]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/frv/mloop.in
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / sim / frv / mloop.in
CommitLineData
b34f6357 1# Simulator main loop for frv. -*- C -*-
8acc9f48 2# Copyright (C) 1998-2013 Free Software Foundation, Inc.
b34f6357
DB
3# Contributed by Red Hat.
4#
5# This file is part of the GNU Simulators.
6#
7# This program is free software; you can redistribute it and/or modify
8# it under the terms of the GNU General Public License as published by
4744ac1b
JB
9# the Free Software Foundation; either version 3 of the License, or
10# (at your option) any later version.
b34f6357
DB
11#
12# This program is distributed in the hope that it will be useful,
13# but WITHOUT ANY WARRANTY; without even the implied warranty of
14# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15# GNU General Public License for more details.
16#
4744ac1b
JB
17# You should have received a copy of the GNU General Public License
18# along with this program. If not, see <http://www.gnu.org/licenses/>.
b34f6357
DB
19
20# Syntax:
21# /bin/sh mainloop.in command
22#
23# Command is one of:
24#
25# init
26# support
27# extract-{simple,scache,pbb}
28# {full,fast}-exec-{simple,scache,pbb}
29#
30# A target need only provide a "full" version of one of simple,scache,pbb.
31# If the target wants it can also provide a fast version of same.
32# It can't provide more than this.
33
34# ??? After a few more ports are done, revisit.
35# Will eventually need to machine generate a lot of this.
36
37case "x$1" in
38
39xsupport)
40
41cat <<EOF
42
43static INLINE const IDESC *
44extract (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, ARGBUF *abuf,
45 int fast_p)
46{
47 const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf);
48 @cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
49 if (! fast_p)
50 {
51 int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
52 int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
53 @cpu@_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
54 }
55 return id;
56}
57
58static INLINE SEM_PC
59execute (SIM_CPU *current_cpu, SCACHE *sc, int fast_p)
60{
61 SEM_PC vpc;
62
63 /* Force gr0 to zero before every insn. */
64 @cpu@_h_gr_set (current_cpu, 0, 0);
65
66 if (fast_p)
67 {
68 vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, sc);
69 }
70 else
71 {
72 ARGBUF *abuf = &sc->argbuf;
73 const IDESC *idesc = abuf->idesc;
74#if WITH_SCACHE_PBB
75 int virtual_p = CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_VIRTUAL);
76#else
77 int virtual_p = 0;
78#endif
79
80 if (! virtual_p)
81 {
82 /* FIXME: call x-before */
83 if (ARGBUF_PROFILE_P (abuf))
84 PROFILE_COUNT_INSN (current_cpu, abuf->addr, idesc->num);
85 /* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}. */
86 if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
87 {
88 @cpu@_model_insn_before (current_cpu, sc->first_insn_p);
89 model_insn = FRV_INSN_MODEL_PASS_1;
90 if (idesc->timing->model_fn != NULL)
91 (*idesc->timing->model_fn) (current_cpu, sc);
92 }
93 else
94 model_insn = FRV_INSN_NO_MODELING;
95 TRACE_INSN_INIT (current_cpu, abuf, 1);
96 TRACE_INSN (current_cpu, idesc->idata,
97 (const struct argbuf *) abuf, abuf->addr);
98 }
99#if WITH_SCACHE
100 vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, sc);
101#else
102 vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, abuf);
103#endif
104 if (! virtual_p)
105 {
106 /* FIXME: call x-after */
107 if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
108 {
109 int cycles;
110 if (idesc->timing->model_fn != NULL)
111 {
112 model_insn = FRV_INSN_MODEL_PASS_2;
113 cycles = (*idesc->timing->model_fn) (current_cpu, sc);
114 }
115 else
116 cycles = 1;
117 @cpu@_model_insn_after (current_cpu, sc->last_insn_p, cycles);
118 }
119 TRACE_INSN_FINI (current_cpu, abuf, 1);
120 }
121 }
122
123 return vpc;
124}
125
126static void
127@cpu@_parallel_write_init (SIM_CPU *current_cpu)
128{
129 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
130 CGEN_WRITE_QUEUE_CLEAR (q);
131 previous_vliw_pc = CPU_PC_GET(current_cpu);
132 frv_interrupt_state.f_ne_flags[0] = 0;
133 frv_interrupt_state.f_ne_flags[1] = 0;
134 frv_interrupt_state.imprecise_interrupt = NULL;
135}
136
137static void
138@cpu@_parallel_write_queued (SIM_CPU *current_cpu)
139{
140 int i;
141
142 FRV_VLIW *vliw = CPU_VLIW (current_cpu);
143 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
144
145 /* Loop over the queued writes, executing them. Set the pc to the address
146 of the insn which queued each write for the proper context in case an
147 interrupt is caused. Restore the proper pc after the writes are
148 completed. */
149 IADDR save_pc = CPU_PC_GET (current_cpu);
150 IADDR new_pc = save_pc;
151 int branch_taken = 0;
152 int limit = CGEN_WRITE_QUEUE_INDEX (q);
153 frv_interrupt_state.data_written.length = 0;
154
155 for (i = 0; i < limit; ++i)
156 {
157 CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, i);
158
159 /* If an imprecise interrupt was generated, then, check whether the
160 result should still be written. */
161 if (frv_interrupt_state.imprecise_interrupt != NULL)
162 {
163 /* Only check writes by the insn causing the exception. */
164 if (CGEN_WRITE_QUEUE_ELEMENT_IADDR (item)
165 == frv_interrupt_state.imprecise_interrupt->vpc)
166 {
167 /* Execute writes of floating point operations resulting in
168 overflow, underflow or inexact. */
169 if (frv_interrupt_state.imprecise_interrupt->kind
170 == FRV_FP_EXCEPTION)
171 {
172 if ((frv_interrupt_state.imprecise_interrupt
173 ->u.fp_info.fsr_mask
174 & ~(FSR_INEXACT | FSR_OVERFLOW | FSR_UNDERFLOW)))
175 continue; /* Don't execute */
176 }
177 /* Execute writes marked as 'forced'. */
178 else if (! (CGEN_WRITE_QUEUE_ELEMENT_FLAGS (item)
179 & FRV_WRITE_QUEUE_FORCE_WRITE))
180 continue; /* Don't execute */
181 }
182 }
183
184 /* Only execute the first branch on the queue. */
185 if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE
186 || CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_FN_PC_WRITE)
187 {
188 if (branch_taken)
189 continue;
190 branch_taken = 1;
191 if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE)
192 new_pc = item->kinds.pc_write.value;
193 else
194 new_pc = item->kinds.fn_pc_write.value;
195 }
196
197 CPU_PC_SET (current_cpu, CGEN_WRITE_QUEUE_ELEMENT_IADDR (item));
198 frv_save_data_written_for_interrupts (current_cpu, item);
199 cgen_write_queue_element_execute (current_cpu, item);
200 }
201
202 /* Update the LR with the address of the next insn if the flag is set.
203 This flag gets set in frvbf_set_write_next_vliw_to_LR by the JMPL,
204 JMPIL and CALL insns. */
205 if (frvbf_write_next_vliw_addr_to_LR)
206 {
207 frvbf_h_spr_set_handler (current_cpu, H_SPR_LR, save_pc);
208 frvbf_write_next_vliw_addr_to_LR = 0;
209 }
210
211 CPU_PC_SET (current_cpu, new_pc);
212 CGEN_WRITE_QUEUE_CLEAR (q);
213}
214
215void
216@cpu@_perform_writeback (SIM_CPU *current_cpu)
217{
218 @cpu@_parallel_write_queued (current_cpu);
219}
220
221static unsigned cache_reqno = 0x80000000; /* Start value is for debugging. */
222
223#if 0 /* experimental */
224/* FR400 has single prefetch. */
225static void
226fr400_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
227{
228 int cur_ix;
229 FRV_CACHE *cache;
230
231/* The cpu receives 8 bytes worth of insn data for each fetch aligned
232 on 8 byte boundary. */
233#define FR400_FETCH_SIZE 8
234
235 cur_ix = LS;
236 vpc &= ~(FR400_FETCH_SIZE - 1);
237 cache = CPU_INSN_CACHE (current_cpu);
238
239 /* Request a load of the current address buffer, if necessary. */
240 if (frv_insn_fetch_buffer[cur_ix].address != vpc)
241 {
242 frv_insn_fetch_buffer[cur_ix].address = vpc;
243 frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
244 if (FRV_COUNT_CYCLES (current_cpu, 1))
245 frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
246 frv_insn_fetch_buffer[cur_ix].address,
247 UNIT_I0 + cur_ix);
248 }
249
250 /* Wait for the current address buffer to be loaded, if necessary. */
251 if (FRV_COUNT_CYCLES (current_cpu, 1))
252 {
253 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
254 int wait;
255
256 /* Account for any branch penalty. */
257 if (ps->branch_penalty > 0 && ! ps->past_first_p)
258 {
259 frv_model_advance_cycles (current_cpu, ps->branch_penalty);
260 frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
261 "Branch penalty:");
262 ps->branch_penalty = 0;
263 }
264
265 /* Account for insn fetch latency. */
266 wait = 0;
267 while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
268 {
269 frv_model_advance_cycles (current_cpu, 1);
270 ++wait;
271 }
272 frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
273 return;
274 }
275
276 /* Otherwise just load the insns directly from the cache.
277 */
278 if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
279 {
280 frv_cache_read (cache, cur_ix, vpc);
281 frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
282 }
283}
284#endif /* experimental */
285
286/* FR500 has dual prefetch. */
287static void
288simulate_dual_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc, int fetch_size)
289{
290 int i;
291 int cur_ix, pre_ix;
292 SI pre_address;
293 FRV_CACHE *cache;
294
295 /* See if the pc is within the addresses specified by either of the
296 fetch buffers. If so, that will be the current buffer. Otherwise,
297 arbitrarily select the LD buffer as the current one since it gets
298 priority in the case of interfering load requests. */
299 cur_ix = LD;
300 vpc &= ~(fetch_size - 1);
301 for (i = LS; i < FRV_CACHE_PIPELINES; ++i)
302 {
303 if (frv_insn_fetch_buffer[i].address == vpc)
304 {
305 cur_ix = i;
306 break;
307 }
308 }
309 cache = CPU_INSN_CACHE (current_cpu);
310
311 /* Request a load of the current address buffer, if necessary. */
312 if (frv_insn_fetch_buffer[cur_ix].address != vpc)
313 {
314 frv_insn_fetch_buffer[cur_ix].address = vpc;
315 frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
316 if (FRV_COUNT_CYCLES (current_cpu, 1))
317 frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
318 frv_insn_fetch_buffer[cur_ix].address,
319 UNIT_I0 + cur_ix);
320 }
321
322 /* If the prefetch buffer does not represent the next sequential address, then
323 request a load of the next sequential address. */
324 pre_ix = (cur_ix + 1) % FRV_CACHE_PIPELINES;
325 pre_address = vpc + fetch_size;
326 if (frv_insn_fetch_buffer[pre_ix].address != pre_address)
327 {
328 frv_insn_fetch_buffer[pre_ix].address = pre_address;
329 frv_insn_fetch_buffer[pre_ix].reqno = cache_reqno++;
330 if (FRV_COUNT_CYCLES (current_cpu, 1))
331 frv_cache_request_load (cache, frv_insn_fetch_buffer[pre_ix].reqno,
332 frv_insn_fetch_buffer[pre_ix].address,
333 UNIT_I0 + pre_ix);
334 }
335
336 /* If counting cycles, account for any branch penalty and/or insn fetch
337 latency here. */
338 if (FRV_COUNT_CYCLES (current_cpu, 1))
339 {
340 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
341 int wait;
342
343 /* Account for any branch penalty. */
344 if (ps->branch_penalty > 0 && ! ps->past_first_p)
345 {
346 frv_model_advance_cycles (current_cpu, ps->branch_penalty);
347 frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
348 "Branch penalty:");
349 ps->branch_penalty = 0;
350 }
351
352 /* Account for insn fetch latency. */
353 wait = 0;
354 while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
355 {
356 frv_model_advance_cycles (current_cpu, 1);
357 ++wait;
358 }
359 frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
360 return;
361 }
362
363 /* Otherwise just load the insns directly from the cache.
364 */
365 if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
366 {
367 frv_cache_read (cache, cur_ix, vpc);
368 frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
369 }
370 if (frv_insn_fetch_buffer[pre_ix].reqno != NO_REQNO)
371 {
372 frv_cache_read (cache, pre_ix, pre_address);
373 frv_insn_fetch_buffer[pre_ix].reqno = NO_REQNO;
374 }
375}
376
377static void
378@cpu@_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
379{
380 SI hsr0;
381 SIM_DESC sd;
382
383 /* Nothing to do if not counting cycles and the cache is not enabled. */
384 hsr0 = GET_HSR0 ();
385 if (! GET_HSR0_ICE (hsr0) && ! FRV_COUNT_CYCLES (current_cpu, 1))
386 return;
387
388 /* Different machines handle prefetch defferently. */
389 sd = CPU_STATE (current_cpu);
390 switch (STATE_ARCHITECTURE (sd)->mach)
391 {
392 case bfd_mach_fr400:
676a64f4 393 case bfd_mach_fr450:
b34f6357
DB
394 simulate_dual_insn_prefetch (current_cpu, vpc, 8);
395 break;
396 case bfd_mach_frvtomcat:
397 case bfd_mach_fr500:
e930b1f5 398 case bfd_mach_fr550:
b34f6357
DB
399 case bfd_mach_frv:
400 simulate_dual_insn_prefetch (current_cpu, vpc, 16);
401 break;
402 default:
403 break;
404 }
405}
406
407int frv_save_profile_model_p;
408EOF
409
410;;
411
412xinit)
413
414cat <<EOF
415/*xxxinit*/
416 /* If the timer is enabled, then we will enable model profiling during
417 execution. This is because the timer needs accurate cycles counts to
418 work properly. Save the original setting of model profiling. */
419 if (frv_interrupt_state.timer.enabled)
420 frv_save_profile_model_p = PROFILE_MODEL_P (current_cpu);
421EOF
422
423;;
424
425xextract-simple | xextract-scache)
426
427# Inputs: current_cpu, vpc, sc, FAST_P
428# Outputs: sc filled in
429# SET_LAST_INSN_P(last_p) called to indicate whether insn is last one
430
431cat <<EOF
432{
433 CGEN_INSN_INT insn = frvbf_read_imem_USI (current_cpu, vpc);
434 extract (current_cpu, vpc, insn, SEM_ARGBUF (sc), FAST_P);
435 SET_LAST_INSN_P ((insn & 0x80000000) != 0);
436}
437EOF
438
439;;
440
441xfull-exec-* | xfast-exec-*)
442
443# Inputs: current_cpu, vpc, FAST_P
444# Outputs:
445# vpc contains the address of the next insn to execute
446# pc of current_cpu must be up to date (=vpc) upon exit
447# CPU_INSN_COUNT (current_cpu) must be updated by number of insns executed
448#
449# Unlike the non-parallel case, this version is responsible for doing the
450# scache lookup.
451
452cat <<EOF
453{
454 FRV_VLIW *vliw;
455 int first_insn_p = 1;
456 int last_insn_p = 0;
457 int ninsns;
79e59fe6 458 CGEN_ATTR_VALUE_ENUM_TYPE slot;
b34f6357
DB
459
460 /* If the timer is enabled, then enable model profiling. This is because
461 the timer needs accurate cycles counts to work properly. */
462 if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
463 sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "1");
464
465 /* Init parallel-write queue and vliw. */
466 @cpu@_parallel_write_init (current_cpu);
467 vliw = CPU_VLIW (current_cpu);
468 frv_vliw_reset (vliw, STATE_ARCHITECTURE (CPU_STATE (current_cpu))->mach,
469 CPU_ELF_FLAGS (current_cpu));
e930b1f5 470 frv_current_fm_slot = UNIT_NIL;
b34f6357
DB
471
472 for (ninsns = 0; ! last_insn_p && ninsns < FRV_VLIW_SIZE; ++ninsns)
473 {
474 SCACHE *sc;
475 const CGEN_INSN *insn;
476 int error;
477 /* Go through the motions of finding the insns in the cache. */
478 @cpu@_simulate_insn_prefetch (current_cpu, vpc);
479
480 sc = @cpu@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);
481 sc->first_insn_p = first_insn_p;
482 last_insn_p = sc->last_insn_p;
483
484 /* Add the insn to the vliw and set up the interrupt state. */
485 insn = sc->argbuf.idesc->idata;
486 error = frv_vliw_add_insn (vliw, insn);
487 if (! error)
488 frv_vliw_setup_insn (current_cpu, insn);
489 frv_detect_insn_access_interrupts (current_cpu, sc);
e930b1f5
DB
490 slot = (*vliw->current_vliw)[vliw->next_slot - 1];
491 if (slot >= UNIT_FM0 && slot <= UNIT_FM3)
492 frv_current_fm_slot = slot;
b34f6357
DB
493
494 vpc = execute (current_cpu, sc, FAST_P);
495
496 SET_H_PC (vpc); /* needed for interrupt handling */
497 first_insn_p = 0;
498 }
499
500 /* If the timer is enabled, and model profiling was not originally enabled,
501 then turn it off again. This is the only place we can currently gain
502 control to do this. */
503 if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
504 sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "0");
505
506 /* Check for interrupts. Also handles writeback if necessary. */
507 frv_process_interrupts (current_cpu);
508
509 CPU_INSN_COUNT (current_cpu) += ninsns;
510}
511EOF
512
513;;
514
515*)
516 echo "Invalid argument to mainloop.in: $1" >&2
517 exit 1
518 ;;
519
520esac