]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/d10v/d10v_sim.h
Report SIGBUS and halt simulation when ld/st detect a misaligned address.
[thirdparty/binutils-gdb.git] / sim / d10v / d10v_sim.h
CommitLineData
c906108c
SS
1#include "config.h"
2#include <stdio.h>
3#include <ctype.h>
4#include <limits.h>
5#include "ansidecl.h"
6#include "callback.h"
7#include "opcode/d10v.h"
8#include "bfd.h"
9
10#define DEBUG_TRACE 0x00000001
11#define DEBUG_VALUES 0x00000002
12#define DEBUG_LINE_NUMBER 0x00000004
13#define DEBUG_MEMSIZE 0x00000008
14#define DEBUG_INSTRUCTION 0x00000010
15#define DEBUG_TRAP 0x00000020
4ce44c66 16#define DEBUG_MEMORY 0x00000040
c906108c
SS
17
18#ifndef DEBUG
19#define DEBUG (DEBUG_TRACE | DEBUG_VALUES | DEBUG_LINE_NUMBER)
20#endif
21
22extern int d10v_debug;
23
24#include "remote-sim.h"
25#include "sim-config.h"
26#include "sim-types.h"
27
28typedef unsigned8 uint8;
29typedef unsigned16 uint16;
30typedef signed16 int16;
31typedef unsigned32 uint32;
32typedef signed32 int32;
33typedef unsigned64 uint64;
34typedef signed64 int64;
35
36/* FIXME: D10V defines */
37typedef uint16 reg_t;
38
39struct simops
40{
41 long opcode;
42 int is_long;
43 long mask;
44 int format;
45 int cycles;
46 int unit;
47 int exec_type;
48 void (*func)();
49 int numops;
50 int operands[9];
51};
52
53enum _ins_type
54{
55 INS_UNKNOWN, /* unknown instruction */
56 INS_COND_TRUE, /* # times EXExxx executed other instruction */
57 INS_COND_FALSE, /* # times EXExxx did not execute other instruction */
58 INS_COND_JUMP, /* # times JUMP skipped other instruction */
59 INS_CYCLES, /* # cycles */
60 INS_LONG, /* long instruction (both containers, ie FM == 11) */
61 INS_LEFTRIGHT, /* # times instruction encoded as L -> R (ie, FM == 01) */
62 INS_RIGHTLEFT, /* # times instruction encoded as L <- R (ie, FM == 10) */
63 INS_PARALLEL, /* # times instruction encoded as L || R (ie, RM == 00) */
64
65 INS_LEFT, /* normal left instructions */
66 INS_LEFT_PARALLEL, /* left side of || */
67 INS_LEFT_COND_TEST, /* EXExx test on left side */
68 INS_LEFT_COND_EXE, /* execution after EXExxx test on right side succeeded */
69 INS_LEFT_NOPS, /* NOP on left side */
70
71 INS_RIGHT, /* normal right instructions */
72 INS_RIGHT_PARALLEL, /* right side of || */
73 INS_RIGHT_COND_TEST, /* EXExx test on right side */
74 INS_RIGHT_COND_EXE, /* execution after EXExxx test on left side succeeded */
75 INS_RIGHT_NOPS, /* NOP on right side */
76
77 INS_MAX
78};
79
80extern unsigned long ins_type_counters[ (int)INS_MAX ];
81
82enum {
83 SP_IDX = 15,
84};
85
86/* Write-back slots */
87union slot_data {
88 unsigned_1 _1;
89 unsigned_2 _2;
90 unsigned_4 _4;
91 unsigned_8 _8;
92};
93struct slot {
94 void *dest;
95 int size;
96 union slot_data data;
97 union slot_data mask;
98};
99enum {
100 NR_SLOTS = 16,
101};
102#define SLOT (State.slot)
103#define SLOT_NR (State.slot_nr)
104#define SLOT_PEND_MASK(DEST, MSK, VAL) \
105 do \
106 { \
107 SLOT[SLOT_NR].dest = &(DEST); \
108 SLOT[SLOT_NR].size = sizeof (DEST); \
109 switch (sizeof (DEST)) \
110 { \
111 case 1: \
112 SLOT[SLOT_NR].data._1 = (unsigned_1) (VAL); \
113 SLOT[SLOT_NR].mask._1 = (unsigned_1) (MSK); \
114 break; \
115 case 2: \
116 SLOT[SLOT_NR].data._2 = (unsigned_2) (VAL); \
117 SLOT[SLOT_NR].mask._2 = (unsigned_2) (MSK); \
118 break; \
119 case 4: \
120 SLOT[SLOT_NR].data._4 = (unsigned_4) (VAL); \
121 SLOT[SLOT_NR].mask._4 = (unsigned_4) (MSK); \
122 break; \
123 case 8: \
124 SLOT[SLOT_NR].data._8 = (unsigned_8) (VAL); \
125 SLOT[SLOT_NR].mask._8 = (unsigned_8) (MSK); \
126 break; \
127 } \
128 SLOT_NR = (SLOT_NR + 1); \
129 } \
130 while (0)
131#define SLOT_PEND(DEST, VAL) SLOT_PEND_MASK(DEST, 0, VAL)
132#define SLOT_DISCARD() (SLOT_NR = 0)
133#define SLOT_FLUSH() \
134 do \
135 { \
136 int i; \
137 for (i = 0; i < SLOT_NR; i++) \
138 { \
139 switch (SLOT[i].size) \
140 { \
141 case 1: \
142 *(unsigned_1*) SLOT[i].dest &= SLOT[i].mask._1; \
143 *(unsigned_1*) SLOT[i].dest |= SLOT[i].data._1; \
144 break; \
145 case 2: \
146 *(unsigned_2*) SLOT[i].dest &= SLOT[i].mask._2; \
147 *(unsigned_2*) SLOT[i].dest |= SLOT[i].data._2; \
148 break; \
149 case 4: \
150 *(unsigned_4*) SLOT[i].dest &= SLOT[i].mask._4; \
151 *(unsigned_4*) SLOT[i].dest |= SLOT[i].data._4; \
152 break; \
153 case 8: \
154 *(unsigned_8*) SLOT[i].dest &= SLOT[i].mask._8; \
155 *(unsigned_8*) SLOT[i].dest |= SLOT[i].data._8; \
156 break; \
157 } \
158 } \
159 SLOT_NR = 0; \
160 } \
161 while (0)
162#define SLOT_DUMP() \
163 do \
164 { \
165 int i; \
166 for (i = 0; i < SLOT_NR; i++) \
167 { \
168 switch (SLOT[i].size) \
169 { \
170 case 1: \
171 printf ("SLOT %d *0x%08lx & 0x%02x | 0x%02x\n", i, \
172 (long) SLOT[i].dest, \
173 (unsigned) SLOT[i].mask._1, \
174 (unsigned) SLOT[i].data._1); \
175 break; \
176 case 2: \
177 printf ("SLOT %d *0x%08lx & 0x%04x | 0x%04x\n", i, \
178 (long) SLOT[i].dest, \
179 (unsigned) SLOT[i].mask._2, \
180 (unsigned) SLOT[i].data._2); \
181 break; \
182 case 4: \
183 printf ("SLOT %d *0x%08lx & 0x%08x | 0x%08x\n", i, \
184 (long) SLOT[i].dest, \
185 (unsigned) SLOT[i].mask._4, \
186 (unsigned) SLOT[i].data._4); \
187 break; \
188 case 8: \
189 printf ("SLOT %d *0x%08lx & 0x%08x%08x | 0x%08x%08x\n", i, \
190 (long) SLOT[i].dest, \
191 (unsigned) (SLOT[i].mask._8 >> 32), \
192 (unsigned) SLOT[i].mask._8, \
193 (unsigned) (SLOT[i].data._8 >> 32), \
194 (unsigned) SLOT[i].data._8); \
195 break; \
196 } \
197 } \
198 } \
199 while (0)
200
4ce44c66
JM
201/* d10v memory: There are three separate d10v memory regions IMEM,
202 UMEM and DMEM. The IMEM and DMEM are further broken down into
203 blocks (very like VM pages). */
204
205enum
206{
207 IMAP_BLOCK_SIZE = 0x20000,
208 DMAP_BLOCK_SIZE = 0x4000,
209};
210
211/* Implement the three memory regions using sparse arrays. Allocate
212 memory using ``segments''. A segment must be at least as large as
213 a BLOCK - ensures that an access that doesn't cross a block
214 boundary can't cross a segment boundary */
215
216enum
217{
218 SEGMENT_SIZE = 0x20000, /* 128KB - MAX(IMAP_BLOCK_SIZE,DMAP_BLOCK_SIZE) */
219 IMEM_SEGMENTS = 8, /* 1MB */
220 DMEM_SEGMENTS = 8, /* 1MB */
221 UMEM_SEGMENTS = 128 /* 16MB */
222};
223
224struct d10v_memory
225{
226 uint8 *insn[IMEM_SEGMENTS];
227 uint8 *data[DMEM_SEGMENTS];
228 uint8 *unif[UMEM_SEGMENTS];
229 uint8 fault[16];
230};
231
c906108c
SS
232struct _state
233{
234 reg_t regs[16]; /* general-purpose registers */
235#define GPR(N) (State.regs[(N)] + 0)
236#define SET_GPR(N,VAL) SLOT_PEND (State.regs[(N)], (VAL))
237
238#define GPR32(N) ((((uint32) State.regs[(N) + 0]) << 16) \
239 | (uint16) State.regs[(N) + 1])
240#define SET_GPR32(N,VAL) do { SET_GPR (OP[0] + 0, (VAL) >> 16); SET_GPR (OP[0] + 1, (VAL)); } while (0)
241
242 reg_t cregs[16]; /* control registers */
243#define CREG(N) (State.cregs[(N)] + 0)
4ce44c66
JM
244#define SET_CREG(N,VAL) move_to_cr ((N), 0, (VAL), 0)
245#define SET_HW_CREG(N,VAL) move_to_cr ((N), 0, (VAL), 1)
c906108c
SS
246
247 reg_t sp[2]; /* holding area for SPI(0)/SPU(1) */
248#define HELD_SP(N) (State.sp[(N)] + 0)
249#define SET_HELD_SP(N,VAL) SLOT_PEND (State.sp[(N)], (VAL))
250
251 int64 a[2]; /* accumulators */
252#define ACC(N) (State.a[(N)] + 0)
253#define SET_ACC(N,VAL) SLOT_PEND (State.a[(N)], (VAL) & MASK40)
254
255 /* writeback info */
256 struct slot slot[NR_SLOTS];
257 int slot_nr;
258
259 /* trace data */
260 struct {
261 uint16 psw;
262 } trace;
263
264 uint8 exe;
265 int exception;
266 int pc_changed;
267
4ce44c66
JM
268 /* NOTE: everything below this line is not reset by
269 sim_create_inferior() */
270
271 struct d10v_memory mem;
272
c906108c
SS
273 enum _ins_type ins_type;
274
275} State;
276
277
278extern host_callback *d10v_callback;
279extern uint16 OP[4];
280extern struct simops Simops[];
281extern asection *text;
282extern bfd_vma text_start;
283extern bfd_vma text_end;
284extern bfd *prog_bfd;
285
286enum
287{
288 PSW_CR = 0,
289 BPSW_CR = 1,
290 PC_CR = 2,
291 BPC_CR = 3,
292 DPSW_CR = 4,
293 DPC_CR = 5,
294 RPT_C_CR = 7,
295 RPT_S_CR = 8,
296 RPT_E_CR = 9,
297 MOD_S_CR = 10,
298 MOD_E_CR = 11,
299 IBA_CR = 14,
300};
301
302enum
303{
304 PSW_SM_BIT = 0x8000,
305 PSW_EA_BIT = 0x2000,
306 PSW_DB_BIT = 0x1000,
307 PSW_DM_BIT = 0x0800,
308 PSW_IE_BIT = 0x0400,
309 PSW_RP_BIT = 0x0200,
310 PSW_MD_BIT = 0x0100,
311 PSW_FX_BIT = 0x0080,
312 PSW_ST_BIT = 0x0040,
313 PSW_F0_BIT = 0x0008,
314 PSW_F1_BIT = 0x0004,
315 PSW_C_BIT = 0x0001,
316};
317
318#define PSW CREG (PSW_CR)
319#define SET_PSW(VAL) SET_CREG (PSW_CR, (VAL))
4ce44c66
JM
320#define SET_HW_PSW(VAL) SET_HW_CREG (PSW_CR, (VAL))
321#define SET_PSW_BIT(MASK,VAL) move_to_cr (PSW_CR, ~(MASK), (VAL) ? (MASK) : 0, 1)
c906108c
SS
322
323#define PSW_SM ((PSW & PSW_SM_BIT) != 0)
324#define SET_PSW_SM(VAL) SET_PSW_BIT (PSW_SM_BIT, (VAL))
325
326#define PSW_EA ((PSW & PSW_EA_BIT) != 0)
327#define SET_PSW_EA(VAL) SET_PSW_BIT (PSW_EA_BIT, (VAL))
328
329#define PSW_DB ((PSW & PSW_DB_BIT) != 0)
330#define SET_PSW_DB(VAL) SET_PSW_BIT (PSW_DB_BIT, (VAL))
331
332#define PSW_DM ((PSW & PSW_DM_BIT) != 0)
333#define SET_PSW_DM(VAL) SET_PSW_BIT (PSW_DM_BIT, (VAL))
334
335#define PSW_IE ((PSW & PSW_IE_BIT) != 0)
336#define SET_PSW_IE(VAL) SET_PSW_BIT (PSW_IE_BIT, (VAL))
337
338#define PSW_RP ((PSW & PSW_RP_BIT) != 0)
339#define SET_PSW_RP(VAL) SET_PSW_BIT (PSW_RP_BIT, (VAL))
340
341#define PSW_MD ((PSW & PSW_MD_BIT) != 0)
342#define SET_PSW_MD(VAL) SET_PSW_BIT (PSW_MD_BIT, (VAL))
343
344#define PSW_FX ((PSW & PSW_FX_BIT) != 0)
345#define SET_PSW_FX(VAL) SET_PSW_BIT (PSW_FX_BIT, (VAL))
346
347#define PSW_ST ((PSW & PSW_ST_BIT) != 0)
348#define SET_PSW_ST(VAL) SET_PSW_BIT (PSW_ST_BIT, (VAL))
349
350#define PSW_F0 ((PSW & PSW_F0_BIT) != 0)
351#define SET_PSW_F0(VAL) SET_PSW_BIT (PSW_F0_BIT, (VAL))
352
353#define PSW_F1 ((PSW & PSW_F1_BIT) != 0)
354#define SET_PSW_F1(VAL) SET_PSW_BIT (PSW_F1_BIT, (VAL))
355
356#define PSW_C ((PSW & PSW_C_BIT) != 0)
357#define SET_PSW_C(VAL) SET_PSW_BIT (PSW_C_BIT, (VAL))
358
359/* See simopsc.:move_to_cr() for registers that can not be read-from
360 or assigned-to directly */
361
362#define PC CREG (PC_CR)
363#define SET_PC(VAL) SET_CREG (PC_CR, (VAL))
364
365#define BPSW CREG (BPSW_CR)
366#define SET_BPSW(VAL) SET_CREG (BPSW_CR, (VAL))
367
368#define BPC CREG (BPC_CR)
369#define SET_BPC(VAL) SET_CREG (BPC_CR, (VAL))
370
371#define DPSW CREG (DPSW_CR)
372#define SET_DPSW(VAL) SET_CREG (DPSW_CR, (VAL))
373
374#define DPC CREG (DPC_CR)
375#define SET_DPC(VAL) SET_CREG (DPC_CR, (VAL))
376
377#define RPT_C CREG (RPT_C_CR)
378#define SET_RPT_C(VAL) SET_CREG (RPT_C_CR, (VAL))
379
380#define RPT_S CREG (RPT_S_CR)
381#define SET_RPT_S(VAL) SET_CREG (RPT_S_CR, (VAL))
382
383#define RPT_E CREG (RPT_E_CR)
384#define SET_RPT_E(VAL) SET_CREG (RPT_E_CR, (VAL))
385
386#define MOD_S CREG (MOD_S_CR)
387#define SET_MOD_S(VAL) SET_CREG (MOD_S_CR, (VAL))
388
389#define MOD_E CREG (MOD_E_CR)
390#define SET_MOD_E(VAL) SET_CREG (MOD_E_CR, (VAL))
391
392#define IBA CREG (IBA_CR)
393#define SET_IBA(VAL) SET_CREG (IBA_CR, (VAL))
394
395
396#define SIG_D10V_STOP -1
397#define SIG_D10V_EXIT -2
7fc5b5ad 398#define SIG_D10V_BUS -3
c906108c
SS
399
400#define SEXT3(x) ((((x)&0x7)^(~3))+4)
401
402/* sign-extend a 4-bit number */
403#define SEXT4(x) ((((x)&0xf)^(~7))+8)
404
405/* sign-extend an 8-bit number */
406#define SEXT8(x) ((((x)&0xff)^(~0x7f))+0x80)
407
408/* sign-extend a 16-bit number */
409#define SEXT16(x) ((((x)&0xffff)^(~0x7fff))+0x8000)
410
411/* sign-extend a 32-bit number */
412#define SEXT32(x) ((((x)&SIGNED64(0xffffffff))^(~SIGNED64(0x7fffffff)))+SIGNED64(0x80000000))
413
414/* sign extend a 40 bit number */
415#define SEXT40(x) ((((x)&SIGNED64(0xffffffffff))^(~SIGNED64(0x7fffffffff)))+SIGNED64(0x8000000000))
416
417/* sign extend a 44 bit number */
418#define SEXT44(x) ((((x)&SIGNED64(0xfffffffffff))^(~SIGNED64(0x7ffffffffff)))+SIGNED64(0x80000000000))
419
420/* sign extend a 56 bit number */
421#define SEXT56(x) ((((x)&SIGNED64(0xffffffffffffff))^(~SIGNED64(0x7fffffffffffff)))+SIGNED64(0x80000000000000))
422
423/* sign extend a 60 bit number */
424#define SEXT60(x) ((((x)&SIGNED64(0xfffffffffffffff))^(~SIGNED64(0x7ffffffffffffff)))+SIGNED64(0x800000000000000))
425
426#define MAX32 SIGNED64(0x7fffffff)
427#define MIN32 SIGNED64(0xff80000000)
428#define MASK32 SIGNED64(0xffffffff)
429#define MASK40 SIGNED64(0xffffffffff)
430
431/* The alignment of MOD_E in the following macro depends upon "i"
432 always being a power of 2. */
433#define INC_ADDR(x,i) \
434do \
435 { \
c3f6f71d
JM
436 int test_i = i < 0 ? i : ~((i) - 1); \
437 if (PSW_MD && GPR (x) == (MOD_E & test_i)) \
c906108c
SS
438 SET_GPR (x, MOD_S); \
439 else \
440 SET_GPR (x, GPR (x) + (i)); \
441 } \
442while (0)
443
4ce44c66 444extern uint8 *dmem_addr (uint16 offset);
c906108c
SS
445extern uint8 *imem_addr PARAMS ((uint32));
446extern bfd_vma decode_pc PARAMS ((void));
447
448#define RB(x) (*(dmem_addr(x)))
449#define SB(addr,data) ( RB(addr) = (data & 0xff))
450
451#if defined(__GNUC__) && defined(__OPTIMIZE__) && !defined(NO_ENDIAN_INLINE)
452#define ENDIAN_INLINE static __inline__
453#include "endian.c"
454#undef ENDIAN_INLINE
455
456#else
457extern uint32 get_longword PARAMS ((uint8 *));
458extern uint16 get_word PARAMS ((uint8 *));
459extern int64 get_longlong PARAMS ((uint8 *));
460extern void write_word PARAMS ((uint8 *addr, uint16 data));
461extern void write_longword PARAMS ((uint8 *addr, uint32 data));
462extern void write_longlong PARAMS ((uint8 *addr, int64 data));
463#endif
464
465#define SW(addr,data) write_word(dmem_addr(addr),data)
466#define RW(x) get_word(dmem_addr(x))
467#define SLW(addr,data) write_longword(dmem_addr(addr),data)
468#define RLW(x) get_longword(dmem_addr(x))
469#define READ_16(x) get_word(x)
470#define WRITE_16(addr,data) write_word(addr,data)
471#define READ_64(x) get_longlong(x)
472#define WRITE_64(addr,data) write_longlong(addr,data)
473
c906108c
SS
474#define JMP(x) do { SET_PC (x); State.pc_changed = 1; } while (0)
475
476#define RIE_VECTOR_START 0xffc2
477#define AE_VECTOR_START 0xffc3
478#define TRAP_VECTOR_START 0xffc4 /* vector for trap 0 */
479#define DBT_VECTOR_START 0xffd4
480#define SDBT_VECTOR_START 0xffd5
481
4ce44c66
JM
482/* Scedule a store of VAL into cr[CR]. MASK indicates the bits in
483 cr[CR] that should not be modified (i.e. cr[CR] = (cr[CR] & MASK) |
484 (VAL & ~MASK)). In addition, unless PSW_HW_P, a VAL intended for
485 PSW is masked for zero bits. */
486
487extern reg_t move_to_cr (int cr, reg_t mask, reg_t val, int psw_hw_p);