
ILT
736}
737
b4fe2683
JM
738/* This function clears a specified slot in a hash table. It is
739 useful when you've already done the lookup and don't want to do it
740 again. */
e2eaf477
ILT
741
742void
49b1fae4 743htab_clear_slot (htab_t htab, PTR *slot)
e2eaf477 744{
fe046a17 745 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
c3cca4c9 746 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
e2eaf477 747 abort ();
eb383413 748
b4fe2683
JM
749 if (htab->del_f)
750 (*htab->del_f) (*slot);
eb383413 751
c3cca4c9 752 *slot = HTAB_DELETED_ENTRY;
b4fe2683 753 htab->n_deleted++;
e2eaf477
ILT
754}
755
756/* This function scans over the entire hash table calling
757 CALLBACK for each live entry. If CALLBACK returns false,
758 the iteration stops. INFO is passed as CALLBACK's second
759 argument. */
760
761void
49b1fae4 762htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
e2eaf477 763{
c4d8feb2
DD
764 PTR *slot;
765 PTR *limit;
c3cca4c9 766
c4d8feb2 767 slot = htab->entries;
fe046a17 768 limit = slot + htab_size (htab);
eb383413 769
b4fe2683
JM
770 do
771 {
e0f3df8f 772 PTR x = *slot;
eb383413 773
c3cca4c9 774 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
b4fe2683
JM
775 if (!(*callback) (slot, info))
776 break;
777 }
778 while (++slot < limit);
e2eaf477
ILT
779}
780
f77ed96c
DD
781/* Like htab_traverse_noresize, but does resize the table when it is
782 too empty to improve effectivity of subsequent calls. */
783
784void
49b1fae4 785htab_traverse (htab_t htab, htab_trav callback, PTR info)
f77ed96c 786{
483d7cf4
DD
787 size_t size = htab_size (htab);
788 if (htab_elements (htab) * 8 < size && size > 32)
f77ed96c
DD
789 htab_expand (htab);
790
791 htab_traverse_noresize (htab, callback, info);
792}
793
eb383413
L
794/* Return the fraction of fixed collisions during all work with given
795 hash table. */
e2eaf477 796
b4fe2683 797double
49b1fae4 798htab_collisions (htab_t htab)
e2eaf477 799{
eb383413 800 if (htab->searches == 0)
b4fe2683 801 return 0.0;
eb383413
L
802
803 return (double) htab->collisions / (double) htab->searches;
e2eaf477 804}
8fc34799 805
68a41de7
DD
806/* Hash P as a null-terminated string.
807
808 Copied from gcc/hashtable.c. Zack had the following to say with respect
809 to applicability, though note that unlike hashtable.c, this hash table
810 implementation re-hashes rather than chain buckets.
811
812 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
813 From: Zack Weinberg <zackw@panix.com>
814 Date: Fri, 17 Aug 2001 02:15:56 -0400
815
816 I got it by extracting all the identifiers from all the source code
817 I had lying around in mid-1999, and testing many recurrences of
818 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
819 prime numbers or the appropriate identity. This was the best one.
820 I don't remember exactly what constituted "best", except I was
821 looking at bucket-length distributions mostly.
822
823 So it should be very good at hashing identifiers, but might not be
824 as good at arbitrary strings.
825
826 I'll add that it thoroughly trounces the hash functions recommended
827 for this use at http://burtleburtle.net/bob/hash/index.html, both
828 on speed and bucket distribution. I haven't tried it against the
829 function they just started using for Perl's hashes. */
8fc34799
DD
830
831hashval_t
49b1fae4 832htab_hash_string (const PTR p)
8fc34799
DD
833{
834 const unsigned char *str = (const unsigned char *) p;
835 hashval_t r = 0;
836 unsigned char c;
837
838 while ((c = *str++) != 0)
839 r = r * 67 + c - 113;
840
841 return r;
842}
7108c5dc 843
c759c777
TT
844/* An equality function for null-terminated strings. */
845int
846htab_eq_string (const void *a, const void *b)
847{
848 return strcmp ((const char *) a, (const char *) b) == 0;
849}
850
7108c5dc
JM
851/* DERIVED FROM:
852--------------------------------------------------------------------
853lookup2.c, by Bob Jenkins, December 1996, Public Domain.
854hash(), hash2(), hash3, and mix() are externally useful functions.
855Routines to test the hash are included if SELF_TEST is defined.
856You can use this free for any purpose. It has no warranty.
857--------------------------------------------------------------------
858*/
859
860/*
861--------------------------------------------------------------------
862mix -- mix 3 32-bit values reversibly.
863For every delta with one or two bit set, and the deltas of all three
864 high bits or all three low bits, whether the original value of a,b,c
865 is almost all zero or is uniformly distributed,
866* If mix() is run forward or backward, at least 32 bits in a,b,c
867 have at least 1/4 probability of changing.
868* If mix() is run forward, every bit of c will change between 1/3 and
869 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
870mix() was built out of 36 single-cycle latency instructions in a
871 structure that could supported 2x parallelism, like so:
872 a -= b;
873 a -= c; x = (c>>13);
874 b -= c; a ^= x;
875 b -= a; x = (a<<8);
876 c -= a; b ^= x;
877 c -= b; x = (b>>13);
878 ...
879 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
880 of that parallelism. They've also turned some of those single-cycle
881 latency instructions into multi-cycle latency instructions. Still,
882 this is the fastest good hash I could find. There were about 2^^68
883 to choose from. I only looked at a billion or so.
884--------------------------------------------------------------------
885*/
886/* same, but slower, works on systems that might have 8 byte hashval_t's */
887#define mix(a,b,c) \
888{ \
889 a -= b; a -= c; a ^= (c>>13); \
890 b -= c; b -= a; b ^= (a<< 8); \
891 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
892 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
893 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
894 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
895 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
896 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
897 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
898}
899
900/*
901--------------------------------------------------------------------
902hash() -- hash a variable-length key into a 32-bit value
903 k : the key (the unaligned variable-length array of bytes)
904 len : the length of the key, counting by bytes
905 level : can be any 4-byte value
906Returns a 32-bit value. Every bit of the key affects every bit of
907the return value. Every 1-bit and 2-bit delta achieves avalanche.
908About 36+6len instructions.
909
910The best hash table sizes are powers of 2. There is no need to do
911mod a prime (mod is sooo slow!). If you need less than 32 bits,
912use a bitmask. For example, if you need only 10 bits, do
913 h = (h & hashmask(10));
914In which case, the hash table should have hashsize(10) elements.
915
916If you are hashing n strings (ub1 **)k, do it like this:
917 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
918
919By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
920code any way you wish, private, educational, or commercial. It's free.
921
922See http://burtleburtle.net/bob/hash/evahash.html
923Use for hash table lookup, or anything where one collision in 2^32 is
924acceptable. Do NOT use for cryptographic purposes.
925--------------------------------------------------------------------
926*/
927
49b1fae4
DD
928hashval_t
929iterative_hash (const PTR k_in /* the key */,
930 register size_t length /* the length of the key */,
931 register hashval_t initval /* the previous hash, or
932 an arbitrary value */)
7108c5dc
JM
933{
934 register const unsigned char *k = (const unsigned char *)k_in;
935 register hashval_t a,b,c,len;
936
937 /* Set up the internal state */
938 len = length;
939 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
940 c = initval; /* the previous hash value */
941
942 /*---------------------------------------- handle most of the key */
943#ifndef WORDS_BIGENDIAN
944 /* On a little-endian machine, if the data is 4-byte aligned we can hash
945 by word for better speed. This gives nondeterministic results on
946 big-endian machines. */
947 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
948 while (len >= 12) /* aligned */
949 {
950 a += *(hashval_t *)(k+0);
951 b += *(hashval_t *)(k+4);
952 c += *(hashval_t *)(k+8);
953 mix(a,b,c);
954 k += 12; len -= 12;
955 }
956 else /* unaligned */
957#endif
958 while (len >= 12)
959 {
960 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
961 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
962 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
963 mix(a,b,c);
964 k += 12; len -= 12;
965 }
966
967 /*------------------------------------- handle the last 11 bytes */
968 c += length;
969 switch(len) /* all the case statements fall through */
970 {
4d17eaec
MW
971 case 11: c+=((hashval_t)k[10]<<24); /* fall through */
972 case 10: c+=((hashval_t)k[9]<<16); /* fall through */
973 case 9 : c+=((hashval_t)k[8]<<8); /* fall through */
7108c5dc 974 /* the first byte of c is reserved for the length */
4d17eaec
MW
975 case 8 : b+=((hashval_t)k[7]<<24); /* fall through */
976 case 7 : b+=((hashval_t)k[6]<<16); /* fall through */
977 case 6 : b+=((hashval_t)k[5]<<8); /* fall through */
978 case 5 : b+=k[4]; /* fall through */
979 case 4 : a+=((hashval_t)k[3]<<24); /* fall through */
980 case 3 : a+=((hashval_t)k[2]<<16); /* fall through */
981 case 2 : a+=((hashval_t)k[1]<<8); /* fall through */
7108c5dc
JM
982 case 1 : a+=k[0];
983 /* case 0: nothing left to add */
984 }
985 mix(a,b,c);
986 /*-------------------------------------------- report the result */
987 return c;
988}
29f045bb
DD
989
990/* Returns a hash code for pointer P. Simplified version of evahash */
991
992static hashval_t
993hash_pointer (const PTR p)
994{
995 intptr_t v = (intptr_t) p;
996 unsigned a, b, c;
997
998 a = b = 0x9e3779b9;
3ecb7338
DD
999 a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
1000 b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
29f045bb
DD
1001 c = 0x42135234;
1002 mix (a, b, c);
1003 return c;
1004}